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Abstract
Nuclear reaction cross-sections are an essential ingredient to reliable deterministic and stochastic
radiation transport codes used for radiation protection in space and heavy-ion therapy
applications. A recent study compared the existing literature data compiled within the open-access
GSI-ESA-NASA cross-section database to the models implemented in the transport codes most
commonly used for radiation protection in space and heavy-ion therapy applications. The
outcome of the comparison was that none of the models fit well the experimental data for all
projectile-target systems at all energy ranges. Therefore, the literature data were exploited to
optimise the Tripathi–Cucinotta–Wilson model as reported in this work. This model is used as
default in FLUKA, TRiP, and SpaceTRiP, it is part of the hybrid-Kurotama (HK) model used in
particle and heavy ion transport code (PHITS), and it is implemented in Geant4. The consequences
of using the proposed Tripathi–Cucinotta–Wilson optimisation in the HK model are also analysed.

1. Introduction

Realistic models for nuclear reaction cross-sections are an essential ingredient to reliable deterministic and
stochastic radiation transport codes [1, 2], which are used for both the research fields of radiation protection
in space [3, 4] and heavy-ion therapy [5, 6]. Therefore, a total reaction cross-section database was generated
within a GSI-ESA-NASA collaboration [7] and made available open-access [8]. In [7], the collected data were
compared to the semi-empirical models implemented in the Monte Carlo (MC) and deterministic codes
most commonly used for radiation protection in space and heavy-ion therapy applications. The codes are
Geant4 [9–12], particle and heavy ion transport code (PHITS) [13, 14], FLUKA [15, 16], HZETRN [17],
TRiP [18], and SpaceTRiP [19]. The models are Tripathi–Cucinotta–Wilson (usually called ‘Tripathi model’
in the literature and in the MC codes), Kox, Shen, Kox–Shen, and hybrid-Kurotama (HK). The comparison
shows that none of the models fit well the experimental data for all projectile-target systems of interest at all
energy ranges.

Even though more accurate quark [20], optical [21, 22], and relativistic [23] models have been
developed, the Tripathi model was chosen because it is used as default in FLUKA (with specific optimisations
[16]), TRiP, and SpaceTRiP, it is part of the HK routine used in PHITS, and it is also implemented in Geant4.
Additionally, it has many system-dependent free parameters that can be adjusted individually. The data
collection was used to optimise the parameters of the Tripathi model so that it fits the existing literature data.
A partial evaluation of the quality of the literature data was carried out within [7] and it was taken into
account for the optimisation presented in this work. For example, data that were evaluated to under or
overestimate the actual cross-section values were not included in the optimisation.

In this work, details of the proposed Tripathi model optimisations are provided, both for Tripathi96,
which is used for systems where A⩽ 4 for both the projectile and target nuclei) and Tripathi99, which is used
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for all other systems, i.e. light systems. The comparison of the optimised and the original model with
literature data follows, for the case of some of the most important systems for space and heavy-ion therapy
applications. Since the HK routine makes use of the Tripathi model, the consequences of the proposed
Tripathi optimisations on the HK are systematically evaluated.

2. The Tripathi model

The Tripathi semi-empirical formula [24, 25] aims at modelling the total nuclear reaction cross-section as a
function of the projectile kinetic energy. In particular, the so-called ‘Tripathi99’ parametrisation [25] is to be
used for light systems, i.e. that at least either projectile or target has mass number A⩽ 4, while the
‘Tripathi96’ parametrisation [24] for all other systems.

2.1. Tripathi96
The Tripathi96 model describes the total nuclear reaction cross-section as:

σR = π r0
2
(
Ap

1/3 +AT
1/3 + δE

)2
(
1− B

Ecm

)
f, (1)

where r0 = 1.1fm, Ap is the projectile mass number, AT the target mass number, B is the energy-dependent
Coulomb barrier, Ecm is the centre of mass kinetic energy, and f is a multiplication factor equal to 1 in all
cases but for 1H+ 4He and 1H+ 12C, where it is supposed to be set to 27 and 3.5, respectively. δE is
defined as:

δE = 1.85S+ 0.16
S

Ecm
1/3

−CE +α
(AT − 2ZT)Zp

ATAp
, (2)

where α= 0.91 and:

CE = D(1+ exp(−E/T1))−Aexp(−E/792)cos
(
0.229E0.453

)
. (3)

A= 0.292, T1 = 40, E is the projectile kinetic energy, and:

• for the proton–nucleus case: D= 2.05,
• for the case of 4He projectiles:

D= D0 − 8.0× 10−3AT + 1.8× 10−5AT
2 − 0.8

1+ e
250−E

G

, (4)

where D0 = 2.77 and G= 75,
• for all other cases:

D= d
ρAp + ρAT

ρAC + ρAC

(5)

where d= 1.75, with the exception of lithium nuclei, where the outcome of equation (5) is supposed to be
divided by 3.

More details about the Tripathi96 model can be found in [24].

2.2. Tripathi99
The Tripathi99 formula [25] describes the the total nuclear reaction cross-section for light systems as:

σR = π r0
2
(
Ap

1/3 +AT
1/3 + δE

)2
(
1−Rc

B

Ecm

)
Xm. (6)

Details about the parameters can be found in [25]. Differently from Tripathi96, T1 and G are system
dependent. To be noted that in [25], an energy and target-dependent expression for the Xm parameter is
given. Nevertheless, it is discussed in detail in [7] that using Xm = 1 for every projectile but neutrons gives
better agreement with the data and with the plots presented in [25] itself. Xm = 1 is also used in the PHITS
subroutine.
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Table 1. Recommendations for parameters to be used for Li isotopes projectiles within Tripathi96. In [24], T1 = 40, d= 1.75, and f = 1
for all of the systems.

System T1 d f System T1 d f

6Li→ 9Be 110 1.8 1.1 7Li→ 9Be 40 1.65 1
12C 110 1.75 1 27Al 40 1.8 1
27Al 110 1.9 1.05 28Si 40 1.6 1
28Si 110 1.8 0.95 56Fe 40 2 1
64Cu 100 1.8 1 64Cu 100 1.8 1

8Li→ 9Be 40 1.65 1 9Li→ 12C 40 1.8 1
28Si 80 1.8 0.93 27Al 40 1.9 1
64Cu 100 1.8 1 64Cu 100 1.8 1

11Li→ 9Be 40 1.3 1
12C 40 1.35 1
28Si 55 2.8 1.5
64Cu 100 1.8 1

3. Optimisation of the Tripathi96 model

Thanks to the large amount of data collected in the reaction cross-section database [7], it was possible to
optimise the Tripathi parametrisation so that it fits the pool of existing literature data better. A detailed
description of the Tripathi96 and 99 models can be found in [7, 24, 25]. In particular, the specific parameter
names correspond to the ones that can be found in [7]. For what concerns the Tripathi96 parametrisation,
the following modifications are proposed.

3.1. Lithium projectiles
Tripathi et al [24] recommends the usage of D/3 instead of the D parameter for lithium projectiles for the
Tripathi96 model calculations. However, the usage of D gives better agreement with the experimental data.
Additional optimisations are also proposed. The parameters that were modified with respect to [24] are T1,
d, and f. The optimisation process was applied also to lithium isotopes other than 7Li for completeness. Such
optimisations are reported in table 1. To be noticed that the optimisations are not only valid for the case of
lithium projectiles impinging on the specified targets, but also for the case of inverse kinematics. For
example, optimisations are proposed for the system 6Li→ 9Be, but they are also applied for 9Be→ 6Li. These
optimisations are proposed here and not e.g. for 9Be projectiles because the Tripathi model implementations
always use the lightest nucleus as the projectile.

The results of the fit of the optimised model with literature data are presented in figure 1. The focus was
put on systems of interest for radiation protection in space. Lithium could play in fact, an important role as
potential innovative shielding material against cosmic radiation [26–29] and 9Be, 12C, 28Si, and 56Fe are
among the main contributors to the galactic cosmic radiation (GCR) spectrum [4, 30]. To be noticed that
7Li+ 12C required no specific optimisations (see panel (b) of figure 1) but the usage of the D parameter
instead of D/3. Examples of the optimisation of all lithium isotopes impinging on 9Be targets can be found
in figure 2.

3.2. Other projectiles
Optimisations for several other systems are reported in table 2. Additionally to the parameters found in [7], b
appears. b is the multiplication factor of the B energy-dependent Coulomb-barrier parameter of [24]. In
[24], it is always set to 1.44. Also in this case, the optimisations are valid in inverse kinematics as well.
Therefore, heavy ions do not appear as projectiles but only as targets since the lighter ions always play the role
of projectiles in the Tripathi model implementations.

Figures 3–7 show the original and optimised Tripathi96 model together the literature experimental data
for the main contributors to the GCR spectrum, i.e. 9Be, 12C, 16O, 20Ne, 24Mg, 28Si, and 56Fe, as projectiles. In
addition, 12C ions are used for radiation therapy [37, 38] and oxygen was also proposed to be used for
therapy applications [39]. The chosen targets are: 12C, 16O, 24Mg, 27Al, 28Si, and 40Ca because of the relative
importance of these isotopes in the human body, in the spacecraft structure and electronics, and in the
composition of in situ potential shielding materials. O, Mg, Al, Si, and Ca are, in fact, main components of
Moon and Mars regolith. In addition, also the 9Be+ 64Cu system is shown in figure 3 because it required the
larger parameter modifications (see table 2). If no experimental data have been measured for a combination
of the above-mentioned projectile-target, the combination is not shown in figures 3–7. The only exceptions
are the following systems:
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Figure 1. Tripathi96 computed both using the original Tripathi96 model [24], which recommends to make use of D/3, T1 = 40,
d= 1.75, and f = 1, the Tripathi model using D instead of D/3 without modifying any other parameter, and the fully optimised
Tripathi model as recommended within the present work (see table 1). IK stands for inverse kinematics. Data in panels (a) and (b)
are from [31], in panel (c) from [32] and in panel (d) from [33].

• 12C+ 24Mg, because the original Tripathi96 model fits the data perfectly, and
• 16O+ 27Al and 20Ne+ 27Al, for which only literature data from the Kox1987 dataset [40] were measured.
Since this dataset was evaluated to systematically underestimate actual cross-section values [7], optimisa-
tions were not done based on it.

Also 10C, 11C, 14O, and 15O were included in the optimisation because of the potential live imaging
advantages in using them for radiation therapy [54–57]. Optimisations are reported in table 3 and figure 8.
Only 12C is shown as target because of its relative importance in the human body.

4. Optimisation of the Tripathi99 model

From a deep analysis of all light (A⩽ 4) nucleus–nucleus systems in the data collection, new parameters are
recommended to be used for 2H, 3He and 4He projectiles. For all cases, it is recommended to use α= 5 for
the multiplication factor of the neutron excess parameter for ZT > 54. Using α= 0.91, in fact,
underestimates cross-sections for very heavy targets.

4.1. 2H projectiles
Deuterons are neither very important for radiation protection in space nor for radiation therapy, but are of
interest for other technical applications, e.g. neutron production at accelerator facilities. Therefore, 2H
projectiles were also included in this study for completeness. Tripathi et al [25] suggests to use the following
equation if the target is 4He:

D= 1.65+
0.22

1+ exp((500− x)/200)
, (7)
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Figure 2. Tripathi96 computed both using the original Tripathi96 model [24], which recommends to make use of D/3, T1 = 40,
d= 1.75, and f = 1, the Tripathi model using D instead of D/3 without modifying any other parameter, and the fully optimised
Tripathi model as recommended within the present work (see table 1). Data in panel (a) are from [31, 34], in panels (b) and (c)
from [31], in panel (d) from [35, 36].

Table 2. Recommendations for parameters to be used for different projectiles within Tripathi96. In [24], T1 = 40, d= 1.75, A= 0.292,
f = 1, and b= 1.44 for all of the systems.

System T1 d A f b System T1 d A f b

12C→ 12C 50 1.9 0.292 1 1.44 9Be→ 9Be 40 1.7 0.292 1 1.44
16O 40 2 0.292 1 1.44 12C 65 1.8 0.292 1 1.44
20Ne 30 2.7 0.292 1.4 1.44 27Al 40 1.8 0.292 1 1.44
22Na 80 2.1 0.292 1 1.44 56Fe 40 1.8 0.292 1 1.44
24Mg 55 1.9 0.292 1 1.44 64Cu 40 4 0.292 2.2 6
27Al 50 2 0.292 1 1.44 16O→ 64Cu 30 1.75 0.292 1 1.44
28Si 70 1.9 0.292 1 1.44 20Ne→ 64Cu 60 1.75 0.292 1 1.44
40Ca 50 2.2 0.292 1 1.44
56Fe 55 2.2 0.292 1 1.44
64Cu 60 1.9 0.292 1 1.44

and for all other targets:

D= 1.65+
0.1

1+ exp((500− x)/200)
. (8)

In this work, it is recommended to use

D= 1.72+
0.1

1+ exp((500− x)/200)
(9)

for the specific case of 2H targets and

D= 1.65+
0.22

1+ exp((500− x)/100)
(10)
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Figure 3. Tripathi96 computed using the original Tripathi96 model [24] and the fully optimised Tripathi model as recommended
within the present work (see table 2). IK stands for inverse kinematics. Data in panel (a) are from [31, 41], in panel (b) from [31],
and in panel (c) from [42].

for 4He targets. The results of the application of equations (9) and (10) to the Tripathi99 model are shown in
figure 9. For heavier targets, recommendations for the RC, T1, A, Xm, and D parameters are given in table 4
for every system for which literature data are available [7].

The optimisations proposed for 2H on the targets of interest for space and therapy applications listed
earlier in this work, are reported in figure 10. For 2H+ 12C and 2H+ 27Al, the agreement is shifted from the
Wilkins1962 dataset to Mayo1965 because Mayo1965 data are an upgraded version of Wilkins1962. Same
was done for other systems that are not reported in figure 10. For the cases in which only Wilkins1962 are
available, no optimisations are proposed.

4.2. 3He projectiles
For 3He projectiles, additional recommendations for RC and T1 are given in table 5. Since no high-energy
data are found in literature, no changes in D were proposed.

The optimisations of 3He impinging on the targets of interest for space and therapy applications, are
reported in figure 11. 3He-ions have in fact, been recently discussed for heavy-ion therapy applications [64].
The systems for which no experimental data were measured or no optimisation was proposed are not
reported in the figure.

4.3. 4He projectiles
Concerning 4He projectiles, they are very significant both concerning space [66] and heavy-ion therapy
applications [67–69]. The following optimization of Tripathi96 D parameter has been proposed [70, 71] for
the case of 4He projectiles on targets with masses between C and Si:

D= D0 − 8.0× 10−3AT + 1.8× 10−5AT
2 − 0.3

1+ e
120−E

G

, (11)

6



New J. Phys. 25 (2023) 123024 F Luoni et al

Figure 4. Tripathi96 computed using the original Tripathi96 model [24] and the fully optimised Tripathi model as recommended
within the present work (see table 2). IK stands for inverse kinematics. Data in panel (a) are from [35, 40, 41, 43–49], in panel (b)
from [43, 47, 48], in panel (c) from [40, 41, 43, 50], in panel (d) from [43, 45, 50], and in panel (e) from [40, 43].

where D0 = 2.2 and G= 50. The optimisation was based on data from [71–73] and on the subsequent
improvements of 4He dose calculations [5, 70]. Nevertheless, Tripathi99 is the model that should be used for
the case of 4He projectiles. The proposed changes to the Tripathi99 model are reported table 6 and they
involve parameters RC, T1, and A. Recommendations are also given about which equation to use in the
Tripathi99 calculations between 4 and 11—even if equation (11) was originally proposed for 4He projectiles
within Tripathi96 [71]—and what associated G and D0 values. Among the other things, it can be noticed that
an increase in D0 with AT gives a systematic better fit with the high-energy data.

The optimisations proposed for 4He on the targets of interest for space and therapy applications, are
reported in figure 12.

7
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Figure 5. Tripathi96 computed using the original Tripathi96 model [24] and the fully optimised Tripathi model as recommended
within the present work (see table 2). Data are from [43, 47, 48]. The optimised parameters can be found in table 2 for 12C+ 16O,
since the lightest ion is always used by the model as projectile.

Figure 6. Tripathi96 computed using the original Tripathi96 model [24] and the fully optimised Tripathi model as recommended
within the present work (see table 2). IK stands for inverse kinematics. Data are from [40, 43, 45, 50–53].

Figure 7. Tripathi96 computed using the original Tripathi96 model [24] and the fully optimised Tripathi model as recommended
within the present work (see table 2). IK stands for inverse kinematics. Data are from [33, 40, 43].

8
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Table 3. Recommendations for values of the d parameter to be used within Tripathi96 for the radioactive ions 10C, 11C, 14O, and 15O. In
[24], d= 1.75 for all systems. The other parameters (T1 = 40, A= 0.292, and f = 1) remain unchanged.

System d

10C→ 12C 1.9
11C→ 12C 2.1
14O→ 12C 1.95
15O→ 12C 1.95

Figure 8. Tripathi96 computed using the original Tripathi96 model [24] and the fully optimised Tripathi model as recommended
within the present work (see table 3). Data in panels (a), (c), and (d) are from [58], in panel (b) from [59].

Figure 9. Comparison between the results obtained for 2H+ 2H and 2H+ 4He using, respectively, equations (7) and (8) versus
equations (9) and (10) in the Tripathi99 model. The experimental data from the database are plotted as well. IK stands for inverse
kinematics. Data are from [49].
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Table 4. Recommendations for parameters RC, T1, A, Xm, and α to be used for 2H projectiles in Tripathi99 [25]. The parameters from
the original model as implemented in PHITS are compared to the parameters recommended in this work. In particular, in the PHITS
implementation, the parameters presented within [25] plus specific ones for 2H+ 4He are used. In addition, Xm = 1 is used. Systems
that did not require any change in these parameters with respect to the PHITS implementation (e.g. 2H+ 2H, 4He) are not reported.

Tripathi99 [25] as

This workimplemented in PHITS [7]

System RC T1 A Xm D α RC T1 A Xm D α

2H+ 2H 1 23 0.292 1 Equation (8) 0.91 1 23 0.292 1 Equation (9) 0.91
2H+ 4He 1 23 0.292 1 Equation (7) 0.91 1 23 0.292 1 Equation (10) 0.91
2H+ 9Be 1 23 0.292 1 Equation (8) 0.91 1 50 0.292 1 Equation (8) 0.91
2H+ 12C 6 23 0.292 1 Equation (8) 0.91 0.8 40 0.5 1 Equation (8) 0.91
2H+ 16O 1 23 0.292 1 Equation (8) 0.91 1 55 0.292 1 Equation (8) 0.91
2H+ 24Mg 1 23 0.292 1 Equation (8) 0.91 1 100 0.292 1 Equation (8) 0.91
2H+ 27Al 1 23 0.292 1 Equation (8) 0.91 1 100 0.292 1 Equation (8) 0.91
2H+ 28Si 1 23 0.292 1 Equation (8) 0.91 1 80 0.292 1 Equation (8) 0.91
2H+ 40Ca 1 23 0.292 1 Equation (8) 0.91 1 120 0.292 1 Equation (8) 0.91
2H+ 48Ti 1 23 0.292 1 Equation (8) 0.91 1 100 0.292 1 Equation (8) 0.91
2H+ 51V 1 23 0.292 1 Equation (8) 0.91 0.6 100 0.292 1 Equation (8) 0.91
2H+ 56Fe 1 23 0.292 1 Equation (8) 0.91 0.7 200 0.292 1 Equation (8) 0.91
2H+ 59Ni 1 23 0.292 1 Equation (8) 0.91 1 110 0.292 1 Equation (8) 0.91
2H+ 64Cu 1 23 0.292 1 Equation (8) 0.91 0.6 50 0.292 1 Equation (8) 0.91
2H+ 65Zn 1 23 0.292 1 Equation (8) 0.91 0.7 100 0.292 1 Equation (8) 0.91
2H+ 89Y 1 23 0.292 1 Equation (8) 0.91 1 240 0.292 1 Equation (8) 0.91
2H+ 91Zr 1 23 0.292 1 Equation (8) 0.91 1.1 300 0.292 1 Equation (8) 0.91
2H+ 103Rh 1 23 0.292 1 Equation (8) 0.91 0.95 100 0.292 1 Equation (8) 0.91
2H+ 108Ag 1 23 0.292 1 Equation (8) 0.91 1 100 0.292 1 Equation (8) 0.91
2H+ 136Xe 1 23 0.292 1 Equation (8) 0.91 1 23 0.292 1.18 Equation (8) 0.91
2H+ 112,116Sn 1 23 0.292 1 Equation (8) 0.91 1 400 0.292 1 Equation (8) 0.91
2H+ 118,120Sn 1 23 0.292 1 Equation (8) 0.91 0.9 600 0.292 1 Equation (8) 0.91
2H+ 119Sn 1 23 0.292 1 Equation (8) 0.91 1 40 0.292 1 Equation (8) 0.91
2H+ 124Sn 1 23 0.292 1 Equation (8) 0.91 0.9 500 0.292 1 Equation (8) 0.91
2H+ 159Tb 1 23 0.292 1 Equation (8) 0.91 1 500 0.292 1 Equation (8) 5
2H+ 181Ta 1 23 0.292 1 Equation (8) 0.91 1.25 800 0.292 1 Equation (8) 5
2H+ 197Au 1 23 0.292 1 Equation (8) 0.91 1.2 800 0.292 1 Equation (8) 5
2H+ 207Pb 1 23 0.292 1 Equation (8) 0.91 1.07 800 0.292 1 Equation (8) 5
2H+ 209Bi 1 23 0.292 1 Equation (8) 0.91 1 800 0.292 1 Equation (8) 5

5. Discussion and limitations

It should be noted that not many literature data are available for most systems. Since more than one
parameter is changed simultaneously, it could be that a better combination of parameter values exists, but
more data would be needed to find the optimal combination. For example, a few different combinations of
T1 and Rc parameters could fit the existing data as well (especially for the cases in which only one data point
is available), but with data at other energies, the optimal combination could be identified.

It also should be noted that optimisations are proposed only for the systems for which literature data are
available. Nevertheless, the consistency in the optimisations for those systems suggests that the parameters
should be adjusted for all systems. For example, it is systematic that T1 tends to increase as a function of AT,
given a certain projectile.

6. The impact of the optimisation of the Tripathi model on the HKmodel

The PHITS MC code uses a semi-empirical parametrisation called ‘Hybrid-Kurotama’ (HK) [80]. It is based
on the black sphere (‘Kurotama’ in Japanese) cross-section formula, extended to low energies by smoothly
connecting it to the Tripathi parametrisation. Since the HK model makes use of the Tripathi model at low
energies, a systematic study was conducted about the consequences of using the optimised Tripathi model in
the HK calculations.

10
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Figure 10. Comparison between the results obtained for 2H using Tripathi99 with the parameters reported in [25] and in this
work (see table 4). The experimental data from the database are plotted as well. IK stands for inverse kinematics. Data in panel (a)
are from [49, 60–63], in panels (b), (e), and (f) from [61], in panel (c) from [63], and in panel (d) from [60, 62, 63].

Concerning 2H projectiles, the usage of the optimised Tripathi model is either not beneficial or does not
make any significant difference in the HK model, with the only exception of Ni targets. A few examples are
reported in figure 13 for systems of interest for space and radiation therapy applications. In particular, for the
case of 2H+ 12C, a curve between the two would fit the existing literature data.

The systems involving 3He projectiles do not show any particular improvement due to the usage of the
optimised Tripathi model. Nevertheless, the fit with the HK that uses the original Tripathi model is better in
a few cases. Examples are reported in figure 14.

Differently, the HK model fits literature data better when making use of the optimised Tripathi model for
all systems involving 4He projectiles, with the exception of extremely heavy targets, i.e. Np and Pu. For a few

11
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Table 5. Recommendations for parameters RC, T1, and α to be used for 3He projectiles in Tripathi99 [25]. The parameters from the
original model are compared to the parameters recommended in this work. Systems that did not require any change in these parameters
(e.g. 3He+ 12C, 27Al) are not reported.

Tripathi99 [25] This work

RC T1 α RC T1 α

3He+ 9Be 1 40 0.91 1 50 0.91
3He+ 16O 1 40 0.91 1 50 0.91
3He+ 28Si 1 40 0.91 1 65 0.91
3He+ 40Ca 1 40 0.91 1 55 0.91
3He+ 58Ni 1 40 0.91 0.6 60 0.91
3He+ 60Ni 1 40 0.91 1 70 0.91
3He+ 112Sn 1 40 0.91 1 90 0.91
3He+ 116Sn 1 40 0.91 0.5 70 0.91
3He+ 118Sn 1 40 0.91 0.5 75 0.91
3He+ 120Sn 1 40 0.91 0.7 80 0.91
3He+ 207Pb 1 40 0.91 1 50 5

Figure 11. Comparison between the results obtained for 3He using Tripathi99 with the parameters reported in [25] and in this
work (see table 5). Data are from [65].

other systems including 7Li, 9Be, 9Be, 27Al, and 56Fe, either the difference is not remarkable or the models fit
in a comparable way. A few examples are reported in figure 15. The Labie et al [78] dataset suggests for
4He+ 12C that the Coulomb barrier should start at higher energies and be steeper. Nevertheless, the unclear
trend of the data makes it difficult to trust it enough to start a specific optimisation from it. For the cases of
4He+ 237Np and 4He+ 239Pu, HK making use of the original Tripathi seems to fit the data better.
Nevertheless, this can only be stated for the energy range around the Coulomb barrier, which is the only
energy range for which experimental data points were measured. In fact, starting from the comparison with
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Table 6. Recommendations for parameters to be used for 4He projectiles within Tripathi99, from [25] and this work. Equation (4)
comes from [24, 25], equation (11) from [71]. Systems that did not require any change with respect to the parametrisation presented in
[25] are not reported. When no specifications about the isotope are there, the recommendations are to be considered valid for every
isotope of the element.

Tripathi99 [25] This work

RC T1 D D0 G A RC T1 D D0 G A

4He+ 7Li 1 40 Equation (4) 2.77 75 0.292 1 40 Equation (4) 2.95 75 0.292
4He+ 9Be 1 25 Equation (4) 2.77 300 0.292 7 50 Equation (11) 2.2 50 1.4
4He+ 12C 1 40 Equation (4) 2.77 75 0.292 3.5 50 Equation (11) 2.2 50 0.7
4He+ 16O 1 40 Equation (4) 2.77 75 0.292 1 50 Equation (11) 2.4 50 0.292
4He+ 20Ne 1 40 Equation (4) 2.77 75 0.292 1 40 Equation (4) 3 75 0.292
4He+ 27Al 1 25 Equation (4) 2.77 300 0.292 1 20 Equation (4) 2.5 300 0.292
4He+ 28Si 1 40 Equation (4) 2.77 75 0.292 1 50 Equation (11) 2.4 50 0.292
4He+ 40Ca 1 40 Equation (4) 2.77 75 0.292 1 100 Equation (4) 2.77 75 0.292
4He+ 48Ti 1 40 Equation (4) 2.77 75 0.292 1 40 Equation (4) 3 300 0.292
4He+ 51V, 52Cr 1 40 Equation (4) 2.77 75 0.292 1.2 40 Equation (4) 3 300 0.292
4He+ 56Fe 1 40 Equation (4) 2.77 300 0.292 1.2 40 Equation (4) 3 300 0.292
4He+ 59Co 1 40 Equation (4) 2.77 75 0.292 1.1 40 Equation (4) 3 300 0.292
4He+Ni 1 40 Equation (4) 2.77 75 0.292 1.2 80 Equation (4) 3 300 0.292
4He+ 64Cu 1 40 Equation (4) 2.77 75 0.292 1.2 80 Equation (4) 3.2 300 0.292
4He+ 65Zn 1 40 Equation (4) 2.77 75 0.292 1.1 80 Equation (4) 3.2 300 0.292
4He+ 91Zr, 93Nb, 96Mo 1 40 Equation (4) 2.77 75 0.292 1.1 80 Equation (4) 3.4 300 0.292
4He+ 108Ag 1 40 Equation (4) 2.77 75 0.292 1 80 Equation (4) 3.4 300 0.292
4He+ Sn 1 40 equation (4) 2.77 75 0.292 1.1 80 Equation (4) 3.4 300 0.292
4He+ 181Ta 0.6 40 Equation (4) 2.77 75 0.292 1.1 80 Equation (4) 3.4 300 0.292
4He+ 197Au 0.6 40 Equation (4) 2.77 75 0.292 1 80 Equation (4) 3.4 300 0.292
4He+ 207Pb, 209Bi, 232Th 1 40 Equation (4) 2.77 75 0.292 1.1 75 Equation (4) 3.7 300 0.292
4He+ 237Np, 239Pu 1 40 Equation (4) 2.77 75 0.292 1.15 75 Equation (4) 3.7 300 0.292

other heavy-target systems such as 4He+ 64Cu and 4He+ 207Pb, there is evidence that HK making use of the
optimised Tripathi model fits the literature data better at intermediate energy ranges.

The case of 4He+ 9Be is particularly interesting (See figure 16). In fact, it is one of the systems that
required the most significant changes in the parameters (see table 6). The Ingemarsson2000 dataset [72], in
fact, suggested that the Coulomb barrier should start at higher energies and be steeper. Therefore, large
changes in Rc were made. HK that makes use of the optimised Tripathi reproduces the trend of the data
better, but the fit with the data is lost due to the multiplication factors applied to the Tripathi model in the
HK subroutine.

For what concerns systems involving lithium projectiles, in all cases the use of the optimised Tripathi
model in the HK subroutine turned out to be beneficial. Figure 17 shows the results for different Li
projectiles on Si targets.

For what concerns 9Be projectiles, for all systems for which optimisations are proposed within this work
(see table 2), only high-energy data were measured, which does not affect the changes in HK model due to
the optimisation since the HK subroutine only makes use of Tripathi at low energies. The only exceptions are
12C and 64Cu targets, which are shown in figure 18. The differences between the two models for the case of
9Be+ 12C is minimal. Nevertheless, the HK that makes use of the original Tripathi model fits better. For the
case of 9Be+ 64Cu, the HK making use of the optimised Tripathi model fits better because the proposed
parameter changes are particularly significant for this systems (see table 2) with the aim of fitting the
lower-energy point of the Saint Laurent1989 dataset [42], at least within the error bars (see figure 3).

The outcome for 12C projectiles is that in an equal number of cases HK that uses the original and
optimised Tripathi fits better. One example per case are reported in figure 19. To be noticed that Shapira1982
[52] are among the rare cases of very-low-energy data points and the HK model making use of the optimised
Tripathi model fits them better. This brings more evidence that the HK subroutine benefits from the Tripathi
optimisation in the Coulomb-barrier energy region.

For the case of 16O projectiles, HK that uses the optimised Tripathi fits the single data point better, while
for what concerns 20Ne projectiles, the two models fit the data as well.

Concerning radioactive ions (see table 3), there are only experimental data points at energies where the
two models are identical, i.e. in the high-energy range where the usage of different Tripathi parametrisations
does not affect the HK model.
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Figure 12. Comparison between the results obtained for 4He using Tripathi99 with the parameters reported in [25] and in this
work (see table 6). The experimental data from the database are plotted as well. IK stands for inverse kinematics. Data in panel (a)
are from [45], in panel (b) from [43, 45, 49, 71–79], in panel (c) from [43, 71, 72], in panel (d) from [43, 45, 74, 77], in panel (e)
from [32, 71, 72], and in panel (f) from [72].
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Figure 13. Comparison between the results obtained for 2H projectiles with the HK subroutine making use of the optimised (see
table 4) and unoptimised Tripathi model, respectively ‘Hybrid-Kurotama Opt’ and ‘Hybrid-Kurotama’. IK stands for inverse
kinematics. Data in panel (a) are from [49, 60–63], in panels (b) and (c) from [61], and in panel (d) from [60–63].

Figure 14. Comparison between the results obtained for 3He projectiles with the HK subroutine making use of the optimised (see
table 5) and unoptimised Tripathi model, respectively ‘Hybrid-Kurotama Opt’ and ‘Hybrid-Kurotama’. Data are from [72].
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Figure 15. Comparison between the results obtained for 4He projectiles with the HK subroutine making use of the optimised (see
table 6) and unoptimised Tripathi model, respectively ‘Hybrid-Kurotama Opt’ and ‘Hybrid-Kurotama’. IK stands for inverse
kinematics. Data in panel (a) are from [43, 45, 49, 71–79], in panel (b) from [43, 71, 72], in panel (c) from [43, 77, 81], and in
panel (d) from [42, 45, 77, 81], in panel (e) from [45, 72, 77], in panel (f) from [82].
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Figure 16. Comparison between the results obtained for 4He+ 9Be with the HK subroutine making use of the optimised (see
table 6) and unoptimised Tripathi model, respectively ‘Hybrid-Kurotama Opt’ and ‘Hybrid-Kurotama’. Data are from [72, 74, 77].

Figure 17. Comparison between the results obtained for different Li isotopes with the HK subroutine making use of the optimised
(see table 1) and unoptimised Tripathi model, respectively ‘Hybrid-Kurotama Opt’ and ‘Hybrid-Kurotama’. Data are from [32].
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Figure 18. Comparison between the results obtained for 9Be projectiles with the HK subroutine making use of the optimised (see
table 2) and unoptimised Tripathi model, respectively ‘Hybrid-Kurotama Opt’ and ‘Hybrid-Kurotama’. IK stands for inverse
kinematics. Data in panel (a) are from [31, 41] and in panel (b) [42].

Figure 19. Comparison between the results obtained for 12C projectiles with the HK subroutine making use of the optimised (see
table 2) and unoptimised Tripathi model, respectively ‘Hybrid-Kurotama Opt’ and ‘Hybrid-Kurotama’. IK stands for inverse
kinematics. Data in panel (a) are from [35, 40, 41, 43–49] and in panel (b) [40, 43, 45, 50–53].

7. Conclusions

In this work, literature data from the open-access GSI-ESA-NASA cross-section database [7, 8] were used to
propose an optimised version of the Tripathi model [24, 25]. The use of the optimised model could
potentially improve the results of MC and deterministic radiation transport codes used for radiation
protection in space, radiation therapy applications, or other technical fields where e.g. deuteron interactions
are relevant. The optimised Tripathi parametrisation presented in this work fits the data best for all systems
for which experimental reaction cross-section data have been measured. Nevertheless, these optimisations
should be tested by comparing the outcome of MC simulations against experimental results of e.g. absorbed
dose curves, as it was done for the Horst D factor corrections [5, 70], or other available datasets such as
particle spectra behind materials. It is to be noted that, even if optimisations are proposed only for the
systems for which literature data are available, their consistency suggests that the parameters should be
adjusted for all systems accordingly.

Additionally, a systematic study was conducted with the aim of understanding if the HK subroutine used
in the PHITS MC code benefits from the proposed Tripathi model optimisations. Considerations can be
made only for systems for which low and intermediate-energy range data were measured because only these
ranges are affected by the change in the Tripathi model used in HK. The outcome is that it is recommended
to make use of the optimised Tripathi model for 4He and Li projectiles impinging on any of the targets
included in the optimisation, and for 9Be, 16O, and 20Ne projectiles on 64Cu targets. For the other systems for
which optimisations to the Tripathi model are proposed within this work, it is recommended to continue
using the original Tripathi parameters within HK or to use other specific parameter optimisations. For the
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case of 12C projectile, considerations must be done system by system. In general, HK benefits from the
Tripathi optimisations in the Coulomb-barrier energy range (except for the very first few MeV/u of it).
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