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Abstract

As the frontiers of physics steadily progress into the 21st century we should bear in mind that the
conceptual edifice of 20th-century physics has at its foundations two mutually incompatible theories;
quantum mechanics and Einstein’s general theory of relativity. While general relativity refuses to
succumb to quantum rule, black holes are raising quandaries that strike at the very heart of quantum
theory. M-theory is a compelling candidate theory of quantum gravity. Living in eleven dimensions
it encompasses and connects the five possible 10-dimensional superstring theories. However, M-
theory is fundamentally non-perturbative and consequently remains largely mysterious, offering up
only disparate corners of its full structure. The physics of black holes has occupied centre stage in
uncovering its non-perturbative structure.

The dawn of the 21st-century has also played witness to the birth of the information age and
with it the world of quantum information science. At its heart lies the phenomenon of quantum
entanglement. Entanglement has applications in the emerging technologies of quantum computing
and quantum cryptography, and has been used to realize quantum teleportation experimentally. The
longest standing open problem in quantum information is the proper characterisation of multipartite
entanglement. It is of utmost importance from both a foundational and a technological perspective.

In 2006 the entropy formula for a particular 8-charge black hole appearing in M-theory was found
to be given by the ’hyperdeterminant’, a quantity introduced by the mathematician Cayley in 1845.
Remarkably, the hyperdeterminant also measures the degree of tripartite entanglement shared by
three qubits, the basic units of quantum information. It turned out that the different possible types of
three-qubit entanglement corresponded directly to the different possible subclasses of this particular
black hole. This initial observation provided a link relating various black holes and quantum infor-
mation systems. Since then, we have been examining this two-way dictionary between black holes
and qubits and have used our knowledge of M-theory to discover new things about multipartite en-
tanglement and quantum information theory and, vice-versa, to garner new insights into black holes
and M-theory. There is now a growing dictionary, which translates a variety of phenomena in one
language to those in the other.

Developing these fascinating relationships, exploiting them to better understand both M-theory
and quantum entanglement is the goal of this thesis. In particular, we adopt the elegant mathematics
of octonions, Jordan algebras and the Freudenthal triple system as our guiding framework. In the
course of this investigation we will see how these fascinating algebraic structures can be used to
quantify entanglement and define new black hole dualities.
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CHAPTER 1
Introduction

1. Overview

It ever so often happens that two seemingly disparate areas of theoretical physics share the same
mathematics. This may be indicative of a genuine physical duality, in which case one would expect
a profound leap in our understanding to follow. Even if this rather grand hope is not realised, the
study of such mathematical relations has the potential to reveal unexpected insights on both sides of
the equation.

This interdisciplinary investigation centres on an unexpected example of such a duality. The two
subjects in question are:

1. Bekenstein-Hawking black hole entropy in M-theory.

2. Qubit entanglement in quantum information theory.

As the frontiers of physics steadily progress into the 21st century we should bear in mind that the
conceptual edifice of 20th-century physics has at its foundations two mutually incompatible theories:
quantum mechanics and Einstein’s general theory of relativity. While general relativity refuses to
succumb to quantum rule, black holes are raising quandaries that strike at the very heart of quantum
theory. Without incorporating gravity and quantum theory into a single consistent framework, such
paradoxes will continue to haunt us.

M-theory is a promising candidate theory of quantum gravity. Living in eleven dimensions, it
encompasses and connects the five consistent 10-dimensional superstring theories, as well as 11-
dimensional supergravity and, as such, has the potential to unify the fundamental forces. However,
M-theory is fundamentally non-perturbative and consequently remains largely mysterious, offering
up only disparate corners of its full structure. The physics of black holes has occupied centre stage,
offering unique insights into the non-perturbative structure of M-theory. Whatever final formulation
M-theory eventually takes, understanding its black hole solutions will play an essential role in its
evolution.

The dawn of the 21st-century has also played witness to the birth of the (quantum) information
age and with it the world of quantum information (QI) science. At its heart lies the phenomenon
of quantum entanglement. The quantum states of two or more objects have to be described with
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reference to each other, even though the individual objects may be spatially separated. This leads
to classically unexplainable, but experimentally observable, quantum correlations between the spa-
tially separated systems. Quantum entanglement has applications in the emerging technologies of
quantum computing and quantum cryptography, and has been used to realise quantum teleportation
experimentally. The longest standing open problem in quantum information is the proper character-
isation of multipartite entanglement. It is of utmost importance from both a foundational and a
technological perspective.

In 2006 the entropy formula for a particular 8-charge black hole appearing in M-theory, specifically
the STU model [1–3], was found to be given by the “hyperdeterminant”, a quantity introduced by
the mathematician Cayley in 1845 [4, 5]. Remarkably, the hyperdeterminant also measures the de-
gree of tripartite entanglement shared by three qubits, the basic units of quantum information1 [6,7].
It turned out that the physically distinct forms of 3-qubit entanglement correspond directly to the
different possible subclasses of the STU black hole [8]. These initial observations provided a link
relating various black holes and QI systems. Since then, we have been examining this two-way dic-
tionary between black holes and qubits and have used our knowledge of M-theory to discover new
things about multipartite entanglement and quantum information theory and, vice-versa, to garner
new insights into black holes and M-theory. This correspondence has grown to relate numerous as-
pects of both disciplines [4,8–29]. In particular, the present author is included amongst the co-authors
of [16–21, 28, 29]. One of the co-authors, namely Dahanayake, is submitting their thesis [30] simulta-
neous with this thesis. Since the introductory material in both theses draws on [18], we should make
clear that the original content in this thesis will focus on [19, 20, 28] while that in Dahanayake’s will
focus on [17, 21, 29].

Part I of this thesis forms a review of these developments, including a brief survey of the work
in [30]. For example:

• The entropy S of the 8-charge STU black hole is related to the tripartite entanglement of three
qubits (Alice, Bob and Charlie) as measured by the (unnormalised) 3-tangle τABC [6] [4]

S = π
2

√
τABC . (1.1)

Note, τABC is given by the magnitude of Cayley’s hyperdeterminant [5, 31].

• The classification of three-qubit entanglements is related to the classification of N = 2 super-
symmetric STU black holes [8] shown in Table 1.1 and explained in more detail in section 1.2.
One important distinction is that the black hole charges are real. Consequently the GHZ class
splits into two pieces on the black hole side in the sense that there are two possible real forms
for the GHZ stabilizer, which coincide in the complex case.

• The attractor mechanism on the black hole side is related to optimal local distillation protocols
on the QI side [14, 26].

• Dimensionally reducing the STU model in a time-like direction, the black hole solutions can
be used to classify the entanglement classes of the much harder 4-qubit system [29]. Interest-
ingly, the principal difference between the D = 4 black holes, which have real charges, and the

1One can only assume that Cayley had anticipated both quantum information and M-theory.
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Class SA SB SC Det a Black hole SUSY

A-B-C 0 0 0 0 small 1/2
A-BC 0 > 0 > 0 0 small 1/2
B-CA > 0 0 > 0 0 small 1/2
C-AB > 0 > 0 0 0 small 1/2

W > 0 > 0 > 0 0 small 1/2
GHZ > 0 > 0 > 0 < 0 large 1/2
GHZ > 0 > 0 > 0 > 0 large 0

Table 1.1.: The values of the local entropies SA, SB , and SC and the hyperdeterminant Det a (defined
in section 2.6.1 and section 2.6.2) are used to partition three-qubit states into entanglement
classes. The entropy/entanglement correspondence relates these to D = 4,N = 2, STU
model black holes.

Class SA SB SC Det a Black hole SUSY

A-B-C 0 0 0 0 small 1/2
A-BC 0 > 0 > 0 0 small 1/4
B-CA > 0 0 > 0 0 small 1/4
C-AB > 0 > 0 0 0 small 1/4

W > 0 > 0 > 0 0 small 1/8
GHZ > 0 > 0 > 0 < 0 large 1/8
GHZ > 0 > 0 > 0 > 0 large 0

Table 1.2.: As in Table 1.1 entanglement measures are used to classify states, but this time concerning
the tripartite entanglement of seven qubit states. The correspondence relates these to the
D = 4,N = 8 black holes. Note, the amount of supersymmetry preserved corresponds to
the degree of entanglement.

qubits, which have complex charges, disappears - the time-like reduced STU model classifies
the entanglement of four complex qubits.

• The 56-charge black hole of N = 8 supergravity admits a quantum information theoretic in-
terpretation in a 7-fold direct sum of the 3-qubit Hilbert space [10, 11]. This follows from de-
composition E7(7) ⊃ [SL(2)]7, which describes a tripartite entanglement of seven qubits. The
entanglement measure is given by Cartan’s quartic E7(7) invariant.

• The classification of tripartite entanglements of seven qubits is related to the classification of
(N = 8, D = 4) supersymmetric black holes [17] shown in Table 1.2 and explained in more
detail in section 4.

• A microscopic interpretation of the STU black hole entropy and 3-qubit entanglement corre-
spondence [17]. The microscopic string-theoretic interpretation of the black hole charges may
be described by configurations of intersecting D3-branes wrapped around the six compact di-
mensions. The 3-qubit basis vectors |ABC〉, (A,B,C = 0 or 1) are associated with the eight
wrapping cycles, where |0〉 corresponds to xo and |1〉 to ox in Table 4.2. By allowing one of the
D3-branes to intersect at an angle, the most general real 3-qubit state, parameterised by four
real numbers and an angle, is identified with the most general STU black hole, described by
four D3-branes intersecting at an angle.

19



• A supersymmetric generalisation of the qubit, the superqubit [21]. This was based on the min-
imal supersymmetric extension of SL(2), which is given by the supergroup Osp(2|1) [32]. We
studied the entanglement classification of small superqubit systems. In the case of two su-
perqubits the entanglement measure is given by the supedeterminant. Remarkably Cayley’s
hyperdeterminant may be supersymmetrised [33]. The superhyperdeterminant provides the en-
tanglement measure of three superqubits.

• ForD = 5 supergravity, the entropy of a 9-chargeN = 8 black hole is given by the entanglement
of two qutrits, as measured by the 2-tangle τAB [12],

S = 2π
√
| det aAB|, (1.2)

where

τAB = 27| det aAB|2. (1.3)

• The full 27 charge N = 8, D = 5 black hole may be interpreted in terms of a Hilbert space
consisting of three copies of the two-qutrit Hilbert space [13]. It relies on the decomposition
E6(6) ⊃ [SL(3)]3 and admits the interpretation of a bipartite entanglement of three qutrits, with
the entanglement measure given by Cartan’s cubic E6(6) invariant.

• The classification of the bipartite entanglements of three qutrits is related to the classification of
N = 8, D = 5 supersymmetric black holes [17] shown in Table 1.3.

Class C2 τAB Black hole SUSY

A-B 0 0 small 1/2
Rank 2 Bell > 0 0 small 1/4
Rank 3 Bell > 0 > 0 large 1/8

Table 1.3.: The D = 5 analogue of Table 1.1 and Table 1.3 relates two-qutrit entanglements and their
corresponding D = 5,N = 8 black holes.

• The two-qutrit basis vectors |AB〉, (A,B = 0 or 1 or 2) can be associated with the nine wrapping
cycles of intersecting M2-brane on a T 6, where |0〉 corresponds to xoo, |1〉 to oxo and |2〉 to oox.
Just as the most general real 2-qutrit state can be parameterised by three real numbers, the most
general black hole can be described by three intersecting M2-branes [17].

Developing these fascinating relationships and exploiting them to better understand both M-theory
and quantum information are the principal aims of this thesis. However, the interdisciplinary nature
of this project has naturally led to a rather diverse set of topics [16–21, 28, 29]. We do not attempt to
cover them all, but rather take certain algebraic structures as our guiding motif. In particular, the
work of this thesis is best characterised as: The application of the octonions, Jordan algebras and the
Freudenthal triple system (FTS) to M-theory, quantum information and their interrelation.

These developments form the main body of this thesis and the content of Part II. The key aspects
are summarised here:
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Algebras and black holes

• The extremal black p-brane solutions of supergravity have played, and continue to play, a key
role in unravelling the non-perturbative aspects of M-theory. Evidently, one would like to un-
derstand the structure of these solutions. In particular, one would like to know how such
solutions are interrelated by U-duality, the global symmetry of the equations of motion. The
electric/magnetic charge vectors of the asymptotically flat p-brane solutions form irreducible
U-duality representations.

In many relevant cases the macroscopic leading-order black p-brane entropy is a function of
these charges only, a result of the attractor mechanism [34–37]. Consequently, an important
question is whether two a priori distinct black p-brane charge configurations are in fact related
by U-duality. Mathematically this amounts to determining the distinct charge vector orbits
under U-duality.

• It has been well know for sometime now that a class of D = 5 and D = 4 supergravity the-
ories are most naturally described by Jordan algebras and their associated Freudenthal triple
systems, respectively [38–40]. In particular, the U-duality symmetries and their action on the
black hole charges are described by the symmetries of the Jordan algebras and FTS. The black
hole entropies are proportional to the square root of the cubic and quartic norms of the Jordan
algebras and FTS, respectively. We recast the known U-duality orbits in the framework of these
algebras and their ranks. Moreover, we obtain the hitherto unknown orbits and their represen-
tative states for the reducible sequence of D = 4,N = 2 supergravity coupled to n+ 1 Abelian
vector multiplets.

Octonions and the tripartite entanglement of seven qubits

• In [10, 11] it was observed that the tripartite entanglement of seven qubits is described by the
Fano plane [41], which is also the multiplication table of the imaginary octonions.

This remarkable fact is supported by theO-graded algebraic structure of E7 [42,43], compatible
with its action on the minimal 56-dimensional representation. Explicitly,

e7 = ×l sl(Al)e0 ⊕
⊕

1≤i≤7

[⊗
i/∈lAl

]
ei,

56 =
⊕

1≤i≤7

[⊗
i∈lAl

]
ei,

(1.4)

where

i ∈ {1, . . . , 7} (1.5)

are the seven points of the Fano plane,

l ∈ {124, 235, 346, 457, 561, 672, 713} (1.6)

are the seven lines, and we have attached to each line a two-dimensional vector space Al. The
real and imaginary octonions are denoted as e0 and ei, respectively. There is a quaternionic
analogue of this construction where we consider just three of the seven lines. This describes the
N = 4 subsector.

Strings can carry two kinds of charge: NS-NS coming from right and left moving bosonic modes
and R-R coming from right and left moving fermionic modes (NS = Neveu-Schwarz and R

21



= Ramond). When the U-duality group E7(7) is decomposed under the SL(2) S-duality and
SO(6, 6) T-duality

E7(7) ⊃ SL(2) × SO(6, 6),

56 → (2, 12) + (1, 32),
(1.7)

the first term describes the N = 4 subsector with 24 NS-NS charges and the second term de-
scribes the 32 R-R charges. In terms of the seven lines of the Fano plane of Figure 7.1, the STU
charges correspond to the single line 124 (which describes the imaginary complex number),
the NS-NS charges correspond to the three lines 124, 561, 713 (which describe the three imagi-
nary quaternions) and the R-R to the four lines 235, 346, 457, 672 (which each describe the four
complementary imaginary octonions).

• Inspired by this observation we show that the precise dictionary relating the 56 black hole
charges to the 56-dimensional tripartite entanglement of seven qubits is detemined by the imag-
inary octonions.

• These observations led us in [18] to speculate on the possible relations between the STU ,N = 4

andN = 8 theories. In particular, noting that 24 = 8× 3 we found that these 24 NS-NS charges
may be interpreted as the eight charges of the STU model defined over the three imaginary
quaternions. Accordingly, the N = 4 Cartan invariant with SL(2) × SO(6, 6) symmetry, may
be written as Cayley’s hyperdeterminant defined over the imaginary quaternions, provided we
adopt a suitable operator ordering. Noting that 56 = 8 × 7, it is tempting to employ a similar
construction replacing imaginary quaternions by imaginary octonions to describe the full 56
charges, including the 32 R-R. However, this is very much work in progress and what final
formulation it may take is certainly not clear. Accordingly, we do not treat this topic in the
present work.

Freudenthal classification of qubit entanglement

• Exploiting the correspondence between the STU black hole and three qubits we use the Freuden-
thal triple system to classify the entanglement classes. In particular, the four FTS ranks given
the four entanglement classes [19]. The advantage of this formulation over the conventional
classification [44] is that it is manifestly covariant under the equivalence group of stochastic lo-
cal operations and classical communication (SLOCC). Moreover, it facilitates the determination of
the orbit cosets.

• Inspired by this classification of three qubits, we introduce an n-qubit generalisation of the FTS.
The basic idea is to reorganise the n-qubit state into its permutation related subsets. The SLOCC
transformations are expressed as the natural generalisations of the FTS operations. Similarly,
the FTS invariants and triple product extend to the n-qubit system. Perhaps, the term n-qubit
Freudenthal triple system is somewhat misleading since, for example, there is no triple product
in the 4-qubit case. There is, however, an analogous quintic product. We making some pre-
liminary attempts at using this framework to classify n-qubit entanglement. This is a work in
progress and there are number of open questions, most importantly how the ranks of the FTS
are to be generalised.
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Discrete black hole charge orbits in N = 8 supergravity

• The continuous U-duality charge orbits of the maximally supersymmetric theories, valid in
the limit of large charges, have been known for sometime now [45, 46]. However, in the full
quantum theory the U-duality group is broken to a discrete subgroup, a consequence of the
Dirac-Zwanziger-Schwinger charge quantization conditions [47]. Consequently, the U-duality
orbits are furnished with an increased level structural complexity. We address this issue for
the N = 8 theories in six , five and four dimesions by exploiting the mathematical framework
of integral Jordan algebras, the integral Freudenthal triple system and, in particular, the work of
Krutelevich [28, 48].

• The analysis of the discrete U-duality orbits relies on two key ingredients. First, to use the
discrete symmetries of the integral Jordan algebras and FTS to bring the charge vectors into
a diagonally reduced canonical form. Second, to construct from the algebraic operations of the
Jordan algebras and FTS new arithmetic invariants that are absent in the continuous theory.
They are given by the greatest common divisor (gcd) of irreducible representations built out of
powers of the charge vectors. Ideally these invariants then uniquely determine the canonical
form of a given state.

• The charge vector of the dyonic black string in D = 6 is SO(5, 5;Z) related to a two-charge
reduced canonical form uniquely specified by a set of two arithmetic U-duality invariants.

• Similarly, the black hole (string) charge vectors in D = 5 are E6(6)(Z) equivalent to a three-
charge canonical form, again uniquely fixed by a set of three arithmetic U-duality invariants.

• The charge vector of the dyonic black hole in D = 4 is E7(7)(Z) related to a five-charge reduced
canonical form. This canonical form implies that the R-R charges may always be transformed
away, as required for the validity of the manifestlyE7(7)(Z) invariant dyon degeneracy formula
of type II string theory on T 6 derived in [49].

• However, the canonical form is not uniquely determined by the known arithmetic invariants.
While black holes preserving more than 1/8 of the supersymmetries may be fully classified
by known arithmetic E7(7)(Z) invariants, 1/8-BPS and non-BPS black holes yield increasingly
subtle orbit structures, which remain to be properly understood. However, for the very special
subclass of projective black holes a complete classification is known. All projective black holes
are E7(7)(Z) related to a four or five charge canonical form determined uniquely by the set
of known arithmetic U-duality invariants. Moreover, E7(7)(Z) acts transitively on the charge
vectors of projective black holes with a given leading-order entropy.

• In all cases the black hole/string entropy is quantized.

• Following Bhargava’s work on higher Gauss composition [50], it is clear that the discrete orbits
of large black holes (non-vanishing leading order entropy) appearing in the STU model are in
one-to-one correspondence with the equivalence classes of balanced triples of ideal classes in
a quadratic ring. One hope is that this correspondence may lead to a more transparent group
theoretic classification of the orbits. This ought to provide important information for theN = 8

case.
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Freudenthal duality

• We introduce a new duality, distinct from U-duality, which acts on theD = 4 black hole charges
and leaves the leading order entropy invariant. This duality is defined in terms of the Freuden-
thal triple product and quartic norm, hence the name “Freudenthal duality” (F-duality).

• The integral lattice of quantized charges is only preserved under F-duality if the quartic norm
is square. Consequently, only a special subset of all black holes admit a consistent F-dual.

• Since some, but not all, of the arithmetic U-duality invariant are preserved under F-duality the
question of higher order corrections to the leading order entropy remains an open question.

• We furthermore introduce an analogous “Jordan duality” (J-duality) which acts on the D = 5

black hole/string charges and leaves the leading order entropy invariant. It is defined in terms
of the quadratic adjoint and cubic norm of the Jordan algebra. It should be thought as mapping
holes to strings, but it is not clear how this is realised at the geometrical level.

• We show that all J-dual black holes/strings that preserve the greatest common divisor of the
charges are U-duality related.

• The 4D/5D lift [51] associates a rotating 5D black hole to a non-rotating 4D black hole. We
show that two black holes related by F-duality in 4D are related by J-duality when lifted to 5D.

2. Structure of thesis

This thesis is a game of two halves. In Part I we summarise the main features of qubits, black holes
and their relationship, which includes a brief review of the work appearing [30]. In Part II, we
develop these ideas in the context of the octonions, Jordan algebras and the FTS. This second half
forms the main body of this thesis.

Part I We begin in chapter 2 with a brief, elementary introduction to quantum information and
entanglement. We assume as little knowledge as possible given that we approach this project from
within the string theory community. In section 1 we introduce the basic concepts of QI, paying par-
ticular attention to qubits and entanglement. In section 2 we develop further our understanding of
entanglement classification and especially the paradigm of SLOCC. We present some examples, most
notably the entanglement classification of three qubits. The 3-tangle, which measures the genuine
tripartite entanglement shared by three qubits is introduced in terms of the all-important Cayley’s
hyperdeterminant.

Chapter 3 contains a rather concise introduction to M-theory, U-duality and extremal black holes.
The role of U-duality and its implications for black hole entropy is emphasized. We also describe
the importance of the attractor mechanism, which fixes the black hole entropy as a function of the
electric/magnetic charges. In section 4 the STU model is treated in some detail as an example, but
also in anticipation of its significance in the black hole qubit correspondence, which is the subject of
chapter 4.

In section 1 we describe how the STU black hole entropy is related to the 3-tangle. The classi-
fication of N = 2 black holes is matched to the 3-qubit entanglement classes. We briefly discuss
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the higher-order corrections to the black hole entropy formula and their possible QI interpretation.
Finally, we introduce Lévay’s work on the black hole attractor mechanism as SLOCC.

Having summarised the STU/3-qubit correspondence we consider its generalisation to the maxi-
mally supersymmetricN = 8 theory in section 2. The black holes now carry 56 charges transforming
irreducibly under E7(7), the U-duality group of N = 8 supergravity. Cayley’s Hyperdeterminant, in-
variant under [SL(2)]3, is promoted to Cartan’s quartic E7(7) invariant. The black holes are identified
with the tripartite entanglement of seven qubits (Alice, Bob, Charlie, Daisy, Emma, Fred and George)
on the QI side.

We conclude the first half of this thesis, in section 5, with a survey of some additional developments
[30]. In particular, we describe: (1) the microscopic interpretation of black holes as qubits (2) the
classification of 4-qubit entanglement from STU black holes in three dimensions (3) the superqubit, a
supersymmetric generalisation of the qubit.

Part II Having now reviewed in Part I the relevant aspects of quantum information, entanglement
M-theory, black hole entropy and their relationship, we may now begin in earnest our main investiga-
tion. The basic proposal is to take certain algebraic structures, identified by their natural occurrence
in supergravity, and apply them to develop our understanding of both entanglement and black holes.
In particular, we will make extensive use of the the division algebras, most notably the octonions, Jor-
dan algebras and the Freudenthal triple system.

We start off in chapter 5 with a general review of the required algebras and their symmetries. This
is largely well known material, extensively covered in the mathematics literature, our primary ref-
erences being [52–69]. However, there are some new results scattered throughout, in particular the
canonical forms of the Freudenthal triple system F2,n, which facilitates the U-duality orbit classifica-
tion of black holes in D = 4,N = 2 Maxwell-Einstein supergravity. Our basic tools include a set of
FTS automorphisms, which are used to find canonical forms for the black hole charges, and the FTS
Lie action, which is used to find the corresponding orbits. An explicit example, for the exceptional
magic supergravity, is presented in Appendix C.

This brings us neatly onto the subject of chapter 6, which provides an overview of Jordan algebra
and the FTS in supergravity. The part played by these algebras in supergravity was known already
in 1983 [38–40, 70]. Indeed, they have already been used to classify black hole solutions in a number
of cases [45, 71–73], most importantly in D = 4, 5,N = 8 supergravity. However, we devote some
time to the subject of U-duality orbits from the purely Jordan algebraic and FTS perspective, partly
to setup later sections, but primarily to re-derive the know result in our current formulation and to
complete the picture for the cases that have yet to be treated in this manner. These include the small
orbits of the N = 2 Maxwell-Einstein theories, such as the STU model.

This essentially completes our introduction to algebras and their role in black hole physics. Build-
ing on these results, in chapter 7 we revisit the correspondence between N = 8 supergravity and the
tripartite entanglement of seven qubits. In [10,11,18] it was observed that the tripartite entanglement
of seven qubits is neatly described by a mathematical gadget known as the Fano plane. The Fano
plane describes the multiplication table of the octonions and we show that the dictionary relating the
N = 8 black hole charges to the tripartite entanglement of seven qubits, generalising the STU/3-
qubit case, is determined precisely by the imaginary octonions. We also determine the dictionary in
the Freudenthal picture.
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In the course of this work we establish just how the STU model sits inside the Freudenthal triple
system of N = 8 supergravity, which quite naturally leads us on, through the STU/3-qubit corre-
spondence, to the topic of chapter 8: the FTS classification of 3-qubit entanglement. In section 1 we
identify the FTS, and its underlying cubic Jordan algebra, that describes the system of three qubits.
The automorphism group of the FTS is the SLOCC-equivalence group and the FTS ranks automat-
ically distinguish the entanglement class. This has an advantage over the conventional classifica-
tion [44] in that it is manifestly SLOCC-covariant, which lays the ground work for possible n-qubit
generalisations. Indeed, in section 2 we make some preliminary attempts to generalise the 3-qubit
FTS to an n-qubit FTS with partial success. While we establish the correct mathematical framework,
we do not quite get as far as a full 4-qubit entanglement classification, this is a work in progress. We
do, however, obtain a subset of the desired results, using the more conventional covariant approach,
which we hope to use as a signpost along the way.

The closing chapter 9 on integral structures, while still using our favorite algebras, is to some
degree a departure from the preceding work. We use the integral Jordan algebras and FTS, which
are defined over the integral split-octonions, to study the quantized black holes and strings ofN = 8

supergravity in six, five and four dimensions. In section 2 we study the discrete U-duality orbits,
which carry a rich mathematical structure. These results are interesting in themselves, but, more
importantly, provide important tools with which to study the newly defined Freudenthal duality,
the subject of section 3. This new transformation relates pairs of black holes with matching lowest
order entropy. However, only certain black holes admit a consistent F-dual since the preservation
of the charge lattice requires the FTS quartic norm to be a perfect square. The issue of higher-order
corrections to the entropy remains open as some, but not all, of the discrete U-duality invariants are
Freudenthal invariant.

Finally, in chapter 10 we list some unsolved problems and directions for future research.
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Part I.

BLACK HOLES AND QUANTUM
INFORMATION
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CHAPTER 2
Quantum information and entanglement

Quantum mechanics is a strange beast. Before contemplating why exactly, we should perhaps first
consider what it actually means for a theory of physical reality to be “strange”. Notions of reality
have been borne over the ages through our dialectic relationship with the material world, first as
common place experience and then later as its scientifically precise articulation, experiment. Histor-
ically, these experiences have predominantly been confined to a rather limited range of scales. That
is, our physical intuition has grown up in the context of what is to be understood as only an effective
description of reality, valid on scales relatively close to those probed by evolutionary beings such as
ourselves. Of course, the scientific endeavor is relentlessly advancing these boundaries, from Hook
and the Flee to Hubble and the Universe, and with each frontier of scale crossed our picture of real-
ity has altered. Nevertheless, the way in which we reason about these developments is dominated
by the weight of history. With this in mind we may conclude that there really is no such thing as a
“strange” theory. For why should we expect the underlying reality to adhere to our sense of normal-
ity which is grounded in what is, after all, only an effective description. We ought only require our
more fundamental theories consistently reproduce our familiar experience in appropriate limits. It
would be prejudice, indeed strange, to expect our “classical” understanding of reality to persist on all
scales. For example, while the special theory of relativity is at first sight certainly counter-intuitive,
it is actually only strange in that we must relinquish a reasoning established on the basis of a New-
tonian understanding of space and time. Re-calibrating our basic intuition can be a difficult task, as
Kelvin attests [74]:

“I am never content until I have constructed a mechanical model of the object that I am
studying. If I succeed in making one, I understand; otherwise I do not. Hence I cannot
grasp the electromagnetic theory of light.” - Kelvin

This is not to say that electromagnetism is wrong or even strange, only that it is not easily visualized
in terms of material objects on the human scale.

However, quantum theory is next level weird. It is genuinely strange, previous comments notwith-
standing. It challenges the very notion of what we mean by “reality”1.

1One might argue that what we conventionally mean by “reality” has also grown up in the context of our essentially
classical understanding of physics implying quantum theory is also only first order strange.
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Of course, what is meant by reality is, and has always been, a philosophically perilous line of in-
quiry. Then there is the secondary question of how any particular notion of reality is to be put into
practice, i.e. as a physical theory. In the context of classical physics, however, we may make a fairly
uncontentious first approximation. The fundamental substance (reality) of objects in classical physics
is constituted by their observable properties; “things” in themselves are defined as the bearer of said
properties, which are in turn determinable from the object itself [75, 76]. Essential to such a prescrip-
tion of reality is the crucial assumption that all physical attributes do indeed possess definite, if not
definitely known, values at all times [75–78]. These ideas form the crux of what may be called a real-
ist philosophy of nature. This realist stance is naturally embodied by the mathematical (set-theoretic)
formalism underpinning classical theory. Moreover, it implies that propositions are handled with the
“classical” Boolean logic [76, 78].

A further requirement that one might demand of a sensible description of reality is locality (or
perhaps more precisely in this context separability). Indeed, this concept was very dear to Einstein’s
heart, as he describes to Max Born [79],

“I just want to explain what I mean when I say that we should try to hold on to physical
reality. We all of us have some idea of what the basic axioms of physics will turn out
to be. . . whatever we regard as existing (real) should somehow be localised in time and
space. That is, the real in part of space A should (in theory) somehow ‘exist’ indepen-
dently of what is thought of as real in space B. When a system in physics extends over the
parts of space A and B, then that which exists in B should somehow exist independently
of that which exists in A. That which really exists in B should therefore not depend on
what kind of measurement is carried out in part of space A; it should also be independent
of whether or not any measurement at all is carried out in space A.” - Einstein

The union of these ideas is typically referred to as local realism. The pinnacle of classical physics,
Einstein’s general theory of relativity, is a complete local realist theory. The orthodox Copenhagen
interpretation of quantum physics rejects local realism in all its parts.

As for realism, it is not possible to speak of a physical system as actually “possessing” values for all
their physical observables at a given time, and that these values are intrinsic and independent of any
measurement setup used to reveal them. This is not merely a philosophical whim, it is a mathematical
consequence of the Kochen-Specker theorem [80]. See [76, 78] for introductory discussions. Rather,
one is restricted to making probabilistic counter-factual statements, in which the act of measurement
plays a fundamental role, “if measured, an observable A will have a value a with a probabilty p”.

We also lose our grip on locality due to the quintessentially quantum phenomenon of entangle-
ment, the main subject of this introduction to quantum information. Quantum entanglement is a
phenomenon in which the quantum states of two or more objects must be described with reference
to each other, even though the individual objects may be spatially separated [81–86]. This leads to
classically unexplainable, but experimentally observable, quantum correlations between the spatially
separated systems. A “spooky” action at a distance, as Einstein called it.

Given the startling nature of these two statements it comes as no surprise that over the years many
a physicist and philosopher has taken exception, not least of all Einstein. This led to the now famous
Bohr-Einstein dialog, with Einstein fighting the corner of local realism and Bohr that of the Copen-
hagen interpretation. Its culmination was the seminal 1935 work by Einstein, Podolsky, and Rosen
(EPR) [81]. They correctly concluded that, assuming local realism, the quantum mechanical wave
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function cannot be a complete description of reality. They speculated on the existence of a more fun-
damental underlying (classical) theory that towed the line of local realism. Subsequent attempts to
develop such a hypothetical theory typically assumed that the mathematical representation of physi-
cal states, the wave function, is completed by a set of “hidden variables”. The previously fundamental
probabilistic nature of quantum mechanics would then admit a pedestrian classical ignorance in-
terpretation. However, through an ingenious development of the Aharonov-Bohm [87] spin based
version of the EPR setup, Bell demonstrated that there are no local realist hidden variable models
that can correctly reproduce the predictions of quantum mechanics [83]. The quantum mechanical
predictions where experimentally verified in 1982 by Alain Aspect et al [88]. We will return to this
remarkable subject in section 1.2 as it is essential to the proper understanding of entanglement. How-
ever, to this day many, scientists feel uncomfortable, for important reasons such as the measurement
problem and the trouble with quantum cosmology, with the operationalist interpretation of quantum
mechanics and the debate rages on.

Rather than stewing in such potentially solipsistic meditations, let us turn all this existential angst
on its head, take quantum theory at face value, and ask not what we can do for quantum theory, but
what quantum theory can do for us? Of course, first and foremost, is quantum theory’s tremendous
predictive power, in particular the unprecedented successes of quantum field theory. This is, after
all, the single most compelling reason to accept the peculiarities of quantum theory in the first place.
However, the humble domain of finite, non-relativistic quantum mechanics also has a lot to offer.
What can we learn from and how can we use the elementary properties of quantum theory, such as
the superposition principle and entanglement. This is the standpoint of many quantum information
scientists, to embrace the basic mathematical formalism in an effort not only to better understand
quantum theory, but also to go beyond what can be achieved in the field of classical information
theory. In the following section we will introduce the basic ideas of quantum information theory with
a particular emphasis on the central role of entanglement. There are a number of good introductions
to the topics of QI and entanglement. We found [89–95] very useful and have used them throughout
the reminder of this and the subsequent chapter.

1. A brief introduction to quantum information

What is quantum information theory? First, there is the subject of quantum information and com-
putation as the study of information processing systems which rely on the fundamental properties
of quantum mechanics. From this perspective a central motivation is to challenge the strong form of
the Church-Turing thesis:

Any algorithmic process can be simulated efficiently using a probabilistic Turing machine.

That is, there is an expectation that quantum mechanics could be used to perform computational
tasks beyond the capability of any, even idealistic, purely classical device2 as embodied by the uni-
versal Turing machine. There is a certain poetic element to this idea; just as the conventional mi-
crochip will meet its fundamental limit, set by the appearance of quantum noise at the atomic scale,
the very same quantum phenomena can be used to develop new, superior, modes of computation.

2Classical not in the sense that it does not utilize any quantum physics, such as semiconductor components, but that its
algorithmic structures are classical, and, as such could be performed by any classical device whether it be made of the
most advanced microchips or just sticks and twigs, geologically slow as it might be in that case.
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However, QI is not purely, or even primarily, a technological enterprise. There is a great expecta-
tion, which has already proved itself well-founded, that by adopting an information theoretic stance
we are able to develop our understanding of quantum theory at a fundamental level, to clarify and
sharpen our intuition about the features of quantum mechanics which may otherwise seem incom-
prehensible. This may take the form of developing the tools to better understand standard predic-
tions or, to scrutinize, and potentially alter, the very foundations of the subject.

A key player in these developments has been entanglement, which forms the focus of this intro-
duction in anticipation of its surprising connection to stringy black holes, the subject of chapter 4.

Entanglement is both one of the most startling and exploitable characteristics of quantum mechan-
ics and, as such, it is central to our fundamental understanding and as a quantum computing tool.

Entanglement may be thought of as a quantum information resource in the same sense as entropy
or energy are classical resources. However, its properties profoundly differ from the properties of
those familiar concepts. We have, at best, an incomplete description. In order to fully understand
entanglement we would like to be able to precisely describe its creation and transformation, to clas-
sify the distinct types of entanglement, to quantitatively measure it, to utilize it as a resource and to
illustrate, precisely, how it differs from classical resources at a fundamental level.

1.1. Qubits

Quantum information theory derives its computational efficiency from the quantum mechanical gen-
eralisation of digital information coding. Digital information is conventionally represented by a bit
string of “0”s and “1”s. The physical realisation of bits takes many forms. In real world technologies
current, voltage or light pulses are predominately used. For example, a “0” is represented by no light
pulse while “1” is represented by a short pulse.

One could imagine the length of the pulse being gradually reduced to a single photon - a genuine
quantum mechanical object. In this case we could represent bits not by whether a photon was sent
or not, but instead by its polarisation: horizontal for “0” and vertical for “1”. However, unlike the
light pulse, which was either there or not, a single photon can exist in a superposition of polarisation
states. This is the idea of the quantum bit, or qubit; a quantum superposition of the binary digits “0”
and “1”. The particular physical realisation (there are many: photon polarisations, quantum dots,
trapped ions, mode splitters, to name but a few) of the qubit is not important, any two state quantum
system will do. Hence, qubits are simply denoted abstractly as elements of the 2-dimensional Hilbert
space C2 equipped with the conventional norm, where the two basis states are labelled |0〉 and |1〉.
An n-qubit bit string lives in the n-fold tensor product of C2.

One qubit: The 1-qubit system (Alice) is described by the state |Ψ〉 ∈ C2,

|Ψ〉 = aA|A〉, where A = 0, 1 (2.1)

so
|Ψ〉 = a0|0〉+ a1|1〉. (2.2)

The density matrix ρ, defined by

ρ = |Ψ〉〈Ψ|, ρA1A2 = aA1a
∗
A2
, (2.3)
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obeys

tr ρ = 〈Ψ|Ψ〉. (2.4)

Two qubits: The 2-qubit system (Alice and Bob) is described by the state |Ψ〉 ∈ C2 ⊗ C2,

|Ψ〉 = aAB|AB〉, where A,B = 0, 1 (2.5)

so
|Ψ〉 = a00|00〉+ a01|01〉+ a10|10〉+ a11|11〉. (2.6)

We defined the partially reduced density matrices

ρA = TrB|Ψ〉〈Ψ|,

ρB = TrA|Ψ〉〈Ψ|,
(2.7)

or

(ρA)A1A2 = δB1B2aA1B1a
∗
A2B2

= (ρA)A2A1 ,

(ρB)B1B2 = δA1A2aA1B1a
∗
A2B2

= (ρB)B2B1 .
(2.8)

Explicitly,

ρA =

(
|a0|2 + |a1|2 a0a

∗
2 + a1a

∗
3

a2a
∗
0 + a3a

∗
1 |a2|2 + |a3|2

)
,

ρB =

(
|a0|2 + |a2|2 a0a

∗
1 + a2a

∗
3

a1a
∗
0 + a3a

∗
2 |a1|2 + |a3|2

)
.

(2.9)

Note,
tr ρA = tr ρA = 〈Ψ|Ψ〉. (2.10)

n qubits: The n-qubit system (Alice1, . . . ,Alicen) is described by the state |Ψ〉 ∈ C2 ⊗ . . .⊗ C2,

|Ψ〉 = aA1...An |A1 . . . An〉, where A1, . . . , An = 0, 1 (2.11)

so
|Ψ〉 = a00...00|00 . . . 00〉+ a00...01|00 . . . 01〉+ . . . a11...10|11 . . . 10〉+ a11...11|11 . . . 11〉. (2.12)

For any subset of qubits X = {Ai, Aj . . .} ⊂ {A1, . . . , An} we define the partially reduced density
matrices

ρX = TrX |Ψ〉〈Ψ|,

ρX = TrX |Ψ〉〈Ψ|,
(2.13)

where X denotes the set theoretic complement. Note,

TrX ρX = TrX ρX = 〈Ψ|Ψ〉. (2.14)
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1.2. Entanglement and the Bell inequality

Already in 1935 both EPR and Schrödinger had identified the phenomenon of quantum entanglement
as central to quantum theory and were, at the very least, uncomfortable with its implications. While
EPR had mathematically challenged the completeness of quantum theory on the basis of entangle-
ment, it remained a conceptual matter, apparently not accessible to experiment. All this changed in
1965 when Bell introduced his famous inequality. In one fell swoop, entanglement had been elevated
from a conceptual puzzle to an experimental observable confronting the very assumptions of local
realism. Moreover, Bell had laid the foundations of entanglement as a quantum information theoretic
resource. For example, in 1991 Ekert [96] used the Bell inequality as the basis for a new secure means
of communication.

Essentially, if the state of a composite system cannot be written as a tensor product of its constituent
subsystems then it is entangled. As a consequence, measurements on one component can affect the
measurement results on another component, even if they are space-like separated. Consider, for
example, the 2-qubit Bell state,

1√
2

(|00〉+ |11〉). (2.15)

If Alice measures 0, Bob must also measure 0 and if Alice measures 1, Bob must also measure 1.
Moreover, on tracing out either Alice or Bob we are left with a totally mixed state - while having
maximal knowledge of the composite system we have minimal knowledge of it constituent pieces.

However, to understand properly the fundamental implications of entanglement we must first es-
tablish more precisely the philosophical stance of the quantum skeptic. Recall, he is a principled local
realist. However, with good reason we have been rather vague about this concept until now. Like
EPR we make no attempt to give a comprehensive definition, but rather adopt their set of minimal
conditions (which are phrased in the context of a 2-particle experiment but generalise in an obvious
way) [81]:

1. Reality: “If, without in any way disturbing a system, we can predict with certainty (i.e., with
probability equal to unity) the value of a physical quantity, then there exists an element of
physical reality corresponding to this physical quantity.”

2. Locality: “Since at the time of measurement the two systems no longer interact, no real change
can take place in the second system in consequence of anything that may be done to the first
system”

3. Completeness: “Every element of the Physical Reality must have a counterpart in the physical
theory”

However, while a staunch realist, our quantum skeptic does not doubt the experimental results and,
moreover, is in full agreement that they are correctly predicted by the quantum formalism. Where
he diverges from the quantum converts is that he maintains there is, in fact, a deeper theory which
will give the correct experimental prognosis while adhering to the above principles of local real-
ism. This theory would have well defined single measurement predictions; the probabilistic counter-
factual statements, “if measured such and such observable will have this or that value with probability
so and so”, of quantum theory are simply an artifact of its incompleteness. The complete theory
would depend on some additional physical elements currently out of reach. Perhaps our theoretical
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framework is deficient or our current experimental techniques inadequate. Whatever the case, these
“hidden variables” would complete our theory providing a local and realistic description of nature.

However, as we shall see, quantum theory shows its doubters no mercy. The Bell inequalities
[83] were the final nail in the coffin of local realism. The quantum mechanical violation of the Bell
inequalities was verified in 1982 by the now famous Orsay experiment [88]. Here is the basic setup (the
full experiment will be described below). An entangled photon pair is produced by some suitable
atomic process. The emitted photons travel in opposite directions which define our z-axis. Eventually
they each meet an analyser, denoted A and B, measuring their polarisations in perpendicular x- and
y-directions. See Figure 2.1.

x

y

z

Figure 2.1.: Entangled photon pair are measured by the horizontal/vertical polarisation analysers, A
and B.

Experimentally one finds that only the pairs (h, h) and (v, v) are observed, where h and v denote
horizontal and vertical polarisations respectively. Quantum mechanically this 2-photon system is
represented by the Bell state,

|Ψ〉 =
1√
2

(|hh〉+ |vv〉). (2.16)

So, the photon pair is totally correlated. EPR used these perfect correlations and the assumptions of
Reality, Locality and Completeness to argue as follows: since we can predict with certainty the result at
A by merely noting the result atB, by Locality and Reality there is an element of reality corresponding
to the polarisation of the photon atA. This is true regardless of which specific x−y axises we choose to
perform the experiment with. Hence, there is an element of reality corresponding to the polarisation
of the photon at A in all possible x − y orientations. However, there is no photon quantum state
for which its polarisation in all directions has a definite value. Hence, by the Completeness criterion,
quantum mechanics is incomplete.

Are such definite correlations enough to convince our quantum skeptic? Not at all, the EPR ar-
gument has demonstrated that quantum mechanics cannot be considered complete under the as-
sumptions of local realism - it says nothing about the possible existence or not of a complete local
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realist theory. We must work a little harder before we declare experimental victory over classical
reality. This was Bell’s great insight - to derive from EPR’s criteria something which could be used to
experimentally check the phenomenological viability of local realism.

Bell had to consider two points. First, the experimental setup had to be tuned to best reveal its
true quantum nature. Second, he had to formulate a sufficiently generic hidden variable model to be
tested against the subsequent results.

As for the experiment we will use the Clauser-Horne-Shimony-Holt (CHSH) [97] variant of Bell’s
original arrangement, as this is the setup that was experimentally reproduced in [88]. The anal-
ysers are now allowed to be individually rotated about the z-axis into four possible orientations
differing in steps of a rotation angle θ. See Figure 2.2. The experiment is performed with four

x3

x2

x4

y3

y2

y1

y4

θ
θ

θ

Figure 2.2.: Each polarisation analyser may be rotated about the z-axis to measure the polarisation
along one of four sets of x-y axises differing by steps of θ.

out of the sixteen possible configurations, denoted {x1, x2}, {x2, x3}, {x3, x4}, {x1, x4}, where the
first (second) slot specifies the orientation of analyser A (B). Each of the four configurations has
four possible measurement outcomes. For example, the possible measurement pairs for {x2, x3} are
(h2, h3), (h2, v3), (v2, h3), (v2, v3). We define the functions σiA such that

σiA =

{
+1 for measurement outcome hi

−1 for measurement outcome vi
(2.17)

where hi and vi are the measurement outcomes at analyser A for orientation i ∈ {1, . . . , 4}. The
functions σiB is defined similarly for analyser B. The experiment is run for many 2-photon pairs and
the results are used to calculate the correlation coefficient,

S(θ) := E(3, 2) + E(3, 4) + E(1, 2)− E(1, 4), (2.18)
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where
E(i, j) := σiAσ

j
B. (2.19)

It is experimentally observed that the maximum value is Smax(θ0) = 2.697± 0.015, where θ0 = 22.5◦

[88]. Note, thus far we have made no reference to any particular physical theory, we have only been
dealing with experimental data.

There are now two questions: 1) is quantum theory consistent with these results? 2) is there a local
hidden variables model consistent with these results? We are assuming from the outset that quantum
mechanics correctly predicts the experimental data and a standard quantum mechanical calculation
shows this is indeed the case [88]. So, let us now address the question of hidden variables.

As tradition dictates our hidden variables will be denoted λ. The full state of our hypothetical
complete theory might be written |Ψ, λ〉. The particular form of λ is not of importance. Our outcome
functions σiA(λ) and σjB(λ) now depend on the hidden variables. The essential assumption of locality
is that the result σiA(λ) at analyser A does not depend on the setting j at analyser B and vice-versa.
The characteristics of the photon source are captured by a probability density ρ(λ). A 2-photon
state with parameter λ ∈ [λ, λ + dλ] is produced with probability ρ(λ)dλ. As Bell noted, this setup
subsumes the case in which σA and σB depend on two distinct sets of hidden variables.

The expectation value of a given configuration {xi, xj} is given by,

E(i, j) =

∫
σiA(λ)σjB(λ)ρ(λ)dλ. (2.20)

Hence, the hidden variable correlation coefficient is given by,

SHV(θ) =

∫
[σ3
A(λ)σ2

B(λ) + σ3
A(λ)σ4

B(λ) + σ1
A(λ)σ2

B(λ)− σ1
A(λ)σ4

B(λ)]ρ(λ)dλ. (2.21)

Since
∫
ρ(λ)dλ = 1 and σ = ±1 it is clear that,

SHV(θ) ≤ 2. (2.22)

This is the famous (generalised) Bell inequality [97]. The correlation coefficient for a local realistic
hidden variables model cannot exceed 2. The Orsay experiment obtained a maximum of 2.697±0.015.

Reality is dead. Long live Reality!

1.3. Entanglement dependent quantum information

This experiment and its subsequent refinements have established entanglement as a now accepted
feature of nature. We claimed that the quantum information theorists regards entanglement as one of
his key resources. Let us spend a moment justifying this claim. The literature on this subject is vast
and we can only give the briefest of glimpses.

1.3.1. Sheep yes, qubits no

A single quantum cannot be cloned [98]. What would happen were quantum copying possible?
Wootters and Zurek argue as follows [98]. If it were possible to copy a quantum state then one
could ascertain the precise state of the original. This would facilitate super-luminal communication.
Consider a Bell pair consisting of two photons. Once one photon has been measured the other will be
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in an eigenstate of the same polarisation. If the second photon could be copied and, hence, have its
state precisely determined, the measurement basis used at the first photon would be known, allowing
for a faster-than-light transmission of information encoded in the choice of measurement basis.

The logic negating this possibility is surprisingly simple and essentially relies only on the linearity
of quantum mechanics. Suppose we do have a quantum copying device. We denote the copier’s
basic pre-copy state by |A•〉. We use use it to replicate a qubit state |Ψ〉. Mathematically,

|A•〉 ⊗ |Ψ〉 ⊗ |Φ〉 → |AΨ〉 ⊗ |Ψ〉 ⊗ |Ψ〉, (2.23)

where the arrow denotes some unitary evolution and |AΨ〉 is the post-copying state of the device,
which may or may not actually depend on |Ψ〉. Now consider the case where |Ψ〉 = |0〉,

|A•〉 ⊗ |0〉 ⊗ |Φ〉 → |A0〉 ⊗ |0〉 ⊗ |0〉. (2.24)

However, for a state |Ψ〉 = a0|0〉+ a1|1〉we find, by linearity,

|A•〉 ⊗ (a0|0〉+ a1|1〉)⊗ |Φ〉 → a0|A0〉 ⊗ |0〉 ⊗ |0〉+ a1|A1〉 ⊗ |1〉 ⊗ |1〉. (2.25)

If the device states |A0〉, |A1〉 differ then the qubits will emerge in a mixed state, if |A0〉, |A1〉 are the
same then the qubits will emerge as a Bell-pair. In either case we do not obtain the desired copy state,

(a0|0〉+ a1|1〉)⊗ (a0|0〉+ a1|1〉). (2.26)

1.3.2. Quantum cryptography

The art of cryptography as a long history, from protecting Mesopotamian bakery recipes to modern
internet security. The central ingredient in almost all contemporary cryptographic schemes is the key.
To send a message, the plain text and a key are fed as inputs to the encryption algorithm. The receiver
then feeds the encrypted message and his key into the decrypting algorithm. The cryptogram and
encryption/decryption algorithms may be known by anyone. The security depends entirely on the
secrecy of the keys. Historically, a symmetric-key algorithm has been the principal method employed.
In this case there is essentially one key used to both encrypt and decrypt. Alice invents a key and
secretly shares it with her intended correspondent, Bob. When the day comes Alice uses her key to
encode her message and sends it to Bob who is then able to decrypt it using the same key. The tricky
part is the sharing of the key. Back in the day, Alice and Bod could exchange keys face-to-face in
some clandestine moonlit clearing, deep in the local forest. However, despite their best efforts, Ama-
zon.co.uk have not been able to make this particular key distribution protocol workable in todays
consumer driven society.

The problem of symmetric-key distribution was circumvented in the mid 70’s with the invention
of asymmetric-key cryptography. In this case Alice creates two keys. One public key which she shares
with the world, one private key which she keeps entirely to herself. Now anyone can send Alice
a message using the public key, which only she can decode using the private key. Obviously, the
public and private keys must be mathematically related. The crucial point is that the private key
cannot feasibly be deduced from the public key. A much used example is the Rivest, Shamir and
Adleman (RSA) scheme which relies on the fact that, while multiplication is easy, factorisation is not
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- there is no known efficient classical factorisation algorithm. There is, however, an efficient quantum
algorithm [99]. The practical realisation of a quantum computer would mean abandoning RSA.

There is a third way. The symmetric-key protocol would be completely secure if both Alice and
Bob could check whether their shared secret key had been intercepted during transmission. Any
intercepted keys would be discarded. Alice and Bob would only proceed when they are both sure
their key is truly secret. This is the approach taken by quantum cryptography. Any interception
method must involve some measurement procedure performed by the eavesdropper. Classically,
this can, in principle, be done without disturbing the message. Quantum mechanically, this is not
so, which suggests the possibility of a totally secure quantum key distribution method. The first
entanglement based quantum cryptography scheme was introduced by Ekert [96]. There is a source
of Bell pairs from which one qubit in each pair is sent to Alice and the other to Bob. So, Alice and
Bob receive a string of qubits which they measure in some basis independently chosen at random
from a set of previously agreed upon possibilities. Once complete, they publicly share their choice of
basis for each measurement. For those instances in which they happen to choose the same basis their
results will be perfectly correlated and can be used to form a bit string, which is then used as the
private key. The remaining results can be used to check the Bell inequalities, which, only if no-one
has tried to measure the qubits, will be violated. If the Bell inequalities are not violated they can be
sure that someone was listening. This scheme was experimentally implemented in 1999 [100, 101].

1.3.3. Quantum teleportation

Can Alice send an unknown qubit state to Bob? No-cloning implies that this is not possible using only
classical channels. However, Bennett et al. showed that a qubit can be teleported using only two bits
of classical information together with the correlations of a Bell-pair [102]. The use of “teleportation”
emphasizes the fact that, once Bob has received the qubit, Alice is left with no trace of the teleported
state.

The teleportation protocol proceeds as follows. Alice has a qubit in an unknown state |Ψ〉 she
wishes to send to Bob. Alice and Bob share a Bell-pair. The total composite system is represented by
the state,

|Ψ〉 = |Ψ〉 ⊗ 1√
2

(|00〉+ |11〉). (2.27)

Note, the first two slots in the tensor product (the unknown state and one half of the Bell-pair) are
owned by Alice, the third slot is Bob’s half of the Bell-pair. This state may be rewritten using the Bell
basis,

|Ψ〉 =
1

2
(|Φ+〉|Ψ〉+ |Φ−〉σ3|Ψ〉+ |Ψ+〉σ1|Ψ〉+ |Ψ−〉iσ2|Ψ〉), (2.28)

where,

Ψ± =
1√
2

(|01〉 ± |10〉),

Φ± =
1√
2

(|00〉 ± |11〉),
(2.29)

and σi are the Pauli matrices. Alice then simply measures her pair of qubits in the Bell basis and
communicates the result to Bob, which requires two classical bits of information. Finally, Bob per-
forms a simple unitary rotation according to Alice’s result and is left with precisely |Ψ〉 as required.
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This procedure, or variations of it, is now key to many quantum communication protocols [93]. The
first actual quantum teleporation was perform in a pioneering experiment by Bouwmeester et al. in
1997 [103].

2. Entanglement classification

It ought to be clear by now that entanglement has striking foundational implications as well as im-
portant technological applications. Consequently, a proper understanding of entanglement is central
to quantum information science as well as quantum theory in general. How can we manipulate en-
tanglement? Are there different forms of entanglement? If so how are they distinguished and how
do we quantify them?

2.1. Bell inequalities without the inequality

Let us now address the first question: are there qualitatively different forms of entanglement?
It is argued here that this is indeed the case. The crucial observation is that by generalising the EPR

setup to a tripartite system the principles of local realism are unequivocally shattered by a single run
of the (thought) experiment. This remarkable experiment was introduced by Greenberger, Horne and
Zeilinger (GHZ) [104]. The very special tripartite state upon which their argument relies has come to
be known as the GHZ-state. The quantum nature of entanglement is so dramatically demonstrated
that no appeal to inequalities is necessary. This seems to us sufficient justification for the claim that
the GHZ-state possesses a qualitatively greater degree of entanglement compared to the Bell-state3.

Actually, as emphasized by GHZ [104] this is the first instance that directly confronts the particu-
lar case when predictions can be made with certainty, as described in EPR’s Reality condition. The
requirement of certainty is not covered by Bell’s analysis which is necessarily statistical. Only when
both analyzers are aligned does the result on one photon fix with certainty the result on the other. For
this particular sub-arrangement one is able to construct a local realist theory which correctly repro-
duces the quantum mechanical results [83]. Can one always find classical models for these subcases
of experimental certainty? In a sense this is the most physically intriguing question. Cases in which
one can with certainty predict the value of a physical property one might expect, more so than in any
other case, that there really is an actual physical object possessing that specific property with that
precise value. The one run certitude of the GHZ elaboration does away with any such possibility.

GHZ originally considered a four-particle system [104], while the experimental test was performed
with three entangled photons [106]. Here, we present a simplified version involving three spin-1/2
particles introduced by Mermin [85]. Imagine the three spin-1/2 particles leaving a common source
in the entangled state,

|Ψ〉GHZ =
1√
2

(|↑z↑z↑z〉+ |↓z↓z↓z〉), (2.30)

where, ↑z and ↓z denote spin-up or -down along the z-axis as defined by the flight of the particles.
This is the famous GHZ-state. Each particle eventually meets a Stern-Gerlach device, denoted

A,B,C, which may be individually orientated to measure spin along the x- or y-axis. See Figure 2.3.
The experiment is performed with the measuring devices randomly set in one of four configurations
(out of the eight possible). These are the three configurations where two devices measure along the

3For an interesting discussion on the subtleties of this matter see [105]
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Press to measure along x-axis

Press to measure along y-axis

Figure 2.3.: Three Stern-Gerlach device, denoted A,B,C, which can be individually set to measure
spin along their respective x- or y-axises.

y-axis and one along the x-axis, denoted xyy, yxy, yyx, and the single configuration where all three
devices measure along the x-axis, denoted xxx.

Let us consider the case with device A set to measure along the x-axis and devices B,C along the
y-axis. Using

|↑z〉 =
1√
2

(|↑x〉+ |↓x〉), |↓z〉 = − 1√
2

(|↑x〉 − |↓x〉) (2.31)

and
|↑z〉 =

1√
2

(|↑y〉+ |↓y〉), |↓z〉 = − i√
2

(|↑y〉 − |↓y〉) (2.32)

we can write (2.30) in the measurement eigenbasis,

|Ψ〉GHZ =
1

2
(|↑x↑y↑y〉+ |↓x↓y↑y〉+ |↓x↑y↓y〉+ |↑x↓y↓y〉), (2.33)

from which it is clear that, with the detectors in the xyy orientation, only an odd number of particles
will be measured as spin-up. By symmetry, this is also true for both the yxy and yyx orientations.
On the other hand, for the final configuration with all three devices set to measure along the x-axis,
(2.30) in the measurement eigenbasis is given by,

|Ψ〉GHZ =
1

2
(|↓x↓x↓x〉+ |↓x↑x↑x〉+ |↑x↓x↑x〉+ |↑x↑x↓x〉), (2.34)

so that only an even number of particles are found to be spin-up. Note, in all cases we can with
certainty predict the measurement result of any one particle by simply noting the outcomes of the
other two particles.

The question now, as before, is not whether quantum mechanics gets it right (we are assuming this
from the outset), but whether there is a local realist theory that can reproduce these (hypothetical)
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experimental observations.
Mermin [85] gave a particularly clear reasoning as to why there is no such theory. Following EPR

Mermin made the crucial inference that since there are no connections between the detectors, the
highly coordinated experimental results must derive from the common source of the particles. The
information determining the spin observed atA, which must be consistent with the spins observed at
B and C, must be carried by the particle triggeringA. This argument can be applied equally to any of
the three particles. Moreover, since the particles have no knowledge of which direction the detectors
are set to measure and the setting can change during flight, it would seem essential that each particle
carries information specifying what spin will be measured for either of the detector settings.

In summary, we ought to be able to label the particles with the spin that will be observed given
the detector is set to measure along the x- or y-axis. For example, the particle triggering detector A
could be labeled (↑x, ↓y)A where the first (second) slot denotes the spin that will be measured with the
detector set to measure along the x-axis (y-axis). For the detector orientation xyy a possible labeling
of the three particles is given by,

(↑x, ↓y)A(↑x, ↑y)B(↑x, ↑y)C (2.35)

as all three detectors would register spin-up consistent with the experimental observation that only
an odd number of spin-up particles are observed for xyy. However, this labeling is inconsistent with
the yxy set-up as we would observe two spin-up results. A little careful thought shows that there are
only eight labelings simultaneously consistent with xyy, yxy and yyx,

(↑x, ↑y)A(↑x, ↑y)B(↑x, ↑y)C
(↑x, ↑y)A(↓x, ↓y)B(↓x, ↓y)C
(↓x, ↓y)A(↑x, ↑y)B(↓x, ↓y)C
(↓x, ↓y)A(↓x, ↓y)B(↑x, ↑y)C
(↑x, ↓y)A(↓x, ↑y)B(↓x, ↑y)C
(↓x, ↑y)A(↑x, ↓y)B(↓x, ↑y)C
(↓x, ↑y)A(↓x, ↑y)B(↑x, ↓y)C
(↑x, ↓y)A(↑x, ↓y)B(↑x, ↓y)C .

(2.36)

However, a cursory glance reveals that all above labelings yield an odd number of spin-up measure-
ments for xxx contradicting the observation, quantum mechanically derived from (2.34), that only
an even number of spin-up states are ever recorded for this configuration.

Hence, a single run of the experiment in the xxx configuration suffices to put to bed the seemingly
unavoidable idea, implied by local realism, that the particles carry labels. The fact that such a simple
one run violation of local realism can be performed with the GHZ state, but not the Bell state, justifies
our claim that there are qualitatively different forms of entanglement.

2.2. The SLOCC paradigm

Let us reconsider what we mean by entanglement. Conventionally, the state of a composite system is
said to be entangled if it cannot be written as a tensor product of states of the constituent subsystems.
However, this particular definition is perhaps insufficient to really capture the various subtleties
of entanglement. For example, there are two totally non-separable 3-qubit states that have distinct
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entanglement properties, as we shall see later. Is there a more illuminating notion of entanglement?
Let us take our cues from experiment. We do not actually observe the tensor product structure, even
though it underpins our theoretical understanding. What we do observe are correlations between
spatially separated systems that admit no classical explanation. This motivates the more general and
quantum information theoretic notion of entanglement as correlations between constituent pieces of
a composite system that are of a quantum origin [92].

The question now is, how does one differentiate between classical correlations and those correla-
tions which may be attributed to genuine quantum phenomena. A quantum information theoretic
perspective provides a precise solution: classical correlations are defined as those which may be gen-
erated by Local Operations and Classical Communication (LOCC) [92,107,108]. Any classical correlation
may be experimentally established using LOCC. Conversely, all correlations unobtainable via LOCC
are regarded as bona fide quantum entanglement.

The LOCC paradigm is quite intuitive. Heuristically, given a composite quantum system with
its components spread among different laboratories around the world we allow each experimenter
to perform any quantum operation or measurement on their component locally in their lab. These
are the local operations (LO), which clearly cannot establish any correlations, classical or quantum.
The local operations may be supplemented by classical communication (CC): the experimenters may
communicate any information (experimental procedures, measurement results, family history) they
see fit via a classical channel (carrier pigeon, smoke signals, even e-mail). Any number of LO and
CC rounds may be performed. It seems eminently reasonable to expect any classical correlation
may be set-up in this manner. However, no quantum correlations could have been generated - all
information exchanged between the separated parties at any point was intrinsically classical.

If, after some LOCC protocol, we are left with a multipartite state which may be used to perform
some classically forbidden task, such as a Bell inequality violation, then the state properties facilitat-
ing this operation are not a result of LOCC - they must correspond to quantum correlations that were
already present in the initial state before commencing the LOCC protocol [92].

LOCC cannot create entanglement.

Allowing for multiple rounds of classical communication implies that LOCC protocols are not
strictly local and actually have a rather complicated mathematical structure. Since the experimenters
may classically communicate either before or after any round of local operations, any subsequent
rounds may be conditional on previous outcomes. Due to this additional complexity, there is no sim-
ple universal characterisation of LOCC operations [92]. However, by focusing instead on LOCC/SLOCC
equivalence (described in the subsequent sections) we need not make use of general LOCC operations,
for which a good summary is given in [93].

2.3. Entanglement measures

In the context of LOCC we can begin in earnest to consider the first essential question. How do
we quantify the amount of entanglement contained in a given system? A measure of entanglement
is a map from the state space to R which quantifies some aspect of entanglement. There are quite
a number of entanglement measures in the literature. For reviews of such measures see, for exam-
ple, [92, 93, 109]. On the whole these are physically motivated by their relevance to some quantum
information theoretic task. For example, the entanglement cost of a state ρ is defined as the rate at
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which one can generate copies of ρ from a set of 2-qubit Bell states [107].
However, one would also like to have a more axiomatic scheme which identifies the minimal prop-

erties that any decent entanglement measure must possess. The axiomatic approach was originally
initiated in [110]. They argued that any sensible entanglement measure E must fulfill the following
criteria:

1. E(ρ) = 0 if and only if ρ is separable.

2. E(ρ) is invariant under local unitaries.

3. E(ρ) is monotonically decreasing under LOCC protocols. That is,

E(Λ(ρ)) ≤ E(ρ), (2.37)

where Λ represents an arbitrary LOCC operation.

Monotonicity under LOCC operations is now often considered as the basic requirement [93, 111]. In-
deed, invariance under local unitaries is actually implied by monotonicity. The motivation is quite
clear; LOCC cannot create entanglement, hence any good measure of entanglement should not in-
crease under LOCC operations. Any map satisfying the monotonicity requirement is referred to as
an entanglement monotone.

There are several extra postulates that one might consider:

1. The stronger monotonicity condition that E(ρ) decreases on average under LOCC. That is,∑
i

piE(ρi) ≤ E(ρ), (2.38)

where the LOCC protocol maps ρ to ρi with probability pi.

2. Convexity,
E(
∑
i

piρi) ≤
∑
i

piE(ρi). (2.39)

3. Additivity,
E(ρ1 ⊗ ρ2) = E(ρ1) + E(ρ2). (2.40)

More on entanglement measures may be found in [92, 112–120].

2.4. Stochastic LOCC equivalence

As emphasised LOCC cannot create entanglement. Consequently, from a quantum information the-
oretic perspective, any two states which may be interrelated using LOCC ought to be physically
equivalent with respect to their entanglement properties. This motivates the concept of Stocastic
LOCC equivalence, introduced in [44, 108]:

Definition 1 (SLOCC-equivalence:). Two states lie in the same SLOCC-equivalence class if and only if they
may be transformed into one another with some non-zero probability using LOCC operations.

The crucial observation is that since LOCC cannot create entanglement any two SLOCC-equivalent
states must necessarily possess the same entanglement, irrespective of the particular measure used. It
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is this property which make the SLOCC paradigm so suited to the task of classifying entanglement. It
is also operationally motivated by the fact that any set of SLOCC-equivalent entangled states may be
used to probabilistically perform the very same non-classical, entanglement dependent, operations.

The stronger concept of LOCC-equivalence is defined analogously:

Definition 2 (LOCC-equivalence:). Two states lie in the same LOCC-equivalence class if and only if they
may be transformed into one another with certainty using LOCC operations.

Clearly, LOCC-equivalence implies SLOCC-equivalence. From here-on-in we will make the drastic
simplification of only considering pure states (which is difficult enough).

For an n-qudit system, two pure states,

|Ψ〉 = aA1...An |A1 . . . An〉, |Φ〉 = bB1...Bn |B1 . . . Bn〉, (2.41)

are SLOCC-equivalent if and only if they are related by an element of

SL1(d,C)× SL2(d,C)× . . . SLn(d,C), (2.42)

under which aA1...An transforms in the fundamental representation [44]. That is,

|Ψ〉 ∼SLOCC |Φ〉 (2.43)

if and only if there exist d× d matrices M i ∈ SLi(d,C) such that,

aA1A2...An = M1 B1
A1

M2 B2
A2

. . .Mn Bn
An

bB1...Bn . (2.44)

The set of transformations relating equivalent states will be referred to as the SLOCC-equivalence
group. It may be thought of as a gauge group with respect to entanglement in the sense that it mods
out the physically redundant (local or classical) information.

These SLOCC transformations partition the Hilbert space into equivalence classes or orbits. For the
n-qudit system the space of SLOCC-equivalence classes is given by [44],

Cd ⊗ Cd . . .⊗ Cd

SL1(d,C)× SL2(d,C)× . . . SLn(d,C)
. (2.45)

It is the space of physically distinct entanglement classes and, hence, its structure determines the
classification of entanglement under the SLOCC. Consequently, it will play an essential role in our
understanding of entanglement.

For the n-qubit system we have,

C2 ⊗ C2 . . .⊗ C2

SL1(2,C)× SL2(2,C)× . . . SLn(2,C)
. (2.46)

and, in this case, the lower bound on the number of real continuous variables needed to parameterise
the space of orbits is 2(2n − 1)− 6n.

For the stricter case of LOCC-equivalence it was shown in [108] that two states of a composite
system are LOCC equivalent if and only if they may be transformed into one another using the
group of local unitaries (LU), unitary transformations which factorise into separate transformations
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on the component parts.
For a n-qudit system the LOCC-equivalence group (up to a global phase) is given by [113, 121],

SU1(d,C)× SU2(d,C)× . . . SUn(d,C). (2.47)

Hence, the space of orbits is given by [113, 121],

Cd ⊗ Cd . . .⊗ Cd

U(1)× SU1(d,C)× SU2(d,C)× . . . SUn(d,C)
. (2.48)

For the n-qubit system we have,

C2 ⊗ C2 . . .⊗ C2

U(1)× SU1(2,C)× SU2(2,C)× . . . SUn(2,C)
(2.49)

and, in this case, the number of real continuous variables needed to parameterise the space of orbits
is precisely 2n+1 − (3n+ 1) [113, 121].

Given that we wish classify the physically distinct forms of entanglement, but do not really care
whether it is Alice and Bob or Alice and Charlie who shares the entanglement, one could also to
consider the SLOCC-equivalence group plus permutations of the qubits. We denote the SLOCC-
equivalence semi-direct product the permutations by SLOCC*. In this case the entanglement measure
must be permutation invariant.

The challenge now is to characterise the space (2.45) of SLOCC-equivalence classes. One possi-
bility is the “covariant” approach which distinguishes the orbits by the vanishing or not of SLOCC-
equivalence group covariants/invariants built out of the state vector. This philosophy is adopted for
the 3-qubit case in chapter 8, which makes use of the Freudenthal triple system. Typically, one ex-
pects that the space of equivalence classes will contain several discrete (0-dimensional) pieces which
are distinguished by a set of algebraically independent covariants. For example, for n qubits the
0-dimensional equivalence class of totally separable states is distinguished by the vanishing of all co-
variants. On the other hand, there will also be some finite dimensional pieces parametrised by some
set of of algebraically independent invariants. For instance, the 1-dimensional space of Bell states
is parametrised by the concurrence [122], which is both SLOCC invariant and a good entanglement
measure. In fact, any SLOCC invariant so constructed is a good entanglement measure [116]. More
on this in the following sections and chapter 8.

2.5. Two qubit entanglement

2.5.1. Generic bipartite systems

For bipartite states,
|Ψ〉 = aAB|AB〉, (2.50)

where A = 0, . . .m and B = 0, . . . n (without loss of generality we assume n ≤ m), one can always
answer the question of whether a state is entangled or not. It is separable if and only if aAB is rank
one.

The SLOCC classification is particularly simple in this case. The set of local unitaries is contained
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in SLOCC and consequently, using the Schmidt decomposition, any state |Ψ〉 can be written as

|Ψ〉 =

nΨ∑
i=1

√
αi|ii〉, αi > 0, (2.51)

nΨ ≤ n, where n is the dimension of the smaller of the two sub-systems. The Schmidt number nΨ

is given by the rank of either one of the reduced density matrices (2.9). Since their rank cannot be
changed using SL(m,C) × SL(n,C) there are n entanglement classes under SLOCC [44]. A state
of a given rank may be transformed into any state of a lower rank with some non-zero probability
using non-invertible SLOCC operations. No SLOCC operation can increase the rank of a reduced
density matrix. Hence, the SLOCC classification is stratified: the higher the rank the stronger the
entanglement [44].

2.5.2. Two qubits

For a two-qubit system there are then only two SLOCC classes: entangled and separable correspond-
ing to rank 2 or rank 1 reduced density matrices, respectively. The bipartite entanglement is measured
by the concurrence [122],

CAB := 2
√

det ρA = 2
√

det ρB. (2.52)

Note that
|det a|2 = 1

4ε
A1A2εB1B2aA1B1aA2B2ε

A3A4εB3B4a∗A3B3
a∗A4B4

. (2.53)

Using the identity

εA1A2εA3A4 = δA1A3δA2A4 − δA1A4δA2A3 , (2.54)

we have
| det a|2 = 1

4(δA1A3δA2A4 − δA1A4δA2A3)εB1B2aA1B1aA2B2ε
B3B4a∗A3B3

a∗A4B4

= 1
4ε
B1B2εB3B4(ρB1B3ρB2B4 − ρB1B4ρB2B3)

= 1
2ε
B1B2εB3B4ρB1B3ρB2B4

= det ρB = det ρA.

(2.55)

Hence,
CAB = 2 |det a|, (2.56)

which relates the concurrence to the so-called 2-tangle, introduced in [122],

τAB := 4 |det a| = 4(|a0|2|a3|2 + |a1|2|a2|2 − (a0a
∗
2a3a

∗
1 + a1a

∗
3a2a

∗
0)). (2.57)

Recall that the eigenvalues of a 2× 2 matrix obey the characteristic equation

det ρ− tr ρλ+ λ2 = 0. (2.58)

Hence the eigenvalues of ρA are

λ0 = 1
2 [tr ρ+

√
(tr ρ)2 − 4 det ρ], (2.59a)
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and

λ1 = 1
2 [tr ρ−

√
(tr ρ)2 − 4 det ρ], (2.59b)

obeying

λ0 + λ1 = tr ρ,

λ0λ1 = det ρ.
(2.59c)

so for an entangled state, with non-zero concurrence, ρA has rank 2 but only rank 1 for a product
state as required by the SLOCC classification.

2.5.3. Bell states

An example of a totally separable state is

|Ψ〉 = 1√
2
(|00〉+ |01〉), (2.60)

since when Alice measures 0, Bob can measure either 0 or 1 with equal probability. Here

τAB = 0. (2.61)

An example of a maximally entangled state is the Bell state:

|Ψ〉 = 1√
2
(|00〉+ |11〉), (2.62)

for which
τAB = 1. (2.63)

2.6. Three qubits

The case of three qubits (Alice, Bob, Charlie) is particularly interesting [44,113–115,121,123–126] since
it provides the simplest example of inequivalently entangled states. It is by now well understood
that there are seven entanglement classes: (0) Null, (1) Separable A-B-C, (2a) Biseparable A-BC, (2b)
Biseparable B-CA, (2c) Biseparable C-AB, (3) W and (4) GHZ.

In the case of three qubits, the group of SLOCC transformations is SLA(2,C)×SLB(2,C)×SLC(2,C).
Tensors transforming under the Alice, Bob or Charlie SL(2,C) carry indices A1, A2..., B1, B2... or
C1, C2..., respectively, so aABC transforms as a (2,2,2).

The first SLOCC classification of three qubit entanglement, presented in section 2.6.3, was per-
formed in [44] using a subset of the algebraically independent local unitary invariants, which are
described in the following section, and the so-called 3-tangle [6]. The 3-tangle is the unique SLOCC
invariant and measures the genuine tripartite entanglement between three qubits. It is given by Cay-
ley’s hyperdeterminant [5, 31], which is described in section 2.6.2.
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2.6.1. Local unitary invariants

The number of parameters needed to describe unnormalised LOCC (local unitary) inequivalent states
is given by the dimension of the space of orbits [121],

C2 × C2 × C2

U(1)× SU(2)× SU(2)× SU(2)
, (2.64)

namely 16−10 = 6. This is also equivalent to the number of algebraically independent LU invariants
[124], which are presented below.

1 The norm squared:
|Ψ|2 = 〈Ψ|Ψ〉. (2.65)

2A, 2B, 2C The local entropies:

SA = 4 det ρA, SB = 4 det ρB, SC = 4 det ρC , (2.66)

where ρA, ρB, ρC are the doubly reduced density matrices:

ρA = TrBC |Ψ〉〈Ψ|, ρB = TrCA|Ψ〉〈Ψ|, ρC = TrAB|Ψ〉〈Ψ|. (2.67)

3 The Kempe invariant [115]:

K = tr(ρA ⊗ ρBρAB)− tr(ρ3
A)− tr(ρ3

B)

= tr(ρB ⊗ ρCρBC)− tr(ρ3
B)− tr(ρ3

C)

= tr(ρC ⊗ ρAρCA)− tr(ρ3
C)− tr(ρ3

A),

(2.68)

where ρAB, ρBC , ρCA are the singly reduced density matrices:

ρAB = TrC |Ψ〉〈Ψ|, ρBC = TrA|Ψ〉〈Ψ|, ρCA = TrB|Ψ〉〈Ψ|. (2.69)

4 The 3-tangle [6]:
τABC = 4|Det aABC | (2.70)

where |Ψ〉 = aABC |ABC〉 and Det aABC is Cayley’s hyperdeterminant [5, 31]:

Det aABC := −1
2ε
A1A2εB1B2εA3A4εB3B4εC1C4εC2C3aA1B1C1aA2B2C2aA3B3C3aA4B4C4 . (2.71)

Here ε is the SL(2,C)–invariant alternating tensor

ε :=

(
0 1

−1 0

)
. (2.72)

Hence, under local unitary operations the most general state may be written as a six real parame-
ter generating solution [127]. For subsequent comparison with the STU black hole we restrict our
attention to states with real coefficients aABC . In this case, one can show that there are five alge-
braically independent LU invariants [127]: Det a, SA, SB , SC and the norm 〈Ψ|Ψ〉, corresponding to
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the dimension of
R2 ×R2 ×R2

SO(2)× SO(2)× SO(2)
, (2.73)

namely 8− 3 = 5. Hence, the most general real three-qubit state can be described by just five param-
eters [127], conveniently taken as four real numbers N0, N1, N2, N3 and an angle θ:

|Ψ〉 = −N3 cos2 θ|001〉 −N2|010〉+N3 sin θ cos θ|011〉

−N1|100〉 −N3 sin θ cos θ|101〉+ (N0 +N3 sin2 θ)|111〉.
(2.74)

2.6.2. Cayley’s hyperdeterminant

Cayley described a multi-indexed array, such as aABC , as a hypermatrix. The present 2 × 2 × 2 case
may be graphically represented as a cube, as in Figure 2.4. In 1845 he generalised the determinant of

a000

a001

a010

a011

a100

a101

a110

a111

Figure 2.4.: The 3-index quantity aABC is an example of a hypermatrix, here depicted as a cube. In
1845 Cayley generalised the determinant of a 2 × 2 matrix to the hyperdeterminant of a
2× 2× 2 hypermatrix.

a 2× 2 matrix to the hyperdeterminant of a 2× 2× 2 hypermatrix aABC [5]

Det a := −1
2 ε

A1A2εB1B2εA3A4εB3B4εC1C4εC2C3

× aA1B1C1aA2B2C2aA3B3C3aA4B4C4

(2.75a)

= a2
000a

2
111 + a2

001a
2
110 + a2

010a
2
101 + a2

100a
2
011

− 2 (a000a001a110a111 + a000a010a101a111

+ a000a100a011a111 + a001a010a101a110

+ a001a100a011a110 + a010a100a011a101)

+ 4 (a000a011a101a110 + a001a010a100a111)

(2.75b)

= a2
0a

2
7 + a2

1a
2
6 + a2

2a
2
5 + a2

3a
2
4

− 2 (a0a1a6a7 + a0a2a5a7 + a0a4a3a7

+ a1a2a5a6 + a1a3a4a6 + a2a3a4a5)

+ 4 (a0a3a5a6 + a1a2a4a7),

(2.75c)
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where we have made the binary conversion 0, 1, 2, 3, 4, 5, 6, 7 for 000, 001, 010, 011, 100, 101, 110,
111. (The cyclic permutations are 0, 4, 1, 5, 2, 6, 3, 7 and 0, 2, 4, 6, 1, 3, 5, 7. See Table 2.1.) Crucially,

Binary Decimal
ABC CAB BCA ABC CAB BCA

000 000 000 0 0 0
001 100 010 1 4 2
010 001 100 2 1 4
011 101 110 3 5 6
100 010 001 4 2 1
101 110 011 5 6 3
110 011 101 6 3 5
111 111 111 7 7 7

Table 2.1.: Three cyclic permutations of the binary notation. The hyperdeterminant, (2.75a), is invari-
ant under this triality.

the hyperdeterminant is invariant under [SL(2)]3 and under a triality that interchanges A, B and C,
irrespective of whether the aABC are complex, real or integer.

One way to understand this triality is to think of having three different metrics (Alice, Bob and
Charlie) [18]

γA(a)A1A2 = εB1B2εC1C2aA1B1C1aA2B2C2 ,

γB(a)B1B2 = εC1C2εA1A2aA1B1C1aA2B2C2 ,

γC(a)C1C2 = εA1A2εB1B2aA1B1C1aA2B2C2 .

(2.76)

which rotate into each other under the A-B-C triality. Explicitly,

γA(a) =

(
2(a0a3 − a1a2) a0a7 − a1a6 + a4a3 − a5a2

a0a7 − a1a6 + a4a3 − a5a2 2(a4a7 − a5a6)

)
,

γB(a) =

(
2(a0a5 − a4a1) a0a7 − a4a3 + a2a5 − a6a1

a0a7 − a4a3 + a2a5 − a6a1 2(a2a7 − a6a3)

)
,

γC(a) =

(
2(a0a6 − a2a4) a0a7 − a2a5 + a1a6 − a3a4

a0a7 − a2a5 + a1a6 − a3a4 2(a1a7 − a3a5)

)
.

(2.77)

All are equivalent, however, since

det γA(a) = det γB(a) = det γC(a) = −Det a. (2.78)

We may also isolate a single qubit to make the isomorphisms SL(2,R) × SL(2,R) ∼= SO(2, 2) (or
SL(2,C) × SL(2,C) ∼= SO(4,C) in the complex case) manifest. For example, selecting Charlie, the
components aAB0 and aAB1 form two 4-vectors as follows,

a0 = 1√
2
(P 0 − P 2) a1 = − 1√

2
(Q0 +Q2)

a2 = 1√
2
(P 1 − P 3) a3 = − 1√

2
(Q3 +Q1)

a4 = 1√
2
(P 1 + P 3) a5 = 1√

2
(Q3 −Q1)

a6 = − 1√
2
(P 0 + P 2) a7 = 1√

2
(Q0 −Q2),

(2.79)
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or inversely,

P 0 = 1√
2
(a0 − a6) Q0 = 1√

2
(a7 − a1)

P 1 = 1√
2
(a4 + a2) Q1 = − 1√

2
(a5 + a3)

P 2 = − 1√
2
(a0 + a6) Q2 = − 1√

2
(a7 + a1)

P 3 = 1√
2
(a4 − a2) Q3 = 1√

2
(a5 − a3),

(2.80)

then
2(−a0a6 + a2a4) = P 2 = P 02

+ P 12 − P 22 − P 32
,

2(−a1a7 + a3a5) = Q2 = Q0
2 + Q1

2 − Q2
2 − Q3

2,

a0a7 − a2a5 + a1a6 − a3a4 = P ·Q = P 0Q0 + P 1Q1 + P 2Q2 + P 3Q3,

(2.81)

and

γ3 =

(
−P 2 P ·Q
P ·Q −Q2

)
. (2.82)

Hence

Det a = −P 2Q2 + (P ·Q)2. (2.83)

This basis makes the SO(2, 2)AB × SL(2,R)C symmetry clear, P and Q together transform as an
SL(2,R)C doublet while individually they transform as vectors of SO(2, 2)AB . In two component
spinor notation

PAB = 1√
2

(
P 0 − P 2 P 1 − P 3

P 1 + P 3 −P 0 − P 2

)
,

QAB = 1√
2

(
−Q0 −Q2 −Q1 −Q3

−Q1 +Q3 Q0 −Q2

)
,

(2.84)

we have

aABC =

(
PAB

QAB

)
, (2.85)

and

γC = εA1A2εB1B2

(
PA1B1PA2B2 PA1B1QA2B2

QA1B1PA2B2 QA1B1QA2B2

)
. (2.86)

This is manifestly invariant under SO(2, 2)AB and transforms as a 3 under SL(2)C . Group theoreti-
cally this corresponds to the (1,1,3) in the tensor product,

(2,2,2)× (2,2,2) = (1,1,1)

+ (1,1,3) + (1,3,1) + (3,1,1)

+ (3,3,1) + (3,1,3) + (1,3,3)

+ (3,3,3).

(2.87)

Similarly, γA and γB correspond to the (3,1,1) and (1,3,1) respectively.

2.6.3. Entanglement classification

Dür et al. [44] used simple arguments concerning the conservation of ranks of reduced density ma-
trices to show that there are only six types of 3-qubit equivalence classes (or seven if we count the
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(a) Onion structure

GHZW
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Bipartite
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Entangled

Unentangled

(b) Hierarchy

Figure 2.5.: (a) Onion-like classification of SLOCC orbits. (b) Stratification. The arrows are
non-invertible SLOCC transformations between classes that generate the entanglement
hierarchy. The partial order defined by the arrows is transitive, so we may omit e.g.
GHZ→ A-B-C and A-BC → Null arrows for clarity.

Table 2.2.: The values of the local entropies SA, SB , and SC and the hyperdeterminant Det a are used
to partition three-qubit states into entanglement classes.

Class Representative
Condition

Ψ SA SB SC Det a

Null 0 = 0 = 0 = 0 = 0 = 0
A-B-C |000〉 6= 0 = 0 = 0 = 0 = 0
A-BC |010〉+ |001〉 6= 0 = 0 6= 0 6= 0 = 0
B-CA |100〉+ |001〉 6= 0 6= 0 = 0 6= 0 = 0
C-AB |010〉+ |100〉 6= 0 6= 0 6= 0 = 0 = 0

W |100〉+ |010〉+ |001〉 6= 0 6= 0 6= 0 6= 0 = 0
GHZ |000〉+ |111〉 6= 0 6= 0 6= 0 6= 0 6= 0

null state); only two of which show genuine tripartite entanglement. They are as follows:

Null: The trivial zero entanglement orbit corresponding to vanishing states,

Null : 0. (2.88)

Separable: Another zero entanglement orbit for completely factorisable product states,

A-B-C : |000〉. (2.89)

Biseparable: Three classes of bipartite entanglement,

A-BC : |010〉+ |001〉,

B-CA : |100〉+ |001〉,

C-AB : |010〉+ |100〉.

(2.90)
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Note, these three classes are identified under SLOCC*.

W: Three-way entangled states that do not maximally violate Bell-type inequalities in the same way
as the GHZ class. However, they are robust in the sense that tracing out a subsystem generically
results in a bipartite mixed state that is maximally entangled under a number of criteria [44],

W : |100〉+ |010〉+ |001〉. (2.91)

GHZ: Genuinely tripartite entangled Greenberger-Horne-Zeilinger [104] states. These maximally
violate Bell-type inequalities but, in contrast to class W, are fragile under the tracing out of a
subsystem since the resultant state is completely unentangled,

GHZ : |000〉+ |111〉. (2.92)

These classes and their representative states are summarised in Table 2.2. They are characterised
[44] by the vanishing or not of the invariants listed in the table. Note that the Kempe invariant is
redundant in this SLOCC classification. A visual representation of these SLOCC orbits is provided
by the onion-like classification [31] of Figure 1a.

These SLOCC equivalence classes are then stratified by non-invertible SLOCC operations into an
entanglement hierarchy [44] as depicted in Figure 1b. Note that no SLOCC operations (invertible
or not) relate the GHZ and W classes; they are genuinely distinct classes of tripartite entanglement.
However, from either the GHZ class or W class one may use non-invertible SLOCC transformations
to descend to one of the biseparable or separable classes and hence we have a hierarchical entangle-
ment structure. For more on three qubit entanglement see [126, 128–132].
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CHAPTER 3
M-theory and black holes

The dawn of the 20th century was a magnificent time for physics. Perhaps in no other period have
so many profoundly important concepts emerged concurrently. The atomic foundation of matter, the
unification of space and time, the uncertainty principle, the fundamentally probabilistic nature of
reality - these are not just some of the greatest achievements of modern times, they are milestones in
the history of humanity. It is sobering to think that these reasoned, liberating, scientific revolutions
occurred at a time when the world at large was suffering the brutalities of supreme dogma. That for
me is the beauty of science, it does not deal with absolute truth, which is to dance with the devil, but
asks with humility what we can know about nature in-spite of our intrinsic fallibility1.

As the dust settled and the rubble cleared, in Europe and around the world, two conceptual pillars
were left standing. The foundations of physics today: general relativity and quantum theory. Each of
which has independently revolutionised our basic understanding and heralded an age of unprece-
dented predictive power. Yet, these developments have largely evolved along separate lines. While
general relativity deals with large scale structures of our universe, quantum theory reigns over the
microscopic world. However, at high enough energy scales both quantum and gravitational effects
become simultaneously significant and one would anticipate a consistent theory of quantum grav-
ity to exist. Our understanding of the fundamental laws of nature is surely lacking until we have a
consistent framework which marries quantum theory and gravity.

Direct attempts at quantizing gravity using perturbative quantum field theory are plagued by un-
controllable infinities. Order by order in perturbation theory the ultraviolet divergences, correspond-
ing to radiative corrections to gravitation, become increasingly severe. The standard renormalisation
methods fail, as can be seen by simple power counting. A careful analysis shows there can be no
miracle cure [133].

There are many possible avenues one might explore in hope of finding a theory of quantum grav-
ity that goes beyond these naïve first attempts. There are non-perturbative approaches such as Loop
quantum gravity and causal dynamical triangulations (CDT) [134]. The CDT approach first discre-
tises spacetime into locally flat pieces, so as to facilitate a non-perturbative path integral formulation,
and then finally takes the continuum limit. By contrast, casual set theory postulates that spacetime is
fundamentally discrete and that its causal structure is of primary importance. See [135] and reference

1A tribute to J. Bronowski.
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therein. The quantum dynamics of the casual set spacetime may take the form of a “sum-over-causal-
sets”, which could require a reformulation of quantum theory itself [136]. Similarly, there are those
who consider the current formulation of quantum theory fundamentally ill-suited to the concept of
quantum gravity and that one must first remedy this situation before tackling the issue of quantum
gravity head on [77].

Another very promising approach, the subject of this chapter, is string theory. In some sense,
string theory is rather conservative. It assumes that our present formulation of quantum mechanics is
correct and begins by simply2 quantizing propagating 1-dimensional loops. It is not a priori clear that
this has anything to do with quantum gravity, but it turns out that the quantum string incorporates
perturbative quantum gravity.

What is rather intriguing, is that, despite the simplicity of the basic premise, string theory seems
to almost have a life of its own. It is as if it has, hand-in-hand with those who have developed it,
guided its own path, revealing along the way many profound and unexpected features. The result is
that it has evolved into what is now known as M-theory, a fundamentally non-perturbative theory of
higher dimensional branes, that one could have scarcely anticipated at the outset.

1. The road to M-theory

This journey begins with a relatively simple conceptual leap: to relinquish the long-cherished and
most profitable notion that the fundamental constituents of matter are (mathematically) point like.
While this possibility had certainly been previously entertained [137], it only really found its feet
with the advent of string theory, the theory of propagating 1-dimensional extended objects. Origi-
nally formulated, in its bosonic guise, as a theory of the strong nuclear force in 1968 [138], it was
quickly superseded by quantum chromodynamics (QCD). See the introductory sections of [139] for
a brief summary of these developments. However, just as the stringy theory of the strong force was
being eclipsed by QCD it emerged from the shadows, re-conceived as a candidate theory of quantum
gravity, with, moreover, grand aspirations of unification. The vibrational modes of the string are to
be thought of as representing different particles. In particular, the closed string spectrum included a
massless spin two particle, which coupled to the other modes in the manner of general relativity. Was
this the correct realisation of the graviton? Furthermore, quantum mechanical consistency required
that strings propagate in a 26-dimensional spacetime, an undesirable feature in the context of strong
interactions, but a welcome addition in the setting of Kaluza-Klein unification.

While all this was certainly an enticing prospect, it was not without its own serious faults. Prin-
cipally, fermions were entirely absent, a real set back for any theory purporting to describe matter!
Moreover, the bosonic closed string spectrum contains a tachyonic mode, which, to this day, has not
been resolved.

These potentially fatal flaws were surmounted during what would come to be called the first string
revolution. The a priori unrelated discovery of supersymmetry [140] in 1975 allowed for the consistent
inclusion of world-sheet fermions resulting in the Ramond-Neveu-Schwarz (RNS) string. Following
on from the work of Gliozzi, Scherk and Olive, in which they showed that the RNS string could be
freed of the tachyon, Green and Schwarz discovered a formulation with spacetime supersymmetry.
The superstring was born and with it a great new hope. Superstrings propagate in ten spacetime di-

2Simple in the conceptual, not technical, sense.
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mensions for quantum mechanical consistency and it turns out there are five anomaly-free theories:
the E8 × E8 and SO(32) heterotic strings, the SO(32) type I, and the type IIA and type IIB strings.
It was shown that the superstring is 1-loop finite and, while there is as yet no complete universally
accepted proof, it is expected to be finite at all orders. Superstring theory would appear to be the first
example of a perturbatively finite theory of quantum gravity. Moreover, via Kaluza-Klein compacti-
fication on some Calabi-Yau manifold [141], the heterotic superstring seemed capable, in principle at
least, of correctly accounting for the standard model.

Meanwhile, in (not entirely) separate developments there had been a section of the quantum grav-
ity community looking to 11-dimensional supergravity for answers. Not only is eleven dimensions
the upper limit in which one can formulate a consistent theory of supergravity [142], it is where it
takes its most elegant form [143]. Moreover, it is unique (at the two derivative level, assuming diffeo-
morphism invariance, local Lorentz invariance, local supersymmetry and Abelian gauge invariance).
Initially 11-dimensional supergravity was seen as more of a tool for obtaining, via dimensional re-
duction, the various extended supergravity theories existing in four dimensions [144]. In particular,
the maximally extended N = 8 theory was thus first derived [145]. However, it was not long before
the extra seven dimensions started to be taken seriously. In 1981 Witten considered the possibility
of obtaining a realistic Kaluza-Klein model of particle physics starting from 11-dimensional super-
gravity concluding that, remarkably, seven extra dimensions are in fact the minimum required [146].
See [147] for a review of the Kaluza-Klein program in the context of supergravity.

A further important 11-dimensional development followed from the 1986 discovery, by Hughes,
Liu and Polchinski, that, inD = 6, not only strings but also membranes could be consistently made su-
persymmetric [148]. The following year Bergshoeff, Sezgin and Townsend described their superme-
mbrane propagating in an 11-dimensional supergravity background [149]. The eleven dimensional
supermembrane was subsequently derived as a solution to D = 11 supergravity preserving one half
of the supersymmetries [150]. An important distinction was made in this work. The supermembrane
of Hughes, Liu and Polchinski was a solitonic solution of a D = 6 guage theory. However, the su-
permembrane solution to D = 11 supergravity is singular and carries Noether charges so should
not be considered solitonic, but rather elementary or fundamental. The proper solitonic solution of
11-dimensional supergravity was later found to be the superfivebrane [151].

Despite these clear successes, the world of eleven dimensions went, to some degree at least, un-
noticed by the 10-dimension universe of superstrings, which was making substantial progress in
its own right. Interest in 11-dimensional supergravity was also eroded by the realisation that a 4-
dimensional theory with the requisite chiral fermions could not be obtained from a non-chiral theory
in D = 11 using the traditional Kaluza-Klein approach [152].

In fact, the separate worlds of superstrings and 11-dimensional supergravity would appear to be
curiously at odds with one-another [153]. First, strings demanded ten dimensions while supersymme-
try had chosen eleven. Second, once one had contradicted the orthodoxy of point particles in favour
of strings, why stop there, especially in light of the emerging work on supersymmetric p-branes. Fi-
nally, one might have had certain misgivings about the superstring itself. There were open questions
which called for a non-perturbative solution, such as the paradoxes of quantum black holes. Could
the non-perturbative solitonic p-branes play a role? What about the existence of five superstring
theories, could they be consistently incorporated into a single framework? Does eleven dimensions
have anything to do with this?
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With hindsight, these apparent discrepancies make an eventual synthesis seem inevitable. Indeed,
substantial evidence had been steadily accumulating in favour of some kind of integration [144]. In
1987 it was shown that the perturbative type IIA string could be obtained from D = 11 supergravity
with R1,9 × S1 topology by wrapping a membrane around the circle and taking the zero radius limit
[154]. It was later conjectured that this correspondence goes beyond the perturbative regime. The
previously unwanted Kaluza-Klein modes, associated with the non-zero radius, are to be identified
as charged extreme black holes states of the D = 10 theory [155–157]. There was also good evidence
that compactifying a further dimension of the D = 11 theory on a second circle yields the type IIB
string on a single circle, its non-perturbative S-duality is then given by the modular group of the
D = 11 torus [158]. The heterotic string was thrown into the mix by compactifying on not a circle but
a line segment [159]. Moveover, a number of surprising dualities relating these various theories had
been discovered [2, 47, 160–163], creating a web of relations between the five string theories and 11-
dimensional supergravity. For the many more intriguing aspects of these remarkable developments
the reader is referred to [144].

All this progress culminated in the landmark work by Witten [164], which collected the five su-
perstring theories together with the work on eleven dimensions under a unified framework, which
he rather mysteriously dubbed “M-theory”. The five superstrings and 11-dimensional supergravity
are to be thought of as merely corners of the M-theory. However, the basic objects were no longer
strings, but, rather, the eleven dimensional membrane and fivebrane, henceforth denoted as the M2-
brane and M5-brane, respectively, so as to emphasize their new found significance. The second string
revolution was well under way and the 11-dimensional M-branes were leading the charge.

Subsequently, it was realised that certain p-brane solutions, carrying R-R charge, of the type IIA/B
theories could be interpreted as surfaces on which open strings, obeying Dirichlet boundary con-
ditions, can end [165]. These Dp-branes have complemented the theory of black holes as intersect-
ing black-branes wrapped around the six (seven) compact dimensions of string theory (M-theory)
[155,157,166–173], providing a much sought after framework for a quantum mechanical understand-
ing of black hole entropy. Indeed, in 1996 Strominger and Vafa reproduced the Bekenstein-Hawking
black hole entropy formula by counting D-brane quantum states [174].

Despite these substantial developments it is fair to say M-theory is a work in progress. Black holes
and, more generally, black p-branes offer unique insights into its deep structure and will clearly play
an important role in its development. In the words of ’t Hooft [175],

“If we wish to know how to do non-perturbative gravity, it is the black holes that we must
study.” - ’t Hooft.

2. U-duality

With a slight abuse of terminology we will use “U-duality” in two senses: (1) the global symmetries of
the supergravity equations of motion (2) the duality symmetry of the full string/M-theory. Of course,
we say slight since these two concepts are intimately related. Indeed, the U-dualities of supergravity
are conjectured to be precisely the U-dualities of M-theory [47, 160].

Let us begin with the global symmetries of supergravity. The U-dualities of the classical maximally
supersymmetric theories, which are obtain by the toroidal compactification of 11-dimensional super-
gravity, grow as one descends in dimension. The full symmetry group is only manifest once the field
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strengths have been suitably dualised [145]. The sequence of U-duality groups G and their maximal
compact subgroups H is summarised in Table 3.1. The field strengths of these theories transform

D scalars vectors G H

10A 1 1 SO(1, 1,R) −
10B 2 0 SL(2,R) SO(2,R)

9 3 3 SL(2,R)× SO(1, 1,R) SO(2,R)
8 7 6 SL(2,R)× SL(3,R) SO(2,R)× SO(3,R)
7 14 10 SL(5,R) SO(5,R)
6 25 16 SO(5, 5,R) SO(5,R)× SO(5,R)
5 42 27 E6(6)(R) Usp(8)

4 70 28 E7(7)(R) SU(8)

3 128 - E8(8)(R) SO(16,R)

Table 3.1.: The symmetry groups (G) of the low energy supergravity theories with 32 supercharges
in different dimensions (D) and their maximal compact subgroups (H).

as linear irreducible representations of G, as described in Table 3.2. On the other hand, the scalars
parametrise the homogeneous coset spaces G/H . For example, in D = 4 the 28 gauge potentials
and their duals transform as the fundamental 56 of E7(7)(R), while the 70 = 133 − 63 scalars live in
E7(7)(R)/ SU(8). Consequently, black holes can carry 28 electric charges qΛ and 28 magnetic charges
pΛ, where Λ = 1, . . . 28. Together, these charges transform under E7(7)(R) as a 56.

However, in the quantum theory these charges are quantized as a consequence of the Dirac-
Schwinger-Zwanziger quantization condition. For two dyons, (pΛ, qΛ) and (p′Λ, q′Λ),

pΛq′Λ − p′ΛqΛ ∈ Z. (3.1)

Hence, E7(7)(R) is broken to a discrete subgroup preserving the charge lattice, E7(7)(Z) = E7(7)(R)∩
Sp(56,Z) [47].

These discrete subgroups are believed to be the non-perturbative symmetries of M-theory or type
II string theory on a k-torus, where k = 11−D or k = 10−D, respectively. U-duality subsumes the
superstring S- and T-dualities. It is the “unity of superstring dualities” [47].

String theory may be formulated as a world-sheet sigma-model, for which the background space-
time plays the role of target space [139, 178]. Typically, two distinct backgrounds yield different
quantum string theories. However, there are instances for which two backgrounds result in identical
quantum string theories. In such a case, no experimental string test can distinguish which back-
ground we are living in - they must be physically identified. The transformations which take you
between indistinguishable backgrounds form a discrete group. A well known example is that of
T-duality. See, for example, [178, 179]. Consider a type II superstring theory compactified on a cir-
cle. The quantum theory of a type IIA string on circle with radius R is identical to that of the type
IIB theory on a circle of radius α′/R, where α′ is the tension of the string. Note, while T-duality is
non-perturbative in α′ it is perturbatively valid order by order in the string coupling gs. From the
perspective of open strings and D-branes, Dirichlet boundary conditions go into Neumann boundary
conditions, and vice versa [165].

More generally one could consider such transformations on the k circles of T k. For the low-energy
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effective field theory the moduli space of the torus,

SO(k, k;R)

SO(k,R)× SO(k,R)
(3.2)

transforms naturally under the isometry group SO(k, k;R). However, only the discrete subgroup
SO(k, k;Z) transforms between equivalent string theories. This is the T-duality group of the type II
string compactified on a k-torus.

Let us turn our attention to the conjectured superstring S-duality [161, 162, 180–184]. S-duality is
a non-perturbative symmetry which maps a theory at strong coupling to the same theory at weak
coupling. To illustrate this let us consider the type IIB string. The massless spectrum includes two
scalars, the dilaton φ and the axion C. The low energy effective action may be written using the
complex scalar combination,

τ = C + ie−φ, (3.3)

and equations of motion are invariant under an SL(2,R) which acts fractionally on τ ,

τ → aτ + b

cτ + d
, (3.4)

where ad− bc = 1. If a, b, c, d ∈ Z then this is a symmetry of the full string theory. The weak/strong
nature of this transformation is best seen by considering the special case with C = 0 and letting
−b = c = 1 and d = a = 0 so that,

τ → −1

τ
. (3.5)

Since eφ = gs, we relate two theories with inverse couplings.
The field strengths transform linearly as a doublet of SL(2,Z). Specifically, the NS-NS 2-form B-

field, which couples electrically to the fundamental string, and the R-R 2-form C2, which couples
magnetically to the D-string, are rotated into one another. S-duality mixes electric and magnetic
charges. The quantized charges of the F-string/D-string bound states requires the discrete subgroup
SL(2,Z) of the classical SL(2,R).

Returning to the type II string on T 6, the combined S- and T-duality group is given by,

SL(2,Z)× SO(6, 6;Z), (3.6)

which, we note, is a maximal subgroup of E7(7)(Z). Indeed, these S- and T-dualities are combined
into the U-duality group E7(7)(Z), which mixes the sigma model and string coupling constants, α′

and gs respectively.
The significance of these U-duality symmetries in the current context of black holes and qubits

is that the black hole entropy must be U-duality invariant [49, 185–187]. Thus, our entanglement
measures will be built from U-duality invariants.

3. Black holes in supergravity

It is believed that black hole physics provides a testing ground for our attempts at a theory of quan-
tum gravity, such as M-theory. This rather challenging expectation derives largely from their intrigu-
ing thermodynamic properties, which were described in the 1970s by Bekenstein and Bardeen, Carter
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and Hawking [188,189]. It was not long before Hawking demonstrated that black holes quantum me-
chanically radiate as if they are indeed black bodies [190]. The entropy of a black hole is given by its
horizon area, as described in the famous Bekenstein-Hawking black hole entropy formula,

SBH =
A

4~G4
, (3.7)

where G4 is the four dimensional Newton constant. This fascinating equality, which relates the ther-
modynamic quantity SBH to the geometric property A, has motivated much theoretical work over
the decades. It raises an important question: what are the quantum microstates underlying the sta-
tistical interpretation of SBH? Any candidate theory of quantum gravity ought to provide an answer.
The non-pertubative nature of black holes leaves the peturbative superstring lacking in this respect.
However, non-perturbative developments using D-branes have provided a partial answer for the
special subclass of extremal black holes.

The simplest example is given by the Reissner–Nordström solution, which describes a static, isotropic
black hole of mass M and electric charge Q. The solution has two horizons,

ρ± = M ±
√
M2 −Q2, (3.8)

where ρ is a radial coordinate. The cosmic censorship conjecture, i.e. there are no naked singularities
in nature, implies the bound,

M ≥ |Q|. (3.9)

Extremal Reissner–Nordström black holes saturate this bound, in which case the two horizons coin-
cide and the Hawking temperature,

TH =
~κS
2π

=
~
√
M2 −Q2

2π[2M(M +
√
M2 −Q2)−Q2]

, (3.10)

where κS is the surface gravity, vanishes. The extremal Reissner–Nordström black hole interpolates
between a conformally flat AdS2×S2 geometry near the horizon and Minkowski spacetime at radial
infinity, as can be seen from the line element,

ds2 = dt2
(

1 +
Q

r

)−2

−
(

1 +
Q

r

)2 (
dr2 + r2 dΩ2

)
(3.11)

where ρ = r +M .
The Reissner–Nordström solution provides an example of an extremal black hole in the context of

classical general relativity. However, supergravity incorporates gravitation and therefore its classi-
cal solutions include black holes, but with the addition of both vectors and scalars appearing in the
delicate proportions demanded by supersymmetry. In particular, we are interested in extended su-
pergavities for which the scalars parametrise a homogeneous space G/H , where G is the U-duality
group and H its maximal compact subgroup. This includes all N ≥ 4 theories, but also some
N = 2 theories [39]. Note, for N ≤ 4 supergravity can couple to matter multiplets, in which case
H = HAut × Hmatter, where HAut is the automorphism group of the supersymmetry algebra and
Hmatter is the isotropy group of the matter multiplets. For N > 4 H = HAut. In four dimensions the
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bosonic Lagrangian of such a theory may be written [191],

L =
√
−g
(
−1

4
R+

1

2
Gab(φ)∂µφ

a∂µφb − 1

4
mΛΣ(φ)FΛµνFΣ

µν −
1

4
aΛΣ(φ) ? FΛµνFΣ

µν

)
(3.12)

where Λ,Σ = 1, . . . k and Gab is the metric of the scalar manifold G/H . The U-duality group is
necessarily a subgroup of Sp(2k,R) [192]. It acts on φ through the isometries of the scalar manifold
G/H . The black hole solutions carry “bare” charges defined by,

pΛ =
1

4π

∫
S2

FΛ, qΛ =
1

4π

∫
S2

mΛΣ ? F
Σ + aΛΣF

Σ. (3.13)

The charges may be combined into a 2k-vector,

Q =

(
pΛ

qΛ

)
(3.14)

which transformation linearly under the U-duality group, Q 7→MQ for M ∈ G.
Remarkably, assuming the regularity of the scalars and geometry at the black hole horizon, the

area is completely fixed by the so-called black hole potential [191],

A

4π
= VBH(p, q, φih), (3.15)

where φih are the scalars evaluated at the horizon and

VBH(p, q, φi) =
1

2
QT

(
m+ am−1a am

m−1a m−1

)
Q. (3.16)

The black hole potential may also be written in terms of the central charges ZAB and matter charges
ZI (which are scalar dressings of the bare charges Q),

VBH(p, q, φi) = ZABZ
AB

+ ZIZ
I (3.17)

where A,B and I transform under HAut and Hmatter, respectively.
The reader at this stage might be worried that the entropy, which, if it is to have a microscopic

interpretation, should only depend on discrete quantities such as the charges, is a function of the
continuous scalar fields.

However, these extremal black holes enjoy a remarkable property. While the dynamics depends
on the scalars, the event horizon losses all information of them. Independent of their asymptotic
values the scalars flow to a fixed point as one approaches the horizon. This phenomenon goes by
the name of the attractor mechanism [34, 36, 37, 191]. This was originally thought to be a consequence
of supersymmetry, but in fact only requires the assumption of regularity near the horizon, which
implies [191],

∂VBH

∂φi

∣∣∣
h

= 0. (3.18)

Consequently, the scalars are fixed at the horizon in terms of the bare charges Q and they drop out of
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the entropy formula,
SBH = πVBH(p, q). (3.19)

Recall, the charges transform as the fundamental representation of the U-duality group. However,
the metric (in the Einstein frame) is a singlet under G and hence geometric quantities such as the
horizon area ought to be invariant. The entropy must be given by a U-duality invariant expression
built out of p and q [193]. This is indeed the case [168, 193]. One finds, for the class of theories
considered here, that the entropy is actually given by a quartic U-duality invariant I4,

SBH = π
√
|I4|. (3.20)

See, for example, [194] and the reference therein.
A black hole solution which preserves some degree of supersymmetry is said to be BPS (Bogomolnyi-

Prasad-Sommefield) and non-BPS otherwise. A black hole may preserve at most 1/2 of the super-
symmetries. Note, all BPS black holes are extremal but extremal black holes may be either BPS or
non-BPS. Black holes with I4 < 0 are always non-BPS.

4. The STU model

The low energy limit of the STU model is described byN = 2 supergravity coupled to three Abelian
vector multiplets and so has three complex scalars S, T and U [1, 2, 195, 196]. It admits three triality
related stringy interpretations: (1) A consistent truncation of the N = 4 Heterotic string on a T 6. (2)
Type IIA on K3× T 2. (3) Type IIB on the mirror K3× T 2.

In the Heterotic case, S, T, U correspond to the dilaton/axion, complex Kähler form and complex
structure fields respectively. The strong/weak S-duality is given by SL(2,Z)S while the T-duality is
given by SO(2, 2) ∼= SL(2,Z)T × SL(2,Z)U . The Heterotic theory is related to the type IIA theory by
a string/string duality which interchanges the roles of S and T [47, 161, 163]. This theory is in turn
related to the type IIB string, but with the T and U now exchanged.

The black hole solutions carry four electric and four magnetic charges [2, 168], coming from the
graviphoton and the three vectors multiplets. The black hole entropy is a quartic [SL(2,Z)]3 invariant
built out of the eight charges [3]. In fact, it is given by the square root of Cayley’s hyperdeterminant.

Starting from the heterotic string, the bosonic action [2] is given by

ISTU =
1

16πG

∫
d4x
√
−ge−φ

[
R+ gµν∂µφ∂νφ− 1

12g
µλgντgρσHµνρHλτσ

+ 1
4 tr(∂MT

−1∂MT ) + 1
4 tr(∂MU

−1∂MU )

− 1
4FSµν

T(MT ×MU )FS
µν
]
.

(3.21)

where we have defined the matricesMS ,MT andMU ,

MS =
1

S2

(
1 S1

S1 |S|2

)
, S = S1 + iS2. (3.22)

The metric gµν is related to the four-dimensional canonical Einstein metric gcµν by gµν = eφgcµν . The

64



3-form field strength is given by

Hµνρ = 3
(
∂[µBνρ] − 1

2A
T
S[µ(εT × εU )FSνρ]

)
. (3.23)

This action is manifestly invariant under T -duality and U -duality. The 2-form vector field strengths
transform as a (2,2) under T -duality and U -duality, while the scalars transform fractionally:

FSµν → (ωT
−1 × ωU−1)FSµν , MT/U → ωT/U

TMT/U ωT/U , (3.24)

where ω are SL(2,Z) matrices. The dilaton, metric and B-field are singlets.
The equations of motion and Bianchi identities are also invariant under S-duality,(

FS
a

µν

F̃ a
Sµν

)
→ ωS

−1

(
FS

a
µν

F̃ a
Sµν

)
, (3.25)

where

F̃ a
Sµν = −S2[(MT

−1 ×MU
−1)(εT × εU )]ab?FS

b
µν − S1FS

a
µν . (3.26)

In total, the action is SL(2,Z)T × SL(2,Z)U and T ↔ U invariant and the equations of motion are
SL(2,Z)S × SL(2,Z)T × SL(2,Z)U and S ↔ T ↔ U invariant. Equivalently, we could have started
from either the type IIA or the type IIB action by cyclically permuting S, T and U [2].

Finally, one may consider a formulation [3] in which the S, T and U fields enter democratically
through the prepotential,

F = dijk
XiXjXk

X0
, i, j, k = 1, 2, 3, dijk =

1

3!
|εijk| (3.27)

which defines a holomorphic section (XΛ, FΛ) where FΛ = ∂F
∂XΛ and Λ = 0, . . . , 3. The special STU

coordinates are given by

zi =
Xi

X0
, where (z1 = S, z2 = T, z3 = U) and X0 = 1. (3.28)

The central charge is given by

Z(p, q, z) = eK/2(XΛqΛ − FΛp
Λ) (3.29)

where K = −ilog{(z1− z̄1)(z2− z̄2)(z3− z̄3)} is the Kähler potential. For BPS states the charges may
be expressed in terms of the stabilization equations [3],

pΛ =ieK/2(Z̄XΛ − ZX̄Λ)

qΛ =ieK/2(Z̄FΛ − ZF̄Λ).
(3.30)

The electric and magnetic charges have O(2, 2) scalar products

p2 = (p0)2 + (p1)2 − (p2)2 − (p3)2,

q2 = (q0)2 + (q1)2 − (q2)2 − (q3)2,

p · q = (p0q0) + (p1q1) + (p2q2) + (p3q3).

(3.31)
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The frozen complex scalars at the horizon are functions of the conserved charges [3],

zi =
(p · q − 2piqi)− i

√
D

2(3dijkpjpk − p0qi)
(3.32)

where

D(pΛ, qΛ) = −(p · q)2 + 4
(
(p1q1)(p2q2) + (p1q1)(p3q3) + (p3q3)(p2q2)

)
− 4p0q1q2q3 + 4q0p

1p2p3.
(3.33)

Therefore the Kähler potential is given by

e−K =
D

3
2

P1P2P3
, Pi = 3dijkp

jpk − p0qi. (3.34)

Note, Pi is the charge vector of the D = 5 rotating black hole one obtains using the 4D/5D M-theory
lift [51], and P1P2P3 is the contribution to the entropy coming from the charges.

The Kähler potential is only defined when D > 0 for BPS states. Using the stabilization equations
(3.30) one obtains

ieK/2Z =
(p0z1 − p1)

(z̄1 − z1)
. (3.35)

Combined with (3.32) this yields the rather neat result

ZZ =
(
D(p, q)

)1/2
. (3.36)

The matter charges Zi = DiZ, where i = S, T, U and Di is the covariant derivative on the scalar
manifold, are zero for BPS states [3, 34, 36, 37]. Hence, the BPS black hole entropy may be written in
terms of the electric and magnetic charges,

SBH = π
√
D(p, q) (3.37)

For both BPS and non-BPS extremal black holes the equation becomes [196],

SBH = π
√
|D(p, q)|. (3.38)

The function D(pΛ, qΛ) is symmetric under transformations: p1 ↔ p2 ↔ p3 and q1 ↔ q2 ↔ q3.
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CHAPTER 4
Black holes and qubits

1. The STU model and tripartite entanglement of three qubits

1.1. Entropy/entanglement correspondence

The eight STU charges may be represented by the cube shown in Figure 4.1. The black hole/qubit

p0

- p1

- p2

q3

- p3

q2

q1

q0

Figure 4.1.: The vertices of the hypermatrix cube from Figure 2.4 are transformed under the
dictionary (4.1) to electric and magnetic charges of the STU black hole.

correspondence now comes about by identifying [4] the black hole charge hypermatrix (4.1) with the
3-qubit hypermatrix: 1 (

p0, p1 , p2 , p3 , q0 , q1 , q2 , q3

)
=
(
a0, −a1, −a2, −a4, a7, a6, a5, a3

)
.

(4.1)

We then recognise from (2.75a) that

D(pΛ, qΛ) = −Det a, (4.2)

1Note that this is the convention of [8]; in [4] the sign of a0, a3, a4, a7 is flipped, which gives the same answer.
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and hence, as advertised in the Introduction, the STU black hole entropy and Alice-Bob-Charlie
3-tangle are related by

S = π
2

√
τABC . (4.3)

Thus Cayley’s hyperdeterminant provides an interesting connection, at least at the level of mathe-
matics, between string theory and quantum entanglement. However, even at the mathematical level
there are some important distinctions. Primarily, the black hole charges take values on an integral
lattice. Thus, on the black hole side aABC are integers [2–4, 8] and hence the symmetry group is
[SL(2,Z)]3 rather than [SL(2,C)]3. As suggested by by Lévay [9], one could restrict to the theory of
real qubits, called rebits, for which the aABC are real [197, 198]. Secondly, the black hole charges are
not normalised. For the classification of entanglement this is not too great an impedant though.

For rebits there are three reality classes which can be characterised by the hyperdeterminant

Det a < 0, (4.4a)

Det a = 0, (4.4b)

Det a > 0. (4.4c)

Case (4.4a) corresponds to the non-separable or GHZ class [104], for example,

|Ψ〉 = 1
2(−|000〉+ |011〉+ |101〉+ |110〉). (4.5)

Case (4.4b) corresponds to the separable (A-B-C, A-BC, B-CA, C-AB) and W classes, for example

|Ψ〉 = 1√
3
(|100〉+ |010〉+ |001〉). (4.6)

These examples both correspond to 1/2-BPS black holes solutions [4]. The GHZ example (4.4a) has
non-zero horizon area and entropy, since it has non-vanishing hyperdeterminant, and is referred to
as a “large” black hole. Accordingly, case (4.4b) corresponds to a “small” black hole, with vanishing
horizon area. These small black holes may acquire a non-zero entropy via higher derivative stringy
contributions to the effective actions (α′ corrections) or quantum loop effects (gs corrections). In
section 1.3, we consider the QI interpretation of these effects proposed in [8].

Case (4.4c) is also GHZ, but non-BPS on the black hole side. For example,

|Ψ〉 = 1
2(|000〉+ |011〉+ |101〉+ |110〉), (4.7)

which is just (4.5) with a sign flip. However, their SLOCC stabilisers are given by different real forms
of [SO(2,C)]2 as in Table 8.3. This distinction disappears for complex qubits. A second example of a
non-BPS black hole is given by the canonical GHZ state

|Ψ〉 = 1√
2
(|111〉+ |000〉). (4.8)

1.2. Classification of N = 2 black holes and three-qubit states

Comparing some examples of N = 2 black holes with examples of 3-qubit states, following [8], we
see that the black holes are classified according to the entanglement classes.
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A-B-C states and singly charged black holes: A black hole with just one charge, say q0 as in Fig-
ure 4.2, has vanishing entropy and corresponds to a completely separable A-B-C state

|Ψ〉 = q0|111〉, (4.9)

with
SA = SB = SC = 0,

τABC = 0.
(4.10)

Figure 4.2.: The hypermatrix cube of Figure 4.1 is restricted to correspond to the state (4.9) by
retaining only a single nonzero entry at the q0 vertex, denoted by the red disc. The state
is completely separable and accordingly, the entropy vanishes for this cube.

Microscopically, in for example type IIB string theory, a singly charged supersymmetric black
hole solutions [155] may be thought of as a single D3-brane wrapping the 6-torus. A single
charge black hole has vanishing entropy. However, it is possible to build 2-, 3- and 4-charge
states by carefully intersecting additional D3-branes, which correspond to 2-, 3- and 4-particle
bound states at threshold [2, 155, 199]. For black holes preserving some supersymmetry only
the 4-particle states may have nonzero entropy.

One could also consider a black hole with two charges, say q0 and q1 as in Figure 4.3, having
vanishing entropy and corresponding to another completely separable state

|Ψ〉 = q0|111〉+ q1|110〉 (4.11)

also satisfying (4.10).

A-BC states and doubly charged black holes: A black hole with just two charges, say q0 and p1

as in Figure 4.4, has vanishing entropy and corresponds to a bipartite entangled state

|Ψ〉 = q0|111〉 − p1|001〉, (4.12)

with
SA = SB = 4(q0p

1)2,

SC = 0,

Det a = 0.

(4.13)

W states and triply charged black holes: A black hole with just three charges, say q0, p1 and p2 as
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Figure 4.3.: The hypermatrix cube of Figure 4.1 is restricted to correspond to the state (4.11) by
retaining nonzero entries at the q0 and q1 vertices, denoted by the red discs. Despite
having two nonzero vertices the cube’s entropy vanishes since the state is again
completely separable.

Figure 4.4.: The hypermatrix cube of Figure 4.1 is restricted to correspond to the state (4.12) by
retaining nonzero entries at the q0 and p1 vertices, denoted by the red discs. In this case
the state is bi-separable, so the entropy vanishes once more.

in Figure 4.5, has vanishing entropy and corresponds to a W state

|Ψ〉 = q0|111〉 − p1|001〉 − p2|010〉, (4.14)

with
SA = 4(q0)2((p1)2 + (p2)2),

SB = 4(p1)2((q0)2 + (p2)2),

SC = 4(p2)2((q0)2 + (p1)2),

Det a = 0.

(4.15)

GHZ and 4-charge BPS and non-BPS black holes: A black hole with just four charges, say q0,
p1,p2 and p3 as in Figure 4.6, has non-vanishing entropy and corresponds to a GHZ state

|Ψ〉 = q0|111〉 − p1|001〉 − p2|010〉 − p3|100〉, (4.16)

with
SA = 4((p3)2 + (q0)2)((p1)2 + (p2)2),

SB = 4((p1)2 + (p3)2)((q0)2 + (p2)2),

SC = 4((p2)2 + (p3)2)((q0)2 + (p1)2),

Det a = −4q0p
1p2p3.

(4.17)
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Figure 4.5.: The hypermatrix cube of Figure 4.1 is restricted to correspond to the state (4.14) by
retaining nonzero entries at the q0, p

1 and p2 vertices, denoted by the red discs. The
entropy vanishes this time since the cube corresponds to a W state.

This is a large BPS black hole if Det a < 0 and a large non-BPS black hole if Det a > 0.

Figure 4.6.: The hypermatrix cube of Figure 4.1 is restricted to correspond to the state (4.16) by
retaining nonzero entries at the q0, p

1, p2 and p3 vertices, denoted by the red discs. This is
a GHZ state exhibiting genuine tripartite entanglement and accordingly the cube has
nonzero entropy. While the previous cubes corresponded to small BPS black holes, this
black hole is large and BPS/non-BPS for Det a < 0/Det a > 0.

GHZ and 2-charge non-BPS black holes: A black hole with just two charges Figure 4.7, say q0 and
p0 as in Figure 4.7, has non-vanishing entropy and corresponds to a GHZ state

|Ψ〉 = q0|111〉+ p0|000〉, (4.18)

with

SA = SB = SC = 4(p0)2(q0)2, (4.19)

and

Det a = (p0)2(q0)2. (4.20)

Since Det a > 0, this describes a non-BPS large black hole [200, 201].

1.3. Higher order corrections

The small black holes have a singular horizon with vanishing area and entropy at the classical level,
but may acquire nonvanishing area and entropy due to quantum corrections, characterised by higher
derivatives in the supergravity lagrangian. One can interpret this as consequence of the quantum
stretching of the horizon conjectured by Susskind [202] and Sen [157, 166]. See also [203–208].
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Figure 4.7.: The hypermatrix cube of Figure 4.1 is restricted to correspond to the state (4.18) by
retaining nonzero entries at the q0 and p0 vertices, denoted by the red discs. Despite
having only two nonzero charges the cube has nonvanishing entropy since the state is
GHZ. The corresponding black hole is large and always non-BPS.

Kallosh and Linde [8] have noted that this quantum entropy also admits an interpretation in terms
of qubit entanglement measures. They propose a general formula that correctly reduces to the known
special cases. It is given by

Stotal =
π

2

√
τABC +

4c2

3
(CAB + CBC + CCA) +

8K2

3
|Ψ|, (4.21)

where C2
AB = 1

2 (SA + SB − SC − τABC) is the concurrence [6] and c2,K are constants that depend
upon the compactification.

For completely separable states with only one nonzero charge, this reduces to

S = K
√

2
3 |Ψ| = πK

√
2
3 |q0|. (4.22)

For the bipartite and W-states at large values of the charges, the concurrences are much greater than
|Ψ| and the formula reduces to

Stotal = π

√
c2

3
(CAB + CBC + CCA) (4.23)

= 4π
√
|q0(p1 + p2)|. (4.24)

Finally, for the GHZ states the (unnormalised) 3-tangle is much greater than the concurrences and
we regain

SBH = π
2

√
τABC . (4.25)

As with the lowest order black hole/qubit correspondence, there is as yet no underlying physical
explanation for these mathematical coincidences at higher orders.

1.4. Attractors and SLOCC

The STU/3-qubit correspondence defines a rather special state. The 3-qubit state is unnormalized
and the coefficients are given by the integer valued black hole charges via (4.1). However, following
Lévay [14], we may define a more general complex state, which depends not only on the charges but

72



also the complex moduli S, T and U

|Ψ′〉 = e−3iπ/4eK/2

(
Ū −1

−U 1

)
⊗

(
T̄ −1

−T 1

)
⊗

(
S̄ −1

−S 1

)
|Ψ〉. (4.26)

This is an [SL(2,C)]3 transformation of the original state and therefore leaves the value of the 3-tangle
invariant. Note, while |Ψ〉 is a 3-qubit state with eight complex amplitudes, it is [SU(2)]3 equivalent
to a state with real amplitudes. We may now describe the all important black hole potential, VBH , in
terms of our transformed 3-qubit state |Ψ〉

VBH =
1

2
||Ψ||2 (4.27)

where the norm is the usual scalar product on a complex vector space.
The state |Ψ〉 is a function of the scalars and consequently transforms under the action of the co-

variant derivatives of the scalar manifold. To understand the quantum information theoretic inter-
pretation of this action it is convenient to use the flat covariant derivatives defined by Dî = ei

î
Di.

Here ei
î

is the vielbien of the scalar manifold. Lévay showed that [14]

DŜ |Ψ〉 = i(I ⊗ I ⊗X+)|Ψ〉, D ˆ̄S
|Ψ〉 = i(I ⊗ I ⊗X−)|Ψ〉

DT̂ |Ψ〉 = i(I ⊗X+ ⊗ I)|Ψ〉, D ˆ̄T
|Ψ〉 = i(I ⊗X− ⊗ I)|Ψ〉

DÛ |Ψ〉 = i(X+ ⊗ I ⊗ I)|Ψ〉, D ˆ̄U
|Ψ〉 = i(X− ⊗ I ⊗ I)|Ψ〉

(4.28)

where X± is the raising (lowering) operator

X+|0〉 = |1〉, X+|1〉 = 0, X−|1〉 = |0〉, X−|0〉 = 0. (4.29)

These are in fact the projective error operators from the field quantum error correction [14].
Moreover, Lévay demonstrated that the extremization of the central charge at the horizon,DiZ(z, p, q) =

0, required for BPS solutions, guarantees that the only non-zero components of |Ψ〉 are |000〉 and
|111〉. That is, for BPS states, the attractor mechanism brings an arbitrary state, |Ψ〉, defined at radial
infinity, into a state belonging to the GHZ-class. Lévay argues that this is equivalent to the entangle-
ment distillation procedure utilized by quantum information theorists to determine the optimal set
of SLOCC transformations for taking a general 3-qubit state into a GHZ state [14, 26].

2. N = 8 supergravity and the tripartite entanglement of seven qubits

Despite its apparent successes, this investigation thus far has been limited to a very specific example,
namely STU blacks holes and 3-qubit states. What about other supergravity theories and qubit
systems? Interestingly, there are three related theories for which there exists a quartic invariant akin
to Cayley’s hyperdeterminant whose square root yields the corresponding black hole entropy:

1. N = 2 supergravity coupled to n + 1 vector multiplets where the symmetry is SL(2,Z) ×
SO(2, n;Z) and the black holes carry charges belonging to the (2, n + 2) representation (n + 2

electric plus n+ 2 magnetic).

2. N = 4 supergravity coupled to n vector multiplets where the symmetry is SL(2,Z)×SO(6, n;Z)
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where the black holes carry charges belonging to the (2, 6+n) representation (n+6 electric plus
n+ 6 magnetic).

3. N = 8 supergravity where the symmetry is the non-compact exceptional group E7(7)(Z) and
the black holes carry charges belonging to the fundamental 56-dimensional representation (28
electric plus 28 magnetic). See Table 3.2

Perhaps the most intriguing option is offered by N = 8 supergravity. This was considered in [10]
by Duff and Ferrara.

2.1. N = 8 supergravity and black holes

The black hole solutions of N = 8 supergravity depend on the 28 + 28 electric/magnetic charges
which form the fundamental 56 of E7(7) [145]. The entropy is given by [193]

S = π
√
|I4|, (4.30)

where I4 is the unique Cremmer-Julia quartic E7(7) invariant [145]

I4 = tr(Z̄Z)2 − 1
4(tr Z̄Z)2 + 4

(
Pf Z + Pf Z̄

)
, (4.31)

and ZAB is the central charge matrix. The relation between the entropy of stringy black holes and
the Cartan-Cremmer-Julia E7(7) invariant was established in [193]. Alternatively, it may be written
in terms of the quantized charges using the Cartan form [8, 209, 210]

I4 = − tr(xy)2 + 1
4(trxy)2 − 4 (Pf x+ Pf y) . (4.32)

where the charges, xIJ and yIJ , are 8× 8 antisymmetric matrices and Pf is the Pfaffian. The charges
may be related to branes wrapping cycles of the T 7 [211]. The exact relation between the Cartan
invariant in (4.32) and Cremmer-Julia invariant [145] in (4.31) was established in [211, 212],

ZAB = − 1
4
√

2
(xIJ + iyIJ)(γIJ)AB, (4.33)

and
xIJ + iyIJ = −

√
2

4 ZAB(γAB)IJ . (4.34)

The matrices (γIJ)AB form the SO(8) algebra. Here (I, J) are the 8 vector indices and (A,B) are the 8
spinor indices. The (γIJ)AB matrices can be considered also as (γAB)IJ matrices due to equivalence
of the vector and spinor representations of the SO(8) Lie algebra. The quartic invariant I4 of E7(7) is
also related to the octonionic Jordan algebra JO3 [45] as described in chapter 6.

Given that the exceptional Lie groups are anything but common place in the world of QI, we
might expect that establishing an entanglement correspondence in this case would require some
exotic arrangement of qudits. However, the work of Ferrara, Kallosh and Linde [8, 210] suggested
that we may need only to appeal to some generalisation of the, by now, familiar 3-tangle. This is due
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to the fact that we may bring ZAB into a canonical form using an SU(8) transformation,

ZAB =


z1 0 0 0

0 z2 0 0

0 0 z3 0

0 0 0 z4

⊗
(

0 1

−1 0

)
, (4.35)

where zi = ρie
iϕi are complex. In this way the number of entries is reduced from 56 to 8. In a

systematic treatment in [71], the meaning of these parameters was clarified. From the four complex
values of zi = ρie

iϕi one can remove three phases by an SU(8) rotation, but the overall phase cannot
be removed; it is related to an extra parameter in the class of black hole solutions [170, 213]. In this
basis, the quartic invariant takes the form [193]

I4 =
∑
i

|zi|4 − 2
∑
i<j

|zi|2|zj |2 + 4 (z1z2z3z4 + z̄1z̄2z̄3z̄4)

= (ρ1 + ρ2 + ρ3 + ρ4)

× (ρ1 + ρ2 − ρ3 − ρ4)

× (ρ1 − ρ2 + ρ3 − ρ4)

× (ρ1 − ρ2 − ρ3 + ρ4)

+ 8ρ1ρ2ρ3ρ4 (cosϕ− 1) .

(4.36)

This 5-parameter solution is called a generating solution for other black holes inN = 8 supergravity/M-
theory [214, 215].

In terms of the charges the canonical form (4.35) is given by [8, 210],

(xIJ + iyIJ)can =



0 λ1 0 0 0 0 0 0

−λ1 0 0 0 0 0 0 0

0 0 0 λ2 0 0 0 0

0 0 −λ2 0 0 0 0 0

0 0 0 0 0 λ3 0 0

0 0 0 0 −λ3 0 0 0

0 0 0 0 0 0 0 λ4

0 0 0 0 0 0 −λ4 0


. (4.37)

Writing λα in terms of the parameters xIJ and yIJ , the matrix aABD and the black hole charges pi and
qk [4],

λ1 = x01 + iy01 = a111 + ia000 = q0 + ip0,

λ2 = x23 + iy23 = a100 + ia011 = −p3 + q3,

λ3 = x45 + iy45 = −a010 − ia101 = p2 − iq2,

λ4 = x56 + iy56 = −a001 − ia110 = p1 − iq1.

(4.38)

we once again recover
I4 = −Det a. (4.39)
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We have identified the STU model invariant within the N = 8 invariant and, hence, a connection
to 3-qubit entanglement. Consequently, we expect some relationship to 3-qubit entanglement when
considering the full N = 8 generalization.

3. E7 and the tripartite entanglement of seven qubits

How do we determine the precise qubit system corresponding to 56-charge black holes of N = 8 su-
pergravity? The tripartite entanglement of three qubits is given by Cayley’s hyperdeterminant, which
follows from the SLOCC-equivalence group [SL(2,C)]3. However, a quantum information theoretic
interpretation in the N = 8 theory cannot be naïvely obtained by adding more qubits. Recall, the
n-qubit SLOCC-equivalence group is [SL(2,C)]n, which dramatically differs from E7 and leaves lit-
tle hope of reproducing the subtleties of N = 8 black holes. Duff and Ferrara [10] approached this
conundrum by considering the decomposition of the fundamental 56-dimensional representation of
E7(7) under seven factors of SL(2), the maximum number contained as a subgroup,

E7(7)(Z) ⊃ [SL(2,Z)]7, (4.40)

and

E7(C) ⊃ [SL(2,C)]7. (4.41)

We shall now show that the corresponding system in quantum information theory is that of seven
qubits (Alice, Bob, Charlie, Daisy, Emma, Fred and George). However, the larger symmetry requires
that they at most undergo a tripartite entanglement of a very specific kind. The entanglement mea-
sure will be given by the quartic Cartan E7(C) invariant [45, 145, 193, 209].

The crucial ingredient is the observation that E7 contains seven copies of the single qubit SLOCC
group SL(2) and that the 56 decomposes in a very particular way. We begin by considering the
maximal subgroup SL(2)A × SO(6, 6),

E7(7) ⊃ SL(2)A × SO(6, 6),

56 → (2,12) + (1,32).
(4.42)

Further decomposing SO(6, 6) in (4.42)

SL(2)A × SO(6, 6) ⊃ SL(2)A × SL(2)B × SL(2)D × SO(4, 4),

(2,12) + (1,32) → (2,1,1,8v) + (1,2,1,8s) + (1,1,2,8c) + (2,2,2,1).
(4.43)

Further decomposing SO(4, 4),

SL(2)A × SL(2)B × SL(2)D × SO(4, 4)

⊃ SL(2)A × SL(2)B × SL(2)D × SO(2, 2)× SO(2, 2)

(2,2,2,1) + (2,1,1,8v) + (1,2,1,8s) + (1,1,2,8c)

→ (2,2,2,1,1) + (2,1,1,4,1) + (2,1,1,1,4)

+ (1,2,1,2,2) + (1,2,1,2,2) + (1,1,2,2,2) + (1,1,2,2,2).

(4.44)
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Finally, further decomposing each SO(2, 2)

SL(2)A × SL(2)B × SL(2)D × SO(2, 2)× SO(2, 2)

⊃ SL(2)A × SL(2)B × SL(2)D × SL(2)C × SL(2)G × SL(2)F × SL(2)E

(2,2,2,1,1) + (2,1,1,4,1) + (2,1,1,1,4)

+ (1,2,1,2,2) + (1,2,1,2,2) + (1,1,2,2,2) + (1,1,2,2,2)

→ (2,2,2,1,1,1,1) + (2,1,1,2,2,1,1) + (2,1,1,1,1,2,2)

+ (1,2,1,2,1,1,2) + (1,2,1,1,2,2,1) + (1,1,2,2,1,2,1) + (1,1,2,1,2,1,2).

(4.45)

In summary,

E7(7) ⊃ SL(2)A × SL(2)B × SL(2)C × SL(2)D × SL(2)E × SL(2)F × SL(2)G, (4.46)

and the 56 decomposes as

56→ (2,2,1,2,1,1,1)

+ (1,2,2,1,2,1,1)

+ (1,1,2,2,1,2,1)

+ (1,1,1,2,2,1,2)

+ (2,1,1,1,2,2,1)

+ (1,2,1,1,1,2,2)

+ (2,1,2,1,1,1,2).

(4.47)

An analogous decomposition holds for

E7(C) ⊃ [SL(2,C)]7. (4.48)

Notice that we find seven copies of the (2,2,2) appearing in the STU model. This translates into
seven copies of the 3-qubit Hilbert space:

|Ψ〉56 = aABD|ABD〉
+ bBCE |BCE〉
+ cCDF |CDF 〉
+ dDEG|DEG〉
+ eEFA |EF A〉
+ fFGB |FGB〉
+ gGAC |GAC〉.

(4.49)

Note that:

1. Any pair of states has an individual in common

2. Each individual is excluded from four out of the seven states

3. Two given individuals are excluded from two out of the seven states
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4. Three given individuals are never excluded

So we have seven qubits (Alice, Bob, Charlie, Daisy, Emma, Fred and George) but where Alice has
tripartite entanglement not only with Bob/Dave but also with Emma/Fred and also Charlie/George,
and similarly for the other six individuals. So, in fact, each person has tripartite entanglement with
each of the remaining three couples.

The entanglement may be represented by a heptagon as in Figure 4.8 with seven vertices A, B, C,
D, E, F , G, and seven triangles

ABD,BCE,CDF,DEG,EFA,FGB,GAC.

Each of the seven states transforms as a (2,2,2) under three of the SL(2)’s and are singlets under the

A

B

C

DE

F

G

A

B

C

DE

F

G

Figure 4.8.: The E7 entanglement diagram corresponding to the decomposition (4.47) and the state
(4.49). Each of the seven vertices A,B,C,D,E, F,G represents a qubit and each of the
seven triangles ABD,BCE,CDF,DEG,EFA,FGB,GAC describes a tripartite
entanglement. As discussed in section 1 the oriented triangles correspond to
quaternionic cycles in the multiplication table of imaginary octonions.

remaining four. On restricting to just three of the seven qubits the entanglement ought to be given by
Cayley’s hyperdeterminant. Hence, we expect seven copies of Cayley’s hyperdeterminant and con-
sequently the entanglement measure must be quartic polynomial of the seven a, b, c, d, e, f, g. Taken
together however, we see from (4.47) that they transform as a complex 56 of E7(C) and, hence, the
entanglement measure must be invariant underE7(C). The unique possibility is the Cartan invariant
I4, and so the entanglement is given by

τABCDEFG = 4|I4|. (4.50)

It may be written as the sum of seven terms each of which is invariant under [SL(2)]3 plus cross
terms. To see this, denote a 2 in one of the seven entries in (4.47) by A,B,C,D,E, F,G. So we may
rewrite (4.47) as

56 = (ABD) + (BCE) + (CDF ) + (DEG) + (EFA) + (FGB) + (GAC), (4.51)
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or symbolically

56 = a+ b+ c+ d+ e+ f + g. (4.52)

Then I4 is the singlet in 56× 56× 56× 56:

I4 = a4 + b4 + c4 + d4 + e4 + f4 + g4

+ 2
[
a2b2 + a2c2 + a2d2 + a2e2 + a2f2 + a2g2

+ b2c2 + b2d2 + b2e2 + b2f2 + b2g2

+ c2d2 + c2e2 + c2f2 + c2g2

+ d2e2 + d2f2 + d2g2

+ e2f2 + e2g2

+ f2g2
]

+ 8 [abce+ bcdf + cdeg + defa+ efgb+ fgac+ gabd] ,

(4.53)

where products like

a4 = (ABD)(ABD)(ABD)(ABD)

= 1
2ε
A1A2εB1B2εD1D4εA3A4εB3B4εD2D3

× aA1B1D1aA2B2D2aA3B3D3aA4B4D4 ,

(4.54)

exclude four individuals (here Charlie, Emma, Fred, and George), products like

a2b2 = (ABD)(ABD)(BCE)(BCE)

= 1
2ε
A1A2εB1B3εD1D2εB2B4εC3C4εE3E4

× aA1B1D1aA2B2D2bB3C3E3bB4C4E4 ,

(4.55)

exclude two individuals (here Fred and George), and products like

abce = (ABD)(BCE)(CDF )(EFA)

= 1
2ε
A1A4εB1B2εC2C3εD1D3εE2E4εF3F4

× aA1B1D1bB2C2E2cC3D3F3eE4F4A4 ,

(4.56)

exclude one individual (here George). These results may be verified using the dictionary between
a, b, c, d, e, f, g and the x and y as discussed in chapter 7. Note that a4 is just minus Cayley’s hyper-
determinant.

4. Classification of N = 8 black holes and seven-qubit states

In the N = 8 theory, “large” and “small” black holes are classified by the sign of I4:

I4 > 0, (4.57a)

I4 = 0, (4.57b)

I4 < 0. (4.57c)
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Once again, non-zero I4 corresponds to large black holes, which are BPS for I4 > 0 and non-BPS for
I4 < 0, and vanishing I4 corresponds to small black holes. However, in contrast toN = 2, case (4.57a)
requires that only 1/8 of the supersymmetry is preserved, while we may have 1/8, 1/4 or 1/2 for
case (4.57b).

The large black hole solutions can be found [210] by solving the N = 8 classical attractor equa-
tions [34]. The charge orbits [45,46,71] for the black holes depend on the number of unbroken super-
symmetries or the number of vanishing eigenvalues as in Table 4.1.

Class Orbit s1 s2 s3 s4 I4 Black hole SUSY

A-B-C E7(7)/(E6(6) nR27) > 0 0 0 0 0 small 1/2
A-BC E7(7)/(O(5, 6) nR32 ×R) > 0 > 0 0 0 0 small 1/4
W E7(7)/(F4(4) nR26) > 0 > 0 > 0 0 0 small 1/8
GHZ E7(7)/E6(2) > 0 > 0 > 0 > 0 > 0 large 1/8
GHZ E7(7)/E6(6) > 0 > 0 > 0 < 0 < 0 large 0

Table 4.1.: Classification of D = 4, N = 8 black holes. The distinct charge orbits are determined by
the number of non-vanishing eigenvalues and I4, as well as the number of preserved
supersymmetries. The entanglement classes assigned by interpreting the eight parameter
canonical form as a three qubit system.

5. Further developments

In this section we briefly review the further developments of the PhD thesis of Duminda Dahanayake
[30]. In particular, we describe: (1) the microscopic interpretation of black holes as qubits [17] (2)
the classification of 4-qubit entanglement from STU black holes in three dimensions [29] (3) the
superqubit, a supersymmetric generalisation of the qubit [21].

5.1. Microscopic interpretation

In section 1.1 we established a correspondence between the tripartite entanglement measure of three
qubits and the macroscopic entropy of the 4-dimensional 8-charge STU black hole of supergravity.
In this section we briefly review the microscopic interpretation proposed in [17, 30].

The microscopic string-theoretic interpretation of the charges is given by configurations of inter-
secting D3-branes, wrapping around the six compact dimensions T 6. The 3-qubit basis vectors |ABC〉
are associated with the corresponding eight wrapping cycles. In particular, one can relate a well-
known fact of quantum information theory, that the most general real three-qubit state up to local
unitaries can be parameterised by four real numbers and an angle, to a well-known fact of string
theory, that the most general STU black hole can be described by four D3-branes intersecting at an
angle.

The microscopic analysis is not unique since there are many ways of embedding the STU model
in string/M-theory, but a useful example from our point of view is that of four D3-branes of Type IIB
wrapping the (579), (568), (478), (469) cycles of T 6 with wrapping numbers N0, N1, N2, N3 and in-
tersecting over a string [171]. The wrapped circles are denoted by crosses and the unwrapped circles
by noughts as shown in Table 4.2. This picture is consistent with the interpretation of the 4-charge
black hole as bound state at threshold of four 1-charge black holes [2, 155, 199]. The fifth parameter
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θ is obtained [216, 217] by allowing the N3 brane to intersect at an angle which induces additional
effective charges on the (579), (569), (479) cycles. The microscopic calculation of the entropy consists
of taking the logarithm of the number of microstates and yields the same result as the macroscopic
one [218].

To make the black hole/qubit correspondence we associate the three T 2 with the SL(2)A×SL(2)B×
SL(2)C of the three qubits Alice, Bob, and Charlie. The eight different cycles then yield eight different
basis vectors |ABC〉 as in the last column of Table 4.2, where |0〉 corresponds to xo and |1〉 to ox. To
wrap or not to wrap; that is the qubit. We see immediately that we reproduce the five parameter
three-qubit state |Ψ〉 of (2.74):

|Ψ〉 = −N3 cos2 θ|001〉 −N2|010〉+N3 sin θ cos θ|011〉

−N1|100〉 −N3 sin θ cos θ|101〉+ (N0 +N3 sin2 θ)|111〉.
(4.58)

Note the GHZ state describes four D3-branes intersecting over a string.

4 5 6 7 8 9 macro charges micro charges |ABC〉

x o x o x o p0 0 |000〉
o x o x x o q1 0 |110〉
o x x o o x q2 −N3 sin θ cos θ |101〉
x o o x o x q3 N3 sin θ cos θ |011〉

o x o x o x q0 N0 +N3 sin2 θ |111〉
x o x o o x −p1 −N3 cos2 θ |001〉
x o o x x o −p2 −N2 |010〉
o x x o x o −p3 −N1 |100〉

Table 4.2.: Three qubit interpretation of the 8-charge D = 4 black hole from four D3-branes
wrapping around the lower four cycles of T 6 with wrapping numbers N0, N1, N2, N3 and
then allowing N3 to intersect at an angle θ.

5.2. Supersymmetric quantum information

In [21, 30] a supersymmetric generalization of the qubit, the superqubit, was put forward. They pro-
ceeded by extending the n-qubit SLOCC equivalence group [SL(2,C)]n and the LOCC equivalence
group [SU(2)]n to the supergroups [OSp(1|2)]n and [uOSp(1|2)]n, respectively. A single superqubit
forms a 3-dimensional representation of OSp(1|2) consisting of two commuting “bosonic” compo-
nents and one anticommuting “fermionic” component. For n = 2 and n = 3 we introduce the ap-
propriate supersymmetric generalizations of the conventional entanglement measures. In particular,
super-Bell and super-GHZ states are characterized, respectively, by nonvanishing superdeterminant
(distinct from the Berezinian) and superhyperdeterminant2.

This mathematical construction seems a very natural one. Moreover, from a physical point of view,
it makes contact with various condensed-matter systems. For example, the three-dimensional rep-
resentation of Osp(1|2) is encountered in the supersymmetric t-J model where it describes spinons
and holons on a one-dimensional lattice [219–223]. It also shows up in the quantum Hall effect [224]
and Affleck-Kennedy-Lieb-Tasaki models of superconductivity [225]

2This work was in part inspired by the construction of the superhyperdeterminant in [33].
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5.3. 4-qubit entanglement and the STU model in D = 3

For the STU model we found that the classification of the black hole solutions corresponded to the
well known entanglement classification of three qubits. However, we can go one better and derive the
much harder 4-qubit entanglement classification [29,30]. We consider D = 4 supergravity theories in
which the moduli parameterize a symmetric space of the form M4 = G4/H4, where G4 is the global
U-duality group and H4 is its maximal compact subgroup. After a further time-like reduction to
D = 3 the moduli space becomes a pseudo-Riemannian symmetric space M∗3 = G3/H

∗
3 , where G3 is

the D = 3 duality group and H∗3 is a non-compact form of the maximal compact subgroup H3. One
finds that geodesic motion on M∗3 corresponds to stationary solutions of the D = 4 theory [27, 226–
230]. These geodesics are parameterized by the Lie algebra valued matrix of Noether charges Q and
the problem of classifying the spherically symmetric extremal (non-extremal) black hole solutions
consists of classifying the nilpotent (semisimple) orbits of Q (Nilpotent means Qn = 0 for some
sufficiently large n.)

In the case of the STU model the D = 3 moduli space G3/H
∗
3 is SO(4, 4)/[SL(2,R)]4 (a para-

quaternionic manifold), which yields the Lie algebra decomposition

so(4, 4) ∼= [sl(2,R)]4 ⊕ (2,2,2,2). (4.59)

The relevance of (4.59) to four qubits was pointed out in [18] and recently spelled out more clearly
by Lévay [27] who relates four qubits to D = 4 STU black holes. The Kostant-Sekiguchi correspon-
dence [231] then implies that the nilpotent orbits of SO(4, 4) acting on the adjoint representation 28

are in one-to-one correspondence with the nilpotent orbits of [SL(2, )]4 acting on the fundamental
representation (2,2,2,2) and hence with the classification of four-qubit entanglement. Note further-
more that it is the complex qubits that appear automatically, thereby relaxing the restriction to real
qubits.

We found that there are 31 entanglement families which reduce to nine up to permutations of the
four qubits. The nine agrees with [232, 233] while the 31 is new.
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CHAPTER 5
Algebras

The octonions and Jordan algebras have never quite managed to find their raison d’etre in physics. An
interesting idea here [234], another there [235], but nothing to cement them in the pages of scientific
history as yet. On the other hand they enjoy a significant role in various branches of mathematics.
In particular, there is an extensive body of work detailing their applications to the exceptional Lie
groups, which now play an almost ubiquitous role in supergravity and M-theory. So, under the wing
of exceptional groups, the octonions and Jordan algebras do have their day after all.

In this chapter we introduce the necessary basics of, first, composition algebras and in particular
the octonions, then, second, Jordan algebras and finally, third, the Freudenthal triple system. For the
most part these are standard results readily available in the literature. See, for example, [56, 68, 236]
and the references therein.

1. Composition algebras

The quaternions H were the unexpected prize of Hamilton’s efforts to generalise the complex dou-
blet, and its applications in 2-dimensional geometry, to a triplet of numbers that would play the
same role in three dimensions. Of course, the original triplet was doomed from the outset, as we
now know that the division algebras only exist in even dimensions. Upon hearing of Hamilton’s
magical discovery Graves, a close friend, asked [236],

”If with your alchemy you can make three pounds of gold, why should you stop there?”
- Graves

Graves decided on some prospecting of his own and came up good, happening upon a rare nugget
indeed, the octonionsO. The 8-dimensional octonions are the largest division algebra, completing the
now famous sequence, R,C,H,O, but they are not the end of the story. In particular, the exceptional
groups make equal use of their split signature cousins, which contain zero divisors. Jacobson in 1958
brought all these concepts together under the umbrella of compsition algebras [52].

In the following we introduce the basic theory of composition algebras and some of their structural
properties.

Much of the following will rely on a quadratic norm and its associated bilinear form:
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Definition 3 (Quadratic norm). A quadratic norm on a vector space V over a field F is a map n : V → F

such that:

1. n(λa) = λ2n(a), λ ∈ F, a ∈ V,

2. 〈a, b〉 := n(a+ b)− n(a)− n(b) is bilinear.

The quadratic norm is said to be non-degenerate if,

〈a, b〉 = 0 ∀b ⇒ a = 0. (5.1)

Definition 4 (Composition algebra). An algebraA defined over a field F with identity element e, is said to
be composition if it has a non-degenerate quadratic form n : A→ F such that,

n(ab) = n(a)n(b), ∀a, b ∈ A, (5.2)

where we denote multiplicative product of the algebra by juxtaposition.

Every composition algebra satisfies the quadratic equation,

a2 − 〈a, e〉a+ n(a)e = 0. (5.3)

Conjugation may be defined using the bilinear form, a := 〈a, e〉e− a, and satisfies,

1. aa = aa = n(a)e,

2. ab = ba,

3. a = a,

4. a+ b = a+ b,

5. n(a) = n(a),

6. 〈a, b〉 = 〈a, b〉.

We denote respectively the commutator and associator by [a, b] and [a, b, c],

[a, b] = ab− ba,

[a, b, c] = (ab)c− a(bc).
(5.4)

An algebra is said to be associative if the associator vanishes and commutative if the commutator
vanishes. If the associator is an alternating function of its arguments then the algebra is said to be
alternative. All composition algebras are alternative.

By considering F ⊂ A as the scalar multiples of the identity we may decompose A into its “real”
and “imaginary” parts A = F ⊕ A′, where A′ ⊂ A is the subspace orthogonal to F. An arbitrary
element a ∈ Amay be written a = <(a) + =(a), where <(a) ∈ F and =(a) ∈ A′.

Definition 5 (Division algebra). A composition algebra A is said to be division if it contains no zero
divisors,

ab = 0⇒ a = 0 or b = 0.
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Hurwitz’s celebrated theorem states that there are only four division algebras [237]: the reals,
complexes, quaternions and octonions denoted respectively by R,C,H and O. These algebras are
obtained by the Cayley-Dickson process. With a slight modification one can also generate their split
signature cousins Cs,Hs and Os [57].

1.1. Octonions

We recall some useful facts about the octonions:

• Octonions, a, b, c ∈ R8, are an 8-dimensional real vector space, with basis elements e0, . . . , e7,
where e0 is the identity.

• Conjugation sends e0 7→ e0 and ei 7→ −ei for i = 1, . . . 7.

• Non-commutative.

• Non-associative.

If we denote the imaginary octonions by ei where i = 1, . . . 7, the structure constants Cijk are
defined by

eiej = −δij + Cijkek, (5.5)

and satisfy
CpmkCqkn + CqmkCpkn = δpmδqn + δpnδqm − 2δpqδmn. (5.6)

Following [238] we define the “Jacobian” Cijkl

[ei, [ej , ek]] + [ek, [ei, ej ]] + [ej , [ek, ei]]

= 4(CjkmCimn + CijmCkmn + CkimCjmn)en

≡ 3Cijklel,

(5.7)

where Cijkl satisfies

Cijkl = 1
6εijklmnpCmnp, (5.8)

and

Cijkl = −CmijCmkl − δilδjk + δikδjl. (5.9)

The norm of an arbitrary octonion a = aIeI , where I = (0, i), is

n(a) = (a0)2 + (a1)2 + (a2)2 + (a3)2 + (a4)2 + (a5)2 + (a6)2 + (a7)2, (5.10)

or, in the split case,

n(a) = (a0)2 + (a1)2 + (a2)2 + (a3)2 − (a4)2 − (a5)2 − (a6)2 − (a7)2. (5.11)

Let us now construct an example octonionic multiplication table. Rather than use the Cayley-Dickson
method, we adopt an equivalent procedure, more suited to defining a particular basis, presented
in [236].
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Starting with an algebra, A, we adjoin to it an orthogonal imaginary basis element, i, which must
satisfy the following conditions

i2 = −1, (or i2 = 1 in the split case)

and
a(ib) = i(āb), (ai)b = (ab̄)i, (ia)(b̄i) = ab (5.12)

for all a, b ∈ A. We begin with the complex numbers, which we write as a = a0e0 + a1e1 (e0 = 1 and
e1 =

√
−1). To construct the quaternions we introduce a second imaginary unit, e2, and define the

product e1e2 = e4. Using the second identity in (5.12) with a = 1 and b = e1 we obtain

e2e1 = −e1e2 = −e4

so they are non-commutative. Now we may compute the remaining products

e1e4 = −e1(e2e1) = −e2

where we have used the first identity in (5.12), and

e2e4 = e2(e1e2) = e4.

It is not hard to verify that in general we have

eiej = −δij + Cijkek (5.13)

where i, j and k run over 1, 2 and 4 and Cijk is totally antisymmetric with C124 = 1.
Let us now build the octonions by introducing a fourth imaginary element, e3 and defining the

products
e1e3 = e7, e2e3 = e5, e4e3 = −e6. (5.14)

Each triple appearing in the above products is isomorphic to the quaternions, there is no reason to
not have begun the process with, say, e7. Finally, we need to compute the remaining three products

e1e5 = e1(e2e3) = e3(e1e2) = e3e4 = e6 (5.15)

where we have made use of the first identity. Following a similar process for the remaining two
products we find the nonzero structure constants are:

C124 = C235 = C346 = C457 = C561 = C672 = C713 = 1 (5.16)

where the remaining non-zero constants are determined by the total antisymmetry of Cijk1. Those of
you paying close attention may have noticed that, in this basis, the structure constants describe the
tripartite entanglement of seven qubits.

1Note, in the split case Cijk is not necessarily antisymmetric on the last two indices.
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2. Jordan algebras

2.1. Preliminaries

The advent of the matrix mechanics formulation of quantum theory was shortly followed by a num-
ber of investigations into its possible algebraic generalisations. These forays were principally moti-
vated by a certain perception, prevalent at the time, that the irrefutable successes of quantum me-
chanics as applied to the atom would not be readily extended to the relativistic domain [239]. Chief
amongst these attempts was the use of Jordan algebras as a suitable representation of physical ob-
servables [240,241]. The intention was to place emphasis on observables, as opposed to states, and in
doing so abstract the essential characteristics of the set of Hermitian operators, displacing the Hilbert
space from its central position in the mathematical foundations of the theory [240–242]. We briefly
review the Jordan formulation of quantum mechanics in Appendix A.

Their applications to quantum theory, in the end, proved limited. However, they are interesting
objects in their own right and an expansive literature on the subject has developed over the years.
See [58, 68] for comprehensive historical accounts. Their intimate relationship with the exceptional
Lie groups is of central importance in their applications to string theory and supergravity.

Definition 6 (Jordan algebra). A vector space, defined over a ground field F, equipped with a product satis-
fying,

x ◦ y = y ◦ x; x2 ◦ (x ◦ y) = x ◦ (x2 ◦ y) ∀x, y ∈ J, (5.17)

is a Jordan algebra J.

An obvious example is given by the set of real matrices with Jordan product defined as x ◦ y =
1
2(xy + yx). More generally, this definition of the Jordan product may be used to construct a Jordan
algebra starting from any associative algebra.

Any algebra is said to be formally real if,

x2 + y2 + z2 . . . = 0 =⇒ x = y = z = . . . = 0. (5.18)

Assuming that a given Jordan algebra is formally real it can be shown that the Jordan identity (5.17)
is equivalent to power associativity [239],

xm ◦ xn = x(m+n). (5.19)

This is significant when considering the application of Jordan algebras to quantum mechanics pro-
viding some physical motivation for the Jordan identity as will be discussed in Appendix A.

The full classification of all formally real Jordan algebras was completed in [239]. There are four
infinite sequences of simple Jordan algebras and one exceptional case. (A Jordan algebra is simple
if it contains no proper ideals. All Jordan algebras may be decomposed into a direct sum of simple
Jordan algebras.) Three of the infinite sequences are given by the sets JAn of n×n Hermitian matrices
defined over the three associative division algebras, A = R,C or H. The Jordan product in these
cases is simply given by x ◦ y = 1

2(xy + yx), where xy denotes conventional matrix multiplication.
The fourth is given by R ⊕ Γn, where Γn is a n-dimensional real vector space with Euclidean norm.
The one exceptional simple Jordan algebra is given by JO3 , the set of 3×3 Hermitian matrices defined
over the octonions.
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However, we will generally be concerned with the larger class of cubic Jordan algebras which need
not be formally real. For example, JOs

3 , the set of 3 × 3 Hermitian matrices defined over the split
octonions, is not formally real but nonetheless underpins N = 8 supergravity.

2.2. Cubic Jordan algebras

A large class of Jordan may be derived following the Freudenthal-Springer-Tits construction [54, 60].
They are defined in terms of a quadratic or cubic norm and the resulting algebras are respectively
referred to as quadratic Jordan algebras and cubic Jordan algebras.

Both cases are relevant in various supergravity theories [39, 40, 70]. In particular, the quadratic
Jordan algebras are relevant to the D = 6,N = 8 theory and the cubic Jordan algebras are relevant to
the D = 5,N = 8 theory.

In the following we present in detail the cubic case as it facilitates the definition of the FTS re-
quired for the black holes in D = 4. The entirely analogous quadratic construction may be found in
section B.1. Our primary cubic Jordan algebra references are [48,68,69,243], which are used through-
out the following.

2.2.1. Definitions

Let V be a vector space over a field F equipped with a cubic norm.

Definition 7 (Cubic norm). A cubic norm is a homogeneous map of degree three

N3 : V → F, s.t. N3(αA) = α3N3(A), ∀α ∈ F, A ∈ V (5.20)

such that its linearization,

N3(A,B,C) :=
1

6
(N3(A+B+C)−N3(A+B)−N3(A+C)−N3(B+C)+N3(A)+N3(B)+N3(C)) (5.21)

is trilinear.

If V further contains a base point N3(c) = 1, c ∈ V one may define the following four maps,

1. The trace,
Tr(A) = 3N3(c, c, A), (5.22a)

2. A quadratic map,
S(A) = 3N3(A,A, c), (5.22b)

3. A bilinear map,
S(A,B) = 6N3(A,B, c), (5.22c)

4. A trace bilinear form,
Tr(A,B) = Tr(A) Tr(B)− S(A,B). (5.22d)

A cubic Jordan algebra J with multiplicative identity 1 = c may be derived from any such vector
space if N is Jordan cubic, that is:

1. The trace bilinear form (5.22d) is non-degenerate.
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2. The quadratic adjoint map, ] : J→ J, uniquely defined by Tr(A], B) = 3N3(A,A,B), satisfies

(A])] = N3(A)A, ∀A ∈ J. (5.23)

The Jordan product is then defined using,

A ◦B = 1
2

(
A×B + Tr(A)B + Tr(B)A− S(A,B)1

)
, (5.24)

where, A×B is the linearization of the quadratic adjoint,

A×B = (A+B)] −A] −B]. (5.25)

Finally, the Jordan triple product is defined as

{A,B,C} = (A ◦B) ◦ C +A ◦ (B ◦ C)− (A ◦ C) ◦B. (5.26)

Definition 8 (Irreducible idempotent). An element E satisfying

E ◦ E = E, Tr(E) = 1 (5.27)

is said to be an irreducible idempotent. Cubic Jordan algebras have three irreducible idempotents.

2.2.2. Symmetries

There are many good references on the symmetries associated with Jordan algebras and, in particular,
the exceptional Lie groups. Here we have used [56, 61, 64, 66] and in particular [48, 69, 243].

Definition 9 (Automorphism group Aut(J)). Invertible F-linear transformations σ preserving the Jordan
product,

Aut(J) :={σ ∈ IsoR(J)|σ(A ◦B) = σA ◦ σB}

={σ ∈ IsoR(J)|σ(A×B) = σA× σB}

={σ ∈ IsoR(J)|N3(σA) = N3(A), σ1 = 1}.

(5.28)

The corresponding Lie algebra is given by the set of derivations der(J),

Aut(J) = der(J) ={δ ∈ HomR(J)|δ(A ◦B) = δA ◦B +A ◦ δB}

={δ ∈ HomR(J)|δA×B +A× δB = 0}

={δ ∈ HomR(J)|N3(δA,A,A) = 0, δ1 = 0}.

(5.29)

Definition 10 (Reduced structure group Str0(J)). Invertible F-linear transformations σ preserving the
cubic norm,

Str0(J) :={τ ∈ IsoR(J)|N3(τA) = N3(A)}

={τ ∈ IsoR(J)|tτ−1(A×B) = τA× τB}.
(5.30)
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The corresponding Lie algebra Str0(J) is given by,

Str0(J) ={φ ∈ HomR(J)|N3(φA,A,A) = 0}

={φ ∈ HomR(J)|tφ(A×B) = φA×B +A× φB}.
(5.31)

Str0(J) may be decomposed with respect to the automorphism algebra,

Str0(J) = L′(J)⊕ der(J), (5.32)

where L′(J) denotes the set of left Jordan products by traceless elements, LA(B) = A ◦ B where
Tr(A) = 0.

Definition 11 (Structure group Str(J)). Invertible F-linear transformations σ preserving the cubic norm
up to a fixed scalar factor,

Str(J) := {σ ∈ IsoR(J)|N3(σA) = λN3(A), λ ∈ F}. (5.33)

The corresponding Lie algebra Str(J) is given by,

Str(J) = L(J)⊕ der(J), (5.34)

where L(J) denotes the set of left Jordan products LA(B) = A ◦B.

The following chain of embeddings clearly holds,

Aut J ⊂ Str0(J) ⊂ Str(J). (5.35)

A cubic Jordan algebra element may be assigned a Str(J) invariant rank [53].

Definition 12 (Cubic Jordan algebra rank). An element A ∈ J has a rank given by:

RankA = 1⇔ A] = 0;

RankA = 2⇔ N3(A) = 0, A] 6= 0;

RankA = 3⇔ N3(A) 6= 0.

(5.36)

2.3. Cubic Jordan algebras: Examples

2.3.1. Magic Jordan algebras

We denote by JA3 the cubic Jordan algebra of 3× 3 Hermitian matrices with entries in a composition
algebraA defined over the field F. We will assume F = R here.

An arbitrary element may be written as,

X =

α c b

c β a

b a γ

 , where α, β, γ ∈ R and a, b, c ∈ A. (5.37)
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The cubic norm (5.20) is defined as,

N3(X) = αβγ − αaa− βbb− γcc+ (ab)c+ c(bc), (5.38)

which, for associativeA coincides with the matrix determinant.
The Jordan product (5.24) is given by

X ◦ Y =
1

2
(XY + Y X), X, Y ∈ JA3 , (5.39)

where juxtaposition denotes the conventional matrix product. Evidently, E = diag(1, 1, 1) is a base
point and the corresponding Jordan algebra maps are given by,

Tr(X) = tr(X),

Tr(X,Y ) = tr(X ◦ Y ),
(5.40a)

where tr is the conventional matrix trace. The quadratic adjoint (5.23) is given by,

X] =

βγ − |a|
2 ba− γc ca− βb

ab− γc αγ − |b|2 cb− αa
ac− βb bz − αa βα− |c|2

 . (5.41)

The irreducible idempotents are given by,

E1 =

1 0 0

0 0 0

0 0 0

 ; E2 =

0 0 0

0 1 0

0 0 0

 ; E3 =

0 0 0

0 0 0

0 0 1

 . (5.42)

For A = R,C,H,O the reduced structure groups are Str0(JA3 ) = SL(3,R),SL(3,C),SU?(6), E6(−26)

under which A ∈ JA3 transforms as a 6,9,15,27. For JO3 the trace bilinear form and cubic norm are
the singlets in 27 × 27′ and 27 × 27 × 27 (or 27′ × 27′ × 27′), respectively. The quadratic adjoint is
the 27 in 27′ × 27′ (or the 27′ in 27× 27).

Theorem 13 (Shukuzawa, 2006 [69]). Every element A ∈ JO3 of a given rank is Str0(JO3 ) related one of the
following canonical forms:

1. Rank 1

a) A1a = (1, 0, 0) = E1

b) A1b = (−1, 0, 0) = −E1

2. Rank 2

a) A2a = (1, 1, 0) = E1 + E2

b) A2b = (−1, 1, 0) = −E1 + E2

c) A2c = (−1,−1, 0) = −E1 − E2

3. Rank 3

a) A3a = (1, 1, k) = E1 + E2 + kE3
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b) A3b = (−1,−1, k) = −E1 − E2 + kE3

Holds for the subcases JR3 , J
C
3 , J

H
3 .

For the split-octonionic case JOs
3 the reduced structure group is given by Str0(JOs

3 ) = E6(6), the
maximally non-compact form of E6, under which A ∈ JOs

3 transforms as a 27. The canonical forms
simplify in this case.

Theorem 14 (Krutelevich, 2002 [67]). Every element A ∈ JOs
3 of a given rank is Str0(JOs

3 ) related one of
the following canonical forms:

1. Rank 1

a) A1 = (1, 0, 0) = E1

2. Rank 2

a) A2 = (1, 1, 0) = E1 + E2

3. Rank 3

a) A3 = (1, 1, k) = E1 + E2 + kE3

Holds for the subcases JRs
3 , JCs

3 , JHs
3 .

2.3.2. Lorentzian spin factors

The Lorentzian spin factors J1,n−1 := R⊕ Γ1,n−1 are defined by the cubic norm,

N(A) = aaµa
µ = a(a2

0 − aiai), where a ∈ R and aµ ∈ R1,n−1 (5.43)

for elements A ∈ J1,n−1,
A = (a; aµ) = (a; a0, ai). (5.44)

For notational convenience we will often only write the first three components (a; a0, a1) if ai = 0 for
i > 1. The linearisation of the cubic norm is given by,

N(A,B,C) =
1

3
(abµc

µ + caµb
µ + bcµa

µ). (5.45)

Evidently, E = (1, 1, 0) is a base point and the corresponding Jordan algebra maps are given by,

Tr(A) = a+ 2a0,

S(A) = 2aa0 + aµa
µ,

S(A,B) = 2(ab0 + ba0 + aµb
µ),

Tr(A,B) = ab+ 2(a0b0 + aibi).

(5.46a)

Using the required identity Tr(A#, B) = 3N(A,A,B) one obtains the quadratic adjoint,

A# = (aµa
µ; aaµ). (5.47)

Note the raised index. Its linearisation A×B = (A+B)# −A# −B# yields

A×B = (2aµb
µ; baµ + abµ). (5.48)
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It is not difficult to verify that
A## = N(A)A (5.49)

so that the quadratic adjoint is indeed Jordan cubic. Hence, we obtain a well defined Jordan algebra
with Jordan product defined by

A ◦B = 1
2(A×B + Tr(A)B + Tr(B)A− S(A,B)c) (5.50)

which gives
A ◦B = (ab; a0b0 + aibi, a0bi + b0ai). (5.51)

The three irreducible idempotents are

E1 = (1; 0), E2 = (0; 1
2 ,

1
2), E3 = (0; 1

2 ,−
1
2). (5.52)

The reduced structure group Str0(J1,n−1) is given by SO(1, 1)×SO(1, n−1) under whichA transforms
as,

(a; aµ) 7→ (e2λa; e−λΛνµaν), where λ ∈ R,Λ ∈ SO(1, n− 1). (5.53)

Theorem 15. Every element A = (a; aµ) ∈ J1,n−1 of a given rank is Str0(J1,n−1) related one of the following
canonical forms:

1. Rank 1

a) A1a = (1; 0) = E1

b) A1b = (−1; 0) = −E1

c) A1c = (0; 1
2 ,

1
2) = E2

2. Rank 2

a) A2a = (0; 1, 0) = E1 + E2

b) A2b = (0; 0, 1) = E1 − E2

c) A2c = (1; 1
2 ,

1
2) = E1 + E2

d) A2d = (−1; 1
2 ,

1
2) = −E1 + E2

3. Rank 3

a) A3a = (1; 1
2(1 + k), 1

2(1− k)) = E1 + E2 + kE3

b) A3b = (−1; 1
2(1 + k), 1

2(1− k)) = −E1 + E2 + kE3

Note, if one restricts to the identity component of SO(1, n − 1) the orbits A1c, A2c and A2d each split into
two cases, A±1c, A

±
2c and A±2d, corresponding to the future and past light cones. Similarly, A2a splits into two

disconnected components, A±2a, corresponding to the future and past hyperboloids. For k > 0 the orbits A3a

and A3b also split into disconnected future and past hyperboloids, A±3a and A±3b.

Proof. RankA = 1⇒
A] = (aµa

µ, aaµ) = 0, (a; aµ) 6= 0. (5.54)

This corresponds to two cases: (i) aµ = 0, a 6= 0 or (ii) a = 0, aµa
µ = 0, aµ 6= 0. In case (i) we have

A = (a; 0) 7→ (e2λa; 0) = (±1; 0). (5.55)
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In case (ii) we have
A = (0; aµ) 7→ (0; Λνµaν) = (0; 1

2 ,
1
2). (5.56)

RankA = 2⇒
N(A) = aaµa

µ = 0, A] = (aµa
µ; aaµ) 6= 0. (5.57)

This corresponds to two cases: (i) a = 0, aµa
µ 6= 0 or (ii) aµaµ = 0, a 6= 0, aµ 6= 0. In case (i) we have

A = (0; aµ) 7→ (0; e−λΛνµaν) = (0; 1, 0) or (0; 0, 1). (5.58)

In case (ii) we have
A = (a; aµ) 7→ (e2λa; e−λΛνµaν) = (±1; 1

2 ,
1
2). (5.59)

RankA = 3⇒
N(A) = aaµa

µ 6= 0. (5.60)

Hence,
A = (a; aµ) 7→ (e2λa; e−λΛνµaν) = (±1; 1

2(1 + k), 1
2(1− k)). (5.61)

3. The Freudenthal triple system

The Freudenthal triple system [59,244,245] provides a natural representation of the dyonic black hole
charge vectors for a broad class of 4-dimensional supergravity theories. Namely, N = 8, N = 4, 2

coupled to Abelian vector mulitiplets and the magic N = 2 theories. In the following we present
the axiomatic definition of the Freudenthal triple system which is manifestly covariant with respect
to the 4-dimensional U-duality group G4. Subsequently, we present a particular realization in terms
of Jordan algebras. This is equivalent to decomposing G4 with respect to 5-dimensional U-duality
group G5, which is modeled by the corresponding Jordan algebra. Consequently, this particular
realization is manifestly covariant with respect to G5. We use [48, 59, 61, 63, 69, 243] throughout the
following.

3.1. Axiomatic definition

A Freudenthal triple system is axiomatically defined [59] as a finite dimensional vector space F over
a field F not of characteristic 2 or 3 such that:

1. F possesses a non-degenerate antisymmetric bilinear form {x, y}.

2. F possesses a symmetric four-linear form q(x, y, z, w) which is not identically zero.

3. If the ternary product T (x, y, z) is defined on F by {T (x, y, z), w} = q(x, y, z, w) then

3{T (x, x, y), T (y, y, y)} = {x, y}q(x, y, y, y).

It was shown in [63] that every simple reduced FTS is isomorphic to some FTS defined over a cubic
Jordan algebra, as described in the following section.
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3.2. Definition over a Jordan Algebra

Given a cubic Jordan algebra2 J defined over R, there exists a corresponding FTS,

F(J) = R⊕R⊕ J⊕ J. (5.62)

An arbitrary element x ∈ F(J) may be written as a “2× 2 matrix”,

x =

(
α A

B β

)
, where α, β ∈ R and A,B ∈ J. (5.63)

The FTS comes equipped with a non-degenerate bilinear antisymmetric quadratic form, a quartic
form and a trilinear triple product:

1. Quadratic form {•, •}: F(J)× F(J)→ R

{x, y} = αδ− βγ+ Tr(A,D)−Tr(B,C), where x =

(
α A

B β

)
, y =

(
γ C

D δ

)
. (5.64a)

2. Quartic form ∆ : F(J)→ R

∆(x) = −(αβ − Tr(A,B))2 − 4[αN(A) + βN(B)− Tr(A], B])]. (5.64b)

3. Triple product T : F(J)× F(J)× F(J)→ F(J) which is uniquely defined by

{T (x, y, w), z} = 2∆(x, y, w, z), (5.64c)

where ∆(x, y, w, z) is the full linearization of ∆(x) normalized such that ∆(x, x, x, x) = ∆(x).
For future convenience we present here an explicit form for T (x) = T (x, x, x):

T (x) =

(
Tα TA

TB Tβ

)
= 2

(
−ακ(x)−N(B) −(βB] −B ×A]) + κ(x)A

(αA] −A×B])− κ(x)B βκ(x) +N(A)

)
, (5.64d)

where we have defined the Str0(J) singlet,

κ(x) := 1
2 [αβ − Tr(X,Y )]. (5.64e)

Note that all the necessary definitions, such as the cubic and trace bilinear forms, are inherited from
the underlying Jordan algebra J. For notational convenience let,

FA(s) = F(J
A(s)

3 ), F2,n = F(J1,n−1), F6,n = F(J5,n−1). (5.65)

For φ ∈ Str0(J), X, Y ∈ J, ν ∈ Rwe define Φ : Str0(J)⊕ J⊕ J⊕R→ HomR(F) by,

Φ(φ,X, Y, ν)

(
α A

B β

)
=

(
αν + (Y,B) φA− 1

3νA+ 2Y ×B + βX

−tφB + 1
3νB + 2X ×A+ αY −βν + (X,A)

)
. (5.66)

2We can more generally consider J over a field F and will do so for the 3-qubit FTS.
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Definition 16 (Freudenthal product). For x = (α, β,A,B), y = (δ, γ, C,D) define the Freudenthal
product

∧ : F× F→ HomR(F)

by,

x ∧ y = Φ(φ,X, Y, ν), where


φ = −(A ∨D +B ∨ C)

X = −1
2(B ×D − αC − δA)

Y = 1
2(A× C − βD − γB)

ν = 1
4(Tr(A,D) + Tr(C,B)− 3(αγ + βδ))

(5.67)

where A ∨ B ∈ Str0(J) is defined by (A ∨ B)C = 1
2 Tr(B,C)A + 1

6 Tr(A,B)C − 1
2B × (A × C). Note,

(x ∧ x)x = T (x).

3.3. Symmetries

Definition 17 (The automorphism group Aut(F)). The automorphism group is defined in [59] as the
set of invertible R-linear transformations preserving the quartic and quadratic forms (5.68a). Alternatively,
it is defined in [69, 243] as the set of invertible R-linear transformations preserving the Freudenthal product
(5.68b).

Aut(F) := {σ ∈ IsoR(F)|{σx, σy} = {x, y}, ∆(σx) = ∆(x)} (5.68a)

= {σ ∈ IsoR(F)|σ(x ∧ y)σ−1 = σx ∧ σy}, (5.68b)

The equivalence of these alternative definitions follows from:

Lemma 18. The conditions used in (5.68a) and (5.68b) are equivalent,

{σx, σy} = {x, y}, ∆(σx) = ∆(x)⇔ σ(x ∧ y)σ−1 = σx ∧ σy (5.69)

Proof. We first show that (5.68b) implies (5.68a). To show that,

σ(x ∧ y)σ−1 = σx ∧ σy ⇒ {σx, σy} = {x, y} (5.70)

we use the identity [243],

(x ∧ y)x− (x ∧ x)y +
3

8
{x, y}x = 0, (5.71)

from which it follows,

⇒(σx ∧ σy)σx− (σx ∧ σx)σy +
3

8
{σx, σy}σx = 0

⇒σ(x ∧ y)x− σ(x ∧ x)y +
3

8
{σx, σy}σx = 0

⇒σ(−3

8
{x, y}x) +

3

8
{σx, σy}σx = 0

⇒3

8
({σx, σy} − {x, y})σx = 0

⇒{σx, σy} = {x, y}.

(5.72)

98



Since (x ∧ x)x = T (x), {σx, σy} = {x, y} ⇒ ∆(σx) = ∆(x).

We now show that (5.68a) implies (5.68b). From (5.68a) we have that,

{(σx ∧ σx)σx, σy} = {(x ∧ x)x, y}

= {σ(x ∧ x)σ−1σx, σy}

⇒ {[(σx ∧ σx)− σ(x ∧ x)σ−1]σx, σy} = 0 ∀y

⇒ [(σx ∧ σx)− σ(x ∧ x)σ−1]σx = 0

⇒ (σx ∧ σx) = σ(x ∧ x)σ−1.

(5.73)

It then follows from (5.71) that,

(σx ∧ σy)σx = σ[(x ∧ x)y − 3

8
{x, y}x]

= σ(x ∧ y)x

= σ(x ∧ y)σ−1σx

⇒ {[(σx ∧ σx)− σ(x ∧ y)σ−1]σx = 0

⇒ (σx ∧ σy) = σ(x ∧ y)σ−1.

(5.74)

Lemma 19 (Brown, 1969). The following transformations generate elements of Aut(F):

ϕ(C) :

(
α A

B β

)
7→

(
α+ (B,C) + (A,C]) + βN(C) A+ βC

B +A× C + βC] β

)
;

ψ(D) :

(
α A

B β

)
7→

(
α A+B ×D + αD]

B + αD β + (A,D) + (B,D]) + αN(D)

)
;

τ̂ :

(
α A

B β

)
7→

(
λα τA

tτ−1B λ−1β

)
;

(5.75)

where C,D ∈ J and τ ∈ Str(J) s.t. N(τA) = λN(A).

For convenience we define [48],

Z :

(
α A

B β

)
7→

(
−β −B
A α

)
, (5.76)

where Z = φ(−1)ψ(1)φ(−1).
The Freudenthal triple systems, defined over various Jordan algebras, and their associated auto-

morphism groups are summarized in Table 5.1. This table covers a number supergravities of interest:
N = 2, 4 coupled to n+ 1 or n vector multiplets respectively, N = 2 STU (n = 2), magic N = 2 and
N = 8.

Lemma 20. The Lie algebra Aut(F) is given by

Aut(F) = {φ ∈ HomR(F)|∆(φx, x, x, x) = 0, {φx, y}+ {x, φy} = 0, ∀x, y ∈ F}. (5.77)
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Table 5.1.: The automorphism group Aut(F(J)) and the dimension of its representation dimF(J)
given by the Freudenthal construction defined over the cubic Jordan algebra J with
dimension dim J and reduced structure group Str0(J) [48, 59, 69, 243].

Jordan algebra J Str0(J) dim J Aut(F(J)) dimF(J)

R − 1 SL(2,R) 4
R⊕R SO(1, 1) 2 SL(2,R)× SL(2,R) 6

R⊕R⊕R SO(1, 1)× SO(1, 1) 3 SL(2,R)× SL(2,R)× SL(2,R) 8
R⊕ Γ1,n−1 SO(1, 1)× SO(1, n− 1) n+ 1 SL(2,R)× SO(2, n) 2(n+ 2)
R⊕ Γ5,n−1 SO(1, 1)× SO(5, n− 1) n+ 5 SL(2,R)× SO(6, n) 2(n+ 6)

JR3 SL(3,R) 6 Sp(6,R) 14
JC3 SL(3,C) 9 SU(3, 3) 20
JH3 SU?(6) 15 SO?(12) 32
JO3 E6(−26) 27 E7(−25) 56

JOs
3 E6(6) 27 E7(7) 56

Proof. If φ ∈ HomR(F) satisfies ∆(etφx, etφx, etφx, etφx) = ∆(x, x, x, x), where t ∈ R, differentiating
with respect to t and then setting t = 0 one obtains ∆(φx, x, x, x) = 0. Similarly, if {etφx, etφy} =

{x, y} then {φx, y} + {x, φy} = 0. Conversely, assuming {φx, y} + {x, φy} = 0 for all x, y ∈ F let
σ = etφ. Then,

{etφx, etφy} = {(1 + tφ+ 1
2 t

2φ2 + . . .)x, (1 + tφ+ 1
2 t

2φ2 + . . .)y}

= {x, y}+ t({φx, y}+ {x, φy})

+ t2(1
2{φx, φy}+ 1

2{φ
2x, y}+ 1

2{φx, φy}+ 1
2{x, φ

2y}) + . . .

= {x, y}.

(5.78)

Similarly, assuming ∆(φx, x, x, x) = 0 and letting σ = etφ then ∆(σx) = ∆(x).

Theorem 21 (Imai and Yokota, 1980).

Aut(F) = {Φ(φ,X, Y, ν) ∈ HomR(F)|φ ∈ Str0(J), X, Y ∈ J, ν ∈ R}. (5.79)

where the Lie bracket
[Φ(φ1, X1, Y1, ν1),Φ(φ2, X2, Y2, ν2)] = Φ(φ,X, Y, ν) (5.80)

is given by

φ = [φ1, φ2] + 2(X1 ∨ Y2 −X2 ∨ Y1)

X = (φ1 +
2

3
ν1)X2 − (φ2 +

2

3
ν2)X1

Y = (φ2 +
2

3
ν2)Y1 − (tφ1 +

2

3
ν1)Y2

ν = Tr(X1, Y2)− Tr(Y1, X2).

(5.81)

Remark 22. The subset of generators not in Str(J) are given by

Φ̂(X,Y ) := Φ(0, X, Y, 0). (5.82)
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The Hermitian conjugate is defined by
Φ̂†(X,Y ) = Φ̂(Y,X). (5.83)

Hermitian (resp. anti-Hermitian) generators are non-compact (resp. compact) [72].

Lemma 23 (Krutelevich 2004). Every non-zero element of F(J), where J is one of JA3 , J
As
3 , J1,n−1, J5,n−1,

can be brought into the form (
1 A

0 β

)
(5.84)

by Aut(F).

Proof. The proof presented by Krutelevich [48] also holds in these cases since it only requires that J
is spanned by its rank 1 elements and that the bilinear trace form is non-degenerate.

Lemma 24 (Krutelevich 2004). An element of F(J), where J is one of JA3 , J
As
3 , J1,n−1, J5,n−1, of the form(

α aiEi

0 β

)
(5.85)

is Aut(F) related to:

1. (
α (a1 + βc− a2a3c2

α )E1 + a2E2 + a3E3

0 β − 2a2a3c
α

)
. (5.86)

2. (
α a1E1 + (a2 + βc− a1a3c2

α )E2 + a3E3

0 β − 2a1a3c
α

)
. (5.87)

3. (
α a1E1 + a2E2 + (a3 + βc− a1a2c2

α )E3

0 β − 2a1a2c
α

)
. (5.88)

Proof. The proof used in [48] may be seen to hold in all cases by direct calculation.

Definition 25 (FTS ranks [48]). An FTS element may be assigned an Aut(F) invariant rank:

Rankx = 1⇔ Υ(x, x, y) = 0 ∀y, x 6= 0;

Rankx = 2⇔ T (x) = 0, ∃y s.t. Υ(x, x, y) 6= 0;

Rankx = 3⇔ ∆(x) = 0, T (x) 6= 0;

Rankx = 4⇔ ∆(x) 6= 0,

(5.89)

where we have defined Υ(x, x, y) := 3T (x, x, y) + {x, y}x.

For an element in the reduced form (5.84) the rank conditions simplify:

Rankx = 1⇔ A = 0, β = 0;

Rankx = 2⇔ A] = 0, β = 0, A 6= 0;

Rankx = 3⇔ 4N(A) = −β2, A] 6= 0;

Rankx = 4⇔ 4N(A) 6= −β2.

(5.90)
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In order to distinguish orbits of the same rank we will use the following quadratic form introduced
by Shukuzawa [69].

Definition 26 (FTS quadratic form). Define, for a non-zero constant element y ∈ F, the real quadratic form,

By : F× F → R

(x, x) 7→ By(x) := {(x ∧ x)y, y}.
(5.91)

Lemma 27 (Shukuzawa, 2006). If y′ = σy for y 6= 0 and σ ∈ Aut(F) then

By(x) = By′(x
′), where x′ = σx ∈ F.

3.4. FTS: Examples

3.4.1. Magic Freudenthal triple systems

The Freudenthal triple system defined over the the Jordan algebra JO3 has automorphism group
Aut(FOs) = E7(−25). Elements x ∈ FOs have 1 + 1 + 27 + 27 components transforming as the funda-
mental 56 of E7(−25). The Lie algebra, given by Φ(φ,X, Y, ν) is (78+27+27+1)-dimensional. Under,
Aut(FO) ⊃ Str(JO3 ), where Str(JO3 ) = SO(1, 1)× E6(−26) the 56 breaks as,

56→ 13 + 1−3 + 271 + 27′−1, (5.92)

where, for an element x = (α, β,A,B), α and A correspond to the 1−3 and 271 respectively. The
quartic invariant corresponds to the singlet in 56× 56× 56× 56 which decomposes as,

(131−3 + 27127
′
−1)2 + 1327

′
−127

′
−127

′
−1 + 1−3271271271 + (271271)(27′−127

′
−1). (5.93)

The antisymmetric bilinear is the singlet in 56 ×a 56, while the Freudenthal product is the 133 in
56×s 56. The triple product is the 56 in (56× 56× 56)s.

The automorphism group may be used to bring an arbitrary element of a given norm into a canon-
ical form.

Theorem 28 (Shukuzawa, 2006). Every element x ∈ FO of a given rank is Aut(FO) related one of the
following canonical forms:

1. Rank 1

a) x1 =

(
1 0

0 0

)
2. Rank 2

a) x2a =

(
1 (1, 0, 0)

0 0

)

b) x2b =

(
1 (−1, 0, 0)

0 0

)
3. Rank 3

a) x3a =

(
1 (1, 1, 0)

0 0

)
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b) x3b =

(
1 (−1,−1, 0)

0 0

)
4. Rank 4

a) x4a = k

(
1 (−1,−1,−1)

0 0

)

b) x4b = k

(
1 (1, 1,−1)

0 0

)

c) x4c = k

(
1 (1, 1, 1)

0 0

)
where k > 0.

Holds for FR,FC,FH. Note, the rank 4 cases presented here differ from those originally obtained in [69], but
their equivalence is easily checked.

The maximally split Freudenthal triple system defined over the the Jordan algebra JOs
3 has auto-

morphism group Aut(FOs) = E7(7), the maximally non-compact form of E7. The automorphism
group may be used to bring an arbitrary element of a given norm into a canonical form.

Theorem 29 (Krutelevich, 2004). Every element x ∈ FAs of a given rank is Aut(FAs) related one of the
following canonical forms:

1. Rank 1

a) x1 =

(
1 0

0 0

)
2. Rank 2

a) x2a =

(
1 (1, 0, 0)

0 0

)
3. Rank 3

a) x3a =

(
1 (1, 1, 0)

0 0

)
4. Rank 4

a) x4a = k

(
1 (−1,−1,−1)

0 0

)

b) x4b = k

(
1 (1, 1, 1)

0 0

)
where k > 0.

Note, the rank 4 cases presented here differ from those originally obtained in [48], but their equivalence is easily
checked.
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3.4.2. Lorentzian Freudenthal triple systems

The Freudenthal triple system defined over the the Lorentzian spin factors J1,n−1 has automorphism
group Aut(F2,n) = SL(2,R)×SO(2, n). Elements x ∈ FOs have 1+1+n+n components transforming
as the (2,2 + n) of SL(2,R) × SO(2, n). The Lie algebra, given by Φ(φ,X, Y, ν) has n(n − 1)/2 + 1 +

(n+ 1) + (n+ 1) + 1 = (n+ 2)(n+ 1)/2 + 3 generators.
The automorphism group may be used to bring an arbitrary element of a given norm into a canon-

ical form.

Theorem 30. Every element x ∈ F2,n of a given rank is Aut(F2,n) related one of the following canonical
forms:

1. Rank 1

a) x1 =

(
1 0

0 0

)
2. Rank 2

a) x2a =

(
1 (1; 0, 0)

0 0

)

b) x2b =

(
1 (−1; 0, 0)

0 0

)

c) x2c =

(
1 (0; 1

2 ,
1
2)

0 0

)
3. Rank 3

a) x3a =

(
1 (0; 1, 0)

0 0

)

b) x3b =

(
1 (0; 0, 1)

0 0

)
4. Rank 4

a) x4a = k

(
1 (−1; 1, 0)

0 0

)

b) x4b = k

(
1 (1; 0, 1)

0 0

)

c) x4c = k

(
1 (−1; 0, 1)

0 0

)
where k > 0.

Proof. We begin by transforming to the generic canonical form(
1 A

0 β

)

and proceed case by case according to rank.
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Rank 1: Rankx = 1⇒ A = 0, β = 0 so that every rank 1 element is Aut(F2,n) related to

x1 =

(
1 0

0 0

)
. (5.94)

Rank 2: Rankx = 2⇒ A] = 0, β = 0, A 6= 0 so that every rank 2 element is Aut(F2,n) related to

x =

(
1 A

0 0

)
. (5.95)

where A is a rank 1 Jordan algebra element. A may be brought into canonical form via τ̂ where
τ ∈ Str0(J1,n−1),

τ̂ :

(
1 A

0 0

)
7→

(
1 τA

0 0

)
,

so that x may be brought into three forms corresponding to the three rank 1 canonical forms for A,

x2a =

(
1 A1a

0 0

)
; x2b =

(
1 A1b

0 0

)
; x2c =

(
1 A1c

0 0

)
. (5.96)

These are in fact unrelated as can be seen by computing the quadratic forms,

Bx2a(y) = −cµcµ + γd;

Bx2b
(y) = cµc

µ − γd;

Bx2c(y) = −cc0 − cc1 + γd0 + γd1,

(5.97)

where

y =

(
δ C

D γ

)
. (5.98)

Diagonalizing (5.97) one can verify that the three forms have distinct signatures and hence, by Sylvester’s
Law of Inertia, x2a, x2b and x2c lie in distinct orbits.

Rank 3: Rankx = 3⇒ N(A) = −β2

4 , A
] 6= 0. If β 6= 0 then A is Str0(J1,n−1) related to

(±1;
1

2
(1∓ β2

4
),

1

2
(1± β2

4
), 0, . . .) = ±E1 + E2 ∓

β2

4
E3 (5.99)

so that by an application of τ̂

x =

(
1 ±E1 + E2 ∓ β2

4 E3

0 β

)
. (5.100)

Then by Theorem 24 with c = ∓β2

4 x may be brought into the form,(
1 ±E1 + E2

0 0

)
. (5.101)
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Hence, we may assume from the outset that

x =

(
1 A

0 0

)
(5.102)

where A is a rank 2 Jordan algebra element. Via an application of τ̂ , where τ ∈ Str0(J1,n−1), x may
be brought into one of four forms corresponding to the four rank 2 canonical forms for A,

x3a =

(
1 A2a

0 0

)
; x3b =

(
1 A2b

0 0

)
; x3c =

(
1 A2c

0 0

)
; x3d =

(
1 A2d

0 0

)
. (5.103)

We are able to show x3a and x3b are Aut(F2,n) related to x3d and x3c respectively. The proof proceeds
by an application of ϕ(C̃)ψ(D)ϕ(C) with C̃] = D] = C] = 0 which yields,(

1 A2a

0 0

)
7→

(
1 + (A2a × C +D, C̃) A2a + (A2a × C)×D + (A2a, D)C̃

A2a × C +D + (A2a + (A2a × C)×D)× C̃ (A2a, D)

)
.

Assuming (A2a, D) = 1 and C̃ = −(A2a + (A2a × C)×D) we obtain(
1− (A2a × C +D,A2a + (A2a × C)×D) 0

A2a × C +D 1

)
. (5.104)

This is achieved by the choice C = (0;−1
2 ,−

1
2 , 0, . . .) and D = (0; 1

2 ,
1
2 , 0, . . .). This yields C̃ =

(0;−1
2 ,

1
2 , 0, . . .) and (A2a × C +D, C̃) = 1 so that,(

0 0

(−1; 1
2 ,

1
2 , 0, . . .) 1

)
,

which, after three applications of ϕ(−1)ψ(1)ϕ(−1), is the desired form,(
1 A2d

0 0

)
. (5.105)

Similary, x2b is Aut(F2,n) related to x2c.
The remaining two possiblilities are unrelated as can be seen by computing the quadratic forms,

Bx3c(y) = −δc0 − δc1 − cc0 − cc1 − cµcµ + γd+ γd0 + γd1 + dd0 + dd1;

Bx3d
(y) = δc0 + δc1 − cc0 − cc1 + cµc

µ − γd+ γd0 + γd1 − dd0 − dd1.
(5.106)

Diagonalizing (5.106) one can verify that the two forms have distinct signatures and hence, by Sylvester’s
Law of Inertia, x2a and x2b lie in distinct orbits.

Rank 4: Rankx = 4 ⇒ ∆(x) = −N(A) − β2

4 6= 0. By Theorem 24 we may assume from the outset
that

x =

(
1 A

0 0

)
(5.107)
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where A is a rank 3 Jordan algebra element. Via an application of τ̂ , where τ ∈ Str0(J1,n−1), x may
be brought into one of two forms corresponding to the two rank 3 canonical forms for A,

x4a =

(
1 (1; 1

2(1− k), 1
2(1 + k), 0, . . .)

0 0

)
, x4b =

(
1 (−1; 1

2(1 + k), 1
2(1− k), 0, . . .)

0 0

)
, (5.108)

where we have chosen our conventions such that ∆(x4a) = ∆(x4b) = k.
To determine under what conditions x4a and x4a are related we again use the quadratic forms,

Bx4a(y) =δkc− δc0 + δkc0 − cc0 + kcc0 − δc1 − δkc1 − cc1 − kcc1 − cµcµ

+ γd+ γd0 − γkd0 + dd0 − kdd0 − kdµdµ + γd1 + γkd1 + dd1 + kdd1;

Bx4b
(y) =− δkc+ δc0 + δkc0 − cc0 − kcc0 + δc1 − δkc1 − cc1 + kcc1 − cµcµ

− γd+ γd0 + γkd0 − dd0 − kdd0 − kdµdµ + γd1 − γkd1 − dd1 + kdd1.

(5.109)

Diagonalizing (5.109) leads to quite complicated expressions for the two metrics. However, they only
differ in three components, (1,−k

2 , k) and (−1,−k,−k
2 ), from which we see that for k > 0 the metrics

have different signatures. Hence, for k > 0 x4a and x4b lie in distinct orbits by Sylvester’s Law of
Inertia. On the other hand for k < 0 the signatures match and using a similar argument to the one
used in the rank 3 case with ϕ(C̃)ψ(D)ϕ(C) and C̃] = D] = C] = 0 we may verify they are indeed
related.
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CHAPTER 6
Algebraic black p-branes

The extremal black p-brane solutions of supergravity have played, and continue to play, a key role
in unravelling the non-perturbative aspects of M-theory. Evidently, understanding the structure of
these solutions is of utmost importance. In particular, one would like to know how such solutions
are interrelated by U-duality. The electric/magnetic charge vectors of the asymptotically flat p-brane
solutions form irreducible U-duality representations as in Table 6.7, which is the sub-table of Table 3.2
satisfying p ≤ D − 4 as required for asymptotic flatness.

Table 6.1.: Asymptotically flat p-brane U-duality representations

D G 0 1 2 3 4 5 6

10A R+ 1 1 1 1 1 1
10B SL(2,R) 2 1 2

9 SL(2,R)×R+ 2 + 1 2 1 1 2 2 + 1
8 SL(3,R)× SL(2,R) (3′,2) (3,1) (1,2) (3′,1) (3,2)
7 SL(5,R) 10′ 5 5′ 10
6 SO(5, 5;R) 16 10 16′

5 E6(6)(R) 27 27′

4 E7(7)(R) 56

In many relevant cases the macroscopic leading-order black p-brane entropy is a function of these
charges only, a result of the attractor mechanism [34–37]. Consequently, an important question is
whether two a priori distinct black p-brane charge configurations are in fact related by U-duality.
Mathematically this amounts to determining the distinct charge vector orbits under U-duality. In
the classical limit the answer for a large class of theories has been known for some time now [45, 46,
72, 185, 246]. For the maximally supersymmetric theories, obtained by the toroidal compactification
of D = 11,N = 1 supergravity, a complete classification of all orbits in all dimensions D ≥ 4 is
known [45, 46]. In the following sections we examine a subset of these theories and, in particular,
their U-duality orbits from the perspective of the Jordan algebras and Freudenthal triple systems
introduced in chapter 5.

It is well known that there are a number of supergravity theories in five dimensions that are most
naturally characterised by Jordan algebras [38–40,45,71–73,246–249]. The scale manifold geometry is
fixed by the cubic norm and, for the symmetric theories, is given by Str0(J)/Aut(J). Furthermore, the
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U-duality group is nothing but Str0(J). The black hole (string) charges transform as the fundamental
of Str0(J) and their leading-order Bekenstein-Hawking entropy is given by the cubic norm,

SD=5,BH = π
√
|N3|. (6.1)

Reducing to four dimensions the resulting theories are then described by the corresponding Freuden-
thal triple system [18,28,38–40,45,71,250–252]. The simplest way of understanding this phenomenon
is that, reducing on a circle, we obtain a single extra 1-form gauge potential from the metric (the
D = 4 graviphoton). In four dimensions the black holes carry one electric and one magnetic charge
for each gauge potential and its dual. Hence, we have 1 + 1 electric/magnetic graviphoton charges,
which are singlets under the 5-dimensional U-duality, and dim J + dim J electric/magnetic charges
coming from the dim J gauge potentials already present in D = 5, giving a “2 × 2” FTS matrix of
charges. The scalar manifolds are now given by Aut(F(J))/Str(J)′, where Str(J)′ is a compact form
of Str(J). Predictably, the U-duality group is precisely Aut(F), the black hole charges transforming
as the fundamental. The leading-order Bekenstein-Hawking entropy is given by the quartic norm,

SD=4,BH = π
√
|∆|. (6.2)

1. Jordan algebras and black holes (strings) in D = 5

Jordan algebras make their first appearance in D = 5,N = 2 Maxwell-Einstein supergravity [38–
40, 246, 249]. There are essentially two cases. First, there is the infinite sequence of reducible N = 2

theories coupled to n vector multiplets [38]. These correspond to the Lorentzian spin factors J1,n−1 =

R ⊕ Γ1,n−1. The term reducible derives from the factorisability of the scalar manifold, which is , in
turn, a consequence of the cubic norm being a product of a scalar and a quadratic form. The infi-
nite sequence of reducible N = 4 supergravities coupled to n vector multiplets admits an analogous
treatment based on J5,n−1 = R⊕ Γ5,n−1. Second, if the cubic norm does not factorise then the scalar
manifold is not necessarily symmetric and a complete classification is not known. However, under
the assumption of symmetry there are only four possibilities. These are the so-called “magic” su-
pergravities [38–40]. Their scalar manifolds and U-dualities are naturally described by the sequence
of magic Jordan algebras of 3 × 3 Hermitian matrices defined over the division algebras. They are
“magical” in the sense that their U-dualities are given by the magic square of Freudenthal, Rozenfeld
and Tits [253–255]. Of them, only the exceptional octonionic theory cannot be obtained via a trun-
cation of the maximally supersymmetric N = 8 theory, which is described by the Jordan algebra of
3×3 Hermitian matrices defined over the split-octonions. One way of understanding this is thatR,C
and H may be obtained as subalgebras of the split-octonions, whereas O clearly cannot be. The final
Jordan algebraic theory we will consider appears in the D = 6 supergravity. While, in general Jordan
algebras are perhaps less relevant from a D = 6 perspective, there are some theories that are quite
naturally characterised by Jordan algebras based on a quadratic norm. In particular, the maximally
supersymmetric N = 8 theory, which we will briefly discuss in anticipation of its role in chapter 9.
The black string charges may be represented as elements of the Jordan algebra of 2 × 2 Hermitian
matrices defined over the split-octonions and have an entropy given by the quadratic norm. Inter-
estingly, the black hole/membrane charges may be represented as split-octonionic 2-vectors, but this
particular avenue is left for future work.
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1.1. Jordan algebras and N = 2 Maxwell-Einstein supergravities

1.1.1. Reducible supergravities and Lorentzian spin factors

The n + 1 electric black hole charges may be represented as elements Q = (q; qµ), where q ∈ R and
qµ, µ = 0, 1, . . . , n− 1 is a vector of SO(1, n− 1), of the (n+ 1)-dimensional reducible Jordan algebra
J1,n−1. Note, we have adopted the (1, n− 1) convention to emphasize the relation to the correspond-
ing D = 4 theory, whereas in [249] the (1, n) convention was used. For notational convenience we
will often only write the first three components (q; q0, q1) if qi = 0 for i > 1. See section 2.2 and sec-
tion 2.3.2 for details. The reducible D = 5, N = 2 U-duality groups G1,n−1

5 are given by the reduced
structure group Str0(J1,n−1). G1,n−1

5 = SO(1, 1)× SO(1, n− 1) under which Q transforms as,

(q; qµ) 7→ (e2λq; e−λΛνµqν), where λ ∈ R,Λ ∈ SO(1, n− 1). (6.3)

The cubic norm is given by,
I3(Q) = N3(Q) = qqµq

µ. (6.4)

The black hole entropy is given by [246],

SD=5,BH =
√
|I3(Q)|. (6.5)

The U-duality charge orbits may be classified according to the U-duality invariant Jordan rank of the
charge vector. Rank 1 and 2 vectors are referred to as critical and light-like, respectively. It follows
directly from Theorem 15 that:

Proposition 31 (N = 2 reducible canonical forms). Every black hole charge vector Q = (q; qµ) ∈ J1,n−1

of a given rank is SO(1, 1)× SO(1, n− 1) related to one of the following canonical forms:

1. Rank 1

a) Q1a = (1; 0) = E1

b) Q1b = (−1; 0) = −E1

c) Q1c = (0; 1
2 ,

1
2) = E2

2. Rank 2

a) Q2a = (0; 1, 0) = E1 + E2

b) Q2b = (0; 0, 1) = E1 − E2

c) Q2c = (1; 1
2 ,

1
2) = E1 + E2

d) Q2d = (−1; 1
2 ,

1
2) = −E1 + E2

3. Rank 3

a) Q3a = (1; 1
2(1 + k), 1

2(1− k)) = E1 + E2 + kE3

b) Q3b = (−1; 1
2(1 + k), 1

2(1− k)) = −E1 + E2 + kE3

Note, if one restricts to the identity component of SO(1, n − 1) the orbits Q1c, Q2c and Q2d each split into
two cases, Q±1c, Q

±
2c and Q±2d, corresponding to the future and past light cones. Similarly, Q2a splits into two

disconnected components, Q±2a, corresponding to the future and past hyperboloids. For k > 0 the orbits Q3a

and Q3b also split into disconnected future and past hyperboloids, Q±3a and Q±3b.
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The orbit stabilizers are easily deduced from the canonical forms. However, the physically distinct
solutions are more subtle and depend also on the central charge. The various solutions were carefully
derived by different methods in [246] for the large black holes and [249] for the remaining small
orbits. The rank, supersymmetry and orbit stabilizers are summarized in Table 6.2.

Table 6.2.: Stability groups of the D = 5,N = 2 Jordan symmetric sequence

Rank Black hole Susy Stabilizer

1a small critical 1/2 SO(1, n− 1)
1c small critical 1/2 SO(n− 2) nRn−2

2a small light-like 1/2 SO(n− 1)
2b small light-like 0 SO(1, n− 2)
2c+ small light-like 1/2 SO(n− 2) nRn−2

2c− small light-like 0 SO(n− 2) nRn−2

2d− small light-like 1/2 SO(n− 2) nRn−2

2d+ small light-like 0 SO(n− 2) nRn−2

3a+(k > 0) large 1/2 SO(n− 1)
3b−(k > 0) large 1/2 SO(n− 1)
3a−(k > 0) large 0 (ZH 6= 0) SO(n− 1)
3b+(k > 0) large 0 (ZH 6= 0) SO(n− 1)
3ab(k < 0) large 0 (ZH = 0) SO(1, n− 2)

1.1.2. Magic supergravities and Hermitian matrices over the division algebras

The 3 + 3 dimA electric black hole charges may be represented as elements

Q =

 q1 Qs Qc

Qs q2 Qv

Qc Qv q3

 , where q1, q2, q3 ∈ R and Qv,s,c ∈ A (6.6)

of the (3+3 dimA)-dimensional Jordan algebra JA3 of 3×3 Hermitian matrices over the division alge-
braA. See section 2.2 and section 2.3.1 for details. The magic D = 5,N = 2 U-duality groups GA5 are
given by the reduced structure group Str0(JA3 ). See section 2.2.2 for details. For A = R,C,H,O the
U-duality GA5 is SL(3,R), SL(3,C),SU?(6), E6(−26) under which Q ∈ JA3 transforms as a 6,9,15,27.
The cubic norm is given by,

I3(Q) = N(Q) = q1q2q3 − q1QvQv − q2QcQc − q3QsQs + (QvQc)Qs +Qs(QcQv). (6.7)

The black hole entropy is given by [37],

SD=5,BH = π
√
|I3(Q)|. (6.8)

The U-duality charge orbits may be classified according to the U-duality invariant Jordan rank of the
charge vector. Rank 1 and 2 vectors are referred to as critical and light-like, respectively. It follows
directly from Theorem 13 that:

Proposition 32 (N = 2 magic canonical forms). Every black hole charge vector Q ∈ JA3 of a given rank is
U-duality related to one of the following canonical forms:
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1. Rank 1

a) Q1a = diag(1, 0, 0) = E1

b) Q1b = diag(−1, 0, 0) = −E1

2. Rank 2

a) Q2a = diag(1, 1, 0) = E1 + E2

b) Q2b = diag(−1, 1, 0) = −E1 + E2

c) Q2c = diag(−1,−1, 0) = −E1 − E2

3. Rank 3

a) Q3a = diag(1, 1, k) = E1 + E2 + kE3

b) Q3b = diag(−1,−1, k) = −E1 − E2 + kE3

Note, the orbits generated by the conical forms Q1a and Q1b are isomorphic as are those generated
by Q2a and Q2c. The ranks, supersymmetry and orbit stabilizer, which were derived in [45] and [249]
for large and small black holes respectively, are summarized in Table 6.3. The N = 6 interpretation
of the JH3 charge orbits was given in [249].

Table 6.3.: Stability groups of the magic D = 5,N = 2 supergravities

Rank Black hole Susy JO3 JH3

1 small critical 1/2 SO(1, 9) nR16 [SO(1, 5)× SO(3)] nR(4,2)

2a small light-like 0 SO(1, 8) nR16 [SO(1, 4)× SO(3)] nR(4,2)

2b small light-like 1/2 SO(9) nR16 [SO(5)× SO(3)] nR(4,2)

3a(k > 0) large 1/2 F4(−52) Usp(6)

3b(k > 0) large 0 (ZH 6= 0) F4(−20) Usp(2, 4)

Rank Black hole Susy JC3 JR3

1 small critical 1/2 [SO(1, 3)× SO(2)] nR2,2 SO(1, 2) nR2

2a small light-like 0 [SO(1, 2)× SO(2)] nR2,2 SO(1, 1) nR2

2b small light-like 1/2 [SO(3)× SO(2)] nR2,2 SO(2) nR2

3a(k > 0) large 1/2 SU(3) SO(3)
3b(k > 0) large 0 (ZH 6= 0) SU(1, 2) SO(1, 2)

1.2. Jordan algebras and N = 8 supergravity

1.2.1. D = 5,N = 8 supergravity and 3× 3 Hermitian matrices over the split-octonions

The 27 electric black hole charges Q transform as the fundamental 27 of the continuous U-duality
group E6(6). Under SO(1, 1;R)× SO(5, 5;R) the 27 breaks as

27→ 14 + 10−2 + 161 (6.9)

where the singlet may be identified as the graviphoton charge descending from D = 6, the 10 as
the remaining NS-NS sector charges and the 16 as the R-R sector charges [71]. Further decomposing
under SO(4, 4;R) one obtains

27→ 1 + 1 + 1 + 8v + 8s + 8c. (6.10)
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In this basis the charges Q may be conveniently represented as an element Q of the cubic Jordan
algebra JOs

3 of split-octonionic 3× 3 Hermitian matrices,

Q =

 q1 Qs Qc

Qs q2 Qv

Qc Qv q3

 , where q1, q2, q3 ∈ R and Qv,s,c ∈ Os. (6.11)

The cubic norm N3 (5.37) is then given by the determinant like object,

N3(Q) = q1q2q3 − q1QvQv − q2QcQc − q3QsQs + (QvQc)Qs +Qs(QcQv). (6.12)

The set of invertible linear transformations leaving the cubic norm and trace bilinear form invariant
is nothing but the D = 5 U-duality group E6(6)(R).

The black hole entropy is simply given by the cubic norm,

SBS = π
√
|N3(Q)|. (6.13)

In this case there are three U-duality orbits, 1/2-BPS and 1/4-BPS “small” orbits and a single 1/8-
BPS “large” orbit [45]. These orbits may distinguished by the Jordan rank of Q,

Rank 1 Q 6= 0, Q] = 0 1/2-BPS,

Rank 2 Q] 6= 0, N3(Q) = 0 1/4-BPS,

Rank 3 N3(Q) 6= 0 1/8-BPS,

(6.14)

It follows directly from Theorem 14 that:

Proposition 33 (N = 8 canonical forms). Every black hole charge vector Q ∈ JOs
3 of a given rank is

U-duality related to one of the following canonical forms:

1. Rank 1

a) Q1 = diag(1, 0, 0) = E1

2. Rank 2

a) Q2 = diag(1, 1, 0) = E1 + E2

3. Rank 3

a) Q3 = diag(1, 1, k) = E1 + E2 + kE3

The orbits with their rank conditions, dimensions and representative states are summarized in
Table 6.4. The 27 magnetic black string charges P form the contragradient 27′ of E6(6)(R). The orbit
classification is identical to the black hole case.

1.2.2. D = 6,N = 8 supergravity and 2× 2 Hermitian matrices over the split-octonions

The 5 + 5 electric/magnetic black string charges form an SO(5, 5;R) vector Q. Under SO(1, 1;R) ×
SO(4, 4;R) the vector breaks as

10→ 12 + 1−2 + 8v0, (6.15)
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Table 6.4.: D = 5 black hole orbits, their corresponding rank conditions, dimensions and SUSY [45].

Rank
Rank/orbit conditions

Representative state Orbit dim SUSY
non-vanishing vanishing

1 Q Q] diag(1, 0, 0)
E6(6)(R)

O(5, 5;R) nR16
17 1/2

2 Q] N3(Q) diag(1, 1, 0)
E6(6)(R)

O(5, 4;R) nR16
26 1/4

3 N3(Q) − diag(1, 1, k)
E6(6)(R)

F4(4)(R)
26 1/8

where the singlets lie in the NS-NS sector and correspond to a fundamental string and an NS5-brane,
while the 8v is made up of R-R charges. In this basis the charges Qmay be conveniently represented
as an element Q of the Jordan algebra JOs

2 of split-octonionic 2× 2 Hermitian matrices,

Q =

(
p0 Qv

Qv q0

)
, where q0, p0 ∈ R and Qv ∈ Os. (6.16)

The set of linear invertible transformations leaving the quadratic norm, N2(Q) = det(Q), invariant
is the D = 6 U-duality group SO(5, 5;R). The black string entropy is proportional to the quadratic
norm,

SD=6,BS ∼ |N2(Q)|. (6.17)

See e.g. [45, 256, 257], and Refs. therein.
There are two U-duality orbits, one 1/2-BPS “small” orbit and one 1/4-BPS “large” orbit [46, 71,

257]. These orbits may distinguished by the Jordan rank of Q as detailed in section B.1,

Rank 1 Q 6= 0, N2(Q) = 0 1/2-BPS,

Rank 2 N2(Q) 6= 0 1/4-BPS,
(6.18)

It follows directly from Theorem 14 (or as a corollary of (9.26)) that:

Proposition 34 (N = 8 canonical forms). Every black hole charge vector Q ∈ JOs
2 of a given rank is

U-duality related to one of the following canonical forms:

1. Rank 1

a) Q1a = diag(1, 0) = E1

2. Rank 2

a) Q2a = diag(1, k) = E1 + kE2

The orbits, their rank conditions, dimensions and representative states are summarized in Table 6.5.

2. Freudenthal triple systems and black holes in D = 4

Dimensionally reducing the D = 5,N = 2 Maxwell-Einstein theories described by J, we obtain the
D = 4 Maxwell-Einstein theories described by F(J) [38–40, 246, 249]. The infinite sequence of re-
ducible N = 2 theories coupled to n + 1 vector multiplets corresponds to F2,n = F(J1,n−1). Like the
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Table 6.5.: D = 6 black string orbits, their corresponding rank conditions, dimensions and SUSY [46].

Rank
Rank/orbit conditions

Representative state Orbit dim SUSY
non-vanishing vanishing

1 Q N2(Q) diag(1, 0)
SO(5, 5;R)

SO(4, 4;R) oR8
9 1/2

2 N2(Q) − diag(1, k)
SO(5, 5;R)

SO(5, 4;R)
9 1/4

parent D = 5 theory, the scalar manifold is factorisable. The infinite sequence of reducible N = 4 su-
pergravities coupled to n vector multiplets admits an analogous treatment based on F6,n = F(J5,n−1).
The magic supergravities FA = F(JA3 ) again have U-dualities given by the magic square [40]. Only
the exceptional octonionic theory cannot be obtained via a truncation of the maximally supersym-
metric N = 8 theory, which is described by FOs = F(JOs

3 ).

2.1. The FTS and N = 2 Maxwell-Einstein supergravities

2.1.1. Reducible supergravities and the reducible FTS

The (n+ 2) + (n+ 2) electric+magnetic black hole charges may be represented as elements

x =

(
−q0 P

Q p0

)
, where p0, q0 ∈ R and Q,P ∈ J1,n−1 (6.19)

of the Freudenthal triple system F2,n := F(J1,n−1). The reducible D = 4, N = 2 U-duality groups
G2,n

4 are given by the automorphism group Aut(F2,n). Aut(F2,n) = SL(2,R)× SO(2, n) under which
x ∈ F2,n transforms as a (2,2 + n). The black hole entropy is given by,

SD=4,BH = π
√
|∆(x)|. (6.20)

The U-duality charge orbits are classified according to the G2,n
4 -invariant FTS rank of the charge

vector. It follows directly from Theorem 30 that:

Theorem 35. Every black hole charge vector x ∈ F2,n of a given rank is U-duality related to one of the
following canonical forms:

1. Rank 1

a) x1 =

(
1 0

0 0

)
2. Rank 2

a) x2a =

(
1 (1; 0, 0)

0 0

)

b) x2b =

(
1 (−1; 0, 0)

0 0

)

c) x2c =

(
1 (0; 1

2 ,
1
2)

0 0

)
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3. Rank 3

a) x3a =

(
1 (0; 1, 0)

0 0

)

b) x3b =

(
1 (0; 0, 1)

0 0

)
4. Rank 4

a) x4a = k

(
1 (−1; 1, 0)

0 0

)

b) x4b = k

(
1 (1; 0, 1)

0 0

)

c) x4c = k

(
1 (−1; 0, 1)

0 0

)
where k > 0.

The orbits are summarized in Table 6.6, with a comparison to the classification of [249]. Note, the
STU model corresponds to n = 2. In this case, the rank 2 orbits become identified and have identical
cosets as do the rank 3 orbits. This is related to the triality symmetry possessed by the STU model [2],
that is absent for n 6= 2.

Table 6.6.: Stability groups of the D = 4,N = 2 reducible sequence.

Rank [249] Black hole Susy Stabilizer

1 A.3 small doubly critical 1/2 [SO(1, 1)× SO(1, n− 1)] n (R×Rn)
2a A.2 small critical 0 SO(2, n− 1)×R
2b A.1 small critical 1/2 SO(1, n)×R
2c B small critical 0 SO(2, 1)× SO(n− 2)×R
3a C.1 small light-like 1/2 SO(n− 1) nRn−1 ×R
3b C.2 small light-like 0 SO(1, n− 2) nRn−1 ×R
4a α large time-like 1/2 SO(2)× SO(n)
4b γ large time-like 0, Z = 0 SO(2)× SO(2, n− 2)
4c β large space-like 0, Z 6= 0 SO(1, 1)× SO(1, n− 1)

2.1.2. Magic supergravities and the magic FTS

The (4+3 dimA)+(4+3 dimA) electric+magnetic black hole charges may be represented as elements

x =

(
−q0 P

Q p0

)
, where p0, q0 ∈ R and Q,P ∈ JA3 . (6.21)

of the Freudenthal triple system FA := F(JA3 ). The magic D = 4, N = 2 U-duality groups GA4
are given by the automorphism group Aut(FA). For A = R,C,H,O the U-duality group GA4 is
Sp(6,R), SU(3, 3),SO?(12), E7(−25) under which x ∈ FA transforms as a 14,20,32,56. The black
hole entropy is given by,

SD=4,BH = π
√

∆(x)|. (6.22)
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The U-duality charge orbits are classified according to theGA4 -invariant FTS rank of the charge vector.
It follows directly from Theorem 28 that:

Proposition 36. Every black hole charge vector x ∈ FA of a given rank is GA4 related one of the following
canonical forms:

1. Rank 1

a) x1 =

(
1 0

0 0

)
2. Rank 2

a) x2a =

(
1 (1, 0, 0)

0 0

)

b) x2b =

(
1 (−1, 0, 0)

0 0

)
3. Rank 3

a) x3a =

(
1 (1, 1, 0)

0 0

)

b) x3b =

(
1 (−1,−1, 0)

0 0

)
4. Rank 4

a) x4a = k

(
1 (−1,−1,−1)

0 0

)

b) x4b = k

(
1 (1, 1,−1)

0 0

)

c) x4c = k

(
1 (1, 1, 1)

0 0

)
where k > 0.

The orbit stabilizers are summarized in Table 6.7. The details for FO are presented as an example
in Appendix C.

2.1.3. N = 8 black holes and U-duality orbits of E7(7)(R)

The 28+28 electric/magnetic black hole charges x transform as the fundamental 56 of the continuous
U-duality group E7(7)(R). Under SO(1, 1;R)× E6(6)(R) the 56 breaks as

56→ 13 + 1−3 + 271 + 27′−1 (6.23)

where the singlets may be identified as the graviphoton charge and its electromagnetic dual descend-
ing from D = 5. In this basis the charges x may be conveniently represented as an element x of the
Freudenthal triple system F(J

s

3),

x =

(
−q0 P

Q p0

)
, where q0, p

0 ∈ R and Q,P ∈ J
s

3. (6.24)
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Table 6.7.: Stability groups of the magic D = 4 supergravities

Rank Black hole Susy FO FH

1 small doubly critical 1/2 E6(−26) nR27 SU?(6) nR15

2a small critical 0 SO(2, 9) nR32 ×R [SO(2, 5)× SO(3)] nR8,2 ×R
2b small critical 1/2 SO(1, 10) nR32 ×R [SO(1, 6)× SO(3)] nR8,2 ×R
3a small light-like 0 F4(−20) nR26 Usp(6) nR14

3b small light-like 1/2 F4(−52) nR26 Usp(4, 2) nR14

4a large time-like 1/2 E6(−78) SU(6)

4b large time-like 0 (Z = 0) E6(−14) SU(4, 2)

4c large space-like 0 (Z 6= 0) E6(−26) SU?(6)

Rank BH Susy FC FR

1 small doubly critical 1/2 SL(3,C) nR9 SL(3,R) nR6

2a small critical 0 [SO(2, 3)× SO(2)] nR4,2 ×R SO(2, 2) nR4 ×R
2b small critical 1/2 [SO(1, 4)× SO(2)] nR4,2 ×R SO(1, 3) nR4 ×R
3a small light-like 0 SU(1, 2) nR8 SU(1, 1) nR5

3b small light-like 1/2 SU(3) nR8 SU(2) nR5

4a large time-like 1/2 SU(3)× SU(3) SU(3)
4b large time-like 0 (Z = 0) SU(1, 2)× SU(1, 2) SU(1, 2)
4c large space-like 0 (Z 6= 0) SL(3,C) SL(3,R)

Here, p0, q0 are the graviphotons and P,Q are the magnetic/electric 27′ and 27 respectively.
The set of invertible linear transformations leaving the quartic norm and the antisymmetric bilinear

form (5.64a) invariant is nothing but the D = 4 U-duality group E7(7)(R). The black hole entropy is
simply given by the quartic norm [45, 193],

SD=4,BH = π
√
|∆(x)|. (6.25)

In this case there are five U-duality orbits, three 1/2-BPS, 1/4-BPS, 1/8-BPS “small” orbits and two
“large” orbits, one 1/8-BPS and one non-BPS depending on the sign of the unique quartic E7(7)(Z)

invariant [45]. These orbits may be distinguished by the FTS rank of x,

Rank 1 x 6= 0, 3T (x, x, y) + x{x, y} = 0∀y 1/2-BPS,

Rank 2 ∃y s.t. 3T (x, x, y) + x{x, y} 6= 0, T (x, x, x) = 0 1/4-BPS,

Rank 3 T (x, x, x) 6= 0,∆(x) = 0 1/8-BPS,

Rank 4 ∆(x) > 0 1/8-BPS,

Rank 4 ∆(x) < 0 non-BPS,

(6.26)

The orbits [45] with their rank conditions, dimensions and representative states are summarized in
Table 6.8.
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Table 6.8.: D = 4 black hole orbits, their corresponding rank conditions, dimensions and SUSY.

Rank
Rank conditions

Rep state Orbit dim Susy6= 0(∃ y s.t.) = 0(∀ y)

1 x Υ(x, x, y)

(
1 (0, 0, 0)
0 0

)
E7(7)(R)

E6(6)(R) nR27
28 1/2

2 Υ(x, x, y) T (x, x, x)

(
1 (1, 0, 0)
0 0

)
E7(7)(R)

O(6, 5;R) nR32 ×R
45 1/4

3 T (x, x, x) ∆(x)

(
0 (1, 1, 1)
0 0

)
E7(7)(R)

F4(4)(R) nR26
55 1/8

4 ∆(x) > 0 −
(

1 (1, 1, k)
0 0

)
E7(7)(R)

E6(2)(R)
55 1/8

4 ∆(x) < 0 −
(

1 (0, 0, 0)
0 k

)
E7(7)(R)

E6(6)(R)
55 0

2.1.4. STU subsectors in the FTS

The STU model may be obtained as a consistent truncation of the fullN = 8 theory. This corresponds
to the simple case where we put Ps,v,c, Qs,v,c all to zero, then

x =

(
−q0 P (pi)

Q(qi) p0

)
, (6.27)

where

P (pi) = diag(p1, p2, p3), Q(qi) = diag(q1, q2, q3). (6.28)

In this case,

N3(P ) = p1p2p3, N3(Q) = q1q2q3, (6.29)

and

P# = diag(p2p3, p1p3, p1p2), Q# = diag(q2q3, q1q3, q1q2), (6.30)

and ∆ becomes

∆ = −(p · q)2 + 4
(
(p1q1)(p2q2) + (p1q1)(p3q3) + (p3q3)(p2q2)

)
− 4p0q1q2q3 + 4q0p

1p2p3. (6.31)

If we make the identifications (4.1), we recover Cayley’s hyperdeterminant. Combined with (2.79)
we obtain the transformation between P,Q and p, q:

p0

p1

p2

p3

q0

q1

q2

q3


=

1√
2



P 0 − P 2

Q0 +Q2

P 3 − P 1

−P 3 − P 1

Q0 −Q2

−P 0 − P 2

Q3 −Q1

−Q3 −Q1


. (6.32)
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This transformation gives us the relations:

P 2 = 2(p2p3 − p0q1),

P ·Q = p · q − 2p1q1,

Q2 = 2(p1q0 + q2q3),

(6.33)

hence we find

∆ = P 2Q2 − (P ·Q)2, (6.34)

which is manifestly invariant under SL(2)× SO(2, 2).
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CHAPTER 7
N = 8 supergravity and the tripartite entanglement of seven qubits:
revisited

In section 3 of chapter 4 we introduced the correspondence between N = 8 supergravity and the
tripartite entanglement of seven qubits. In the course of this discussion we found that the seven qubit
system had a very special structure which followed from the decomposition of E7 under [SL(2)]7.
We have since met the octonions and their split cousins, which play an important role in the Jordan
algebraic formulation of supergravity. In light of these observations we examine more closely the
role of the octonions and Jordan algebras in the correspondence between N = 8 black holes and the
tripartite entanglement of seven qubits.

In particular, as was shown by Duff and Ferrara in [10], we will see that the special seven qubit
state has the structure of the Fano plane, which describes the multiplication table of the imaginary
octonions. Consequently, truncating theN = 8 theory to itsN = 4 andN = 2 subsectors corresponds
to truncating the imaginary octonions to the imaginary quaternions and complexes respectively [10,
18].

We should emphasize that the appearance of the octonions via the Fano plane is qualitatively dis-
tinct from their appearance in the FTS formulation. On the one hand we have the imaginary octonions
while on the other we have the full split-octonions. Nevertheless, we may construct a dictionary relat-
ing the three formulations, charges (Cartan basis), qubits (Fano basis) and E6(6)-covariant (Freuden-
thal basis), which forms the final section of this chapter. In particular, we show that the dictionary
relating the 56 black hole charges (x, y) to the 56 state vector coefficients a, b, c, d, e, f, g is determined
precisely by the imaginary octonions.
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1. The Fano plane, octonions and the tripartite entanglement of seven
qubits

Our special state,
|Ψ〉56 = aABD|ABD〉

+ bBCE |BCE〉
+ cCDF |CDF 〉
+ dDEG|DEG〉
+ eEFA |EF A〉
+ fFGB |FGB〉
+ gGAC |GAC〉,

(7.1)

has some very distinctive structure. Observe,

1. Two distinct qubits appear together in one and only one tripartite entanglement.

2. Any two tripartite entanglements have at least one qubit in common.

3. Every qubit belongs to three distinct tripartite entanglements.

On replacing the words qubit and tripartite entanglement with the words point and line, respectively,
it becomes apparent that the state describes the projective plane of order 2. This is know as the Fano
plane, which is depicted in Figure 7.1.

That the Fano plane corresponds to the multiplication table of the imaginary octonions may be
seen in Table 7.1. The non-vanishing independent components of the octonionic structure constants

A

B C

D E

F

G

Figure 7.1.: The Fano plane is a projective plane with seven points and seven lines (the circle counts
as a line). We may associate it to the state (4.49) by interpreting the points as the seven
qubits A-G and the lines as the seven tripartite entanglements.

Cijk and their duals Clmno are then given in Table 7.2.
We may define a dual Fano plane by associating the lines to points and points to lines as in Fig-

ure 7.2.
Another way to understand the appearance of the dual Fano plane is to recognise the seven rows

in (4.47) as the lines of the Fano plane and the seven columns as vertices as in Table 7.3. The dual
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A B C D E F G

A D G −B F −E −C
B −D E A −C G −F
C −G −E F B −D A
D B −A −F G C −E
E −F C −B −G A D
F E −G D −C −A B
G C F −A E −D −B

Table 7.1.: Following the oriented lines of Figure 7.1 allows one to construct the Fano multiplication
table, by identifying the qubits with the imaginary basis octonions. The minus signs arise
when the Fano lines are followed counter to their orientation.

i j k l m n o

1 2 4 3 5 6 7
2 3 5 4 6 7 1
3 4 6 5 7 1 2
4 5 7 6 1 2 3
5 6 1 7 2 3 4
6 7 2 1 3 4 5
7 1 3 2 4 5 6

Table 7.2.: From Table 7.1 one can read off which components of the Fano structure constants Cijk
are nonzero. Using (5.8) one then obtains the associator coefficients Clmno.

Fano plane corresponds to the transpose of this matrix and leads to a dual state

|Ψ̃〉56 = Aaeg |aeg〉
+ Bbfa|bfa〉
+ Ccgb |cg b〉
+ Ddac|dac〉
+ Eebd |e bd〉
+ Ffce |f c e〉
+ Ggdf |gdf〉.

(7.2)

The dual Fano plane corresponds to the multiplication table of the imaginary octonions given in
Table 7.4. The non-vanishing independent components of the octonionic structure constants cijk and
their duals clmno are then given by Table 7.5. Another way to understand the appearance of the
dual Fano plane is to recognise the seven rows in (4.47) as the lines of the Fano plane and the seven
columns as vertices as in Table 7.3.

1.1. Subsectors

Having understood the role of the Fano plane in the N = 8 tripartite entanglement of seven qubits,
we now turn our attention to understanding the QI interpretation of its N = 4 truncation [10, 18],
for which the black holes carry 12 + 12 electric/magnetic charges transforming as a (2,12) under
the SL(2) × SO(6, 6) U-duality. As we shall see this corresponds to keeping a single line of the
dual Fano plane Figure 7.2, which represents one of the seven possible reductions to the imaginary
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a

b

c

d

e

f g

Figure 7.2.: Like the Fano plane of Figure 7.1 the dual Fano plane has seven points and seven lines,
but this time the plane is associated with the dual state (7.2) interpreting the points as
the seven tripartite entanglements and the lines as the seven qubits.

A B C D E F G

a 2 2 1 2 1 1 1
b 1 2 2 1 2 1 1
c 1 1 2 2 1 2 1
d 1 1 1 2 2 1 2
e 2 1 1 1 2 2 1
f 1 2 1 1 1 2 2
g 2 1 2 1 1 1 2

Table 7.3.: The seven terms in decomposition (4.47) may be written in a grid such that Fano lines and
vertices are rows and columns.

quaternions. We could also make the complementary truncation of the dual Fano plane, throw-
ing away one line and keeping the remaining quadrangle. This is not actually a truncation of the
N = 8 theory, but rather a particular black hole configuration with only R-R charges turned on. A
quadrangle corresponds to the four imaginary octonions orthogonal to the quaternion subalgebra
picked out by the complementary line and, hence, is not a closed subalgebra. Genuine consistent
truncations correspond to closed subalgebras of the octonions. Finally, picking a single point of
the dual Fano plane, i.e. an imaginary complex number, we recover the familiar N = 2 case with
SL(2)× SO(2, 2) ∼= [SL(2)]3.

First we recall the decomposition (4.42) of the fundamental 56-dimensional representation of E7(7)

under its maximal subgroup,
E7(7) ⊃ SL(2)A × SO(6, 6),

56 → (2,12) + (1,32).
(7.3)

TheN = 4 subsector consists of just the 24 states belonging to the (2,12). Throwing away the (1,32)

and continuing the decomposition under the remaining six factors of SL(2) we find,

(2,12)→ (2,2,1,2,1,1,1) + (2,1,1,1,2,2,1) + (2,1,2,1,1,1,2) (7.4)
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a b c d e f g

a f d −c g −b −e
b −f g e −d a −c
c −d −g a f −e b
d c −e −a b g −f
e −g d −f −b c a
f b −a e −g −c d
g e c −b f −a −d

Table 7.4.: In direct analogy with Figure 7.1 and Table 7.1, the oriented dual Fano plane of Figure 7.2
is used to write an octonionic multiplication table.

i j k l m n o

1 2 6 3 4 5 7
2 3 7 4 5 6 1
3 4 1 5 6 7 2
4 5 2 6 7 1 3
5 6 3 7 1 2 4
6 7 4 1 2 3 5
7 1 5 2 3 4 6

Table 7.5.: Dual Fano structure constants cijk and clmno are obtained from Table 7.4 in the same
manner that Table 7.2 is obtained from Table 7.1.

which corresponds to the state

|Ψ〉 = aABD|ABD〉+ eEFA|EFA〉+ gGAC |GAC〉. (7.5)

So only Alice talks to all the others. This is described by just those three lines passing through A in
the Fano plane or the aeg line in the dual Fano plane. Then the equation analogous to (4.51) is

(2,12) = (ABD) + (EFA) + (GAC) = a+ e+ g, (7.6)

and the corresponding quartic invariant, I4, reduces to the singlet in (2,12)× (2,12)× (2,12)× (2,12)

I4 ∼ a4 + e4 + g4 + 2[e2g2 + g2a2 + a2e2]. (7.7)

If we identify the 24 numbers (aABD, eEFA, gGAC) with (Pµ, Qν) with µ, ν = 0, . . . , 11 in a way anal-
ogous to (2.79) this becomes the SL(2)× SO(6, 6) invariant [2, 170, 213]

I4 = P 2Q2 − (P ·Q)2. (7.8)

So

I4 = Iaeg ≡ det(γ1(a) + γ2(g) + γ3(e)). (7.9)

This reduction from N = 8 to N = 4 corresponds to a reduction from the imaginary octonions of
Table 7.4 to the imaginary quaternions of Table 7.6. This suggest that I4 of (7.8) may be written as
Cayley’s hyperdeterminant over the imaginary quaternions, and this is indeed the case, as shown
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in [18]. From a stringy point of view, this subsector describes just the NS-NS charges.

a e g

a g −e
e −g a
g e −a

Table 7.6.: The aeg quaternionic multiplication table is obtained by selecting the aeg quaternionic
cycle from Table 7.4.

A different subsector which excludes Alice is obtained by keeping just the (1, 32) in (4.42), This is
described by just those four lines not passing through A in the Fano plane or the bcdf quadrangle
in the dual Fano plane. From a stringy point of view, this subsector describes just the R-R charges.
Following the same logic as before we find,

(1,32)→ (1,2,2,1,2,1,1) + (1,1,2,2,1,2,1) + (1,1,1,2,2,1,2) + (1,2,1,1,1,2,2) (7.10)

or symbolically

(1,32) = (BCE) + (CDF ) + (DEG) + (FGB) = b+ c+ d+ f. (7.11)

The quartic invariant, I4, reduces to the singlet in (1,32)× (1,32)× (1,32)× (1,32)

I4 ∼ b4 + c4 + d4 + f4 + 2[b2c2 + c2d2 + d2e2 + d2f2 + c2f2 + f2b2] + 8bcdf. (7.12)

This does not correspond to any N = 4 black hole but rather to an N = 8 black hole with only the
R-R charges switched on.

For N = 2, as may be seen from (4.43), we only have the [SL(2)]3 subgroup of the STU model
where there are only eight states

|Ψ〉 = aABD|ABD〉. (7.13)

This is described by just the ABD line in the Fano plane or the a vertex in the dual Fano plane. This
is simply the usual tripartite entanglement, for which

(2,2,2) = (ABD) = a, (7.14)

and the corresponding quartic invariant

I4 ∼ a4, (7.15)

is just Cayley’s hyperdeterminant

I4 = −Det a. (7.16)

1.2. Discrete symmetry of the fano plane

It ought to be clear by now that the Fano plane plays a central role in the seven qubit interpretation
ofN = 8 black holes. It is therefore natural ask how the symmetries of the Fano plane are manifested
in the 56 dimensional seven qubit state.

Let V0 = V (n + 1,F)/{0} be a n + 1-dimensional vector space, defined over a field F, with the
additive identity 0 removed. Note, F may be a finite field with characteristic q, in which case we
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denote it by Fq. The n-dimensional projective space over F, which we write as PG(n,F), is the space
of equivalence classes defined by the relation, x ∼ y iff x = αy, where α ∈ F/{0} and x, y ∈ V0.
The set of projectivities1 of PG(n,Fq) is the projective general linear group PGL(n + 1,Fq), i.e. the
group of non-singular linear transformations on V0 up to an overall multiplicative factor (see for
example, [41]).

The Fano plane is the projective plane over the finite field of order two, PG(2,F2). It is the smallest
example of a projective plane. In this case the projective general linear group, PGL(3,F2), is isomor-
phic to the projective special linear group PSL(3,F2)2, the set of determinant one projectivities. In
fact, in this particular instance, we have a second useful isomorphism, PSL(3,F2) ' PSL(2,F7).
PSL(2,F7) is the second smallest finite non-abelian simple group, after the alternating group A5,
with 168 elements. It has many guises, but, perhaps most significantly, it is the automorphism group
of the Klein quartic. Further, it is the only finite simple subgroup of SU(3) and consequently, in light
of the recently measured neutrino mixing patterns, it has been receiving increasing attention as a
candidate finite non-abelian flavour group [258, 259].
PSL(2,F7) admits a two generator presentation [259, 260],

〈 s, t | s2 = t3 = (st)7 = [s, t]4 = e 〉, (7.17)

where the commutator, [s, t], is defined as s−1t−1st.
It has six conjugacy classes and, therefore six irreps, as summarised in Table 7.7. It has a convenient

C
[1]
1 21C

[2]
2 (s) 56C

[3]
3 (t) 42C

[4]
4 ([s, t]) 24C

[7]
5 (st) 24C

[7]
6 (st2)

χ[1] 1 1 1 1 1 1

χ[3] 3 −1 0 1 1
2(−1 + i

√
7) 1

2(−1− i
√

7)

χ[3̄] 3 −1 0 1 1
2(−1− i

√
7) 1

2(−1 + i
√

7)

χ[6] 6 2 0 0 −1 −1

χ[7] 7 −1 1 −1 0 0

χ[8] 8 0 −1 0 1 1

χ[56] 56 8 2 0 0 0

Table 7.7.: Character table for PSL(2,F7). The number in square brackets on each conjugacy class
Cα corresponds to the order of the elements in that class. A simple representative for each
class is given in the parentheses. Note that geometrical interpretation of the 6 is given by
its action on the Fano plane [258]. The final row corresponds to the compound characters
of the reducible 56 dimensional representation described here.

action defined on the Fano plane given by the permutation of its points. For example, we may
consider the permutations,

sfano = (AC)(B)(DE)(F )(G), tfano = (ADB)(C)(EFG), (7.18)

which are automorphisms of the un-oriented Fano plane. This yields a 7 dimensional real represen-
tation for which it is easily verified that (7.17) is satisfied. This representation is reducible,

7fano → 1 + 6, (7.19)
1A projectivity is a linear bijection PG(n,F) → PG(n,F) that preserves incidence.
2More generally, PGL(n,Fq) ' PSL(n,Fq) iff gcd(n+ 1, q) = 1.
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as can be checked from its characters.
These permutations also interchange the lines of the Fano plane and, consequently, may be consid-

ered as permutations of the points of the dual Fano plane,

sdualfano = (ab)(ce)(d)(f)(g), tdualfano = (a)(bcg)(efd). (7.20)

As described in [18], the Fano plane representation may be used to build a 56-dimensional rep-
resentation of the PSL(2,F7) generators, denoted s56 and t56, acting on our particular tripartite
entangled 7-qubit state, which leaves quartic entanglement measure, I4, invariant. The structure
of the generators is depicted in Figure 7.3. PSL(2,F7) has six classes and therefore six irreps, as

1 20 40 56

1

20

40

56

1 20 40 56

1

20

40

56

1 20 40 56

1

20

40

56

1 20 40 56

1

20

40

56

Figure 7.3.: Graphical representation of the generators of the 56 dimensional representation of
PSL(2,F7). These are the 56× 56 matrices s56 (left) and t56 (right). The gridlines
partition the matrices into 8× 8 blocks that transform a single letter, while the filled
squares correspond to the non-zero unit entries. Clearly each letter octet is transformed
into another, without mixing between octets. One can read off, for example, that s56

converts a’s to b’s and vice versa, while t56 transforms the a’s amongst themselves.

summarised in Table 7.7 [258]. Note, the final row corresponds to the compound characters of the
56-dimensional reducible representation. To determine how it decomposes, we may use,

aµ =
1

g

∑
α

gαχ
[µ]∗
α χ[56]

α , (7.21)

where aµ counts the number of times irrep µ appears in the 56. Note, g and gα are the dimensions of
the group and conjugacy class, Cα, respectively. Using Table 7.7 one finds,

aµ = {2, 0, 0, 4, 2, 2}, (7.22)

and, hence, we have
56 = 1 + 1 + 6 + 6 + 6 + 6 + 7 + 7 + 8 + 8. (7.23)
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This is consistent with the breaking of the fundamental 56 of E7 under PSL(2,F7), which goes as3,

56→ 1 + 1 + 6 + 6 + 6 + 6 + 7 + 7 + 8 + 8. (7.24)

In [15] the PSL(2,F7) symmetry of the N = 8 black hole entropy has been related, via a special set
of 63 3-qubit operators, to the generalised hexagon of order two using the dictionary constructed in
section 1.3.1. They further suggested that the full G2(2) symmetry of the hexagon may be preserved
by the black hole entropy.

In [261] in was shown that the U-duality subgroup which maps purely electric and magnetic black
hole solutions amongst themselves is the Weyl group of E7(7). This is analogous to the Z2 subgroup
of the U(1) electric-magnetic duality group in Maxwell theory. Clearly, PSL(2,F7) preserves some
more structure than the Weyl group. In the seven qubit interpretation it does not mix the tripartite
entanglements, whereas the full E7(7) would. It is not immediately clear that there is an obvious
black hole interpretation. However, it is tempting to speculate that there might be some connection
to the supersymmetric configuration of seven intersecting D-branes, which itself has a Fano plane
structure [262].

1.3. Three descriptions

We have now seen three distinct formulations of the fundamental 56 of E7 and their associated quar-
tic invariants:

1. Cartan basis:
E7 ⊃ SO(8),

56→ 28 + 28,

I4(x, y) = − tr(xy)2 + 1
4(trxy)2 − 4(Pf x+ Pf y).

(7.25)

where xIJ and yIJ are antisymmetric 8× 8 matrices and Pf is the Pfaffian.

2. Freudenthal/Jordan basis

E7 ⊃ E6,

56→ 1 + 27 + 1 + 27′,

I4(x) = −(p0q0 − Tr(P,Q))2 − 4[p0N(Q)− q0N(P )− Tr(P ], Q])].

(7.26)

where A is a member of the cubic Jordan algebra JOs
3 .

3We are grateful to Christopher Luhn for this point.

129



3. Fano basis

E7 ⊃ SL(2)7, (7.27a)

56→(2,2,1,2,1,1,1)

+ (1,2,2,1,2,1,1)

+ (1,1,2,2,1,2,1)

+ (1,1,1,2,2,1,2)

+ (2,1,1,1,2,2,1)

+ (1,2,1,1,1,2,2)

+ (2,1,2,1,1,1,2),

(7.27b)

I4 = a4 + b4 + c4 + d4 + e4 + f4 + g4

+ 2
[
a2b2 + a2c2 + a2d2 + a2e2 + a2f2 + a2g2

+ b2c2 + b2d2 + b2e2 + b2f2 + b2g2

+ c2d2 + c2e2 + c2f2 + c2g2

+ d2e2 + d2f2 + d2g2

+ e2f2 + e2g2

+ f2g2
]

+ 8 [abce+ bcdf + cdeg + defa+ efgb+ fgac+ gabd] ,

(7.27c)

where
a4 = 1

2ε
A1A2εB1B2εD1D4εA3A4εB3B4εD2D3

× aA1B1D1aA2B2D2aA3B3D3aA4B4D4 ,
(7.27d)

etc;

a2b2 = 1
2ε
A1A2εB1B3εD1D2εB2B4εC3C4εE3E4

× aA1B1D1aA2B2D2bB3C3E3bB4C4E4 ,
(7.27e)

etc;

abce = 1
2ε
A1A4εB1B2εC2C3εD1D3εE2E4εF3F4

× aA1B1D1bB2C2E2cC3D3F3eE4F4A4 ,
(7.27f)

etc.

Black holes are more conveniently described in either the Cartan or Freudenthal bases, whereas the
Fano basis is tailored to the qubits. Hence it is important to find the three dictionaries that relate these
three descriptions. As we shall see the structures of these dictionaries are themselves interesting, with
the octonions once again playing an intriguing role.

1.3.1. Cartan-Fano dictionary

The dual Fano plane structure constants of Table 7.5 define antisymmetric matrices xIJ and yIJ ac-
cording to the dictionary of Table 7.8.

The 56 state vector coefficients, aABD through gGAC , are arranged in xIJ and yIJ according to the
octonionic multiplication table of the dual Fano plane, compare Table 7.4 with the matrices (7.28a)
and (7.28b) below. This uniquely determines the rows of Table 7.8.
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The positions of the binary indices in xIJ and yIJ are specified by the columns of Table 7.8. The
first column describes the position of 111 in xIJ (and 000 in yIJ ). Note, the first column consists of all
pairs i0, where i = 1, . . . , 7, i.e. the first row and column of xIJ and yIJ . To understand the structure
of the remaining three columns let us consider a specific example given by considering Alice’s qubit
A. For each row in Table 7.8 one can form a triple ijk from the pair i0, appearing in the first column,
and any one of the remaining pairs jk in that row. We note that 715 is the unique triple common to
rows aABD, eEFA and gGCA, the subsector defined by the common qubit A. Then, in each case the
non-trivial pair jk sits in the column labelled by the position of the common qubit. In our example
this is A. Therefore the pair 57 belonging to row aABD sits in the 100 column where the position of
A in ABD corresponds to the position of 1 in 100 or, equivalently, the position of 0 in 011. Similarly,
71 sits in the column labelled 001 because A is last in eEFA. Finally, 15 sits in the column labelled 010

because A is second in gGAC . Repeating this procedure for the remaining six qubits, B through G,
uniquely determines all the columns of Table 7.8. This procedure may be followed to construct the
dictionary based on any octonionic basis.

xIJ 111 010 001 100
yIJ 000 101 110 011

aABD 10 26 34 57
bBCE 20 37 45 61
cCDF 30 41 56 72
dDEG 40 52 67 13
eEFA 50 63 71 24
fFGB 60 74 12 35
gGAC 70 15 23 46

Table 7.8.: The Cartan basis dictionary. The binary triples denote the indices on the 56 state vector
coefficients, while the pairs give positions within the xIJ , yIJ matrices. These are the
positive elements of xIJ and yIJ , the remaining elements being fixed by antisymmetry.

xIJ =



0 −a111 −b111 −c111 −d111 −e111 −f111 −g111

a111 0 f001 d100 −c010 g010 −b100 −e001

b111 −f001 0 g001 e100 −d010 a010 −c100

c111 −d100 −g001 0 a001 f100 −e010 b010

d111 c010 −e100 −a001 0 b001 g100 −f010

e111 −g010 d010 −f100 −b001 0 c001 a100

f111 b100 −a010 e010 −g100 −c001 0 d001

g111 e001 c100 −b010 f010 −a100 −d001 0


, (7.28a)

yIJ =



0 −a000 −b000 −c000 −d000 −e000 −f000 −g000

a000 0 f110 d011 −c101 g101 −b011 −e110

b000 −f110 0 g110 e011 −d101 a101 −c011

c000 −d011 −g110 0 a110 f011 −e101 b101

d000 c101 −e011 −a110 0 b110 g011 −f101

e000 −g101 d101 −f011 −b110 0 c110 a011

f000 b011 −a101 e101 −g011 −c110 0 d110

g000 e110 c011 −b101 f101 −a011 −d110 0


. (7.28b)
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We can summarise the dictionary by writing I = (0, i), i ∈ {1, . . . , 7}, (a0, a1, . . . , a7) = (0, a, . . . , g)

and

xIJ =



aI111 J = 0,

cIJKa
K
010 |I − J | = 3 or 4,

cIJKa
K
001 |I − J | = 1 or 6,

cIJKa
K
100 |I − J | = 2 or 5,

yIJ =



aI000 J = 0,

cIJKa
K
101 |I − J | = 3 or 4,

cIJKa
K
110 |I − J | = 1 or 6,

cIJKa
K
011 |I − J | = 2 or 5.

(7.29a)

Here we have extended cijk to ciJK by setting ciJK = cijk whenever J(= j) and K(= k) are not equal
to 0, while defining ciJK to be zero whenever J or K is equal to 0.

The 8× 8 gamma matrices γiIJ in seven dimensions, which satisfy the Clifford algebra

{γi, γj} = 2δij1, (7.30)

can be written in terms of the octonionic structure constants. The hermitian (purely imaginary and
antisymmetric) gamma matrices in seven dimensions can then be chosen as

γiIJ = i
(
ciIJ ± δiIδJ0 ∓ δiJδI0

)
, (7.31)

where the signs are correlated. The antisymmetric products of gamma matrices are defined as usual,
with unit weight,

γij···k = γ[iγj · · · γk]. (7.32)

The antisymmetric self-dual and anti-self-dual tensors c±IJKL, (I, J, . . . = 0, 1, 2, . . . , 7) in eight dimen-
sions will be defined as:

c±ijkl = cijkl, and c±ijk0 = ±cijk. (7.33)

With the above choices of gamma matrices one finds

γijIJ = cijIJ + δiIδ
j
J − δ

i
Jδ

j
I ± c

ij
I δJ0 ∓ c ijJ δI0

= c±ijIJ + δiIδ
j
J − δ

i
Jδ

j
I .

(7.34)

Note that (−iγi)IJ do not form an 8× 8 representation of the octonions;

(−iγi)IK(−iγj)KJ = −δijδIJ − γijIJ
= −δijδIJ − cijab − δiIδ

j
J + δiJδ

j
I ∓ c

ij
I δJ0 ± c ijJ δI0,

(7.35)

which is to be compared with

eiej = −δij + cijkek. (7.36)

Whereas

cijk(−iγk)IJ = cijk(c
i
IJ ± δiIδJ0 ∓ δiJδI0). (7.37)
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Accordingly one can rewrite (7.29a) as

xJK = −iγiJK ×



ai111 K = 0,

ai010 |J −K| = 3,

ai001 |J −K| = 1,

ai100 |J −K| = 2,

yJK = −iγiJK ×



ai000 K = 0,

ai101 |J −K| = 3,

ai110 |J −K| = 1,

ai011 |J −K| = 2.

(7.38)

This dictionary has been established empirically. While it has been verified for a number of distinct
Fano planes (octonionic bases), we do not have a proof, as such, that it holds for all possibilities.
However, it seems unlikely that it does not. Moreover, given that the automorphism group of the
octonions, which maps one dictionary into another, is G2 ⊂ E7, we would expect it to leave I4

invariant. So, if it works for one set of octonions it should work for all.

1.3.2. Freudenthal-Fano dictionary

Let us now construct the analogous dictionary relating the 56 charges in the Freudenthal basis with
the 56 state vector coefficients specifying the tripartite entanglement of seven qubits. See also [16]. It
is instructive to consider the chain of group decompositions E7(7) → E6(6) → SO(4, 4) under which
the 56 decomposes as

56→ 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 8s + 8c + 8v + 8s + 8c + 8v. (7.39)

Combining this with the STU embedding in the FTS (6.27), it is clear that the eight state vector coef-
ficients, aABD, are associated with the eight singlets appearing in (7.39). Now, consider the subgroup
containing the three copies of SL(2) associated with the tripartite entanglement of qubits A, B and
D,

E7(7) ⊃ SL(2)A × SL(2)B × SL(2)D × SO(4, 4), (7.40)

under which,

56→ (2,2,2,1) + (2,1,1,8v) + (1,2,1,8s) + (1,1,2,8c). (7.41)

We note that qubit A transforms as doublet with the 8v. This suggests that we associate the subsector
defined by the common qubit A, namely aABD|ABD〉 + eEFA|EFA〉 + gGAC |GAC〉, with the 8v.
This is one of the consistent N = 4 truncations of the full N = 8 theory, the 24 black hole charges
transforming as a (2,12) of SL(2)A × SO(6, 6) [10]. Repeating this analysis for qubit B leads us to
identify the bBCE and fFGB with the 8s, while considering D we identify cCDF and dDEG with the
8c.

To specify more precisely the dictionary between (eEFA, gGAC) and (Pv, Qv), (bBCE , fFGB) and
(Ps, Qs), and finally, (cCDF , dDEG) and (Pc, Qc), we begin by noting that the eight charges of the
STU model may be arranged in a cube as depicted in Figure 4.1. Following [50], the cube may be
partitioned into a pair of 2× 2 matrices, (Mi, Ni) in three independent ways. These are given by the
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three possible slicings of the cube along its planes of symmetry,

M1 =

(
−p3 q2

q1 q0

)
, N1 =

(
p0 −p1

−p2 q3

)
, (7.42a)

M2 =

(
−p2 q3

q1 q0

)
, N2 =

(
p0 −p1

−p3 q2

)
, (7.42b)

M3 =

(
−p1 q3

q2 q0

)
, N3 =

(
p0 −p2

−p3 q1

)
. (7.42c)

For any element, (
r s

t u

)
∈ SL(2)i, 1 ≤ i ≤ 3, (7.43)

the action on the cube is given by

(Mi, Ni) 7→ (rMi + sNi, tMi + uNi). (7.44)

The individual actions of the three SL(2)i all commute and, therefore, this provides a natural repre-
sentation of [SL(2)]3. Define the three binary quadratic forms, one for each slicing,

fi(x, y) = det(Mix+Niy), 1 ≤ i ≤ 3. (7.45)

Explicitly

f1 = −(q2q1 + p3q0)x2 + (p · q − 2p3q3)xy − (p2p1 − p0q3)y2,

f2 = −(q1q3 + p2q0)x2 + (p · q − 2p2q2)xy − (p1p3 − p0q2)y2,

f3 = −(q3q2 + p1q0)x2 + (p · q − 2p1q1)xy − (p3p2 − p0q1)y2.

(7.46)

These quadratic forms may also be systematically derived using transvectants as presented in [18].
Each one is invariant under two of the three factors in [SL(2)]3. For example, f1 is invariant under the
subgroup {id1} × SL2(2) × SL3(2) ⊂ [SL(2)]3. Taking the determinant of the Hessian, H(fi) = γi(a)

yields Cayley’s hyperdeterminant

detH(fi) = det

(
(fi)xx (fi)xy

(fi)yx (fi)yy

)
= det γi(a) = −Det aABC , 1 ≤ i ≤ 3. (7.47)

Now, consider keeping (pi, qi) and only one of (Ps, Qs), (Pv, Qv) or (Pc, Qc) and computing I4 from
the FTS. Recall, this gives us the entropy of one of the three N = 4 subsectors as defined by one of
the three qubits, A,B orD. Keeping only (pi, qi, Pv, Qv), theN = 4 subsector defined by the common
qubit A, one finds

I4 = 4(p2p1 − p0q3)(q2q1 + p3q0)− 4(p.q − 2p3q3)2 + 4Pv
2Qv

2 − (P v ·Qv)2 (7.48)

− 4(p2p1 − p0q3)Qv
2 − 4(q2q1 + p3q0)Pv

2 − 4(p · q − 2p3q3)Pv ·Qv, (7.49)

where Pv2 = PvP̄v and 2Pv · Qv = (PvQ̄v + QvP̄v). The terms involving (pi, qi) correspond to γ1(a),
which is correctly associated with qubit A,

2(p1p2 − p0q3) = −γ1(a)00, 2(q1q2 + p3q0) = −γ1(a)11, p · q − 2p3q3 = γ1(a)01. (7.50)
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This agrees with the conclusions drawn from the decomposition given in (7.41). Keeping either
(P s, Qs) or (P c, Qc) instead would have resulted in a different associated slicing of the cube Figure 4.1
and, hence, matrix γi(a). We then identify (gGAC , eEFA) with (Pv, Qv) such that

Pv
2 = γ2(g)00 + γ3(e)00, Qv

2 = γ2(g)11 + γ3(e)11, Pv ·Qv = γ2(g)01 + γ3(e)01, (7.51)

where, for example, the index on γ2(g) is determined by the position of the common qubit A in the
corresponding tripartite subsystem, GAC. Computing I4 one finds

I4 = det(γ1(a) + γ3(e) + γ2(g)) ∼ −Det a−Det e−Det g + 2(a2g2 + a2e2 + e2g2), (7.52)

where products like

a2e2 = 1
2ε
A1A4εB1B2εD1D2εE3E4εF3F4εA2A3aA1B1D1aA2B2D2eE3F3A3eE4F4A4 , (7.53)

describe the entanglement between two tripartite subsystems connected by a common qubit, in this
case A. This may be repeated for the remaining two cases, keeping (Ps, Qs) or (Pc, Qc), associated
with the common qubits B and D respectively, to construct the whole dictionary4. For each of the
seven possibleN = 4 subsectors one obtains the appropriate result, analogous to (7.52), as presented
in (7.56).

We are now able to select any particular subsector of the full N = 8 theory by choosing the appro-
priate components of the FTS and systematically determine the corresponding qubit system and its
measure of entanglement.

In summary the dictionary is

(
p0, p1, p2, p3, q0, q1, q2, q3

)
=
(
a0, −a1, −a2, −a4, a7, a6, a5, a3

)
,

Pv = (gG0C , eEF0), Qv = (gG1C , eEF1),

Ps = (fFG0, b0CE), Qs = (fFG1, b1CE),

Pc = (d0EG, cC0F ), Qc = (d1EG, cC1F ),

(7.54)

where explicitly(
d0 d1

d2 d3

)
=

(
P 0
c − P 4

c P 1
c − P 5

c

−P 1
c − P 5

c P 0
c + P 4

c

) (
d4 d5

d6 d7

)
=

(
Q0
c −Q4

c Q1
c −Q5

c

−Q1
c −Q5

c Q0
c +Q4

c

)
(
c0 c1

c4 c5

)
=

(
−P 6

c − P 2
c −P 3

c − P 7
c

P 3
c − P 7

c P 6
c − P 2

c

) (
c2 c3

c6 c7

)
=

(
−Q6

c −Q2
c −Q3

c −Q7
c

Q3
c −Q7

c Q6
c −Q2

c

)
(
f0 f2

f4 f6

)
=

(
P 3
s − P 7

s P 6
s + P 2

s

P 6
s − P 2

s P 3
s + P 7

s

) (
f1 f3

f5 f7

)
=

(
Q3
s −Q7

s Q6
s +Q2

s

Q6
s −Q2

s Q3
s +Q7

s

)
(
b0 b1

b2 b3

)
=

(
P 1
s − P 5

s P 4
s − P 0

s

P 4
s + P 0

s P 1
s + P 5

s

) (
b4 b5

b6 b7

)
=

(
Q1
s −Q5

s Q4
s −Q0

s

Q4
s +Q0

s Q1
s +Q5

s

)
(
g0 g1

g4 g5

)
=

(
P 0
v + P 4

v P 5
v + P 1

v

P 5
v − P 1

v P 0
v − P 4

v

) (
g2 g3

g6 g7

)
=

(
Q0
v +Q4

v Q5
v +Q1

v

Q5
v −Q1

v Q0
v −Q4

v

)
(
e0 e2

e4 e6

)
=

(
P 2
v + P 6

v P 7
v + P 3

v

P 7
v − P 3

v P 2
v − P 6

v

) (
e1 e3

e5 e7

)
=

(
Q2
v +Q6

v Q7
v +Q3

v

Q7
v −Q3

v Q2
v −Q6

v

)
.

(7.55)

4Note, determining the precise form of the full dictionary and verifying that it does indeed give the stated results was
done explicitly using Mathematica.
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The N = 4 subsector invariant under SL(2)X × SO(6, 6) is given by

Idac = det(γ1(d) + γ3(a) + γ2(c)), X = D

Iebd = det(γ1(e) + γ3(b) + γ2(d)), X = E

Ifce = det(γ1(f) + γ3(c) + γ2(e)), X = F

Igdf = det(γ1(g) + γ3(d) + γ2(f)), X = G

Iaeg = det(γ1(a) + γ3(e) + γ2(g)), X = A

Ibfa = det(γ1(b) + γ3(f) + γ2(a)), X = B

Icgb = det(γ1(c) + γ3(g) + γ2(b)), X = C.

(7.56)

Let us conclude with some remarks on the status of these dictionaries. First, while the Cartan-
Fano dictionary was precisely specified by our rules, we did not really understand their basic origin.
However, it was subsequently shown that it is intimately related to the geometry of the split Cayley
hexagon of order two, which is in turn related to the 63 real generalized Pauli matrices of 3-qubits [15].
The significance of these structures on the black hole side is unclear. We leave this for future work.
Similarly, we do not properly understand the Fano-Freudenthal dictionary. In fact, it would have not
been possible to construct in its entirety or check without the rather impressive Mathematica package
“Black Holes, Qubits and Octonions” developed by Duminda Dayahanake. It would be desirable to
have a complete dictionary expressed in a mathematically concise manner, but we also leave this for
future work.
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CHAPTER 8
The FTS classification of qubit entanglement

The STU model has played a rather ubiquitous role in the developments described so far. We draw
your attention to two such instances: (1) The classification STU black holes corresponded to the
entanglement classification of three qubits. (2) The STU model admits an FTS interpretation, as we
discovered via its embedding in the N = 8 theory.

Consequently, we would expect the elegant mathematics of Jordan algebras and Freudenthal triple
systems to naturally capture the entanglement classification of three qubits. As we shall see in sec-
tion 1, the FTS ranks, in a succinct algebraic manner, do indeed yield the correct classification. The
entanglement classes correspond to FTS ranks 0, 1, 2a, 2b, 2c, 3 and 4, or, for SLOCC*, simply 0,
1, 2, 3, 4. In fact, we would argue that this is perhaps the most natural classification scheme. This
is not only a matter of aesthetics. The classification of [44] based on the local entropies SA,B,C (see
section 2.6 of section 2) did not make the [SL(2,C)]3 symmetry manifest. While the hyperdeteminant
is SLOCC-covariant, the local entropies are not; they are natural objects for a classification based on
local unitaries not SLOCC. This observation is important from the perspective of generalising to n
qubits. Three qubits is the only non-trivial data point we have for a full SLOCC classification. If we
seek to generalise this result, we should first formulate it in terms of the objects that will generalise,
i.e. SLOCC-covariants. The FTS formulation is manifestly SLOCC-covariant since the automorphism
group coincides with the SLOCC-equivalence group.

More speculatively, by studying the FTS classification, one might hope to identify those algebraic
features which would usefully carry over to an n-qubit generalisation. Some preliminary ideas in
this direction are presented in section 2.

1. The FTS classification of three qubit entanglement

1.1. The STU Freudenthal triple system

In chapter 6 we saw that the STU model is given by the n = 2 point of the sequence F(R ⊕ Γ1,n−1),
which corresponds to sequence of reducibleN = 2 supergravities coupled to n+ 1 vector multiplets.
For arbitrary n the automorphism group is given by SL(2,R) × SO(2, n;R), which, for the STU
model, picks out one SL(2,R) as special, obscuring its triality invariance [2]. However, a simple
rotation allows to rewrite the Jordan algebra R ⊕ Γ1,1 as an equivalent Jordan algebra, R ⊕ R ⊕ R,
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which is specific to the STU model. The resulting FTS treats all three factors of SL(2,R) on an equal
footing. Recall, for R⊕ Γ1,1 elements are written,

A = (a; aµ), (8.1)

where aµ is an SO(1, 1;R) vector. The cubic norm and the (counter-intuitive) Jordan product are
given by,

N3(A) = aaµaµ, A ◦B = (ab; a0b0 + a1b1, a0b1 + b0a1). (8.2)

Letting
A1 = a, A2 = a0 + a1, A3 = a0 − a1 (8.3)

we find
N3(A) = A1A2A3, A ◦B = (A1B1, A2B2, A3B3). (8.4)

This motivates:

Definition 37 (STU cubic Jordan algebra). We define the STU cubic Jordan algebra, denoted JSTU , as the
real vector space R⊕R⊕R with elements,

A = (A1, A2, A3), (8.5)

and cubic norm,
N3(A) = A1A2A3. (8.6)

Using the cubic Jordan algebra construction (5.22), one finds

Tr(A,B) = A1B1 +A2B2 +A3B3, (8.7)

Then, using Tr(A], B) = 3N(A,A,B), the quadratic adjoint is given by

A] = (A2A3, A1A3, A1A2), (8.8)

and therefore
(A])] = (A1A2A3A1, A1A2A3A2, A1A2A3A3)

= N(A)A.
(8.9)

It is not hard to check Tr(A,B) is non-degenerate and so N3 is Jordan cubic. Hence, we have a bona
fide cubic Jordan algebra JSTU = R⊕R⊕Rwith product given by

A ◦B = (A1B1, A2B2, A3B3). (8.10)

The structure and reduced structure groups are given by [SO(2,R)]3 and [SO(2,R)]2 respectively.
The 3-qubit cubic Jordan algebra is defined by simply promoting R to C,

Definition 38 (3-qubit cubic Jordan algebra). We define the 3-qubit cubic Jordan algebra, denoted JABC ,
as the complex vector space C⊕ C⊕ C with elements:

A = (A1, A2, A3), (8.11)
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and cubic norm,
N3(A) = A1A2A3. (8.12)

1.2. The 3-qubit Freudenthal triple system

Definition 39 (3-qubit Freudenthal triple system). We define the 3-qubit Freudenthal triple system, de-
noted FABC , as the complex vector space,

FABC := C⊕ C⊕ JABC ⊕ JABC , (8.13)

with elements (
α A = (A1, A2, A3)

B = (B1, B2, B3) β

)
(8.14)

and antisymmetric bilinear form, quartic norm and triple product as defined in (5.64).

We identify the eight complex components of FABC with the three qubit wavefunction |ψ〉 =

aABC |ABC〉, (
α (A1, A2, A3)

(B1, B2, B3) β

)
↔

(
a111 (a001, a010, a100)

(a110, a101, a011) a000

)
(8.15)

so that

|Ψ〉 = aABC |ABC〉 ↔ Ψ :=

(
a111 (a001, a010, a100)

(a110, a101, a011) a000

)
. (8.16)

Using (B.14) one finds that the quartic norm ∆(Ψ) is related to Cayley’s hyperdeterminant by

∆(Ψ) = {T (Ψ,Ψ,Ψ),Ψ}

= 2 det γA = 2 det γB = 2 det γC

= −2 Det aABC ,

(8.17)

The triple product maps a state Ψ, which transforms as a (2,2,2) of [SL(2,C)]3, to another state
T (Ψ,Ψ,Ψ), cubic in the state vector coefficients, also transforming as a (2,2,2). Explicitly, T (Ψ,Ψ,Ψ)

may be written as
T (Ψ,Ψ,Ψ) = TABC |ABC〉 (8.18)

where TABC takes one of three equivalent forms

TA3B1C1 = εA1A2aA1B1C1(γA)A2A3

TA1B3C1 = εB1B2aA1B1C1(γB)B2B3

TA1B1C3 = εC1C2aA1B1C1(γC)C2C3 .

(8.19)

The γ’s are related to the local entropies of section 2.6 by

SA = 4
[

tr γB†γB + tr γC†γC
]
, tr γA†γA = 1

8

[
SB + SC − SA

]
(8.20)

and their cyclic permutations. This permits us to link T to the norm, local entropies and the Kempe
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Class Rank
FTS rank condition

vanishing non-vanishing

Null 0 Ψ −
A-B-C 1 3T (Ψ,Ψ,Φ) + {Ψ,Φ}Ψ Ψ
A-BC 2a T (Ψ,Ψ,Ψ) γA

B-CA 2b T (Ψ,Ψ,Ψ) γB

C-AB 2c T (Ψ,Ψ,Ψ) γC

W 3 ∆(Ψ) T (Ψ,Ψ,Ψ)
GHZ 4 − ∆(Ψ)

Table 8.1.: The entanglement classification of three qubits as according to the FTS rank system.

invariant of section 2.6:

〈T |T 〉 = 2
3(K − |ψ|6) + 1

16 |ψ|
2(SA + SB + SC). (8.21)

Having couched the 3-qubit system within the FTS framework we may assign an abstract FTS rank
(5.89) to an arbitrary state Ψ:

RankΨ = 1⇔ Υ(Ψ,Ψ,Φ) = 0, Ψ 6= 0;

RankΨ = 2⇔ T (Ψ) = 0, Υ(Ψ,Ψ,Φ) 6= 0;

RankΨ = 3⇔ ∆(Ψ) = 0, T (Ψ) 6= 0;

RankΨ = 4⇔ ∆(Ψ) 6= 0.

(8.22)

Strictly speaking, the automorphism group Aut(FABC) is not simply SL(2,C)×SL(2,C)×SL(2,C)

but includes a semi-direct product with the interchange triality A↔ B ↔ C. The rank conditions are
invariant under this triality. Hence the ranks naturally provide an SLOCC* classification. However,
as we shall demonstrate, the set of rank 2 states may be subdivided into three distinct classes which
are inter-related by this triality. In the next section we show that these rank conditions give the correct
entanglement classification of three qubits as in Table 8.1.

1.3. The FTS rank entanglement classes

1.3.1. Rank 1 and the class of separable states

A non-zero state Ψ is rank 1 if and only if

Υ(Ψ,Ψ,Φ) := 3T (Ψ,Ψ,Φ) + {Ψ,Φ}Ψ = 0, ∀ Φ. (8.23)

The weaker condition T (Ψ,Ψ,Ψ) = 0 implies that there is at most one non-vanishing γ since,

(γA)A1A2(γC)C1C2 = εB1B2εZ1Z2aA1B1Z1aA2B2Z2(γC)C1C2

= εB2B1aA1B1C1TA2B2C2 + εB1B2aA2B2C1TA1B1C2 ,
(8.24)

and similarly for (γB)B1B2(γA)A1A2 and (γC)C1C2(γB)B1B2 . In component form Υ is given by,

−ΥA1B1C1 = εA2A3bA3B1C1(γA)A1A2 + εB2B3bA1B3C1(γB)B1B2 + εC2C3bA1B1C3(γC)C1C2 (8.25)
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where

|φ〉 = bABC |ABC〉 ↔ Φ =

(
b111 (b001, b010, b100)

(b110, b101, b011) b000

)
. (8.26)

Hence, (8.23) implies all three gammas must vanish. Using (8.20) it is then clear that all three local
entropies vanish.

Conversely, SA = SB = SC = 0 implies that each of the three γ’s vanish and the rank 1 condition
is satisfied. Hence FTS rank 1 is equivalent to the class of separable states as in Table 8.1.

1.3.2. Rank 2 and the class of biseparable states

A nonzero state Ψ is rank 2 or less if and only if T (Ψ,Ψ,Ψ) = 0, which implies there is at most one
non-vanishing γ. To be rank> 1 there must exist some Φ such that 3T (Ψ,Ψ,Φ)+{Ψ,Φ}Ψ 6= 0, which
implies there is at least one non-vanishing γ. Hence, rank 2 states have precisely one nonzero γ.

Using (8.20) it is clear that the choices γA 6= 0 or γB 6= 0 or γC 6= 0 give SA = 0, SB,C 6= 0 or
SB = 0, SC,A 6= 0 or SC = 0, SA,B, 6= 0, respectively. These are precisely the conditions for the
biseparable class A-BC or B-CA or C-AB presented in Table 2.2.

Conversely, using (8.20) and the fact that the local entropies and tr(γ†γ) are positive semidefinite,
we find that all states in the biseparable class are rank 2, the particular subdivision being given by
the corresponding non-zero γ. Hence FTS rank 2 is equivalent to the class of biseparable states as in
Table 8.1.

1.3.3. Rank 3 and the class of W-states

A non-zero state Ψ is rank 3 if ∆(Ψ) = −2 Det a = 0 but T (Ψ,Ψ,Ψ) 6= 0. From (8.19) all three γ’s are
then non-zero but from (8.17) all have vanishing determinant. In this case (8.20) implies that all three
local entropies are non-zero but Det a = 0. So all rank 3 Ψ belong to the W-class.

Conversely, from (8.20) it is clear that no two γ’s may simultaneously vanish when all three S’s
> 0. We saw in section 1.3.1 that T (Ψ,Ψ,Ψ) = 0 implied at least two of the γ’s vanish. Consequently,
for all W-states T (Ψ,Ψ,Ψ) 6= 0 and, therefore, all W-states are rank 3. Hence FTS rank 3 is equivalent
to the class of W-states as in Table 8.1.

1.3.4. Rank 4 and the class of GHZ-states

The rank 4 condition is given by ∆(Ψ) 6= 0 and, since for the 3-qubit FTS ∆(Ψ) = −2 Det a, we
immediately see that the set of rank 4 states is equivalent to the GHZ class of genuine tripartite
entanglement as in Table 8.1.

Note, Aut(FABC) acts transitively only on rank 4 states with the same value of ∆(Ψ) as in the stan-
dard treatment. The GHZ class really corresponds to a 1-dimensional space of orbits parametrised
by ∆.

In summary, we have demonstrated that each rank corresponds to one of the entanglement classes
described in section 2 section 2.6.
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Class FTS Rank Orbits dim Projective orbits dim

Separable 1
[SL(2,C)]3

[SO(2,C)]2 n C3
4

[SL(2,C)]3

[SO(2,C) n C]3
3

Biseparable 2
[SL(2,C)]3

O(3,C)× C
5

[SL(2,C)]3

O(3,C)× (SO(2,C) n C)
4

W 3
[SL(2,C)]3

C2
7

[SL(2,C)]3

SO(2,C) n C2
6

GHZ 4
[SL(2,C)]3

[SO(2,C)]2
7

[SL(2,C)]3

[SO(2,C)]2
7

Table 8.2.: Coset spaces of the orbits of the 3-qubit state space C2 ⊗ C2 ⊗ C2 under the action of the
SLOCC group [SL(2,C)]3.

1.4. SLOCC orbits

We now turn our attention to the coset parametrisation of the entanglement classes. The coset space
of each orbit (i = 1, 2, 3, 4) is given by G/Hi where G = [SL(2,C)]3 is the SLOCC group and
Hi ⊂ [SL(2,C)]3 is the stability subgroup leaving the representative state of the ith orbit invari-
ant. We proceed by considering the infinitesimal action of Aut(F) on the representative states of each
class. The subalgebra annihilating the representative state gives, upon exponentiation, the stability
group H . Note, der(JABC) is empty due to the associativity of JABC . Consequently, Str(JABC) =

L1C⊕Str0(JABC) has complex dimension 3, while Str0(JABC) is now simply LJ′ and has complex
dimension 2. Recall, Str(JABC) and Str0(JABC) generate [SO(2,C)]3 and [SO(2,C)]2, respectively
the structure and reduced structure groups of JC.

The results are summarised in Table 8.2. To be clear, in the preceding analysis we have regarded
the three-qubit state as a point inC2⊗C2⊗C2, the philosophy adopted in, for example, [113,121,124].
We could have equally well considered the projective Hilbert space regarding states as rays in C2 ⊗
C2⊗C2, that is, identifying states related by a global complex scalar factor, as was done in [7,31,126].
The coset spaces obtained in this case are also presented in Table 8.2, the dimensions of which agree
with the results of [31,128]. Note that the three-qubit separable projective coset is just a direct product
of three individual qubit cosets SL(2,C)/ SO(2,C)nC. Furthermore, the biseparable projective coset
is just the direct product of the two entangled qubits coset [SL(2,C)]2/O(3,C) and an individual
qubit coset. As noted in [9, 123], the case of real qubits or “rebits” is qualitatively different from the
complex case. An interesting observation is that on restricting to real states the GHZ class actually
has two distinct orbits, characterised by the sign of ∆(Ψ). This difference shows up in the cosets in the
different possible real forms of [SO(2,C)]2. For positive ∆(Ψ) there are two disconnected orbits, both
with [SL(2,R)]3/[U(1)]2 cosets, while for negative ∆(Ψ) there is one orbit [SL(2,R)]3/[SO(1, 1,R)]2.
In which of the two positive ∆(Ψ) orbits a given state lies is determined by the sign of the eigenvalues
of the three γ’s, as shown in Table 8.3. This phenomenon also has its counterpart in the black-hole
context [18, 45, 71, 72, 196, 263], where the two disconnected ∆(Ψ) > 0 orbits are given by 1/2-BPS
black holes and non-BPS black holes with vanishing central charge respectively [72].

2. Generalising to an n-qubit FTS

The FTS classification of 3-qubit entanglement raises the question of generalisation. Are there other
QI systems amenable to the FTS? More ambitiously, is it possible to treat an arbitrary number of
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Class FTS Rank ∆(Ψ) Orbits dim

Separable 1 = 0
[SL(2,R)]3

[SO(1, 1)]2 nR3
4

Biseparable 2 = 0
[SL(2,R)]3

O(2, 1)×R
5

W 3 = 0
[SL(2,R)]3

R2
7

GHZ 4 < 0
[SL(2,R)]3

[SO(1, 1)]2
7

GHZ 4 > 0
[SL(2,R)]3

[U(1)]2
7

GHZ 4 > 0
[SL(2,R)]3

[U(1)]2
7

Table 8.3.: Coset spaces of the orbits of the real case JR = R⊕R⊕R under [SL(2,R)]3.

qubits? Perhaps the most natural option is to do as was done for theN = 8 case and see whether the
various FTS’s appearing in the context of supergravity admit a QI interpretation. This would have
the obvious additional payoff of further developing the black hole/QI correspondence. However,
an alternative route is to identify and generalise those structural aspects of the FTS that made it so
suitable for the 3-qubit classification. This is the approach taken here.

2.1. Three qubits and the FTS re-examined

2.1.1. The n-qubit state

Recall, the Jordan algebra formulation of the FTS corresponded to decomposing the representation
carried by the FTS under the Str0(J) ⊂ Aut(F). In the case of three qubits we found the state split
into the direct sum of four pieces,

α = a111,

β = a000,

A = (a100, a010, a001),

B = (a011, a101, a110),

(8.27)

where α, β are Str0(J) singlets. This leads us to the first important observation: α, β,A,B are the
closed subsets under the 3-qubit permutation group S3. Indeed, for the n-qubit SLOCC* entangle-
ment classification, it is only natural to work with Sn closed subsets as the basic building blocks. This
is the first generalisation we will make. The 2n state vector coefficients will be collected into the n+ 1

closed subsets of Sn. It will prove convenient to represent these subsets using n+1 totally symmetric
tensors with ranks ranging from 0 to n,

An := {A0, Ai1 , Ai1i2 , . . . , Ai1i2...in}, where ik = 1, 2, . . . , n, (8.28)

which are vanishing on any diagonal, i.e. Ai1i2...in = 0 if any two indices are the same. The counting
of components goes like p-forms, correctly yielding a total of 2n independent numbers. In fact, why
not use p-forms and bring to bear on entanglement all the powerful associated geometrical machin-
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ery. While there is an obvious isomorphism to p-forms, they cannot play any deep role. The simplest
way to see this is that they would actually imply an enhancement of the symmetry from [SL(2,C)]n

to SL(n,C).
So, for three qubits we have (with a slight abuse of notation for Aijk and B),

A0 = a000 = β,

Ai =

a100

a010

a001

 = A,

Aij =

 0 a110 a101

a110 0 a011

a101 a011 0

 = B,

Aijk = a111 = α.

(8.29)

Note, numbering the qubits from left to right, the values of the indices on the symmetric tensors
determine which indices on its corresponding state vector coefficient take the value 1. For example,
A1 = a100, A2 = a010, A3 = a001 and A12 = a110, A13 = a101 and so on1.

2.1.2. The n-qubit algebra

The second feature we might hope to generalise is the set of cubic Jordan algebra maps,A×B,Tr(A,B),
N3(A), see section 2.2, which played such a key role in the construction of the various covariants
and invariants. Recall, group theoretically these maps correspond to picking out certain irreps ap-
pearing in the tensor product of the Str0(J)-representation carried by A,B ∈ J. For example, in
the case Str0(JO3 ) = E6(−26), with A and B transforming as the 27, A × B is the 27′ in 27 × 27 =

27′s + 351a + 3̃51s. Similarly, for A and B transforming as the 27 and 27′ respectively, Tr(A,B) is
the singlet in 27× 27′ = 1 + 78 + 650. Finally, N3(A) is the singlet in 27× 27× 27 or, equivalently,
in 27′ × 27′ × 27′. Hence, each of the cubic Jordan algebra maps, in this case, may be written using
the irreducible E6(−26) invariant tensors, dijk and dijk, where a downstairs (upstairs) i = 1, 2, . . . , 27

transforms as a 27 (27′). That is,

(A])i =
1

2!
dijkAjAk,

(B])i =
1

2!
dijkB

jBk,

(A×B)i = dijkAjBk,

(A×B)i = dijkA
jBk,

Tr(A,B) = AiB
i,

N3(A) =
1

3!
dijkAiAjAk,

N3(B) =
1

3!
dijkB

iBjBk.

(8.30)

1We are grateful to Duminda Dahanayake for spotting this rule.
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For the sake of clarity, we will often drop the combinatorial factors in the following. For three qubits,
the invariant tensors were simply

dijk = |εijk|,

dijk = |εijk|,
(8.31)

which naturally suggests the n-qubit generalisation,

di1...in := |εi1...in |,

di1...in := |εi1...in |.
(8.32)

This allows us to dualise a rank p tensor as follows,

Ai1i2...in−p := di1i2...in−pin−p+1...inAin−p+1...in ,

Ai1i2...in−p := di1i2...in−pin−p+1...inA
in−p+1...in .

(8.33)

For an n-qubit state, rank p pairsAi1i2...ip , A
i1i2...ip are precisely bit-flip related. For example, for three

qubits, Ai = (a100, a010, a001) and Ai = (a011, a101, a110). This is crucial for building Sn invariants.
Equipped with di1...in , d

i1...in the n-qubit space An of symmetric tensors may be endowed with a
sort of algebraic structure. The space An is closed so long as we compose the tensors by contracting
with di1...in and di1...in . Consider the 4-qubit example,

A4 := {A0, Ai, Aij , Aijk, Aijkl}. (8.34)

For rank one tensors, we may define in analogy to the cubic Jordan algebra maps,

(A[)i := dijklAjAkAl,

(A,B,C)i := dijklAjBkCl,

(A,B,C)i := dijklA
jBkC l,

Tr(A,B) := AiB
i,

N4(A) := dijklAiAjAkAl,

N4(B) := dijklB
iBjBk.

(8.35)

Note, the quadratic adjoint A] and cubic norm N3(A) are replaced, in this case, by a cubic adjoint A[

and quartic norm N4(A), which satisfy (A[)[ = N4(A)2X in analogy to the Jordan cubic condition
(5.23). In fact, the quartic norm may used to define a quartic Jordan algebra as described in sec-
tion B.2. However, in the current context the tensors may be composed in all possible ways allowed
by contracting with di1...in and di1...in . This is the n-qubit pseudo-algebraic generalisation of the cubic
Jordan algebra appearing in the 3-qubit FTS.
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2.1.3. The n-qubit SLOCC transformations

The final ingredient is the n-qubit generalisation of the FTS transformations (5.75). For three qubits
in the our current notation (5.75) is given by,

φ(C) :


A0

Ai

Ai

A0

 7→


A0

CiA0 + Ai

dijkCjCkA0 + dijkCjAk + Ai

dijkCiCjCkA0 + dijkCiCjAk + CiA
i + A0



ψ(D) :


A0

Ai

Ai

A0

 7→


dijkD
iDjDkA0 + dijkD

iDjAk + DiAi + A0

dijkD
jDkA0 + dijkD

jAk + Ai

DiA0 + Ai

A0

 .

(8.36)

where C = (C1, C2, C3) and D = (D1, D2, D3). In terms of conventional SL(2,C) matrices,

φ(Ci) ←→

(
1 C1

0 −1

)
⊗

(
1 C2

0 −1

)
⊗

(
1 C3

0 −1

)
,

ψ(Di) ←→

(
1 0

D1 −1

)
⊗

(
1 0

D2 −1

)
⊗

(
1 0

D3 −1

)
,

(8.37)

which are generated by the Lie algebra elements,(
0 1

0 0

)
,

(
0 0

1 0

)
. (8.38)

Note, Ci and Dij = dijkD
k are rank 1 and n − 1 tensors. Finally, the transformation τ̂ , where τ ∈

Str(JABC), is given by,

τ̂(M) :


A0

Ai

Aij

Aijk

 7→


dlmnM
lMmMnA0

NidimnM
mMnAi

NiNjdijnM
nAij

NiNjNkdijkAijk

 , (8.39)

where M i = N−1
i . In terms of conventional SL(2,C) matrices,(

M1 0

0 M−1
1

)
⊗

(
M2 0

0 M−1
2

)
⊗

(
M3 0

0 M−1
3

)
(8.40)

which are generated by the Lie algebra element,(
1 0

0 −1

)
. (8.41)
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This suggests the obvious extension to n qubits,

φ(Ci) ←→

(
1 C1

0 −1

)
⊗

(
1 C2

0 −1

)
⊗ . . .⊗

(
1 Cn

0 −1

)
,

ψ(Di) ←→

(
1 0

D1 −1

)
⊗

(
1 0

D2 −1

)
⊗ . . .⊗

(
1 0

Dn −1

)
,

τ̂(M) ←→

(
M1 0

0 M−1
1

)
⊗

(
M2 0

0 M−1
2

)
⊗ . . .⊗

(
Mn 0

0 M−1
n

) (8.42)

These transformations are most naturally written in terms ofAn. Under φ(Ci) a rank p tensorAi1i2...ip
transforms into the sum of all Ai1i2...iq with q ≤ p, contracted with the necessary powers of Ci and
di1...in , d

i1...in to give rank p. As an example, take four qubits,

A0 7→ dijkld
ijkl [A0],

Ai 7→ dijkld
jklm [Am + CmA0],

Aij 7→ dijkld
klmn [Amn + CmAn + CmCnA0],

Aijk 7→ dijkld
lmnp [Amnp + CmAnp + CmCnAp + CmCnCpA0],

Aijkl 7→ dijkld
mnpq [Amnpq + CmAnpq + CmCnApq + CmCnCpAq + CmCnCpCqA0],

(8.43)

Through a judicious choice of dualisations we get the simplified form,

Aijkl 7→ [Aijkl].

Aijk 7→ [Aijk + ClA
ijkl],

Aij 7→ [Aij + CkA
ijk + CkClA

ijkl],

Ai 7→ [Ai + CjA
ij + CjCkA

ijk + CjCkClA
ijkl],

A0 7→ [A0 + CiA
i + CiCjA

ij + CiCjCkA
ijk + CiCjCkClA

ijkl],

(8.44)

which makes the n-qubit generalisation quite clear. Similarly, under ψ(Di) a rank p tensor Ai1i2...ip
transforms into the sum of all Ai1i2...iq with q ≥ p, contracted with the necessary powers of Di =

dijklDjkl and di1...in , d
i1...in to give rank p. For four qubits, with the appropriate dualisations in place,

one finds,
A0 7→ [A0 +DiAi +DiDjAij +DiDjDkAijk +DiDjDkDlAijkl],

Ai 7→ [Ai +DjAij +DjDkAijk +DjDkDlAijkl],

Aij 7→ [Aij +DkAijk +DkDlAijkl],

Aijk 7→ [Aijk +DlAijkl],

Aijkl 7→ [Aijkl].

(8.45)

Finally, τ̂ generalises to four or more qubits in the obvious manner,

A0 7→ [dmnpqM
mMnMpM qA0],

Ai 7→ [NidinpqM
nMpM qAi],

Aij 7→ [NiNjdijpqM
pM qAij ],

Aijk 7→ [NiNjNkdijkqM
qAijk],

Aijkl 7→ [NiNjNkNldijklAijkl].

(8.46)
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Adopting the notational convention A[p] (A[p]) for a rank p tensor with downstairs (upstairs) indices,
the n-qubit transformations φ, ψ may be summarised as follows,

φ(C[1]) : A[p] 7→
∑n

k=pC
(k−p)
[1] A[k],

ψ(D[1]) : A[p] 7→
∑n

k=pD
[1](k−p)A[k].

(8.47)

One useful observation that follows from this analysis is that one can always assume A0 = 1, Ai = 0

under SLOCC.
However, we have yet to develop a general scheme for writing invariants in the FTS basis. One

example, though, defined for n qubits, is given by

(Ψ,Φ) =
1

0!
A0B

0 − 1

1!
AiB

i +
1

2!
AijB

ij − 1

3!
AijkB

ijk +
1

4!
AijklB

ijkl · · ·

=
n∑
k=0

(−1)k

k!
A[k]B

[k].
(8.48)

This is symmetric (antisymmetric) for even (odd) n. It is simply the determinant in the 2-qubit case
and the antisymmetric bilinear form of the FTS in the 3-qubit case.

2.2. Examples

2.2.1. Two qubits

The 2-qubit state corresponds to,

|ψ〉 ↔ Ψ = {A0, Ai, Aij}, i, j = 1, . . . , 2 (8.49)

where

{A0 = a00, Ai =

(
a10

a01

)
, Aij =

(
0 a11

a11 0

)
}, (8.50)

or

{A0 = a00, Ai =

(
a10

a01

)
, A0 = a11}. (8.51)

The SLOCC generating transformations are given by,

φ(C) :

A0

Ai

A0

 7→
 A0

CiA0 + Ai

dijCiCjA0 + dijCiAj + A0



ψ(D) :

A0

Ai

A0

 7→
 dijD

iDjA0 + DiAi + A0

dijD
iA0 + Ai

A0

 .

(8.52)

The 2-tangle τAB = det a is given by,

det a =
1

2
dij [A0Aij −AiAj ] = A0A

0 − 1

2
AiA

i. (8.53)
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Lemma 40. Every state Ψ is SLOCC-equivalent to the reduced canonical form:

{1, 0, k},←→ |00〉+ k|11〉 (8.54)

where k = det a.

Proof. First show that, using (8.52), we may always assume Ai is non-zero. If Ai 6= 0 then our job is
done. If Ai = 0 then we may assume that A0 non-zero using τ if necessary. Now apply φ(C) to get a
non-zero Ai. Apply ψ(D) with dijDiDj = 0 so that A0 7→ A0 + DiAi. Choose D s.t. A0 + DiAi = 1.
Finally, apply φ(C) with Ci = −Ai.

2.2.2. Three qubits

The 3-qubit state corresponds to,

|ψ〉 ↔ Ψ = {A0, Ai, Aij , Aijk}, i, j, k = 1, . . . , 3 (8.55)

where (after dualisation)

{A0 = a000, Ai =

a100

a010

a001

 , Ai =

a011

a101

a110

 , A0 = a111}. (8.56)

The SLOCC generating transformations are given in (8.70). The 3-tangle τABC = 4|Det a| is given by,

Det a = [(A0A
0 −AiAi)]2 + 4[A0dijkA

iAjAk +A0dijkAiAjAk − dijkAjAkdilmAlAm]

= A0A
0A0A

0 − 2A0A
0AiA

i +AiA
iAjA

j +A0A
iAjAij +A0AiAjA

ij −AiAjkAjkAk.
(8.57)

Lemma 41. Every state Ψ is SLOCC-equivalent to the reduced canonical form:

{0, Ai, 0, 1} ←→ |111〉+ a011|011〉+ a101|101〉+ a110|110〉 (8.58)

where Det a = a011a101a110.

Proof. First show that, using (8.70), we may always assume Ai is non-zero. If Ai 6= 0 then our job is
done. Assume Ai = 0. If Ai 6= 0 use Z . If Ai = 0 then we may assume that A0 non-zero, using Z if
necessary. Then apply ψ(D) to get a non-zero Ai, as required.

Next, apply φ(C) with dijCiCj = 0 so that A0 7→ A0 + CiA
i. Choose C s.t. A0 + CiA

i = 1, which is
clearly always possible. Then apply ψ(D) with Di = −Ai. We are then left with,

{A′0, A′i, 0, 1}. (8.59)

Hence, we may assume from the outset that our state is in the form

{A0, Ai, 0, 1}. (8.60)

Now we show that we may further assume A0 = 0. If A0 = 0 our job is done. Assume A0 6= 0. There
are then three subcases to consider: (1) Ai = 0 (2) Ai 6= 0, dijkAjAk = 0 (3) dijkAjAk 6= 0.
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(1) Apply ψ(D) with dijkDiDjDk = −A0 so that we are left with

{0, A′i, A′i, 1}. (8.61)

Applying φ(C) with dijkCjA′k = −A′i we obtain,

{0, A′′i , 0, A′0}. (8.62)

Using τ̂ we obtain the required form,
{0, A′′′i , 0, 1}. (8.63)

(2) Assume, with out loss of generality, A1 6= 0, A2 = A3 = 0. Apply φC with C1 = C3 = 0,

φ(C) : {A0, Ai, 0, 1} 7→ {A0, Ai +A0Ci, d
ijkCjAk, 1}. (8.64)

Follow with ψ(D) with Di = −dijkCjAk, which yields,

{A0 + (Ai +A0Ci)d
ijkCjAk︸ ︷︷ ︸

=0

, Ai +A0Ci − dijkdjlmClAmdknpCnAp︸ ︷︷ ︸
=0

, dijkCjAk − dijkCjAk︸ ︷︷ ︸
=0

, 1}. (8.65)

so that we are left with {A0, Ai +A0Ci, 0, 1}. Since dijkCiAi 6= 0, we find ourselves in case (3).
(3) Without loss of generality we may assume A2, A3 6= 0. Apply φ(C) with C2 = C3 = 0 followed

by ψ(D) with Di = −dijkCjAk,

φ(C) : {A0, Ai, 0, 1} 7→ {A0 − 2A2A3C1, A
′
i, 0, 1}, (8.66)

where A′1 = (A1 +A0C1−A2A3(C1)2), A′2 = A2, A
′
3 = A3. Let C1 = 1/(2A2A3) to obtain the required

form,
{0, A′i, 0, 1}. (8.67)

2.2.3. Four qubits

The 4-qubit state corresponds to,

|ψ〉 ↔ Ψ = {A0, Ai, Aij , Aijk, Aijkl}, i, j, k, l = 1, . . . , 4 (8.68)

where (after dualisation)

{A0 = a0000, Ai =


a1000

a0100

a0010

a0001

 , Aij =


0 a0011 a0101 a0110

a0011 0 a1001 a1010

a0101 a1001 0 a1100

a0110 a1010 a1100 0

 , Ai =


a0111

a1011

a1101

a1110

 , A0 = a111}. (8.69)
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The SLOCC generating transformations are given by,

φ(C) :


A0

Ai

Aij

Ai

A0

 7→


A0

CiA0 + Ai

dijklCkClA0 + dijklCkAl + Aij

dijklCjCkClA0 + dijklCjCkAl + dijklCjAijkl + Ai

dijklCiCjCkClA0 + dijklCiCjCkAl + dijklCiCjAkl + dijklCiAjkl + A0



ψ(D) :


A0

Ai

Aij

Ai

A0

 7→


dijklD
iDjDkDlA0 + dijklD

iDjDkAl + dijklD
iDjAkl + dijklD

iAjkl + A0

dijklD
jDkDlA0 + dijklD

jDkAl + dijklD
jAkl + Ai

dijklD
kDlA0 + dijklD

kAl + Aij

DiA0 + Ai

A0

 .

(8.70)

There are four algebraically independent 4-qubit SLOCC*-invariants [233,264] of order two, six, eight
and twelve. The order two invariant H is given by,

H = A0A
0 −AiAi +

1

2!
AijA

ij . (8.71)

This is just the n = 4 example of (8.48),

(Ψ,Φ) =
1

0!
A0B

0 − 1

1!
AiB

i +
1

2!
AijB

ij − 1

3!
AijkB

ijk +
1

4!
AijklB

ijkl

=

4∑
k=0

(−1)k

k!
A[k]B

[k],
(8.72)

where Φ = {B0, Bi, Bij , Bijk, Bijkl}. There is also a quintic product Q(Ψ) which can be used to obtain
the order six invariant,

Γ = (Ψ, Q(Ψ)). (8.73)

We have explicit forms for these invariants, derived from conventional SL(2,C) theory. However,
their expression in the FTS basis is rather unwieldy. A more systematic treatment of the n-qubit FTS
invariants is required.

2.3. Further work

Several features of our proposed n-qubit generalisation of the FTS need development. Principally, we
are lacking a systematic generalisation of the FTS rank, a vital tool in the entanglement classification
of three qubits. Similarly, it is not clear how to systematically generate SLOCC invariants without
first appealing to the conventional [SL(2,C)]n theory and then working backwards. Both these issues
must be addressed before we can really assess the utility of the n-qubit FTS.

In an effort to establish how many ranks the 4-qubit case ought to have we have found the covariant
classification of the degenerate classes, as in Table 8.4., which suggests five ranks for the degenerate
classes at least. The total number of ranks is not clear without a full classification. The classes are
distinguished by the following SLOCC covariants/invariants2:

2There is some redundancy in this set as they are not all algebraically independent. However, the entanglement classifi-
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Order 2 One invariant,
H = aABCDaABCD, (8.74)

where the indices have been raised using the SL(2)-invariant tensor, V A = εAA
′
VA′ .

Six covariants,

(γAB)A1B1A2B2 = a CD
(A1B1

aA2B2)CD

(γCD)C1D1C2D2 = aAB(C1D1
aABC2D2)

(γBC)B1C1B2C2 = aA D
(B1C1

aAB2C2D)

(γAD)A1D1A2D2 = a BC
(A1 D1

aA2BCD2)

(γAC)A1C1A2C2 = a B D
(A1 C1

aA2BC2D)

(γBD)B1D1B2D2 = aA C
(B1 D1

aAB2CD2)

(8.75)

which transform as a (3,3,1,1), (1,1,3,3), (1,3,3,1), (3,1,1,3), (3,1,3,1) and (1,3,1,3) re-
spectively.

Order 3 Four covariants

(tA)A1A2A3BCD = a B′

(A1| CD(γAB)|A2B′A3)B,

(tB)AB1B2B3CD = a C′

A(B1 |D|(γ
BC)B2C′B3)C ,

(tC)ABC1C2C3D = aA
′

B(C1|D|(γ
AC)A′C2|A|C3),

(tD)ABCD1D2D3 = a B′

A C(D1
(γBD)B′D2|B|D3),

(8.76)

transforming as a (4,2,2,2), (2,4,2,2), (2,2,4,2) and (2,2,2,4) respectively. Three covariants

T 1
ABCD = a C′D′

AB (γCD)C′D′CD = aA
′B′

CD(γAB)A′B′AB,

T 2
ABCD = a B′ D′

A C (γBD)B′D′BD = aA
′ C′
B D(γAC)A′C′AC ,

T 3
ABCD = aA

′ D′
BC (γAD)A′D′AD = a B′C′

A D(γBC)B′C′BC .

(8.77)

all transforming as a (2,2,2,2) .

Order 4 Four covariants

(PA)A1A2A3A4 = a BCD
(A1

(tA)A2A3A4)BCD,

(PB)B1B2B3B4 = aA CD
(B1

(tB)AB2B3B4)CD,

(PC)C1C2C3C4 = aAB D
(C1

(tC)ABC2C3C4D),

(PD)D1D2D3D4 = aABC(D1
(tD)ABCD2D3D4),

(8.78)

transforming as a (5,1,1,1), (1,5,1,1), (1,1,5,1), and (1,1,1,5) respectively. Three quartic

cation of the degenerate classes is not affected.

152



invariants,

H1 = (γAB)ABAB(γAB)ABAB = (γCD)CDCD(γCD)CDCD,

H2 = (γAC)ACAC(γAC)ACAC = (γBD)BDBD(γBD)BDBD,

H3 = (γAD)ADAD(γAD)ADAD = (γBC)BCBC(γBC)BCBC .

(8.79)

Briand et al [264] define a quartic invariant by writing aABCD as a 4 × 4 matrix Lαβ where
α = AB and β = CD and taking its determinant

L = detLαβ. (8.80)

To connect this to our quartic invariants use the identity,

εα1α2α3α4 = εA1A3εA2A4εB1B2εB3B4 − εA1A2εA3A4εB1B3εB2B4 , (8.81)

which yields,
L = H2 −H3. (8.82)

Two further invariants, M and N , may be defined similarly by splitting the ABCD indices in
the two remaining distinct ways. These invariants trivially satisfy

L+M +N = 0. (8.83)
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Table 8.4.: 4-qubit entanglement classification of degenerate classes

Class Vanishing Non-vanishing

Separable A-B-C-D γ a

Triseparable A-B-CD γAB, γBC , γAC , γBD, γAD γCD

AB-C-D γBC , γAC , γBD, γAD, γCD γAB

A-BC-D γAC , γBD, γAD, γCD, γAB γBC

AC-B-D γAB, γBD, γAD, γCD, γBC γAC

AD-B-C γAB, γBD, γAC , γCD, γBC γAD

A-BD-C γAB, γBC , γCD, γAD, γAC γBD

Biseparable A-GHZ Hi tA, PA

B-GHZ Hi tB , PB

C-GHZ Hi tC , PC

D-GHZ Hi tD, PD

A-W Hi, PA tA

B-W Hi, PB tB

C-W Hi, PC tC

D-W Hi, PD tD

AB-CD L, T 2, T 3 H,T 1,M,N
AD-BC M,T 2, T 1 H,T 3, L,N
AC-BD N,T 1, T 3 H,T 2,M,L
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CHAPTER 9
Integral structures

Much of our discussion has centred around U-duality and in particular the representations carried
by the black p-brane charges. However, this has been a purely classical discussion; the charges have
been treated as real valued continuous parameters. It is time to face reality1. The charges actually
take their values on a lattice due to the Dirac-Schwinger-Zwansiger charge quantization conditions.
Consequently, the continuous U-dualities are broken to discrete subgroups [47].

The U-duality orbits are furnished with an increased level of structural complexity, which, in some
cases, is of particular mathematical significance [48, 50]. However, the question of discrete U-duality
orbits is not only interesting in its own right, it is also of physical importance with implications for a
number of topics including the stringy origins of microscopic black hole entropy [49,265–272]. More-
over, following a conjecture of finiteness for D = 4,N = 8 supergravity [273], it has recently been
observed that some of the orbits of E7(7)(Z) should play an important role in counting microstates of
this theory [272], even if it may differ from its superstring or M-theory completion [274].

In section 2 we address this issue in the context of N = 8 supergravity in four, five and six dimen-
sions. To this end we exploit the mathematical framework of integral Jordan algebras and the integral
Freudenthal triple system, which have at their basis the ring of integral split-octonions [48,67,275,276], all
of which are introduced in section 1. To a large extent this work is a continuation of the analysis used
in studying the recently introduced black hole Freudenthal duality, which is the subject of section 3,
the concluding part of this chapter.

1. Integral algebras and their symmetries

1.1. The integral split-octonions

The split-octonions are an 8-dimensional (non-division) composition algebra. They are both non-
commutative and non-associative but are alternative. They may be generated from the split-quaternions
via the Cayley-Dickson process. The split-quaternions are a 4-dimensional (non-division) composi-

1Perhaps this is a bad choice word given the poor phenomenological properties of N = 8 supergravity.
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tion algebra. The three imaginary units i, j, k obey the following multiplication rules:

i2 = 1, j2 = 1, k2 = −1,

ij = −ji = k, ik = −ki = j, jk = −kj = i.
(9.1)

There is a convenient matrix representation of this algebra given by,

1 =

(
1 0

0 1

)
, i =

(
1 0

0 −1

)
,

j =

(
0 1

1 0

)
, k =

(
0 1

−1 0

)
,

(9.2)

such that an arbitrary quaternion a ∈ Hmay be written,

a =

(
a00 a01

a10 a11

)
, aij ∈ R. (9.3)

The norm, real part and conjugation are given by,

n(a) = det(a), 2<(a) = tr(a), a = −jaTj, (9.4)

where T denotes the matrix transpose.
The split-octonions Os may then be defined by introducing a forth imaginary unit ν,

a+ bν, a, b ∈ Hs. (9.5)

The octonionic multiplication rules are defined as per the Cayley-Dickson process,

(a+ bν)(c+ dν) := (ac− db) + (da+ bc)ν. (9.6)

The norm, real part and conjugation are given by,

n(a+ bν) = det(a) + det(b), 2<(a+ bν) = tr(a), a+ bν = a− bν. (9.7)

The ring of integral split-quaternions Hs is defined as the ring of 2 × 2 matrices with entries in Z.
The norm and trace have integral values and the ring is closed under conjugation.

The ring of integral split-octonions Os is then defined in the obvious manner and we may write an
arbitrary integral split-octonions as,

a+ bν, a, b ∈ Hs. (9.8)

The norm, the trace and conjugation (9.7) are well defined functions taking their values in Z and,
moreover, Os is a maximal order [277, 278].

156



1.2. Integral Jordan algebras

Until now we have been working with Jordan algebras as originally axiomatised in 1934 [239].
These are nowadays referred to as linear Jordan algebras so as to distinguish them from the mod-
ern formulation, first axiomatised in [55]. The modern axioms were motivated by the breakdown
of the linear theory for scalar fields of characteristic two, or the absence of 1/2. The Jordan product
x◦y = 1

2(xy+yx) is replaced by a new basic operation Uxy = xyx. Physically, Hermitian matrices are
also closed under xyx. These are referred to as quadratic Jordan algebras reflecting the fact that the
operation Ux is quadratic in x, but we will refer to them as U -Jordan algebras so as to avoid confusion
with the quadratic Jordan algebras defined by a quadratic norm.

Definition 42 (U -Jordan algebras). A module (i.e. a vector space defined over a ring) equipped with an
operation Ux,

U1 = 1,

UxVy,x = Vx,yUx,

UUxy = UxUyUx,

(9.9)

where Vx,y(z) = (Ux+z − Ux − Uz)y, is a U -Jordan algebra.

The presence of 1/2, the linear and quadratic formulations are categorically equivalent. The U -
Jordan generalisation allows the definition of integral Jordan algebras, which are the subject of the
following sections.

1.2.1. 2× 2 Hermitian matrices

Definition 43 (Integral Jordan algebra JA2 ). 2 × 2 Hermitian matrices defined over a ring of integral com-
position algebras A. An arbitrary element may be written as,

A =

(
α a

a β

)
, where α, β ∈ Z and a ∈ A. (9.10)

JA2 is not a linear Jordan algebra as it is not closed under the Jordan product. It is, however, a well
defined U -Jordan algebra [68]. Crucially, the quadratic norm and trace form take values in Z.

Definition 44 (The discrete reduced structure group Str0(JA2 )). Invertible Z-linear transformations leav-
ing the quadratic norm invariant,

Str0(JA2 ) := {τ ∈ IsoZ(JA2 )|N2(τA) = N2(A)}. (9.11)

An important subset of Str0(JA2 ) transformation or generated by σst(b) with s 6= t,

σst(b) : A 7→ (1+ bEst)A(1+ bEts), (9.12)

where b ∈ A and Est is a 2× 2 matrix with a single non-zero unit entry in the st position. Explicitly,

σ12(b) : A 7→

(
α+ tr(ba) + βn(b) a+ βb

a+ βb β

)
,

σ21(b) : A 7→

(
α a+ αb

a+ αb β + tr(ba) + αn(b)

)
.

(9.13)
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Definition 45 (Arithmetic Str0(JA2 )-invariants). For an element A ∈ JA2 , an integer α divides A, denoted
α|A, if A = αA′, where A′ ∈ JA2 . Arithmetic invariants are defined by the greatest common divisor (gcd):

b1(A) := gcd(A),

b2(A) := N2(A).
(9.14)

For the integral Jordan algebra of 2 × 2 Hermitian matrices defined over the ring of integral split-
octonions Str0(JOs

2 ) is a model, in sense of [275], for SO(5, 5;Z).

1.2.2. 3× 3 Hermitian matrices

Definition 46 (Integral Jordan algebra JA3 ). 3 × 3 Hermitian matrices defined over a ring of integral com-
position algebras A. An arbitrary element may be written as,

A =

 α a b

a β c

b c γ

 , where α, β, γ ∈ Z and a, b, c ∈ A. (9.15)

JA3 is not a linear Jordan algebra as it is not closed under the Jordan product. It is, however, a well
defined U -Jordan algebra [68]. Crucially, the cubic norm and trace form take values in Z and JA3 is
closed under the quadratic adjoint map.

Definition 47 (The discrete reduced structure group Str0(JA3 )). Invertible Z-linear transformations leav-
ing the cubic norm invariant,

Str0(JA3 ) := {τ ∈ IsoZ(JA3 )|N3(τA) = N3(A)}. (9.16)

An important subset of Str0(JA3 ) transformations are generated by σst(b),

σst(b) : A 7→ (1+ bEst)A(1+ bEts), (9.17)

where b ∈ A and Est is a 3× 3 matrix with a single non-zero unit entry in the st position.

Definition 48 (Arithmetic Str0(JA3 )-invariants).

c1(A) := gcd(A),

c2(A) := gcd(A]),

c3(A) := N3(A).

(9.18)

For the integral Jordan algebra of 3 × 3 Hermitian matrices defined over the ring of integral split-
octonions Str0(JOs

3 ) is a model, in sense of [275], for E6(6)(Z).

1.3. Integral Freudenthal triple system

Definition 49 (Integral Freudenthal triple system FA).

FA = F(JA3 ) := Z⊕Z⊕ JA3 ⊕ JA3 , (9.19)
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Table 9.1.: The discrete automorphism group Aut(F(J)) and the dimension of its representation
dimF(J) given by the Freudenthal construction defined over the integral cubic Jordan
algebra J with dimension dim J and discrete reduced structure group Str0(J).

Jordan algebra J Str0(J) dim J Aut(F(J)) dimF(J)

Z − 1 SL(2,Z) 4
Z⊕Z SO(1, 1;Z) 2 SL(2,Z)× SL(2,Z) 6

Z⊕Z⊕Z SO(1, 1;Z)× SO(1, 1;Z) 3 SL(2,Z)× SL(2,Z)× SL(2,Z) 8
Z⊕ Γ1,n−1 SO(1, 1)× SO(1, n− 1) n+ 1 SL(2,Z)× SO(2, n;Z) 2(n+ 2)
Z⊕ Γ5,n−1 SO(1, 1)× SO(5, n− 1) n+ 5 SL(2,Z)× SO(6, n;Z) 2(n+ 6)

JR3 SL(3,Z) 6 Sp(6,Z) 14
JC3 SL(3,C) 9 SU(3, 3;Z) 20

JH3 SU?(6)(Z) 15 SO?(12,Z) 32
JO3 E6(−26)(Z) 27 E7(−25)(Z) 56

JOs
3 E6(6)(Z) 27 E7(7)(Z) 56

where the antisymmetric bilinear form (5.64a), quartic norm (B.14) and triple product (5.64c) are defined as
before. An arbitrary element may be written,

x =

(
α A

B β

)
, where α, β ∈ Z and A,B ∈ JA3 . (9.20)

The quartic norm and antisymmetric bilinear form are both integer valued and, hence, the triple
product is well defined. The quartic norm is either 4n or 4n+ 1 for some n ∈ Z.

Definition 50 (The discrete automorphism group Aut(FA)). Invertible Z-linear transformations leaving
the quartic norm and antisymmetric bilinear form invariant,

Aut(FA) := {σ ∈ IsoZ(FA)|{σx, σy} = {x, y}, ∆(σx, σy, σz, σw) = ∆(x, y, z, w)}. (9.21)

Lemma 51 (Krutelevic, 2004). The following elementary transformations generate the group Aut(FA):

ϕ(C) :

(
α A

B β

)
7→

(
α+ (B,C) + (A,C]) + βN(C) A+ βC

B +A× C + βC] β

)
;

ψ(D) :

(
α A

B β

)
7→

(
α A+B ×D + αD]

B + αD β + (A,D) + (B,D]) + αN(D)

)
;

τ̂ :

(
α A

B β

)
7→

(
α τA

tτ−1B β

)
;

(9.22)

where C,D ∈ JA3 and τ ∈ Str0(JA3 ).

For the integral Jordan algebra of 3 × 3 Hermitian matrices defined over the ring of integral split-
octonions Aut(FOs) is a model for E7(7)(Z) [48], the U-duality group of type II string theory com-
pactified on a 6-torus. The elements of FOs form a 56-dimensional representation of E7(7)(Z) corre-
sponding to D = 4 the black hole charges. A summary of integral Jordan algebras, FTSs, and their
associated symmetry groups is given in (9.1).
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Definition 52 (Arithmetic Aut(F(JA3 ))-invariants).

d1(x) := gcd(x),

d2(x) := gcd(3T (x, x, y) + {x, y}x), ∀y
d′2(x) := gcd(P(x), Q(x), R(x))

d3(x) := gcd(T (x, x, x)),

d4(x) := ∆(x),

d′4(x) := gcd(x ∧ T (x)).

(9.23)

where ∧ denotes the antisymmetric tensor product. P(x) = Y ] − αX and Q(x) = X] − βY are the charge
combinations appearing in the 4D/5D lift [20, 48, 51] and R(x) : J3 → J3 is a Jordan algebra endomorphism
given by [48]

R(x)(Z) = 2κ(x)Z + 2{X,Y, Z}, (9.24)

where {X,Y, Z} is the Jordan triple product (5.26).

Taken together, (P(x), Q(x), R(x)) form the adjoint representation of the 4-dimensional U-duality:
133 in the case of E7(7)(Z). Under the 5-dimensional U-duality, they transform as the fundamental,
contragredient fundamental and adjoint representations, respectively: 27, 27′ and 1 + 78 in the case
of E6(6)(Z). After subtracting the symplectic trace, x ∧ T (x) transforms as the 1539 in 56×a 56.

2. Integral U-duality orbits

We have been until now using various algebras and their relation to certain relevant Lie groups, the
U-dualites of supergravity or the SLOCC equivalences of QI, to study the properties of black holes
and entanglement. However, as mentioned in passing several times, the black hole charges are in
fact quantized and correspondingly the U-dualities are broken to discrete (typically not finite) sub-
groups. One may understand this from the M-theoretic perspective where the continuous U-duality
of the low energy effective supergravity theories actually correspond to the discrete symmetries of
the full string/M-theory. Alternatively, without invoking M-theory the U-dualities of supergravity
are simply broken by the Dirac-Schwinger-Zwanziger quantization of the black hole charges. Either
way, the mathematical structure of the U-duality orbits and black hole entropy becomes far richer
and more challenging. Focusing on the maximally supersymmetric theories in six, five and four di-
mensions our proposal, following on from the work in [48, 67, 276], is this. Each of these theories in
the classical limit has a natural and physically well motivated description in terms of Jordan algebras
and the FTS, which fit inside one another when dimensionally reducing from six through to four
dimensions. Consequently, there must exist some embedding of the lattice of quantized charges into
the Jordan algebras and FTS. Moreover, since theD-dimensional U-duality does not act on spacetime
it survives dimensional reduction. Hence, it must be a subgroup of the (D−1)-dimensional U-duality
and the D-dimensional charge lattice must be a sublattice of the (D − 1)-dimensional charge lattice.
The most natural way, ceratinly the only apparent way, of consistently achieving this is by invoking
the the integral split-octonions and using the integral Jordan and FTS structures they induce.

The analysis of the discrete U-duality orbits in [48, 67] relies on two key ingredients. First, to use
the discrete symmetries of the integral Jordan algebras and FTS to bring the charge vectors into a
diagonally reduced canonical form. Second, to construct from the algebraic operations of the Jordan
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algebras and FTS new arithmetic invariants that are absent in the continuous theory. These are es-
sentially the gcd of irreducible representations built out of powers of the charge vectors. Note, as
emphasized in [257], the gcd of a U-duality representation, built out of the relevant basic charge vec-
tor representation, is only well defined if that representation is non-vanishing. In practice this means
first computing which class of orbits as defined by the continuous analysis a given state lies in. This,
in turn, determines the subset of the arithmetic invariants that are well defined for this particular
state. It is this subset that is then to be used in specifying the particular discrete orbit to which the
state belongs, the remaining arithmetic invariants being ill-defined and contentless. Ideally these
invariants then uniquely determine the canonical form of a given state. We find that:

• The charge vector of the dyonic black string in D = 6 is SO(5, 5;Z) related to a two-charge
reduced canonical form uniquely specified by a set of two arithmetic U-duality invariants.

• Similarly, the black hole (string) charge vectors in D = 5 are E6(6)(Z) equivalent to a three-
charge canonical form, again uniquely fixed by a set of three arithmetic U-duality invariants.

• The charge vector of the dyonic black hole in D = 4 is E7(7)(Z) related to a five-charge reduced
canonical. This canonical form implies that the R-R charges may always be transformed away
as required for the validity of the manifestly E7(7)(Z) invariant dyon degeneracy formula of
type II string theory on T 6derived in [49].

• However, the canonical form is not uniquely determined by the known arithmetic invariants.
While black holes preserving more than 1/8 of the supersymmetries may be fully classified
by known arithmetic E7(7)(Z) invariants, 1/8-BPS and non-BPS black holes yield increasingly
subtle orbit structures, which remain to be properly understood. However, for the very special
subclass of projective black holes a complete classification is known. All projective black holes
are E7(7)(Z) related to a four or five charge canonical form determined uniquely by the set
of known arithmetic U-duality invariants. Moreover, E7(7)(Z) acts transitively on the charge
vectors of projective black holes with a given leading-order entropy.

2.1. D = 6,N = 8 black string charge orbits

For quantized charges the continuous U-duality is broken to an infinite discrete subgroup, which
for D = 6 is given by SO(5, 5;Z) ⊂ SO(5, 5;R) [47]. Let SO(5, 5;Z) be defined by Str0(JOs

2 ). The
quantized black string charge vector may be represented by a Jordan algebra element,

Q =

(
p0 Qv

Qv q0

)
, where q0, p0 ∈ Z and Qv ∈ Os. (9.25)

The first important observation is that the charge conditions defining the orbits in the continuous
theory are manifestly invariant under the discrete subgroup SO(5, 5;Z) and, hence, those states un-
related by U-duality in the classical theory remain unrelated in the quantum theory. There are two
disjoint classes of orbits, one 1/2-BPS and one 1/4-BPS, corresponding to the two orbits of the contin-
uous case. However, each of these classes is broken up into a countably infinite set of discrete orbits.
To classify these orbits we use SO(5, 5;Z) to bring an arbitrary charge vector into a diagonal reduced
canonical form.
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Proposition 53 (Black string canonical form). Every black string charge vector Q ∈ JOs
2 is U-duality

equivalent to a diagonally reduced canonical form,

Qcan = k

(
1 0

0 l

)
, where k > 0, |l| ≥ 0. (9.26)

Proof. Consider an arbitrary element

A =

(
α a

a β

)
. (9.27)

We start by diagonalising A. First show that we may assume α 6= 0. If α 6= 0 our job is done so
assume α = 0. If a = 0 then β 6= 0 and A is already diagonal and the reduced canonical form follows
from,

σ12(1)σ21(−1)σ12(1) :

(
0 0

0 β

)
7→

(
β 0

0 0

)
. (9.28)

If a 6= 0 then there exists a b ∈ Os such that tr(ba) = ai ∈ Z, where ai is some component of a, and
n(b) = 0, so that, after an application of σ12(b) we may always assume α 6= 0 from the outset.

Assuming α, a 6= 0 we proceed as follows. We can reduce the components of a modulo |α| by
applying σ21(b) with appropriately chosen b. Following the reduction, either a = 0 and we are done,
or a has at least one non-zero component which must lie in the interval [0, . . . |α| − 1]. In the latter
case, there exists a zero-norm b such that σ12(b) : α 7→ α′ = α + tr(ba) and α′ ∈ [0, . . . , |α| − 1]. We
repeat until a = 0.

Hence, we may assume A is diagonal,

A =

(
α 0

0 β

)
, (9.29)

and take the final steps towards the reduced canonical form. Let δ = gcd(α, β). Then there are
integers m,n such that δ = αm + βn. Use σ12(1)σ21((m − 1)b)σ12((n − 1)b) where tr(b) = 1 and
|b| = 0. We find,

σ12(1)σ21((m− 1)b)σ12((n− 1)b) :

(
α 0

0 β

)
7→

(
δ δc

δc β

)
, (9.30)

where c = β+(δ−α−β)b
δ . Now apply σ12(−c) to obtain the desired result,

σ12(−c) :

(
δ δc

δc β

)
7→

(
δ 0

0 β − δn(c)

)
. (9.31)

The split SO(5, 5;Z) case treated here relies on the existence of a zero norm octonion. The non-split
case JO2 corresponds to SO(1, 9;Z) and the above proof does not hold. This conforms with the classic
results of [279], which agree with our SO(5, 5;Z) canonical form, but are only valid for orthogonal
groups of signature ≤ r − 4, where r is the rank of the group. Similarly, it was shown in [276] that
for the non-split case JO3 not all elements are diagonalisable. This suggests that the integral U-duality
orbits of the exceptional magic supergravities will have a far more complicated structure than the
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maximally supersymmetric theories.
The canonical form is uniquely determined by the set of arithmetic invariants (9.14) since

b1(Qcan) = k,

b2(Qcan) = k2l,
(9.32)

so that for arbitrary Q one obtains k = b1(Q) and l = k−2b2(Q). Hence, black strings with distinct
canonical forms are unrelated by U-duality. The canonical forms allow for a full classification of the
black string charge configurations.

D = 6,N = 8 Black string orbit classification

1. The complete set of distinct 1/2-BPS charge vector orbits is given by,

{(k 0

0 0

)
, where k > 0

}
. (9.33)

2. The complete set of distinct 1/4-BPS charge vector orbits is given by,

{(k 0

0 kl

)
, where k, |l| > 0

}
. (9.34)

2.2. D = 5,N = 8 black hole charge orbits

For quantized charges the continuous U-duality is broken to an infinite discrete subgroup, which for
D = 5 is given by E6(6)(Z) ⊂ E6(6)(R) [47]. Let E6(6)(Z) be defined by Str0(JOs

3 ). The quantized
black hole charge vector may be represented by a Jordan algebra element,

Q =

 q1 Qs Qc

Qs q2 Qv

Qc Qv q3

 , where q1, q2, q3 ∈ Z and Qv,s,c ∈ Os. (9.35)

The Dirac-Schwinger quantisation condition for an electric black hole and a magnetic string with
charges Q,P in the Jordan language is given by

Tr(Q,P ) ∈ Z. (9.36)

As was the case in D = 6, the charge conditions defining the orbits in the continuous theory
are manifestly invariant under the discrete subgroup E6(6)(Z) and, hence, those states unrelated by
U-duality in the classical theory remain unrelated in the quantum theory. There are three disjoint
classes of orbits, one 1/2-BPS, one 1/4-BPS and one 1/8-BPS, corresponding to the three continuous
orbits. However, each of these classes is broken up into a countably infinite set of discrete orbits [20].
To classify these orbits we use the main theorem of [67] to bring an arbitrary charge vector into a
diagonal reduced canonical form.

Proposition 54 (Black hole canonical form). Every black hole charge vector Q ∈ JOs
3 is U-duality equiva-
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lent to a diagonally reduced canonical form,

Qcan = k

1 0 0

0 l 0

0 0 lm

 , where k > 0, l ≥ 0. (9.37)

The canonical form is uniquely determined by (9.18) since

c1(Qcan) = k,

c2(Qcan) = k2l,

c3(Qcan) = k3l2m.

(9.38)

so that for arbitrary Q one obtains k = c1(Q), l = k−2c2(Q) and m = k−3l−2c3(Q) [67].

D = 5,N = 8 Black hole orbit classification

1. The complete set of distinct 1/2-BPS charge vector orbits is given by,

{k 0 0

0 0 0

0 0 0

 , where k > 0
}
. (9.39)

2. The complete set of distinct 1/4-BPS charge vector orbits is given by,

{k 0 0

0 kl 0

0 0 0

 , where k, l > 0
}
. (9.40)

3. The complete set of distinct 1/8-BPS charge vector orbits is given by,

{k 0 0

0 kl 0

0 0 klm

 , where k, l, |m| > 0
}
. (9.41)

2.3. D = 4,N = 8 black hole charge orbits

For quantized charges the continuous U-duality is broken to an infinite discrete subgroup, which for
D = 4 is given by E7(7)(Z) ⊂ E7(7)(R) [47]. Let E7(7)(Z) be defined by Aut(F(JOs

3 )). The quantized
black hole charge vector may be represented by an FTS element,

x =

(
−q0 P

Q p0

)
, where q0, p

0 ∈ Z and Q,P ∈ JOs
3 . (9.42)

Note, the quartic norm and, thus, the entropy squared are quantized. In fact, ∆(x) is equal to either
4n or 4n + 1 for some n ∈ Z. The Dirac-Schwinger-Zwanziger quantisation condition relating two
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black holes with charges x and x′ within the FTS language is given by

{x, x′} ∈ Z. (9.43)

Like the previous examples in D = 5, 6, the charge conditions defining the orbits in the contin-
uous theory are manifestly invariant under the discrete subgroup E7(7)(Z) and, hence, those states
unrelated by U-duality in the classical theory remain unrelated in the quantum theory. There are five
disjoint classes of orbits corresponding to the five continuous orbits. Three of which are the small
1/2-BPS, 1/4-BPS and 1/8-BPS classes, with vanishing ∆(x). There are two large classes of orbits,
one 1/8-BPS and one non-BPS as determined by the sign of ∆(x). However, each of these classes
is broken up into a countably infinite set of discrete orbits. To classify these orbits Krutelevich used
E7(7)(Z) to bring an arbitrary charge vector into a diagonal reduced canonical form [48]. However,
unlike the previous case this canonical form is not uniquely defined. A partial classification of the
orbits is achieved via the set of arithmetic invariants (9.23).

Proposition 55 (Black hole canonical form). Every black hole charge vector x ∈ F(JOs
3 ) is U-duality

equivalent to a diagonally reduced canonical form,

xcan = α

(
1 k diag(1, l, lm)

0 j

)
, where α > 0. (9.44)

Note, k diag(1, l, lm) is the D = 5 diagonally reduced canonical form (9.37). From here-on-in we will often
use (a, b, c) to mean diag(a, b, c).

In [49] a manifestly U-duality invariant dyon spectrum in type II on T 6 was derived under the
assumption that d′2(x) = 1 and that the R-R charges may always be U-dualised away. The canonical
form implies that the latter is always true.

While the D = 4 canonical form for a generic charge vector is not uniquely determined by the
discrete invariants (9.23) it is uniquely specified for the subclass of black holes preserving more than
1/8 of the supersymmetries, i.e. rank 1 and rank 2 charge vectors [48]. In this case the canonical form
is simplified.

Proposition 56 (>1/8-BPS black hole canonical form). The charge vector x ∈ F(JOs
3 ) of every black hole

preserving more than 1/8 of the supersymmetries is U-duality equivalent to a diagonally reduced canonical
form,

x>1/8-BPS can = α

(
1 k(1, 0, 0)

0 0

)
, where α, k > 0. (9.45)

The simplified canonical form is uniquely determined by the two well defined arithmetic invari-
ants from (9.23), since

d1(Qcan) = α,

d2(Qcan) = 2α2k,
(9.46)

so that for arbitrary rank 1 or 2 x one obtains α = d1(x) and k = (
√

2α)−2d2(x) [48]. This facilitates
the orbit classification for such states as is described below.
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D = 4,N = 8 Black hole orbit classification for >1/8-BPS

1. The complete set of distinct 1/2-BPS charge vector orbits is given by,({
α 0

0 0

)
, where α > 0

}
. (9.47)

2. The complete set of distinct 1/4-BPS charge vector orbits is given by,

{
α

(
1 k(1, 0, 0)

0 0

)
, where α, k > 0

}
. (9.48)

2.3.1. Projective black holes

For black holes preserving less than 1/4 of the supersymmetries the analysis becomes increasingly
complex and the orbit classification for generic charge vectors is not known. However, for a sub-
class of such black holes, satisfying particular arithmetic conditions, the orbit classification is known.
These black holes are referred to as projective.

A black hole charge vector x is said to be projective if its U-duality orbit contains a diagonal re-
duced element (9.58) satisfying [20, 48],

gcd(αk, αj, (αkl)2m) =1;

gcd(αkl, αj, (αk)2lm) =1;

gcd(αklm, αj, (αk)2l) =1.

(9.49)

One immediately sees that projectivity implies α = 1 in the canonical form (9.58) and therefore
gcd(x) = 1. Black holes satisfying gcd(x) = 1 are conventionally referred to as primitive.

While the general treatment of orbits in D = 4 is lacking, the orbit representatives of projective
black holes have been fully classified in [20, 48]. This classification relies on Krutelevich’s main theo-
rem [48].

Proposition 57 (Black hole canonical form). Every projective black hole charge vector x ∈ F(JOs
3 ) is U-

duality equivalent to a diagonally reduced canonical form,(
1 (1, 1,m)

0 j

)
, where j ∈ {0, 1}. (9.50)

The values of m and j are uniquely determined by ∆(x).

Further,

• E7(7)(Z) acts transitively on projective elements of a given norm ∆(x).

• If ∆(x) is a squarefree2 integer equal to 1 (mod 4) or if ∆(x) = 4n, where n is squarefree and
equal to 2 or 3 (mod 4), then x is projective and hence U-duality acts transitively.

2An integer is squarefree if its prime decomposition contains no repetition.
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In the projective case all black holes with the same quartic norm and hence lowest order entropy are U-duality
related.

As already emphasized the generic case of not necessarily projective black holes is not fully under-
stood.

2.3.2. Note on the dyon degeneracy formulae for type II string theory on a T 6

The string theoretic completion of N = 8 supergravity, given by type II string theory on a T 6, is con-
jectured to respect not only the S- and T-dualities, but also the full E7(7)(Z) U-duality. Accordingly,
one would expect the 1/8-BPS dyon spectrum to be manifestly E7(7)(Z) invariant. In principle, one
needs to take care of both the dyon charges and the scalar fields under U-duality. However, just as
the attractor mechanism freed the Bekenstein-Hawking entropy of any scalar dependence, one can
use the helicity trace index B14 [280], which is invariant under smooth variations of the scalar fields,
to count the degeneracy of states for a given set of charges. There is one potential pitfall, this index
can potentially jump as the scalars cross “walls of marginal stability” on which the 1/8 BPS dyon
may decay into a pair of 1/2-BPS dyons. This is not a concern here since it is know that such walls
are absent for states with ∆ > 0 [271].

In [49] a manifestly U-duality invariant dyon degeneracy (index) formula was derived for 1/8-BPS
dyons under the assumptions:

1. Up to U-duality there are no R-R charges.

2. d′2(x) = 1.

The canonical form (9.58) implies that the first condition is always satisfied. The degeneracy index,
d(x) ≡ (−1)∆(x)B14, is given by,

d(x) =
∑

s∈Z,2s|d′4(x)

s ĉ(∆(x)/s2) , (9.51)

where
− ϑ1(z|τ)2 η(τ)−6 ≡

∑
k,l

ĉ(4k − l2) e2πi(kτ+lz) (9.52)

and ϑ1(z|τ) and η(τ) are respectively the odd Jacobi theta function and the Dedekind eta function
[265, 281]. This formula is evidently E7(7)(Z) invariant.

For 1/8-BPS states that have vanishing ∆, i.e. rank 3, the formula reduces to [272],

d(x)Rank 3 =
∑

s∈Z,2s|d′4(x)

2s. (9.53)

For 1/4- and 1/2-BPS states the arithmetic invariant d′4(x) is no longer well defined and one would
expect separately invariant formulae, which were indeed obtained in [272].

It would be interesting to see if one can relax the condition that d′2(x) = 1. Alternatively, one might
anticipate a particularly simple form under the stronger assumption of projectivity, which is the most
interesting from a number theoretic perspective [50]. In either case, the orbit classification will be of
use.
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2.4. Conclusion

We have summarized our current understanding of the black hole/string charge vector orbits under
the discrete U-dualities of N = 8 supergravity in six, five and four dimensions. The discrete orbits
of both the black strings in D = 6 and the black holes/strings in D = 5 [67] admit a complete clas-
sification. Two distinct technical elements made this analysis tractable. First, the discrete U-duality
groups, SO(5, 5;Z) in D = 6 and E6(6)(Z) in D = 5, may be modeled, in the sense of [275], by the
integral exceptional quadratic and cubic norm Jordan algebras, respectively. These explicit represen-
tations, which both fundamentally rely upon the ring of integral split-octonions, yielded diagonally
reduced canonical forms for the charge vectors, from which the orbit representatives could, in prin-
ciple, be obtained. Second, a complete list of independent arithmetic invariants, typically given by
the gcd of irreps built out of the basic charge vector representations, is known. These invariants are
sufficient to uniquely fix the canonical form for a given charge vector. These two features together
allow for the complete classification of the discrete orbits.

• D = 6: the black string charge vector Q ∈ JOs
2 is SO(5, 5;Z) := Str0(JOs

2 ) equivalent to a two
charge diagonally reduced canonical form,

Qcan =

(
k 0

0 kl

)
, k > 0, (9.54)

which is uniquely determined by the two following arithmetic invariants,

b1(Q) := gcd(Q),

b2(Q) := N2(Q) = detQ.
(9.55)

• D = 5: the black hole (string) charge vector Q ∈ JOs
3 is E6(6)(Z) := Str0(JOs

3 ) equivalent to a
three charge diagonally reduced canonical form,

Qcan =

k 0 0

0 kl 0

0 0 klm

 , k > 0, l ≥ 0, (9.56)

which is uniquely determined by the three following arithmetic invariants,

c1(Q) := gcd(Q),

c2(Q) := Q],

c3(Q) := N3(Q).

(9.57)

The analogous treatment of the 4-dimensional black hole is not so transparent. The integral FTS
does indeed provide an elegant and natural representation of the discrete U-duality group E7(7)(Z),
which again yields a diagonally reduced canonical charge vector.

• Every black hole charge vector x ∈ F(JOs
3 ) is U-duality equivalent to a diagonally reduced

canonical form,

xcan = α

(
1 k diag(1, l, lm)

0 j

)
, where α > 0. (9.58)
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• The black hole entropy is quantized since ∆ = 4n, 4n+ 1.

• The R-R charges can always be U-dualised away.

However, this canonical form is not uniquely determined by the known set of arithmetic U-duality
invariants. The complete classification is known for two subcases: 1) Black holes preserving more
than 1/8 of the supersymmetries 2) Black holes satisfying the projectivity condition.

• D = 4> 1/8-BPS: the black hole charge vector x ∈ F(JOs
3 ) isE7(7)(Z) := Aut(F(JOs

3 )) equivalent
to a two charge diagonally reduced canonical form,

xcan = α

(
1 (k, 0, 0)

0 0

)
, α > 0, (9.59)

which is uniquely determined by the two following arithmetic invariants,

d1(x) := gcd(x),

d2(x) := gcd(3T (x, x, y) + {x, y}x), ∀y ∈ F(JOs
3 ).

(9.60)

• D = 4 projective: the black hole charge vector x ∈ F(JOs
3 ) isE7(7)(Z) := Aut(F(JOs

3 )) equivalent
to a four or five charge diagonally reduced canonical form,

xproj can =

(
1 (1, 1,m)

0 j

)
, where j ∈ {0, 1}. (9.61)

The values of m and j are uniquely determined by the quartic E7(7)(R) invariant, ∆(x).

Evidently, there are a number of open questions. Chiefly, is it possible that the full space of 4-
dimensional orbits could be resolved if the complete list of independent arithmetic invariants was
known? For example, we have thus far used gcd of the 133 appearing in 56 ×s 56. What about
the 1463? Following [16, 18], we may truncate to the eight charges of the STU model [1, 2, 195, 196],
which transform as a (2,2,2) of SL(2,Z) × SL(2,Z) × SL(2,Z). Using this truncation, the 1463 in
56 ×s 56 reduces to the (3,3,3) in (2,2,2) ×s (2,2,2). Computing the gcd of this (3,3,3) gives the
square of d1(xcan) and, therefore, adds no additional information. To proceed further, it would serve
us well to have a full classification of the independent E7(7)(Z) arithmetic invariants.

It would be interesting to see, armed with a complete list of invariants and orbit classification, if
the dyon degeneracy formula of [49] could be generalised to all black holes.

Finally, returning to the maximally supersymmetric theory in six dimensions, the black hole and
membrane charges transform as the spinors 16 and 16′ of SO(5, 5;R), both of which may be repre-
sented as a pair of split-octonions [65]. An integral structure could then be induced, as it was for
the string, by using the integral split-octonions, again providing a natural framework with which to
study the discrete U-duality orbits of SO(5, 5;Z). We leave this for future work.

We close this section with some rather intriguing observations regarding the integral STU model:

Definition 58 (Integral STU Freudenthal triple system FZSTU ).

FZSTU = F(JZSTU ) := Z⊕Z⊕ JZSTU ⊕ JZSTU , (9.62)
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where JZSTU = Z⊕Z⊕Z. The automorphism group is

SL(2,Z)× SL(2,Z)× SL(2,Z). (9.63)

This structure has a direct relationship to Bhargava’s recent work generalising Gauss’s composition
law for binary quadratic forms, almost precisely 200 years on from their introduction [50]. Essentially,
the set of U-duality equivalence classes of projective STU black holes with hyperdeterminant D 6= 0

has a unique group composition law. The resulting group is isomorphic to Cl+(S) × Cl+(S), where
Cl+(S) denotes the narrow class group of the quadratic ring S with discriminant D. This relies on
the crucial observation that a ring with a finite rank as a Z-module must have a discriminant equal
to 4n or 4n+ 1 for n ∈ Z. This is precisely the quantization of the integral FTS quartic norm.

Furthermore, the U-duality orbits of the large black holes, which we have not been able to classify,
are in one-to-one correspondence with pairs (S, (I1, I2, I3)) (up to isomorphism), where very roughly
S is a quadratic ring with non-zero discriminant and (I1, I2, I3) is an equivalence class of triples of
ideals satisfying, I1I2I3 ⊆ S and N(I1)N(I2)N(I3) = 1 [50]. There is some classification at least!

Actually, this correspondence is surprisingly concrete. Given a black hole with charges aABC the
quadratic ring S is determined by the hyperdeterminant, which gives the discriminant, and the six
bases for the ideal classes Ii are determined by a system of eight equations involving aACB . Con-
versely, given any pair S and (I1, I2, I3) the corresponding black hole aABC is directly obtained from
the assumption that I1I2I3 ⊆ S.

Can this construction be extend to the other FTS’s considered here. It seems plausible given that
the quartic norm in each case can be related to the hyperdeterminant. Indeed, Bhargava has already
treated the case of 3 × 3 Hermitian matrices over the integral split-complexes. Whether or not these
remarkable observations have any real significance for stringy black hole physics is not clear, but
certainly merits some further investigation.

3. Freudenthal duality

3.1. Introduction

In recent work [20] we introduced a new duality of black holes: the Freudenthal duality x → x̃, for
which ˜̃x = −x. Although distinct from U-duality it nevertheless leaves ∆(x) invariant. However, the
requirement that x̃ be integer restricts us to the subset of black holes for which ∆(x) is necessarily a
perfect square. Despite the non-polynomial nature of the F-dual, it scales linearly in the sense that
x̃(nx) = nx̃(x).

The U-duality integral invariants {x, y} and ∆(x, y, z, w) are not generally invariant under F-duality
but {x̃, x}, ∆(x), and hence the lowest-order black hole entropy, are invariant. However, higher order
corrections may also depend on discrete U-duality invariants involving the various gcds [49,267,268,
270, 271]. Under F-duality certain discrete U-duality invariants are conserved while others are not
necessarily, as is discussed in section 3.3. For example, the product d1(x)d3(x) is invariant but d1(x)

and d3(x) separately need not be. The F-dual of a primitive black hole need not itself be primitive.
Similar remarks apply to the quantised charges A of five dimensional black strings and the quan-

tised charges B of five dimensional black holes. We introduced an analogous Jordan dual A?, with
N(A) necessarily a perfect cube, for which A?? = A and which leaves N(A) invariant. Despite its
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non-polynomial nature J-dual scales linearly in the sense that A?(nA) = nA?(A).
The U-duality integral invariants Tr(X,Y ) andN(X,Y, Z) are not generally invariant under Jordan

duality but Tr(X?, X), N(X) and hence the lowest-order black hole and black string entropy, are
invariant. However, higher order corrections may also depend on arithmetic U-duality invariants.
Under J-duality certain discrete U-duality invariants are conserved while others are not necessarily,
as is discussed in section 3.7. For example, the product d1(A)d2(A) is invariant but d1(A) and d2(A)

separately need not be. As for the F-dual, the J-dual of a primitive black hole/string need not itself
be primitive.

The 4D/5D lift [51] associates a rotating 5D black hole to a non-rotating 4D black hole. In section 3.9
we show that two black holes related by F-duality in 4D are related by J-duality when lifted to 5D.

3.2. The 4D Freudenthal dual

Definition 59 (The Freudenthal dual). Given a black hole with charges x, we define its Freudenthal dual x̃
by

x̃ := T (x)|∆(x)|−1/2. (9.64)

As described in section 2.2, the FTS divides black holes into five distinct ranks or orbits. F-duality
(9.64) is initially defined for large rank 4 black holes for which both T and ∆ are nonzero. Small black
holes are discussed in [20].

The invariance of ∆(x) follows by noting that

2∆(x) = {T (x), x} (9.65)

where T (x) = T (x, x, x) obeys
T (T (x)) = −∆2(x)x (9.66)

and hence
∆(T (x)) = ∆(x)3 (9.67)

So
∆(x̃) = ∆(T (x))∆(x)−2 = ∆(x). (9.68)

Moreover
˜̃x = T (x̃)|∆(x)|−1/2 = T (T (x))∆(x)−2 = −x. (9.69)

In the case of two black holes related by Freudenthal duality, the Dirac-Schwinger-Zwanziger
quantisation condition (9.43) becomes

{x̃, x} = {T (x), x}|∆(x)|−1/2 = 2 sgn(∆)|∆(x)|1/2 (9.70)

which is also invariant.
As noted in section 3.1, for a valid dual charge vector x̃, we require that |∆(x)| is a perfect square.

So we may write
|∆(x)| = 1

4{x̃, x}
2 (9.71)

with
{x̃, x} = α̃β − β̃α+ Tr(Ã, B)− Tr(B̃, A), (9.72)
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This is a necessary, but not sufficient condition because we further require that

d4(x) =

[
d3(x)

d1(x̃)

]2

=

[
d3(x̃)

d1(x)

]2

= d4(x̃). (9.73)

Since F-duality requires that ∆(x) is a perfect square, the squarefree condition discussed in sec-
tion 2.3.1 does not apply to the subset of black holes admitting an F-dual, which may or may not
be projective:

Non-projective black holes related by an F-duality not conserving d1 provide examples of con-
figurations with the same quartic norm and hence lowest order entropy that are definitely not
U-duality related,

but more surprisingly,

Non-projective black holes related by an F-duality conserving d1 provide examples of configura-
tions with the same quartic norm, and same arithmetic invariants (9.23), that are apparently not
U-duality related.

The U-duality integral invariants {x, y} and ∆(x, y, z, w) are not generally invariant under Freuden-
thal duality while {x̃, x}, ∆(x), and hence the lowest-order black hole entropy, are invariant. How-
ever, higher order corrections to the black hole entropy depend on some of the discrete U-duality
invariants, to which we now turn.

3.3. The action of F-duality on arithmetic U-duality invariants

The first important observation we make is:

Remark 60. F-duality commutes with U-duality

σ̃(x) = σ(x̃). (9.74)

This follows directly from,

T (σ(x), σ(y), σ(z)) = σ(T (x, y, z)), ∀ σ ∈ AutF(J). (9.75)

We shall see that of the discrete U-duality invariants listed in (9.23), not only d4(x) but also d2(x),
d′2(x) and d′4(x) are F-dual invariant. However, d1 = gcd(x) and d3 = gcd(T (x)) need not be.

Proposition 61. The arithmetic U-duality invariant

d′4(x) := gcd(x ∧ T (x)) (9.76)

is preserved under F-duality.

Proof. The invariance of d′4(x) follows from (9.66) which implies

x̃ ∧ T (x̃) = T (x)|∆|−1/2 ∧ T (T (x)|∆|−1/2)

= −|∆|−2T (x) ∧∆2x

= sgn(∆)x ∧ T (x)

(9.77)

172



and, hence, d′4(x) = d′4(x̃).

Proposition 62. The arithmetic U-duality invariant

d′2(x) := gcd(P(x),Q(x),Rx) (9.78)

is preserved under F-duality.

Proof. To establish the invariance of d′2(x) we examine

P(x) = B] − αA

Q(x) = A] − βA

Rx(C) = 2κ(x)C + 2{A,B,C}

(9.79)

in turn. First, for the black string magnetic charge P we find from (5.64d)

|∆|P̃ = 4
{

[−αA] +A×B] + κ(x)B]] − (ακ(x) +N3(B))[βB] −B ×A] − κ(x)A]
}
. (9.80)

Using (X + Y )] = X × Y +X] + Y ] the first term of (9.80) gives

[−αA] +A×B] + κ(x)B]] =− α(A×B])×A] + κ(x)(A×B])×B

− ακ(x)A] ×B + (A×B])] + α2N3(A)A+ κ(x)2B].
(9.81)

This may be further simplified using the identities

X] × (X × Y ) = N3(X)Y + Tr(X], Y )X

(X × Y )] = Tr(X], Y )Y + Tr(Y ], X)X −X] × Y ],
(9.82)

which follow from the quadratic adjoint definition and the requirement that (X])] = N3(X)X . These
identities yield

(A×B])×A] = N3(A)B] + Tr(A], B])A

(A×B])×B = N3(B)A + Tr(A ,B )B]

(A×B])] = Tr(A], B])B] + Tr(A,B)N3(B)A−N3(B)A] ×B.

(9.83)

Using the above to simplify (9.81) and then substituting into (9.85) gives, after collecting terms,

|∆|P̃ = 4[α2β − αTr(A,B)− ακ(x)]A] ×B + ∆(B] − αA). (9.84)

The first term vanishes identically so that

P̃ = sgn(∆)(B] − αA) = sgn(∆)P. (9.85)

A similar treatment goes through for Q:

Q̃ = sgn(∆)(A] − βA) = sgn(∆)Q. (9.86)
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Finally, in order to demonstrate the invariance of Rx we exploit the fact that since U-duality com-
mutes with F-duality we may assume x to be in reduced form (9.58) so that

Rx(C) = αβ C. (9.87)

For reduced x the dual is given by

|∆|1/2x̃ =

(
−α2β αβA

2αA] αβ2 + 2N3(A)

)
, (9.88)

where ∆ = −α2β2 − 4αN3(A). On substituting in forRx(C) one finds

|∆|R(x̃)(C) = αβ
(
− [α2β2 + 8N3(A)]C + 4α{A,A], C}

)
= ∆αβ C,

(9.89)

where we have used {X,X], Y } = N3(X)Y [68] in the final step. Hence, R is also invariant up to a
sign.

R̃ = sgn(∆)αβC = sgn(∆)R. (9.90)

This clearly establishes the invariance of d′2(x) under F-duality.

Proposition 63. The arithmetic U-duality invariant

d2(x) := gcd(3T (x, x, y) + {x, y}x) ∀y (9.91)

is preserved under F-duality.

Proof. To prove the invariance of d2(x) we first rephrase the problem using the fact that an integer n
divides 3T (x, x, y) + {x, y}x for all y if and only if it divides the following five expressions [48]:

2P, 2Q, 3αβ − Tr(A,B), Rx, Rx′ , (9.92)

where

x =

(
α A

B β

)
, x′ =

(
β B

A α

)
. (9.93)

Hence, we are only further required to establish the invariance of 3αβ − Tr(A,B). The proof goes
along much the same lines as before to obtain

3α̃β̃ − Tr(Ã, B̃) = sgn(∆)[3αβ − Tr(A,B)]. (9.94)

Finally, recall that restricting to the STU subsector d2(x) takes the reduced form

d2(x) = gcd(γA, γB, γC). (9.95)

In this case the proof of F-dual invariance is simplified since each γ is individually invariant, up to a
sign, under F-duality.
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As for d1(x) and d3(x), it follows from (9.73) that their product is invariant

d1(x)d3(x) = d1(x̃)d3(x̃) (9.96)

but separately they need not be. Another way to state this is that the F-dual of a primitive black hole
may not itself be primitive. To see this, recall that by definition

x = d1(x)x0, (9.97)

where x0 is primitive with d1(x0) = 1. Hence

T (x) = d1(x)3T (x0) (9.98)

and
∆(x) = d1(x)4∆(x0). (9.99)

So
x̃ = d1(x)T (x0)|∆(x0)|−1/2 = d1(x)x̃0 (9.100)

and
d1(x̃) = d1(x)d1(x̃0). (9.101)

Hence d1(x) is invariant if d1(x̃0) = d1(x0) ≡ 1, which is not necessarily so.
Typically, the literature on exact 4D black hole degeneracies [49,174,206,247,265,267–271,281–286]

deals only with primitive black holes d1(x) = 1. We are not required to impose this condition and
generically do not do so.

In [20], we provide examples which preserve d1(x) and examples that do not. If desired, however,
one might restrict the subset of black holes admitting an F-dual even further by demanding that
d1(x), and hence d3(x), be conserved.

3.4. F-dual in canonical basis

D. Dahanayake developed a general treatment of the F-dual in the canonical basis. See [20] for more
details and explicit examples. Recall that we may write any black hole in the diagonally reduced
canonical form (9.58),

x = α

(
1 k(1, l, lm)

0 j

)
, (9.102)

where α > 0, k, l ≥ 0, and α, j, k, l,m ∈ Z. The quartic norm of this element is

∆(x) = −(j2 + 4k3l2m)α4. (9.103)

For x to be a rank 4 we must impose
j 6= 0 ∨ klm 6= 0 (9.104)

where ∨ here denotes logical disjunction. Note that in order for the charge vector to be BPS we need
sgn(j2+4k3l2m) = −1 and hence sgn(m) = −1 is a necessary condition. Using (9.103) and the general
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form for T (x), we find that the general F-dual is

x̃ = α|j2 + 4k3l2m|−1/2

(
−j jk(1, l, lm)

2k2l(lm,m, 1) j2 + 2k3l2m

)
. (9.105)

In order that x̃ be integer, we need to impose the following three constraints:

|j2 + 4k3l2m|1/2 = n0 ∈ N, (9.106a)

αj/n0 = n1 ∈ Z, (9.106b)

2k2lα/n0 = n2 ∈ N0, (9.106c)

where sgnn1 = sgn j. Equation (9.106a) forces ∆ to be a perfect square, (9.106b) then ensures that
the α̃ component of x̃ lies in Z, and (9.106c) guarantees that the B̃ component is integral. These
conditions are also sufficient to make the Ã and β̃ components integer valued. The dual system then
becomes

x̃ =

(
−n1 n1k(1, l, lm)

n2(lm,m, 1) n1j + n2klm

)
. (9.107)

The utility of this form is that all valid dual charge vectors can be specified, modulo a sign, by their
j, k, l,m, n1 and n2 values. Clearly if both n1 and n2 vanish the entire system vanishes, failing to
preserve rank. However, n1 and n2 can vanish separately and still leave a rank 4 system. This is to
be expected since F-dual preserves ∆ so that (9.107) must also satisfy (9.104), telling us that one of
n1, n2 must be nonzero, given the definitions (9.106). As a sanity check we may evaluate the quartic
form for (9.107) to discover that we require

jn1 6= 0 ∨ klmn1 6= 0 ∨ klmn2 6= 0 (9.108)

for the dual system to be a large black hole. Satisfyingly, (9.108) is equal to its logical conjunction
with (9.104). Furthermore, we find

d1(x̃) = gcd(n1, n2),

d2(x̃) = gcd(2kn2
1 + 2mn2

2, 2n1 (jn1 + 2klmn2) ,−k2ln2
1 + jn1n2 + klmn2

2)

= α2 gcd(j, 2k),

d′2(x̃) = gcd(kn2
1 +mn2

2, n1 (jn1 + 2klmn2) ,−k2ln2
1 + jn1n2 + klmn2

2)

= α2 gcd(j, k),

d3(x̃) = α3n0,

d4(x̃) = d4(x),

d5(x̃) = d5(x).

(9.109)

As expected, (9.73) is satisfied and

d1(x̃)d3(x̃) = α3n0 gcd(n1, n2)

= α4 gcd(j, 2k2l)

= d1(x)d3(x).

(9.110)
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3.5. The NS-NS sector

3.5.1. P,Q notation

Under the decomposition of theN = 8 U-duality group E7(7)(Z) to the S-duality group SL(2,Z) and
the T-duality group SO(6, 6;Z)

E7(7)(Z) ⊃ SL(2,Z)× SO(6, 6;Z) (9.111)

the 56 decomposes as
56→ (2,12) + (1,32). (9.112)

The (2,12) is identified as the NS-NS sector whereas the (1,32) is associated with the R-R charges.
Since any N = 8 charge vector x is U-dual to a diagonal reduced form (9.58), the R-R charges can
always be transformed away for a generic black hole3 and we are free to consider those black holes
with only NS-NS charges present. We write the 12 electric and 12 magnetic charges as Q and P

respectively. In this case the quartic norm takes the simple, manifestly SL(2,Z)×SO(6, 6;Z) invariant
form

∆(P,Q) = P 2Q2 − (P ·Q)2. (9.113)

Applying the trilinear map to x in this sector one finds4

(
TP

TQ

)
=

(
P ·Q −P 2

Q2 −P ·Q

)(
P

Q

)
, (9.114)

where TP and TQ denote the new P and Q components. The Freudenthal dual then becomes(
P̃

Q̃

)
=

1√
|∆|

(
TP

TQ

)
=

1√
|∆|

(
P ·Q −P 2

Q2 −P ·Q

)(
P

Q

)
. (9.115)

While we have been focusing here on the NS-NS sector of the N = 8 theory, the same formulae
(9.113), (9.114), (9.115) also apply to the toroidal compactification of the heterotic string with N =

4 supersymmetry and SL(2,Z) × SO(6, 22;Z) U-duality. The relevant Jordan algebra is Z ⊕ Γ5,21

[247, 252] and P and Q are now 28-vectors5.
In this case we may introduce a further discrete U-duality invariant, the torsion [266]:

r(P,Q) = gcd(Pµν), (9.116)

where
Pµν = PµQν − PνQµ. (9.117)

For primitive P and Q, the complete set of independent T-duality invariants was determined
in [268]. It consists of the three familiar invariants P 2, Q2 and P · Q, the torsion r(P,Q) and two
further interdependent discrete invariants u1 and u2 which are constructed below. If P and Q are not

3Answering in the affirmative the question posed in [49]: Can one always assume that a D = 4, N = 8 black hole is
U-duality related to a configuration with only NS-NS charges present?

4This form of the trilinear map also appears in [49].
5This case is mentioned in the mathematical literature e.g. [48] but it is not clear how many of the results of section 2

continue to apply. See however [268]. We leave this question for future work
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individually primitive there are two additional T-duality invariants given by gcd(P ) and gcd(Q)6.
Assume P and Q individually primitive and let a, b be two charge vectors satisfying

a ·Q = 1, b · P = 1. (9.118)

Define

u1 = a · P mod r(P,Q),

u2 = b ·Q mod r(P,Q).
(9.119)

It was shown in [268] that u1, u2, so defined, are independent of the choice of a, b, are T-duality
invariant and that u2 is uniquely determined by u1 (and vice versa). Any two such dyons are T-
duality related if and only if all five invariants have identical values.

Let us consider the action of F-duality on these T-duality invariants. P 2, Q2 and P ·Q are invariant
up to a sign determined by the quartic norm,

P̃ 2 = sgn(∆)P 2

Q̃2 = sgn(∆)Q2

P̃ · Q̃ = sgn(∆)P ·Q.

(9.120)

Moreover
P · Q̃ = −P̃ ·Q = sgn(∆)|∆|1/2, (9.121)

and the quantisation rule is
P · Q̃− P̃ ·Q = sgn(∆)2|∆|1/2. (9.122)

Note also that
P̃µν = sgn(∆)Pµν (9.123)

and therefore the torsion is also invariant under F-duality.
Clearly, when d1(P,Q) and d3(P,Q) are not conserved under F-duality, then neither u1 nor gcd(P ), gcd(Q)

are preserved . However, in cases when gcd(P ) = 1 and gcd(Q) = 1 are in fact conserved under F-
duality it is not difficult to verify that u1(P,Q) is also preserved.

Consequently, two 1/4-BPS (∆ > 0) F-dual states are T-dual if and only if both gcd(P ) = 1 and
gcd(Q) = 1 are preserved. On the other hand, non-BPS (∆ < 0) F-dual states cannot be T-duality
related. Moreover, since d1(P,Q) is not necessarily invariant under F-duality, gcd(P ) and gcd(Q) are
not generically invariant.

It is worth emphasising that the F-duality (9.115) is not generically an SL(2,Z) S-duality, but in
certain specific circumstances with ∆ positive the two may coincide.

3.5.2. F-dual in Sen basis

Although the canonical basis of section 3.4 is most convenient for our purposes, it is also useful to
re-express our results in the basis used by Sen and collaborators [49, 268, 270], which may be more

6For the heterotic string we have a complete set of T-duality invariants which uniquely determine the black hole charges
up to T-duality. This contrasts with the N = 8 case and its U-duality invariants.
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familiar to the black hole community:

P =


Q1

J

Q5

0

 , Q =


0

n

0

1

 , (9.124)

with Q5|J,Q1. Here, n represents an NS 5-brane winding charge, Q1 a fundamental string winding
charge, while J and Q5 are units of KK monopole charge associated with two distinct circles of the
T 6. In FTS language we have,(

α (A1, A2, A3)

(B1, B2, B3) β

)
=

(
−1 (n,Q1, Q5)

(0, 0, 0) J

)
. (9.125)

We see immediately that x is chosen to be primitive and that we must impose

Q5 6= 0 ∧ (J 6= 0 ∨ nQ1 6= 0), (9.126)

for x to be a valid rank 4 charge vector. Using the metric(
0 12

12 0

)
(9.127)

we have

Q2 = 2n, P 2 = 2Q1Q5, P ·Q = J, (9.128)(
TP

TQ

)
=

(
J −2Q1Q5

2n −J

)
,

(
P

Q

)
, (9.129)

and

∆ = 4nQ1Q5 − J2. (9.130)

The Freudenthal dual is then given by

P̃ = |4nQ1Q5 − J2|−1/2


JQ1

J2 − 2nQ1Q5

JQ5

−2Q1Q5

 , Q̃ = |4nQ1Q5 − J2|−1/2


2nQ1

nJ

2nQ5

−J

 . (9.131)

3.6. The 5D Jordan dual

Definition 64 (The Jordan dual). Given a black string with charges A or black hole with charges B, we
define its Jordan dual by

A? = A]N(A)−1/3, B? = B]N(B)−1/3, (9.132)

where we take the real root as implied by the notation.

As described in section 2.2, the Jordan algebra divides black holes and strings into four distinct
ranks or orbits. J-duality is initially defined for large rank 3 strings for which both A] and N(A) are

179



nonzero and large rank 3 holes for which both B] and N(B) are nonzero. Small black holes and
strings are discussed in [20]. An alternative definition of the Jordan dual is presented in Appendix D.

The invariance of N(A) follows by noting that

Tr(A], A) = 3N(A), (9.133)

where A] obeys
(A])] = N(A)A, (9.134)

and hence
N(A]) = N(A)2. (9.135)

So
N(A?) = N(A]N(A)−1/3) = N(A). (9.136)

Moreover
A?? = (A]N(A])−1/3)]N(A?)−1/3 = A. (9.137)

Similar results hold for B.
In the case of a black hole and black string related by Jordan duality, the Dirac-Schwinger-Zwanziger

quantisation condition (9.36) is given by

Tr(A?, A) = 3N(A)2/3, (9.138)

which is also invariant. Note the factor of 3.
As noted in section 3.1, for a valid dual A?, we require that N(A) is a perfect cube. This is a

necessary, but not sufficient condition because we further require that

d3(A) =

[
d2(A)

d1(A?)

]3

=

[
d2(A?)

d1(A)

]3

= d3(A?). (9.139)

In the 5D case the canonical reduced diagonal form of (9.37) is unique in the sense that it is unam-
biguously determined by the U-duality invariants d1(A), d2(A) and N(A).

Black holes related by a J-duality not conserving d1(A) provide examples of configurations with
the same cubic norm and hence lowest order entropy that are not U-duality related.

The U-duality integral invariants Tr(X,Y ) and N(X,Y, Z) are not generally invariant under Jor-
dan duality while Tr(A?, A) and N(A), and hence the lowest-order black hole entropy are. However,
higher order corrections to the black hole entropy depend on some of the discrete U-duality invari-
ants, to which we now turn.

3.7. The action of J-duality on discrete U-duality invariants

J-duality commutes with U-duality in the sense that A? transforms contragredient to A. This follows
from the property that a linear transformation s belongs to the norm preserving group if and only if

τ(A)× τ(B) =t τ−1(A×B), (9.140)
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which implies
(τ(A))? =t τ−1(A?). (9.141)

As we shall see in the following section, of the discrete invariants listed in (9.18), only the cubic norm
d3(A) is generically preserved under J-duality.

3.8. Smith diagonal form and its dual

We have already seen in section 2.2 that we may write the most general black string charge configu-
ration, up to U-duality, as

A = k(1, l, lm), (9.142)

where k, l ≥ 0. In this case
A] = k2l(lm,m, 1), (9.143)

and
N3(A) = k3l2m. (9.144)

So the Jordan dual black string is given by

A? = k(l/m)1/3(lm,m, 1). (9.145)

Hence, we require k3l = n3|m|, n ∈ N. A generic J-duality pair A,A? are given by

A = k(1, l, lm), A? = n(lm,m, 1), (9.146)

so that,
d1(A) = k d1(A?) = n

d2(A) = k2l d2(A?) = n2|m|

d3(A) = k3l2|m| d3(A?) = n3m2l.

(9.147)

So d3(A) is conserved as expected and so is the product d1(A)d2(A) but not d1(A) and d2(A) sepa-
rately, except when n = k.

The similar form of A and A? when n = k suggests they may be related. In fact they must be
related by a U-duality because they have the same d1, d2 and d3.

Note that N3(A?)2 is a perfect cube

N3(A?)2 = (nklm)3, (9.148)

which also implies that N3(A) is a perfect cube, consistent with the claim in section 3.1.

3.9. Freudenthal/Jordan duality and the 4D/5D lift

3.9.1. The 4D/5D lift

Recent work [51] has established a simple correspondence relating the entropy of 4D BPS black holes
in type IIA theory compactified on a Calabi-Yau Y to the entropy of spinning 5D BPS black holes in
M-theory compactified on Y × TNβ , where TNβ is a Euclidean 4-dimensional Taub-NUT space with
NUT charge β. Using this 4D/5D lift the electric black hole charge Q and spin Jβ may be identified
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with the dyonic charges of the 4D black hole giving a precise relationship between the leading order
entropy formulae. This relationship has then been used to count the 4D BPS black hole degeneracies
in N = 8 string theory [281] exploiting the known results from the analysis of 5-dimensional black
holes [49, 174, 265, 267, 271, 281, 283].

This correspondence between the D = 5 black hole changes Q and Jβ and the D = 4 elec-
tric/magnetic black hole charges is neatly captured in terms of the FTS.

Remark 65 (4D/5D lift: FTS→Jordan algebra). Under the 4D/5D lift the black string magnetic charge P
and black hole electric charge Q are defined in terms of the 4D black hole charges as

P = B] − αA, Q = A] − βB. (9.149)

Their corresponding angular momenta are given by

Jα = −1
2Tα = ακ(x) +N3(B), Jβ = −1

2Tβ = −βκ(x)−N3(A). (9.150)

The respective entropies of the rotating 5D black string and black hole are given by

S5(black string) = 2π

√
|N3(P)− Jα2|, S5(black hole) = 2π

√
|N3(Q)− Jβ2|. (9.151)

Lemma 66. With the black string/hole charges and momenta defined as above, the 4D quartic invariant ∆(x)

is given by,
4

α2
{N3(P)− Jα2} =

4

β2
{N3(Q)− Jβ2}. (9.152)

Proof. For strictly Jordan algebraic proof we begin by using the identity Tr(X,X]) = 3N3(X) to write

3N3(αA−B]) = Tr(αA−B], (αA−B])]). (9.153)

Then, using (X + Y )] = X × Y +X] + Y ], we have

3N3(αA−B]) = Tr(αA−B], (−αA)×B] + α2A] +N3(B)B)

= Tr(αA−B], (−αA)×B]) + 3α3N3(A)

− α2 Tr(A], B]) + αTr(A,B)N3(B)− 3N3(B)2.

(9.154)

Finally, using Tr(X,Y×Z) = 6N3(X,Y, Z),which may be derived from the definition of the quadratic
adjoint Tr(X], Y ) = 3N3(X,X, Y ), we see that

Tr(αA−B], (−αA)×B]) = 6N3(αA−B],−αA,B])

= 2[N3(αA−B]) +N3(B])−N3(αA)].
(9.155)

Hence, on substituting back into (9.154) one finds

N3(αA−B]) = α3N3(A)− α2 Tr(A], B])

+ αTr(A,B)N3(B)−N3(B)2,
(9.156)
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so that

∆(x) = − 4

α2

{
[ακ+N3(B)]2 + α3N3(A)− α2 Tr(A], B]) + αTr(A,B)N3(B)−N3(B)2

}
=

4

α2
{N3(B] − αA)− [ακ+N3(B)]2},

(9.157)

as required. Had we started with N3(Q) we would have obtained the analogous black hole equation.

Hence, we find that the 4D and 5D entropies are related as follows,

S4 =
1

α
S5(black string) =

1

β
S5(black hole). (9.158)

3.9.2. F-duality→J-duality under the 4D/5D lift

We recall that a black hole can be put into reduced form:

x =

(
α A

0 β

)
. (9.159)

We now show that for these five parameter black holes the lift of the Freudenthal dual is related to
the Jordan dual. For the black hole in (9.159) we have

∆(x) = −α2β2 − 4αN3(A), T (x) =

(
−α2β αβA

2αA] αβ2 + 2N3(A)

)
. (9.160)

The 5D black hole/string charges are given by

P(x) = −αA, Q(x) = A], (9.161)

with the following norms

N3(P(x)) = −α3N3(A), N3(Q(x)) = N3(A)2, (9.162)

and angular momenta

Jα = −1
2Tα = 1

2α
2β,

Jβ = −1
2Tβ = −1

2αβ
2 −N3(A).

(9.163)

The Freudenthal dual of x is given by

x̃ =

(
α̃ Ã

B̃ β̃

)
=

1

|∆|1/2

(
−α2β αβA

2αA] αβ2 + 2N3(A)

)
(9.164)

and

Ã] =
α2β2A]

|∆|
, B̃] =

4α2N3(A)A

|∆|
. (9.165)
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Hence, we find the following P(x̃) and Q(x̃)

P(x̃) = B̃] − α̃Ã

=
4α2N3(A)A

|∆|
− −α

2β

|∆|1/2
· αβA
|∆|1/2

= α
(α2β2 + 4αN3(A)

|∆|
A

= − sgn(∆)αA,

(9.166)

and
Q(x̃) = Ã] − β̃B̃

=
α2β2A]

|∆|
− αβ2 + 2N3(A)

|∆|1/2
· 2αA]

|∆|1/2

= −(α2β2 + 4αN3(A)

|∆|
A]

= sgn(∆)A].

(9.167)

Hence
P(x̃) = sgn(∆)P(x), Q(x̃) = sgn(∆)Q(x), (9.168)

as expected from (9.85) and (9.86). Similarly we find

Jα(x̃) = |∆|1/2α, Jβ(x̃) = |∆|1/2β, (9.169)

so that
∆(x̃) = |∆|Jα−2

(
4 sgn(∆)N (P)− |∆|α2

)
= ∆(x). (9.170)

Now, if we take the Jordan duals of P(x) and Q(x), we have

P?(x) =
P(x)]

N3(P(x))1/3
, Q?(x) =

Q(x)]

N3(Q(x))1/3
. (9.171)

We can calculate P] and Q] from (9.161), for which we get P] = α2A] and Q] = N3(A)A, we already
know N3(P) and N3(Q) from (9.162), so that we now have

P?(x) =
α2A]

(−α3N3(A))1/3
Q?(x) =

N3(A)A

N3(A)2/3

= − α

N3(A)1/3
A], = N3(A)1/3A,

(9.172)

with norms

N3(P?) = −α3N3(A) N3(Q?) = N3(A)2. (9.173)

Putting all this together, we find

P̂?(x) = Q̂(x̃),

Q̂?(x) = P̂(x̃),
(9.174)
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where the hat denotes an element with the unit norm;

X̂ =
X

N3(x)1/3
, N3(X̂) = 1. (9.175)

Thus we have established

4D black hole x 4D/5D lift−−−−−−→ 5D black string A ∼ B̃?

Freudenthal dual

y yJordan dual

dual 4D black hole x̃ −−−−−−→
4D/5D lift

dual 5D black hole B̃ ∼ A?
(9.176)

3.10. Conclusions

3.10.1. N = 8:

In the subcases where d1(x) is conserved, F-duality x → x̃ preserves all the U-duality invariants
(9.23). The degeneracy formula for the class of black holes considered in [49] depends explicitly on
only ∆(x) and d5(x) and therefore the exact entropy in this case is F-dual invariant. The more general
case remains an open question since we are not aware of a general U-duality invariant expression for
dyon degeneracies.

In the projective case, this result is somewhat trivial because all black holes are U-duality related
and so, in particular, the F-dual x̃ is U-dual equivalent to x.

In the non-projective case, this result seems non-trivial because we are not aware of any argument
that would indicate that the F-dual x̃ is U-dual equivalent to x. For example,

x = α

(
1 (0, 0, 0)

(0, 0, 0) j

)
,

x̃ = α

(
1 (0, 0, 0)

(0, 0, 0) −j

)
.

(9.177)

Without a complete orbit classification the U-equivalence, or not, of F-dual black holes is a difficult
question to answer in general. Even with a full orbit classification the invariance of the higher-order
corrections to the entropy would remain unsettled as we cannot be sure on which invariants they
depend. Could there be black holes with the same precision entropy that are not U-duality related
but are F-duality related?

In the subcases where d1(x) is not conserved, we can be absolutely sure that the F-dual x̃ is not
U-dual equivalent to x. In this case, however, we do not know whether F-duality leaves higher
order corrections invariant because all the treatments of higher-order corrections we are aware of are
restricted to d1(x) = 1.

These 4D conclusions, and the simpler 5D ones, are summarised in Table 9.2.

N = 4, heterotic:

F-duality x → x̃ leaves invariant ∆ and (up to a sign) P 2, Q2 and P · Q. Moreover, the discrete
torsion r(P,Q) is invariant. This result seems non-trivial because we are not aware of any argument
that would indicate that the F-dual x̃ is T-dual equivalent to x. In the cases where P 2, Q2 and P · Q
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Table 9.2.: Are F or J duals related by U-duality?

Duality d1 conserved ? U-dual ?

F-dual Yes
Projective Yes

Non-projective ?
F-dual No No
J-dual Yes Yes
J-dual No No

flip sign, we can be absolutely sure that the F-dual x̃ is not T-dual equivalent to x. This corresponds
specifically to non-BPS black holes and, hence, the conjectured counting formula for all 1/4-BPS
dyons is not applicable. However, it is perhaps encouraging that torsion is left invariant as it plays a
central role in the current N = 4 dyon degeneracy calculations [269].

In the subcases where d1(x) is not conserved, we can be absolutely sure that the F-dual x̃ is not
U-dual equivalent to x. In this case, however, we do not know whether F-duality leaves higher
order corrections invariant because all the treatments of higher-order corrections we are aware of are
restricted to d1(x) = 1. This restriction is typically imposed to avoid complications arising from the
possibility that dyons with d1(x) > 1 may decay into single particle states. The consequences of this
phenomenon for F-dual black holes remains an open question.

N = 2, magic:

The magic N = 2 black holes may require a separate analysis since the diagonally reduced form,
central to our present treatment, is not necessarily applicable in these instances. In particular, for the
octonionic N = 2 example (as opposed to the split-octonionic N = 8 case) it is well know that there
are integral Jordan algebra elements that cannot be diagonalised [67, 275, 276].

Further work

For the time being the microscopic stringy interpretation of F-duality remains unclear. In part, this
is due to the F-duality action only being defined on the black hole charges and not the component
fields of the lowest order action.

The 4D/5D lift is also in some sense unsatisfactory in its current form, in part, because the 5D
angular momentum is a J-dual singlet, but transforms under F-duality.

Finally, having specified the necessary and sufficient conditions (9.106) required for a well defined
F-dual charge vector, one might ask how this space of black holes is mathematically characterised
and whether it has a broader significance.
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CHAPTER 10
Conclusions

We have given an overview of the intriguing correspondence relating black hole entropy and entan-
glement. Along the way many subjects have been touched upon:

• The relationship between black hole entropy in the STU model and the entanglement of three
qubits.

• The generalisation toN = 8 supergravity which admits a QI interpretation, via the Fano plane,
in terms of the tripartite entanglement of seven qubits.

• The microscopic interpretation of black holes as qubits in terms of wrapped D-branes.

• The classification of 4-qubit entanglement from the STU model in three dimensions.

However, we have concentrated on the role of the octonions, Jordan algebras and the Freudenthal
triple system in M-theory, QI and their interrelation. In particular:

• We have elucidated the role of the imaginary octonions in relating the tripartite entanglement
of seven qubit to the black holes of N = 8 supergravity.

• We provided an elegant and manifestly SLOCC-covariant classification of 3-qubit entanglement
using the Freudenthal triple system of the STU model. We, moreover, generalised this FTS to
an arbitrary number of qubits.

• We introduced a new Freudenthal duality of 4-dimensional black holes with quantized charges.
This relied on the analysis of the discrete U-duality orbits for which we used the integral
Freudenthal triple system. Three important consequences are that (1) the leading order black
hole entropy is quantized (2) every black hole state is U-duality related to one with no R-R
charges (3) the 1/2-, 1/4- and 1/8-BPS dyon degeneracy formulae are defined separately by
the arithmetic U-duality invariants.

There are clearly many open questions and possible lines for future research. Before considering
the more general context of black holes and qubits at large, let us first discuss the possible directions
stemming from the algebraic perspective we have adopted here. For example:
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• The appearance of the Fano plane and, in particular, the fact that truncating to its lines and
points corresponded to truncating N = 8 supergravity to its NS-NS and STU subsectors, re-
spectively, led us to speculate in [18] that these theories may be intimately related by the di-
vision algebras in a manner not yet appearing in the literature. This would appear to be true,
however, while the algebras are correctly identified, the candidate theories to be related have
changed. This is, however, still rather speculative and further work needs to be done before we
can be sure of these claims.

We also demonstrated that the symmetries of the Fano plane form a subset of the Weyl trans-
formations which do not mix electric and magnetic charges. This is the N = 8 analog of the
Z2 electric-magnetic duality of Maxwell theory. However, the significance of the Fano transfor-
mations remains mysterious. One would anticipate that they are related to the supersymmetric
configurations of seven intersecting D-branes, which are themselves determined by the Fano
plane. A second interesting, but seemingly unrelated question also arises from the Fano plane
symmetries. We have recently shown that the Fano symmetries may be used to construct new
Joyce manifolds. While still work in progress, such manifolds potentially have interesting phe-
nomenological applications.

• Several features of our proposed n-qubit generalisation of the FTS need development. Princi-
pally, we are lacking a systematic generalisation of the FTS rank, a vital tool in the entanglement
classification of three qubits. Similarly, it is not clear how to systematically generate SLOCC in-
variants without first appealing to the conventional [SL(2,C)]n theory and then working back-
wards. Both these issues must be addressed before we can really assess the utility of the n-qubit
FTS.

Ultimately, one would like to have a general (perhaps inductive) classification of an arbitrary
number of qubits. It is our feeling that this would be best approached from the perspective of
algebraic geometry. However, it is hard to get a handle on the problem, since we currently only
have one non-trivial data point, the entanglement of three qubits. It is our hope that the FTS
formulation will be of use in both the short term goal of classifying small numbers of qubits, as
well as the more ambitious task of determining a general entanglement classification scheme.

• While Freudenthal duality is non-trivial, it is, in a certain sense, “low-level”. While it has a
non-trivial action on the black hole charges, we do not know if and how it should act on the
other fields of the theory. It is also not clear whether it is a symmetry of the entropy in the
full theory, or whether it is only valid at the low-energy effective description of two derivative
supergravity. This brings us to a related set of open questions.

• In order to determine whether F-duality preserves the N = 8 black hole entropy exactly, one
needs to know the full manifestly E7(7)(Z) invariant dyon degeneracy formulae. It has recently
been observed that some of the orbits of E7(7)(Z) should play an important role in these count-
ing formulae [272]. However, we do not yet have a general classification of these orbits for 1/8-
or non-BPS states. It is our contention that such a classification is possible in the context of the
integral FTS. The basic idea is to use the diagonally reduced 5-charge canonical form together
with the complete set of algebraically independent arithmetic U-duality invariants to show that
any state is uniquely determined up to U-duality by the said invariants. For example, we have
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shown that the gcd of the charges, the quadratic adjoint and the cubic norm are the complete
set of algebraically independent invariants for D = 5,N = 8 and that they do indeed uniquely
specify the state up to U-duality.

The first task is the construction of the invariants evaluated at the canonical form. This becomes
increasingly complicated as one includes more powers of the charges. Even at quadratic order
one needs to consider the 133- and 1463-dimensional representations. However, one feasible
approach is to use the truncation to the STU model for which the explicit forms of the invariants
are tractable. This is already work in progress.

Such a classification might facilitate the derivation of a more general dyon degeneracy formula
than the one presented in [49], which requires d′2 = 1.

A second interesting spin-off is the possibility that such a classification has applications to the-
ory of higher composition laws. See [50].

There are many more possibilities besides these few, but let us rather conclude with some future
directions in the more general context. One might consider, for example:

Wrapped branes: Although there are no black holes with non-zero entropy in D ≤ 6 dimensions,
there are black strings and other intersecting brane configurations with entropies given by U-
duality invariants. Do they have a qubit interpretation? In fact, we can relate supersymmetric
configurations of intersecting wrapped M-branes to systems of one through sixteen qubits by
compacitifying in steps from D = 11 down to D = 3 (or from D = 10 to D = 2 using D-branes).
However, one loses the attractive entropy-entanglement correspondence as these configura-
tions are not necessarily asymptotically flat. There is, however, good evidence that the super-
symmetric configurations will correspond to representative states of the entanglement classes.
This question cannot be answered without the covariant classifications (analogous to the FTS
classification of three qubits) for more than three qubits.

3D black holes: It is natural to ask whether the techniques, based on nilpotent orbits and the Kostant-
Sekiguchi theorem, which provided the classification of 4-qubit entanglement from D = 3

STU black holes, could be used for other QI systems. Compactifying the N = 8 theory to
D = 3, we ought to obtain the entanglement classification of the “four-way entanglement of
eight qubits” [18],

|Ψ〉224 = aHABD|HAB •D • • • 〉 + ãCEFG|•• •C •EFG〉
+ bHBCE |H •BC •E • • 〉 + b̃DFGA |•A • •D •FG〉
+ cHCDF |H • •CD •F • 〉 + c̃EGAB |•AB • •E •G〉
+ dHDEG|H • • •DE •G〉 + d̃FABC |•ABC • •F • 〉
+ eHEFA |HA • • •EF • 〉 + ẽGBCD|••BCD • • • 〉
+ fHFGB |H •B • • •FG〉 + f̃ACDE |•A •CDE • • 〉
+ gHGAC |HA •C • • •G〉 + g̃BDEF |••B •DEF • 〉.

(10.1)

The 112 are associated with quadrangles of the Fano plane and the other 112 with the quad-
rangles of the dual Fano plane. The relevance of this state derives from the fact that it may be
assigned to the coset E8(8)/[SL(2,R)]8 [18] so that Kostant-Sekiguchi theorem applies.
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Superqubits: In addition to its mathematical naturalness, the superqubit has some potential rele-
vance to certain condensed matter systems, such as the supersymmetric t-J model [219–223],
which deserves further investigation. A physical realisation of the superqubit would certainly
be remarkable. It would also be interesting to see just how much of conventional QI could be
cast in the supersymmetric framework.

We hope that the reader is convinced that this mathematical duality relating black holes and qubits,
while lacking a physical basis, is interesting, fruitful and may yet provide crucial insights into the
deep structure of both M-theory and entanglement.
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APPENDIX A
The Jordan algebra formulation of quantum mechanics

Taken alone, it is not entirely clear that the Jordan identity (5.17) ought to be of any fundamental
importance when representing the algebra of observables. To better understand its physical relevance
let us consider what is expected of such a representation starting from the conventional matrix theory.
We follow closely the presentation given in [287].

Observables are represented by Hermitian matrices, possibly of infinite dimension. Central to their
particular suitability in this role is that their eigenvalues are real, that distinct eigenvalues correspond
to distinct orthogonal eigenvectors and that they are formally real in the sense of (5.18). These prop-
erties, coupled with the spectral decomposition theorem, imply that for any polynomial function F
and observable A,

F (A) =
∑
m

F (am)Pm, for A =
∑
m

amPm, (A.1)

where Pm and am are the projectors and their associated eigenvalues, respectively, appearing in the
spectral decomposition of A. The physical significance of this statement is that, if a is the value of
some observable A, energy say, for some system in a given state, then one would expect that F (a)

would be the value of F (A), energy squared say, for the same state. However, this relies crucially on
the power associativity (5.19) of Hermitian matrices; AmAn = A(m+n) ensures that F (A) is defined
unambiguously.

Now, given a commutative, formally real algebra, the Jordan identity then follows from the physi-
cally well motivated assumption of power associativity [239]. Equally, given the same initial assump-
tions, the Jordan identity implies power associativity. However, Hermitian matrices do not in general
commute. Consequently, the matrix product of two Hermitian matrices does not necessarily yield a
third Hermitian matrix. They do not form a closed algebra under standard matrix multiplication.
These considerations, in part, motivate the definition of the Jordan product on Hermitian matrices,

A ◦B = 1
2(AB +BA), (A.2)

which is by definition commutative (but nonassociative) and closed with respect to Hermiticity. The
algebra of Hermitian matrices, with multiplicative composition defined by (A.2), is closed, formally
real, commutative, power associative and, consequently, satisfies the Jordan identity (5.17). In this
particular case, these properties simply amount to a set of identities. However, in seeking gener-
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alisations, one could make the paradigm shift and take the Jordan identity as primary, the Jordan
product emerging as a secondary consequence. That is, we start from a Jordan algebra and require
that, in addition, it be formally real and contain an identity element so as to ensure its suitability as
an algebra of observables [287]. In summary, we axiomatise the algebra of observables A:

1. x ◦ y = y ◦ x,

2. x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y),

3. x2 + y2 + z2 + · · · = 0 =⇒ x = y = z = · · · = 0,

4. ∃ 1 ∈ A s.t. 1 ◦ x = x ◦ 1 = x ∀x ∈ A.

Having, to some degree at least, set an axiomatic foundation for the algebra of quantum observ-
ables, it is natural to ask what generalisations, beyond the orthodox framework, this allows for.
This question was essentially answered by the classification of all simple formally real Jordan alge-
bras [239] (see section 2.1). However, before commenting on the possible alternatives let us address
a more immediate issue; how the Jordan formulation captures the statistics of standard quantum
mechanics, an obvious minimal prerequisite.

Having articulated the space of quantum observables in terms of Jordan algebras let us now turn
our attention to the representation of states and the problem of time evolution. States in quantum
theory are represented by rays in a Hilbert space. However, given an orthonormal basis, {|m〉} the
projection operators,

Pm = |m〉〈m|, (A.3)

which satisfy,

trPm = 1, (A.4)

and

P 2
m = Pm, (A.5)

correspond to an equivalent representation. Any normalised pure state |ψ〉 may be expressed as a
projector, Pψ = |ψ〉〈ψ|, satisfying (A.4) and (A.5). The expectation value of an observable, represented
by a Hermitian matrix A, is then given by,

〈A〉ψ = tr(PψA). (A.6)

More generally, any state, pure or mixed, may be represented as a Hermitian, trace one, positive
semi-definite density matrix ρ in which case,

〈A〉ρ = tr(ρA). (A.7)

To reproduce these results using the Jordan framework it is necessary to introduce a trace form [287,
288],

tr1 = ν, tr bi = 0, (A.8)

where ν ∈ Z and the set {bi} forms a basis for the Jordan algebra such that any element a may be
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written as a = aibi, ai ∈ R. This defines a positive definite bilinear inner product,

〈bi, bj〉 = 1
ν tr(bi ◦ bj) = δij , (A.9)

since one can always choose a basis such that bi ◦ bj = δij1 + fijkbk. Any two idempotents1, P1 and
P2, are orthogonal, P1 ◦ P2 = 0, if they are orthogonal with respect to the inner product (A.9). A
general idempotent E is said to be irreducible or primitive if it cannot be decomposed as the sum of
two orthogonal idempotents. The highest possible number of orthogonal primitive idempotents is
the degree of the algebra and is equal to the ν appearing in the trace form if one normalises trE = 1,
c.f. (A.4). Any complete set {Ei} of orthogonal primitive idempotents satisfies,

ν∑
i=1

Ei = 1, (A.10)

constituting a resolution of the identity. Then, in analogy with the spectral decomposition theorem,
any element a in the algebra can be expressed as a linear sum of primitive idempotents,

a =

ν∑
i=1

aiEi(a), (A.11)

where the maximal set {Ei(a)} depends on the particular element a under question.
It is now possible to represent an arbitrary state ρ in the Jordan formulation,

ρ =

ν∑
i=1

piEi, where
ν∑
i=1

pi = 1 and pi ∈ [0, 1]. (A.12)

This clearly relates to the density matrix formalism of conventional quantum mechanics: ρ is a pos-
itive semi-definite, trace one element that satisfies ρ2 ≤ ρ with equality holding only for pure states
i.e. when ρ is a primitive idempotent [287]. The expectation value of an observable a in the Jordan
algebra with respect to a state ρ is then given by,

〈a〉ρ = tr(a ◦ ρ). (A.13)

Hence, this Jordan algebra formulation is essentially equivalent to the density matrix picture of the
conventional quantum mechanics [287].

Let us now consider time evolution. Here the Jordan formalism does depart, to some extent, from
the standard density matrix picture. If we assume that the affine structure of a general density matrix
is preserved by time evolution then,

∂tρ(t) = −i[H, ρ(t)], (A.14)

where H is the Hamiltonian. An important feature of (A.14) is that it maps pure states into pure

1Any algebra element P is said to be idempotent if P 2 = P .
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states. Given two Hermitian matrices, A and B, we have,

∂t(AB) = −i[H,AB]

= −i([H,A]B +A[H,B])

= (∂tA)B +A(∂tB).

(A.15)

The differential evolution operator acts as a derivation as one would expect. Requiring this condition
in the Jordan formulation, so that for any two elements x and y

∂t(x ◦ y) = D(x ◦ y) = x ◦D(y) +D(x) ◦ y = x ◦ ∂t(y) + ∂t(x) ◦ y, (A.16)

the differential evolution operator D acts as a derivation of the Jordan algebra. The set of derivations
generates the automorphism group of the algebra. Hence, the corresponding time translation opera-
tor, Tt1→t2 , taking an element, xt1 , at time t1, to the corresponding element, xt2 , at time t2, preserves
the Jordan product. If

xt1 ◦ yt1 = zt1 , (A.17)

then

Tt1→t2(xt1) ◦ Tt1→t2(yt1) = Tt1→t2(zt1) or, equivalently xt2 ◦ yt2 = zt2 . (A.18)

Consequently, Tt1→t2 takes pure states, represented by primitive idempotents Et1 , into pure states, as
can be seen from,

Et1 ◦ Et1 = Et1 =⇒ Tt1→t2(Et1) ◦ Tt1→t2(Et1) = Tt1→t2(Et1)

=⇒ Et2 ◦ Et2 = Et2 .
(A.19)

Remarkably, any derivation D(z) can be expressed as,

D(z) = Dx,y(z) = x ◦ (z ◦ y)− (x ◦ z) ◦ y, (A.20)

where x and y are any two traceless elements. Recalling the definition of the associator, this implies
that the evolution of any (mixed or pure) state is given by,

∂tρ = [x, ρ, y]. (A.21)

It would seem that, in the Jordan formalism, the associator plays a role equivalent to that of the com-
mutator in the standard picture. Let us consider the case closest to conventional quantum mechanics,
the Jordan algebra of n× n Hermitian matrices defined over C. In this case (A.21) reduces to,

∂tρ = [[x, y], ρ]. (A.22)

IfH = i[x, y]+λ1 then [[x, y], ρ] = −i[H, ρ] and (A.22) reproduces the conventional unitary evolution
equation (A.14). It is as if the Jordan formulation is, in words of [287], the “square root” of standard
theory.

In light of this relationship between the Jordan formulation and the density matrix formalism, the
simple Jordan algebras of n × n Hermitian matrices over the associative division algebras seem to
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offer an obvious generalisation. However, it would seem that they simply amount to conventional
quantum theory defined overR,C orH [289]. This leaves the exceptional octonionic example. In this
case a Hilbert space formulation is not possible due to the nonassociative nature of the octonions.
It has, however, been shown that the usual axioms of quantum theory may be satisfied by taking a
more abstract “propositional” approach [234, 287, 288, 290, 291].

195



APPENDIX B
More on Jordan algebras

B.1. Quadratic Jordan algebras

A quadratic form1 N2 on a vector space V defined over a field F is a homogeneous mapping from V

to F of degree 2,
N2 : V → F s.t. N2(αA) = α2N2(A) ∀α ∈ F, A ∈ V, (B.1)

such that its linearization,

N2(A,B) := N2(A+B)−N2(A)−N2(B) (B.2)

is bilinear. A base point is then defined as an element c ∈ V satisfying N2(c) = 1. Given a space
equipped with a quadratic form and possessing a base point we can define the trace form,

Tr(A) := N2(A, c). (B.3)

A quadratic Jordan algebra J2 may be derived from such a space by setting the identity 1 = c and
defining the Jordan product as,

A ◦B :=
1

2
(Tr(A)B + Tr(B)A−N2(A,B)1). (B.4)

On setting A = B one obtains

A2 − Tr(A)A+N2(A)1 = 0, ∀A ∈ J2 (B.5)

and J2 is said to be of degree 2 [68]. Moreover, on taking the trace of (B.5) one finds,

N2(A) =
1

2
[Tr(A)2 − Tr(A2)], (B.6)

which is suggestively the form of the determinant of a 2 × 2 matrix written in terms of the trace of
powers and powers of the trace.

1We avoid using the conventional notation Q for the quadratic form due to the plethora of Q’s representing electric
charges.
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There are three groups of particular importance associated with such quadratic Jordan algebras:

1. The automorphism group Aut(J2) defined by the set of invertible F-linear transformations τ
preserving the Jordan product,

τ(A ◦B) = τ(A) ◦ τ(B). (B.7)

The corresponding Lie algebra is given by the set of derivations der(J2),

D(A ◦B) = D(A) ◦B +A ◦D(B), ∀D ∈ der(J2). (B.8)

2. The structure group Str(J2) defined by the set of invertible F-linear transformations τ preserv-
ing the quadratic norm up to a scalar factor,

N2(τ(A)) = αN2(A), α ∈ F. (B.9)

The corresponding Lie algebra Str(J2) is given by,

Str(J2) = L(J2)⊕ der(J2), (B.10)

where L(J2) denotes the set of left Jordan products LA(B) = A ◦B.

3. The reduced structure group Str0(J2) defined by the set of invertible F-linear transformations τ
preserving the quadratic norm,

N2(τ(A)) = N2(A). (B.11)

The corresponding Lie algebra Str0(J2) is given by factoring out scalar multiples of the identity
in L(J2),

Str0(J2) = L′(J2)⊕ der(J2), (B.12)

where L′(J2) denotes the set of left Jordan products by traceless elements, LA(B) = A◦B where
Tr(A) = 0.

A Str0(J2) invariant rank may be assigned to elements in J2 ,

RankA = 1⇔ N2(A) = 0, A 6= 0;

RankA = 2⇔ N2(A) 6= 0.
(B.13)

B.2. Quartic Jordan algebras

Let V be a vector space equipped with a quartic norm, i.e. a homogeneous map of degree 4

N4 : V → F, s.t. N4(αX) = λ4N4(X), ∀α ∈ F, X ∈ V (B.14)
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such that its linearization,

24N4(X,Y, Z,W ) :=N4(X + Y + Z +W )

−N4(X + Y + Z)−N4(X + Y +W )

−N4(X + Z +W )−N4(Y + Z +W )

+N4(X + Y ) +N4(X + Z) +N4(X +W )

+N4(Y + Z) +N4(Y +W ) +N4(Z +W )

−N4(X)−N4(Y )−N4(Z)−N4(W )

(B.15)

is quadrilinear. If V further contains a base point N4(c) = 1, c ∈ V one may define the following
seven maps,

1. The trace,
Tr(X) = 4N4(c, c, c,X), (B.16a)

2. A quadratic map,
S(X) = 6N4(X,X, c, c), (B.16b)

3. A bilinear map,
S(X,Y ) = 12N4(X,Y, c, c), (B.16c)

4. A trace bilinear form,
Tr(X,Y ) = Tr(X) Tr(Y )− S(X,Y ). (B.16d)

5. A cubic map,
T (X) = 4N4(X,X,X, c), (B.16e)

6. A trilinear map,
T (X,Y, Z) = 12N4(X,Y, Z, c), (B.16f)

7. A trace trilinear form,

Tr(X,Y, Z) = Tr(X) Tr(Y ) Tr(Z)

− 6S(X,Y ) Tr(Z)− 6S(X,Z) Tr(Y )− 6S(Y, Z) Tr(X)

+ T (X,Y, Z).

(B.16g)

A quartic Jordan algebra J with multiplicative identity 1 = c may be derived from any such vector
space if N4 is Jordan quartic, that is:

1. The trace bilinear form (B.16g) is non-degenerate.

2. The quartic adjoint map, ] : J→ J, uniquely defined by Tr(X], Y ) = 4N3(X,X,X, Y ), satisfies

(X])] = N4(X)2X, ∀X ∈ J. (B.17)
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(X,Y, Z) is the linearization of the cubic adjoint,

(X,Y, Z) = (X + Y + Z)] − (X + Y )] − (X + Z)] − (Y + Z)] +X] + Y ] + Z]. (B.18)

The Jordan product is then defined using,

X ◦ Y = 1
2

(
X × Y + Tr(X)Y + Tr(Y )X − S(X,Y )1

)
, (B.19)

where, X × Y is the linearization of the quadratic adjoint,

X × Y = (X,Y, c). (B.20)

Finally, the Jordan triple product is defined as

{X,Y, Z} = (X ◦ Y ) ◦ Z +X ◦ (Y ◦ Z)− (X ◦ Z) ◦ Y. (B.21)
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APPENDIX C
Magic supergravity stabilizers

In the following we examine the F(JO3 ) case as an example. To determine the orbits space we will use
the infinitesimal Lie algebra action to determine the Lie sub-algebras annihilating the the canonical
forms presented in Theorem 28. A word of warning. This analysis is done at the level of the Lie
algebra and hence does not take proper care of the global properties of the orbits. Since orbits are
notoriously badly behaved these results are not strictly mathematically rigorous.

For all canonical forms one obtains

Φ(xcan) =

(
ν φAcan − 1

3νAcan

X ×Acan + Y Tr(Y,Acan)

)
, where xcan =

(
1 Acan

0 0

)
, (C.1)

so we may set the dilatation generator ν to zero throughout.

Rank 1: Acan = 0

Φ(x1) =

(
0 0

Y 0

)
(C.2)

⇒ Y = 0 while X and φ are unconstrained. Hence, the stability group is

H1 = E6(−26) nR27, (C.3)

where E6(−26) is generated by φ and the 27 translations are generated by X .

Rank 2a: Acan = (1, 0, 0)

Φ(x2a) =

(
0 φAcan

X ×Acan + Y Tr(Y,Acan)

)
(C.4)

From the D = 5 analysis we know that the Lie sub-algebra of Str0(JO3 ) satisfying φAcan = 0 has 36
compact, 9 non-compact semi-simple generators and 16 translational generators giving so(1, 9)⊕R16.
For the remaining 27 + 27 generators we obtain the following constraints:

1.
Tr(Y,Acan) = 0⇒ y11 = 0. (C.5)
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2.

X ×Acan + Y = 0⇒

0 0 0

0 x33 −x23

0 −x23 x22

 =

 0 −y12 −y13

−y12 −y22 −y23

−y13 −y23 −y33

 (C.6)

This gives 1 compact and 9 non-compact semi-simple generators,

Φ̂(X̃, Ỹ ), (C.7)

where, writing x22 = x+ y and x33 = x− y,

X̃ =

0 0 0

0 x+ y x23

0 x23 x− y

 , Ỹ =

0 0 0

0 −x+ y x23

0 x23 −x− y

 . (C.8)

These, together with the 36 compact and 9 non-compact generators from so(1, 9) ⊂ Str0(JO3 ) gives a
total of 37 compact generators and 18 non-compact semi-simple generators producing so(2, 9), where
we have used the fact that
SO(m,n) has [m(m− 1) + n(n− 1)]/2 compact and mn non-compact generators.

The other 1 + 16 components of X generate translations,

X
′

=

x11 0 0

0 0 0

0 0 0

 , X
′′

=

 0 x12 x13

x12 0 0

x13 0 0

 , (C.9)

where X
′

commutes with so(2, 9). The remaining 16 + 16 translational generators transform as the
spinor of so(2, 9). Hence, the stability group is

H2a = SO(2, 9) nR32 ×R. (C.10)

Rank 2b: Acan = (−1, 0, 0)

Φ(x1) =

(
0 φAcan

X ×Acan − Y Tr(Y,Acan)

)
(C.11)

The analysis goes through as above but with the sign of Ỹ flipped. This gives a total of 45 compact
and 10 non-compact semi-simple generators giving so(1, 10). Hence, the stability group is

H2b = SO(1, 10) nR32 ×R. (C.12)

Rank 3a: Acan = (1, 1, 0)

Φ(x3a) =

(
0 φAcan

X ×Acan + Y Tr(Y,Acan)

)
(C.13)

From the D = 5 analysis we know that the Lie sub-algebra of Str0(JO3 ) satisfying φAcan = 0 has 36
compact semi-simple generators and 16 translational generators giving so(9)⊕R16. For the remaining
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27 + 27 generators we obtain the following constraints:

1.
Tr(Y,Acan) = 0⇒ y11 = −y22. (C.14)

2.

X ×Acan + Y = 0⇒

 x33 0 −x13

0 x33 −x23

−x13 −x23 x11 + x22

 =

−y11 −y12 −y13

−y12 y11 −y23

−y13 −y23 −y33


⇒ x33 = y11 = 0.

(C.15)

This gives 16 non-compact semi-simple generators,

Φ̂(X̃, Ỹ ), (C.16)

where,

X̃ = Ỹ =

 0 0 x13

0 0 x23

x13 x23 0

 . (C.17)

These, together with the 36 semi-simple generators from so(9) ⊂ Str0(JO3 ) gives a total of 36 com-
pact generators and 16 non-compact generators producing F4(−20), which is a non-compact form of
Aut(JO3 ).

The remaining 10 components of X generate translations which, together with the 16 preserved
translational generators of Str0(JO3 ), transform as the fundamental 26 of F4(−20).

Hence, the stability group is
H3a = F4(−20) nR26. (C.18)

Rank 3b: Acan = (−1,−1, 0)

Φ(R1) =

(
0 φAcan

X ×Acan − Y Tr(Y,Acan)

)
(C.19)

The analysis goes through as above but with the sign of Ỹ flipped so that the 16 previously non-
compact semi-simple generators become compact giving the compact formF4(−52) = Aut(JO3 ). Hence,
the stability group is

H3a = F4(−52) nR26. (C.20)

Rank 4a: Acan = (−1,−1,−1)

Φ(x4a) =

(
0 φAcan

X ×Acan + Y Tr(Y,Acan)

)
(C.21)

From the D = 5 analysis we know that the Lie sub-algebra of Str0(JO3 ) satisfying φAcan = 0 has 52
compact semi-simple generators giving F4(−52). For the remaining 27 + 27 generators we obtain the
following constraints:
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1.
Tr(Y,Acan) = 0⇒ y11 + y22 + y33 = 0. (C.22)

2.

X ×Acan + Y = 0⇒

x11 x12 x13

x12 x22 x23

x13 x23 x11 + x22

 =

−y11 −y12 −y13

−y12 −y22 −y23

−y13 −y23 −(y11 + y22)

 . (C.23)

This gives 26 compact semi-simple generators,

Φ̂(X̃, Ỹ ), (C.24)

where

X̃ =

x11 x12 x13

x12 x22 x23

x13 x23 x11 + x22

 , Ỹ =

−x11 −x12 −x13

−x12 −x22 −x23

−x13 −x23 −(x11 + x22)

 . (C.25)

These, together with the 52 compact semi-simple generators from F4(−52) gives a total of 78 compact
generators producing E6(−78).

Hence, the stability group is
H4a = E6(−78). (C.26)

Rank 4b: Acan = (1, 1,−1)

Φ(x4b) =

(
0 φAcan

X ×Acan + Y Tr(Y,Acan)

)
(C.27)

From the D = 5 analysis we know that the Lie sub-algebra of Str0(JO3 ) satisfying φAcan = 0 has
36 compact and 16 non-compact semi-simple generators giving F4(−20). For the remaining 27 + 27

generators we obtain the following constraints:

1.
Tr(Y,Acan) = 0⇒ y11 + y22 = y33. (C.28)

2.

X ×Acan + Y = 0⇒

 x11 x12 −x13

x12 x22 −x23

−x13 −x23 x11 + x22

 =

−y11 −y12 −y13

−y12 −y22 −y23

−y13 −y23 −(y11 + y22)

 . (C.29)

This gives 10 compact and 16 non-compact semi-simple generators,

Φ̂(X̃, Ỹ ), (C.30)

where

X̃ =

x11 x12 x13

x12 x22 x23

x13 x23 x11 + x22

 , Ỹ =

−x11 −x12 x13

−x12 −x22 x23

x13 x23 −(x11 + x22)

 . (C.31)
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These, together with the 36 compact and 16 non-compact semi-simple generators from F4(−20) gives
a total of 46 compact generators and 32 non-compact generators producing E6(−14).

Hence, the stability group is
H4b = E6(−14). (C.32)

Rank 4c: Acan = (1, 1, 1)

Φ(x4c) =

(
0 φAcan

X ×Acan + Y Tr(Y,Acan)

)
(C.33)

From the D = 5 analysis we know that the Lie sub-algebra of Str0(JO3 ) satisfying φAcan = 0 has 52
compact semi-simple generators giving F4(−52) = Aut(JO3 ). For the remaining 27 + 27 generators we
obtain the following constraints:

1.
Tr(Y,Acan) = 0⇒ y11 + y22 + y33 = 0. (C.34)

2.

X ×Acan + Y = 0⇒

−x11 −x12 −x13

−x12 −x22 −x23

−x13 −x23 x11 + x22

 =

−y11 −y12 −y13

−y12 −y22 −y23

−y13 −y23 y11 + y22

 . (C.35)

This gives 26 non-compact semi-simple generators,

Φ̂(X̃, Ỹ ), (C.36)

where

X̃ = Ỹ =

x11 x12 x13

x12 x22 x23

x13 x23 −(x11 + x22)

 . (C.37)

These, together with the 52 compact semi-simple generators from F4(−52) gives a total of 52 compact
generators and 26 non-compact generators producing E6(−26) = Str0(JO3 ).

Hence, the stability group is
H4c = E6(−26). (C.38)
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APPENDIX D
Alternative Jordan dual formulation

Recall from section 3.6 that we defined the Jordan dual A? of A as

A→ A? =
A]

N(A)1/3
, (D.1)

part of the motivation for this definition is that the entropy is preserved under J-Duality:

N(A?) = N

(
A]

N(A)1/3

)
=

1

N(A)
N(A])

=
N(A)2

N(A)
= N(A).

(D.2)

However, we note that, while A belongs to the fundamental representation eg 27 of E6 and de-
scribes a black string, A? belongs to the contragredient representation eg 27′ of E6 and corresponds
to a black hole (the ] map is a map between the two representations).

An alternative definition which maps 27 to 27 and 27′ to 27′ begins with a black string/hole pair.
To lowest order, the extremal non-rotating black string and black hole entropies are given respectively
by

S5 = (π
√
|N(A)|, π

√
|N(B)|), (D.3)

where N(A) = N(A,A,A). Large BPS and small BPS correspond to N(A) 6= 0, and N(A) = 0, re-
spectively. The Dirac-Schwinger quantisation condition relating a black string/hole pair with charges
(A,B) to one with charges (A′, B′) in the Jordan language is given by

Tr(A,B′)− Tr(B,A′) ∈ Z. (D.4)

The alternative Jordan dual or J-dual, defined for “large” black strings and holes by

(A?, B?) = ±
(

B]

N(B)1/3
,

A]

N(A)1/3

)
, (D.5)

for which

(A??, B??) = (A,B). (D.6)
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In the case of a black string and a black hole related by J-duality

Tr(B?, A)− Tr(A?, B) = 3(N(A)2/3 −N(B)2/3). (D.7)

Note the factor of three. Hence, for a valid dual (A?, B?) we require thatN(A)2 andN(B)2 are perfect
cubes. This is a necessary, but not sufficient condition because we also require that A? and B? are
themselves integer. This restricts us to that subset of black strings and holes for which

d3(B̃) =

[
d2(B)

d1(A?)

]3

, d3(Ã) =

[
d2(A)

d1(B?)

]3

, (D.8)

where d1(A) = gcd(A), d2(A) = gcd(A]) and d3(A) = |N(A)|. Then

Tr(B?, A)− Tr(A?, B)

= 3

{[
d2(B)

d1(A?)

]2

−
[
d2(A)

d1(B?)

]2
}
.

(D.9)

The U-duality integral invariants Tr(A,B) and N(A,B,C) are not generally invariant under Jordan
duality but Tr(B?, A)−Tr(A?, B), N(A) andN(B) and hence the lowest-order black string and black
hole entropy, are invariant under this alternative J-duality but only up to an A-B interchange:

(N(A?), N(B?)) = (N(B), N(A)). (D.10)
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