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Abstract. The aim of this paper is to generalise the construction of
n-ary Hom-Lie bracket by means of an (n — 2)-cochain of given Hom-
Lie algebra to super case inducing n-Hom-Lie superalgebras. We study
the notion of generalized derivations and Rota-Baxter operators of n-
ary Hom-Nambu and n-Hom-Lie superalgebras and their relation with
generalized derivations and Rota-Baxter operators of Hom-Lie super-
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Introduction

Hom-Lie algebras and more general quasi-Hom-Lie algebras were introduced
first by Hartwig, Larsson and Silvestrov in [49], where the general quasi-
deformations and discretizations of Lie algebras of vector fields using more
general o-derivations (twisted derivations) and a general method for con-
struction of deformations of Witt and Virasoro type algebras based on twisted
derivations have been developed. The general quasi-Lie algebras and the sub-
classes of quasi-Hom-Lie algebras and Hom-Lie algebras and their more gen-
eral color Hom-algebra counterparts as well as corresponding general quasi-
Leibniz algebras, and thus also Hom-Leibniz algebras in context of Hom-Lie
algebras, have been introduced in [49,61-63,83]. In [71], the Hom-associative
algebras have been introduced and shown to be Hom-Lie admissible, in the
usual sense of leading to Hom-Lie algebras using commutator map as new
product, thus constituting a natural generalization of associative algebras
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known to be Lie admissible algebras in the same sense of yielding Lie al-
gebras using the commutator product. Moreover, in [71], more general G-
Home-associative algebras including Hom-associative algebras, Hom-Vinberg
algebras (Hom-left symmetric algebras), Hom-pre-Lie algebras (Hom-right
symmetric algebras) and some other Hom-algebra structures, were intro-
duced and shown to be Hom-Lie admissible. Also, flexible Hom-algebras have
been introduced and some connections to some Hom-algebra generalizations
of derivations and of adjoint maps have been noticed, and the variety of
n-dimensional Hom-Lie algebras have been considered and some classes of
low-dimensional Hom-Lie algebras have been described. Since the pioneering
works [49,60-64,71,78,82], Hom-algebra structures have developed in a pop-
ular broad area with increasing number of publications in various directions.
In Hom-algebra structures, defining algebra identities are twisted by linear
maps. Hom-algebra structures of a given type include their classical coun-
terparts and open more possibilities for deformations, Hom-algebra exten-
sions of cohomological structures and representations, formal deformations of
Hom-associative and Hom-Lie algebras, Hom-Lie admissible Hom-coalgebras,
Hom-coalgebras, Hom-Hopf algebras [9,35,61,72-74,81,88,89].

The n-Lie algebras found their applications in many fields of mathemat-
ics and physics. Ternary Lie algebras appeared first in Nambu generalization
of Hamiltonian mechanics [76] using ternary bracket generalization of Poisson
algebras. The algebraic foundations of Nambu mechanics and foundations of
the theory of Nambu-Poisson manifolds have been developed in the works
of Takhtajan and Daletskii in [40,84,85]. Filippov, in [42] introduced n-Lie
algebras. Further properties, classification, and connections to other struc-
tures such as bialgebras, Yang-Baxter equation and Manin triples for 3-Lie
algebras of n-ary algebras were studied in [19-28,50]. Hom-algebra general-
ization of n-ary algebras, such as n-Hom-Lie algebras and other n-ary Hom
algebras of Lie type and associative type, were introduced in [17], by twist-
ing the defining identities using a set of linear maps. A way to generate
examples of such n-ary Hom-algebras from n-ary algebras of the same type
has been described. Representations and cohomology of n-ary multiplicative
Hom-Nambu-Lie algebras have been considered in [10]. Further properties,
construction methods, examples, cohomology and central extensions of n-ary
Hom-algebras have been considered in [14-16,56,57,89-92]. These generaliza-
tions include n-ary Hom-algebra structures generalizing the n-ary algebras
of Lie type including n-ary Nambu algebras, n-ary Nambu-Lie algebras and
n-ary Lie algebras, and m-ary algebras of associative type including n-ary
totally associative and n-ary partially associative algebras.

The construction of (n+ 1)-Lie algebras induced by n-Lie algebras using
combination of bracket multiplication with a trace, motivated by the work
of Awata et al. [18] on the quantization of the Nambu brackets, was gener-
alized using the brackets of general Hom-Lie algebra or n-Hom-Lie algebra
and trace-like linear forms satisfying some conditions depending on the linear
maps defining the Hom-Lie or n-Hom-Lie algebras in [15,16]. The structure of
3-Lie algebras induced by Lie algebras, classification of 3-Lie algebras and ap-
plication to constructions of B.R.S. algebras have been considered in [4,5,7].
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Interesting constructions of ternary Lie superalgebras in connection to su-
perspace extension of Nambu-Hamilton equation is considered in [8]. In [33],
a method was demonstrated of how to construct n-ary multiplications from
the binary multiplication of a Hom-Lie algebra and a (n — 2)-linear func-
tion satisfying certain compatibility conditions. Solvability and Nilpotency
for n-Hom-Lie Algebras and (n 4 1)-Hom-Lie Algebras Induced by n-Hom-
Lie Algebras have been considered in [59]. In [37], Leibniz n-algebras have
been studied. The general cohomology theory for n-Lie algebras and Leibniz
n-algebras was established in [80]. The structure and classification of finite-
dimensional n-Lie algebras were considered in [67] and many other authors.
For more details of the theory and applications of n-Lie algebras, see [41] and
references therein.

Derivations and generalized derivations of different algebraic structures
are an important subject of study in algebra and diverse areas. They ap-
pear in many fields of mathematics and physics. In particular, they appear in
representation theory and cohomology theory among other areas. They have
various applications relating algebra to geometry and allow the construction
of new algebraic structures. There are many generalizations of derivations.
For example, Leibniz derivations [51] and d-derivations of prime Lie and
Malcev algebras [43-45]. The properties and structure of generalized deriva-
tions algebras of a Lie algebra and their subalgebras and quasi-derivation
algebras were systematically studied in [66], where it was proved for exam-
ple that the quasi-derivation algebra of a Lie algebra can be embedded into
the derivation algebra of a larger Lie algebra. Derivations and generalized
derivations of n-ary algebras were considered in [77,87] and it was demon-
strated substantial differences in structures and properties of derivations on
Lie algebras and on n-ary Lie algebras for n > 2. Generalized derivations
of Lie superalgebras have been considered in [93]. Generalized derivations of
Lie color algebras and n-ary (color) algebras have been studied in [38,52—
55]. Generalized derivations of Lie triple systems have been considered in
[39]. Generalized derivations of various kinds can be viewed as a generaliza-
tion of d-derivation. Quasi-Hom-Lie and Hom-Lie structures for o-derivations
and (o, 7)-derivations have been considered in [46,49,64,78,79]. Graded ¢-
differential algebra and applications to semi-commutative Galois Extensions
and Reduced Quantum Plane and g-connection was studied in [2,3,6]. Gen-
eralized N-complexes coming from twisted derivations where considered in
[65].

Generalizations of derivations in connection with extensions and en-
veloping algebras of Hom-Lie color algebras and Hom-Lie superalgebras have
been considered in [12,13,31,48]. Generalized derivations of multiplicative n-
ary Hom-(Q color algebras have been studied in [36]. Derivations, L-modules,
L-comodules and Hom-Lie quasi-bialgebras have been considered in [29,30].
In [58], constructions of n-ary generalizations of BiHom-Lie algebras and
BiHom-associative algebras have been considered. Generalized Derivations
of n-BiHom-Lie algebras have been studied in [34]. Color Hom-algebra struc-
tures associated to Rota-Baxter operators have been considered in context of
Hom-dendriform color algebras in [32]. Rota-Baxter bisystems and covariant
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bialgebras, Rota-Baxter cosystems, coquasitriangular mixed bialgebras, coas-
sociative Yang-Baxter pairs, coassociative Yang-Baxter equation and gener-
alizations of Rota-Baxter systems and algebras, curved O-operator systems
and their connections with (tri)dendriform systems and pre-Lie algebras have
been considered in [68-70]. Generalisations of derivations are important for
Hom-Gerstenhaber algebras, Hom-Lie algebroids and Hom-Lie-Rinehart al-
gebras and Hom-Poisson homology [75].

This paper is organized as follows. In Sect. 1 we review basic concepts
of Hom-Lie, n-ary Hom-Nambu superalgebras and n-Hom-Lie algebras. We
also recall some examples and classification of Hom-Lie superalgebras of di-
mension two. We recall the definition of generalized derivations of n-Hom-Lie
superalgebras and n-ary Hom-Nambu superalgebras. In Sect. 2 we provide
a construction procedure of n-Hom-Lie superalgebras starting from a binary
bracket of a Hom-Lie superalgebra and multilinear form satisfying certain
conditions. To this end, we give the relation between generalized derivations
of Hom-Lie superalgebra and generalized derivations of n-Hom-Lie algebras.
In Sect. 3, we provide a construction for n-ary Hom-Nambu algebra using
Hom-Lie algebra. In Sect. 4 the notion of Rota-Baxter operators of n-ary
Hom-Nambu superalgebras are introduced and some results obtained. Fi-
nally, we give the definition of 3-Hom-pre-Lie superalgebras generalizing 3-
Hom-pre-Lie algebras in graded case.

1. Preliminaries on n-ary Hom-Lie Algebras and Hom-Lie
Superalgebras

Throughout this paper, we will for simplicity of exposition assume that K is
an algebraically closed field of characteristic zero, even though for most of the
general definitions and results in the paper this assumption is not essential.

Let V = Vi @ Vi1 be a finite-dimensional Zs-graded linear space. Let
H(V) = Vo U V; denote the set of homogeneous elements of V. If v € V is a
homogenous element, then its degree will be denoted by |v|, where |v| € Zo
and Zy = {0,1}. Let End(V') be the Zy-graded linear space of endomorphisms
of a Zs-graded linear space V =1V, & V.

The composition of two endomorphisms a o b determines the structure
of superalgebra in End(V), and the graded binary commutator [a,b] = a o
b — (—1)!%llPlp o @ induces the structure of Lie superalgebras in End(V).

1.1. Definitions and Notations

Definition 1.1. [11,62,63] A Hom-Lie superalgebra is a Zs-graded linear space
g = goDg1 over a field K equipped with an even bilinear map [-,-] : gxg — g,
(meaning that [gi, 9;] C gi+j, Vi,j € Z3) and an even linear map o : g — g
(meaning that a(g;) C g;, Vi € Zs).

[z, y] = —(—1)|“7Hy|[y,x] (super-skew-symmetry)
Ow,y,z (=)=l (), [y, 2] =0 (super-Hom-Jacobi identity)



Generalized Derivations and Rota-Baxter Operators... Page 5 of 32 32

for all z,y, z € H(g), where O, , . denotes summation over the cyclic permu-
tations of z, vy, z.

Definition 1.2. A Hom-Lie superalgebra (g, [, -], @) is called multiplicative if
o[z, y]) = [a(z), a(y)] for all z,y € g.

For any x € g, define ad, € Endg(g) by ad,(y) = [z,y], for any y € g.
Then the super-Hom-Jacobi identity can be written as

ad[z 4 (a(2)) = ady(q) 0 ady(z) — (—1)‘””“y|ada(y) oady(z) (1)
for all z,y,z € H(g).

Remark 1.3. An ordinary Lie superalgebra is a Hom-Lie superalgebra when
a = 1id.

Ezample 1.4. [1] Let A be the complex superalgebra A = Ay & A; where
Ao = C[t,t71] is the Laurent polynomials in one variable and A; = 0C[t, t~1],
where 6 is the Grassman variable (6% = 0). We assume that ¢ and § commute.
The generators of A are of the form ¢™ and 6t™ for n € Z. For ¢ € C\{0, 1}
andn € N, weset {n} =
properties

{n+1}=1+4+¢q{n} ={n}+q¢" and {n+m} ={n}+¢"*{m}.

Let 2, be a superspace with basis {L,,, I, |m € Z} of parity 0 and
{Gm, Tin|m € Z} of parity 1, where L,, = —t"D, I, = —t™, G, =
—0t™D, T,, = —60t™ and D is a g-derivation on A such that

D(t™) = {m}t™, D(O"™) = {m + 1}6t™.
We define the bracket [-,-]; : 24 x A, — A, with respect the super-skew-
symmetry for n,m € Z by

, a g-number. The g-numbers have the following

[Lm, Lnlg = ({m} = {n}) Limsn, (2)
[Lmvl ]q = —{n}lnin, (3)
[Lm, Gnlq = ({m} = {n +1})Gmin, (4)
Um, G ] = {m}Tmin, (5)
(L, Thlqg = —{n+ 1} Thpn, (6)
[Imvln]q = [Im,Tn]q = [TmaGn]q = [Tm;Tn]q = [vaGn]q =0. (7)

Let oy be an even linear map on 2, defined on the generators by
aq(Lyn) = (1+q") Ly,  aq(ln) = (1+q")In,
aq(Tn) = (L+¢" )G, ag(Tn) = (1+¢" )T,
The triple (q,[;]q,q) is a Hom-Lie superalgebra, called g¢-deformed

Heisenberg- Virasoro superalgebra of Hom-type.

Ezample 1.5. In [11], the authors construct an example of Hom-Lie super-
algebra, which is not a Lie superalgebra starting from the orthosymplectic
Lie superalgebra. We consider in the sequel the matrix realization of this Lie
superalgebra.
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Let 0sp(1,2) = Vo @ V7 be the Lie superalgebra where Vj is generated
by:

100 001 000
H=(000 |, X=[000], Y=[(000],
00-1 000 100

and V; is generated by

000 010
r={100], ¢=[00-1
010 000

Those of the defining relations that have nonzero elements in the right-hand
side are

[H,X]=2X, [H,Y]=-2Y, [X,)Y|=H,
Y,G|=F, [X,F]=G, [H,F|=-F, [H,G] =G,
[G,F] = H, [G,G] = —2X, [F,F] =2Y.
Let A € R*, we consider the linear map « : 0sp(1,2) — osp(1,2) defined by:

1
awm:chmm:pxcmm:H
1
Oz)\(F) = XF, a)\(G) = \G.
We provide a family of Hom-Lie superalgebras osp(1,2)x = (0sp(1,2), [, ]ay
a ), where the Hom-Lie superalgebra bracket [-, |,, on the basis elements is

given, for A # 0, by:

2
[H, X]o, = 20X, [H,Y]a, = Y, [X,Y]., = H,

A2
[KthziF,p&FhA:AG,ULF@A:—iF,UﬂGhX:AG
2
[GHM:H[QQM:QVX[RHM:FY

These Hom-Lie superalgebras are not Lie superalgebras for A # 1.

Theorem 1.6. [86] Ewery 2-dimensional multiplicative Hom-Lie superalgebra
(g = 80Dy, [, |, @) generated by {e1, ea} is isomorphic to one of the following
nonisomorphic Hom-Lie superalgebras. Fach algebra is denoted by gf’j, where
1 1s the dimension of go, j is the dimension of g1, k is the number.

1. 9(1)72: is an abelian Hom-Lie superalgebra.

2. gil: is an abelian Hom-Lie superalgebra.

3. gil: [eo,e1] = e, [e1,e1] =0 and o = (é 2), aec K.

4 a0

4' gl,l‘.[e()ael]:el; [61361]:0 and o = 00)’ a7é071'

5 a? 0
5. 9117 leo,e1] =0, [er,e1] = e and o = 0a) @ # 0.
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Now, we recall the definitions of n-ary Hom-Nambu superalgebras and
n-Hom-Lie superalgebras, generalizing n-ary Nambu superalgebras and n-Lie
superalgebras (see [1]).

Definition 1.7. An n-ary Hom-Nambu superalgebra (N, [, ..., ], @) is a triple
consisting of a linear space N' = Ny @ N7, an even n-linear map [-,..., ] :
N™ — N such that [Nkl . ,Nkn] C Nk1+...+k" and a famlly a= (ai)lgifn—l
of even linear maps o; : N — N, satisfying

V(@1 nm1) € KN (y1,- .o yn) € HN)™

[al(ml), coen 1 (Tn_1), Y1, - ,ynH
= Z(—l)lx‘miil [ (y1), .- a1 (yio1),
[3717 ) xn—layi]vai(yi-‘rl)’ R an—l(yn)]7 (8)

n—1 i—1
where | X| = Z |zx| and |Y]71 = Z |y |-
k=1 k=1
The identity (8) is called super-Hom-Nambu identity.

Let @ : N»~! — N™"1 be an even linear map defined for all X =
(#1,...,p—1) € N"7 1 by a(X) = (a1(z1),...,an-1(xn_1)) € N* L. For
all X = (z1,...,7,_1) € N"1 the map adx : N' — A defined by

adX(y): [xlw"vmnfl?y]v VyENv (9)

is called adjoint map. Then the super-Hom-Nambu identity (8) may be writ-
ten in terms of adjoint map as

n—1

adgz(x)([Y1, -+, yn]) = Z(—l)lxuyliil [ (Y1), -« s aim1(yi-1), adx (vi),

;i(yi+1) ceey Oén—l(yn)] .

Definition 1.8. An n-ary Hom-Nambu superalgebra (N, [-,..., ], &) is called
n-Hom-Lie superalgebra if the bracket [-,...,-] is super-skewsymmetric that
is
Vi<i<n-—1:
[]}17 ey Ly Lj41y - - - ,J}n] = —(—1)"%”"’”’*'1‘[331, ey Lj4 1, Ly e e - ,In]. (10)
It is equivalent to

Vi<i<j<n:
(@1, Ty Ty, T :—(—1)|X‘54:11
(1, Ty Ty ey T (11)
. J
where 1,...,2, € H(N) and | X|! = Z|xk|
k=i

(zil+lz; D+lillz;)
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Remark 1.9. When the maps (c;)1<i<n—1 are all identity maps, one recovers
the classical n-ary Nambu superalgebras.

Let (N, [,...,],@) and (N',[,...,:],&) be two m-ary Hom-Nambu
superalgebras where @ = (o;)i<i<n—1 and & = (a})1<i<n—1. A linear map
f: N — N'is an n-ary Hom-Nambu superalgebras morphism if it satisfies

f([x17"'aInD = [f(iﬂl),-..,f(xn)]/,
foaj=0alof, Vi=1,...,n—1.

In the sequel we deal sometimes with a particular class of n-ary Hom-
Nambu superalgebras which we call n-ary multiplicative Hom-Nambu super-
algebras.

Definition 1.10. A multiplicative n-ary Hom-Nambu superalgebra (resp. mul-
tiplicative n-Hom-Lie superalgebra) is an n-ary Hom-Nambu superalgebra
(resp. n-Hom-Lie superalgebra) (N, [-,...,],&) with & = (;)1<i<n—1 Where
ap =+ = a,_1 = a and satisfying

a([z, ..., zn)) = [a(z1), .. alx,)], Vor,...,z, €N (12)
For simplicity, denote the n-ary multiplicative Hom-Nambu superalgebra as
(N, [...,],) where a: N/ — N is an even linear map. Also by misuse of
language an element X € N™ refers to X = (z1,...,2,) and «a(X) denotes

(a(z1),...,a(xy)).

Definition 1.11. A multiplicative  n-ary  Hom-Nambu  superalgebra
(N, [ ...,], @) is called regular if « is bijective.

1.2. Derivations, Quasiderivations and Generalized Derivations of Multi-
plicative n-ary Hom-Nambu Superalgebras

In this section we recall the definition of derivation, quasiderivation and gen-
eralized derivation of multiplicative n-ary Hom-Nambu superalgebras.

Let (N, [, ..., ], @) be a multiplicative n-ary Hom-Nambu superalgebra.
We denote by ¥ the k-times composition of « (that is ¥ = ao---0a,
—_——

k—times

a’ = Id and o' = ).

Definition 1.12. For any k£ > 1, we call ® € End(N) an a*-derivation of the

multiplicative n-ary Hom-Nambu superalgebra (N, [+, ..., ], a) if
[D,0] =0 ie, Doa=aoD; (13)
Dx,...,20] = Z(_l)lm\xhﬂ
i=1

[0F (x1), ..., 0" (2i1), D(1:), " (wig1), ..., 0¥ (wn)].  (14)
We denote by Der,«(N) the set of a-derivations of the multiplicative n-
Hom-Lie superalgebra N.

For X = (21,...,2,-1) € N" ! satisfying a(X) = X and k > 1, we
define the map ad% € End(N) by

adk (y) = [x1,. .., 2n_1,0"(y)] Yy e N. (15)
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Then, we find the following result.

Lemma 1.13. The map ad];( is an oftl-derivation (called inner oF¥!-

deriwation), and |ad| = | X]|.
We denote by Inngx(N) the space generate by all the inner af*!-
derivations. For any ©® € Der,«(N) and ®" € Der i (N) we define their

supercommutator [©,D’] as usual:
0,9]=200 — (-1)?I?ND oD, (16)

then [©,9'] € Der i (N). Set Der(N) = @Derak(/\/') and Inn(N) =
k>0

@ Inng.(N), the pair (Der(N), [-,+]) is a Lie superalgebra.

k>0

Definition 1.14. Let (N, [, ..., ],«) be a multiplicative n-ary Hom-Nambu
superalgebra. An endomorphism © € End(N) is said to be an
a* —quasiderivation, if there exists an endomorphism ®’ € End(N) such
that

n

S E)RINT 0k (@), D (), - 0 (@) = D (a1, ),

i=1

for all z1,...,2, € N. We call ® the endomorphism associated to o*—
quasiderivation 2.

We denote the set of a*-quasiderivations by QDer,(N') and

QDer(N) = @ QDer .« (N).

k>0

Definition 1.15. An endomorphism © of a multiplicative n-ary Hom-Nambu
superalgebra (N, [-,..., ],a) is called a generalized a”-derivation if there
exist linear mappings

99" ..., 20" D" ¢ End(N)
such that
DM ([zy,...,2]) =

n

S RTINIT (F 2y), L 00D (@), oF ()], (17)

i=1

forall z1,...,2, € N. An (n+1)-tuple (D,9",0",...,D"=D D)) s called
an (n + 1)-ary aF-derivation.

We denote the set of generalized o*-derivations by GDer»(N') and
GDer(N) = @ GDer .« (N).

k>0
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2. n-Hom-Lie Superalgebras Induced by Hom-Lie
Superalgebras

In [47], the authors introduced a construction of a 3-Hom-Lie superalgebra
from a Hom-Lie superalgebra. It is called 3-Hom-Lie superalgebra induced
by Hom-Lie superalgebra. In this section we generalize this construction to
the n-ary Hom-algebras by the approach in [4].

Let (g, [, ], @) be a multiplicative Hom-Lie superalgebra and g* be its
dual superspace. Fix an even element of the dual space ¢ € g*. Define the
triple product as follows

Va,y, z €M) : [2.y,2] = p(@)ly. 2] + (~1)F WD)z, 2]
(=)D o), y). (18)
Obviously this triple product is super-skew-symmetric. It is straightforward

to compute the left-hand side and the right-hand side of the super-Hom-
Nambu identity (8) if ¢ o« = ¢ and

p(@)¢([y, 2]) + (=)W () p([2,2]) +
(=) Do) ([, y]) = 0. (19)
Now we consider ¢ as an even K-valued cochain of degree one of the

Chevalley-FEilenberg complex of a Hom-Lie superalgebra g. Let coboundary
operator § : AFg* — AFg* be defined by

Of(x1,.. . Thy1)
- Z(il)lJr]Jrl(*l)%j f([‘rh ‘Tj}ga a(xl) R R O 705(1:/64-1))3 (20)
i<j
where ;¥ = | X7 (2] + |25]) + ||| X ;tll, for f € AFg* and for all a4,...,
ZTr+1 € H(g). Then, dp(z,y) = ¢([z,y]). Finally, we can define the wedge
product of two cochains ¢ and d¢, which is the cochain of degree three by

@ASp(x,y,2) = p(z)e(ly, 2]) + (—1) "1 WD o (y)o([2, 2])
+(=1) =D o () o[, ]).

Hence (19) is equivalent to ¢ Adp = 0. Thus, if an 1-cochain ¢ satisfies the
equation (19), then the triple product (18) is the 3-Hom-Lie bracket, and
we will call this multiplicative 3-Hom-Lie bracket the quantum Hom-Nambu
bracket induced by an even 1-cochain.

Definition 2.1. Let ¢ € A" 2g* be an even (n — 1)-cochain, we define the
n-ary product as follows

[1‘1,. . .,l‘n}(;s =
n ) ) < . R
Z(—l)zﬂﬂ(—l)”iqﬁ(xh...,xi,...7xj,...,xn)[xi,xj], (21)
1<j

for all 1,...,z, € H(g).
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It is clair that [-,...,]s is an even n-linear map.
Proposition 2.2. The n-ary product [-, ..., -]s is super-skew-symmetric.

Proof. Let x1,...,x, € H(g) and fix an integer 1 <7 <n — 1. Then,

[xl,...,xi,xi+1,...,xn]¢
X ~ ~
= > VTN R, B B Ty Tn) [Tk, T
kE<l<i
X ~ ~
+ Z (*1)k+l+1(71)7k!¢(:r1,...,:Ei,:ciJrl,...,:ck...,xl,...,xn)[:ck,ml]
itl<k<l
. X ~ ~
+ Z (—1)l+l+1(—1)’yn¢J(1’1,...,xi,xi+1,...,xl,...,xn)[mi,xl]
k=i<l#i+1
. x . .
+ Z (71)k+1+1(71)7ki¢(m1,4..,wk,..4,mi,xi+1,.4.,xn)[xk,wi]
k<l=1i
. X = .
+ Z (—l)k"_l(—l)"’kwﬂ(b(ml,...,mk,...,xi,xi+1,...,xn)[ack,mprl}
itk<l=it1
. X . =N
+ > (D)D) g (@, s Bt B ) [T, 1)
k=it+1<l
X o~ o~
+(—1)72~i+1¢(x1,...,aci,:ci+1,...,xn)[xi,xi_H]
=51+ + 857
and
[m1,...,$i+1,$i7...7l‘n]¢
= Z (—1)k+l+1(—1)7’§l¢)(1‘1,...,fL'\k,...,/{L‘\l...,Z‘i+1,$i,...,xn)[aﬁk,wl]
kE<l<i
+ Z (—1)k+l+1(—1)7§l¢(x1,..,,.rH_l,xi,.,.,fk...,f;,...,mn)[xk,xl]
itl<k<l
. x = -
+ Z (—1)1+l+1(—1)cil¢(x1,...,mi+1,xi,...,xl,...,wn)[xi+1,xl]
k=i<l#i+1
+ 3 (DTN D) (@, Ty i1, T ) [T, 1]
k<l=1i
. X N =N
+ Z (—1)k+1(—1)<’€»i+1¢)(11,...,Ik,...,xi+1,1‘i,...,xn)[a:k,xi]
itk<l=i+1
. x = =
+ Z (=) (=) S p(@a, .y Tt 1, Ty ooy Ty e e ey T )[4, 1]
k=i+1<l
X o~ ~
+(71)’YM+1¢($1,...,xi,:ciJrl,...,:cn)[xprl,mi]
=S +---+5;
where

Gl = X[ (il + laal) + o (2il + liva] + -+ [a-1])
= X[ (i | + |m]) + [zl (il + -+ zal) + |ziga 2]
= Y1+ |zisa ||zl
So we conclude that S5 = —(—1)l=ill#i+1lSs In the same way, it is easy
to see also that S§ = —(—1)@llearilgs gl — —(—1)lwillzinalg, and S} =
—(=1)l=illzisal gy,
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The super-skew-symmetry of ¢ gives that S§ = —(—1)l@llei1lg, §F =
—(=1)l=llzi1l Gy and % = —(—1)l=illzi+1lS7. Finally we get

[0, @, Tigts s Tl = — (=D oy g a] O

Given X = (21,...,2n-3) € A" 3H(g), Y = (y1,...,yn) € A"H(g) and
z € H(g), we define the linear map ¢x by ¢x(z) = ( z), and
oAOGx (V) = 3 (—) ™ (=15 6y, i -0 - )0 (i, 0)
i<j
S GGt 9 (05035]).
1<j

Theorem 2.3. Let (g, [, ], @) be a multiplicative Hom-Lie superalgebra, g* its
dual and ¢ be an even cochain of degree n — 2, i.e., ¢ € A" 2g*. The linear
space g equipped with the n-ary product (21) and the even linear map « is a
multiplicative n-Hom-Lie superalgebra if and only if

oMo =0, VX € A" *H(g), (22)
po(a®ld®- - ®Id) = ¢. (23)

Proof. Firstly, if (z1,...,2,) € A"H(g), then

[a(z1), ..., a(zn)]s

—_—

_Z z+J+1( 1)” (Zﬁ(a(ml),...,Oé(i)?i)7...,Oé(Ij),...,Oé(.Tn))[Oé(l’i)aOé(xj)}
_Z 1+]+1 7“(25(.’“ ey Ty n) o[, x5))
=a([z1,...,Tnle).

Secondly, for (x1,...,2,—1) € A" 1H(g) and (y1,...,yn) € A"H(g), we have
[a(z1), - al@n—1), [Y1s - ynlslo
Y ~ o~
_Z H_]+1 )’Yijgb(ylv'"ayiv"‘vij"vyn)

1<j
[a(z1), - @n-1), [yis yslle
_Z Z z+]+/€+l( 1)72;4-%?1(_1)(|wk\+|$z\)(\$i\+\wj|)

1<j k<l<n—1

—

Ba(@n), o al@n). @@ B GO o T Ty 30)
CICHRAEN)
I DI R EIC il

i<j k<n
—

¢(a(z1);---,Oé/(x\k)y---701(1'(71—1)),---7[yi,yj})ﬁb(yl,--~,§J\i,---,@\j,-~-,yn)

[a(zr), [yi, y;]]-
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The terms [a(xk), [yi, y;]] are simplified by identity of Jacobi in the second
half of the super-Hom-Nambu identity. Now, we group together the other
terms according to their coefficient [a(x;), a(z;)]. For example, if we fixed
(k,1) and, if we collect all the terms containing the commutator [a(zy), a(x;)],
then we get the expression

(Z(*l)”j*k*l(fl)%?Jrvﬁ(,1)(|$k|+\11I)(Ifrz'|+|$j|)
1<J

d(a(xy),.. .,m7 coolxy), e Y ys))
¢(y17 s 7@\2'; s aﬂj» .. 'ayn))[a(xk)aa(‘rl)}'

Hence the n-ary product (21) will satisfy the super-Hom-Nambu identity
if for any elements X = (z1,...,7,-3) € A" 3H(g) and Y = (y1,...,Yn) €
A"H(g) we require

n

(Z(_l)m(_l)vé Plafxr),. .., alen—3s), [yi, y;])

i<j
¢<y1aaﬂlaa/y\j7ayn)):0 O

Ezample 2.4. [86] Consider a 3-dimensionally graded linear space L = Lo ®
Ly, where L is generated by ey, eo and L is generated by ez. Define an even
linear map o : L — L by

aler) = a’er, aley) =ey ales) = aey

and an even super-skewsymmetric bilinear map [-,-] : L x L — L given by
le1,e2] = [e1,e3] =0, [ea,e3] =e3, [es,e3] =en.
Then (L, [-,-],a) is a multiplicative Hom-Lie superalgebra. Define an even

linear form ¢ : L — K given by ¢(e;) = 0 and ¢(es) = b. Then, we have
poa=¢ and ¢AJp = 0.

Therefore, using Theorem 2.3, we can construct a multiplicative 3-Hom-Lie
superalgebra (L, [, |4, @), where the ternary bracket [,-, ] is given by
[ea, €3, €3] = d(e1)[es, es] = bey and a,b are parameters.

In the following, we generalise the notion of supertrace introduced in
[47] for the even multilinear form.

Definition 2.5. Let ¢ : gA---Ag — K be an even super-skewsymmetric linear
form of the multiplicative Hom-Lie superalgebra (g, [, ], @), then ¢ is called
supertrace if:

do([,]®Id® - -®@Id)=0and go(a®[d® - ®Id) = ¢.

Corollary 2.6. Let ¢ : A" 2g — K be a supertrace of Hom-Lie superalgebra
(9,[,"], ), then gy = (9, [.,--.,.]¢, @) is an n-Hom-Lie superalgebra.
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Proposition 2.7. Let (g, [, ], @) be a Hom-Lie superalgebra, and let © € Der(g)
be an of-derivation such that

n—2
ST )P b(ay, D (@), wna) = 0.
i=1
Then D is an o-derivation of the n-Hom-Lie superalgebra (g, [ ..., "]|s, ).

Proof. Let X = (z1,...,%,) € A"H(g), on the one hand we get
@([.131, . ,l‘n]¢)

— @(Z(—l)i+j+1¢(a(x1), 0@ al@) s alen) ), ale))

= Z DI G(a@r), . @),y al(F), e ) ([eas), alx;)])
_Z DI (@1, oo, By By ey ) (D (24)), 8T (25)]
+Z )ittt :101,...,@-,...,@,...,mn)[ak+1(xi)7a(©(xj))]7

on the other hand, we have

n

Z[ak(xl)a ceey ak(xl—1)7©(xl)a ceey ak(zl+1)a ey O‘k(xn)]gf)

=1
n
= >y
I=1i<j ; i,j#l

Sk (1), ..., 0k (@), D), ... b (x5), - .., 0k (wn)) ok (21), 0¥ ()]

+ Z Z J+l+1

I=11=i<j

o(a*(x1),.... D), k(). .., ok (2,)[D(x), o (x7)].

If © is an a¥-derivation then
n

D([o1,- . szal) = (DRI

=1
[ak(‘fl)a R ak(xlfl)vg(xl)v B ak(xH»l)v s 7ak($n)]¢a
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which gives

n

Z l+.7+1 Z IZDIIXll !
1<j <l—1
1,541
ok (@1), ..., ak(z7), ..., D(x1), ... ,ak(:cj),...,ozk(xn)))
[a"(z;), o"(z;)] = 0.
Finally, if we fixed (7, j) we have

n—2
-1 .
Z(—l)m”X| p(aF(x1), ..., D(x),...,a"(z,_2)) = 0. O
1=1
Proposition 2.8. Let (g,[,],«) be a Hom-Lie superalgebra and let

D € QDer(g) be an oF-quasi-derivation and ®' : g — g the endomorphism
associated to ® such that
n—2

S (=) Gy, D),y az) = 0.
i=1
Then ® is an o*-quasi-derivation of the n-Hom-Lie superalgebra (g, [, ..., ], @)

with the same endomorphism associated to D'.

3. n-ary Hom-Nambu Superalgebras Induced by Hom-Lie
Superalgebras

In this section we construct an n-ary Hom-Nambu superalgebras with a help
of a given Hom-Lie superalgebra by analogue of Hom-Lie super-triple sys-
tem given in [91] in graded case. Let (g, [-, ], &) be a multiplicative Hom-Lie
superalgebra. Define the following n-linear map [-,..., |, : g®" — g:

[xl, - ,xn]n: [[[. 21, 32), a(s)], 0 ()] ...an_3(xn_1)],an_2(xn)]. (24)

For n=2, [x1,x2]s = [x1, 2] and for n > 3,

(1, Tl = [[T1, s Tt ]no1, "2 (2)].
Theorem 3.1. Let (g, [, -], @) be a multiplicative Hom-Lie superalgebra. Then
gn = (97 ['a ceey ']na anil)

is a multiplicative n-ary Hom-Nambu superalgebra.
To prove this theorem we need the following lemma.

Lemma 3.2. Let (g, [, ], @) be a multiplicative Hom-Lie superalgebra, and ad
the adjoint map defined by ad,(y) = [z,y]. Then, we have

adanq( )[yl, ce ,yn]n

—Z DI o), (o), ade (Uk), 4 (Grsn), - - @yl
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where x € H(g),y € H(g) and (y1,-..,yn) € H(g)™.
Proof. For n = 2, using the super-Hom-Jacobi identity we have
ada(a [y, 2] = [a(2), [y, 2]] = [[z. y], a(2)] + (=)W [a(y), [, 2]
= [ads (), a(2)] + (=1) " a(y), ad.(2)].

Assume that the property is true up to order n, that is

adawl )[yl, e ,yn]n
= Z lX”Y‘k 1 (yl)a'~-7a(yk71)7adX(yk)7a(yk+l)""7a(yn)]n'

Let # € H(g) and (y1,---,Yns1) € H(g)" !, we have

ada"(z) [ylv cee 7y77«+1] = ada"(z) [[y17 s 7yn]n7 an—l(yn+1)]2

= [adan—l(z) [yi,- -, Ynln,a™ (yn+1)} ,

+ (D! fa(ya), ., @)l adans(ay (@7 gn41))]

(@), - ayr—1), ade (00): @i 1); -, aUn)ln, 0" (Y1)

Il
ES
f Mﬁ
o

+

(=D o), @) 0" ade (yni1)|

(=D a(n), - alye1), ade (u), ai), - ayn), @y

[
M:

k=1 n+1
+ DT o), alyn) ade ()]
n—+1 s
= (=pl=i [Oé(yl)w-7a(yk—l):adx(yk),a(ywl),~-~,0t(yn+1)]n+1~
k=1
The lemma is proved. g
Proof of Theorem 3.1. Let X = (21,...,2,-1) € H(g)" ' and
Y =(y1,...,9n) € H(g)™. Using Lemma 3.2, we have
@ @), 0™ @), s Ul
= [l0" @), Dl 02 00), 0" )l

= ada"*l[xl,..-,:cnfl]nfl ([O‘n_Q(yl)v s 7an_2(yn)}n)

=S (=X

|:an71(y1% s 7ad[$17---7zn—1]n—1 (an72(yk))7 o ,Olnil(yn):|

n

{a"‘l(yl), vz Tt )ee 1, @ 2 (k)]s - a"_l(yn)]

n
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k—1 o _
—Z |XHY| a” 1(y1),...,[xl,...,xn_l,yk}n,...,a" 1(yn) -0

n

FEzample 3.3. Consider the 2-dimensional multiplicative Hom-Lie superalge-
bras g‘il and 9411,1 given in Theorem 1.6. We can construct a multiplicative
n-ary Hom-Nambu superalgebras structures on 9:{’,1 and 9%,1 given respec-
tively by:

le1,e0,...,e0]2 = (=1)""te; and [eq,eq,...,e0lt = —(—a
The other brackets are zero.

Ezample 3.4. [86] Consider a 3-dimensional graded linear space L = Lo® L1,
where Lg is generated by e; and Lp is generated by es, e3. Define an even
linear map o : L — L by

aler) =aey, ales) =aes afez) =e3

and an even super-skewsymmetric bilinear map [-,-] : L x L — L given by
[e1, e2] = [e2, 2] = [e3,e3] = 0, [e1,e3] = bea, [es,e3] = ceq,
where a,b, ¢ are parameters and a # 0. Then (L, [, ], «) is a multiplicative

Hom-Lie superalgebra. Therefore, using Theorem 3.1, we can construct a mul-
tiplicative 3-ary Hom-Nambu superalgebra (L, [+, -, /|3, @?), where the ternary

bracket [-,-,]s is given by [e1, es3,e3] = bee; and [eq, e3, e3] = beea. We can
also construct a multiplicative n-ary Hom-Nambu superalgebra (L, [, ..., ]n,
a™1), where the n-ary bracket [-,...,], is given by:
o If n = 4p, then [e,e3,e3,...,e3] = bPcPTle; and [es, e3,€3,...,63] =
bPtlcPe,.
o If n =4p+1, [e1,e3,€3,...,e3] = bPTLcPTley and [ea,e3,¢€3,...,e3] =
ppticptie,.
o Ifn = 4p+2, then [e1,e3,€3,...,e3] = PTLcPT2e; and [ea, €3, €3, ..., e3] =
pp2cptle,
o Ifn = 4p+3, then [e1,e3, €3, ..., e3] = PT2cPT2e5 and [eg, €3, €3, ..., €3] =
pPt2ert2e, .
Proposition 3.5. Let (g, [, ], «) be a multiplicative Hom-Lie superalgebra and

D : g — g an o*-derivation of g for an integer k. Then ® is an o -derivation
of gn-

Proof. We use the mathematical induction. For n = 3, given z,y, z € H(g),
we have

D([z,y,2]) = D([[z, 4], a(2)])
O ([z,]), "1 (2)] + (=1)!P N[k (2), 0% (y)], D(a(2))]
= [@(x), " (y)], a"*(2)] + (=) [[a* (), D(y)], " (2)]
+ ()RR [0k (2), o (y)], a(D(2))]
= [D(x), " (y), &*(2)] + (-1)® I [a* (2), D(y), a* (2)]
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+ (=PI [k 2), oF (), D (2)].

Now, suppose that the property is true to order n — 1:

D([z1,. .. tn1ln-1) = 3 (DI @R (@), D), 0F (@ne1)]nnr.

If (z1,...,20) € g", the:1
(1, ..., Tl
=D([[#1,- s @-ln-1,0" (@) ])
- [@(m,...,xn_l}n_l),aw*?(xn)]
+ (=) Pl tdl [Tk (), 0 (1)1, D (0”2 ()]
= [ D1, wuaaoa), "2 (0 )

+ (1P [k @), o @ )] 0" (D ()|

n—1

(=) [0k (1), D(@a), - 0¥ (@)1, 0" 2 (0 ()]

i

_1)\9||X\"71[ak(m1), ceey ak(mnf1)7©($n)]n

+

3
|

(—D)PIXI 0k (), D(), - 0 (@a1), @ (20)]n

Il
i

+ (—)PPIXT T 0k (), F (@), D (@)
n
= (_1)\9\|X‘7'71 [ (x1),. .., D(x:),...,a"(@n 1), " (@0)]n,
i=1
which completes the proof. O

Proposition 3.6. Let (g, [, ], «) be a multiplicative Hom-Lie superalgebra. For
endomorphisms ©,9’,...,0" Y of g such that @ is an o -quasiderivation
with associated endomorphism DY for 0 < i < n — 2, the (n + 1)-tuple
(©,9,9,9",...,90mD) is an (n + 1)-ary o*-derivation of g,.

Proof. Let x1,...,x, € g, then
D" (21, ..., 2nln)
=0 V([[21,..., B0 1]n_1,Tn])
= D" ([ex,..., 20 1]n1), 0¥ (20)]
+ (=) 0 (), 0 @)1, D07 (@)
=[@"([z1,...,z02]), a" (zn)], " (zn)]
+ ()P 0 @), 0 (n2)], D0 (@01) | 0 ()]

+(mRC TP [[ak(xl), o0 (@ 1)]nt, ©<"*2)(mn)}
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= [D(z1), " (@2), ..., " (@n)]n + (=) [0F (21), D(22), ..., 0" (@n)]n
+ (=n)IPl= =Dk (20 o (30), D' (23), . . ., " (zn)]n
Fo ()RR R () 0P 1), DD ()],

Therefore (n + 1)-tuple (D,9,9,9”,...,9" D) is a generalized
aF-derivation of g,,. O

4. Rota-Baxter n-ary Hom-Nambu Superalgebras

In this section, we introduce the notion of Rota-Baxter operators of Hom-
Nambu superalgebras and 3-Hom-pre-Lie algebras. Then we introduce the
notion of a 3-Hom-pre-Lie superalgebra which is closely related to Rota-
Baxter operators of weight 0.

4.1. Rota-Baxter Operator on n-ary Hom-Nambu Superalgebras

Let (A, -, «) be a K-super-linear space with an even binary operation - and an
even linear map a: A — A and let A € K. If an even linear map R: A — A
satisfies, for all z,y € A,

Ra=aR, R(z) -R(y)=R(R(z) -y+x R(y)+A\x-y), (25)
then R is called a Rota-Baxter operator of weight A on Hom-superalgebra
(A7 ) Oé) .

We generalize the concepts of a Rota-Baxter operator to n-ary Hom-
Nambu superalgebras.

Definition 4.1. Let A € K and an n-ary Hom-Nambu superalgebra
(N, [...,-],a). A Rota-Baxter operator of weight A on (A, [,..., ], @) is
an even linear map R : N — A such that Ra = aR satisfying

[R(x1), ..., R(xn)l = R( > NTR(),..., R(xi),..., R(z,)]), (26)
0#£1C(n)

N ~ :L’,L'7 1 6 I
where R(z;) := Ri(w:) := { R(z:), i ¢ 1

lar, a Rota-Baxter operator of weight A of ternary Hom-Nambu superalgebra
(N, [-,,-], @) is an even linear map R : N' — A commuting with « such that

[R(z1), R(z2), R(x3)] = R([R(l’l)’ R(x2), 23] + [R(z1), w2, R(x3)]
+[x1, R(22), R(3)]
+A[R(I1), Zo, Ig] —+ /\[Il, R(SCQ), 933]
+/\[.131,$2,R(l‘3)]

+A2[I1,I’2, 'I3})

" for all xy,...,z, € N. In particu-

Proposition 4.2. Let (N[, ..., ], @) be an-ary Hom-Nambu superalgebra over
a field K. An invertible even linear mapping R : N' — N is a Rota-Baxter
operator of weight 0 on N if and only if R™* is an even derivation on N .
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Proof. R is an even invertible Rota-Baxter operator of weight 0 on N if and
only if

Vi1, an € A: [R(z1), ..., R(zn)] = R(Z[R(ml), Ty .,R(azn)]).

For X} = R(xg), k€ {l,...,n}.

[Xi,...,X,] =R (ixl i),...,Xn]).

n

Hence, R~ ([X1,..., X,]) = > [X1,...,R7'(X;),..., X,,]. Thus R~! is an
i=1
even derivation on A. O

Proposition 4.3. Let R be a Rota-Baxter of weight 0 of Hom-Lie superalgebra
(g,[, -], ) and ¢ € A"~2g* an even (n — 2)-cochaine satisfying the conditions
(22) and (23). Then R is a Rota-Baxter operator of weight 0 on the n-ary
Hom-Nambu superalgebra (g, [, ..., |, ) defined in (3) if and only if R sat-
isfies

VZi,...,on € H(g) :
Z( 3 ¢>(R(x1),...,m,...,@,...,R(mn)))

k<l ik,
[R(zk), R(x1)] € ker(R). (27)

Proof. For X = (21,...,%,) € H(g)®"
[R([El) e R(l‘n)]¢
= S (1) 1% G(R(x1), ..., R(xp), ..., R(x), ..., R(zy))

k<l

[R(xy), R(x1)]
= S (I 1R G (R(@), o R(w), o R(@), o Rlw) )

k<l
([R(zk), m] + [zg, R(21)]).
On the other hand,

n

R(Z[R(xl), e Ty ,R(xn)]¢)

i=1
_R(Z Z 1)k 1)7;55
i=1 kE<l;k,l#i
O(R(x1)y. .., R(xg)y .. iy. ooy R(21), ..., R(zp))

[R(z1.), R )+R(ZZ 1)kHi+L( w,i‘i

i=1 k<i
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n R(ZZ k+z+1 ’;

i=1 i<k

It is easy to see that

n

R(IR@): - osisee Ranlle) = [R@), - Rlea)le
_ R(z; ,; 1)k ()

k,l#1
AR, R0, o @iy R(21), s R(:cn))[R(xk),R(xl)]).

Then, R is a Rota-Baxter operator on the n-ary Hom-Nambu superalgebra

(g,[,---,]p, @) defined in (3) if and only if
R(Y Y ol
=1 k<l;k,l#i

which gives

n

Z( 1)k m( Z o(R /(7), e Ty R/(x\l) ..... R(z,))
k<l ikl
[R(zk), R(x;)] € ker(R). O

Proposition 4.4. A Rota-Bazter R of weight 0 of Hom-Lie superalgebra
(g,[',:],@) is a Rota-Baxter operator on the associated n-ary Hom-Nambu
superalgebra (g,[ ..., Jn, " "2) defined in (24).

Proof. Tt easy to show that a? R = RaP for any integer p > 0. We use the
mathematical induction on the integer n > 3:

(i) For n = 3: For z,y,z € H(g), we have:

[R(x), R(y), R(2)]s = [[R(x), R(y)], (R ())]

= [R([R(2),y]), R(a(2))] + [ ([, R(y
—R([ ([B(2),9]), a(2)]) +

R([R([z, R(y)]), a(Z)]) (Hm
—R([ ([B(z),y]), a(2)]) +
R([R(z),y, R(2)]3)
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= R([R([R(z),y]) + R([z,
+ R([R(z),y, R(2)]3) +
= R([R(z), R(y), 2ls) + R([R(x), y, R(2)]3) + R([z, R(y), R(2)]3)
= [R(z), R(y), R(2)]s
(ii) Assume the property is true to order n > 3, that is:
Y(z1,..., Tpo1) € H(g)®" 1t

n—1

= R( YR, saiee Blanr). Rl

The theorem is proved. O

4.2. 3-Hom-pre-Lie Superalgebras

In this subsection, we generalize the notion of a 3-Hom-pre-Lie algebra in-
troduced in [19] to the super case, which is closely related to Rota-Baxter
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operators. In particular, there is a construction of 3-Hom-pre-Lie superalge-
bras obtained from 3-Hom-Lie superalgebras.

Definition 4.5. A triple (A, {-,-,-}, ), consisting of a linear super-space A
and two even linear maps {-,-,-} : A A® A — Aand a: A — A, is called
a 3-Hom-pre-Lie superalgebra if the following identities hold:
{z,y, 2} = —(=)"V{y, z, 2}, (28)
{a(z1), a(2) {23, x4, 251} = {[21, 22, 23] al2s), alws)}
+(=DlsllesltieD fa(ag), (21, 20, 2a)o, alws)}
+(—1)(IeeltleD el tlead fo (25), a(wa), {@1, 22, 25}, (29)
{[z1, 22, 23] 0, alwa), ows)} = {a(z1), alx2), {3, 24, x5 }}
+(=DlslleltiesD fa(2,), a(ws), {a1, 24, 25}
+(=lesllenltieD fa (), a(a), {wa, 24, 25} }, (30)

where x,y,z,2; € H(A),1 <i <5 and [, ]¢ is called 3-supercommutator
and defined by
Vo,y,z € H(A) :

[z,y,2]c = {z,y, 2} + (_1)|z|(\y\+lz\){y’z7x} + (_1)\z\(\w|+\y|){z7x’y}.
(31)

Proposition 4.6. Let (A,{-,-,-},a) be a 3-Hom-pre-Lie superalgebra. Then
the induced 3-supercommutator in (31) and the linear map « define a 3-
Hom-Lie superalgebra on A.

Proof. By (28), the induced 3-supercommutator [-, -, -]¢ in (31) is super-skew-
symmetric. For x1,zs, T3, 4, 75 € H(A),

[a(z1), a(x2), [z3, T4, T5]C)e — [[21, 22, T3]0, @(74), (25)]

_( )|13|(|11‘+|12D[ (xg,) [x173327x4]c,04($5)]0

- (- 1)(\11\+|12\)(\z3\+\z4\)[ (z3), a(wa), [x1, 22, 25]c]c
= {a(z1), a(z2), {z3, 74,25} }
+ (=)l (), a(e), {24, 25,21}
+ (=)l aa), a(@s), o5, 23, 24}}
+ 1)|x1I(Iwz\+|ws\+lx4\+lxa\){a(mg) (23, 24, 50, 1)}
+ 1)(‘901‘sz‘)(‘xs‘ﬂm“‘ﬂm‘){[x3,x4,x5]c,a(x1),a(x2)}

1 (‘”“H'l”H'lw‘g‘)(‘z4‘+‘w5‘){a(m4),a(x5), {1, 22, 23}}

1) eil+lesD sl +Haal+lzs) (_pylmlesl+es) (0(2,), a(zs), {22, 23, 21}}

a(xs), {zs, r1,22}}

1 IWsI(le\+|w2\+|23\+|®4\+|w5|){a(xs) [21, z2, 23] 0, a(za)}
b 7 b b

(-
(-
(-
(-
—{[z1, 22, 23] 0, a(xa), a(25) }
- (=
- (=
- (=
- (=
- (=

)
)
1)zil+lesD (s +Haal+lzsh (_pylzslesi+ios) (o),
)
)

pylmsleal el £ (20), (01, 22, 24) 0, alas)}
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_ (,1)|z3|<|z4\+|w5\){[xhm,M}C, a(zs), a(zs)}
— (=1)|as|(|z1] + |w2| + || + |za]) (= 1) sl (21l +lz2D)

{a(ws5), a(z3), {z1, w2, 4} }

_ (_1)|ws|(|ml [+]z2|+[@s|+|zal) (_1)\361 [(z2|+za)+lzs|(Jo1|+]22])

{Ol(fl:g,), Oé(.’ES), {3327 T4, xl}}

_ (_1)Ixs|(lw1\+Iwz\+lxs\+lx4\) (_1)\x4\(\x1|+\xz\)+\$3|(|x1|+|xz|)

{a(zs), a(x3), {4, 21,22} }

(-1 st|(|w4\+|w5\)+\w4\(\zl\+\w2\){a($4)7 [21, 22, 25]c, alxs)}

(wolealtl2al) {10 2o, 5] 0, @), aza)}

1 (‘wlH'l”D(‘Z"“H“D{a(mg),a(x4), {z1,22,25}}

1)zl +lesDasHaal+lzsD £ 0 o

- (-1
—(=1)
- (-1
—(~1) x4), {5, 21,22} }

_ (,1)Icv1I(Iccz\+|w5\)(71)(\zll+\m|)(|oc3|+|z4|){a(‘,ﬂ3)’OA(QM)7 {z2,25,21}} = 0,

when applying identities (29) and (30), thus the proof is completed. O

Definition 4.7. Let (A, {-,-,-},@) be a 3-Hom-pre-Lie superalgebra. The 3-
Hom-Lie superalgebra (A, [, ]c,a) is called the sub-adjacent 3-Hom-Lie
superalgebra of (A, {-,-,-}, ) and (A, {-,, -}, @) is called a compatible 3-Hom-
pre-Lie superalgebra of the 3-Hom-Lie superalgebra (A, [, -, ]c, a).

New identities of 3-pre-Hom-Lie superalgebras can be derived from
Proposition 4.6.

Corollary 4.8. Let (A,{-,-,-},a) be a 3-Hom-pre-Lie algebra. The following
identities hold:

{[z1, 22, 23]c, awa), alzs)} — (1)1 (21, 22, 24)c, a(23), a(ws)}

_,'_(_1)\ﬂcz|(\763|+|954|){[$17 x3, z4]c, a(z2), a(zs5)}

—(-1 ‘xlI(‘$2|+Iz3|+|w4‘){[$2,$37.’174]0,O[(.’El),Oé(ZB)} =0,

{a(z1), a(e2), {23, 4, x5} + (—1) 1= e UmslHlmaD ro (40) a(x4), {21, 22, 25} }

+(—1)‘x1I(‘”HI”'H“DH“"“I{a(a:g),a(x4), {x3,21,25}}
H(=)lrlle 2D 0 (25), a(@1), {z2, 24, 25}}
H(—)lelleztesD fa (20), a@s), {21, 24, 25}}
H(=plFalmr Dt (21), a(a), {w2, 23,25} = 0,

for x; € H(A),1 <1i<5.

Proposition 4.9. Let (A, [, ],«) be a 3-Hom-Lie superalgebra and R : A —
A is an operator Rota-Baxter of weight 0. Then there exists a 3-Hom-pre-Lie
superalgebra structure on A given by

{xvyv Z} = [R(‘T)v R(y),z}, Va,y,z € H(A). (32)
Proof. Let x,y,z € H(A). It is obvious that
{1‘, Y, Z} = [R(QS), R(y)7 Z] = _(_1)|IHy\ [R(y)v R(.’L’), Z} = _(_l)ley‘{ya €L, Z}
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Furthermore, the following equation holds:
[2,y,2]c = [R(x), R(y), 2] + (~1)FHDIR(2), R(x), y]
+(—1)|w‘(‘y|+‘z‘)[R(y),R(z),x].
Since R is a Rota-Baxter operator, we have
R([z,y,2]c) = [R(x), R(y), R(2)].

For T1,T2,T3,T4,T5 € H(A)7

{a(@1), a(@2), {zs, 24,25} } = [R(a(z1)), R(a(z2)), [R(23), R(24), x5]]
= [a(R(21)), a(R(x2)), [R(z3), R(4), 5]
{lz1, 22, 23], alwa), alxs)} = [R([21, 22, 23]c), R(a(24)), o(@s)]
= [[R(z1), R(22), R(zs)], o(R(z4)), a(zs)];
{a(@s), [x1, 22, 24]c, 25} = [R(a(23)), R([z1, 22, w4] 0), (5]
= [a(R(x3)), [R(21), R(z2), R(z4)], a(zs5)];
[

By Condition (8), (29) holds. On the other hand, we have

{[z1, 22, 23] a2s), alxs)} = [R([21, 22, 23]0), R(a(24)), a(25)]
= [[R(z1), R(x2), R(x3)], a(R(x4)), (x5

[ ] )l;

{a(z1), alx2), {ws, 24, w5} } = [R(a(21)), R(e(22)), [R(23), R(24), 5]
= [a(R(21)), a(R(x2)), [R(z3), R(24), z5];

{a(z2), a(z3), {21, 24, 25}} = [R(a(2)), R(a(z3)), [R(21), R(24), 25]]
= [a(R(x2)), a(R(x3)), [R(z1), R(24), 25];

{a(zs), alz1), {22, 24, w5} } = [R(a(23)), R(e(z1)), [R(22), R(24), 5]
= [a(R(23)), a(R(z1)), [R(z2), R(4), z5]]-

By super-Hom-Nambu identity, (30) holds. This completes the proof. O

Ezample 4.10. Consider a 3-dimensional 3-Lie superalgebra (A = Ag @ 44,
[,-,-]) (see [5]), where Ay is generated by < e; > and A; is generated by
< eg,esz > and the only non-trivial bracket is

[627 €2, 62] = €3.
Define an even linear map a: A — A by
aler) = aer, a(eg) =bey ales) = b’es,

where a,b € K . Then « is a morphisme of 3-Lie superalgebra (4, [, -, ]).
Thus (A, [+, ]a = ao [, ],a) is a 3-Hom-Lie superalgebra, where the only
non-trivial bracket is

[627 €2, eQ]a = 04(63) = b3€3.

Now, define an even linear map R: A — A by

1
R(e1) =d'e1, R(ex) =bles+ces ales) = gb/eg,
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where a/, b, ¢’ are parameters. Then R is Rota-Baxter operator of 3-Hom-Lie
superalgebra (A, [, -, ]a, @). By Proposition 4.9, (4,{-,-,}, «) is 3-Hom-pre-
Lie superalgebra, where the only non-trivial bracket is

{62, 62,62} = [R(GQ),R(GQ), eg]a = b/2b363.

Corollary 4.11. With the above conditions, (A,[-,|c,«) is a 3-Hom-Lie
superalgebra as the sub-adjacent 3-Hom-Lie superalgebra of the 3-Hom-pre-
Lie superalgebra given in Proposition 4.9, and R is a 3-Hom-Lie superal-
gebra morphism from (A, [, -, -]c,a) to (A, [, ],«). Furthermore, R(A) =
{R(x)|lx € A} C A is a 3-Hom-Lie super-subalgebra of A and there is an
induced 3-Hom-pre-Lie superalgebra structure ({-,-, -} r(ay, ) on R(A) given
by

{R(x)vR(y)7R(Z)}R(A) = R({x,y,z}), V:r,y,z € H(A) (33)

Proposition 4.12. Let (A, [, ],«) be a 3-Hom-Lie superalgebra. Then there
exists a compatible 3-Hom-pre-Lie superalgebra if and only if there exists an
invertible Rota-Bazter operator R on A.

Proof. Let R be an invertible Rota-Baxter operator of A. Then there exists
a 3-Hom-pre-Lie superalgebra structure ({z,y, z}, @) on A defined by

{.13, Y, Z} = ad(R(z),R(y))(Z)7 va Y,z € H(A)

Also, there is an induced 3-Hom-pre-Lie superalgebra structure ({-,-,-} 4, @)
on A = R(A) given by

{2.y,2ba = R{R (@), R™"(y), R~ ()} = Rlad(s,y) (R7(2)))
for all z,y,z € H(A). Since R is a Rota-Baxter operator on A, we have
@2 = B[y, R+ [, R @), 2] + R (@), 0, 2])
= R(ad(uy) (R71(2)) + (=)0 Dag, o) (R ()
+ (fl)lx\(\yIHZ\)ad(w)(Rfl(x)))

= {z,y, 2} + (=))FEHD L2 0 )y 4+ (=)= IFD £y 2 )y

Therefore (A, {-,-,-}a,a) is a compatible 3-Hom-pre-Lie superalgebra of
(A7 [77]) U
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