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The difference equations for axisymmetric fields are formulated in an irregular triangular mesh, and solved with a direct,
noniterative method. This allows evaluation of resonance frequencies, fields, and secondary quantities in extreme
geometries, and for the fundamental as well as higher modes. Finding and evaluating one mode for a 2000 point problem
takes of the order of 10 sec on the CDC 7600.

1 INTRODUCTION

Over the last 10 to 15 years, a number of computer
programs have been developed that find the
electromagnetic resonance frequency and evaluate
the axisymmetric fields in rf cavities with axi­
symmetric symmetry. The codes that allow this
analysis to be made in an essentially arbitrary
axisymmetric geometry (see for instance Refs. 1-3)
have the following in common: For some geo­
metries, like cavities that have a large diameter
compared to their length, and/or for modes
higher than the fundamental mode, the convergence
rate can be extremely small, or convergence may
not be achieved at all. Stated very briefly, the
reason for these problems is the fact that in all these
codes, an overrelaxation method is used to solve
a set of homogeneous linear field equations. The
properties of these equations are such that some
well developed methods for overrelaxation-factor
optimization are not applicable, and it might well
be true that the eigenvalues of the matrices for some
problems are located in such a way that even an
optimized overrelaxation scheme would still result
in unacceptably low convergence rates.

To eliminate these problems, we developed the
code SUPERFISH that uses a direct, noniterative
method to solve a set of inhomogeneous field
equations. This code is a combination of some parts
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of the code RFISH,4 some new ideas, and the
direct solution method used by Iselin in his magnet
code FATIMA. 5 In order to give a good overall
understanding of SUPERFISH in a limited space,
we do not present all detailed formulas, but do
include the description of all parts that are con­
ceptually significant, even at the expense of
reformulating and/or condensing parts of the cited
literature.

In Sections 2 and 3 we discuss separately the
structure of the difference equations, and the direct,
noniterative method used to solve a set of in­
homogeneous linear equations. In Section 4 the
basic structure of SUPERFISH is described, and
the remaining sections give some details of the
theory and of the program as it exists today, and an
outline of contemplated future developments.

2 STRUCTURE OF THE DIFFERENCE
EQUATIONS IN AN IRREGULAR
TRIANGULAR MESH

Inspection of Maxwell's equations shows that for
aE/a¢ == 0, aH/a¢ == 0, i.e., axisymmetric fields,
two independent sets of solutions can exist: one
having as only nonzero field components Ell>'

Hz, Hr; the other, H¢, Ez, Er. These two solutions
are, for equivalent boundary conditions, identical;
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we therefore talk only about the latter set.
Assuming, without loss of generality, that the
magnetic field is proportional to cos wt, and the
electric field is proportional to sin wt, and using
suitable units, Maxwell's equations can be written
as

with k = w/c, and Hand E representing the electric
and magnetic fields divided by their respective time
dependence.

We seek to find numerical solutions for some of
the eigenvalues k and associated fields of Eqs. (1a)
and (1 b) in cylindrical cavities of essentially
arbitrary shapes, with H = 0 on the axis and
possibly some other parts of the boundary
(Dirichlet boundaries), and the electric field perpen­
dicular to the remaining boundaries (Neumann
boundaries), implying infinitely conducting walls
there.

curl H = kE,

curl E = kH,

(1a)

(1b)

the z, r coordinates of interior points, for a given set
of boundary points, with an iterative process that
is similar to a numerical method used to solve
Laplace's equation. Figure 2a shows a logical
mesh, and Figure 2b a physical mesh, for one half
of an Alvarez cavity. In Figure 2a, points on heavily
drawn logical lines represent those with assigned
z, r coordinates. The two heavily drawn interior
lines are used to delineate zones with different
mesh point densities. Exterior mesh points, i.e.,
points inside the drift tube, are not shown since they
do not affect the field calculations.

2.2 The Difference Equations for Interior Points

We use the quantity H = He/> to describe the rf
fields. This somewhat unconventional choice
(usually r . He/> is used) has the ~dvantage of not
requiring any special treatment of the region close
to the· axis, since H will be proportional to r there,
whereas rH4J ~ rZ for small r. From Eqs. (1a) and

2.1 The Mesh

To solve the differential Eqs. (1a) and (1b), we
introduce an irregular triangular mesh6 in the
z-r plane. Figure 1 shows the logical mesh, with
mesh points identified by labels K and L, assuming
the integer values 1 through K max = K z, and 1
through L z . To establish a mesh that can be used
to solve the field equations for a particular geom­
etry, defined by its boundaries, the user first
assigns boundary coordinates z, r to an arbitrary
but reasonable selection of logical points K, L.
The mesh generator, described in Ref. 6, then
generates a mesh of triangles that is topologically
identical to the logical mesh, but has all boundaries
defined by mesh lines. The mesh generator finds

L
-i

I
I

FIGURE 1 Logical triangular mesh. FIGURE 2a Logical mesh for I/2-Alvarez cavity.
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FIGURE 3 Irregular triangular mesh with secondary do­
decagon.

The integrals in Eq. (3) can therefore be expressed
in terms of the value of H at the "center-mesh
point" of the dodecagon and its six nearest logical
neighbors, giving a relationship of the following
kind

(4)

6

2

3

2.3 The Treatment of Boundary Points

Turning now to mesh points on the boundaries
of the problem, it is clear that no difference equa­
tions are needed for H at boundary points when the
boundary conditions require H == 0 there. Never­
theless, we have to explore whether or not the
difference equations for such points are satisfied.
To this end, we consider first Dirichlet-boundary
points that are not on the problem axis. This kind
of boundary condition can obviously only be
imposed as a symmetry condition along a plane
defined by z == const. This implies that in the real
world a point on one side of this line has an H-value
of the same magnitude, but opposite sign, as the
symmetrically located point, and the difference
equation, Eq. (4), is clearly satisfied for every such
boundary point.

This argument cannot be applied without
elaboration for points on axis (r == 0)., and the
difference equations resulting from Eq. (3) are
in fact not satisfied for those points. To see how
this can be interpreted, we can introduce on the

6

L Hn(v" + k2~) == 0,
o

with v" and ~ depending only on the coordinates
z, r of the seven mesh points involved.

Identifying each difference equation with its
"center-point," we therefore get one difference
equation for H at every interior mesh point.

R
t

-g~~-.z

FIGURE 2b Physical mesh for I/2-Alvarez cavity.

(1 b) we obtain as the differential equation for H:

curl(curl H) == k2H. (2)

To derive difference equations for H., we use the
procedure described by Winslow6

: we first intro­
duce a secondary mesh by drawing connecting
lines between the "center of mass" of every triangle
and the center of each of the three sides of the
triangle. As a consequence, every mesh point is
now surrounded by a unique twelve-sided polygon.
This secondary mesh of dodecagons covers com­
pletely the whole problem area, and Figure 3
shows the dodecagon surrounding just one mesh
point. The difference equations for H are now
obtained by integrating Eq. (2) over the area
(in the z-r plane) of one dodecagon at a time.
This yields

fcurl(curl H) . da = f curl H . ds = k2 fH . ds.

(3)

Assuming that H behaves like a linear function of
z and r within every triangle, H inside every
triangle is uniquely determined by the values of H
at the three corner-mesh points of the triangle.
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the coordinates of the other mesh points contrib­
uting to Eq. (4) differ from K o and Lo by not more
than ± 1.

3 DIRECT, NONITERATIVE SOLUTION
OF A SET OF INHOMOGENEOUS
LINEAR EQUATIONS

oft 1 G1

oft2 G2

oft 3 G3
(5)x

:YfL2-1 GL2 - 1

:YfL2 GL2

a L2 - 1. L2

a L2 ,L2

a L2 - 1, L2 - 2 a L2 - 1, L2 - 1

aL2, L2-1

all al2

a21 a22 a23

a32 a3 3 a34

In this matrix equation, oft 1 represents a column
vector with the components H K 1, K == 1 - K 2;
oft2,avectorwithcomponentsHK2~K == 1 - K 2 ,

etc, and the Gn represent the corresponding
inhomogeneous terms. The matrix on the left side
of Eq. (5) has all zeroes except for the block
matrices aij of size K 2 x K 2' These blocks are
also sparse, the diagonal blocks containing only
three nonzero elements in every row, and the
off-diagonal blocks not having more than three in
any row. Deferring to Section 4 the discussion of
how we can cast our field evaluation problem in
the form of Eq. (5), involving all points of the
logical. mesh as well as inhomogeneous terms on
the right side of Eq. (5), we discuss now the method
used to solve Eq. (5).

We first transform all diagonal blocks into unity
matrices,· and remove all blocks to the left of the
diagonal blocks, with the Gaussian block elimina­
tion process: we multiply the equations represented
by the first row of blocks from the left by all, and

If one wrote down difference Eq. (4) for all (i.e.,
including all boundary and exterior mesh points)
H KL of the logical mesh by rows from left to right;
and if one also had some inhomogeneous terms, one
could write the resulting system of equations in the
following form:

3

1
FIGURE 4 Boundary mesh point with neighboring interior
mesh points, and secondary polygon.

f curl H . ds == O.
4'-0-1'

This means that the difference equation for H at
such a boundary point is identical to that for
interior points except that only contributions from
interior triangles are taken into account.

A very important property of the difference
equation, Eq. (4), is the fact that if we use the logical
coordinates (indices) K, L to identify mesh points,
and if K o, Lo are the coordinates of any specific
mesh point for which we write down Eq. (4), then

right-hand side of Eq. (1b) a (magnetic) current
density term j that has only an azimuthal com­
ponent. This gives 9n the right-hand side of Eq. (3)
the additional term kI, where I represents the total
current associated with the point under considera­
tion, and assumed to be concentrated there. In
our case of axis points, an azimuthal current on
the axis is, of course, without consequences, and
this whole argument could also be used to lend
legitimacy to the application of the symmetry
consideration to axis points.

When E is required to be perpendicular to
boundary-mesh lines, we consider that part of the
dodecagon surrounding a boundary point that
goes through inside problem triangles, i.e., the
polygon 0-1'-2' - 3'-4'-0 in Figure 4. Since E ==
curl H/k is required to be perpendicular to lines
4-0 and 0-1,
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then subtract from the second row the new first
row after multiplication from the left by a21.

The new set of equations is then the same as the
original one, except that a21 == 0; all == I; and
a12' Gb a22' and G2 are now modified. This
process is repeated, involving rows 2 and 3, then
3 and 4, etc. The very last step in this process is the
multiplication of the last row (modified by the
previous step) from the ·left with the modified
block matrix aL2!' L2 •

Having Eq. (5) rewritten in this form, the last
row now represents directly the solution for YeL2 •

Using this now numerically known vector in row
L z - 1 yields directly the solution for YeLz - b

and continuing this back-substitution process
yields the numerical values of all components of
all block vectors Yen.

It is important to recognize the fact that this
particular fast direct method to solve inhomo­
geneous linear equations can be used only if they
can be cast in the form of Eq. (5), and if the matrix
on the left side of Eq. (5) is nonsingular.

4 CALCULATION OF FIELDS AND
RESONANCE FREQUENCIES IN
SUPERFISH

In order to allow application of the direct linear
equation solution described in Section 3, we have
to include in an artificial way in the system of
equations also those points that are part of the
logical mesh, but are external to the actual field
solution problem. How this is done, and the
treatment of points on Dirichlet boundaries, is
discussed in Section 4.1; the creation of the in­
homogeneous terms is discussed in Section 4.2,
and the resonance frequency determination is
discussed in Section 4.3.

4.1 Treatment of Exterior Points and Points on
Dirichlet Boundaries

The simplest and most practical way to include
exterior points without affecting the actual field
equations, and without causing the matrix on the
left side of Eq. (5) to become singular, is to let the
equation for every exterior point read H exterior == 0,
and to make all couplings to other equations zero
by setting the corresponding coefficients equal to
zero also. In other words, if no is the index identify­
ing an exterior point (not a block!) in the overall
H-vector on the left side of Eq. (5), one simply sets

all elements of row no and column no of the matrix
in Eq. (5) equal to zero, with the exception of the
no, no diagonal element, which is set equal to one.
The no-element of the inhomogeneous contribu­
tion vector on the right side of Eq. (5) is set equal
to zero also. The logic of the equation-solving
routine is arranged in such a way that the thus­
introduced zeroes are actually never used in
multiplications,just as the other zeroes in the sparse
matrices are never used as multipliers either. Points
on Dirichlet boundaries are treated in exactly the
same way. However, in contrast to exterior points,
their z-r coordinates do enter into the expressions
for J!;" ~ in Eq. (4) involving the other point(s) of
the triangles that have one or more Dirlchlet­
boundary points at their corners.

4.2 Generation ofInhomogeneous Termsfor Eq. (5)

In order to turn the set of homogeneous difference
equations [Eq. (4)] into a well-posed set of in­
homogeneous field equations, one could be tempted
to introduce at one mesh point a driving (magnetic)
current, as discussed in Section 2.3. That would
be an unwise procedure when one is close to a
resonance, since the matrix in Eq. (5) is singular
for every resonance frequency, leading, as it must,
to infinite fields. Instead, we prescribe that an
appropriately chosen off-axis mesh point has. the
field value one and in effect remove the difference
equation for that point from the system ofdifference
equations. To do this without destroying the struc­
ture of the field equations, we can proceed in one
of the following two ways:

1) If the chosen point is identified by its index
nl in the overall H vector, we set all matrix elements
in row nl of the matrix in Eq. (5) equal to zero,
except for the diagonal element n1, nb which is
set equal to 1. In the vector G on the right-hand
side of Eq. (5), all elements are set equal to zero,
except the n1-element is set equal to one. Column n1

of the matrix is left unchanged.
2) Every matrix element in row nl and in column

n 1 is set equal to zero, except the n1, n1 diagaonal
element is set equal to one. The vector on the right­
hand side of Eq. (5) is set to equal minus the
original column nl of the matrix, except for ele­
ment nb which is set equal to one.

The second procedure treats the point with the
fixed field value in the same way as exterior points
and points on Dirichlet boundaries, and in



218 K. HALBACH AND R. F HOLSINGER

4.3 Resonance Frequency Determination

The driving current II introduced above depends
on k2 through the coupling coefficients in the
difference Eq. (4), and the resonance condition is
characterized by

since then there is no difference between the value
of H n1 as calculated from the difference equation
for that point, and the prescribed value used there
to solve for the fields; i.e., the difference equations
are 'satisfied for all points of consequence. To
find the value(s) of k2 for which Eq. (6) is satisfied,

5 PROPERTIES OF I 1(k
2

) AND
INTRODUCTION AND PROPERTIES
OF D(k 2

)

To obtain an understanding of some of the proper­
ties of the function I 1(k 2

), and later D(k2
), we will

go back to the differential equations, Eqs. (la) and
(lb), with Eq. (lb) amended on the right side by the
magnetic current density i, assumed to be constant
over a small area surrounding the driving point.
In the process of deriving some formulas, we have
to evaluate integrals like JH . i1 . dv, and set this
equal 2nr1 . h1 . 11 where 11 is the total driving
current; rb the distance of the dr~ving point from
the problem axis; and hl' the magnetic field averaged
over the region where j 1 =I O. The association
between h1 resulting from this continuum theory
and the value of H at a mesh point in the repre­
sentation by the difference equations is complicated
by the fact that h1 has a logarithmic singularity
when the area where j =I 0 is reduced to zero (for
fixed I 1)' While it seems reasonable to set h1

equal to Hat the driving point, or the value resulting
from averaging H over the dodecagon associated
with the driving point, it is clear that the quantita­
tive relationships developed below will describe
only approximately the relationships between the
quantities derived from the difference equations.
However, it is also clear that the general behavior
of the functions of interest is correctly described
by the results derived from the continuum theory
below.

Adding the term i1 to the right side of Eq. (lb)
gives

curl E = kH + i1. (7)

Forming the scalar product of both sides of this
equation with H, and subtracting from that
Eq. (la), after being multiplied by E, yields:

H curl E - Ecurl H == div(E x H)

= kH2+ j1H - kE2
.

we can combine the above-described "function
generator" for J 1(k 2

) with a numerical root-finding
algorithm, such as the secant method, or a parabola
fit method. The latter method is used in the present
stage of code development. But we expect that it
will be useful to use a root-finding algorithm that
takes into account some of the properties of
I 1(k 2

) that are described in Section 5. Figure 5
depicts a flow diagram of the major parts of
SUPERFISH.

YES

(6)

K2

COUVERGENCE
NO

SECONMRY
QUANTITIES
DERIVED
FROM FIELDS

FIGURE 5 Flow diagram of SUPERFISH.

addition nonzero terms are generated on the right­
hand side ofEq. (5). We therefore use that procedure
in the code.

In contrast to the explicit introduction of a
driving current, with procedures (1) and (2) the
matrix on the left side ofEq. (5) is well conditioned
even for resonance frequencies.

If we take the original difference equation for the
point with the prescribed field value and solve for
the field value at that point, using the solution
values of the field at the neighbor points, we will
get a value different from the prescribed value,
except at resonance. This difference can be inter­
preted as being proportional to the current I 1

necessary at that point to drive the cavity to the
prescribed amplitude at the point with the pre­
scribed field value. For this reason we will refer to
this point as the driving point.
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(9)

(10)

Integrating this over the whole problem volume
gIves

5div(E x H)dv == f(E x H) . da

= 2nr1h1I1 - k 5(£2 - H 2 )dv.

(8)

Since E x H is either zero on the problem bound­
ary, or perpendicular to the boundary normal,
f (E x H)da == 0, and we get

D(e) == 2nr1h1k11 = R(e) - k2f H 2 dv ' ' ,

R(e) = Jk
2
£2dv = J(curl Hf dv

f H 2 dv f H 2 dv .

The new function D(k 2
) has the property that its

value does not depend on the scaling of h1, or 11

if that is the quantity that one wants to consider
as the primary variable.

To obtain more information about the behavior
of 11(k

2), we now calculate dI 1/d(k2) == 1'1' To this
end, we take the derivatives with respect to k2

of Eqs. (la) and (7). Indicating derivatives with
respect to k 2 by primes, we get

curl H' == kE' + E/2k (11)

curl E' == kH' + H/2k + fl' (12)

It should be noted that for our procedure of field
evaluation, H' == 0 on Dirichlet boundaries, be­
cause H == 0 there for all k 2

• Similarly E' is perpen­
dicular to Neumann boundaries since the
component of E parallel to a Neumann boundary
is zero for all k 2

. We now consider

div(E x H' - E' x H) == H' . curl E - E· curl H'

- H . curl E' + E' curl H.

Using for the curl expressions the appropriate
right sides of Eqs. (la), (7), (11) and (12) yields

div(E x H' - E' x H) == H' . jl - H . fl
- (£2 + H2)/2k.

Integrating this over the problem volume gives,
as in Eq. (8), zero on the left side, yielding

2nr1k(h'l I 1 - hI1'1) = 5(£2 + H 2 )dv/2. (13)

We intentionally made no a priori assumptions
whether we consider h1 or 11 fixed when k2 is
changed. However, for the case considered so

far, h'l == 0, and we can immediately deduce the
following conclusions from Eq. (13):

h1I'1 < 0 (Foster's theorem). (14)

This means that for fixed hI, between every two
resonances (I 1(k 2

) == 0) 11(k 2
) must have a singular­

ity such that the sign of 11(k 2
), and therefore also

of D(k 2
), changes.

At a resonance, f £2 dv == f H 2 dv [see Eqs. (9)
and (10)], giving f H 2 dv on the right side ofEq. (13).
We therefore get from Eqs. (13), (9), and (10) at a
resonance (I 1 == 0):

2nrlh kI'l
--::---_1_ == D'(k 2 ) == R'(k 2

) - 1 == -1 (15)f H 2 dv . .

Since 11 (k 2
) has a singularity between resonances,

it is more convenient to study D(k 2
) in the vicinity

of these singularities. To this end, we first consider
R(k 2

). According to Eq. (9), R(k2
) == k2 at every

resonance, and R' == 0 at resonance follows from
Eq. (15). Since R cannot be negative, R(k2

) must
look qualitatively as indicated in Figure 6 and
R - k 2

- == D(k 2
) as shown in Figure 7. An important

consequence is that between resonances, D(k2
)

goes through zero, and this sign change must take
place where I 1(k 2

) has a singularity.
To study D(k 2

) in the vicinity of this root of
D(k2

) that does not represent a resonance, we take
advantage of the fact that D(k 2

) is independent of
the scaling of the field and current quantities. We
can therefore consider 11 as given and kept
constant, and consider h1 as the k2-dependent

y

resona nee k2

~--JIV-----+--------~__~ k2

FIGURE 6 Graphical representation of properties of R(k 2 ).
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resonance k2

dD/dk2
: -1

FIGURE 7 Graphical representation of properties of D(k2
)

quantity that causes D(k2
) = o. At this "between­

resonallce root," it follows from Eqs. (9) and (10)
that JE2 dv = JH 2 dv, giving again JH 2 dv as the
right side of Eq. (13). We therefore get from that
equation

2nr kI· h'
1 1 1 = D'(k2 ) = R'(k2 ) - 1 = 1 (16)JH 2 dv .

A possible use of Eqs. (15) and (16) will be briefly
described at the end of Section 6.3.

6 PROGRAM STATUS AND FUTURE
DEVELOPMENT

The computer program was originally written for
the CDC 7600 operating under the Livermore
Time-Sharing System (LTSS), and we describe
here that particular version.

6.1 Computer Time and Storage Requirements

The CPU time required for a field evaluation is
dominated by the tjme required to invert the
block matrices. For the system of equations
described at the beginning of Section 3, the time
used for inversion of the block matrices is pro­
portional to K~ . L 2 • When K 2 > L 2 , the difference
equations are arranged -along columns of the
logical mesh, leading to this expression for the
CPU time

T=T1N
2

8, (17)

with N representing the total number of logical
mesh points, and 8 the smaller of the two numbers
K 2/L 2 , L 2/K 2 • For the CDC 7600 under LTSS,
T1 ~ 0.75 j.1sec.

With the present system to find the roots of
I 1(k 2

), it takes 3 to 6 field iterations to determine
a resonance frequency accurately.

The storage requirements for the program are
approximately 11· N exclusive of the memory
required for the modified off-diagonal block
matrices, needed for the back-substitution. These
matrices represent N 3

/
2

• 8 1
/
2 words, too much to be

accommodated in core for N > 1500. For larger
problems, the disk has to be used. However,
S. B. Magyary (LBL) has pointed out that one
needs to store only two such matrices when one
has to calculate only I 1(k 2

) (and not the complete
field map), provided the driving point is associated
with the last row of block matrices on the left side
of Eq. (5). In that case, the large amount of storage
is not needed until one has a converged resonance
frequency.

6.2 Accuracy_

Since we know from our experience with the
RFISH code and the magnet code POISSON that
the program is unlikely to have problems related
to curved boundaries, we have made analytically
testable runs so far only for empty pill-box cavities.

To see whether this code has any problems with
extreme geometries, we ran an empty box of 5 cm
length and 150 cm radius with 1267 points. Without
any difficulty, the code returned the fundamental
frequency correct to all five printed digits.

Much more extensive runs were made for an
empty box 60 cm long and a radius of 88 cm. The
mesh point separation was 2 cm in both the axial
and radial direction, giving a total of 1395 points.
The fundamental frequency of this cavity is
130.389 MHz and is reproduced by the code with
an error of 1 part in 10,000, while the stored energy
is reproduced' to an accuracy of 1 part in 3000. A
much more severe test is the evaluation of higher
modes. Resonance frequency number eight is
582.44 MHz, and is returned by the code as
583.59 MHz;· the stored energy calculated by the
code is 3%smaller than the correct value. Figure 8
shows the pattern of electrical field lines (rH =
const) for this mode. It should be noted that the
distance between an extreme value of rH and the
next axial node is only 7.5 mesh spacings. Modes
29 and 30 represent an even more extreme test
The analytical frequencies are 1179.9 MHz and
1186.3 MHz, and the code~produced frequencies
are 1183.0 MHz and 1196.6 MHz, while the energJ
of these modes is off by approximately 10 %
Considering the fact that mode 29 has six radia
and one axial nodes, and mode 30 has three radia
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l------------------.l~z

FIGURE 8 Electric field lines (rH = canst) for mode No.8
in test cavity.

and four axial nodes, these numbers are sur­
prisingly good. The closeness of the two resonances
did not cause any problems. "Turning on" the
partial and complete pivoting of the matrix
inversion routines, or iterating on the field re­
siduals of the solution of the difference equations,
did not change any of these numbers. However,
increasing the number of mesh points caused a
marked improvement of the accuracy of the
frequency and the stored energy, indicating that the
numerical errors are due to mesh size, and not
round-off errors.

6.3 Secondary Quantities, and Near Future
Developments

The program calculates now, or will calculate in
the very near future, the following secondary
quantities: stored energy; transit time factors;
energy dissipated on designated surfaces; IH Imax,
IE Imax on designated surfaces; shunt impedance;
Q; and frequency perturbation by drift tube stems.

We also plan to calculate and print out co­
efficients that indicate how the movement of
designated surfaces perturbs the resonance fre­
quency. These quantities were calculated by RFISH
and proved extremely valuable.

To simplify the work on high-order modes, we
intend to generate printout plots of node lines
(i.e., H == O-lines) and/or plots of points with local
extrema of r H, and II (k 2

) and D(k2
) plots.

To simplify the design of cavities that have to
have a predetermined resonance frequency, we
intend to run the code with that fixed frequency
(possibly modified by drift tube stems) and to
accomplish I 1 == 0 by moving or deforming a
designated boundary. The techniques necessary
to do this are already used in the magnet design
code MIRT7 and can easily be incorporated in
SUPERFISH.

To reduce the number of iterations necessary
to find a resonance frequency, we plan to employ
a root-finding routine that uses the properties of
D(k2

) expressed by Eqs. (15) and (16). If this code is
used extensively to find high-order modes, it
might also be profitable to attempt to develop a
mode pattern analysis and prediction routine.t

6.4 Advantages of SUPERFISH

The main advantage of the code is the capability
to solve problems that other codes cannot solve
at all, or only with great expenditure of computer
time. In addition, the code is quite fast, requiring
only about 1 sec per iteration on the frequency for
the test problem discussed above. With five
iterations and the time used to calculate miscel­
laneous other quantities, one has a complete
solution in 6 sec. The irregular triangular mesh,
while not allowing as many mesh points as a
square mesh, has the advantage of allowing the
definition of boundaries by mesh lines, and to
produce a mesh with a large density of mesh
points in regions where the problem requires high
resolution.

6.5 Disadvantages of SUPERFISH

The drawback associated with the irregular tri­
angular mesh is the fact that one has to generate
such a mesh. This extra step can slow down the

t Since submission of this report for printing, the more
sophisticated root-finding routine has been developed and is
working very well. Work on the mode prediction algorithm has
started and looks very promising.
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total process of receIvIng the desired answers.
This problem has been partly reduced by the
creation of the code AUTOMESH, developed
by one of us (R.F.H.) while 'at CERN. This code
optimizes automatically the coordination between
space-boundary coordinates and logical coordi­
nates, provided that one is satisfied with a uniform
mesh point density in a limited number of distinct
regions. At the time of writing this paper, an
effort is being undertaken at LASL by D. Swenson,
w. Jule, and one of us (R.F.H.) to improve the
whole process of d~ta input and mesh generation.

There is one basic drawback associated with the
necessity of having a driving point in the problem:
if one happend to choose its location such that it is
on a H == 0 line for the problem under considera­
tion computational problems would result. For
that reason, it is advisable to put the driving point
on a Dirichlet boundary. When .the code detects
the computational difficulty, it can switch the
driving point to a more favorable neighboring
point on the boundary, thus eliminating the
problem.
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