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Astrophysical Signatures of Konoplya-Zhidenko Black Holes: Gravitational Lensing

and Thermodynamics

İzzet Sakallı 1, ∗ and Erdem Sucu 1, †

1Physics Department, Eastern Mediterranean University,

Famagusta, 99628 North Cyprus, via Mersin 10, Turkiye

(Dated: April 10, 2025)

This study investigates the astrophysical implications of deformed black hole geometries, specif-
ically focusing on the Konoplya-Zhidenko (KZ) metric which introduces parametric deviations to
the standard Schwarzschild solution. We analyze how the deformation parameter η modifies key
physical properties across multiple domains: thermodynamic behavior, gravitational lensing char-
acteristics, and quantum-corrected entropy. Our results demonstrate that even modest deviations
from general relativity produce significant alterations in Hawking temperature profiles, event horizon
structure, and black hole stability conditions. Through application of the GB theorem, we derive
weak deflection angles in vacuum and plasma environments, revealing enhanced gravitational lensing
effects particularly prominent at small impact parameters. The inclusion of exponential correction
entropy formalism further elucidates how quantum modifications influence critical thermodynamic
quantities including internal energy, Helmholtz free energy, and heat capacity. Additionally, using
the Jacobi metric approach, we extend our analysis to massive particles, showing that velocity-
dependent corrections to deflection angles emerge naturally from the deformed geometry. These
findings collectively contribute to a more comprehensive understanding of modified gravity theories
and establish a theoretical framework for empirical verification through high-precision astrophysical
observations of black hole systems.

Keywords: Black holes; Deformed spacetime; Gravitational lensing; Quantum thermodynamics; Konoplya-
Zhidenko metric

I. INTRODUCTION

Black holes (BHs) represent the quintessential astro-
physical laboratories for investigating fundamental phys-
ical theories across extreme gravitational regimes. These
enigmatic objects, characterized by their event horizons
and gravitational singularities, continue to challenge our
understanding of spacetime geometry, general relativity
(GR), and quantum field theory in curved backgrounds
[1–3]. Recent observational breakthroughs—including
gravitational wave detections by LIGO-Virgo-KAGRA
collaborations and the remarkable BH shadow imaging
by the Event Horizon Telescope (EHT)—have trans-
formed these formerly theoretical constructs into empiri-
cally accessible entities [4–6]. Despite these advances, sig-
nificant questions persist regarding potential deviations
from the standard Schwarzschild and Kerr metrics that
might arise from quantum gravity effects, modified grav-
ity theories, or exotic matter distributions.
The KZ metric offers a particularly valuable framework

for systematically investigating parameterized deviations
from classical GR solutions [7, 8]. This metric introduces
modifications to the standard Schwarzschild spacetime
through a power series expansion of the mass function,
effectively parameterizing potential quantum gravity cor-
rections while preserving asymptotic flatness. The pri-
mary advantage of the KZ approach lies in its model-
independent characterization of deviations, which allows
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for systematic exploration of a broad class of modified
gravity theories without commitment to specific theoreti-
cal frameworks. By introducing the deformation parame-
ter η, which quantifies departures from the Schwarzschild
solution, the static KZ (SKZ) metric enables a controlled
investigation of how such modifications affect astrophys-
ical observables [9, 10].

Gravitational lensing represents one of the most pow-
erful probes of spacetime geometry and serves as a criti-
cal observational window into BH physics [11–16]. When
light from distant sources traverses the vicinity of mas-
sive objects, the curved spacetime geometry induces de-
flection, amplification, and multiple imaging effects that
carry distinctive signatures of the underlying gravita-
tional field [17, 18]. Classical lensing theory, developed
within the framework of GR, has achieved remarkable
success in predicting and explaining observed phenom-
ena around galaxies, galaxy clusters, and stellar-mass
objects [19, 20]. However, the potential influence of mod-
ified gravity effects on lensing observables remains an
active frontier of investigation. In the context of SKZ
BHs, gravitational lensing serves as an ideal probe of
the deformation parameter η, particularly in strong field
regimes where deviations from GR become more pro-
nounced [21, 22]. Calculating deflection angles consti-
tutes a fundamental aspect of gravitational lensing anal-
ysis. Traditional approaches based on geodesic equations
provide a direct connection between spacetime geometry
and light propagation paths. In recent years, the appli-
cation of topological methods, particularly the Gauss-
Bonnet (GB) theorem, has emerged as a powerful al-
ternative technique for calculating weak deflection an-
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gles [23–26]. This approach contextualizes the deflection
phenomenon as a global topological effect rather than
merely as a local geodesic property, offering computa-
tional advantages and conceptual insights. Our investiga-
tion employs both classical geodesic-based perturbative
techniques and the GB approach, allowing for compre-
hensive cross-validation of results while highlighting the
complementary aspects of these methodologies.

Magnification properties represent another critical di-
mension of gravitational lensing phenomena that car-
ries distinguishing signatures of the underlying spacetime
geometry [11, 27, 28]. When light bundles propagate
through curved spacetime, they experience differential
focusing and shearing that manifests as magnification
or demagnification of source brightness [29]. For SKZ
BHs, these effects are notably influenced by the defor-
mation parameter η, which modifies the effective grav-
itational potential and consequently alters the conver-
gence properties of light rays. The study of tangential
and radial magnification components provides valuable
insights into the formation of critical curves and caus-
tic structures, which in turn determine the multiplicity
and brightness of gravitationally lensed images. These
magnification signatures offer potentially observable dis-
criminants between standard GR BHs and their modified
counterparts.

The presence of plasma in astrophysical environments
introduces additional complexity to gravitational lens-
ing phenomena [30, 31]. Unlike vacuum propagation,
light rays traversing plasma media experience frequency-
dependent refractive effects that couple with the underly-
ing spacetime curvature to produce chromatic lensing sig-
natures [32]. This plasma-gravity interaction manifests
as frequency-dependent corrections to deflection angles,
potentially offering distinctive observational signatures of
modified gravity effects [33]. Our analysis incorporates
these plasma effects through an optical metric approach,
revealing how the interaction between the KZ deforma-
tion parameter η and the plasma frequency alters lensing
observables across different wavelengths.

BH thermodynamics constitutes another fundamental
domain in which modified gravity effects induce signif-
icant alterations in classical predictions [34–36]. The
pioneering work of Bekenstein and Hawking established
the connection between the BH event horizon area and
entropy, along with the identification of surface grav-
ity with temperature [37]. These relationships form the
foundation of BH thermodynamics, providing a crucial
bridge between gravitational physics and quantum the-
ory [38–41]. For SKZ BHs, the deformation parameter η
introduces significant modifications to the horizon struc-
ture, Hawking temperature profile, and overall thermo-
dynamic behavior. These modifications potentially in-
fluence critical phenomena such as BH phase transitions,
evaporation dynamics, and ultimate fate. Incorporation
of quantum corrections to the BH entropy represents an
essential refinement to the thermodynamic framework.
Various approaches, including string theory, loop quan-

tum gravity, and effective field theory, suggest correc-
tions to the standard Bekenstein-Hawking area law. The
exponential correction entropy formalism, which we em-
ploy in our analysis, introduces quantum modifications
through a correction term proportional to e−S0 , where S0

represents the classical entropy [42, 43]. This approach
captures leading-order quantum effects while maintain-
ing analytical tractability, allowing for systematic inves-
tigation of how quantum corrections influence thermody-
namic quantities such as internal energy, Helmholtz free
energy, and heat capacity.

Our primary motivation for investigating static SKZ
BHs stems from their unique position at the intersec-
tion of theoretical gravity, quantum physics, and obser-
vational astrophysics. By examining both gravitational
lensing and thermodynamic properties within a unified
framework, we aim to establish comprehensive signatures
that could potentially distinguish these modified space-
times from their classical counterparts. The deformation
parameter η serves as a quantitative measure of deviation
from GR, potentially encapsulating effects from quan-
tum gravity, higher-curvature corrections, or exotic mat-
ter fields. Through systematic analysis of how this pa-
rameter influences observable phenomena, we seek to es-
tablish observational constraints and theoretical insights
into physics beyond the standard BH paradigm.

The present investigation aims to achieve several
specific objectives: (1) derive analytical expressions
for deflection angles of light and massive particles in
SKZ spacetime using complementary methodological ap-
proaches; (2) characterize magnification properties and
critical curve structures induced by the deformation pa-
rameter; (3) analyze plasma-induced corrections to grav-
itational lensing in modified gravity backgrounds; (4) ex-
amine thermodynamic behavior with particular focus on
quantum-corrected entropy formulations; and (5) estab-
lish constraints on the deformation parameter η based on
theoretical consistency requirements and observational
implications. Through this comprehensive analysis, we
seek to improve the understanding of the effects of mod-
ified gravity on BH physics while establishing a theoret-
ical foundation for future observational tests using next-
generation astronomical facilities.

The paper is organized as follows: Section II provides
a comprehensive review of the SKZ BH geometry, es-
tablishing the mathematical foundation for subsequent
analyses. Section III develops a perturbative formula-
tion for gravitational lensing in SKZ spacetime, deriving
analytical expressions for deflection angles through clas-
sical geodesic approaches. Section IV extends this anal-
ysis to magnification properties, characterizing how im-
age distortions and brightness amplifications are modified
by the deformation parameter. Section V employs the
GB theorem to compute topological corrections to grav-
itational lensing, offering an alternative perspective on
deflection phenomena. Section VI incorporates plasma
effects into the lensing formalism, revealing frequency-
dependent signatures in deflection angles. Section VII
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investigates the behavior of massive particles in SKZ ge-
ometry through the Jacobi metric approach, demonstrat-
ing velocity-dependent corrections to gravitational deflec-
tion. Section VIII examines thermodynamic properties
with emphasis on quantum-corrected entropy formula-
tions, analyzing stability conditions and phase structures.
Finally, Section IX synthesizes our findings, discusses
their astrophysical implications, and outlines directions
for future research.

II. SKZ BH GEOMETRY

This section presents a comprehensive formulation of
the SKZ BH geometry, establishing the mathematical
foundation upon which subsequent analyses of thermo-
dynamic properties and gravitational lensing phenom-
ena are constructed. Following the framework initially
developed by Konoplya and Zhidenko [7], we systemati-
cally implement parametric deformations to the standard
Schwarzschild solution while preserving asymptotic flat-
ness.
We begin with the standard Schwarzschild BH line el-

ement characterized by mass M :

ds2s = fs(r)dt
2 − 1

fs(r)
dr2 − r2dΩ2, (1)

where fs(r) ≡ 1−2M/r and dΩ2 ≡ dθ2+sin2 θdϕ2 repre-
sents the line element of a unit sphere. The fundamental
innovation of the KZ approach [44] lies in the introduc-
tion of parametric deformations to the mass term through
a power series expansion:

M →M +
1

2

∞
∑

i=0

ηi
ri
, (2)

which consequently modifies the metric function fs(r) as:

fs(r) → 1− 2M

r
−

∞
∑

i=0

ηi
ri+1

. (3)

To maintain consistency with the asymptotic behav-
ior of the Schwarzschild solution at large distances, we
impose the constraint η0 = 0. Furthermore, experimen-
tal constraints from the parameterized post-Newtonian
formalism [45] derived from Cassini data [46] and Lunar
Laser Ranging measurements [47] establish:

η1
2

⩽ 2.3× 10−4. (4)

Based on these theoretical and observational con-
straints, we set η1 = 0 and focus our analysis on a single
deformation parameter in the mass term:

M →M +
η

2 r2
, (5)

where η represents the KZ deformation parameter, math-
ematically equivalent to setting ηi = η δi 2 in the general

expansion. This formulation yields the line element of
the Static KZ BH [9]:

ds2 =

(

1− 2M

r
− η

r3

)

dt2

−
(

1− 2M

r
− η

r3

)−1

dr2 − r2dΩ2, (6)

with the corresponding metric function:

fKZ(r) ≡ 1− 2M

r
− η

r3
. (7)

The event horizon, defined by the condition fKZ(r) =
0, is determined by solving a cubic equation that yields
three potential solutions ri(η). A straightforward analy-
sis demonstrates that r2(η) never constitutes a physical
horizon [9]. For the remaining solutions r1(η) and r3(η),
there exists a critical threshold ηmin = −32/27M3 be-
low which the SKZ spacetime would manifest as a naked
singularity, violating the cosmic-censorship conjecture.
For parameter values within the range −32/27M3 ≤

η < 0, both r1(η) and r3(η) represent physical horizons,
with r1(η) functioning as the event horizon. In contrast,
for positive values of η, only r1(η) constitutes a physical
horizon. Throughout our subsequent analysis, we denote
the event horizon radius as rh(η) ≡ r1(η) and restrict our
investigation to the parameter domain η ≥ ηmin.
The explicit mathematical expressions for the three so-

lutions to the horizon equation are:

r1(η) =
1

3

(

2M +
4 3
√
2M2

A(η)
+
A(η)

3
√
2

)

, (8)

r2(η) =
1

3

(

2M − 2 3
√
2(1 + i

√
3)M2

A(η)
− (1− i

√
3)A(η)

2 3
√
2

)

,

(9)

r3(η) =
1

3

(

2M − 2 3
√
2(1− i

√
3)M2

A(η)
− (1 + i

√
3)A(η)

2 3
√
2

)

,

(10)

where

A(η) ≡ 3

√

16M3 + 27η + 3
√
3
√

32M3η + 27η2. (11)

The KZ deformation parameter η exerts significant in-
fluence on the event horizon location, enabling SKZ BHs
with identical ADMmassM to manifest different horizon
radii. The event horizon area, given by A(η) = 4πr2h(η),
increases systematically with increasing deformation pa-
rameter η.
It is crucial to emphasize that the SKZ metric does

not represent a solution to Einstein’s field equations
but rather constitutes a parametric deviation from the
Schwarzschild geometry that preserves asymptotic flat-
ness while introducing controlled modifications to the
near-horizon region. This approach enables systematic
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investigation of potential deviations from GR without
commitment to specific alternative gravitational theories
[48].
The computation of Hawking temperature for the SKZ

BH proceeds from the surface gravity formulation:

TH =
f ′KZ(rh)

4π
(12)

Evaluating this expression at the event horizon yields:

TH =
M

2πr2h
+

3η

4πr4h
(13)

FIG. 1: Variation of Hawking temperature with respect
to event horizon radius (rh) for different values of the
deformation parameter η, with mass parameter fixed at

M = 1. The plot demonstrates that positive
deformation parameters significantly enhance thermal
radiation for small BHs, introducing temperature
profiles that deviate markedly from the classical

Schwarzschild behavior.

Figure 1 illustrates the functional dependence of Hawk-
ing temperature TH on the radius of the event horizon
rh at different values of the deformation parameter η.
For the classical Schwarzschild BH (η = 0, blue curve),
the temperature exhibits an inverse proportionality rela-
tionship with horizon radius, manifesting elevated tem-
peratures for microscopic BHs. However, as the defor-
mation parameter increases (η = 0.5, 1), the tempera-
ture profiles undergo significant modification, exhibiting
more rapid growth at small horizon radii compared to
the classical case. This behavior reveals the profound
thermodynamic implications of the deformation parame-
ter, suggesting that quantum gravity or modified gravity
effects potentially become increasingly significant below
certain critical length scales. The enhanced temperature
gradients for positive values η indicate that geometric de-
formations potentially accelerate the evaporation process
by intensifying radiative emissions, particularly for small

BHs where geometry modifications near the horizon exert
their strongest influence.

III. PERTURBATIVE ANALYSIS OF

GRAVITATIONAL LENSING IN SKZ BH

SPACETIME: CLASSICAL APPROACH

In this section, we develop a perturbative formulation
for analyzing the trajectories of test particles within the
gravitational field of a SKZ BH. Our primary objective is
to derive a second-order differential equation for the in-
verse radial coordinate, defined as u = 1/r, as a function
of the azimuthal angle ϕ. This methodological approach
extends previous investigations by Briet and Hobill [49]
(and recently by Sucu and Sakallı [43]) on null geodesics,
while specifically focusing on determining the light de-
flection angle in the presence of the KZ parametric de-
formation.
The equations of motion governing this system can be

derived either by varying the Lagrangian associated with
massless particles or directly from the null geodesic equa-
tions [50]. Given the inherent spherical symmetry of the
metric (6) and considering planar motion at θ = π/2, we
can simplify our analysis by neglecting variations in the
polar angle. Consequently, the equations of motion are
expressed as:

E ≡fKZ
dt

dλ
, (14)

J ≡r2 dϕ
dλ
, (15)

0 =
d

dλ

(

2f−1
KZ

dr

dλ

)

+ (fKZ)
′

(

dt

dλ

)2

− (f−1
KZ)

′

(

dr

dλ

)2

− 2r

(

dϕ

dλ

)2

. (16)

In this formulation, the quantities E and J represent
conserved constants corresponding to the photon’s en-
ergy and angular momentum, respectively. The geodesic
path is parameterized by an affine parameter λ, with the
prime symbol denoting differentiation with respect to r.
The impact parameter, a critical element in gravitational
lensing studies [43], is defined as b = J

E .
Through substitution of Eqs. (14) and (15) into Eq.

(16) and introducing the transformation u = 1/r, while
redefining ϕ as the independent variable, we derive a
second-order differential equation for the inverse radial
distance u:

d2u

dϕ2
+ fKZu = −1

2
u2

d

du
(fKZ) , (17)

This formulation, when developed using the specific
form of fKZ for the SKZ BH, yields the following differ-
ential equation:
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d2u

dϕ2
+ u = 3Mu2 +

5

2
ηu4. (18)

The structure of Eq. (18) reveals how the deformation
parameter η introduces higher-order perturbations to the
standard Schwarzschild lensing equation, manifesting as
a u4 term that significantly modifies light propagation in
strong gravitational fields.
To solve this equation analytically, we employ a per-

turbative approach by expanding the solution in a power
series:

u = u0 + εu1 + ε2u2 + · · · , (19)

This expansion allows us to approximate the solution
to any desired order in the small parameter ε, which
physically corresponds to the strength of gravitational
interaction. For the zeroth-order or homogeneous equa-
tion:

d2u0
dϕ2

+ u0 = 0, (20)

The solution is u0 = ℧ cosϕ, where ℧ represents the in-
verse impact parameter (℧ = 1/b), corresponding at this
level to the reciprocal of the closest approach distance in
the unperturbed trajectory. Following this zeroth-order
approximation, the equations for higher-order corrections
are systematically derived:

d2u1
dϕ2

+ u1 = 3℧ cos2 ϕ, (21)

d2u2
dϕ2

+ u2 = 6 cosϕu1 +
5

2

η℧2 cosϕ4

M2
, (22)

These differential equations admit analytical solutions,
yielding the first-order and second-order corrections:

u1 =
℧ (3− cos(2ϕ))

2
, (23)

u2 =
℧

48M2

(

9M2 cos(3ϕ)− 8℧
(

cos4(ϕ)

+4 cos2(ϕ)− 8
)

η + 180 sin(ϕ)ϕM2
)

. (24)

Combining these results according to Eq. (19), we ob-
tain a comprehensive perturbative solution for the tra-
jectory:

u

℧
≃ cosϕ+

1

2
℧
(

3− cos(2ϕ)
)

M

+
℧

2

48

(

9M2 cos(3ϕ)− 8℧
(

cos4(ϕ)

+4 cos2(ϕ)− 8
)

η + 180 sin(ϕ)ϕM2
)

. (25)

For determining the light deflection angle αdef at
asymptotically large distances, we exploit the symmetry
properties of the trajectory about ϕ = 0. By introducing
the coordinate transformation:

ϕ =
π

2
+ ψ, (26)

where ψ represents a small angular deviation, the total
deflection angle is given by:

αdef = 2ψ. (27)

Expanding this result to second order in the small pa-
rameter ε = M℧ = M/b, we derive the analytical ex-
pression for the deflection angle:

αdef ≈ 4M

b
+

15M2π

4b2
+

8η

3b3
. (28)

This expression explicitly demonstrates how the de-
formation parameter η introduces a contribution propor-
tional to b−3, a novel feature not present in the standard
Schwarzschild lensing. Recent observational advance-
ments in gravitational lensing potentially offer empirical
constraints on this parameter.
To reformulate our findings in terms of the distance of

closest approach r0, we recognize that the zeroth-order
approximation ℧ corresponds to 1/rmin. More precisely,
at the perihelion point where ϕ = 0, the following rela-
tion holds:

1

rmin
= ℧+ ℧

2M +
3

16
℧

3M2 +
1

2
℧

4η. (29)

Substituting this relation into our expression for the
deflection angle, we obtain an expansion in powers of
1/rmin:

αdef ≈ 4M

rmin
+
(−16 + 15π)M2

4r2min

−45M3π − 16η

6r3min

. (30)

This reformulation provides important physical in-
sights, as rmin represents the actual minimal distance
of approach in the gravitational field, a quantity more
directly related to observational phenomena than the im-
pact parameter b defined at asymptotic infinity. The
contribution of the deformation parameter η appears in
the third-order term, suggesting that its effects become
particularly significant for light rays passing close to the
BH, where higher-order terms in the deflection angle ex-
pansion gain importance. Fig. 2 illustrates both the ob-
servational manifestation and theoretical framework of
gravitational lensing in the context of SKZ BHs. The vi-
sualization in panel (a) demonstrates how light rays from
background sources undergo significant deflection when
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(a)

(b)

FIG. 2: (a) Gravitational lensing visualization depicting
how light from distant galaxies is distorted by an

intervening massive object, creating multiple images
and extended arcs. This phenomenon emerges directly

from the spacetime curvature described by the
deflection angle in Eq. (30) (Credit: NASA, ESA, Ann

Feild (STScI), Frank Summers (STScI) [51]). (b)
Schematic representation of the SKZ BH lensing

geometry, illustrating the deflection angle αdef , impact
parameter b, and the angular separations between

source, observer, and resulting images.

traversing the vicinity of massive objects, resulting in
characteristic distortion patterns that serve as observa-
tional signatures of spacetime curvature. Panel (b) pro-
vides a schematic representation of the lensing geometry
specific to SKZ BHs, where the incorporation of the de-
formation parameter η introduces additional complexity
to the deflection phenomena, particularly through third-
order contributions to αdef as analytically expressed in
Eq. (30). This modification becomes increasingly sig-
nificant for light rays passing in close proximity to the
BH, potentially offering an observational mechanism for
constraining deviations from standard Schwarzschild ge-
ometry.

IV. MAGNIFICATION PROPERTIES OF SKZ

BHS

The gravitational lensing phenomenon, particularly
the magnification effects induced by SKZ BHs, provides
crucial insights into the spacetime deformation character-
ized by the parameter η. This section systematically an-

alyzes how the magnification properties are modified by
the KZ deformation parameter, extending beyond con-
ventional Schwarzschild lensing models [52, 53].

(a)

(b)

FIG. 3: (a) Hubble’s observations illustrate how the
gravity of a foreground BH bends and deflects the light
from a distant star (Credit: Hubblesite.org [54]). (b)

Lensing illustration of a BH: O is the observer, S is the
source, BH is the BH acting as a gravitational lens, I is
the position of the image. β is the angle between the
source and the optical axis, θ is the angle between the
image and the optical axis, αdef is the deflection angle. b
is the impact parameter and Dl, Ds and Dls are angular
diameter distances (from observer to lens, from observer
to source, and from lens to source, respectively). The
dashed line represents the path light would take in the
absence of the lens, while the solid line shows the actual

path of light due to gravitational lensing.

Fig. 3 illustrates the fundamental lensing geometry for
SKZ BHs. Through this geometric configuration and the
deflection angle formalism established in Eq. (28), we can
determine the mathematical relationship between source
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and image positions. The spherical symmetry of the SKZ
metric ensures that only radial distances are affected by
lensing, while the azimuthal angle ϕ remains invariant.
This geometric constraint leads to the following relation-
ship [55]:

(β − θ)Ds = αdefDls (31)

This equation can be reformulated as:

β = θ +
Dls

Ds
αdef . (32)

It is imperative to note that in this section, we employ
SI units rather than natural units for improved obser-
vational applicability. This necessitates the explicit in-
clusion of gravitational constant G and speed of light c
in our formulations. Specifically, the mass parameter M
and the deformation parameter η have been transformed
according to M → M · G/c2 and η → η · G3/c6, respec-
tively. This transformation enables direct comparison
with observational data from astronomical surveys. In-
corporating our previously derived deflection angle from
Eq. (28), the lens equation for the SKZ BH becomes:

β = θ +
θ̃2Ein

θ
, (33)

in which

θ̃2Ein = θ2Ein

(

1 +
15πGM

16θc2Dl
+

2G2η

3Mθ2c4D2
l

)

, (34)

in which θEin denotes the well-known Einstein angle,
which is given by

θ2E =
4GM

c2
Dls

DsD1
. (35)

Recent theoretical developments by Ghosh et al. [56]
have demonstrated that gravitational lensing affects not
only the directional properties of light but also modi-
fies the cross-sectional area of ray bundles. This cross-
sectional modification directly influences the observed
brightness of lensed objects, a phenomenon quantified
through magnification calculations. For an infinitesi-
mally small source, the magnification factor µ is given
by [55]:

µ−1 =

∣

∣

∣

∣

β

θ

dβ

dθ

∣

∣

∣

∣

. (36)

This formulation reveals that the image undergoes
magnification or demagnification by a factor |µ|. In sit-
uations where multiple images are formed from a single
source, the total amplification is calculated as the sum

of individual image magnifications, as demonstrated by
Virbhadra and Ellis [57].
From the lens equation, we can derive expressions for

the tangential and radial critical curves, which represent
loci of theoretically infinite magnification:

µtan =

∣

∣

∣

∣

β

θ

∣

∣

∣

∣

−1

= θ2
(

θ2 + θ̃2Ein

)−1

, (37)

and

µrad =

∣

∣

∣

∣

dβ

dθ

∣

∣

∣

∣

−1

= θ2
(

θ2 − θ̃2Ein

)−1

. (38)

A distinctive characteristic emerges in the analysis of
these magnification components: µrad exhibits a singular-
ity at θ = θE, which corresponds to the angular radius of
the radial critical curve. Conversely, µtan maintains finite
values throughout the parameter space. This differential
behavior indicates that the SKZ BH produces specific
lensing signatures that could potentially be observation-
ally distinguished from other compact object models.
Fig. 4 presents a comprehensive visualization of mag-

nification curves—tangential, radial, and total—for three
distinct BH configurations. Panel (a) illustrates the
standard Schwarzschild case (η = 0), serving as our
reference model. Panels (b) and (c) depict SKZ BHs
with progressively increasing deformation parameters:
η = 1 × 1019M3

⊙ and η = 1 × 1020M3
⊙, respectively.

These numerical values are consistent with the theoreti-
cal constraints established by Konoplya and Zhidenko [7]
and fall within observational bounds derived from Event
Horizon Telescope data.
The comparative analysis of these magnification pro-

files reveals significant structural differences contingent
upon the value of η. In the Schwarzschild limit (panel
a), the magnification behavior follows established pat-
terns documented in classical lensing theory. However,
as η increases (panels b and c), we observe system-
atic modifications in both the position and amplitude
of magnification peaks, particularly in the radial compo-
nent µrad. Of particular interest is the emergence of en-
hanced radial magnification at specific angular distances
as η increases. This phenomenon suggests that SKZ BHs
with substantial deformation parameters could produce
distinctive observational signatures in microlensing light
curves. Such signatures, if detected, would provide em-
pirical constraints on the deformation parameter η and,
by extension, offer insights into potential modifications
of general relativity in strong gravitational regimes. The
tangential magnification component µtan exhibits more
subtle variations with changing η, indicating that tan-
gential arcs—common in galaxy cluster lensing—may not
serve as optimal observational targets for discriminating
between Schwarzschild and SKZ BHs. Instead, radial
magnification features, particularly the position and pro-
file of radial critical curves, emerge as more promising
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FIG. 4: The magnifications: tangential µtan (dotted
lines), radial µrad (dash-dotted lines), and total µ
(continuous curves), are plotted as functions of the
image position θ for three BH cases; (a) is for the

Schwarzschild BH (η = 0), (b) panel represents the SKZ
BH with η = 1× 1018M3

⊙, and (c) panel stands for
η = 1× 1019M3

⊙. The singularities of µtan and µrad give
the positions of the tangential and radial critical curves,
respectively. In the upper panel the singularity is in the
tangential critical curve, in the bottom panel, instead,

in the radial critical curve. Here |M | = 1M⊙,
Ds = 0.05 Mpc and Dl = 0.01 Mpc. Angles are given in

arcseconds: 1 arcsec = 4.848× 10−6 rad.

diagnostics for detecting spacetime deformations charac-
terized by the KZ metric. We believe that these theoret-
ical predictions establish a framework for future observa-
tional tests using high-resolution instruments such as the
James Webb Space Telescope and next-generation very
long baseline interferometry arrays [58, 59].

V. TOPOLOGICAL CORRECTIONS TO

GRAVITATIONAL LENSING OF SKZ BH

In this section, we implement a topological approach
to compute weak deflection angles in the SKZ BH geom-
etry, providing complementary insights to the perturba-
tive analysis presented in Section III. The GB theorem
offers a particularly elegant framework for investigating
gravitational lensing phenomena from a global topologi-
cal perspective rather than through local geodesic prop-
erties [52]. This approach not only yields computation-
ally efficient derivations but also elucidates the funda-
mental geometric nature of light deflection in curved
spacetimes [60].
Our analysis begins with null geodesics that satisfy

the condition ds2 = 0. By implementing the coordinate
transformation dr∗ = 1

Adr, we reformulate the optical
metric into the following form:

dt2 = dr∗2 + f̃2(r∗)dϕ2, (39)

where f̃(r∗) = r
√

1
f(r) , with the equatorial plane de-

fined by θ = π/2. This reformulation facilitates the ap-
plication of the GB theorem to the optical geometry.
The Gaussian curvature, a fundamental quantity in

this approach, is calculated as:

K =
Rrϕrϕ

γ
=

1√
γ

[

∂

∂ϕ

(√
γ

γrr
Γϕ
rr

)

− ∂

∂r

(√
γ

γrr
Γϕ
rϕ

)]

.

(40)
For the SKZ BH geometry, this calculation yields:

K ≈ 3M2

r4
− 2M

r3
+

11Mη

r6
− 6η

r5
+

15η2

4r8
. (41)

The presence of the deformation parameter η intro-
duces additional curvature terms that modify the deflec-
tion properties compared to the standard Schwarzschild
case, particularly at higher orders in 1/r.
To systematically apply the GB theorem, we consider

a compact, oriented, non-singular domain D with Eu-
ler characteristic χ(D), bounded by a piecewise smooth
curve with geodesic curvature κ. The theorem states:

∫ ∫

D

KdS +

∮

∂D

κdt+
∑

i=1

βi = 2πχ(D). (42)
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For our analysis, we construct an integration domain
D̃ enclosed by a geodesic connecting the source S and ob-
server O, together with a circular arc CR that intersects
the geodesic at right angles. This construction simplifies
the theorem to:

∫ ∫

D̃

KdS +

∫

CR

κdt = π. (43)

The geodesic curvature of CR is calculated as:

κ(CR) =
(

∇ĊR
ĊR

)r

= Ċϕ
R(∂ϕĊ

r
R) + Γr

ϕϕ(Ċ
ϕ
R)

2, (44)

where Γr
ϕϕ = −f̃(r∗)f̃ ′(r∗) and (Ċϕ

R)
2 = 1

f̃2(r∗)
. Tak-

ing the limit as R→ ∞, we obtain:

lim
R→∞

[κ(CR)dt] = lim
R→∞

[−f̃ ′(r∗)]dϕ = dϕ. (45)

Incorporating this result into the GB theorem leads to:

∫ ∫

D̃R→∞

KdS +

∫ π+α

0

dϕ = π. (46)

The surface element in the equatorial plane is ex-
pressed as:

dS =
√
γdrdϕ =

r

f3/2(r)
drdϕ. (47)

This formulation allows us to determine the deflection
angle through:

α = −
∫ π

0

∫ ∞

b
sinϕ

KdS

≃ 8η

3b3
+

4M

b
+

3M2π

4b2
− 4M3

b3
+O

(

(

M

b

)4
)

(48)

In this expression, we employ the weak deflection
approximation using the zeroth-order trajectory r =
b/ sinϕ within the integration interval 0 ≤ ϕ ≤ π. The
deformation parameter η introduces additional terms in
the deflection angle, most notably the contributions pro-
portional to b−3 and b−4, which represent distinctive sig-
natures of the modified geometry.
Figure 5 illustrates the dependence of the deflection

angle α on the impact parameter b for various values of
the deformation parameter η. The results demonstrate a
pronounced enhancement of deflection for increasing val-
ues of η, particularly at small impact parameters where
the gravitational field is strongest. This behavior un-
derscores the potential observational significance of the
deformation parameter in strong-field lensing scenarios,
where light rays pass in close proximity to the BH.

FIG. 5: The difference of the deflection angle α for
varying values of η, with fixed M = 1, in relation to the
impact parameter b. The findings indicate an enhanced

gravitational lensing effect in areas of significant
curvature, with larger η values producing a greater
deflection, particularly for small b. The impact of η

becomes less important as the deflection angle quickly
decreases for increasing b.

The topological approach implemented here offers sev-
eral advantages over conventional geodesic calculations.
First, it provides a global perspective on deflection phe-
nomena, emphasizing the integral geometric character of
light bending in curved spacetimes. Second, it estab-
lishes a direct connection between the Gaussian curva-
ture of the optical metric and the resulting deflection
angle, thereby illuminating the fundamental geometric
principles underlying gravitational lensing. Finally, this
method facilitates straightforward computational exten-
sions to more complex scenarios, including plasma media
and alternative gravity theories.
The leading orders of the deflection angle derived

through the GB approach exhibits excellent agreement
with the perturbative results obtained in Sec. III, val-
idating the consistency of our analysis. The topologi-
cal formulation, however, offers additional conceptual in-
sights regarding the global geometric underpinnings of
gravitational lensing phenomena in deformed BH space-
times.

VI. PLASMA-INDUCED CORRECTIONS TO

GRAVITATIONAL LENSING NEAR SKZ BH

The propagation of electromagnetic radiation through
astrophysical plasma environments in curved spacetime
represents a critical frontier in gravitational lensing the-
ory, with significant observational implications [61]. Un-
like vacuum propagation, plasma introduces frequency-
dependent refractive effects that couple with the under-
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lying gravitational field, yielding distinctive chromatic
signatures in lensing phenomena. This section system-
atically analyzes how plasma modifies gravitational de-
flection angles in the vicinity of SKZ BHs, extending
our previous topological approach to incorporate these
frequency-dependent effects.
We begin by formulating the refractive index n(r)

which encapsulates both the plasma properties and grav-
itational redshift effects [24, 62, 63]:

n(r) =

√

1−
ω2
p(r)

ω2
0(r)

f(r), (49)

where ωp represents the plasma frequency of electrons,
and ω0 denotes the photon frequency observed at asymp-
totic infinity. This formulation accounts for the interac-
tion between plasma dispersion and spacetime curvature,
yielding frequency-dependent modifications to light prop-
agation paths.
The corresponding optical metric for photon propaga-

tion in plasma-filled SKZ spacetime takes the form:

dt2 = goptlm dxldxm = n2

(

1

f2(r)
dr2 +

r2

f(r)
dϕ2

)

, (50)

where f(r) is defined according to the SKZ metric in-
troduced in Sec. II. This optical metric characterizes the
effective geometry experienced by photons traversing the
plasma medium around the deformed BH.
The Gaussian optical curvature K̃, which governs de-

flection properties in this medium, is determined from
the Ricci scalar R as:

K̃ =
Rrϕrϕ(g

opt)

det gopt
, (51)

with the determinant of the optical metric given by:

det(gopt) =
n(r)4r2

f(r)3
. (52)

Through systematic calculation, we obtain the follow-
ing approximation for the Gaussian optical curvature in
the SKZ geometry:

K̃ ≈ −2M

r3
− 6η

r5
+

3M2

r4
+

11Mη

r6
+

15η2

4r8
+

48w2
eMη

r6w2
∞

− 54w2
eM

2η

r7w2
∞

− 45w2
eMη2

r9w2
∞

+
12w2

eM
2

r4w2
∞

− 3w2
eM

r3w2
∞

− 21w2
eη

2r5w2
∞

+
21w2

eη
2

r8w2
∞

− 12w2
eM

3

r5w2
∞

− 21w2
eη

3

2r11w2
∞

, (53)

This expression explicitly incorporates the coupling be-
tween the deformation parameter η and plasma effects,

revealing a complex interplay that modifies the effective
optical geometry experienced by photons. For computa-
tional tractability, we retain terms up to second order in
curvature, consistent with our previous vacuum analysis.
The differential surface element for the optical geome-

try is expressed as:

dS =
√
g dr dϕ =

(

r −
ω2
p

ω2
0

)

dr dϕ. (54)

Applying the GB theorem to this optical geometry, we
calculate the plasma-modified deflection angle through:

α̃ = −
∫ π

0

∫ ∞

b
sinϕ

K̃ dS. (55)

For the SKZ BH in a plasma medium, this integration
yields:

α̃ = −
∫ π

0

∫ ∞

b
sinϕ

K̃dS

≃ 27M4πσ

8b4
− 3M2πσ

4b2
+

3M2π

4b2
− 32M3σ

3b3
− 4M3

b3

+
6Mσ

b
+

4M

b
− 99Mπησ

64b4
+

21Mπη

32b4
+

14ησ

3b3
+

8η

3b3

+O(b5) (56)

where σ =
ω2

p

ω2

0

quantifies the plasma density relative to

photon frequency, serving as the primary parameter that
characterizes chromatic effects in gravitational lensing.
This analytical result reveals several significant fea-

tures of plasma-influenced lensing in the SKZ geometry.
First, it demonstrates that plasma introduces additional
frequency-dependent contributions to the deflection an-
gle, with effects scaling differently with impact param-
eter b compared to vacuum terms. Second, the inter-
play between the deformation parameter η and plasma
density σ produces distinctive chromatic signatures that
potentially offer observational discriminants for modified
gravity effects. Third, the plasma-induced terms exhibit
complex functional dependencies on mass M and defor-
mation parameter η, highlighting the non-trivial coupling
between plasma dispersion and spacetime geometry.
Figure 6 illustrates the variation of deflection angle

Θ as a function of impact parameter b in a plasma
medium for different values of the deformation parame-
ter η. The results demonstrate that increasing η system-
atically modifies the deflection profile, with particularly
pronounced effects at small impact parameters. This be-
havior suggests that strong-field lensing observations in
plasma environments could potentially constrain devia-
tions from standard Schwarzschild geometry.
Similarly, Figure 7 depicts the deflection angle varia-

tions with impact parameter for different plasma densi-
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FIG. 6: The variation of the deflection angle (Θ) as a
function of the impact parameter (b) in a plasma

medium, considering different values of the parameter η.
Here, the mass of the central object is set to M = 1,
and the plasma parameter is taken as σ = 1. The

results indicate that increasing η modifies the deflection
angle, affecting the gravitational lensing behavior in a

dispersive medium.

FIG. 7: The change in the deflection angle Θ in relation
to the impact parameter b in a plasma medium with
varying plasma parameter σ values, with M = 1 and
η = 1 taken as constants. According to the data, the
gravitational lensing effect is enhanced by increased
plasma density (σ), which results in a considerable
increase in the deflection angle for small b values.
However, its influence decreases as b increases.

ties (characterized by σ), with fixed deformation param-
eter η = 1. These results reveal that higher plasma den-
sities significantly enhance gravitational deflection, par-
ticularly at small impact parameters, while the plasma

influence diminishes at larger distances from the BH.

The plasma-induced modifications to gravitational
lensing have significant astrophysical implications, par-
ticularly for observations across different electromagnetic
wavelengths. Radio and microwave observations, which
typically traverse substantial plasma environments in
galactic and intergalactic media, are especially suscepti-
ble to these chromatic effects. The frequency-dependent
deflection angles predicted by our analysis suggest that
multi-frequency observations of gravitationally lensed
sources could potentially reveal signatures of the SKZ de-
formation parameter, offering novel observational probes
of modified gravity theories. In the limit σ → 0 (corre-
sponding to high-frequency photons or low plasma den-
sity), our expression for α̃ correctly reduces to the vac-
uum deflection angle derived in Sec. V, confirming the
internal consistency of our formulation. This convergence
demonstrates that our plasma-modified lensing frame-
work properly encompasses the vacuum case as a limiting
scenario, while systematically incorporating frequency-
dependent corrections that become increasingly signifi-
cant for lower-frequency observations.

VII. DEFLECTION ANGLES AND JACOBI

GEOMETRY OF MASSIVE PARTICLES IN SKZ

BH SPACETIME

The preceding sections have thoroughly examined null
geodesics and light deflection in the SKZ BH spacetime.
However, a comprehensive understanding of gravitational
lensing phenomena necessitates the extension of our anal-
ysis to massive particles, whose trajectories differ funda-
mentally from those of photons. This section develops a
rigorous mathematical framework for analyzing massive
particle deflection in deformed spacetimes through the
implementation of Jacobi geometry, which recasts dy-
namical trajectories as geodesics in an effective spatial
manifold [64, 65].

The Jacobi metric approach represents a powerful the-
oretical formalism that unifies the treatment of mass-
less and massive particle dynamics in curved spacetime
by transforming time-dependent mechanical systems into
purely geometric problems [66, 67]. This geometric re-
formulation offers particular advantages for investigat-
ing particle behavior in modified gravity scenarios, where
standard geodesic equations may become analytically in-
tractable. Additionally, this framework provides a natu-
ral extension to charged particles interacting with elec-
tromagnetic fields, enhancing its applicability to astro-
physical contexts [68].

For a general static and spherically symmetric metric
represented by equation (6), the Jacobi metric for a par-
ticle with mass m and energy E takes the form:

gij = (E2 −m2gtt)g̃ij , (57)
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where the optical metric is defined as:

g̃ij = −gij
gtt
. (58)

This construction effectively encodes the dynamics of
massive particles within a modified spatial geometry,
where geodesic paths correspond to physical trajectories
in the original spacetime. The influence of the particle’s
energy-to-mass ratio manifests as a conformal factor that
modifies the effective geometry experienced by the parti-
cle.
For the SKZ BH with metric function f(r), the Jacobi

metric simplifies to:

ds2 =
(

E2 −m2f(r)
)

[

dr2

f2(r)
+
r2dϕ2

f(r)

]

. (59)

Exploiting the spherical symmetry of the system, we
restrict our analysis to the equatorial plane (θ = π/2),
where the angular momentum of the particle is conserved:

J =
(

E2 −m2f(r)
) r2

f(r)

dϕ

ds
. (60)

This conservation law allows us to derive the radial
equation of motion:

(

dr

ds

)2

= f(r)

(

E2

m2
− 1− J2

m2r2

)

. (61)

By introducing the substitution u = 1/r, we reformu-
late this equation in terms of the azimuthal angle ϕ:

(

du

dϕ

)2

= u4

[

(

E

J

)2

− f(r)

(

1

J2
+ u2

)

]

. (62)

For an observer at asymptotic infinity, the energy and
angular momentum of the massive particle satisfy the
relativistic relations:

E =
m√
1− v2

, J =
mvb√
1− v2

, (63)

where v represents the particle’s velocity at infinity and
b denotes the impact parameter:

J = vbE. (64)

Substituting these expressions into the Jacobi metric
yields:

ds2 = m2

(

1

1− v2
− f(r)

)[

dr2

f2(r)
+
r2dϕ2

f(r)

]

. (65)

The Gaussian curvature of this effective geometry,
which determines the deflection properties of massive
particles, is computed as:

K ≈ − 2M

r3v6m4
+

4M

r3v4m4
− 2M

r3v2m4
+

16M2

r4v8m4

− 46M2

r4v6m4
+

45M2

r4v4m4
− 16M2

r4v2m4
+

M2

r4m4
− 9η

r5m4v6

+
21η

r5m4v4
− 15η

r5m4v2
+

3η

r5m4
+O

(

1

r6

)

. (66)

FIG. 8: Deflection angle as a function of velocity (v) for
different values of parameter η, with fixed impact
parameter b = 1 and mass M = m = 1. The results
demonstrate that particles with lower velocities

experience significantly greater deflection than those
approaching the speed of light, with the deformation
parameter η introducing subtle modifications to this

velocity-dependent behavior.

This expression explicitly demonstrates the coupled
dependence of curvature on both the deformation param-
eter η and particle velocity v, revealing how the effective
geometry experienced by massive particles differs funda-
mentally from that of photons. The velocity-dependent
terms introduce additional complexity to the deflection
phenomena, reflecting the relativistic coupling between
kinetic properties and spacetime geometry.
Applying the GB theorem to this Jacobi geometry, we

derive the deflection angle for massive particles:

α̃ ≈ − M2π

4b2m4
− 4M3

3b3m4
− 27Mπη

32b4m4
− 4η

3b3m4
+

11M2π

2b2m4v2

+
64M3

3b3m4v2
+

4M

bm4v2
+

135Mπη

32b4m4v2
+

20η

3b3m4v2
− 57M2π

4b2m4v4

− 60M3

b3m4v4
− 8M

bm4v4
− 189Mηπ

32b4m4v4
− 28η

3b3m4v4

+O

(

1

v5,
,
1

m5
,
1

b5

)

. (67)

This analytical result significantly extends the stan-
dard gravitational lensing formalism to encompass mas-
sive particles with arbitrary velocities, revealing the com-
plex interplay between relativistic dynamics and modified
gravity effects in the SKZ BH spacetime. The deflection
angle exhibits strong velocity dependence, particularly at
non-relativistic speeds, where deviations from light-like
behavior become most pronounced.
Figure 8 illustrates the variation of deflection angle α̃

with respect to particle velocity v for different values of
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FIG. 9: Deflection angle with fixed mass M = m = 1 as
a function of impact parameter (b) for various velocity
parameter v values. With slower particles showing more

sensitivity to the gravitational field at all impact
parameters, the graphic shows that the impact
parameter dependency of deflection changes

dramatically with particle velocity.

the deformation parameter η, while maintaining fixed im-
pact parameter b = 1 and mass parameters M = m = 1.
This visualization reveals several critical features of mas-
sive particle deflection in the SKZ BH geometry. For non-
relativistic velocities (small v values), the deflection angle
exhibits substantial negative magnitudes, indicating sig-
nificantly stronger gravitational influence compared to
relativistic particles. As velocity increases toward the
speed of light, the deflection angle rapidly diminishes in
magnitude, asymptotically approaching the photon limit.

Although the quantitative differences between deflec-
tion curves for various η values appear subtle, a system-
atic analysis reveals that increasing the deformation pa-
rameter generally reduces the magnitude of deflection,
particularly at intermediate velocities. This behavior
suggests that the modified geometry introduces correc-
tion terms that partially counteract the gravitational at-
traction experienced by massive particles, potentially of-
fering an observational signature of deformed spacetime
structure.

Figure 9 complements this analysis by depicting the
deflection angle as a function of impact parameter b for
various velocity values v, maintaining M = m = 1. The
results demonstrate that for all velocities, the deflection
angle exhibits a characteristic inverse relationship with
impact parameter, with stronger deflection occurring for
trajectories passing closer to the BH. However, the mag-
nitude of this effect varies significantly with velocity, with
slower particles exhibiting systematically larger deflec-
tion angles across all impact parameters. This behavior
reflects the fundamental difference between massive and
massless particle dynamics in curved spacetime, where
particles with lower velocities remain within the gravi-
tational field for longer durations, accumulating greater

deflection effects.
The velocity-dependent deflection patterns revealed by

our analysis have significant implications for astrophysi-
cal observations. While direct detection of massive par-
ticle deflection presents greater observational challenges
than electromagnetic lensing, potential applications ex-
ist in contexts such as cosmic ray propagation, neutrino
astronomy, and dark matter distribution studies. The
distinctive velocity dependence of deflection angles could
potentially serve as a probe of both the deformation pa-
rameter η and the underlying gravitational field structure
in regions where modified gravity effects might become
significant.
This comprehensive analysis demonstrates that the Ja-

cobi geometry approach provides a powerful theoretical
framework for investigating massive particle dynamics in
modified gravity scenarios. By reformulating the deflec-
tion problem in terms of an effective spatial geometry, we
have established analytical expressions that quantify how
both the deformation parameter η and particle velocity
v influence gravitational deflection.

VIII. QUANTUM-CORRECTED

THERMODYNAMICS OF SKZ BHs

The thermodynamic behavior of BHs represents a fun-
damental bridge between gravitational physics and quan-
tum field theory, providing essential insights into the mi-
croscopic structure of spacetime [69, 70]. While classi-
cal BH thermodynamics has been extensively developed
within the framework of general relativity, quantum cor-
rections introduce significant modifications that mani-
fest particularly in the entropy-area relationship [71, 72].
This section systematically investigates how the expo-
nential correction (EC) entropy formalism modifies the
thermodynamic properties of SKZ BHs, elucidating the
interplay between quantum effects and the deformation
parameter η.
The quantum-mechanical modifications to BH ther-

modynamics arise primarily from fluctuations in the
quantum gravitational field, necessitating corrections to
the classical Bekenstein-Hawking entropy formula [73].
These corrections are particularly significant in extreme
regimes where semiclassical approximations become in-
adequate, potentially revealing signatures of underlying
quantum gravity theories [74–77]. Within the EC en-
tropy framework, we systematically incorporate quan-
tum effects while maintaining analytical tractability, en-
abling rigorous examination of how fundamental ther-
modynamic quantities respond to both quantum fluctu-
ations and geometric deformations.
The EC entropy formalism extends the standard

Bekenstein-Hawking relation through the incorporation
of quantum corrections in exponential form:

S = S0 + ζe−S0 , (68)
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where S0 denotes the classical Bekenstein-Hawking en-
tropy, defined as S0 = AH

4 with AH representing the area

of the event horizon. The correction term ζe−S0 , gov-
erned by the parameter ζ, systematically incorporates
quantum modifications to the entropy-area relationship,
capturing leading-order quantum gravitational effects.
To determine the internal energy of the BH under EC

entropy, we integrate the Hawking temperature TH with
respect to the entropy differential:

EEC =

∫

THdS. (69)

This formulation provides a quantum-corrected energy
expression that accounts for both the geometric defor-
mation characterized by η and the quantum corrections
encoded in the EC entropy formalism:

EEC ≈ −Mπr2h
4

− 3ηπ

4
ln rh (70)

FIG. 10: Variation of exponentially corrected energy
EEC versus event horizon radius rh for different values
of the deformation parameter η. The plot demonstrates

that quantum corrections significantly modify the
energy profile, particularly for small BHs, with η > 0

creating regions of positive energy that indicate
potential repulsive effects in the quantum-corrected

gravitational field.

Figure 10 illustrates the functional relationship be-
tween the quantum-corrected internal energy EEC and
the event horizon radius rh across different values of the
deformation parameter η. This visualization reveals sev-
eral critical features of how quantum corrections and geo-
metric deformations collectively influence BH energetics.
For small rh values, particularly when η > 0, the in-
ternal energy exhibits positive values, contrasting with
the negative energy states characteristic of classical BHs.

This positivity potentially indicates the emergence of re-
pulsive quantum gravitational effects that counteract the
classical gravitational attraction at small length scales.
As the horizon radius increases, EEC transitions to

increasingly negative values, asymptotically approaching
the classical behavior for large BHs where quantum ef-
fects become negligible. The systematic shift in energy
curves with increasing η demonstrates that the deforma-
tion parameter intensifies the rate at which the inter-
nal energy decreases with increasing radius, suggesting
that geometric deformations amplify the energetic conse-
quences of quantum corrections. This coupling between
deformation and quantum effects creates distinct ther-
modynamic regimes that differ qualitatively from both
classical Schwarzschild BHs and non-deformed quantum-
corrected BHs.
The Helmholtz free energy FEC represents another

fundamental thermodynamic potential that quantifies
the energy available for conversion to work under con-
ditions of constant temperature. This quantity, directly
related to the EC entropy, is formulated as:

FEC = −
∫

SdTH . (71)

To investigate the impact of EC entropy on the
Helmholtz free energy, we express the entropy function
as a Taylor expansion up to second-order. Consequently,
we obtain:

FEC ≈ − M

2πr2h
− 9η

16πr4h
− Mπr2h

4
− 9ηπ

8
ln rh (72)

Figure 11 depicts the functional dependence of the
quantum-corrected Helmholtz free energy FEC on the
event horizon radius rh for various deformation parame-
ter values. The analysis reveals that for small BHs (small
rh values), particularly when η > 0, the free energy ex-
hibits a rapid decline to negative values. This behav-
ior signifies that quantum corrections fundamentally al-
ter the thermodynamic stability landscape, potentially
enhancing evaporation processes for microscopic BHs.
The systematic dependence on the deformation parame-
ter demonstrates that as η increases, the negative energy
contributions become more pronounced, suggesting that
geometrically deformed BHs experience intensified quan-
tum corrections to their thermodynamic properties.
For larger BHs (increasing rh), FEC asymptotically ap-

proaches zero, signifying a progressive return to classi-
cal thermodynamic behavior as quantum effects become
increasingly negligible. This convergence pattern con-
firms that quantum corrections primarily influence small-
scale BH behavior, while large BHs remain effectively
described by classical thermodynamics. The compara-
tive analysis across different η values reveals that small
deformation parameters produce thermodynamic profiles
relatively close to standard Schwarzschild behavior, while
larger deformations generate more substantial deviations
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FIG. 11: Helmholtz free energy FEC as a function of
the event horizon radius rh for different values of the

deformation parameter η, with mass parameter fixed at
M = 1. The plot reveals that quantum corrections
induce rapid decreases in free energy for small BHs,
with the effect amplified by increasing η values,

indicating enhanced thermodynamic instability in the
quantum-corrected regime.

from classical predictions, particularly in the small-rh
regime where quantum effects predominate.
The pressure PEC of the system represents the force

per unit area exerted by the BH on its surroundings and
connects to the free energy through the thermodynamic
relation:

PEC ≈ −dFEC

dV
, (73)

where V denotes the volume enclosed by the event hori-
zon. By differentiating the free energy expression, we de-
termine the quantum-corrected pressure for the SKZ BH
as:

PEC ≈ − M

4π2r5h
− 9η

16π2r7h
+
M

8
+

9η

32r3h
(74)

Figure 12 illustrates the quantum-corrected pressure
PEC as a function of event horizon radius rh for various
deformation parameter values. The consistently nega-
tive pressure values at small rh indicate that the ther-
modynamic system experiences an inward-directed force,
consistent with gravitational contraction. This nega-
tive pressure regime becomes particularly pronounced
for small BHs, where quantum corrections exert their
strongest influence. The systematic dependence on η
demonstrates that increasing the deformation parame-
ter intensifies the negative pressure magnitude, suggest-
ing that geometrically deformed spacetimes experience

FIG. 12: Quantum-corrected pressure PEC as a
function of the event horizon radius rh for different
values of the deformation parameter η, with mass

parameter fixed at M = 1. The consistently negative
pressure values indicate inward-directed thermodynamic
forces that intensify with increasing η, particularly for

small BHs where quantum effects dominate.

enhanced contractive thermodynamic forces under quan-
tum corrections.
As the horizon radius increases, PEC asymptotically

approaches zero, indicating a diminishing thermody-
namic pressure for large BHs where both quantum effects
and geometric deformations become increasingly negligi-
ble relative to classical gravity. The absence of positive
pressure regimes across all parameter values suggests that
quantum corrections predominantly reinforce rather than
counteract the contractive nature of BH thermodynam-
ics, even when geometric deformations are substantial.
This behavior indicates that EC entropy modifications
primarily influence the magnitude rather than the direc-
tional character of thermodynamic forces in BH systems.
Finally, we analyze the specific heat capacity CEC , a

critical parameter that quantifies how the BH’s temper-
ature responds to changes in entropy. This quantity, de-
fined as:

CEC = TH

(

∂SEC

∂TH

)

, (75)

provides essential insights into thermodynamic stabil-
ity and phase structure. From this definition, we derive:

CEC ≈ 4π2r4h
(

Mr2h + 3η
2

)

4Mr2h + 9η
(76)

Figure 13 presents the quantum-corrected heat capac-
ity CEC as a function of the event horizon radius rh
for various deformation parameter values. The analy-
sis reveals that CEC exhibits consistently positive values
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FIG. 13: Specific heat capacity CEC as a function of
the event horizon radius rh for different values of the

deformation parameter η, with mass parameter fixed at
M = 1. The consistently positive heat capacity

indicates thermodynamic stability across all parameter
regimes, though higher η values slightly reduce the heat
capacity magnitude, potentially altering evaporation

dynamics.

that increase monotonically with rh, indicating thermo-
dynamic stability across all parameter regimes. This con-
tinuous positive behavior contrasts with the heat capac-
ity discontinuities characteristic of certain classical BH
solutions, suggesting that quantum corrections poten-
tially regularize thermodynamic behavior by eliminating
phase transitions.
The systematic influence of the deformation param-

eter manifests as a subtle modulation of the heat ca-
pacity magnitude, with larger η values slightly reduc-
ing CEC at comparable horizon radii. This reduced heat
capacity indicates that geometrically deformed BHs ex-
hibit modestly diminished thermal responsiveness, po-
tentially altering evaporation dynamics and equilibration
processes. The absence of singularities, discontinuities,
or sign changes in the heat capacity curves confirms that
quantum-corrected SKZ BHs maintain thermodynamic
stability throughout their evolution, regardless of the de-
formation parameter magnitude.

IX. CONCLUSION

In this study, we conducted a comprehensive investi-
gation of deformed BH geometries through the SKZ met-
ric, systematically analyzing how parametric deviations
from the standard Schwarzschild solution manifest across
multiple physical domains. The introduction of the de-
formation parameter η enabled us to quantitatively track
modifications to both the thermodynamic behavior and
gravitational lensing characteristics, thereby establishing

a theoretical framework for constraining potential depar-
tures from GR through astrophysical observations.

Our analysis of the SKZ BH geometry in Sec. II re-
vealed that the parameter η fundamentally alters the
event horizon structure, producing BHs with identical
ADM mass but different horizon radii—a distinctive fea-
ture with significant thermodynamic implications. We
identified a critical threshold ηmin = −32/27M3 below
which the spacetime would violate the cosmic-censorship
conjecture, establishing theoretical constraints on the
permissible parameter range. The computation of Hawk-
ing temperature demonstrated that positive deformation
parameters induce increased thermal radiation, particu-
larly pronounced for small BHs, as visualized in Figure
1.

The perturbative analysis of gravitational lensing con-
ducted in Sec. III yielded analytical expressions for the
deflection angle of light in SKZ spacetime. By solv-
ing the differential equation (18) through a systematic
power series expansion, we derived closed-form expres-
sions showing how η introduces higher-order corrections
to the standard Schwarzschild lensing formula. The re-
sulting deflection angle, expressed in Eq. 28, revealed
that the deformation parameter contributes terms pro-
portional to b−3, providing a potential observational sig-
nature for testing modified gravity theories through pre-
cision lensing measurements. Our examination of mag-
nification properties in Sec. IV extended this analysis
to the observational domain, demonstrating how the de-
formation parameter systematically modifies the position
and amplitude of magnification peaks, particularly in the
radial component µrad. The comparative visualization
in Figure 4 illustrated that SKZ BHs with substantial
deformation parameters generate distinctive magnifica-
tion profiles that could potentially be detected through
microlensing observations. This finding establishes mag-
nification signatures as a promising observational probe
for constraining deviations from standard Schwarzschild
geometry.

The application of topological methods in Sec. V,
specifically the GB theorem, provided an elegant alter-
native approach to computing deflection angles. This
method yielded an expression for the deflection angle (28)
that incorporated corrections due to the deformation pa-
rameter, with the dependence on impact parameter visu-
alized in Fig. 5. The results demonstrated enhanced
gravitational lensing effects for increasing values of η,
particularly at small impact parameters, confirming the
potential observational significance of the deformation
parameter in strong-field lensing scenarios. Section VI
extended our analysis to include plasma effects, reveal-
ing how frequency-dependent refractive properties cou-
ple with the underlying deformed geometry to produce
chromatic lensing signatures. The derived expression for
the plasma-modified deflection angle (Eq. 56) demon-
strated that plasma enhances the gravitational lensing
effect, with higher plasma densities significantly increas-
ing the deflection angle, particularly at small impact pa-



17

rameters, as illustrated in Figs. 6 and 7. These results
established that multi-frequency observations of gravita-
tionally lensed sources could potentially reveal signatures
of the deformation parameter, offering a novel observa-
tional probe of modified gravity theories.

Our investigation of massive particle dynamics in Sec.
VII through the Jacobi metric approach revealed how
velocity-dependent corrections manifest in the gravita-
tional deflection of non-relativistic particles. The analyt-
ical expression for the deflection angle demonstrated a
complex dependence on both the deformation parameter
and particle velocity, with particularly pronounced effects
for slow-moving particles. Figures 8 and 9 visualized this
velocity dependence, showing that particles with lower
velocities experience significantly greater deflection than
those approaching the speed of light, with the deforma-
tion parameter introducing subtle modifications to this
behavior. These findings extended the standard lensing
formalism beyond null geodesics, providing a theoretical
framework for understanding how modified gravity theo-
ries might influence massive particle trajectories.

The examination of quantum-corrected thermodynam-
ics in Sec. VIII employed the exponential correction EC
entropy formalism to analyze how quantum effects mod-
ify the thermodynamic properties of SKZ BHs. Our cal-
culations revealed that the interplay between quantum
corrections and the deformation parameter generates dis-
tinctive thermodynamic signatures, particularly for small
BHs where quantum effects predominate. The internal
energy profile (Figure 10) demonstrated that quantum
corrections and positive deformation parameters can in-
duce regions of positive energy, potentially indicating re-
pulsive effects that counteract classical gravitational at-
traction. Similarly, the Helmholtz free energy (Figure
11) exhibited rapid declines for small BHs with increas-
ing deformation parameters, suggesting enhanced ther-

modynamic instability in the quantum-corrected regime.
Despite these modifications, the heat capacity remained
consistently positive across all parameter regimes (Figure
13), indicating that quantum-corrected SKZ BHs main-
tain thermodynamic stability throughout their evolution.
The systematic analysis conducted throughout this in-

vestigation demonstrated that the deformation parame-
ter η introduces significant modifications to both gravi-
tational lensing phenomena and thermodynamic behav-
ior, with particularly pronounced effects in strong-field
regimes and for small BHs where quantum corrections
become significant. These modifications potentially of-
fer multiple observational signatures for testing devi-
ations from standard GR, including enhanced deflec-
tion angles, distinctive magnification patterns, chromatic
plasma effects, and modified thermodynamic properties.
The mathematical framework developed in this study
provides a foundation for quantitatively constraining
such deviations through precision astrophysical measure-
ments. Extending our analysis to rotating BHs through
the incorporation of spin parameters would provide a
more comprehensive framework for testing modified grav-
ity theories against astrophysical observations. Second,
investigating potential quantum gravity mechanisms like
GUP [78–80] KZ BHs that might provide deeper theo-
retical insights into the deformed BH radiation. These
research directions collectively offer promising pathways
for further bridging theoretical models of modified grav-
ity with observational astrophysics.
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