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inquebrantable apoyo ha sido la luz que iluminó cada paso de esta travesı́a académica, convirtiendo
esta etapa de mi vida en una experiencia no solo educativa, sino también enriquecedora y amena.
Su amor y aliento han sido el motor que ha impulsado mi perseverancia. Gracias por ser mi
inspiración constante y por ser la fuerza que hizo posible este logro.

4



Agradecimientos
A mi gran amigo Héctor Hugo Aguilera Trujillo, quiero expresar mi profundo agradecimiento por
la invaluable ayuda que me ha brindado y por todo lo que me ha enseñado en los últimos años,
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Abstract
The ΛCDM model has had great success in explaining the observed large-scale structures of the
Universe, as well as the main properties of galaxies that form within dark matter haloes. At scales
larger than 1Mpc, the observed structure is consistent with cold dark matter particles interacting
purely through gravitational force. However, at scales smaller than 1Mpc, where structure forma-
tion becomes strongly nonlinear, problems arose within the ΛCDM model, known as “Small-scale
problems”.

To address these problems, solutions have been proposed that involve modifications to the linear
predictions through the nature of the dark matter particle, such as Warm Dark Matter (WDM). On
the other hand, to solve the Strong CP problem, an additional pseudo-goldstone boson called axion
is introduced to the Standard Model of Particle Physics, whose only non-derivative coupling is
with the topological QCD charge and is suppressed by the scale fa. The axion is postulated as a
good candidate for dark matter, and certain small-scale problems can be addressed by imposing
conditions on its De’Broglie wavelength in terms of its mass ma and velocity va.

By relaxing the QCD axion constraints, one can have more general classes of dark matter models
with Axion-Like Particles (ALPs), which arise in various extensions of the Standard Model.

In this thesis, the coupling between an axion and two photons is utilized to study their interaction
in a way different from the usual approach, establishing the photon-axion scattering process at the
tree level. This process follows the kinematics of the well-known Compton scattering process,
and the thesis focuses on examining what occurs in the low-energy and high-energy scattering
regimes. Although the cross-section of this process is expected to be very small, the relevance lies
in the abundance of axions in the universe, which could lead to the observation of this process in
astrophysical events. For example, the interaction of photons with the halo of axions that surrounds
our galaxy. We provide strong evidence that renders this interaction negligible.
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Introduction
In recent decades, advances in astronomical observations and high-energy experiments have pro-
vided valuable information about our Universe. One of the most significant enigmas is the presence
of non-baryonic energy components in the cosmos. Conventionally, these components are divided
into two categories: dark matter and dark energy. Dark energy shares similarities with Einstein’s
cosmological constant, which drives the accelerated expansion of today’s universe. Although ac-
celerated expansion has been confirmed by observations, the existence of a constant energy density
is still subject to debate.

On the other hand, the existence of dark matter is becoming increasingly evident. The total
density of matter in the universe, measured through various methods [1], turns out to be 5-6 times
greater than the density of baryon matter obtained by observing the abundance of light elements
[2]. This suggests that a large fraction of the cosmic matter density is composed of a non-baryonic
component. This conclusion is further confirmed by the recent accurate measurement of the cosmic
microwave background (CMB) by the WMAP satellite [3]. These observations strongly support the
existence of non-baryonic matter, which interacts virtually only through gravitational force with
ordinary matter.

The existence of dark matter cannot be explained within the framework of the standard model of
particle physics. This fact motivates us to consider some new physics beyond the standard model. So
far, several models of dark matter particles have been proposed [see, for example, [2] for a review].
One of the most intriguing candidates is the axion [4] [5]. The axion is a hypothetical particle that
arises as a consequence of the Peccei-Quinn (PQ) mechanism, possibly the simplest solution to the
strong CP problem of quantum chromodynamics (QCD) [6]. This mechanism introduces a global
symmetry U(1)PQ (called PQ symmetry) that must spontaneously break at some high energy scale
(larger than the electroweak scale). The spontaneous breaking of this global symmetry predicts the
existence of a (pseudo) Nambu-Goldstone boson, identified as the axion.

Initially, the axion was not considered a candidate for dark matter when it was proposed. In the
original model, the axion was “visible” and provided some predictions for laboratory experiments.
Unfortunately, no signal was observed, and the prototype axion model was discarded shortly after
its proposal. However, it was argued that models with symmetry breaking at higher energies could
still evade experimental constraints. The key is that interactions between axions and other fields are
suppressed by a large factor of the symmetry breaking scale, about 1

fa
. These models are known

as “invisible” axions due to the smallness of their coupling with matter. This invisibility carries
a cosmological consequence: coherent, quasi-stable fields of oscillating axions play a role in the
dark matter of the universe [7] [8]. Furthermore, since these axions are produced non-thermally,
they are ”cold” in the sense of being highly non-relativistic. This property aligns with the cold dark
matter scenario motivated by the study of large-scale structure formation [9].

The behavior of dark matter axions is closely related to the early history of the universe. In par-
ticular, the cosmological phase transition associated with spontaneous symmetry breaking provides
some implications for the physics of axion dark matter. There are two relevant phase transitions: the
PQ phase transition, corresponding to the spontaneous breaking of the U(1)PQ symmetry, and the
QCD phase transition, corresponding to the spontaneous breaking of the chiral symmetry of quarks.
Axions are produced at the PQ phase transition and then gain mass due to the non-perturbative ef-
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fect at the QCD phase transition. A notable feature of this sequence of phase transitions is the
prediction of the formation of topological defects (see [10] for a review).

In this thesis, a general coupling between the axion or axion-like particles with two photons is
studied, caused by its mixing with neutral pions in the context of quantum chromodynamics. This
coupling provides the basis for studying the Compton scattering process using an ALP/Axion in-
stead of an electron at the tree level. The differential cross-section is examined and the conditions
under which this process is relevant for astrophysical calculations are reviewed. This relevance is
closely linked to the mode of production of axions since the mass ranges allowed for the axion
to influence the phenomenology of this process. Furthermore, the possibility of having inverse
Compton scattering in this scenario is discussed, providing a more complete view of the astrophys-
ical implications of the interaction between axions and photons.
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Chapter 1
Standard Model
“I think nature’s imagination Is so much greater than man’s, she’s never going to let us relax.”
— Richard P. Feynman

The Standard Model of Particle Physics simply known as the Standard Model (SM) groups together
two important models: Quantum Chromodynamics (QCD) and the Glashow, Weinberg, and Salam
model for electroweak interactions (sometimes called the Electroweak Standard Model). To date,
the SM has had great success due to its great predictive scope and various successes in various
experiments.

The Standard Model can be divided into three sectors: that of gauge bosons, that of fermions,
and that of Higgs. This model is itself a field theory based on the gauge symmetry group [11][12][13]

GSM = SU(3)C × SU(2)L × U(1)Y , (1.1)

which is the direct product of the symmetry groups SU(3)C that describes the strong interactions
and SU(2)L×U(1)Y that describes the electroweak interactions. Furthermore, the symmetry group
of electromagnetic interactionsU(1)em is a subgroup of the groupSU(2)L×U(1)Y in this sense, we
say that weak and electromagnetic interactions are unified or rather, partially unified. Some of the
important characteristics of the interactions described by SM are: electromagnetic interactions have
an infinite interaction range, while weak interactions are short range (∼ 10−3 fm); this is because
the weakly interacting carrier bosons have masses on the order of 80GeV, while strong interactions
have an interaction range of ∼ 1 fm.

This chapter presents an overview of the SM, with special emphasis on the CP violation and
the observations that indicate the incompleteness of this model.

1.1 The content of matter: a theory based on symmetry
The Standard Model consists of three fundamental sectors: the fermionic sector, the bosonic sector,
and the scalar sector, also known as the Higgs sector.

In the first sector, all Standard Model fermions are considered to be organized in irreducible
representations of the gauge symmetry group GSM , as described in equation (1.1). This sector en-
compasses three generations, or what are commonly called flavors or families of fermions. These
generations share identical properties, except for their masses. It is important to note that the in-
clusion of three fermion families in the theory is a phenomenological decision, since the Standard
Model itself does not offer a prediction about the number of fermion generations. However, the-
oretical and experimental arguments can be used to justify this choice. For example, to satisfy
the anomaly cancellation conditions, the left fermions must be grouped into doublets of SU(2)L,
implying the need for three families of fermions. Furthermore, recent measurements of the decay
width of the Z boson have allowed us to determine that the number of active neutrinos with masses
less than 45GeV isNν = 2.9963±0.0074 [14]. In the SM, neutrinos are initially considered to have
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1.1. THE CONTENT OF MATTER: A THEORY BASED ON SYMMETRY 12

zero masses and do not have a right-hand chirality component. However, more than two decades
ago it was confirmed that the masses of neutrinos are considerably small compared to the masses
of other particles in the SM [15][16].

The bosonic sector includes several types of particles. First, we have the eight gluons gα, which
play the role of gauge bosons in the context of the color group SU(3)C . Additionally, the four gauge
bosons are part of this sector: W±, Z0 and γ. The latter are the particles responsible for mediating
the electroweak interactions through the SU(2)L and U(1)Y groups [17].

Regarding the physical properties of these gauge bosons, it is important to highlight that gluons
are massless and electrically neutral, but they have a color charge. This distinctive feature implies
that gluons not only interact with quarks but also exhibit self-interactions, which differentiates them
from other particles in the Standard Model. The W± and Z bosons are massive particles that also
have mutual interactions between them. In particular, the Z boson is electrically neutral, in contrast
to theW± bosons, which carry an electric charge ofQem = ±1, respectively. Finally, the γ photon
is characterized by being electrically neutral, having no mass, and lacking self-interactions.

Below, we will briefly describe the Standard Model. We identify fermion generations by their
corresponding fermionic fields, denoted ψi, with i = 1, 2, 3, where i represents the flavor or family
index. The numbering of the families follows a hierarchy based on the magnitude of their masses,
except for neutrinos, whose mass hierarchy is not yet known. Consequently, the first family is
composed of the lightest fermions, and in the case of the electron, it is accompanied by its respective
neutrino. (

e
νe

)
and

(
u
d

)
. (1.2)

The SM for a single family is a completely self-contained and self-consistent theory. However, in
nature, we observe the existence of two other families, which are:

• second family (
µ
νµ

)
and

(
c
s

)
. (1.3)

• third family (
τ
ντ

)
and

(
t
b

)
. (1.4)

These families exhibit properties that resemble those of the first family and are integrated into
the model without fully explaining the reason behind this phenomenal repetition. In this way, the
Standard Model for three families is created, which continues to maintain its coherence and internal
consistency. Importantly, the corresponding antiparticles are also included, leading to the formation
of antifamilies.

The three generations of fermions that make up matter are divided into five unique gauge group
representations, each identified by the following quantum numbers [11][12]:(

1, 2,−1

)
,

(
3, 2,

1

6

)
,

(
1, 1,−1

)
,

(
3, 1,

2

3

)
,

(
3, 1,−1

3

)
. (1.5)
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1.1. THE CONTENT OF MATTER: A THEORY BASED ON SYMMETRY 13

The terms inside the parentheses indicate the transformation properties when subjected to the ac-
tions of the groups SU(3)C , SU(2)L and U(1)Y . In this notation, electric charge is defined as
follows

Qem = T 3 + Y , (1.6)

where Y represents the hypercharge and T 3 is the projection on the weak isospin. The fermionic
fields ψ can be characterized by their right-hand chirality components ψR and left-hand chirality
ψL as follows [12][18]

ψR,L = PR,Lψ =

(
1± γ5

2

)
ψ, ψ̄L,R = ψ̄PR,L = ψ̄

(
1± γ5

2

)
. (1.7)

In the context of the SM, it is important to note that the right and left fermions have different
transformation properties when applied to the gauge groupGSM . For example, under the influence
of the group SU(2)L, the right and left fields are transformed as doublets and singlets, respectively.
Therefore, we use the following notation

Qi
L =

(
uiL
diL

)
, liL =

(
νiL
eiL

)
. (1.8)

And for the singlets
uiR, diR y liR (1.9)

here i = 1, 2, 3 are the indices that denote the generations, for example uiL ∈ {uL, cL, tL}.
The subscriptsL andR refer to the left and right chirality eigenstates, while the index i = 1, 2, 3

are the indices that denote the generations, for example, uiL ∈ {uL, cL, tL}. In this notation, the
quantum number assignment presented in the equation (1.5) is expressed as follows

liL(1, 2)− 1
2
, Qi

L(2, 3) 1
6

liR(1, 1)−1, uiR(1, 1) 2
3
, diR(3, 1)− 1

3
. (1.10)

In the following table, we summarize what was discussed above 1.

Family liL(1, 2)− 1
2

Qi
L(2, 3) 1

6
liR(1, 1)−1 uiR(1, 1) 2

3
diR(3, 1)− 1

3

1
(
νeL
eL

) (
uL
dL

)
eR uR dR

2
(
νµL
µL

) (
cL
sL

)
µR cR sR

3
(
ντL
τL

) (
tL
bL

)
τR tR bR

Table 1.1: Matter content of the Standard Model.

The matter content in the model, as presented in the table 1.1, encompasses the complete list
of fields necessary to describe the interactions observed in elementary particles, together with the
corresponding gauge fields. These charge assignments have been rigorously tested with the highest
level of reliability for light fermions [2].

1This is a way to visualize the matter content of the standard model.
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1.2. THE LAGRANGIAN DENSITY OF THE STANDARD MODEL 14

On the other hand, the Higgs sector induces a spontaneous breaking of the gauge symmetry,
that is,

SU(3)C × SU(2)L × U(1)Y → SU(3)C × U(1)em . (1.11)

This spontaneous breaking of the electroweak symmetry is carried out through the so-called Higgs
mechanism, which generates the masses of the electroweak gauge bosons and fermions, by the
experimental values. Consequently, there is a new particle, the Higgs boson, which was discovered
experimentally a decade ago [19][20]. On the other hand, one of the open problems in the Standard
Model is knowing the representation of the Higgs boson that will manifest itself in the experiments.
This is because the Higgs mechanism is not unique, and There are many representations of the
Higgs boson that correctly describe the dynamics of the spontaneous breaking of the electroweak
symmetry. However, the minimal version, included in the Standard Model, consists of a complex
scalar doublet [13] [18]

ϕ =

(
ϕ+

ϕ0

)
, (1.12)

where ϕ+ and ϕ0 are complex scalar fields, charged and neutral respectively. As mentioned above,
this field ϕ is a singlet SU(3)C , doublet of SU(2)L and has hypercharge +1/2.

The table 1.1 shows that neutrinos are fermions that lack strong, electromagnetic interactions
(see Eq. (1.6)). This implies that neutrinos are singlets in the context of the groupSU(3)C×U(1)em.
Additionally, active neutrinos, also known as neutrinos that participate in weak interactions, are
found in lepton doublets. A notable feature of the Standard Model is that the gauge symmetry
group GSM (c.f. Ec. (1.1)) and the matter content represented in the table 1.1 exhibit a global
accidental symmetry [11][12]

GGlobal
SM = U(1)B × U(1)Le × U(1)Lµ × U(1)Lτ , (1.13)

where U(1)B is the symmetry associated with the baryon number and U(1)Le , U(1)Lµ and U(1)Lτ

are the three symmetries of lepton flavor, with the total lepton number given by L = Le+Lµ+Lτ .
This symmetry is called accidental because it was not imposed, it is a consequence of the gauge
symmetry group GSM and the representations of physical states.

1.2 The Lagrangian density of the Standard Model
The complete Lagrangian density of the SM, denoted LSM , is characterized as the most gen-
eral renormalizable Lagrangian density that is consistent with both the gauge symmetry group
SU(3)C × SU(2)L × U(1)Y as with the matter content previously described. Its construction
is based on a sum of the following terms:

LSM = LKG + LKf + LH + LY + LFG + LFP , (1.14)

where each term represents:

• LKG, corresponds to the kinetic energy of the gauge fields.

• LKf , corresponds to the kinetic energy of the fermions.

• LH , corresponds to the kinetic and potential energy of the Higgs field.

14



1.2. THE LAGRANGIAN DENSITY OF THE STANDARD MODEL 15

• LY , contains the terms of the Yukawa couplings.

• LFG, Lagrangian density that fixes the gauge.

• LFP , Faddeev-Popov Lagrangian density.

To preserve the gauge invariance of the kinetic terms against transformations of the gauge symmetry
group GSM , the covariant derivative must take the following form:

Dµ = ∂µ − igsG
a
µT

a − igW b
µτ

b − ig′BµY , (1.15)

In this context, the fields Ga
µ correspond to the eight gluons, W b

µ represent the three intermediate
bosons of the weak interactions, and Bµ is the hypercharge boson. The generators T a belong to the
groupSU(3)C of strong interactions and can be expressed through the Gell-Mann matrices, denoted
as 1

2
λa when applied to triplets. For their part, the generators τ b belong to the group SU(2)L of

weak interactions and are represented by the Pauli matrices, with the notation 1
2
σb, when applied to

doublets. Finally, Y refers to the charge associated with the group U(1)Y [21].
With the help of the covariant derivative, Eq. (1.15), the Lagrangian density of the Standard

Model fields can be constructed as follows

LSM =l̄Liγ
µDµlL + ēRiγ

µDµeR + Q̄j
Liγ

µDµQL + ūRiγ
µDµuR + d̄Riγ

µDµdR

+ (Dµϕ)†Dµϕ− µ2ϕ†ϕ− λ(ϕ†ϕ)2

− YijQ̄
i
Lϕd

j
R − YijQ̄

i
Lϕ̃u

j
R − Yij l̄

i
Lϕe

j
R

− 1

4
W a

µνW
aµν − 1

4
BµνB

µν − 1

4
Ga

µνG
aµν + LFG + LFP .

(1.16)

The terms on the right side of the Lagrangian density LSM , Eq. (1.16), are broken down as follows:

• In the first row, we find the kinetic Lagrangian of the fermions, where γµ represents the Dirac
matrices and Dµ the covariant derivative.

• The second row represents the kinetic and potential energy term of the Higgs field, with µ2

and λ as real parameters.

• The third row corresponds to the Lagrangian of the Yukawa couplings, where the coefficients
Yij refer to the Yukawa coupling matrix elements, and ϕ̃ = iτ 2ϕ∗.

• Finally, the fourth line is related to the kinetic energy of the gauge fields and the Lagrangians
LFG and LFP .

The antisymmetric gauge tensors are constructed from the gauge fields as follows [22]

Ga
µν = ∂µG

a
ν − ∂νG

a
µ + gsf

abcGb
νG

c
µ (1.17)

W a
µν = ∂µW

a
ν − ∂νW

a
µ + gϵabcW b

νW
c
µ, (1.18)

Bµν = ∂µBν − ∂νBµ . (1.19)

In these expressions, theW a
µν are the antisymmetric gauge tensors constructed from the gauge fields

W a
µ (x) corresponding to the three generators of SU(2); ϵabc is the structure constant of the group
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SU(2) and coincides with the Levi-Civita pseudotensor; Bµν are the antisymmetric gauge tensors
constructed from the gauge fields Bµ(x) associated with U(1); Ga

µν are the antisymmetric gauge
tensors constructed from the eight fieldsGa

µ(x) of the gluons, corresponding to the eight generators
of SU(3); fabc are the structure constants of the group SU(3).

Additionally, it is important to note that

1. The Lagrangian density of the Standard Model (LSM ) has 19 free parameters that must be
determined experimentally [2].

2. The Lagrangian density for the scalar field ϕmust include terms up to order ϕ4 for the theory
to be renormalizable [12][23].

3. The relative sign of the Higgs potential coupling constants µ and λ is determined by the
spontaneous breaking of gauge symmetry [18].

4. The Yukawa constants are elements of a matrix of dimensions 3 × 3 and are related to the
masses and mixings of the fermions.

Before continuing with the explanation of each term of the Lagrangian density, Eq. (1.14), the next
section will discuss in detail the spontaneous breaking of gauge symmetry. This approach aims
to understand the Higgs mechanism and the discussion of the Goldstone Theorem, which will be
fundamental in the development of this Thesis.

1.3 Spontaneous Symmetry Breaking and Goldtone’s Theorem
In the electroweak sector of the Standard Model, the intermediate bosons of the interactions ac-
quire mass, which leads to the vacuum state no longer invariant under the electroweak gauge group
SU(2)L × U(1)Y . In other words, the fact that the W± and Z bosons become massive causes
breaking of the electroweak gauge symmetry, which in turn invalidates the renormalizability of the
theory [24]. To address this problem, the Higgs sector is introduced into the SM. The corresponding
Lagrangian of the Higgs sector causes a spontaneous breaking of the electroweak gauge symmetry.

The phenomenon of spontaneous symmetry breaking, in quantum field theory, is seen from the
Higgs potential, which is defined as [21]:

V (ϕ) = µ2ϕ†ϕ+ λ(ϕ†ϕ)2 , (1.20)

where ϕj is a set of real fields, which are transformed according to some representation of the gauge
symmetry group G with n generators, that is

ϕj(x) → ϕ′
j(x) + iϵa(x)T

a
jkϕk(x), a = 1, 2, . . . , n . (1.21)

In the potential V (ϕ), it is essential to require that λ > 0 so that the potential is lower bounded,
which implies the existence of a fundamental state commonly called the vacuum state. The de-
termination of the vacuum state involves the minimization of the potential V (ϕ). However, the
location of the minimum is conditional on the sign of the parameter µ2, which leads us to consider
two different situations:

16
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In the first scenario, µ2 > 0 is considered, resulting in a vacuum state defined as ϕi = 0.
Consequently, the potential V (ϕ) remains invariant under the symmetry group G. In this case, the
gauge symmetryG is not broken, although the extreme value corresponds to a local maximum. For
example, when the group G coincides with the gauge group of the Electroweak Standard Model
(ESM), the vacuum state preserves the symmetry SU(2)L × U(1)Y , which means that a breaking
the electroweak gauge symmetry. However, this situation is invalid from a physical point of view,
since the existence of massive bosons contradicts the premise that SU(2)L×U(1)Y is not a vacuum
symmetry.

In the second case, when µ2 < 0, the vacuum state is determined through the minimization
of the potential V (ϕ), which gives rise to a non-trivial minimum. The minimum of V (ϕ) for the
non-trivial case is:

δV (ϕ) =
∂V

∂ϕi

(δϕi) = ϵa
∂V

∂ϕi

T a
ijϕj = 0 . (1.22)

From this equation, we deduce the expected value of the field ϕ in the vacuum state

⟨0|ϕ†ϕ|0⟩ = ⟨ϕ†ϕ⟩0 = −µ
2

2λ
. (1.23)

From the previous expression, it is observed that the vacuum state is degenerate because there are
multiple ways to satisfy it. However, quantum field theory demands that the ground state be unique.
Therefore, by selecting one of these states as the vacuum state, symmetry breaking is induced.
This phenomenon is known in the literature as the spontaneous breaking of gauge symmetry. The
symmetry that lasts, or is not broken, depends on the choice of the vacuum state.

Deriving the Eq. (1.22) with respect to the field ϕi and evaluating in the empty state, we obtain:
∂2V

∂ϕ†
k∂ϕi

∣∣∣∣
ϕi=⟨ϕi⟩0

=M2
kiT

a
ij⟨ϕj⟩0 = 0 . (1.24)

For the previous expression to be satisfied, two cases are considered:
1. When T a

ij⟨ϕj⟩0 = 0, the generator T a is classified as an intact or unbroken generator. The ele-
ment of the group associated with T a maintains the empty state invariable, which is expressed
as:

eiϵ·T ⟨ϕ⟩0 = ⟨ϕ⟩0. (1.25)
In other words, the set of intact or unbroken generators forms a symmetry subgroup that
preserves the vacuum state. As a result, the original symmetry group is broken into the
symmetry subgroup that maintains the unaltered vacuum state.

2. When T a
ij⟨ϕj⟩0 ̸= 0, the generator T a is classified as a broken generator, andM2

ki refers to the
matrix of potential masses. This matrix must have at least one eigenvalue equal to zero. The
previous statement corresponds to the Goldstone Theorem, which establishes that for every
broken generator, there is a boson with a mass equal to zero, known as a Goldstone boson.

Goldstone Teorem

The example above shows the importance of Goldstone’s theorem in the Standard Model. The
theorem states that if a Lagrangian density is invariant under a continuous symmetry group that
has n generators, and if its ground state is symmetric under a continuous group that contains n′

generators, then there should be n− n′ massless states in the spectrum of the theory [21][23][25].
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true vacuum
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Figure 1.1: Higgs potential: (a) µ > 0, single vacuum, (b) µ < 0, false vacuum and true vacuum.

1.3.1 Higgs Mechanism
In the context of the ESM, the vacuum state is selected so that the remaining symmetry is compatible
with the symmetry group of electrodynamics, which is U(1)em. This means that the generator that
remains without breaking the symmetry corresponds to the electric charge Qem [24].

For the Higgs mechanism, the field ϕ maps to a doublet of SU(2)L of the form:

ϕ =

(
ϕ+

ϕ0

)
=

1√
2

(
ϕ1 + iϕ2

ϕ3 + iϕ4

)
, (1.26)

where ϕi, (i = 1, . . . , 4), are real scalar fields. Thus, the Higgs potential given in Eq. (1.21) is
invariant under the gauge transformation

ϕ(x) → ϕ′(x) = eiα·τ/2ϕ(x) , (1.27)

here τ is formed by the Pauli matrices and α is a space-time function. The minimum of the Higgs
potential, V (ϕ) for µ2 < 0, is

⟨0|ϕ†ϕ|0⟩ = ⟨ϕ†ϕ⟩0 = −µ
2

2λ
=
v2

2
. (1.28)

Depending on the actual fields, the term ϕ†ϕ has the form

ϕ†ϕ =
1

2

(
−ϕ2

1 + ϕ2
2 − ϕ2

3 + ϕ2
4

)
=
v2

2
. (1.29)

As can be seen, there is an infinite number of possible vacuum states, which correspond to the
infinite number of values for the real fields that satisfy the relationship given in equation (1.30).
Each of these vacuum states preserves the gauge symmetry U(1)em, but not the electroweak gauge
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1.4. FERMION MASSES AND CP VIOLATION 19

symmetry. By choosing a particular direction in isospin space, spontaneous breaking of gauge
symmetry is induced, following the scheme SU(2)L × U(1)Y → U(1)em.

By selecting the direction in isospin space where ϕ3 = v and ϕ1 = ϕ2 = ϕ4 = 0, the vacuum
expectation value of ϕ takes the following form:

⟨ϕ⟩0 =
1√
2

(
0
v

)
. (1.30)

When a generator of the electroweak gauge group (Ta, Y ) acts on the vacuum state, it breaks the
corresponding symmetry, i.e.

T a⟨ϕ⟩0 ̸= 0 , Y ⟨ϕ⟩0 ̸= 0 . (1.31)
On the other hand, when the generator of U(1)em (Qem = I3+Y ) acts on the vacuum state, it does
not break,

Qem⟨ϕ⟩0 =
1√
2
Q

(
0
v

)
= 0 . (1.32)

One implication of the spontaneous breaking of electroweak gauge symmetry is that the three elec-
troweak gauge fields, namelyW± andZ0, acquire mass, which leads to these gauge fields acquiring
longitudinal degrees of freedom. In this way, the three Goldstone bosons that were present in the
theory before the spontaneous symmetry breaking re-emerge in the theory as the longitudinal de-
grees of freedom of the W± and Z0 bosons [23].

1.4 Fermion masses and CP violation
Now, let’s examine the part of the Lagrangian density of the ESM that refers to Yukawa couplings,
known as the Lagrangian Yukawa density. This Lagrangian density is composed of terms that
establish the relationship between the Higgs field and the quark and lepton fields.

In the interaction representation, the gauge interactions are diagonal and universal, meaning
that they are described by a gauge coupling constant for each of the factors in the GSM : gs, g,
and g′. According to this representation, the interaction eigenstates do not present gauge couplings
between fermions of different generations, and mixtures between fermions of different flavors are
prohibited [21]. However, the coupling of the Higgs field to fermions does not follow from the
gauge invariance principle. Consequently, in this representation, the Yukawa couplings correspond
to non-diagonal matrices. This implies that in the interaction representation, Yukawa couplings
involve fermions of different generations. As a result, the interaction eigenstates are mixing and
have no defined masses.

During the spontaneous breaking of gauge symmetry in the context of the Standard Model,
GSM , the Yukawa interactions generate the mass terms of the fermions. When considering the
vacuum expectation value of the Higgs field, as described by the equation (1.30), the Yukawa La-
grangian density takes the following form [26]:

LQ
Y = −Y d

ijQ̄
i
Lϕd

j
R − Y u

ij Q̄
i
Lϕ̃u

j
R − Y l

ij l̄
i
Lϕe

j
R − h.c. = −ūLMuuR − d̄LMddR − ēLMℓeR , (1.33)

where Mf (f = u, d, ℓ) are the mass matrices of the charged quarks and leptons. While

u =

uc
t

 , d =

ds
b

 , e =

eµ
τ

 . (1.34)
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The mass matrices, obtained from the Yukawa couplings after symmetry breaking, are defined as
[26]

(Mf )ij =
Y f
ij v√
2
, (1.35)

where v represents the vacuum expected value of the Higgs field and the Y f
ij are the elements of the

Yukawa coupling matrix, which for the Standard Model correspond to complex matrices of 3× 3.
The most recent values for quark masses are shown in the table 1.2 [2].

Familia Quark Masa
1 u 2.16+0.49

−0.26 MeV
d 4.67+0.48

−0.17 MeV
2 c 1.27± 0.02GeV

s 93.4+8.6
−3.4 MeV

3 t 172.69± 0.30GeV
b 4.18+0.03

−0.02 GeV

Table 1.2: Quark masses in the Standard Model.

The ESM does not provide predictions for the values of fermionic masses, instead, it is fitted to
experimental measurements. The most recent values of the masses of charged leptons are found in
reference [2]:

me = 0.51099895000± 0.00000000015MeV , (1.36)
mµ = 105.6583755± 0.0000023MeV , (1.37)
mτ = 1776.86± 0.12MeV . (1.38)

We will focus exclusively on the part of the Yukawa Lagrangian density related to the quark sector
since this is the fundamental part of the development of this thesis. Since mixing between quarks of
different generations is allowed, the mass matrices of these quarks are not diagonal in the interaction
basis. This implies that the interacting eigenstates do not have clearly defined masses. In other
words, in the interaction representation, fermions in general are not mass eigenstates. Therefore, it
is necessary to diagonalize these matrices to find the mass eigenstates.

After symmetry breaking, the quark mass terms become

Lmasa = − v√
2

(
d̄iLYijd

j
R + ūiLYiju

j
R

)
+ h.c. = − v√

2

(
d̄LYddR + ūLYuuR

)
+ h.c. , (1.39)

where the last expression is in matrix form. To diagonalize the masses, we use that there are two
diagonal matrices Md and Mu and two unitary matrices Ud and Uu for which

YdY
†
d = UdM

2
dU

†
d , YuY

†
u = UuM

2
uU

†
u . (1.40)

The matrix Y Y † is Hermitian and therefore has real eigenvalues. We can also write in a general
way

Yd = UdMdK
†
d, Yu = UuMuK

†
u , (1.41)
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for other unitary matrices Kd and Ku. Therefore, the Yukawa couplings are

Lmasa = − v√
2

(
d̄LUdMdK

†
ddR + ūLUuMuK

†
uuR

)
+ h.c. . (1.42)

Now we can freely change the basis of the right quarks with dR → KddR and uR → KuuR and
the left quarks with uL → UuuL and dL → UddL. This removes the matrices U and K from the
Yukawa terms, leaving the diagonal mass matrices Mu and Md [27]. This is known as going to the
basis of masses. On this basis the mass terms in the Lagrangian density are simply

Lmasa = −
∑
j

(
md

jd
j

Ld
j
R +mu

ju
j
Lu

j
R

)
+ h.c. , (1.43)

wheremd
j andmu

j are the diagonal elements of v√
2
Md and v√

2
Mu, respectively . Note that there still

exists a residual global symmetry U(1)6 with six angles αj and βj , under which

djL → eiαjdjL, djR → eiαjdjR, ujL → eiβjujL, ujR → eiβjujR . (1.44)

Of course, this basis change also implies modifications in the kinetic terms of the Lagrangian
density of the SM. In the original flavor basis, gauge boson interactions do not affect mixing be-
tween different quark families. When we perform the rotation uL → UuuL and dL → UddL, the
couplings of Bµ and W 3

µ do not change, since they do not involve the mixing of up and down
quarks [26]. The only elements that are sensitive to these rotations are the W±

µ couplings. This
leads to all relevant mixing effects being encapsulated in a single matrix, known as the CKM
(Cabibbo–Kobayashi–Maskawa) matrix, which is defined as V = U †

uUd.
The CKM matrix is a complex unitary matrix, which implies that it has a total of nine real

degrees of freedom. If we consider that the CKM matrix, denoted as V , was a real matrix, we
would be dealing with a matrix of dimension 3 × 3, which would imply the existence of three
degrees of freedom corresponding to the angles of rotation. Consequently, we would have three
angles and six phases in the matrix V .

However, we can take advantage of the U(1)6 symmetry present in the equation (1.44), where
the masses remain invariant, to set certain phases to zero. Under these transformations, the matrix
V generally changes. However, if all rotations are identical, that is, αj = βj = θ, then the matrix V
remains unchanged. Through this approach, we can eliminate only five phases in this way, resulting
in a total of four remaining degrees of freedom. These four degrees of freedom consist of three
angles, denoted θ12, θ23 and θ13, which correspond to the rotations in the flavor planes ij, and a
phase, represented by δ [27].

1.4.1 Yukawa Couplings and CP Violation
The parity violation in the electroweak theory is an obvious consequence of the differences in cou-
pling between left-chirality fields and right-chirality fields. This phenomenon is evident in nu-
clear beta decay, where the emission of electrons with left-hand chirality is consistently observed
[28][29]. However, it is possible that, despite the lack of invariance under mirror reflection in the
universe, this invariance could be maintained if it is accompanied by an exchange of particles and
antiparticles, which is known asCP invariance. Currently, we are aware thatCP invariance breaks
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down in rare processes involving hadrons, which we call a weak violation of CP [30][31]. Addi-
tionally, there is another potential form of CP violation known as strong CP violation, which is
predicted theoretically but has not yet been observed experimentally, generating what is known as
the strong CP problem, which we will discuss in detail. in Chapter 3. In what follows, we will
discuss the physics related to the CP transformation.

The way CP acts in spinor bilinears is [11][27]:

ψ̄iψj(t,x) → +ψ̄jψi(t,−x), (1.45)
ψ̄iγ5ψj(t,x) → −ψ̄jγ5ψi(t,−x), . (1.46)

Using the above we can determine which terms in the Lagrangian density of the SM could break
the CP symmetry. Remember that, in the flavor basis, the entire flavor structure is in the Yukawa
matrices. Consider the up-type quark (uct) mass terms

LYukawa = − v√
2
ūLYuuR + ūRY

†
uuL

= − v√
2

(
ū(Yu + Y †

u )u+ ū(Yu − Y †
u )γ

5u
)
.

(1.47)

Under CP, ūiuj → ūjui and ūiγ5uj → −ūjγ5ui ( along with x→ −x), so

LYukawa → − v

2
√
2

(
ū(Yu + Y †

u )
Tu− ū(Yu − Y †

u )
Tγ5u

)
= − v

2
√
2

(
ū(Y ∗

u + Y †∗
u )u− ū(Y ∗

u − Y †∗
u )γ5u

)
.

(1.48)

Thus, we see that the Lagrangian density is invariant under CP if the coefficients are real.
Whether or not a matrix is real is not a basis-invariant statement. In fact, in the flavor basis

where the interactions W are diagonal in flavor and the mass matrix is complex (i.e., V = 1),
there can still be a violation of CP . Conversely, even if the mass matrix were diagonal and V
was complex, violation of CP might not occur if some residual chiral rotation could remove the
phase. This is especially true if one of the quarks is massless. Therefore, it is beneficial to have a
basis-independent measure to assess CP violation.

Now, let us remember that we relate the Yukawa couplings to the diagonal mass matrices through
Eq. (1.41) where

Md =

√
2

v
diag(md,ms,mb) , (1.49)

Mu =

√
2

v
diag(mu,mc,mt) . (1.50)

since V = U †
uUd, if Uu = Ud, then V = 1, implying the absence of flavor violation or CP .

Previously, we took advantage of the freedom to rotate the right fields without disturbing the weak
interactions to eliminate Kd and Ku. Equivalently, we could have performed rotations on dR, i.e.
dR → KdU

†
ddR, and on uR, i.e. uR → KuU

†
uuR, from so that

Yd = UdMdU
†
d , (1.51)

Yu = UuMuU
†
u , (1.52)
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which makes the Yukawa matrices Hermitian. Then, suppose that Yu and Yd are Hermitian, without
loss of generality. If Yu and Yd could be diagonalized simultaneously, then V = 1 and there would
be no violation of CP . Therefore, the CP violation is completely hardcoded into the switch [27]

−iC = [Yu, Yd] = UuMuU
†
u, UdMdU

†
d = Uu

(
MuVMdV

†)U †
u . (1.53)

The matrix C is traceless and Hermitian because Yu and Yd are Hermitian. Therefore, it is natural
to look at its determinant as an invariant quantity in the basis

detC = −16

v6
(mt −mc)(mt −mu)(mc −mu)(mb −ms)(mb −md)(ms −md)J , (1.54)

where, for any i, j, k and l,

Im [VijVklVilVkj] = J =
∑
m,n

ϵikmϵjln , (1.55)

where ϵijk is the 3-index antisymmetric tensor. This can be expressed as

J = Im(V11V22V12V21) = −Im(V11V32V12V31) = Im(V22V33V23V32) = . . . , (1.56)

here these products are equal due to the unitarity of the CKM matrix. J is known as the Jarlskog
invariant. In terms of the standard parameterization,

J = s12s23s31c12c23c31 sin δ . (1.57)

The important point about the Jarlskog invariant vanishes if and only if there is no violation of CP .
That is, all weak CP violation in the Standard Model is proportional to Imdet[Yu, Yd].

This explanation is valid when the CP violation mechanism is distinguished from the Higgs
mechanism in the spontaneous breaking of gauge symmetry. Yukawa interactions are responsible
for the masses of the fermions and constitute the only source of CP violation in the ESM.

1.5 Beyond the Standard Model
Particle Physics has made notable achievements with the SM, a theory that describes elementary
particles and their interactions in a surprisingly precise way. However, the SM is not a complete
theory, and several shortcomings and limitations have been identified that highlight the need to seek
an extension beyond this model. Below we will briefly explain two issues that suggest making this
extension.

1.5.1 Why do we need Dark Matter?
Observations of the Cosmic Microwave Background (CMB) strongly suggest that the universe, at
large scales, is virtually flat [32]. This results in an observed value of the current energy density,
denoted as ρ0, which is close to its critical value

ρ0 ≈ ρcrit ≡
3H2

0

8πGN

≈ 10−29 g/cm3 , (1.58)
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corresponding to an average density of 10 protons per cubic meter; in Eq.(1.58),H0 ≈ 70 km/s/Mpc
is the value of the Hubble constant today (i.e., the Hubble constant) andGN ≈ 6.67×10−11 Nm2/kg2

is Newton’s gravitational constant. This energy density is made up of various contributions [32].
Mainly (about 70%) Dark Energy (DE), which is responsible for the accelerated expansion of the
universe, followed by Dark Matter (DM, about 26%), which is responsible for the gravitational
collapse of the universe, ordinary matter (generally called “baryons” and which constitutes the re-
maining 4%) and, finally, the formation of the structures that we observe in the cosmos.

We can determine the amount of Dark Matter in the Universe, which is as follows

ΩDM ≡ ρDM,0

ρ0
≈ 0.26 , (1.59)

where ρDM,0 is the density of dark matter evaluated today 2. The number in the Eq. (1.59) can be
expressed in units more suitable for astrophysics and particle physics as follows:

ρDM,0 ≈ 1010M⊙ Mpc3 ≈ 10−6 GeV cm3 , (1.60)

where M⊙ ≈ 2 × 1030 kg is the mass of the Sun. We can get some clues about the microscopic
nature of dark matter by trying to answer the following questions:

• Dark Matter is generally believed to be not “bright” in the sense that DM particles do not
interact electromagnetically and therefore cannot scatter photons; in other words, they do not
possess an electrical charge. However, the observations do not exclude that DM particles may
have an extremely small electrical charge [33] or that they do so through other mechanisms.

• We know that dark matter must be gravitationally bound on scales at least as large as the
size of a spherical dwarf galaxy (dSph). We can use this size to derive an upper limit on the
de Broglie wavelength (λdB) of a DM particle and, consequently, a lower limit on its mass.
Considering a dark matter particle of mass m with a speed v ≈ 100 km/s, using the value of
Planck’s constant (which we recover for the moment) hPl ≈ 4×10−15 eV ·s, and the fact that,
since the particle is non-relativistic, the de Broglie wavelength λdB = hPl/(mv) is calculated
as

λdB ≈ 4× 10−15

102
eV · m · s2 · km ≈ 4meV · m . (1.61)

This result implies that, for λdB < 1 kpc ≈ 3 × 1021 cm, we need a mass m > 10−22 eV,
which is not a very strict lower limit.

While the SM has been remarkably successful in describing particles and three of the four funda-
mental interactions that make up visible matter, it does not explain dark matter. The inclusion of a
dark matter particle in an extension of the Standard Model is essential to address this cosmologi-
cal challenge. This hypothetical particle could have weak or gravitational interactions with visible
matter and would form large-scale structures in the universe, such as dark matter halos around
galaxies.

2Generally a subscript 0 means, in cosmology, that the corresponding quantity is evaluated at present, that is, at the
age of the universe t0.
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1.5.2 Problems in QCD theory
One of the most important outstanding issues is the need to address the problem of CP violation in
the context of strong interaction. To understand this question, we must first introduce some concepts
solidly established in current physics. One of the most direct tests of invariance under time reversal
T comes in single particle transitions [34]3. Next, we will focus on a static quantity that describes
a particle or state: the Electric Dipole Moment (EDM).

Let us consider a system, which could be an elementary particle, an atom, or a molecule, im-
mersed in a weak electric fieldE. The change in the energy of the system due to the external electric
field can be decomposed into a power series of E as follows

∆ϵ = diEi +DijEiEj + . . . . (1.62)

The coefficient of the linear term in E is called the electric dipole moment (EDM), while that of
the quadratic term is known as the induced dipole moment. If an elementary particle possesses
an EDM, this implies the violation of the parity P and time reversal T symmetries. The EDM
is a measure of charge polarization within a particle and is expressed as the expected value of an
operator (for a system of charges)

d =
∑
i

riei , (1.63)

where ri = r+i − r−i is a relative vector that locates the charges on r+i in r−i , while ei the respective
charge. For parity conservation P to be fulfilled, the following must happen

⟨N, s|d|N, s⟩ = ⟨N, s|P †PdP †P |N, s⟩ = −⟨N, s|d|N, s⟩ . (1.64)

Therefore, the expected value of this operator must be zero. A non-zero expected value of this
operator would imply that the dynamics acting on the particle violate parity symmetry.

In the early 1950s, Purcell and Ramsey used this argument to demonstrate the conservation of
parity in nuclear forces [36][37]. At that time, the existing limit for the neutron EDM, obtained by
Rabi, Havens, and Rainwater, as well as Fermi and Hughes, was 10−17 e cm [38][39].

After the parity violation was discovered in 1957, determining the EDM of the neutron was
considered the ideal option to independently investigate such a violation. However, Landau, Lee,
and Schwinger pointed out that a non-zero EDM would imply the violation of another symmetry:
the time-reversal T and, therefore, the violation of CP [29][40][41]. This is due to the condition
that in a quantum field theory, conservation of symmetry CPT is imperative according to the CPT
theorem 4.

It has often been mentioned that one of the attractive features of Quantum Chromodynamics
(QCD) is that it “naturally” preserves baryon number, flavor, parity, and CP symmetry. This was
the consensus for a while until it was pointed out [43] that it is not entirely true.

From the Lagrangian density of QCD

LQCD = −1

4
Ga

µνG
aµν + Q̄Liγ

µDµQL + ūRiγ
µDµuR + d̄Riγ

µDµdR − YijQ̄
i
Lϕd

j
R − YijQ̄

i
Lϕ̃u

j
R ,

(1.65)
3A prominent example of this is neutrino oscillations [35].
4For a rigorous proof of this theorem, see the following reference [42].
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we can see that we can add a term constructed from the intensity tensor defined in (1.17): ϵµνρσGa
µνG

a
ρσ.

This term is gauge invariant and has dimension 4; therefore, there is no reason to exclude this term
from LQCD. Quantum field theory teaches us to include every gauge-invariant four-dimensional
operator in the Lagrangian density: loop corrections would induce its presence even if it is omit-
ted from the original Lagrangian density unless it is prohibited by some symmetry other than the
Lagrangian. must obey. So we must add the non-perturbative term to LQCD

Leff = LQCD +
θg2s
32π2

Ga
µνG̃

aµν , (1.66)

where G̃aµν := 1
2
ϵµνρσGa

ρσ. The appearance of a term Ga
µνG̃

aµν in the Leff causes a serious prob-
lem. Because Ga

µνG̃
aµν , unlike Ga

µνG
aµν , violates both parity and invariance under time reversal

[44]. This is called, somewhat carelessly, the “strong CP problem”.
On the other hand, QCD with light quarks u and d in the limit of massless quarks, where

mu and md are much smaller than the QCD scale (ΛQCD), appears to possess a global symmetry
U(2)L × U(2)R. Although the vector component U(2)L+R remains conserved even after quantum
corrections, the axial part SU(2)L−R breaks spontaneously, giving rise to the pions, which initially
are Goldstone bosons but they gain mass due to the non-zero masses of mu and md.

The puzzle arises when considering the symmetry U(1)L−R, which cannot represent a valid
symmetry, since it would lead to “parity doubling” that is not observed in nature. The assumption
of its spontaneous breakdown should give rise to a fourth Goldstone boson, which is not found in
the particle spectrum. This leads to the U(1)A problem in QCD [45].

The solution to this puzzle lies in the quantum anomaly in the axial flavor singlet current, which
breaks chiral symmetry for massless quarks. Such an anomaly is known as the “triangle anomaly”,
is generated by a triangular fermionic loop diagram, and has been an important topic in theoretical
physics [46][47][48]. However, the resolution of this U(1)A problem introduces the “Strong CP
Problem”, which will be stated more clearly in Chapter 3. The U(1)A and Strong CP Problems
become even more intertwined if weak interactions are also included. Since the gluonic operator
Ga

µνG̃
aµν does not change flavor, we immediately suspect that its most notable impact would be to

generate an EDM for neutrons. This is, in fact, the case, but establishing this connection more con-
cretely requires a more sophisticated argument, which you can find in chapter 15 of [34]. By adding
fields to the Standard Model to introduce the new anomalous U(1) symmetry. This symmetry is
named by its authors as Peccei-Quinn symmetry. If this U(1)PQ breaks down spontaneously, it will
generate a new Goldstone boson, a. Taking a = θ̄ and the ground state has no effective effect of
θ̄. The excitations around this void are known as axions and also provide a viable candidate for the
dark matter particle.

In summary, the need to extend the Standard Model is important to our understanding of nature,
and the problem ofCP violation in the context of strong interaction is one of the most intriguing and
fundamental challenges presented. This has led us to establish a good candidate for dark matter.
The search for this extension is essential to better understand the mysteries of the Universe and
advance our knowledge of fundamental physics.

26



Chapter 2
Dark Matter
“We have peered into a new world and have seen that it is more mysterious and more complex than
we had imagined. Still, more mysteries of the universe remain hidden. Their discovery awaits the
adventurous scientists of the future.”
—Vera Rubin

Throughout the history of science, the exploration of cosmic mysteries has been a constant search.
As we advance our understanding of the universe, we encounter an enigma that challenges the very
foundations of physics and cosmology: Dark Matter (DM).

In the vast expanses of space lurks a fundamental component of the cosmos that, for the most
part, does not interact detectably with light. As a result, it remains invisible to our instruments and
observations. In this chapter, we will lay out the problem of dark matter, exploring its impacts on
cosmology and the theories that attempt to shed light on its true nature.

2.1 Evidence for the existence of Dark Matter
Today, cosmological models always incorporate a type of non-baryonic matter, which interacts
electromagnetically extremely weakly or not at all with light, and which has a negligible speed
in terms of structure formation. This form of matter is known generically as “Cold Dark Matter”
(CDM).

Within the framework of the well-known Standard Model of Cosmology, called ΛCDM, dark
matter represents 26.4% of the critical density of the universe or 84.4% of the total density of
matter. However, as for its nature, we only know a small fraction of it, ranging between at least 0.5%
(given the behavior of neutrinos) and a maximum of 1.6% (according to the combined cosmological
constraints)[2]. Of all the non-baryonic matter content in the universe, we only fully understand the
three neutrinos that are part of the Standard Model of particle physics. To date, the fundamental
composition of the vast majority of dark matter remains unknown.

Assuming the validity of General Relativity 1, we can observe that dark matter is ubiquitously
present in structures that They experience gravitational interactions. These structures range from
the smallest known galaxies, as demonstrated in [50], to galaxies comparable in size to our Milky
Way, as mentioned in [51], and extend even to groups and clusters of galaxies, as investigated in
[52].

Below we will mention some observational evidence that shows us the existence of dark matter:

• Galaxy rotation curves: The velocities of stars do not decrease as they move away from the
center, which would be expected if only visible matter were present. Instead, these curves
reveal that the rotation speed remains constant or, in some cases, even increases in the farther
regions. This observation points directly to the existence of a substantial amount of invisible

1There are various tests, such as the detection of gravitational waves that are conclusive proof of the solidity of the
theory [49].
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matter that provides the necessary additional gravity. This invisible matter is what we know
as dark matter. The study of these rotation curves was one of the first observations that
suggested the existence of DM [53].

• Anisotropies in the Cosmic Microwave Background (CMB): The study of cosmic back-
ground radiation, the afterglow of the Big Bang, provides information about the distribution
of matter in the early universe. The anisotropies observed in this radiation are consistent with
models that include both visible matter and dark matter. For example, detailed observations
of the cosmic background radiation support anisotropies and features in the angular spectrum,
which is consistent with the existence of visible matter and dark matter in the early universe
[54].

• Gravitational lenses: Gravitational lensing is a phenomenon in which the gravity of a very
massive object, such as a galaxy or galaxy cluster, bends the light from objects behind it. The
amount of curvature observed is greater than would be explained by visible matter alone,
suggesting the existence of dark matter contributing to this additional gravitational lensing
[55] [56].

• Galaxy Agglomerations: The way galaxies are grouped into clusters and superclusters sug-
gests the existence of a significant amount of invisible matter. Gravity generated solely by
visible matter would not be able to hold these structures together at the observed speeds, as
has been pointed out in several scientific studies [57].

According to the previous evidence, we must point out that dark matter has only been observed
indirectly and it is said that it does not interact with electromagnetic light. Furthermore, dark
matter does not emit detectable signals in the form of particles that our particle detectors can pick
up. In contrast, visible matter is composed of atoms and particles that emit or reflect detectable
particles, such as electrons, protons, and photons.

However, although DM is invisible to light and our particle detectors, we know it exists because
of its gravitational influence. Gravity is the only known form of interaction that affects DM and
visible matter equally. This gravitational influence is what has been presented as evidence. Addi-
tionally, cosmologists use computer simulations to study the evolution of the universe and how dark
matter interacts with visible matter [58]. These simulations recreate the formation of large-scale
structures and are supported by observational data, providing additional evidence for the existence
of DM.

In summary, although we have not directly observed DM, its gravitational influence and its con-
sistency with theoretical models supported by observational data provide us with strong evidence
for its existence.

2.2 About the genesis of Dark Matter
The genesis of DM is an intriguing mystery in cosmology and astrophysics. As we explore the
universe and study its phenomena, we are faced with overwhelming evidence for the existence
of “invisible” matter that exerts significant gravitational influence. However, the origin and exact
nature of this dark matter remain enigmas to be solved. In this section, we will explore the clues
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and theories that have emerged over time to better understand the crucial role that DM plays in the
structure and evolution of the universe.

In the early universe, dark matter generation can occur through thermal, non-thermal processes,
or a combination of both, and can even arise due to asymmetries between particles and antiparticles.
The thermal scenarios are [59][60]:

• Freeze-out: In the “freeze-out” scenario, DM particles are initially in thermal equilibrium
with the early primordial universe. This means that the particles are constantly interacting,
colliding, and annihilating each other. As the universe expands and cools, the rate of annihi-
lation of dark matter particles decreases. This is because collisions become less frequent due
to expanding space and cooling. At some point, the rate of annihilation becomes slower than
the expansion of the universe, meaning that dark matter particles are no longer in thermal
equilibrium with their surroundings. At this point, the abundance of DM is ”frozen” at a
specific value, determined by the previous annihilation rate. As a result, the final abundance
of dark matter depends on the annihilation cross section (the probability that two particles
annihilate when they collide) and the temperature of the universe at the time of the freeze-out.

• Freeze-in: In the “freeze-in” scenario, DM particles are generated from collision processes
that never brought them into thermal equilibrium with the primordial universe. Over cos-
mic time, these dark matter particles are gradually created due to collisions and decays of
lighter particles, without an abrupt ”freezing” in their abundance occurring. In general, dark
matter particles generated through freeze-in tend to have longer lifespans, meaning they can
exist for an extended period before disintegrating or annihilating. This, in turn, can result in
distinctive, detectable signals in particle experiments and cosmic observations.

In summary, ”freeze-out” implies that dark matter particles cease to be in thermal equilibrium with
the universe due to cooling and expansion, while ”freeze-in” involves the gradual generation of dark
matter particles through out-of-equilibrium processes throughout cosmic time. Both scenarios are
important in understanding DM and its abundance in the Universe.

For completeness, it is important to mention that the production of DM can occur through
processes that develop outside of thermal equilibrium. These processes may include the generation
of DM through the decay of a “mother” particle into DM [61] or through gravitational effects.
Another possibility is the existence of asymmetric DM, where the abundance of DM results from
an asymmetry between DM particles and their corresponding antiparticles [62]. It is important
to note that this asymmetry is not necessarily related to the asymmetry between baryon matter
and antimatter. In this context, depending on the model and its thermal history, there may be a
relationship between the masses of the dark matter particles and the mass of the proton. Several
theories have been proposed arguing that baryogenesis can be explained by an asymmetry in the
DM sector or vice versa [63].

2.3 Small-scale problems
TheΛCDM model has been remarkably successful in explaining the large-scale structures observed
in the Universe, as well as the fundamental properties of galaxies formed within DM haloes [64].
Despite its effectiveness at large scales, the model faces challenges at scales below ∼ 1Mpc, where
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structure formation becomes highly nonlinear. These challenges include three main problems: “the
cusp-core problem”, “the missing satellite problem” and “the too-big-to-fail problem”. These prob-
lems initially arose when comparing theoretical predictions of dark matter simulations with obser-
vations, and while some solutions are found in baryon physics, such as supernova feedback, other
challenges might require a modification or extension of the ΛCDM model.

1. The cusp-core problem: Observations seem to indicate an approximately constant dark mat-
ter density in the inner parts of galaxies, while cosmological computer simulations indicate
steep power-law type behavior, namely ρ(r) ∝ r−γ , with γ = 0.8 − 1.4 [65][66]. This dif-
ference is known as “the core-cusp problem” and remains one of the unsolved problems in
small-scale cosmology.

2. The Missing Satellite Problem: Broadly refers to the overabundance of predicted CDM
subhaloes compared to the known satellite galaxies that exist in the Local Group [67]. Cos-
mological simulations predict hundreds or thousands of Milky Way-sized subhaloes, with
masses that are, in principle, large enough to allow galaxy formation (> 107M⊙). But we
observe less than 100 satellite galaxies in our vicinity. One possible solution is that galaxy
formation becomes less efficient in smaller haloes, preventing galaxy formation in smaller
dark matter haloes. From that point of view, the question is to identify the source of feedback
that makes small haloes dark and to identify any obvious mass scales where truncation in the
efficiency of galaxy formation occurs.

3. The too-big-to-fail problem: This problem arises from observing fewer galaxies with large
central densities (≈ 1010M⊙) than predicted byΛCDM. Solutions may include baryon effects
[68] or modifications to linear and nonlinear predictions, such as hot dark matter (WDM) or
self-interacting dark matter particles (SIDM) [64].

The growing amount of data from the Milky Way and Andromeda satellites is used to constrain
alternative DM models. Warm dark matter (WDM) models postulate particles with masses on the
order of keV, while simulations Cosmological experiments with SIDM suggest that certain values of

σ
mSIDM

≈ (0.5×10−21 cm2/ g) could address challenges such as the core/cusp and the too-big-to-fail
problem, leading to dark matter cores in dwarf galaxies with sizes of (0.3−1.5) kpc [69]. However,
observational constraints, especially in galaxy clusters, present additional challenges, highlighting
the need for a σ dependence on the particle velocity to resolve small-scale problems and meet the
constraints observed at different ranges of speed [2].

2.4 Local density and velocity distribution
The density and distribution of dark matter in the Milky Way contain relevant dynamic information
about our galaxy, especially important for experiments that seek to detect dark matter directly and
indirectly. The “local density” of dark matter, denoted by ρ0, refers to an average calculated within
a volume spanning a few hundred parsecs in the vicinity of our solar system. The determination of
ρ0 from observations is performed using two classes of [70] methods. ”Local measurements” are
based on monitoring the vertical movement of tracer stars in the vicinity of the Sun. In contrast,
”global measurements” extrapolate ρ0 from the measured rotation curve, making use of additional
assumptions about the shape of the galactic halo.
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By comparing the extrapolated local density with that obtained from local measurements, it is
possible to constrain the local configuration of the Milky Way halo. However, a major source of
uncertainty in the estimate of ρ0 comes from the contribution of baryons (stars, gas, stellar remnants)
to the dynamical mass in the local neighborhood. For example, the motion of tracer stars, which is
used in local measurements, is influenced by the total potential generated by both baryons and dark
matter. To infer the additional contribution of dark matter, a robust baryon census is essential [71].

Recent determinations using global methods are in the range of (0.2−0.6),GeV/cm3 [72] [73]
[74] [75] [76], in contrast, analyzes of local dark matter density from Data from the Gaia satellite
provide values in the range of (0.3 − 1.5),GeV/cm3, depending on the type of stars used in the
research [70].

Other observational quantities can be used that enter the DM phase space distribution and pro-
vide constraints on Milky Way mass models such quantities are the local circular velocity vc and
the escape velocity ve. Local circular velocity is measured by several methods, roughly divided
into measurements of the Sun’s velocity concerning an object assumed to be at rest concerning the
galactic center or direct measurements of the local radial force. These methods return values of
vc = (218 − 246) km/s. A recent estimate of the escape velocity, defined as the velocity above
which objects are not gravitationally bound to our galaxy, is ve = 533+54

−41 km/s [77].
An important fact is that the local velocity distribution of DM particles cannot be directly

measured at present and is mainly derived from simulations. High-resolution simulations, focus-
ing exclusively on DM, have revealed that the velocity distributions deviate significantly from a
Maxwell-Boltzmann distribution. These simulations also evidence additional components above
the predominant smooth distribution, including narrow peaks caused by tidal currents [78]. How-
ever, recent hydrodynamic simulations, incorporating baryons in Milky Way-like galaxies, have
shown that these baryons have a non-negligible impact on the distribution of dark matter in the
solar neighborhood [79].

Generally speaking, experiments typically employ the Simplest Standard Halo Model (SHM)
as the basis for their data analysis. This model assumes an isotropic and isothermal sphere of
dark matter particles with a density profile ρ(r) ∝ r−2. In this context, the velocity distribution
is modeled as Maxwellian, with a velocity dispersion σv = vc/

√
2. Although this distribution is

formally defined to infinity, it is truncated at ve [80]. Surprisingly, recent hydrodynamic simulations
have velocity distributions that are close to the Maxwell form, supporting the idea that the Standard
Halo Model is a good approximation [81] [82] [83].

The primary purpose is to determine the velocity distribution from observations, taking advan-
tage of data from the Gaia satellite to study various stellar populations, including those that share
kinematics with dark matter (DM). It was recently revealed that the local stellar halo has two com-
ponents: a weakly rotating quasi-spherical structure with metal-poor stars and an oblate, radially
anisotropic structure of metal-rich stars, which arose due to accretion (1011−12M⊙)of a large dwarf
galaxy about (8− 10)× 109 years ago [84]. Incorporating the anisotropic structure observed in the
Gaia data an analytical expression for the velocity distribution can be established. The resulting lo-
cal dark matter density is (0.55± 0.17)GeV/cm3, with 30% corresponding to the systematic error,
while the circular rotation speeds and exhaust are set to vc = (233±3) km/s and ve = 528+24

−25 km/s,
respectively [85].
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Chapter 3
Axions and Axion-like particles
“Tapestries are made by many artisans working together. The contributions of separate workers
cannot be discerned in the completed work, and the loose and false threads have been covered over.
So it is in our picture of particle physics.”
— Sheldon L. Glashow

As we advance our understanding of the cosmos, the search for suitable candidates for dark matter
has become an exciting and challenging field of study.

In this chapter, we will delve into a fascinating world of exotic particles that have been proposed
as possible candidates for DM. Among these particles, one that has gained notoriety is the axion,
a hypothetical particle that possesses unique properties that make it a strong contender to solve
the mystery of DM. However, it is not alone in this quest. Similar particles, known as Axion-Like
Particles (ALPs), also figure prominently in this exploration. In the next few pages, we will explore
the properties, characteristics, and potential evidence supporting the consideration of axions and
ALPs as possible DM candidates.

3.1 The Strong CP problem
Next, we will explore one of the most likely sources of CP symmetry violation in the SM. As we
mentioned earlier, the problems U(1)A andCP Strong become even more intertwined by including
the weak interactions.

Sometimes global chiral symmetries, such as ψ → eiγ5θψ, which are symmetries in a classical
Lagrangian density, do not hold as symmetries in a quantum theory. In these cases, we say that
the symmetries are “anomalous”. As we will see, we can understand that these anomalies arise in
situations in which a classical action remains invariant under a symmetry transformation, but the
path integral measure does not. An illustrative example is when we apply a chiral transformation
to a quark, which results in [27]∫

DψDψ →
∫

DψDψ
(
iθ

∫
g2s

64π2
ϵµνρσGa

µνG
a
ρσ

)
, (3.1)

where Ga
µν is the field strength given in eq. (1.17) for anything under which quarks are charged,

gs is the corresponding charge, and ϵµνρσ is the Levi-Civita symbol with 4 indices 1. For multiple
generations, rotating by ψi

R → Rijψj
R and ψi

L → Lijψj
L, the angle of rotation will be given by

det(R†L) = reiθ for some r ∈ R 2.
The term ϵµνρσGa

µνG
a
ρσ conserved the charge conjugation C but violates both spatial parity P ,

temporal reversal T and therefore violates CP . To understand this in detail, let’s take into account
1It is antisymmetric under exchange of two contiguous indexes.
2If the rotation is non-chiral θ = det(R†L) = reiθ = 0.
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the following transformation laws under CP :

Aa
0(t,x) → −Aa

0(t,−x) , Aa
i (t,x) → Aa

i (t,−x) , ∂0 → ∂0 , ∂i → −∂i . (3.2)

If both CP and P are violated, then the Lagrangian density has the following allowed terms

LCPV = θQCD
g2s

64π2
ϵµνρσGa

µνG
a
ρσ + θ2

g2

64π2
ϵµνρσW a

µνW
a
ρσ + θ1

g′2

32π2
ϵµνρσBµνBρσ . (3.3)

Here, Ga
µν , W a

µν and Bµν represent the intensity fields corresponding to the SU(3), SU(2) and
U(1) symmetries (see eq.(1.17)-ec.(1.18).). The inclusion of these terms in the theory is not only
permitted, also it is necessary to do so. This is because these terms can originate through diver-
gent corrections in the ultraviolet (UV ) limit, and therefore the introduction of the parameters {θi}
becomes necessary to regularize these divergences [34].

On the other hand, it is important to note that since the values of θi can change under chiral
rotations, questions arise about whether these parameters can have observable consequences. This
is because observations in physics must be independent of our choices of chiral phase conventions,
which poses challenges in the interpretation of these terms and their possible implications for ob-
servable phenomena.

To see if the angles θi have observable consequences, let’s check the Yukawa matrices, which
can be written as (C.f. ec. (1.41))

Yd = UdMdU
†
dK

†
d , Yu = UuMuU

†
dK

†
u .

Extra factors U †
d and U †

u have been inserted here, without loss of generality. Then we can perform
chiral rotations only on the right-hand fields to remove Kd and Ku, and then perform non-chiral
rotations to remove Ud and Uu. The phase induced by the chiral rotations Kd and Ku is given by

arg det(KdKu) = − arg[det(MdMu) det(YdYu)] = − arg det(YdYu) ,

as det(MdMu) ∈ R. Then the CP violating term after rotation is written as

Lθ = θ̄
g2s

32π2
Ga

µνG̃
aµν , with θ̄ = θQCD −∆θEW and G̃aµν =

1

2
ϵµνρσGa

ρσ , (3.4)

where
∆θEW := det(YdYu) . (3.5)

A chiral rotation moves the phase back and forth between θQCD and ∆θEW , leaving θ̄ unchanged.
Therefore, θ̄ is an independent measure of the basis of CP violation and may be physical. θ̄ is
known as the strong CP phase. However, if det(MdMu) = 0, that is, if any of the quark masses
disappear, then θ̄ becomes non-physical again. We observe that the angles associated with SU(2)
and U(1) can be completely eliminated by chiral rotations 3 [27]. Therefore, neither θ2 nor θ1 can
have physical consequences.

3Rotating only the right-hand fields can make the Yukawa couplings real, but θ2 does not change with these rotations
since the right-hand fields are not charged. Therefore, we can rotate the left-hand fields just to put θ2 into the Yukawa
couplings and then rotate the right-hand fields to remove it. Therefore, there is no independent measure of the basis of
CP violation for SU(2) and θ2 is not physical. Similarly, since neutrinos have no charge, we can rotate them to show
that the U(1) phase is unphysical.
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n p n

π−π−

γ

Figure 3.1: Feynman diagram of the main contribution to NEDM [6]. The black ball represents the
CP flight effect and the striped balls represent the effective couplings.

We have observed that θ̄ is independent of the basis, and if none of the quark masses disappear,
then it can be measured. However, as we indicated at the end of Chapter 1, this term does not appear
in perturbation theory. To understand this, let us note that the quantum anomaly manifests itself in
an equation where the divergence of the current is proportional to a gluonic field term [86]. This
shows that the supposed U(1)A symmetry (U(1)A Problem, [45]) never existed from the beginning,
even for light quarks, and only three Goldstone bosons are predicted in the isotopic spin limit [43].
So we can write

Ga
αβG̃

aαβ = ∂µK
µ , Kµ := ϵµνρσ

(
Aa

νG
a
ρσ −

gs
3
fabcAa

νA
b
ρA

c
σ

)
,

showing that Ga
αβG̃

aαβ is a total derivative, where Kµ is known as the Chern-Simons current
[87]. Total derivatives never contribute to perturbation theory, since Feynman’s rule would have a
factor of the sum of all the moments entering the vertex minus the moments leaving it, resulting in
a factor of zero. Therefore, θ̄ can only have physical consequences through non-perturbative effects
[86].

3.1.1 Neutron Electric Dipole Moment
The term Ga

µνG̃
aµν does not change the flavor, and although we cannot calculate the effect of θ̄

directly in QCD, we can make accurate quantitative predictions using the chiral Lagrangian density.
The chiral Lagrangian density is a nonlinear sigma model in which the pions are embedded in a
compound field U(x) = exp 2iπa(x)τa/fπ, being fπ the decay constant of the neutral-pion [27].

One of the most important consequences of this model is that the neutron acquires an Electric
Dipole Moment (EDM) proportional to θ̄. The neutron and proton form an isospin doublet, so their
couplings to the pion must be of the form

LπNN = πaψ̄
(
iγ5gπNN + ḡπNN

)
τaψ , (3.6)

where ψ is the proton-neutron isospin doublet. The first term is the ordinary Yukawa coupling to
pseudoscalar pions, which gives rise to the Yukawa potential that describes the strong nuclear force
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between nucleons. The second term violates CP and must be proportional to θ̄. Upgrading isospin
to SU(3), it can be shown that [88] 4

ḡπNN = − mumd

Fπ(2ms −mu −md)(mu +md)
(MΞ −MN)θ̄ ≈ 0.038θ̄ , (3.7)

or a more updated value ḡπNN ≈ 0.023θ̄ [6]. It can be compared with gπNN = 13.4 [88]. Pion loops
with the CP violation at the vertex ḡπNN generate a Neutron Electric Dipole Moment (NEDM).
These loops are UV divergent. Cutting off the UV divergences into mN gives [88]

dN =
mN

4π2
gπNN ḡπNN ln

mN

mπ

e = (5.2× 10−16 e · cm)θ . (3.8)

Therefore, using the upper bound value for the NEDM |dN | < 2.9×10−26e · cm [90], so θ̄ < 10−10

or with updated values [6]
θ < 0.7× 10−11 . (3.9)

The smallness of θ̄ despite the large number of CP violation in the weak sector is known as the
Strong CP problem.

3.1.2 About Strong CP problem solution
A symmetry-based solution to the U(1)A problem is considered natural. The Eqs. (3.4) with θ̄
provide an example. If one of the quark masses mq vanishes (det(MuMd) = 0), leading to a chiral
symmetry, then the non-physical phase αi can be used to tune θ̄ to zero. However, no symmetry
protects mq = 0, since chiral symmetry is anomalous.

One could argue for some “pragmatic” solution. Assuming that θ̄ can in general be renormalized
to any value, including zero. This is technically correct; however, setting θ̄ to a value less than 10−11

by hand is considered highly “unnatural”.

• A priori there is no reason why θQCD and ∆θEW should be practically zero.

• Even if θQCD = 0 = ∆θEW were established by decree, the quantum corrections to ∆θEW are
usually much larger than 10−9 and ultimately divergent [34].

• Expecting θQCD and ∆θEW to cancel so that θ is small enough would require fine-tuning of
a type that it would have to appear even to a skeptic as unnatural; since θQCD reflects the
dynamics of the strong sector and ∆θEW that of the electroweak sector.

Over the years, a solution to the Strong CP Problem has been sought, and various proposals have
emerged. In some of these solutions, evolution with the Renormalization-Group (RG) scale of θ̄
plays an important role. In particular, they try to fix θ̄ at some RG scale and take advantage of the
fact that, in the Standard Model (SM), evolution with the RG scale of θ̄ occurs to 7-loops [91]. If θ̄
is set to 0 at some high scale and the Effective Field Theory (EFT) down to low energies is simply
the SM, then θ̄ will remain very small at low energies, so it can be effectively ignored.

4For the values known at that time mu

md
= 0.38± 0.13, md

ms
= 0.045± 0.011 [89] and ln mN

mπ
= 1.9 [88] or the mass

term of the nucleon mN ∼ 1GeV.
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The general assumption is that anything that is not prohibited by symmetries will not be null,
so we claim that at 7-loops there is likely to be a non-null correction. The evolution with the
Renormalization-Group (RG) scale of θ̄ is derived from the only other CP violation phase in the
SM, δCKM. This relationship can be understood by treating θ̄ and δCKM as spurions 5 of the CP
symmetry. Furthermore, this evolution must respect the flavor symmetries SU(3)Q × SU(3)uc ×
SU(3)dc of the SM.

Solutions to the strong CP problem that use CP symmetry are typically called Nelson-Barr
models [93] [94]. These models postulate that CP is a good symmetry in the ultraviolet (UV) so
that both the CKM and θQCD angles vanish. However, since CKM is observed to be large, while θ̄ is
observed as small, these models are carefully constructed so that the breakdown of CP generates a
large CKM angle, while corrections to θ̄ are small. On the other hand, the QCD axion is probably
the simplest solution: an additional pseudo-goldstone boson is introduced into the Standard Model,
whose only non-derivative coupling is with the QCD topological charge [43] and is suppressed by
the scale fa, called the axion decay constant. This coupling allows the effects of the CP violation
angle θ to be redefined through a change of the axion field, thus ensuring that its vacuum expectation
value (VEV) cancels out. Furthermore, it produces a mass for the axion of O(mπfπ/fa).

3.2 Peccei-Quinn Symmetry and Axions
As we have argued, θ̄ ≤ O(10−11) 6 could hardly arise accidentally. A particularly intriguing
proposal is to reinterpret a physical quantity that is normally taken as a constant, as a dynamic
degree of freedom that adjusts to a desired value in response to forces acting on it 7. R. Peccei and
H. Quinn complemented the Standard Model with a global U(1)PQ symmetry [96] [97], now called
Peccei-Quinn symmetry, which is axial and has the following properties:

• It is a symmetry of the classical theory.

• It is subject to an axial anomaly; that is, it breaks down explicitly due to non-perturbative
effects, reflecting the complexity of the QCD ground state.

• It also breaks spontaneously.

The original model that predicts the axion was proposed by Weinberg and Wilczek [4] [5], based on
the idea of Peccei and Quinn [96] [97]. This formulation is known as the Peccei-Quinn-Weinberg-
Wilczek (PQWW) model, or the ”visible” axion model. In this framework, the axion field is iden-
tified as a phase direction of the Standard Model Higgs field. The need to introduce two (or more)
Higgs doublets arises because the axion degree of freedom does not exist in the theory with a single
Higgs doublet.

5Spurions are frequently used in Quantum Field Theory (QFT) to formally restore explicitly broken symmetries.
In doing so, the calculation proceeds by requiring complete symmetry, and only at the end of the calculation is the
original form of the breaking term reintroduced into the spurion field. This is a very efficient way to make evident how
breakdown terms affect physical quantities [92].

6Originally the estimate was at θ̄ ≤ O(10−9) [34].
7An early example is provided by the original theory by Kaluza-Klein that invokes a six-dimensional space-time

”manifold”, where two of them are dynamically compactified and therefore lead to the quantization of electric and
magnetic charge [95].
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In the minimal version, we designate the two Higgs doublets as ϕ1 and ϕ2. We assign the charges
U(1)PQ, β1 and β2, to the Higgs doublets and the quarks so that:

U(1)PQ : ϕ1 → eiϵβ1ϕ1 , ϕ2 → eiϵβ2ϕ2 , (3.10)
uL → eiϵβ2/2uL , uR → e−iϵβ2/2uR , (3.11)
dL → eiϵβ1/2dL , dR → e−iϵβ1/2dR , (3.12)

where ϵ is an arbitrary constant parameter. Yukawa couplings for quarks become

Ly = −yuq̄Lϕ2uR − ydq̄Lϕ1dR + h.c. . (3.13)

Both PQ and electroweak symmetries are spontaneously broken when the two Higgs doublets ac-
quire the vacuum expectation values.

⟨ϕ0
1⟩ = v1, ⟨ϕ0

2⟩ = v2, v =
√
v21 + v22 ≈ 246GeV . (3.14)

The axion in the PQWW model is considered “visible” in the sense that it makes observable pre-
dictions in laboratory experiments. However, theoretical predictions of the PQWW axion conflict
with the experimental limits on the decay rate of J/Ψ and Υ [98], as well as the decay of K+ [99].
Other experiments, such as nuclear deexcitations and particle beam experiments, also contradict
the predictions of the PQWW model [100]. These results initially seemed to rule out the original
PQWW model. Subsequently, some variant models were proposed that avoided the J/Ψ and Υ
decay constraints [101] [102], but these models were also excluded by π+ decay experiments [103]
and beam experiments of electrons [104].

3.2.1 The Invisible Axion and representative models
The problem of the original PQWW model can be avoided if the PQ symmetry is broken at some
energy scale η, which is higher than the electroweak scale v ≈ 246GeV, since the couplings of
axions with other particles are suppressed by 1/η [105].

This fact motivates the formulation of the “invisible” axion model. In this approach, the axion
is not the phase direction of the Higgs doublet of the standard model. It is necessary to introduce a
scalar field that is singular under SU(2)L × U(1)Y , whose phase would be identified as the axion.

We denote the singular scalar field under SU(2)L ×U(1)Y as Φ and designate it as the Peccei-
Quinn field. Under the transformation U(1)PQ, it undergoes the following change:

U(1)PQ : Φ → eiϵΦ . (3.15)

Here, we choose the PQ charge of Φ to be the unit 8. We propose a potential for Φ as

V (Φ) =
λ

4
(|Φ|2 − η2)2 , (3.16)

the PQ field takes the expected value of the void |Φ| = η, and the phase direction of the axion
field is identified as Φ ∝ exp(ia/η). The experimental limitations can be circumvented if η is large
enough compared to the electroweak scale.

8Alternatively, one can assign the PQ charge QΦ such that Φ → eiQΦΦ, a → a+ fa, and fa = QΦη.
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The PQ field Φ cannot have direct couplings with the quarks of the standard model, since they
acquire mass when Φ takes the value expected from the vacuum. To address the QCD anomaly,
additional fields need to be incorporated into the standard model sector. Below we present two
well-known examples:

• KSVZ model
In the Kim-Shifman-Vainshtein-Zakharov (KSVZ) model [105] [106], the QCD anomaly is
obtained by introducing a heavy quark Q, which has a Yukawa coupling with the PQ field:

LQ = −yQQ̄LΦQR + h.c. . (3.17)

Under the symmetry U(1)PQ, the heavy quark transforms as:

U(1)PQ : QL → eiϵ/2QL, QR → e−iϵ/2QR . (3.18)

In this model, only Φ and Q have charge under U(1)PQ. In particular, the axion does not
interact with electrons. Such a model is called the “hadronic axion” model [107].

• DFSZ Model
The Dine-Fischler-Srednicki-Zhitnisky (DFSZ) model [108] [109] realizes the QCD anomaly
without introducing a heavy quark. The trick is to assume two Standard Model Higgs dou-
blets, ϕ1 and ϕ2. Light quarks couple directly to ϕ1 and ϕ2 via the Yukawa terms (3.13), but
not to the PQ field Φ. The PQ field couples to the two Higgs doublets through the scalar
potential:

V (ϕ1, ϕ2,Φ) =λ1
1

4
(ϕ†

1ϕ1 − v21)
2 + λ2

1

4
(ϕ†

2ϕ2 − v22)
2 + λ

1

4
(|Φ|2 − η2)2

+ (aϕ†
1ϕ1 + bϕ†

2ϕ2)|Φ|2 + c(ϕ1 · ϕ2Φ
2 + h.c.) + d|ϕ1 · ϕ2|2 + e|ϕ†

1ϕ2|2 .
(3.19)

The Lagrangian is invariant under the PQ symmetry transformation U(1)PQ:

U(1)PQ : ϕ1 → e−iϵϕ1, ϕ2 → e−iϵϕ2 ,

uL → uL, uR → eiϵuR ,

dL → dL, dR → eiϵdR ,

(3.20)

along with (3.15). The axion field is a linear combination of the phases of three scalar fields
ϕ0
1, ϕ0

2 and Φ.

Of course, the purpose of these models is to solve the strong CP problem, therefore, we will explain
the mechanism that solves this problem.

3.2.2 The Peccei-Quinn mechanism
R. Peccei and H. Quinn proposed the theory that naturally explains the smallness of θ̄ [96] [97].
The essence of his idea consists of the following:

1. Introduce a field a, which we call the axion field. It is a singlet of SU(2)L.
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2. Assume that there exists a global axial symmetry U(1), which we call Peccei-Quinn (PQ)
symmetry, and that this symmetry U(1)PQ is spontaneously broken at some scale of energy
greater than the QCD scale ΛQCD ≈ O(100 MeV).

3. Impose appropriate PQ charges on the quarks so that an anomaly U(1)PQ-SU(3)C exists.
The dynamical degree of freedom a can be identified as a Nambu-Goldstone boson associated with
spontaneous symmetry breaking U(1)PQ [4] [5]. The symmetry U(1)PQ acts as a displacement in
the field

U(1)PQ : a→ a+ ϵη , (3.21)
where η is an arbitrary constant parameter and the energy scale of spontaneous symmetry breaking
U(1)PQ. According to assumption 3, the current U(1)PQ is not conserved due to the anomaly:

∂µj
µ
PQ =

g2s
32π2

CQG
a
µνG̃

aµν , (3.22)

where CQ is a constant determined by the model charge assignment. This implies that the La-
grangian density must be transformed according to (3.21) as

δL =
g2s

32π2
CQG

a
µνG̃

aµν . (3.23)

Then, the low energy effective Lagrangian density can be written as:

LLow
eff = −1

4
Ga

µνG
aµν +

1

2
∂µa∂

µa+
g2s

32π2

a

fa
Ga

µνG̃
aµν + θ̄

g2s
32π2

Ga
µνG̃

aµν + . . . , (3.24)

where the ellipses correspond to possible terms containing derivatives of a, and fa := η
CQ

is called
axion decay constant. The eq. (3.24) shows that the observable parameter θ̄eff is determined by
the value of the axion field: θ̄eff := a

fa
+ θ̄.

If there is no term that violates the CP except for the term proportional to θ̄eff, the effective
potential for the axion field is minimized by θ̄eff = 0, and therefore the strong CP problem is solved.
Let’s see that this proposal is appropriate.

The effective potential V (a) for the axion field is obtained by integrating the gluon field into
the path integral in Euclidean spacetime:

exp

{
−
∫
d4xV (a)

}
=

∣∣∣∣∫ DA exp

{
−
∫
d4x

[
1

4
GaµνG

µν
a − i

g2s
32π2

a+ θ̄fa
fa

Ga
µνG̃

aµν

]}∣∣∣∣ ,
(3.25)

where we have ignored the kinetic energy of the axion field. Using the Schwarz inequality 9, we
find that

exp

{
−
∫
d4xV (a)

}
≤
∫

DA
∣∣∣∣exp{−∫ d4x

[
1

4
GaµνG

µν
a − i

g2s
32π2

a+ θ̄fa
fa

Ga
µνG̃

aµν

]}∣∣∣∣
=

∫
DA exp

{
−
∫
d4x

1

4
GaµνG

µν
a

}
= exp

{
−
∫
d4xV (a = −θ̄fa)

}
.

(3.26)
9
∣∣∫ d4xf

∣∣ ≤ ∫ d4x |f |.
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Therefore,
∫
d4xV (a) ≥

∫
d4xV (a = −θ̄fa). We dynamically deduce that the value of θ̄eff =

⟨a⟩
fa

+ θ̄ = 0 is a minimum of the effective potential for the axion field, where ⟨a⟩ the VEV of the
axion field. The excitations around this void are known as axions. Furthermore, since the potential
is generated by integrating the gluon field, the height of the potential is given approximately by the
QCD scale ∼ Λ4

QCD.
In short, spontaneous symmetry breaking will give rise to Goldstone bosons called axions.

Since U(1)PQ is axial, it exhibits a triangular anomaly leading to a coupling of the axion field with
Ga

µνG̃
aµν , as indicated in [34][44]:

La =

(
a

fa
+ θ̄

)
1

32π2
Ga

µνG̃
aµν . (3.27)

This, in turn, generates mass for the axion; more importantly, it transforms the quantity θ̄ into a
dynamic quantity that depends on the axion field. The potential due to non-perturbative dynamics
induces a vacuum expectation value for the axion such that θ̄ ≈ 0 [44].

We have written both the term θ and the axion coupling to demonstrate a simple trick that
shows how the axion is coupled. As can be seen in this interaction, the axion follows an anomalous
symmetry:

a→ a+ αfa, θ̄ → θ̄ − α . (3.28)

This symmetry dictates how the axion can attach to particles. For example, any non-derivative
axion interaction can be obtained by noting that where we have a coupling θ, we can replace it with
θ+a/fa. Derivative couplings are more complicated because ∂θ = 0, so they are not accompanied
by a corresponding coupling of θ. QCD axion UV terminations will occasionally generate other
couplings [44]:

Lint =
a

fB

1

32π2
BµνB̃

µν +
a

fW

1

32π2
W a

µνW̃
aµν . (3.29)

Axions with these additional couplings are still called a QCD axion as long as the axion still has
the coupling shown in Eq. (3.27). Due to the anomalous symmetry structure of the axion and the
topological nature of the θ spurion, these couplings must be there initially, or they are not generated
by evolution with RG.

The purpose of introducing the axion was to solve the Strong CP Problem, so we will see how the
axion sets the electric dipole moment (neutron EDM) to zero. Using low-order chiral perturbation
theory for the pion and neutron presented in [110], we can shown that [44]:

dN ∝ ⟨a⟩
fa

+ θ̄ = 0 . (3.30)

Therefore, once the axion relaxes to the minimum of its potential, it dynamically sets the electric
dipole moment of the neutron to zero. As stated, the QCD axion solves the Strong CP Problem,
since the entire CP breakdown in QCD is dictated by the θ̄ spurion. An important fact is that, once
all quark generations are included, the CKM matrix has a CP violation phase that can break CP
and shift the axion potential away from having the electric dipole moment of the neutron equal to
zero. This effect is estimated to have a size of ⟨a⟩

fa
+ θ̄ ∼ 10−18 − 10−20 [111].
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3.2.3 The axion quality problem
The Axion Quality Problem arises because, despite the existence of a well-defined anomalous sym-
metry associated with the axion couplings, as shown in Eq. (3.27), there is no proper symmetry
linked to this. This lack of appropriate symmetry properties gives rise to two problems, which
together are called the Axion Quality Problem [112] [113]:

1. Quantum gravity is postulated to violate all ungauged symmetries [114]. Thus, even if
anomalous symmetry is imposed, gravitational effects will break it, resulting in the axion
acquiring a separate mass term. This prevents the axion from centering around a zero EDM
of the neutron, thus reintroducing the problem.

2. Effective Field Theories (EFTs) are constructed by specifying the particle and symmetry con-
tent of the problem [115], and then writing out each coupling allowed by the symmetry. Due
to the lack of symmetry properties of the axion, it is not possible to form the axion coupling
in Eq. (3.27) without also including several other couplings.

There are various ways to approach the Axion Quality Problem, broadly classified into theories
where U(1)PQ is an accidental symmetry, theories where U(1)PQ comes from gauge symmetries in
5 dimensions, and examples from string theory [116]. However, none of these approaches comes
close to the elegance of axion EFT. The complexity of the models required to justify elegant EFT
often goes unnoticed in discussions of the axion.

3.3 Variations of the Axion of QCD and ALPs
The QCD axion EFT stands out for its elegance and simplicity. Their coupling to gluons and their
mass are intrinsically linked, while couplings to fermions and photons depend on the model in
question. As the exploration of diverse frontiers has gained momentum, two fundamental variations
of the QCD axion have been investigated.

In the first variation, couplings to fermions and photons are observed that are considerably larger
than anticipated. The second case breaks the mass-neutron coupling relationship. The QCD axion
coupling to fermions, fQ, and photons, gaγγ , can be much larger or smaller than fa:

gaγγa

4
FµνF̃

µν ,
∂µa

fQ
Q†σµQ . (3.31)

Making fQ significantly smaller than fa turns out to be an arduous task, since the evolution of
the renormalization network (RG) tends to bring fQ a within a loop factor of fa [44]. Similarly,
reducing gaγγ drastically below 1

fa
is complicated due to the mixing with pions that couples the

axion to the photons [117] [111].

gaγγ ∝ α

2π

(
1

fUV
− 1.92(4)

fa

)
, (3.32)

where fUV is the model-dependent coupling, and the second term comes from QCD. Photon cou-
plings parametrically smaller than fa are only achievable if the two terms cancel. This cancellation
occurs accidentally in some GUTs where fUV = fa

2
[118] and can happen if the Casimirs of the UV

quarks are chosen to give fUV ∼ fa
1.92

[119] [120]. There is no known way to get gaγγ parametrically
small without fine-tuning.
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3.3.1 Axion-Like Particles
Unless complex models are accepted, the relation gaγγ ∼ 1

fa
is valid for the QCD axion. As a

consequence, mass and photon coupling, which are the most accessible of the axion couplings to
investigate, are interrelated. Through this coupling, numerous experiments have been dedicated to
the search for the QCD axion, although gaγγ is completely decoupled from Strong CP problem.
The main reason for this search lies in the possibility of finding various particles that present the ef-
fective coupling of a scalar particle with two photons. These particles emerge in various extensions
of the standard model and are called Axions-Like Particles (ALPs).

ALP-fermion couplings have some model dependence, since they depend on the U(1) charge
assignments for the fermions, in [121] you can find a description of what the general expectations
are for these couplings in theories with several fields of axions. and an underlying GUT. While
coupling with photons is generally present in ALP models, therefore, we will say that ALPs are
particles that have the Lagrangian density expressed as:

LALP =
1

2
∂µa∂

µa+
1

2
m2

aa
2 − gaγγ

a

4
FµνF̃

µν (3.33)

The mass of these particles may or may not come from the confinement of another gauge group. Due
to the absence of coupling to gluons 10, mass and coupling to photons are completely independent
of each other. There are motivations from string theory that suggest why these new particles may
exist [123].

3.4 ALPs and Axions as Dark Matter
One of the attractive features of the axion is that it can also be dark matter, thus simultaneously
addressing two fundamental problems [7] [8]. The abundance of axions as dark matter can originate
from both the misalignment mechanism and topological defects. In this section, we will explore
the properties of axions and ALPs in the context of their possible role as dark matter.

3.4.1 Production of Axions and ALPs
Axions and ALPs are stable particles and their interactions with ordinary matter are strongly sup-
pressed. Consequently, if the relic abundance of these axions matches the current abundance of dark
matter, there is a possibility of explaining the presence of dark matter in the universe through these
axions. To assess whether axions can adequately explain the current abundance of dark matter, it
is necessary to closely examine the mechanisms that govern their production in the early stages of
the universe.

The cosmological scenario is different between the case where inflation occurred after the PQ
phase transition (scenario I) and the case where inflation occurred before the PQ phase transition
(scenario II). For scenario I, the quantum fluctuations of the axion field generated in the inflationary
stage impose a constraint on some model parameters. On the other hand, for scenario II, we must
take into account the evolution of topological defects such as strings and domain walls. Since these

10For light axions, since there are models in which heavy axions are expected and their coupling with gluons may
be present [122].
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topological defects produce an additional population of axions, the composition of the axion dark
matter is different for each of the scenarios. In this section, we mainly consider the cosmological
aspects of axions produced by distinct mechanisms.

Thermal production: Freeze-out

If the temperature of the primordial plasma is high enough, axions are generated from the thermal
bath of the Quantum Chromodynamics (QCD) plasma. Thermal axion production is modeled using
the standard freeze-out scenario [124] [125]. The thermal axion number density nth

a follows the
Boltzmann equation

dnth
a

dt
+ 3Hnth

a = Γ(neq
a − nth

a ), (3.34)

where Γ =
∑

i ni⟨σiv⟩ is the interaction rate, ni is the number density of species i, ⟨σiv⟩ is the ther-
mal cross section average, and H is the Hubble parameter defined in (A.7). neq

a is the equilibrium
number density of axions, obtained using the Bose-Einstein distribution [125]

neq
a =

ζ(3)

π2
T 3, (3.35)

where ζ(3) = 1.20206... and g = 1 has been used for axions. Choosing a normalization Y ≡ nth
a /s,

where s is the entropy density:

s =
2π2

45g∗s
T 3 . (3.36)

The Eq. (3.34) can be written as

x
dY

dx
= ΓH(Yeq − Y ) , (3.37)

where x = fa
T

and Yeq = neq
a

s
≈ 0.27

g∗
. In these equations, the approximation gs∗ ≈ g∗ constant has

been used, for simplicity.
The thermal mean interaction rate Γ is calculated in [125] and includes three elementary pro-

cesses:

1. a+ g ↔ q + q̄,

2. a+ q ↔ g + q and a+ q̄ ↔ g + q̄,

3. a+ g ↔ g + g,

here g is a gluon and q(q̄) is a light quark (anti-quark). The result of the analysis in [125] is

Γ ≈ 7.1× 10−6T
3

f 2
a

. (3.38)

Since H ∝ T 2, the following quantity turns out to be constant

k ≡ x
Γ

H
. (3.39)
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Let’s define the quantity y ≡ Y/Yeq, and we reduce the eq. (3.37) to

x2
dy

dx
= k(1− y) , (3.40)

which has a solution
y(x) = 1− Cek/x , (3.41)

whereC is a constant of integration. The axions decouple from the QCD plasma at x = k (Γ = H).
After this, the number of axions becomes almost constant. The temperature at decoupling TD is
obtained from the condition x = k, which gives

TD = 2× 1011 GeV
(

fa
1012 GeV

)2

. (3.42)

The relic abundance of axions depends on the thermal history of the universe. For simplicity, let
us assume that the PQ symmetry is broken after inflation if TR > fa, where TR is the heating
temperature after inflation.

We can consider the following possibilities: (i) TR > fa > TD, (ii) TR > TD > fa, (iii)
TD > TR > fa, (iv) TD > fa > TR, (v) fa > TD > TR, (vi) fa > TR > TD. The Eq. (3.41) is
rewritten as:

y(x) = 1− ek(1/x−1) , (3.43)

where the initial condition y(x = 1) = 0 can be imposed so that axions do not exist at T = fa. We
require that the deviation of the thermal spectrum at the time of decoupling be less than 5%.

YD
Yeq

= y(x = k) = 1− ek(1/k−1) > 0.95 , (3.44)

where YD is the value of Y at decoupling. We obtain:

k =
fa
T

Γ

H
> 5.0×

(
1012GeV

fa

)
> 4 . (3.45)

This corresponds to the condition [126]

fa < 1.2× 1012GeV . (3.46)

In other words, if Eq. (3.46) is satisfied, the axions enter thermal equilibrium before decoupling
from the plasma. On the other hand, for cases (ii) and (iii), the axions never enter thermal equilib-
rium [125].

Since the PQ symmetry is broken before inflation for cases (iv), (v), and (vi), we must use
a different initial condition than the one used in (i). Choosing the initial condition y(x) = 0 at
T = TR. This leads to the solution:

y(x) = 1− ek(1/x−1/xR) , (3.47)

with xR ≡ fa/TR. For cases (iv) and (v), the axions never enter thermal equilibrium, and we obtain:

y(∞) = 1− e−k/xR , (3.48)
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where k/xR = TR/TD < 1. On the other hand, for case (vi), the axions could enter thermal
equilibrium, but the condition for thermalization (3.45) is replaced by:

k

xR
=
TR
TD

> 4 . (3.49)

The relic abundance of thermal axions for case (i) or (vi) is:

nth
a (t0) = Yeqs0 = 0.27g∗(TD)s0 = 7.8 cm−3(100g∗(TD)) , (3.50)

Where s0 is the entropy density at present, and g∗(TD) is the number of radiative degrees of freedom
at the time of decoupling. The present density of thermal axions is:

Ωa,thh
2 =

mantha(t0)

ρc,0/h2
= 4.44× 10−9 100g∗(TD)

(1012GeV/fa)
, (3.51)

Here, ρc,0 is the current critical density. The population of thermal axions is too small to explain
dark matter for the typical value of the decay constant fa ∼ 109−1012 GeV [127] [128]. Therefore,
other mechanisms are proposed.

Non-Thermal Production: Misalignment

The nonthermal production of axions is estimated by investigating the evolution of the background
field. Let us consider the theory with the complex scalar field Φ (the PQ field) whose Lagrangian
density is given by

L = −1

2
|∂µΦ|2 − V (Φ) , (3.52)

where the potential V (Φ) is defined by the equation (3.16). When U(1)PQ breaks spontaneously,
the axion field a(x) is identified as the phase direction of the complex scalar field Φ such that

Φ = ηeia(x)/η. (3.53)

The evolution of the axion field in the expanding FRW Universe (see A.1) is governed by the equa-
tion [129]

ä(x) + 3Hȧ(x)− ∇2

R2(t)
a(x) +

dV (a)

da
= 0, (3.54)

where F (t) is the scale factor of the universe. Substituting the effective potential for the axion field
into V (a) = VQCD(a) + Vgrav(a), where [130]

VQCD(a) = m2
af

2
a

(
1− cos

(
a

fa

))
, (3.55)

while Vgrav(a) is the unknown gravitational contribution, and is considered negligible [131]. As-
suming that a is small compared to fa, we obtain

ä(x) + 3Hȧ(x)− ∇2

R2(t)
a(x) +m2

aa(x) = 0 . (3.56)
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We define the time t1 in which the condition is satisfied

ma(T1) = 3H(t1) . (3.57)

where T1 is the temperature at time t1, and H(t1) is the Hubble parameter at that time.
Some years ago, Wantz and Shellard [132] presented the temperature dependence ofma, which

is valid at all temperatures within the interacting instanton liquid model [133]. Using this depen-
dence, it can be argued, by observing the comparative scale of the Hubble parameter concerning
mass and time t1, that each mode that is outside the horizon up to t ≈ t1 is frozen, as shows in
ã(t,k) = C1(k) + C2(k)t

−1/2 11. When the axion mass term becomes non-negligible t > t1, they
begin to oscillate with a frequency ma. We call these modes zero modes and denote them as a0.
The evolution of a0 is described by the equation ä0 + 3Hȧ0 +m2

aaa0 = 0.

Misalignment: ALP Dark Matter

In a Friedmann-Robertson-Walker (FRW) universe, the equation of motion for ALP dark matter is
described by [44]

ä+ 3Hȧ+m2
aa = 0 . (3.58)

It is generally considered a radiation-dominated universe where H = 1/(2t). We assume that the
axion has an initial field value a = a0. In the early universe, Eq.(3.58) describes an overdamped
harmonic oscillator, and we approximate it as

a = a0 , H ≫ ma . (3.59)

In the late universe, Eq.(3.58) describes an underdamped harmonic oscillator. Using the WKB
approximation, we find that in the distant future,

a =

(
R(H = ma)

R(t)

)3/2

A0 cos(mat) , H ≪ ma , (3.60)

whereR is the scale factor. When estimating the numerical abundance of ALPs, we apply Eq.(3.59)
and Eq. (3.60) when 3H > ma and 3H < ma, respectively, ignoring the regime crossing. Using
these approximations, we have A0 ≈ a0.

It is notable that at late times, the axion behaves as cold non-relativistic matter, and its energy
density decreases by

ρ(t) = ρ(H = ma)

(
R(H = ma)

R(t)

)3

. (3.61)

Furthermore, its energy is found through the Fourier transformation to be equal to its mass. Thus,
we have a production mechanism for cold dark matter (CDM) that works even when the particle
is much lighter than the keV scale. This is an impressive achievement since generally, dark matter
with a mass below one keV behaves like hot dark matter.

The energy density of the Standard Model (SM) and the ALP when the ALP begins to behave
like CDM is

ρSM ∼ H2M2
p ∼ m2

aM
2
p , ρa ∼ m2

aa
2
0 . (3.62)

11What is the axion field in Fourier space.

46



3.4. ALPS AND AXIONS AS DARK MATTER 47

Here Mp is the Planck mass scale. Requiring the ALP to represent all dark matter (ρDM ∼ T 3eV)
results in

a20 ∼
eVM

3/2
p

m
1/2
a

. (3.63)

As long as the initial value of ALP satisfies this condition, it will constitute all dark matter. Impor-
tantly, this is a simplification, as misalignment is also present when PQ symmetry is restored. In this
case, the initial angle is random and can be averaged over all Hubble patches. The inhomogeneity
in the axion initial angle leads to a different phenomenology.

Misalignment: Axion Dark Matter

The density estimate for axion dark matter is very similar to that of ALP DM but with one critical
difference. The mass of the axion changes with time [132]. As a result, it is necessary to be careful
about the lack of energy conservation.

The mass of the axion comes from thermal instantons [107], and through dimensional analysis,
it is established 12 [44]

V ∼ mumdmsTe
−8π2/g23(T ) cos

(
a

fa
+ θ

)
∼ mumdmsΛ

9T 8 cos

(
a

fa
+ θ

)
. (3.64)

As a result, the temperature dependence of the axion is

ma(T )
2 ∼ mumdmsf

2
aΛ

9T 8

f 2
a

. (3.65)

Finally, before beginning to establish the DM abundance of the axion, we roughly specify the initial
conditions for the axion. We take a0 = θ0fa. Because the axion is a periodic field, we work with
the misalignment angle θ0. The generic assumption people make is that θ0 ∼ O(1), simply due to
our affinity for numbers O(1). In some cases, the initial angle can be estimated in an inflationary
context. Inflation will cause the expected value of the axion to change by about an amount ∼ H
each Hubble time in the form of a random walk. This leads to inflation populating every value of
θ0. Depending on how the measurement problem is approached, this may even lead to predictions
for the value of θ0.

Another effect of inflation that changes the expected value of the axion is the existence of in-
homogeneities between various Hubble patches. As a result, different Hubble patches will have
different dark matter densities, leading to well-known isocurvature constraints if H/fa is not small
enough [134] [135].

The equations of motion for the axion are

ä+ 3Hȧ+m2
a(T )a = 0. (3.66)

Comparing the energy densities of axion and dark matter at T ∼ ΛQCD ∼ 100 MeV, where conser-
vation of energy in axions becomes a good approach:

ρa ∼ θ20Λ
4
QCD

ma(Tc)

ma

ΛQCD

T 3
c

∼ θ20Λ
4
QCD

faΛQCD

TcMp

∼ ρDM ∼ eV Λ3
QCD, (3.67)

12We are interested in the mass of the axion around temperatures between 100MeV and 1GeV, since in this range
the QCD acts like the three-flavor QCD
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where we have used m2
af

2
a ∼ Λ4

QCD. Solving the equation (3.67), we find that Tc ∼ GeV and
fa ∼ 1011 GeV [44].

The misalignment mechanism operates when thePQ symmetry is broken during inflation and is
never restored after inflation. Inflation results in the same initial conditions being seen everywhere.
The topological mechanism operates when the PQ symmetry is restored either during inflation or
after inflation [136] [137] [138] and we will not talk about it since to talk about the production
mechanisms is to motivate Axions and ALPs as dark matter.

3.4.2 Axion/ALPs couplings with photons
The interactions of the invisible axion with other particles have already been discussed previously
and discussed in detail in [119]. The terminology surrounding axions can be slightly confusing in
the extensive literature; Therefore, we clarify:

• QCD Axion: Solve the strong CP problem.

• ALP: Does not solve the strong CP problem.

• Axion: Must be determined by context. If the reader encounters the word ”axion,” he or she
must discern from the context whether it solves the strong CP problem.

Therefore, we will use the word “axion” to refer to both the QCD Axion and an ALP. We understand
axions to be the hypothetical light bosons (sub-eV) predicted in some extensions of the standard
model of particle physics. One of the most interesting couplings for axion detection [139][140]
[141] [142] is its effective coupling with two photons. In astrophysical environments composed
of high-energy gamma rays and turbulent magnetic fields, the existence of ALPs can modify the
energy spectrum of gamma rays for sufficiently large coupling between axions and photons. This
modification would result in an irregular behavior of the energy spectrum in a limited range.

Axions interact with photons due to effective coupling

Laγγ = −1

4
gaγγaFµνF̃

µν , (3.68)

where Fµν is the field tensor of the photon and F̃ µν = 1
2
= ϵµν rhoσFρσ is its dual, with ϵ0123 = +1

and gaγγ is coupling constant. The axion-photon coupling is parameterized by 13

gaγγ =
α

2πfa
caγγ , (3.69)

where α = e2

4π
is the fine structure constant. The numerical coefficient caγγ is defined as

caγγ :=
E

CQ

− 2

3

(
4 + Z

1 + Z

)
, (3.70)

with CQ being the color anomaly, as presented in equation (3.22), and E being the electromagnetic
anomaly. In the KSVZ model, E

CQ
= 0, while in the DFSZ model, E

CQ
depends on the charge

13For the QCD axion
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assignment of the leptons [143]. Here Z = mu

md
≈ 0.48 is the ratio between the up quark mass and

the down quark mass [6].
Due to coupling with photons, the axion can decay into two photons with a decay width (see

B.2)

Γγ =
g2aγγm

3
a

64π
=

α2

256π3c2aγγ
m3

a

(
fa

2.2× 1012 GeV

)5

, (3.71)

where we have used the equation ma ≈ 6 × 10−6 eV
(

1012 GeV
fa

)
and caγγ = 1 for simplicity. The

axion half-life exceeds the age of the Universe, t0 ≈ 1017 sec, for fa ≲ 105 GeV. Therefore,
the invisible axion is practically stable, which motivates us to consider it as the dark matter of the
Universe.

The interesting thing about this coupling is that in astrophysics extraordinary conditions more
favorable for the interaction between axons and photons could arise, and their traces could become
visible. There are three types of imprints of this type.

• The two-photon coupling described in Equation (15.54) allows stars like our Sun to produce
axions by transforming a photon into an axion. The solar flux of axions can be searched
directly by the inverse process that transforms an axion into a photon. A strong magnetic field
B can stimulate axion → photon conversion, where the virtual photon affects the interaction
with an inhomogeneous magnetic field in a cavity. Available microwave technology allows
for impressive experimental sensitivity.

• There may also be indirect astrophysical signatures, as axion emission entails a loss of en-
ergy and thus provides a cooling mechanism in stellar evolution. Not surprisingly, its greatest
impact comes in the lives of red giants and supernovae, such as SN 1987a. The actual limits
depend on the model, whether a KSVZ or DFSZ axion, but relatively moderately. In sum-
mary, astrophysics tells us that if axions exist, we have [144]:

ma < 10−2eV . (3.72)

Various bounds for axion parameters have been established in recent years.

Mass Range ma[eV] Upper limit of gaγγ[GeV−1] Observation
15× 10−9 < ma < 60× 10−9 < 2.1× 10−11 PKS 2155-304 [145]
5× 10−10 < ma < 5× 10−9 < 5× 10−12 NGC 1275 [146]

ma < 10−13 < 2.6× 10−12 M87 [147]
0.6× 10−9 < ma < 4× 10−9 < 10−11 PKS 2155-304 [148]
5× 10−10 < ma < 5× 10−7 (2× 10−11 − 6× 10−11) Mrk 421 [149]
1× 10−8 < ma < 2× 10−7 < 3× 10−11 Mrk 421 [150]

ma < 1× 10−12 (6− 8)× 10−13 NGC 1275 [151]

Table 3.1: Upper limits of gaγγ for different ranges of ma.

The limit that we find interesting to analyze is gaγγ < 0.66 × 10−10 GeV−1 for ma < 0.02 eV
at the 2σ level [152]. Coincidentally, exactly the same limit has been deduced from the analysis of
some particular stars in globular clusters [153].
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Chapter 4
Generalized Compton scattering
“The only laws of matter are those that our minds must fabricate and the only laws of mind are
fabricated for it by matter.”
—James C. Maxwell

In this chapter, we will be using conventional units due to the interest of the topic in astrophysics.

A noteworthy situation to consider in nature is the passage of a particle in a photon gas such that
the particle can scatter photons. In the most general case, we have a gas of photons with differential
number density

dn = n(ϵ, iΩ)dϵdΩ , (4.1)

which is the number of photons per unit volume with energies within dϵ, moving in the direction
defined by the unit vector iΩ and the solid angle element dΩ. In the most general case, we can
consider the distribution of scattering particles dns = ns(ϵ1, iΩs)dEsdΩs passing through a gas
of photons and we wonder: what is the total spectrum of “Compton photons” scattered per unit
volume and time dN1/dtdV dϵ1dΩ1?

We will focus on trying to solve this problem with a series of simplifications that result in certain
limiting cases that correspond to conditions in some astrophysics problems 1. The simplifications
we will make are listed below, where we work in the reference system where the scattering particle
rests.

• (Low energy) The photon energy before scattering in the reference frame where the electrons
are at rest must be ϵ′ ≪ msc

2 2.

• (High energy) The photon energy before scattering in the reference frame where the electrons
are at rest must be ϵ′ ≫ msc

2 3.

In the usual Compton scattering process, an electron e− is considered at rest and free (it could
even be inside some metal but weakly bound). Then, a radiation beam is incident upon it, and a
scattering process occurs, which must be considered as an inelastic collision 4 between a photon
and the electron to explain the experimental results. We can generalize this situation by considering
that the scattering particle of mass ms is not necessarily at rest.
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γ(k)

γ(k′)
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e−(p′)
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e−(p′S′)

θ′1

θ′

(b)

Figure 4.1: Pictorial representation of Compton scattering with electrons: (a) Laboratory reference
frame, (b) Reference frame where the electron is at rest.

4.1 Relativistic kinematics of Compton scattering
Consider the collision between a photon and a particle of mass ms with which it can interact (for
example, an electron). We have the following 4-momenta before the collision in the reference frame,
which we will call

pµ = γms(c,v) , (4.2)

kµ =
ϵ

c
(1, ik) , (4.3)

where ik indicates the direction of propagation of the incident photon and γ = (1− β2)−1/2 with
β = v

c
, such that |v| = v. After the collision, we have the following 4-momenta in the reference

system of the laboratory

p′µ = γ′mp(c,v
′) , (4.4)

k′µ =
ϵ1
c
(1, ik′) , (4.5)

where ik′ indicates the direction of propagation of the scattered photon and γ′ = (1 − β′2)−1/2

with β′ = v′

c
, such that |v′| = v′. From the conservation of 4-momentum and using the dispersion

relations p2 = p′2 = m2
sc

2 (for the particle of mass mp) and k2 = k′2 = 0 (for the photon)

p · k′ + k · k′ = p · k . (4.6)

With this equation, we can establish a relationship between the energy of the scattered photon and
the energy of the incident photon. To do this, we note that the scalar products of the involved

1When the particles that scatter photons are electrons, for example.
2This is in agreement with the Thomson limit established with electrons, in which the scattering cross-section is

independent of the energy of the incident photon.
3When the scattering particle is an electron, this condition is known as the Klein-Nishina extreme limit.
4In an elastic collision the total kinetic energy of the system is conserved and there is no energy loss, while in an

inelastic collision such as Compton scattering, there is energy loss and the total kinetic energy of the system is not
conserved.
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4-momenta are

p · k′ = pµk
′µ = γmsϵ1

(
1− v

c
· ik′

)
, (4.7)

k · k′ = kµk
′µ =

(ϵ
c

)(ϵ1
c

)
(1− ik · ik′) , (4.8)

p · k = pµk
µ = γmsϵ

(
1− v

c
· ik
)
. (4.9)

We define the dispersion angle Θ by the relation ik · ik′ = cosΘ = cos(θ1 − θ), that is, the angle
is measured with respect to the direction of the incident photon. Furthermore, we can define the
following angles (see Fig. 4.1(a), which illustrates photon-electron scattering).

v · ik′ = v cos θ1 , (4.10)
v · ik = v cos θ . (4.11)

So the equation (4.6) is written as

γmsϵ1

(
1− v

c
cos θ1

)
+
(ϵ
c

)(ϵ1
c

)
(1− cos(θ1 − θ)) = γmsϵ

(
1− v

c
cos θ

)
. (4.12)

Then the energy of the scattered photon is (with β = v
c
)

ϵ1 =
ϵ(1− β cos θ)[

(1− β cos θ1) +
(

ϵ
γmsc2

)
(1− cos(θ1 − θ))

] . (4.13)

Note that the expression (4.13) is valid even when v = 0, which implies that γ = 1. In such a case,
θ1 − θ → θ′1 − θ′ is the scattering angle, resulting in ms = me (electron mass).

ϵ′1 =
ϵ′[

1 +
(

ϵ′

mec2

)
(1− cos(θ′1 − θ′))

] . (4.14)

In this situation, we work in the reference frame S ′ where the electron is at rest, therefore ϵ1 → ϵ′1
and ϵ→ ϵ′.

Taking into account that this process is carried out in a vacuum, the relations λ′ν ′ = c (ϵ′1 =
hν ′1) and λ′1ν ′1 = c (ϵ′ = hν ′) are fulfilled, in addition, θ′1 − θ′ → θ′ 5, so we can write

λ′ − λ =
h

mec
(1− cos θ′1) , (4.15)

which is the usually known formula for the Compton scattering by an electron at rest.
Usually, the Compton wavelength is defined for the electron as λc := h

mec
. An important fact

to note is that this Compton wavelength must be comparable to or greater than the wavelength of
the incident photon for this type of scattering to be observed in the reference system S ′ 6. If this
condition is not met, the electron simply acts as a radiator that scatters the incoming radiation. This
type of scattering is known as Thomson scattering.

5Without loss of generality, we can set the angle of incidence of the photon to θ′ = 0.
6For example, for x-ray λ = (0.01− 10) nm, we have ∆λ

λ ∼ λc

λ ∼ (2.4× 10−4 − 0.24).
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Then we observe that this effect happens if ϵ′ > mec
2, a process in which the radiation is ”cooled”

by transferring the energy of the photon to the electron, resulting in ϵ′ < ϵ′1.
In general, the expression (4.13) shows how we can exchange energy between a scattering par-

ticle and a radiation field (photons). Let us consider the case in which ϵ≪ γmsc
2 has a relativistic

scattering particle and a low-energy photon. Under these conditions

ϵ1
ϵ
=

1− β cos θ

1− β cos θ1
, (4.16)

or equivalently

ϵ1 − ϵ

ϵ
= β

[
cos θ − cos θ1
1− β cos θ1

]
= β(cos θ − cos θ1)(1 + β cos θ1 + (β cos θ1)

2 + · · · ) . (4.17)

To first order, the frequency changes go like β, however, if the angles θ and θ1 are distributed
randomly, a photon can gain energy, this process is called Inverse Compton Scattering (ICS).

4.2 Relationship between the Laboratory frame and the scat-
tering particle´s rest frame

We will explore how measurements in the laboratory reference system (S) are related to the refer-
ence system where the scattering particle (with mass ms) is at rest (S ′). To do this, let’s assume
that in S, this particle moves along the x-axis, and consider that in S ′, we have ϵ1 → ϵ′1 and ϵ→ ϵ′.
The equation (4.14) can then be written as

ϵ′1 =
ϵ′[

1 +
(

ϵ′

msc2

)
(1− cos(θ′1 − θ′))

] . (4.18)

Since in the reference frame S, the scattering particle moves with speed v = vêx, and in the ref-
erence frame S ′ it is at rest. The components of a 4-vector qµ are related by a Lorentz boost as
follows 

q0S′

q1S′

q2S′

q3S′

 =


γ −βγ 0 0

−βγ γ 0 0
0 0 1 0
0 0 0 1



q0S
q1S
q2S
q3S

 . (4.19)

In particular, to analyze dispersion, we can examine the x − y spatial plane and the 4-momenta
kµ = ϵ

c
(1, cos θ, sin θ, 0) and kµS′ = ϵ′

c
(1, cos θ′, sin θ′, 0). In this way, we obtain the equations:

ϵ′ = γϵ(1− β cos θ) , (4.20)
ϵ′ cos θ′ = γϵ(−β + cos θ) , (4.21)
ϵ′ sin θ′ = ϵ sin θ . (4.22)

The last two equations indicate that the incident angle θ′ at S ′ is determined by

tan θ′ =
sin θ

γ(cos θ − β)
. (4.23)
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4.2.1 Ultrarelativistic scatterers
If we consider very relativistic scattering particles, that is, γ ≫ 1, we have the following approxi-
mation for the value of β (which tends to 1).

γ =
1√

1− β2
⇒ γ2 =

1

(1− β)(1 + β)
≈ 1

2

1

1− β
, (4.24)

of the above β ≈ 1− 1
2
γ−2. Furthermore, if θ′ is very small, β ≈ 1, then

tan θ′ ≈ −γ−1 cot

(
θ

2

)
. (4.25)

This last equation indicates that for ultrarelativistic particles, upon passing into the system at rest,
the scattering particle “sees” the photons incident on it in the opposite direction to its movement,
forming a semi-aperture cone ∼ 1/γ.

For the extreme cases we have

• θ = 0, we have that the incident photon energy is such that

ϵ′ = γϵ(1− β) ≈ γϵ

(
1

2
γ−2

)
= ϵ/2γ . (4.26)

• θ = π, the energy of the photon incident on S ′ must be

ϵ′ = γϵ(1 + β) ≈ 2γϵ . (4.27)

From the above we establish
ϵ′min = ϵ/2γ , (4.28)
ϵ′max = 2γϵ . (4.29)

We note that photons with θ = 0 produce a small recoil and are of little relevance, while the most
relevant are those for which θ = π, which are those of frontal “collision”. Furthermore, in the
system S ′ (this implies that tan θ′ ≈ 0 and in turn θ′ → π − θ′ ≈ 0, see Fig. 4.2).

ϵ′1 =
ϵ′

1 + ( ϵ′

msc2
)(1− cos θ′1)

. (4.30)

In a similar way to that used in subsection 1.2.2 we can establish the relationship of the 4-vectors
between the reference systems S and S ′ by means of a Lorentz boost.

q0S
q1S
q2S
q3S

 =


γ βγ 0 0
βγ γ 0 0
0 0 1 0
0 0 0 1



q0S′

q1S′

q2S′

q3S′

 . (4.31)

When taking into account the observation of what the collision looks like, θ′ → π−θ′1, to maintain
the measurement in the reference system angle of the particle.

The 4-momenta k′µ = ϵ1
c
(1, cos θ1, sin θ1, 0) and k′µS′ =

ϵ′1
c
(1, cos(π− θ′1), sin(π− θ′1), 0) (see

Fig.4.2).
ϵ1 = γϵ′1(1 + β cos(π − θ′1)) ≈ γϵ′1(1− β cos θ′1) . (4.32)
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e−(pS′)

e−(p′S′)

π − θ′1

θ′1

Figure 4.2: Pictorial representation of Compton scattering with ultrarelativistic electrons in the
electron rest frame, corresponding to a head-on collision in the laboratory frame.

About the Thomson limit and the Klein-Nishina extreme limit

From the equation (4.32) we can analyze what happens with the Thomson limit, in which ϵ′ ≪ mc2,
which implies that ϵ′1 ≈ ϵ′, which implies that the scattering particle is given a very small recoil in
the scattering.

In the Laboratory reference system ϵ1max ≈ 2γϵ′1max according to the eq.(4.32), and using the
result determined in (4.29)

ϵ1max ≈ 4γ2ϵ . (4.33)

This maximum corresponds to a head-on collision of the electron and the photon, however, the
energy of the scattered photon remains small compared to the energy of the electron, so the electron
loses little energy. In contrast to the Klein-Nishina limit ϵ′ ≫ mc2, by eq.(4.32)

ϵ1 ≈ γϵ′1(1− β cos θ′1) = γ
ϵ′(1− β cos θ′1)

[1 + (ϵ′/mc2)(1− cos θ′1)]
= γmc2

(1− β cos θ′1)

[(mc2/ϵ′) + (1− cos θ′1)]
,

therefore
ϵ1max ≈ γmc2

1− β cos θ′1
1− cos θ′1

∼ γmc2 . (4.34)

In the following graph, we have a comparison of the maximum energies obtained by the photons
scattered in the Thomson limit and in the extreme Klein-Nishina limit from γ = 1 (β = 0) to γ = 2
(β ≈ 0.86). In summary we have the following

• In the Thomson limit, when the electron enters a photon gas and scatters losing only a small
fraction of energy in each scattering, so there should be many of these.

• In the Klein-Nishina limit, when the electron enters a photon gas and scatters, losing a large
fraction of energy from the first scattering, that is why this case is more relevant.
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Figure 4.3: Maximum energy of the scattered photon in the extreme Klein-Nishina limit
ϵmax(γ,me) vs that found in the Thomson limit ϵTmax(γ, ϵ) in the S system for electron scatter-
ing. For comparison, we use visible light (2.75, eV) and X rays (60, keV). The emitted X rays will
scatter favorably forward, as will photons generated through positron annihilation (511, keV).

4.3 Total Compton spectrum
The process called inverse Compton scattering was introduced in 1947 by Follin as a mechanism for
the energy loss of cosmic ray electrons. It was investigated by Feenberg and Primakoff[154] as well
as by Donahue[155] in this context. This process was proposed as a source of energetic photons by
Savedoff[156] and by Felten and Morrison[157]. Since then, it has received considerable attention
from this perspective.

4.3.1 Energy distribution of photons scattered through Compton scattering
Most calculations of scattered photon spectra were initially made using a fairly simple approxima-
tion: It has been observed that the average energy transferred to a photon in a Compton collision is
proportional to the initial energy of the photon and the square of the energy of the electron. This
square dependence on the electron energy is reminiscent of the synchrotron radiation process. For
this reason, the spectrum of radiated photons for a single electron energy is approximated by a peak
function δ in the average radiated energy. This spectrum is then folded into the electron energy
distribution to produce the resulting photon spectrum. While this method gives satisfactory results
for synchrotron spectra, it is now known that inverse Compton spectra differ enough to raise some
doubts about its applicability in this area. However, it can be shown that in the case of electron
energy distributions following the inverse power law, the method is applicable to both cases despite
their differences.

In 1968, Jones derived exact formulas for the energy distribution of scattered photons for the
case of an electron of energy ε = E/mec

2 (i.e., in units of its rest energy) moving through a region of
space filled with a unit density of isotropically distributed photons with initial energy a = ϵ′/mec

2.
Working under the assumption that the energy distributions of scattering particles (such as Ax-

ions or Axion-Like particles) follow the inverse power law, we will determine the Compton spec-
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trum produced by an energy scattering particle γmsc
2 that scatters into a segment of the initial

photon distribution that has energies within dϵ. The total Compton spectrum would then be ob-
tained by integrating over ϵ and over the energy distribution of the scattering particles.

d2Nγ,ϵ

dtdϵ1
=

∫∫
(ϵ′,Ω′

1)

d5Nγ,ϵ′

dt′dϵ′dΩ′
1dϵ

′
1

dt′

dt

dϵ′dΩ′
1dϵ

′
1

dϵ1
. (4.35)

The results have been derived in detail for the spectrum of Compton scattered photons in the case
of low energies (Thomson limit, in the case of electrons). The derivation in the most general case
that we propose follows exactly the same lines except that the corresponding cross-section must be
used (Klein-Nishina cross-section for electrons).
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Chapter 5
Compton-like Scattering with Axions
“The miracle of the appropriateness of the language of mathematics for the formulation of the laws
of physics is a wonderful gift which we neither understand nor deserve.”
—Eugene Wigner

5.1 Photon-Axion scattering
Due to the existing effective interaction between the Axion with two photons (see Ec. 3.68), it is
possible to have the following scattering process:

γ(k, λ) + a(p) −→ γ(k′, λ′) + a(p′) , (5.1)

which in general terms follows the kinematics of generalized Compton scattering, with axion being
the scattering particle.

γ(k)

γ(k′)

a(p)

a(p′)

θ1

θ

(a)

γ(kS′)

γ(k′S′)

a(pS′)

a(p′S′)

θ′1

θ′

(b)

Figure 5.1: Pictorial image of Compton scattering with axions: (a) Reference frame from the lab-
oratory, (b) Reference frame where the axion is at rest.

5.1.1 Feynman rules in the photon-axion scattering process
i) For a (virtual) internal photon with 4-momentum q the propagator to consider is −igµν

q2
(In

the Lorentz gauge ∂µAµ = 0),

ii) An incoming (outgoing) photon with 4-momentum k and spin polarization λ has a contribu-
tion ϵµ(k, λ) (ϵµ∗(k, λ)),

iii) The absorption or emission of a scalar particle such as the axion contributes a factor equal to
1,
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a(p)

γ(k,λ)

γ

γ(k′,λ′)

a(p′)

igaγϵ
µνρσkµ(kρ + pρ)

− igβσ

(k+p)2

igaγϵ
αβγδ(k′α + p′α)k

′
γ

(a)

a(p)

γ(k,λ)

γ(k′,λ′)

γ

a(p′)

igaγϵ
µνρσkµ(kρ − p′ρ)

− igβσ

(k−p′)2

igaγϵ
αβγδ(k′α − pα)k

′
γ

(b)

Figure 5.2: Effective contributions at tree level in the photon-axion scattering process: (a) s-
channel; the incoming axion and the incoming photon have 4-momentum p and k, respectively,
so the virtual photon has 4-momentum p+ k = p′ + k′, (b) u-channel; the incoming axion and the
incoming photon have 4-momentum p and k, respectively, so the virtual photon has 4-momentum
k − p′ = k′ − p.

iv) Since the Lagrangian density of interaction between a photon and axion takes the form

Laγγ = −1

4
gaγγaFµνFµν = −1

2
gaγγaϵ

µνρσ∂µAν∂ρAσ , (5.2)

Feynman’s rule for the interaction vertex is (c.f. Appendix B.1)

igaγγϵ
µνρσk(1)µ k(2)ρ , (5.3)

where k(1) and k(2) are the 4-momenta of the two photons, while the free indices ν and σ
correspond to photon 1 and 2, respectively.

v) Multiplying the above factors together we get the quantity iM, where M is the Feynman
invariant amplitude. For the case of dispersion, we place the terms from right to left, reading
the diagrams from left to right.

5.1.2 Invariant amplitude and differential cross-section of the scattering pro-
cess

For the s channel following the Feynman rules mentioned above together with the diagram shown
in Fig.5.2(a), we establish:

iMs = (igaγγϵ
αβγδ(k′α + p′α)ϵ

∗
δ(k′, λ′)k′γ)

(
− igβσ
(k + p)2

)
(igaγγϵ

µνρσkµϵν(k, λ)(kρ + pρ)) ,

(5.4)
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where to the right of the propagator we have the first vertex and to the left the second vertex. Taking
into account the antisymmetry of the Levi-Civita symbol ϵαβγδ = −ϵαδγβ , we can use this property
and change the indices β ↔ δ, then

iMs = g2aγγϵ
αβγδ(k′α + p′α)ϵ

∗
β(k′, λ′)k′γ

(
− igδσ
(k + p)2

)
ϵµνρσkµϵν(k, λ)(kρ + pρ) . (5.5)

Using 4-momentum conservation and removing the common factor i, and noting that ϵµνρσkµkρ = 0
(since we contract an antisymmetric “tensor” with a symmetric one), we find that

Ms = − g2aγγ
(k + p)2

(kα + pα)ϵ
∗
β(k′, λ′)k′γϵ

αβγδgδσϵ
µνρσkµϵν(k, λ)pρ . (5.6)

Using the identity ϵαβγδgδσϵµνρσ = −3!δ
[α
µ′δ

β
ν′δ

γ]
ρ′g

µ′µgν
′νgρ

′ρ (to see a demonstration c.f. Appendix
B.3), and using the index changes α → µ, β → ν and γ → ρ, we rewrite

Ms =
3!g2aγγ
(k + p)2

(kµ + pµ)ϵ
∗
ν(k′, λ′)k′ρk

[µϵν(k, λ)pρ] . (5.7)

We develop the previous expression taking antisymmetrization into account, using the Lorentz
gauge (which implies that k · ϵ = kµϵ

µ = 0) and the free particle scattering relations for the photon
and the ALP, respectively; k · k = k2 = 0 and p · p = p2 = m2

a, leading to (k + p)2 = m2
a + 2k · p

(clearly k · p = p · k)

Ms =
g2aγγ

(m2
a + 2k · p)

[
(k · p)(k′ · p)ϵ∗ν(k′, λ′)ϵν(k, λ)− (k · p)k′ρpνϵ∗ν(k′, λ′)ϵµ(k, λ)

+ (m2
a + k · p)k′ρkνϵ∗ν(k′, λ′)ϵρ(k, λ)− (k′ · p)pµkνϵ∗ν(k′, λ′)ϵµ(k, λ)
+(k′ · k)pµpνϵ∗ν(k′, λ′)ϵµ(k, λ)− (m2

a + k · p)(k′ · k)ϵ∗ν(k′, λ′)ϵν(k, λ)
]
,

making the following changes on the dummy indices: in the first and last terms ν → µ, in the
second and third terms; ρ→ ν and ν → µ, in the fourth term ν ↔ µ, we obtain

Ms =
g2aγγ

(m2
a + 2k · p)

{[
(k · p)(k′ · p)− (m2

a + k · p)(k′ · k)
]
ϵ∗µ(k′, λ′)ϵµ(k, λ)

+
[
(m2

a + k · p)kµk′ν − (k′ · p)kµpν − (k · p)pµk′ν + (k′ · k)pµpν
]
ϵ∗µ(k′, λ′)ϵν(k, λ)

}
. (5.8)

On the other hand, we can determine an expression analogous to Ms for the channel u, following
the Feynman rules established above but now for the diagram 5.2(b) we have that the invariant
amplitude corresponding to the channel u is determined by

iMu = (igaγγϵ
αβγδ(k′α − pα)ϵ

∗
δ(k′, λ′)k′γ)

(
− igβσ
(k − p′)2

)
(igaγγϵ

µνρσkµϵν(k, λ)(kρ − p′ρ)) , (5.9)

where to the right of the propagator we have the first vertex (the one above, see Fig.5.2(b)) and to
the left the second vertex (the one below). Using the conservation of 4-momentum k− p′ = k′ − p
and the identity ϵαβγδ = −ϵαδγβ with index change β ↔ δ;

Mu = −g2aγγϵαβγδ(kα − p′α)ϵ
∗
β(k′, λ′)k′γ

gδσ
(k − p′)2

ϵµνρσkµϵν(k, λ)(kρ − p′ρ) .
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Using the fact that the contraction ϵµνρσkµkρ = 0

Mu = − g2aγγ
(k − p′)2

(kα + (−p′)α)ϵ∗β(k′, λ′)k′γϵ
αβγδgδσϵ

µνρσkµϵν(k, λ)(−p′ρ) . (5.10)

We observe that this expression is similar to the one obtained previously for the s channel in eq.(5.6),
only that p→ −p′, thus we conclude that

Mu =
g2aγγ

(m2
a − 2k · p′)

{[
(k · p′)(k′ · p′)− (m2

a − k · p′)(k′ · k)
]
ϵ∗µ(k′, λ′)ϵµ(k, λ)

+
[
(m2

a − k · p′)kµk′ν − (k′ · p′)kµp′ν − (k · p′)p′µk′ν + (k′ · k)p′µp′ν
]
ϵ∗µ(k′, λ′)ϵν(k, λ)

}
. (5.11)

Then, the total amplitude of the process γ + a→ γ + a, Maγ at the tree level is given by

Maγγ = Ms +Mu . (5.12)

Now, the squared modulus of the invariant amplitude of the process that we must use to calculate
the cross-section is obtained by adding over all the polarizations of the photons involved (Axions
are scalars) and dividing by the number of polarizations of the incident photon:

|M|2 = 1

2

∑
λ,λ′

|Maγγ|2 =
1

2

∑
λ,λ′

(
|Ms|2 + |Mu|2 + 2ℜ[MsM∗

u]
)
. (5.13)

Making use of the pseudo-completeness relation for the polarization vector of the photons∑
λ

ϵµ(k, λ)ϵα∗(k, λ) = −gµα , (5.14)

we obtain:∑
λ,λ′

|Ms|2 =
g4aγγ

(m2
a + 2k · p)2

[
2(k · p)2(k′ · p)2 − 2(k · p)(k′ · p)(k′ · k)m2

a

+ (m2
a + k · p)2(k′ · k)2 + (k · p)2(k′ · k)2

]
. (5.15)

We note that the calculation of
∑

λ,λ′ |Mu|2 is the same as that of
∑

λ,λ′ |Ms|2 by making the
change of 4-moment pµ → −p′µ since p′2 = m2

a, so we conclude that

∑
λ,λ′

|Mu|2 =
g4aγγ

(m2
a − 2k · p′)2

[
2(k · p′)2(k′ · p′)2 − 2(k · p′)(k′ · p′)(k′ · k)m2

a

+ (m2
a − k · p′)2(k′ · k)2 + (k · p′)2(k′ · k)2

]
. (5.16)

Now using the conservation of 4-momentum and the dispersion relations for photons and axions it
can be shown that k · p = k′ · p′ and k · p′ = k′ · p, using the above in eq. (5.16)

∑
λ,λ′

|Mu|2 =
g4aγγ

(m2
a − 2k′ · p)2

[
2(k · p)2(k′ · p)2 − 2(k′ · p)(k · p)(k′ · k)m2

a

+ (m2
a − k′ · p)2(k′ · k)2 + (k′ · p)2(k′ · k)2

]
. (5.17)
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While for the other term we get

∑
λ,λ′

MsM∗
u =

g4aγγ
(m2

a + 2k · p)(m2
a − 2k′ · p)

{
(m2

a−k′ ·p)(k·p)(k′ ·k)2−(m2
a+k·p)(k′ ·p)(k′ ·k)2

+ 2(k · p)(k′ · p)(k′ · k)m2
a − 2(k′ · p)2(k′ · k)(m2

a + k′ · k) + (k′ · p)4

+ (k · p)4 − 2(k · p)2(k′ · k)(m2
a + k′ · k) + (k′ · k)2(m2

a + k′ · k)2
}
. (5.18)

To give an analytical expression of the scattering amplitude in any inertial reference frame, we
define the following functions, which for illustration we will consider to be element dependent:
ma, Ik′p = k′ · p, Ikp = k · p and Ik′,k = k′ · k.

Fs(ma, Ik′p, Ikp, Ik′k) =
1

2g4aγγ

∑
λ,λ′

|Ms|2 =
1

2(m2
a + 2Ikp)2

[
2I2kpI

2
k′p − 2IkpIk′pIk′km

2
a

+ (m2
a + Ikp)

2I2k′k + I2kpI
2
k′k

]
, (5.19)

Fu(ma, Ik′p, Ikp, Ik′k) =
1

2g4aγγ

∑
λ,λ′

|Mu|2 =
1

2(m2
a − 2Ik′p)2

[
2I2kpI

2
k′p − 2IkpIk′pIk′km

2
a

+ (m2
a − Ik′p)

2I2k′k + I2k′pI
2
k′k

]
, (5.20)

Gsu(ma, Ik′p, Ikp, Ik′k) =
1

g4aγγ

∑
λ,λ′

MsM∗
u =

1

(m2
a + 2Ikp)(m2

a − 2Ik′p)

{
(m2

a − Ik′p)IkpI
2
k′k

−(m2
a+Ikp)Ik′pI

2
k′k+2IkpIk′pIk′km

2
a+I

4
k′p−2(I2k′p+I

2
kp)Ik′k(m

2
a+Ik′k)+I

4
kp+I

2
k′k(m

2
a+Ik′k)

2
}
.

(5.21)

Given that the differential cross-section for a scattering process involving two non-massive particles
is given by Eq.(C.7):

d2σ

dΩ
=

1

64π2

k′20
(p · k)2 |M|2 . (5.22)

For the case studied, we conclude that

d2σ

dΩ
=

g4aγγ
64π2

k′20
I2kp

[
Fs(ma, Ik′p, Ikp, Ik′k)+Fu(ma, Ik′p, Ikp, Ik′k)+Gsu(ma, Ik′p, Ikp, Ik′k)

]
. (5.23)

It is the differential cross-section for the process studied in terms of the invariants Ik′p = k′ ·p, Ikp =
k · p, Ik′k = k′ · k, the energy of the photon after being scattered (in k′0) and the mass ma of the
axion.
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5.2 Photon-Axion scattering at low energies
To obtain the energy distribution of the scattered photons through Compton-like scattering with
axions, we need to find the cross-section of the scattering process at the Rest Frame (RF) S (where
the axion is at rest), in this frame we meet the following:

pν = (ma, 0, 0, 0) , (5.24)
kν = k0(1, cos θ

′, sin θ′, 0) = ϵ′(1, cos θ′, sin θ′, 0) , (5.25)
k′ν = k′0(1, cos θ

′
1, sin θ

′
1, 0) = ϵ′1(1, cos θ

′
1, sin θ

′
1, 0) . (5.26)

This implies that

Ik′p = k′ · p = maϵ
′
1 , (5.27)

Ikp = k · p = maϵ
′ , (5.28)

Ik′k = k′ · k = ϵ′1ϵ
′(1− cos(θ′1 − θ′)) . (5.29)

Given that, for this frame of reference we have the relationship between the energy ϵ′ of the incident
photon and ϵ′1 of the scattered photon.

ϵ′1 =
ϵ′[

1 +
(

ϵ′

ma

)
(1− cos(θ′1 − θ′))

] , (5.30)

writing the invariants in terms of the energy of the incident photon

Ik′p = k′ · p = m2
a(ϵ

′/ma)[
1 +

(
ϵ′

ma

)
(1− cos(θ′1 − θ′))

] , (5.31)

Ikp = k · p = m2
a(ϵ

′/ma) , (5.32)

Ik′k = k′ · k = m2
a

(ϵ′/ma)
2(1− cos(θ′1 − θ′))[

1 +
(

ϵ′

ma

)
(1− cos(θ′1 − θ′))

] . (5.33)

Under these conditions we can considerably simplify the functions Fs, Fu andGsu, in particular we
take b = ϵ′

ma
and a scattering angle θ′1 − θ′ → θ′1, taking b = ϵ′

ma
, the invariants can be rewritten as:

Ik′p = m2
a

b

[1 + b(1− cos θ′1)]
,

Ikp = m2
ab ,

Ik′k = m2
a

b2(1− cos θ′1)

[1 + b(1− cos θ′1)]
.

63



5.2. PHOTON-AXION SCATTERING AT LOW ENERGIES 64

We can write Fs(ma, Ik′p, Ikp, Ik′k) → FR
S (ma, b, θ

′
1)

FR
S (ma, b, θ

′
1) =

1

2(m2
a + 2m2

ab)
2

[
2
(
m2

ab
)2(

m2
a

b

[1 + b(1− cos θ′1)]

)2

− 2m2
ab

(
m2

a

b

[1 + b(1− cos θ′1)]

)(
m2

a

b2(1− cos θ′1)

[1 + b(1− cos θ′1)]

)
m2

a

+(m2
a +m2

ab)
2

(
m2

a

b2(1− cos θ′1)

[1 + b(1− cos θ′1)]

)2

+
(
m2

ab
)2(

m2
a

b2(1− cos θ′1)

[1 + b(1− cos θ′1)]

)2
]
.

After some algebra

FR
S (ma, b, θ

′
1) =

m4
ab

4

2(1 + 2b)2[1 + b(1− cos θ′1)]
2

[
2 cos θ′1 + (1 + 2b+ 2b2)(1− cos θ′1)

2
]
. (5.34)

Similarly Fu(ma, Ik′p, Ikp, Ik′k) → FR
u (ma, b, θ

′
1), we get

FR
u (ma, b, θ

′
1) =

m4
ab

4

2[1− b(1 + cos θ′1)]
2

[
2 cos θ′1

+
(1− b)2 + 2(1− b)b(1− cos θ′1) + 2b2(1− cos θ′1)

2)

[1 + b(1− cos θ′1)]
2

(1− cos θ′1)
2

]
. (5.35)

For the last function Gsu(ma, Ik′p, Ikp, Ik′k) → GR
su(ma, b, θ

′
1)

GR
su(ma, b, θ

′
1) =

1

(1 + 2b)

1

[1− b(1 + cos θ′1)]

m4
ab

4

[1 + b(1− cos θ′1)]

[(
1− 1 + 2b

[1 + b(1− cos θ′1)]

)
×

b(1− cos θ′1)
2 + 2(1− cos θ′1) +

1

[1 + b(1− cos θ′1)]
2
+ [1 + b(1− cos θ′1)]

2

− 2(1− cos θ′1)

(
1 + [1 + b(1− cos θ′1)]

2

[1 + b(1− cos θ′1)]

)(
1 +

b2(1− cos θ′1)

[1 + b(1− cos θ′1)]

)
+ (1− cos θ′1)

2

(
1 +

b2(1− cos θ′1)

[1 + b(1− cos θ′1)]

)2
]
. (5.36)

In short, we can write

FR
s (ma, b, θ

′
1) = m4

ab
4fs(b, θ

′
1) , (5.37)

FR
u (ma, b, θ

′
1) = m4

ab
4fu(b, θ

′
1) , (5.38)

GR
su(ma, b, θ

′
1) = m4

ab
4gsu(b, θ

′
1) , (5.39)

where the functions fs(b, θ′1), fu(b, θ′1) and gsu(b, θ′1) are

fs(b, θ
′
1) =

1

2(1 + 2b)2
1

[1 + b(1− cos θ′1)]
2

[
2 cos θ′1 + (1 + 2b+ 2b2)(1− cos θ′1)

2
]
, (5.40)
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fu(b, θ
′
1) =

1

2[1− b(1 + cos θ′1)]
2

[
2 cos θ′1

+
(1− b)2 + 2(1− b)b(1− cos θ′1) + 2b2(1− cos θ′1)

2

[1 + b(1− cos θ′1)]
2

(1− cos θ′1)
2
]
, (5.41)

gsu(b, θ
′
1) =

1

(1 + 2b)

1

[1− b(1 + cos θ′1)]

1

[1 + b(1− cos θ′1)]

[(
1− 1 + 2b

[1 + b(1− cos θ′1)]

)
×

b(1− cos θ′1)
2 + 2(1− cos θ′1) +

1

[1 + b(1− cos θ′1)]
2
+ [1 + b(1− cos θ′1)]

2

− 2(1− cos θ′1)

(
1 + [1 + b(1− cos θ′1)]

2

[1 + b(1− cos θ′1)]

)(
1 +

b2(1− cos θ′1)

[1 + b(1− cos θ′1)]

)
+ (1− cos θ′1)

2

(
1 +

b2(1− cos θ′1)

[1 + b(1− cos θ′1)]

)2
]
. (5.42)

We observe that the functions fu(b, θ′1) and gsu(b, θ′1) have a point where they diverge, due to the
term 1− b(1 + cos θ′1) in its denominator, such a point lies in

cos θ′
∗
1 = x∗ =

1− b

b
=

1− (ϵ′/ma)

(ϵ′/ma)
=
ma − ϵ′

ϵ′
. (5.43)

On the other hand, when taking into account that p · k = maϵ
′ and that k′0 = ϵ′1, the differential

cross section turns out to be

d2σ

dΩ′
1

=
g4aγγm

2
a

64π2

(
b2

[1 + b(1− cos θ′1)]

)2 [
fs(b, θ

′
1) + fu(b, θ

′
1) + gsu(b, θ

′
1)
]
. (5.44)

5.2.1 Cross-section at low energies
As previously discussed for b < 0.5, we can establish the cross-section without finding any diver-
gence in the differential cross section d2σ/dΩ, this contains the low energies ϵ′ ≪ ma.

Since we treat the dispersion process collinearly we can easily integrate the equation (5.44) into
the azimuthal angle ϕ′

1 and note that the functions fs, fu and gsu depend on cos θ′1

− dσ

d(cos θ′1)
=
g4aγγm

2
a

32π

(
b2

[1 + b(1− cos θ′1)]

)2

[fs(b, cos θ
′
1) + fu(b, cos θ

′
1) + gsu(b, cos θ

′
1)] .

(5.45)
Using the change of variable x = cos θ′1 when considering that the integral is made of x ∈ [−1, 1]
we can write

dσ

dx
=
g4aγγm

2
a

32π

(
b2

[1 + b(1− x)]

)2 [
fs(b, x) + fu(b, x) + gsu(b, x)

]
, (5.46)
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where

fs(b, x) =
1

2(1 + 2b)2
1

[1 + b(1− x)]2

[
2x+ (1 + 2b+ 2b2)(1− x)2

]
, (5.47)

fu(b, x) =
1

2[1− b(1 + x)]2

[
2x+

(1− b)2 + 2(1− b)b(1− x) + 2b2(1− x)2

[1 + b(1− x)]2
(1− x)2

]
,

(5.48)

gsu(b, x) =
1

(1 + 2b)[1− b(1 + x)]

1

[1 + b(1− x)]

[(
1− 1 + 2b

[1 + b(1− x)]

)
b(1− x)2 + 2(1− x)

+
1

[1 + b(1− x)]2
+ [1 + b(1− x)]2 − 2(1− x)

(
1 + [1 + b(1− x)]2

[1 + b(1− x)]

)(
1 +

b2(1− x)

[1 + b(1− x)]

)
+ (1− x)2

(
1 +

b2(1− x)

[1 + b(1− x)]

)2
]
. (5.49)

Integrating, we observe that the last two integrals are only valid for b < 0.5, with this we restrict
ourselves to the case of low energies.

Hs(b) =

∫ 1

−1

(
b2

[1 + b(1− x)]

)2

fs(b, x)dx =
3

4

b4

(1 + 2b)3
(5.50)

Hu(b) =

∫ 1

−1

(
b2

[1 + b(1− x)]

)2

fu(b, x)dx =
1

48b4(1− 2b)(1 + 2b)3
×{

4b2[3 + b(−1 + 2b)(6 + b(42 + b(9 + 2b(−62 + b(−39 + 4b)))))]

+ 3(1 + 2b)3[1 + b(−8 + b(24 + b(−27 + 4b(1 + b))))] ln

[
1− 2b

1 + 2b

]}
(5.51)

Hsu(b) =

∫ 1

−1

(
b2

[1 + b(1− x)]

)2

gsu(b, x)dx = − 1

48b2(1 + 2b)
×{

4b2[3 + 2b(6 + b(3 + 2b)2)]

(1 + 2b)2
+ 3 ln

[
1− 2b

1 + 2b

]}
. (5.52)

In this way the cross-section multiplied by 32π
g4qγm

2
a

turns out to be the sum of the previous functions
and we can see the qualitative change that happens with the total cross-section at low energies.

σ(b) =
g4qγγm

2
a

32π
H(b) , where H(b) := Hs(b) +Hu(b) +Hsu(b) . (5.53)
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Figure 5.3: Plot of the cross-section at low energies for the Compton-like scattering process with
axions as a function of b = ϵ′

ma
.

We observe that the function H(b) is dimensionless since b is also dimensionless. Therefore, we
make a graph that illustrates the behavior of the cross-section for a specific mass value, noting that
this is negligible or not depending on the value of g4aγγm2

a.
In contrast to the usual Compton scattering process (with electrons), the cross-section does not

remain constant at low energies. To describe this behavior, a logarithmic graphical representation is
generally used. In this context, we highlight the differences in behavior, where a = ϵ′

me
and b = ϵ′

ma
.
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Figure 5.4: Compton scattering plot on logarithmic scale: (a) with electrons the Klein-Nishina
cross-section is shown, which includes the low energy and high energy case, (b) with axions, only
the low energy case is included.

Consequently, we conclude that the Compton scattering process depends on the scattering par-
ticle. This variability is expected, since the theory that models the process at a fundamental level
is different.
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Chapter 6
Some Physical Results
“Whatever the final laws of nature may be, there is no reason to suppose that they are designed to
make physicists happy.”
—Steven Weinberg

In this section we discuss some physical situations in which the photon-axion scattering process
could occur.

6.1 On the kinematics in Axion-Photon scattering
As discussed in chapter 4, the kinematics of Compton scattering does not depend on the nature of
the scattering particle. The interest in studying the photon-axion dispersion process lies in the fact
that the energy transfer is considered very different when working at low energies or high energies
in Compton dispersion. As we saw previously, it is argued that the maximum energy with which a
photon can come out when scattered in the low energy regime is given by Eq. (4.33) and at high
energies given by Eq. (4.34), respectively.

ϵ1max ≈ 4γ2ϵ , ϵ1max ∼ γmc2 . (6.1)

At low energies in Compton scattering with electrons, the maximum corresponds to a head-on
collision between the electron and the photon. However, the energy of the scattered photon is still
small compared to the energy of the electron (see Fig. 4.3), so the electron loses little energy.
However, as seen in the following graph when working with an axion, this does not necessarily
happen. Taking the upper bound ma < 10−2 eV, it is observed that only for masses close to this
does the result remain valid, that is, the “Thomson limit” corresponding to the case of the axion
has different effects due to the small mass of these particles.
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Figure 6.1: Maximum energy of a photon comes from the CMB (Mean energy per CMB photon
Eph ≈ 6.626× 10−4eV, [158]) scattered at high energies ϵmax(γ,ma) vs that found at low energies
ϵTmax(γ, ϵ) in S for scattering by axions.
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Of course, this result is interesting, since we can infer the following phenomenological result
(even from kinematics): the large energy loss behavior in Compton scattering depends on the mass
of the scattering particle in question. We should not be surprised by the abrupt change we experience
when considering electrons and axions, since me ≈ 511 keV ≫ 10−2 eV > ma.

6.2 Angular distribution
We can study what happens with the Compton dispersion from the differential cross section estab-
lished in Eq. (5.44). To do this, we make a graph in polar coordinates to observe how the distribution
of the dispersion angles of photons coming from the CMB is as a function of the masses that we
use for the axions, essentially varying b.

Note that, since we are in the reference system where the axion is at rest, it is enough to analyze
what happens with the angle θ′1, therefore we integrate in ϕ′

1

dσ

d(cos θ′1)
=
g4aγγm

2
a

32π

(
b2

[1 + b(1− cos θ′1)]

)2 [
fs(b, θ

′
1) + fu(b, θ

′
1) + gsu(b, θ

′
1)
]
. (6.2)

Where fs(b, θ′1), fu(b, θ′1) and gsu(b, θ′1) are given by Eqs. (5.40), (5.41) and (5.42), respectively.
We use photons with energy Eph = 6.626× 10−4 eV.
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Figure 6.2: Angular distribution for photons from the CMB scattered by axions.

We observe that photons preferentially exit forward, and this preference increases as the mass
of the axions decreases.

6.2.1 Mean free path of photons in an axion dark matter halo
As discussed in detail in chapter 2, the interest in searching for axions in astrophysical situations
is that these are good candidates for dark matter and in particular could be treated as cold dark
matter when their production is non-thermal. Under this scenario, it is clear that we can have dark
matter halos formed by axions, and we will be able to estimate the mean free path that a photon that
crosses the halo will travel and see whether its interaction, even if suppressed, should be taken into
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account or not. To do this, we will use the conditions established in various cosmological studies
(see Chapter 2), where it is established that the local density of dark matter can be estimated as
ρ0 = (0.550.17)GeV/cm3 in the SHM model (see section 2.4), then we can assume that the axions
are distributed isotropically and homogeneously, under this condition the local number density of
axions is given by

n =
ρ0
ma

= (0.55± 0.17)
GeV
macm3

. (6.3)

The following graph shows n for 10−6 eV < ma < 10−2 eV, having a dotted line in the mean value.
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Figure 6.3: Axion number density in the galactic halo. A cut in the mass corresponding to b = 0.5
is shown for photos that come from the CMB.

In different estimates of the speed of local dark matter, a relativistic parameter is obtained at
β ≈ 7.77× 10−4 − 1.76× 10−3 [85]. To provide a clear idea, we select the circular velocity values
v⊙ = 233 km/s and vesc = 528 km/s. This circular speed is valid in a radius of r⊙ ≈ 8 kpc [159].
Taking into account that it is proposed that they follow a Maxwell-Boltzmann distribution and a cut
is made at v > vesc [160]. This distribution is given by

f(v) =
4N√
πv⊙

(
v

v⊙

)2

exp

(
−v

2
esc

v2⊙

)
, v < vesc , (6.4)

where N is a normalization constant.
We see that β ∼ 10−3. This does not drastically affect the energy of the outgoing photon in the

Compton scattering process, so the calculations can be done in the reference frame where the axion
is at rest.

Knowing the cross-section, we can estimate the mean free path of the photon

⟨lν⟩ =
1

n(ma)σ(ma)
(6.5)

Choosing the best of the scenarios gaγΓ ≈ 2
3
× 10−10 GeV−1. Using the result we obtained in the

70



6.3. ON THE POSSIBILITY OF HAVING INVERSE COMPTON SCATTERING WITH AXIONS
AND TOTAL COMPTON SPECTRUM 71

100 200 300 400 500

0.001

0.002

0.003

v [m/s]

f(v)

Figure 6.4: Velocity distribution of dark matter particles in the galactic halo, with N = 1.01667.

previous section b = ϵth
ma

, with ϵph ≈ 1.168 eV1

σ(b) ≈ ḡ4aγγm̄a
2

(
H(b)

32π

)
(3.894× 10−46) cm2 , (6.6)

Here ḡaγγ is the value of the coupling constant measured in GeV, and its units have already been
considered, similarly m̄a, is measured in eV, and we could take the best case ḡaγγ ≈ 2

3
× 10−10

σ(b) ≈ m̄a
2

(
H(b)

72π

)
(3.894× 10−86) cm 2 . (6.7)

It is evident that this cross-section will turn out to be too small, which may well be ignored since
H(b) < 5 agrees with the graph shown in Fig. 5.3. Furthermore, as we saw in the graph 6.3 the
local axion number density must be ∼ 1012 − 1013 Axions

cm3 . And that will not be enough to offset
the small cross-section, in fact the mean free path exceeds the observable size of the universe is
approximately 46.5 billion light years ≈ 1.425× 104 Mpc. Since by choosing the best of the cases
m̄a = 10−2 therefore H(b) ≈ 0.000709, we obtain

σ ≈ 1.22× 10−95 cm2 . (6.8)

This produces l = 8.197× 1081 cm ≈ 2.656× 1057Mpc.
So “cold” axions of this type have not yet interacted anywhere in the observable Universe with

CMB photons.

6.3 On the possibility of having inverse Compton scattering with
Axions and Total Compton Spectrum

What we have left to see is whether we can have Inverse Compton scattering with axions, that
is, that an axion has somehow obtained enough energy to be considered relativistic and, when

1This value is obtained by considering that the CMB radiates as a black body and corresponds to the peak energy
emission that follows Wien’s displacement law and the temperature of the CMB.

71



6.3. ON THE POSSIBILITY OF HAVING INVERSE COMPTON SCATTERING WITH AXIONS
AND TOTAL COMPTON SPECTRUM 72

scattered with a low-energy photon, the axion gives up its energy to the photon, making it high
energy. As discussed in chapter 4, this situation is of great interest in astrophysics. In the case that
our scattering particle is an electron, this case is the extreme Klein-Nishina limit and is considered
when determining the total Compton spectrum.

As we analyzed in section 6.1, in the scattering of photons through very relativistic particles,
they acquire much more energy when the high energy case of electrons is taken into account. How-
ever, for axions, this is not always the case, since the effect is suppressed by the small mass they
have. A difference is observed for masses 5× 10−3 eV < ma < 10−2 eV, and for smaller masses it
is interesting to note that it is not acquired higher energy (see Fig. 6.1), which rules out studying
the process at high energies in accordance with the limits for ALPs that are in Table 3.1.

A problem that we found when determining the cross section of the photon-axion scattering
process at the tree level is that the term corresponding to the u channel causes a divergence from
b = 0.5. In the following figure we show that divergence occurs for an angle θ′1 → π as b increases.

-1.0 -0.5 0.0 0.5 1.0
0

200

400

600

800

1000

fT(0.52, x)

fT(0.6, x)

fT(0.75, x)

fT(0.9, x)

fT(1, x)

fT(5, x)

fT(10, x)

fT(50, x)

fT(100, x)

b = 0.52

b = 0.6

b = 0.75

b = 0.9

b = 1

b = 5

b = 10

b = 50

b = 100

x = cos θ′1

fu(b, x)

Figure 6.5: Graph of the function fu(b, x) for values of b > 0.5.

The divergence is caused by the zero-momentum divergent photon propagator and is typical
of any infinite-range interaction. This phenomenon occurs in various processes such as dispersion
e−e− → e−e− or e+e+ → e+e+, known as Bhabha scattering. Usually, radiative corrections
are expected to cure this [161][162]. In the latter case, the solution to this divergence is still being
debated: some say it is ”false” and others say it has a physical interpretation. However, it is generally
accepted that the question is well posed for a finite angle and has been verified by experiments [163]
[164].

In the situation studied, we face the same problem, but when dealing with an effective theory it
is possible that some contribution is not being considered. We can study a little more in detail where
we find the divergences for b > 0.5, trying to work directly in the laboratory reference system. The
problem with this is that we have a parameter θ, which is the angle of incidence of the photon with
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respect to the direction of propagation of the axion in this situation.

m2
a − 2Ik′p = m2

a

(
1− 2γ

ϵ1
ma

(1− β cos θ1)

)
(6.9)

= m2
a

1− 2γ
ϵ/ma(1− β cos θ)(1− β cos θ1)[

(1− β cos θ1) +
(

ϵ
γma

)
(1− cos(θ1 − θ))

]
 (6.10)

So it is enough to determine if there are values for which (m2
a − 2Ik′p) ̸= 0. This can be verified

with computational tools. Choosing ma ≈ 10−6 − 10−4, eV, no values were found for which there
were no divergences in the differential cross section.

Trying to regularize the integral goes beyond the scope of the present work. As mentioned,
in the case of low-energy axions, despite their abundance as dark matter, we would not have a
significant cross section. Therefore, for the mass range allowed for axions, we can conclude that
the scattering process is irrelevant.

For this reason, trying to establish the total Compton scattering spectrum, as discussed in chapter
3, does not go beyond an academic work due to the few physical implications that we could find.

6.4 Axion effects on propagation of gamma-rays
Since the gamma rays-bursts (GRB) delay produced by a charged plasma was found proportional
to the inverse of the particle mass, τ ∝ m−1 [165], it is natural to look for particles of mass much
smaller than the electron’s.

In this context, we will consider a model where dark matter consists of axions. However, since
an electrically charged axion is not consistent with experiments and observations, the plasma fre-
quency formula for a charged plasma is no longer valid. Despite this, given the activity in axion-
electrodynamics with its connection to topological insulators, the assumption of a photon-axionic
plasma coupling seems appropriate.

We consider scattering of unpolarized light and emerging time delays depending on the photon
energy, which is the relevant case for the current GRB experiments. A theoretical quantum calcula-
tion of the plasma frequency range ω2

p is presented below. The calculation is valid for high-energy
photons, when the photon energy is much greater than the axion mass ma. A plasma can support
both longitudinal and transverse waves. We are interested in transverse waves. Dispersion relation
for light in a plasma is

ω2 = |k|2 + ω2
p , (6.11)

Where ωp is the plasma frecuency, which is due to the plasma oscillations called Langmuir waves
[165]. On the other hand, we have already determined the contributions to the scattering amplitude
of the form

Ms =
g2aγγ

(m2
a + 2k · p)

{[
(k · p)(k′ · p)− (m2

a + k · p)(k′ · k)
]
ϵ∗µ(k′, λ′)ϵµ(k, λ)

+
[
(m2

a + k · p)kµk′ν − (k′ · p)kµpν − (k · p)pµk′ν + (k′ · k)pµpν
]
ϵ∗µ(k′, λ′)ϵν(k, λ)

}
, (6.12)
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Mu =
g2aγγ

(m2
a − 2k · p′)

{[
(k · p′)(k′ · p′)− (m2

a − k · p′)(k′ · k)
]
ϵ∗µ(k′, λ′)ϵµ(k, λ)

+
[
(m2

a − k · p′)kµk′ν − (k′ · p′)kµp′ν − (k · p′)p′µk′ν + (k′ · k)p′µp′ν
]
ϵ∗µ(k′, λ′)ϵν(k, λ)

}
. (6.13)

In accordance with what was previously explained for low energies, we note that the scattering of
photons occurs preferentially forward, even more with the most energetic photons, we extrapolate
this idea. When the momenta of the initial and final photons are parallel (with an angle θ = 0
between k and k′), we have k · k′ = 0, and also kµ · ϵµ(k, λ) = 0 and k∗µϵµ(k, λ) = 0 from
the gauge condition. Thus, only the first term of eqs. (6.12)-(6.13), survives on forward dispersal.
Furthermore, since the momenta of the initial and final photons are parallel, their polarization can be
described by the same vectors, which are taken as orthonormal, ϵ∗µ(k, λ)ϵµ(k, λ) = δλλ. Therefore
we obtain (considering k · p′ = k′ · p and k′ · p′ = k · p)

Ms =
g2aγγ

(m2
a + 2k · p)(k · p)(k

′ · p)δλ,λ′ , (6.14)

Mu =
g2aγγ

(m2
a − 2k′ · p)(k · p)(k

′ · p)δλ,λ′ . (6.15)

For cold axions they can be the cold dark matter particle (β ∼ 10−3). In forward scatter θ = 0 and
k0

′ ≈ k0. Then the differential cross-section is determined by

dσ(0)

dΩ
=

1

64π2m2
a

(
1

2

∑
λ,λ′

|M(0)|
)

=
g4aγγ
16π2

∣∣∣∣ k20ma

m2
a − 4k20

∣∣∣∣2 = (g2aγγ4π

)2 ∣∣∣∣ k20ma

m2
a − 4k20

∣∣∣∣2 . (6.16)

The differential cross-section is given in terms of the scattering amplitude as

|f(θ)|2 = dσ

dΩ
. (6.17)

So the absolute value of the forward scattering amplitude is given as

|f(0)| = g2aγγ
4π

k20ma

|m2
a − 4k20|

. (6.18)

We can show that the plasma frequency when the photon frequency is large compared to the plasma
frequency, w ≫ wp, is

w2
p = 4πnRe|f(0)| . (6.19)

Thus, the frequency of the axion plasma is determinated by

w2
p = g2aγγn

ω2ma

|4ω2 −m2
a|
. (6.20)

Note that ωp is proportional to the average mass density of the axions, ρa = nma, as (ω ≫ ωp)

w2
p = g2aγγ

ω2ρa
|4ω2 −m2

a|
=
g2aγγρa

4

(
1 +

∞∑
n=1

(
m2

a

4ω2

)n
)

≈ 1

4
g2aγγρa . (6.21)
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Thus only the density of axionic dark matter determines the dispersion of light in the cosmic ax-
ion medium. The plasma frequency is nearly constant, i.e. independent of the frequency of the
incoming light.

The group velocity can be taken as the signal velocity. If the plasma frequency is independent
of k, which is the case in a usual plasma with charged particles, and the photon momentum is large
compared to the plasma frequency (|k|2 ≫ ω2

p), we obtain that the group velocity is only slightly
lower than c.

vGRB = 1− d = 1− 1

2

ω2
p

ω2
= 1− g2aγγ

ρa
8ω2

(6.22)

Assume now that D(z) is the effective distance traveled by the photons taking into account the
expansion of the Universe. In principle, the photon transit time is [166]

t =
D(Z)

vGRB

. (6.23)

The time delay between two signals traveling at the speeds vGRB and c is obtained as:

τ =
Dd

c(1− d)
≈ Dd

c
. (6.24)

For estimation purposes, we ignore the dependence ofD on redshift. The CAST experiment estab-
lished the limits γaγγ < 0.66× 10−10 GeV−1 and ma ≲ 0.02 eV [152]. In the optimistic scenario,
d = 4.27× 10−63 (pa) /

(
E

2

GR

)
, where (pa) is the axion DM density in units GeV/cm3 and EGR is

gamma-ray energy in GeV.
Let us consider the Galactic Halo (GH) where DM is assumed to consist of axions. The energy

density of GH is ρa = 0.55 GeV/(cm3) [85], and the radius of GH is D = 8 kpc ≈ 2.47 × 1020 m
[159]. The delay of GRB propagating through the GH is

τ =
1.93× 10−51

E
2

GR

s . (6.25)

As a second example, we consider a massive galaxy filament. The average axion density is estimated
as ρa = 10−3 GeV/cm3, and the effective distance is D = 3 Gpc ≈ 9.26 × 1025 m. The delay of
GRB is obtained as

τ =
1.32× 10−48

E
2

GR

s . (6.26)

We conclude that only the density of axionic DM determines the dispersion of light in the cosmic
axion medium and the delay is negligible for high-energy photons in massive galaxy filament, as it
also is in the case of GH.
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Chapter 7
Conclusions and discussion
The Standard Model of Elementary Particles has demonstrated remarkable success in its phe-
nomenological and experimental predictions. However, the presence of various challenges, such
as the strong CP problem and observations that suggest the existence of DM, this compels us to
expand this model to explain the composition of the Universe. The challenge lies in developing a
theoretical framework that builds on the explanations already offered by the SM.

In this work, an extension to the SM was explored that adds a new symmetry U(1)PQ. With this
addition, the strong CP problem is addressed and a candidate to be the DM particle is presented:
the QCD axion. To address more general cases, the incorporation of axion-like particles that arise
in other scenarios intended to extend the SM or that appear in more general theories than the latter
was proposed. The new symmetries considered in these cases are not detailed, since, in general,
we work with an effective coupling between an axion and two photons.

Since the initial proposal of axions, their search through this coupling has focused on axion-
photon conversion in media with intense magnetic fields. The fundamental purpose of this work was
to explore the possibility of having an interaction between photons and axions through a scattering
process that we call “Compton-like scattering”. Below, we present the conclusions obtained:

• Guided by the usual Compton scattering process, the kinematics present in generalized Comp-
ton scattering have been generally discussed (without establishing the nature of the scattering
particle). It is shown that the significant energy loss behavior of scattering particles in inverse
Compton scattering depends mainly on the mass of the scattering particle 1, which makes this
phenomenon more pronounced at as the mass of the particle increases. Therefore, for axions,
this behavior begins to be notable when the mass of the axion is greater than 0.5× 10−2 eV,
when working with photons from the CMB.

• When analyzing the angular distribution of the differential cross-section, the presence of an
infrared divergence is noted that makes it difficult to calculate the cross-section at the tree
level in a wide range of energies. Furthermore, preferential forward emission is observed
as the energy increases in the reference frame where the axion is at rest. This behavior is
analogous to Compton scattering with electrons, at least in the allowed parameter space,
defined by b = ϵ′

ma
.

• The cross-section at low energies is determined, revealing that it is considerably small for
light axions, which are candidates for CDM. Therefore, we can rule out the search for these
particles through this process.

• In attempting to address the “high energy” limit, it was shown that in no scenario is it possible
to eliminate infrared divergence. Therefore, we cannot speak with certainty about what will
happen in this case. However, as we have concluded from the kinematics, no significant
energy loss is expected.

1Eletrons, in usual Compton scattering.
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• By modeling the structures formed by DM as a plasma, we examine the possibility of dis-
tinguishing the signal of a photon that has interacted with the plasma by the corresponding
group velocity of the beam, compared to other photons that have not interacted. It is shown
that the associated delay time is also negligible.

Unfortunately, the search for axions through photon scattering is extremely difficult because the
interaction is practically negligible, and we can only count on the search for axions through the
axion-photon conversion. The results of section 4 of [121] indicate that in grand unification theories
(GUTs), the expectation is that ALPs have a relation gaγγ = ga

ma
smaller than the QCD prediction,

making it impossible to explore that region. The lack of experimental access to this region of
parameter space highlights the need for experimental approaches that do not rely on axion-photon
coupling. Of particular interest in this direction are the couplings of axions to fermions, which have
recently been sought to be explored [167].
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Appendix A

A.1 Friedmann-Robertson-Walker (FRW) Universe
It is reasonable, from an observational point of view, to assume that the Universe is almost isotropic
and homogeneous. Mathematically, an isotropic and homogeneous universe is described by the
Friedmann-Robertson-Walker (FRW) metric:

ds2 = −dt2 +R2(t)

[
dr2 +

(r · dr)2
1− kr2

]
, (A.1)

where R(t) is known as scale factor and here has dimensions of length, so the radial coordinate
r = |r| has no units. The constant k represents the type of curvature of space and can acquire the
following values:

k =


+1 closed universe,
0 flat universe,
−1 open universe.

. (A.2)

The dynamics of cosmic expansion is determined by Einstein’s equation 1

Rµν −
1

2
gµνR = 8πTµν . (A.3)

Here Rµν is the Ricci tensor, R is the Ricci scalar, and Tµν is the energy-momentum tensor. Due
to the assumption of isotropy and homogeneity, the energy-momentum tensor can be modeled as a
perfect fluid, that is

T00 = ρ(t), Ti0 = 0, Tij = F 2(t)p(t)

(
δij +

krirj
1− kr2

)
, (A.4)

where i and j run through the three spatial directions, and ρ and p are the energy density and
pressure of the fluid. The non-zero components of the Ricci tensor and the Ricci scalar are given
by:

R00 = −3
R̈

R
, Rij = −

R̈
R

+ 2

(
Ṙ

R

)2

+ 2
k

R2

 gij, R = −6

R̈
R

+

(
Ṙ

R

)2

+
k

R2

 .

(A.5)
Using (A.3), the component (µ, ν) = (0, 0) of the Einstein field equations (A.3) when using (A.4)(

Ṙ

R

)2

+
k

R2
=

8π

3
ρ , (A.6)

1We use natural units where G = 1.
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The Hubble parameter is usually defined

H :=
Ṙ

R
, (A.7)

we obtain the Friedman Equation
H2 +

k

R2
=

8π

3
ρ . (A.8)

On the other hand, due to the homogeneity of the FRW space–time, the spatial components (µ, ν) =
(i, i) of the Einstein field equations (A.3) under the metric of FRW lead to the same equation. For
example, taking µ = ν = 2 we findR̈

R
+ 2

(
Ṙ

R

)2

+
k

2R2

R2r2 − 3

R̈
R

+

(
Ṙ

R

)2

+
k

R2

 r2R2 = 8π(−p)(−R2r2) , (A.9)

which, after a little algebra, leads to the cosmological acceleration equation

R̈

R
= −4π

3
(ρ+ 3p) . (A.10)

Combining the Friedmann equation and (A.10), or, using DµT
µ0 = 0, we obtain the expression of

the equation of continuity and conservation of energy in the universe by FRW

DµT
µ0 = T µ0

,µ + Γµ
λµT

λ0 − Γλ
µ0T

µλ = ρ̇+ 3H(ρ+ p) = 0 . (A.11)

Various energy components contribute to the right side of Eq. (A.8), such as matter ρM ∝ R−3,
radiation ρR ∝ R−4, and dark energy ρΛ = constant. Putting these three contributions together, we
observe that the energy density behaves as follows:

ρ = ρM,0

(
R0

R

)3

+ ρR,0

(
R0

R

)4

+ ρΛ . (A.12)

Where the subscript 0 represents the amount in the present time. We define the density parameters:

ΩM ≡ ρM,0

ρc,0
, ΩR ≡ ρR,0

ρc,0
, ΩΛ ≡ ρΛ,0

ρc,0
, Ωk ≡ − k

R2
0H

2
0

. (A.13)

Where ρc,0 ≡ 3H2
0

8π
is the critical density at present, and H0 = 100h kms−1Mpc−1 is the Hubble

parameter at the present time. The parameter h parameterizes the Hubble parameter measurements,
and the current measurements indicate h ≈ 0.674 [168]. Combining Eqs. (A.8), (A.12), (A.7) and
(A.13), we obtain

H(t)2

H2
0

= ΩM

(
R0

R

)3

+ ΩR

(
R0

R

)4

+ ΩΛ + Ωk

(
R0

R

)2

. (A.14)

Seven years of data from WMAP measurements indicate ΩMh
2 = 0.11161 and ΩΛ = 0.729

[169]. Furthermore, from the observed temperature of the cosmic microwave background T0 =
2.7250.002K [170], the radiation density parameter is estimated as ΩRh

2 = 4.15 × 10−5. Using
this result, the epoch of equality between matter and radiation is estimated, where the energy density
of matter is equal to that of radiation, as Feq

F0
= 4.15× 10−5(ΩMh

2)−1.
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Appendix B

B.1 Feynman’s rule for the vertex of interaction between a pho-
ton and an axion

To establish what happens at the vertex of the interaction of the axion (or ALP) with two photons,
it is convenient to rewrite the Lagrangian density given in (3.68), noting that

FµνF̃
µν = (∂µAν − ∂νAµ)

1

2
ϵµνρσ(∂ρAσ − ∂ρAσ)

=
1

2
ϵµνρσ(∂µAν∂ρAσ − ∂µAν∂σAρ − ∂νAµ∂ρAσ + ∂νAµ∂σAρ)

=
1

2
(ϵµνρσ∂µAν∂ρAσ − ϵµνρσ∂µAν∂σAρ − ϵµνρσ∂νAµ∂ρAσ + ϵµνρσ∂νAµ∂σAρ) ,

making the changes on the dummy sum indices ρ ↔ σ, ν ↔ µ and ν ↔ µ with σ ↔ ρ in
the second, third, and fourth term, respectively. In addition to using the fact that the Levi-Civita
symbol ϵµνρσ is antisymmetric under the exchange of two indices it is concluded that

FµνF̃
µν =

1

2
(4)ϵµνρσ∂µAν∂ρAσ . (B.1)

Then, the Lagrangian density of interaction given in (3.68) takes the form

Laγγ = −1

2
gaγγaϵ

µνρσ∂µAν∂ρAσ , (B.2)

We express the preceding term in the momentum space, omitting the constant factor gaγγ
2

, so

L = −a(k(3))ϵµνρσ(−ik(1)µ )Aν(k
(1))(−ik(2)ρ )Aσ(k

(1))

= a(k(3))ϵµνρσk(1)µ Aν(k
(1))k(2)ρ Aσ(k

(1))

= a(k(3))ϵµνρσAν(k
(1))Aσ(k

(1))k(1)µ k(2)ρ ,

we take the functional derivative of L with the term (−i)3, and since second-degree terms appear
in the component of the field Aµ, we multiply by the factor 2! = 2

2
(−i)3δ3L

δa(k(3))δAα(k(1))δAβ(k(2))
= 2i

δa(k(3))

δa(k(3))
ϵµνρσ

δAν(k
(1))

δAα(k(1))

δAσ(k
(2))

δAβ(k(2))
k(1)µ k(2)ρ

= 2iϵµνρσgγν
δAγ(k(1))

δAα(k(1))
gδσ

δAδ(k(2))

δAβ(k(2))
k(1)µ k(2)ρ

= 2iϵµνρσgγνδ
γαgδσδ

δβk(1)µ k(2)ρ

= 2iϵµνρσδαν δ
β
σk

(1)
µ k(2)ρ

= 2iϵµαρβk(1)µ k(2)ρ .
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Finally, multiplying by the factor gaγ
2

we obtain Feynman’s rule for the interaction vertex

igaγγϵ
µνρσk(1)µ k(2)ρ , (B.3)

where k(1) and k(2) are the 4-momenta of the two photons, while the free indices ν and σ correspond
to the photon 1 and 2, respectively.

B.2 Axion decay in two photons
It can be shown that the rate decay of a particle of mass M to two particles of mass m1 and m2,
respectively is given by the differential decay width (in the system reference where the particle of
mass M is at rest [23]

d2Γ

dΩ
=

1

64π2M2
|M|2

√√√√[1− (m1 +m2

M

)2
]
+

[
1−

(
m1 −m2

M

)2
]
, (B.4)

where |M|2 is the square of the Feynman amplitude containing the sum over all polarizations of
the particles involved (averaged where necessary) and indistinguishability fractions.

To calculate the two-photon axion decay width, we use Feynman’s rule for the interaction vertex
derived in the previous section. Additionally, we consider the following Feynman rules:

1. An incoming (outgoing) photon with 4-momentum k and spin polarization λ has a contribu-
tion ϵµ(k, λ) (ϵµ∗(k, λ)),

2. The absorption or emission of a scalar particle such as the axion contributes a factor equal to
1.

3. Multiplying the above factors together we obtain the quantity iM, where M is the invariant
Feynman amplitude.

In the case studied
iM = igaγγϵ

µνρσk(1)µ k(2)ρ ϵ∗ν(k1, λ1)ϵ
∗
σ(k2, λ2) . (B.5)

Then the invariant amplitude squared is

|M|2 = [gaγγϵ
αβγδk(1)α k(2)γ ϵ∗β(k1, λ1)ϵ

∗
δ(k2, λ2)][gaγγϵ

µνρσk(1)µ k(2)ρ ϵ∗ν(k1, λ1)ϵ
∗
σ(k2, λ2)]

∗

= g2aγγϵ
αβγδϵµνρσk(1)α k(2)γ k(1)µ k(2)ρ ϵ∗β( bfk1, λ1)ϵ

∗
δ(k2, λ2)ϵν(k1, λ1)ϵσ(k2, λ2)

= g2aγγϵ
αβγδϵµνρσk(1)α k(2)γ k(1)µ k(2)ρ ϵ∗β(k1, λ1)ϵν(k1, λ1)ϵ

∗
δ(k2, λ2)ϵσ(k2, λ2) .

Adding over the polarizations of the outgoing photons, and using the identities, adding the factor
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of 1/2 because the outgoing photons are indistinguishable.

|M|2 = 1

2
g2aγγϵ

αβγδϵµνρσk(1)α k(2)γ k(1)µ k(2)ρ

∑
λ1,λ2

ϵ∗β(k1, λ1)ϵν(k1, λ1)ϵ
∗
δ(k2, λ2)ϵσ(k2, λ2)

=
1

2
g2aγγϵ

αβγδϵµνρσk(1)α k(2)γ k(1)µ k(2)ρ

∑
λ1

ϵ∗β(k1, λ1)ϵν(k1, λ1)
∑
λ2

ϵ∗δ(k2, λ2)ϵσ(k2, λ2)

=
1

2
g2aγγϵ

αβγδϵµνρσk(1)α k(2)γ k(1)µ k(2)ρ (−gβν)(−gδσ)

=
1

2
g2aγγϵ

αβγδgδσϵ
µνρσgβνk

(1)
α k(2)γ k(1)µ k(2)ρ .

Now, noting that when using the identity (B.15)

ϵαβγδgδσϵ
µνρσgβν = −3!δ

[α
µ′δ

β
ν′δ

γ]
ρ′g

µ′µgν
′νgρ

′ρgβν

= −3!δ
[α
µ′δ

β
ν′δ

γ]
ρ′g

µ′µgρ
′ρδν

′

β .

By applying the previous identity in the calculation of |M|2

|M|2 = 1

2
g2aγγ

(
−3!δ

[α
µ′δ

β
ν′δ

γ]
ρ′g

µ′µgρ
′ρδν

′

β

)
k(1)α k(2)γ k(1)µ k(2)ρ

=
1

2
g2aγγ(−1)

[(
δαµ′δ

β
ν′δ

γ
ρ′ − δαµ′δ

γ
ν′δ

β
ρ′ + δβµ′δ

γ
ν′δ

α
ρ′ − δβµ′δ

α
ν′δ

γ
ρ′ + δγµ′δ

alpha
ν′ δβρ′ − δγµ′δ

β
ν′δ

α
ρ′

)
δν

′

β

]
×

gµ
′µgρ

′ρk(1)α k(2)γ k(1)µ k(2)ρ

=
1

2
g2aγγ(−1)

(
2δαµ′δ

γ
ρ′ − 2δγµ′δ

α
ρ′

)
k(1)α k(2)γ k(1)µ

′
k(2)ρ

′

= g2aγγ(δ
γ
µ′δ

α
ρ′ − δαµ′δ

γ
ρ′)k

(1)
α k(2)γ k(1)µ

′
k(2)ρ

′

= g2aγγ
(
k(1)α k(2)αk(1)γ k(2)γ − k(1)α k(1)αk(2)γ k(2)γ

)
.

Using the dispersion relation for photons k(i)2 = k
(i)
α k(i)α = 0 with i = 1.2 , we get

|M|2 = g2aγ
(
k(1) · k(2)

)2
, (B.6)

but of the conservation of 4-momentum, considering that P µ is the 4-momentum of the ALP P µ =
k(1)µ + k(2)µ, thus P 2 = m2

a = 2k(1) · k(2), therefore

|M|2 = g2aγ
m4

a

4
. (B.7)

Finally, by the equation (B.4) with m1 = m2 = 0 and M = ma

d2Γaγγ

dΩ
=

1

64π2m2
a

|M|2 = g2aγ
64π2m2

a

(
m4

a

4

)
=

g2aγ
64π

(
m3

a

4π

)
, (B.8)

integrating over the solid angle we conclude that

Γaγγ =
g2aγm

3
a

64π
. (B.9)

This result is well known in the literature.
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B.3 Some mathematical results
We define the Levi-Civita symbol for n-indices as

ϵα0α1···αn−1 :=


1 if the permutation of α0, α1, . . . , αn−1 is even
−1 if the permutation of α0, α1, . . . , αn−1 is odd
0 otherwise

(B.10)

The Levi-Civita symbol is that it can be written in terms of Kronecker Deltas

ϵα0α1···αn−1 =

∣∣∣∣∣∣∣∣∣
δα0
0 δα1

0 · · · δ
αn−1

0

δα0
1 δα1

1 · · · δ
αn−1

1
... ... . . . ...

δα0
n−1 δα1

n−1 · · · δ
αn−1

n−1

∣∣∣∣∣∣∣∣∣ . (B.11)

A relevant quantity to determine is ϵαβγδgδσϵµνρσ, where gδσ is the component of the metric tensor.
We observed that

ϵαβγδgδσϵ
µνρσ = ϵαβγδgδσϵµ′ν′ρ′

σgµ
′µgν

′νgρ
′ρ = ϵαβγδϵµ′ν′ρ′δg

µ′µgν
′νgρ

′ρ , (B.12)

Now, by employing the definition of the Levi-Civita symbol in terms of a determinant with Kro-
necker deltas

ϵαβγδϵµ′ν′ρ′δ =

∣∣∣∣∣∣∣∣

δα0 δα1 δα2 δα3
δβ0 δβ1 δβ2 δβ3
δγ0 δγ1 δγ2 δγ3
δδ0 δδ1 δδ2 δδ3



δ0µ′ δ0ν′ δ0ρ′ δ0δ
δ1µ′ δ1ν′ δ1ρ′ δ1δ
δ2µ′ δ2ν′ δ2ρ′ δ2δ
δ3µ′ δ3ν′ δ3ρ′ δ3δ


∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
δαµ′ δαν′ δαρ′ δαδ
δβµ′ δβν′ δβρ′ δβδ
δγµ′ δγν′ δγρ′ δγδ
δδµ′ δδν′ δδρ′ 4

∣∣∣∣∣∣∣∣ = δδµ′

∣∣∣∣∣∣
δαν′ δαρ′ δαδ
δβν′ δβρ′ δβδ
δγν′ δγρ′ δγδ

∣∣∣∣∣∣− δδν′

∣∣∣∣∣∣
δαµ′ δαρ′ δαδ
δβµ′ δβρ′ δβδ
δγµ′ δγρ′ δγδ

∣∣∣∣∣∣+ δδρ′

∣∣∣∣∣∣
δαµ′ δαν′ δαδ
δβµ′ δβν′ δβδ
δγµ′ δγν′ δγδ

∣∣∣∣∣∣
− 4

∣∣∣∣∣∣
δαµ′ δαν′ δαρ′

δβµ′ δβν′ δβρ′
δγµ′ δγν′ δγρ′

∣∣∣∣∣∣
= δδµ′ϵαβγϵν′ρ′δ − δδν′ϵ

αβγϵµ′ρ′δ + δδrho′ϵ
αβγϵµ′ν′δ − 4ϵαβγϵµ′ν′ρ′

= ϵαβγϵν′ρ′µ′ − ϵαβγϵµ′ρ′ν′ + ϵαβγϵµ′ν′ρ′ − 4ϵαβγδϵµ′ν′ρ′ = −ϵαβγϵµ′ν′ρ′ ,

therefore
ϵαβγδgδσϵ

µνρσ = −ϵαβγϵµ′ν′ρ′g
µ′µgν

′νgρ
′ρ . (B.13)
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The term ϵαβγϵµ′ν′ρ′ can be expressed in terms of products of Kronecker Deltas, using the expres-
sions of the determinants

ϵαβγϵµ′ν′ρ′ =

∣∣∣∣∣∣
δα0 δβ0 δγ0
δα1 δβ1 δγ1
δα2 δβ2 δγ2

∣∣∣∣∣∣
∣∣∣∣∣∣
δ0µ′ δ0ν′ δ0ρ′
δ1µ′ δ1ν′ δ1ρ′
δ2µ′ δ2ν′ δ2ρ′

∣∣∣∣∣∣ =
∣∣∣∣∣∣
δα0 δα1 δα2
δβ0 δβ1 δβ2
δγ0 δγ1 δγ2

δ0µ′ δ0ν′ δ0ρ′
δ1µ′ δ1ν′ δ1ρ′
δ2µ′ δ2ν′ δ2ρ′

∣∣∣∣∣∣
=

∣∣∣∣∣∣
δαµ′ δαν′ δαρ′

δβµ′ δβν′ δβρ′
δγµ′ δγν′ δγρ′

∣∣∣∣∣∣ = δαβγµ′ν′ρ′(Generalized Kronecker delta)

= δαµ′δ
β
ν′δ

γ
ρ′ − δαµ′δ

γ
ν′δ

β
ρ′ + δβµ′δ

γ
ν′δ

α
ρ′ − δβµ′δ

α
ν′δ

γ
ρ′ + δγµ′δ

α
ν′δ

β
ρ′ − δγµ′δ

β
ν′δ

α
ρ′ .

Now, since the antisymmetrization of a tensor
(
p
q

)
in k contravariant indices is defined in its

components by

A[m1m2···mk]mk+a···mp
n1n2···nq

=
1

k!

∑
σ(m1m2···mk)

(−1)sgnσAσ(m1)σ(m2)···σ(mk)mk+1···mp
n1n2···nq

, (B.14)

where sgnσ is the sign of the permutation of the given indices. In the case of three indices we have

δ
[α
µ′δ

β
ν′δ

γ]
ρ′ =

1

3!

(
δαµ′δ

β
ν′δ

γ
ρ′ − δαµ′δ

γ
ν′δ

β
ρ′ + δβµ′δ

γ
ν′δ

α
ρ′ − δβµ′δ

α
ν′δ

γ
ρ′ + δγµ′δ

α
ν′δ

β
ρ′ − δγµ′δ

β
ν′δ

α
ρ′

)
.

From the above in the equation (B.13) we can write

ϵαβγδgδσϵ
µνρσ = −ϵαβγϵµ′ν′ρ′g

µ′µgν
′νgρ

′ρ = −3!δ
[α
µ′δ

β
ν′δ

γ]
ρ′g

µ′µgν
′νgρ

′ρ . (B.15)
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Appendix C

C.1 Differential Cross-section in Compton scattering
In a 2 → 2 scattering process, the differential cross-section is determined by

d6σ =
1

4
√

(k · p)2 −m2
km

2
p

|M|2d6Lips(s, k′, p′) , (C.1)

where kµ and pµ are the 4-momentum components of the initial particles in the scattering process,
and k′µ and p′µ are the 4-momentum components of the two particles after the scattering process.
Furthermore, mk is the mass of the particle with 4-momentum k, while mp is the mass of the
particle with 4-momentum p. We also have the square of the invariant amplitude M of the process
in question. In this expression there appears the differential Lorentz invariant phase space element.

d6Lips(s, k′, p′) = (2π)4δ(4)(k + p− k′ − p′)
d3k′

(2π)32k′0

d3p′

(2π)32p′0
, (C.2)

here s := (k + p)2, with k′µ = (k′0 = k′0,k′) and p′µ = (p′0 = p′0,p′) 1. In the Compton
scattering process, k′µ and p′µ are the 4-momentum of the photon and p′µ the 4-momentum of the
scattering particle at the end. Additionally mk = 0 (photons are massless particles). Observe that
the 4-dimensional Dirac Delta in Eq.(C.2) contains the conservation of 4-momentum, that is, the
energy conservation and linear momentum in the process, then the cross-section σ can be obtained
by integrating over phase space since the invariant amplitude M is a function depending on the
4-momenta pµ, kµ, p′µ and k′µ when integrating with the Dirac delta, must be evaluated taking into
account the conservation of 4-momentum in the process. Then without loss of information, you
can do the integral over the phase space. Noting that δ(4)(k + p − k′ − p′) = δ(3)(k + p − k′ −
p′)δ(k0 + p0 − k′0 − p′0) integrates easily into p′;

d3Lips =
1

(2π)24k′0p
′
0

δ(k0 + p0 − k′0 − p′0)d
3k′ . (C.3)

Using spherical coordinates in momentum space k′, we have that d3k′ = |k′|2d|k′|dΩ, where dΩ is
the solid angle element. Since k′µ is the 4-momentum of a photon propagating in a “vacuum”, it
satisfies the dispersion relation k′2 = k′µk

′µ = k′20 − |k′|2 = 0, so k′0 = |k′|, so in the expression
given in (C.3) we can integrate and apply the following Dirac Delta property within the integral,
where it is taken into account that d3Lips(s, k′, p′) is a Lorentz invariant when integrating.

δ[f(|k′|)] = δ(|k′| − k′0)∣∣∣∣ df
d|k′|

∣∣∣
k′=k′0

∣∣∣∣ .
1It is usual in the literature to use the components as a notation to refer to the 4-moment, which is understood by

the context.
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If we do the integral in the center of mass system (center of moments, |p′| = |k′|), given that
p′0 =

√
|p′|2 +m2

e;

δ(k0 + p0 − k′0 − p′0) = δ
(
k0 + p0 − |k′| −

√
|k′|2 +m2

p

)
.

Let f(|k′|) = k0 + p0 − |k′| − |
√
|k′|2 +m2

e, we find that∣∣∣∣∣ df

d|k′|

∣∣∣∣
k′=k′0

∣∣∣∣∣ =
∣∣∣∣∣∣1 + |k′|√

|k′|2 +m2
e

∣∣∣∣∣
k′=k′0

∣∣∣∣∣∣ =
∣∣∣∣∣
√

|k′|2 +m2
ek

′
0 + |k′|k′0√

|k′|2 +m2
ek

′
0

∣∣∣∣∣ = p′0k
′
0 + |k′||k′|
p′0k

′
0

=
p′0k

′
0 + |p′||k′|
p′0k

′
0

=
p′0k

′
0 − p′ · k′

p′0k
′
0

=
p′ · k′
p′0k

′
0

.

Note that even before the last line in the series of equalities we work with a particular result, but
at the end the form of the expression is established in any inertial reference frame 2. Then, for the
case of study

δ(k0 + p0 − k′0 − p′0) =
p′0k

′
0δ(|k′| − k′0)

p′ · k′ . (C.4)

Taking the above into account, by applying the Dirac delta property to the integral, the phase space
element is reduced to

d2Lips =
1

(2π)24k′0p
′
0

p′0k
′
0

p′ · k′k
′2
0dΩ =

k′20
(2π)24(p′ · k′)dΩ . (C.5)

Thus, the differential cross-section for the Compton scattering process is given by

d2σ

dΩ
=

1

64π2

1

(p · k)
k′20

(k′ · p′) |M|2 , (C.6)

or equivalently, by taking the account that p · k = k′ · p′;

d2σ

dΩ
=

1

64π2

k′20
(p · k)2 |M|2 , (C.7)

where |M|2 indicates that the unpolarized or unpolarized process has been taken into account, and
therefore is averaged over the possible polarizations of the particles involved, in addition to that
conservation of 4-momentum is used. Note that it has been possible to integrate because M is an
invariant.

2Sometimes when only working on the center of mass system it is not necessary to generalize, also in some articles
erroneously d3Lips = 1

(2π)24k′
0p

′
0
δ(k0 + p0 − k′0 − p′0)d

3k′ = 1
(2π)24k′

0p
′
0
(p0 − k′0 − p′0)

2dΩ =
k′
0

(2π)24p′
0
dΩ is used,

ignoring the important role played by p′0 in the integration.
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C.2 Mean optical depth and mean free path of radiation
The probability that the photon travels at least one optical depth τν is e−τν . Therefore, the average
optical depth traveled must be calculated as

⟨τν⟩ :=
∫ ∞

0

tνe
−τνdτν = 1 . (C.8)

Then, the average distance a photon can travel without being absorbed, denoted as the mean free
path ⟨iν⟩, is determined by

⟨τν⟩ = nσν⟨lν⟩ = 1 , (C.9)

wheren is the number density of scattering particle and σν is the cross-section for scattering process.
Therefore the mean free path is defined by

i = ⟨lν⟩ :=
1

nσν
. (C.10)

C.3 Mathematica code
In this part we present the code used to explore the possibility of evading the divergence of the
differential cross-section in the studied process.

\[Beta] = 0.01;

a = (1 - \[Beta]^2)^(-1/2);

NumberForm[a, 15]

Eph = 1.168*10^(-3);

ma = 10^(-6);

b = Eph/ma;

NumberForm[b, 15]

Clear[U2]

U2[a_, b_, \[Theta]1_, \[Theta]_, \[Beta]_] :=

1 - 2 a b ((1 - \[Beta] Cos[\[Theta]]) (1 - \[Beta] \

Cos[\[Theta]1])/((1 - \[Beta] Cos[\[Theta]1]) + (b/a) (1 -

Cos[\[Theta]1 - \[Theta]])))

U2AlwaysPositiveQ[\[Theta]_] :=

Resolve[ForAll[\[Theta]1, 0 <= \[Theta]1 <= 2 Pi,

U2[a, b, \[Theta]1, \[Theta], \[Beta]] > 0], Reals]

(* Find the values of \[Theta] for which U2 is always positive *)

positiveThetaValues =

Select[Range[0, 2 Pi, 0.1], U2AlwaysPositiveQ[#] &];
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(* Show results *)

If[Length[positiveThetaValues] == 0,

Print["There are no values of \[Theta] for which U2 is always positive."],

Print["Values of \[Theta] for which U2 is always positive:",

positiveThetaValues]]

Clear[U2]

U2[a_, b_, \[Theta]1_, \[Theta]_, \[Beta]_] :=

1 - 2 a b ((1 - \[Beta] Cos[\[Theta]]) (1 - \[Beta] \

Cos[\[Theta]1])/((1 - \[Beta] Cos[\[Theta]1]) + (b/a) (1 -

Cos[\[Theta]1 - \[Theta]])))

(* Plot cross sections of U2 as a function of \[Theta]1 and \[Theta] *)

Manipulate[

Plot[U2[a, b, \[Theta]1, \[Theta], \[Beta]], {\[Theta]1, 0, 2 Pi},

PlotRange -> {-1, 1},

PlotLabel -> Row[{"\[Theta] = ", \[Theta]}]], {\[Theta], 0, 2 Pi,

Pi/10}]
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