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ABSTRACT

We present three results, at the intersection of tropical geometry, enumerative geometry,

mirror symmetry and non-commutative algebra.

1. A correspondence between Block-Géttsche g-refined tropical curve counting and higher

genus log Gromov-Witten theory of toric surfaces.

2. A correspondence between g-refined two-dimensional Kontsevich-Soibelman scattering

diagrams and higher genus log Gromov-Witten theory of log Calabi-Yau surfaces.

3. A ¢-deformation of the Gross-Hacking-Keel mirror construction, producing a defor-
mation quantization with canonical basis for the Gross-Hacking-Keel families of log

Calabi-Yau surfaces.

These results are logically dependent: the proof of the third result relies on the second,

whose proof itself relies on the first. Nevertheless, each of them is of independent interest.
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INTRODUCTION

In this thesis, we present some contributions at the intersection of tropical geometry, enu-
merative geometry, mirror symmetry and non-commutative algebra. The text is divided in

three chapters.

Chapter 1 is about enumerative geometry, more precisely log Gromov-Witten invariants, of
complex toric surfaces, and tropical geometry of the real plane. We solve the all genus log
Gromov-Witten theory, with insertion of the top lambda class, of toric surfaces. The answer
is formulated in terms of ¢-refined counts of tropical curves and conversely gives a previously

unknown geometric meaning to these g-refined counts.

Chapter 2 is about enumerative geometry, more precisely log Gromov-Witten invariants, of
log Calabi-Yau surfaces with maximal boundary, i.e. of pairs (Y, D), where Y is a smooth
projective complex surface and D is a singular reduced normal crossing effective anticanon-
ical divisor. The class of log Calabi-Yau surfaces is a natural extension of the class of toric
surfaces. In particular, the complement U =Y — D is a non-compact algebraic symplectic
surface, generalization of (C*)?, and non-compact analogue of K3 surfaces. We solve the all
genus log Gromov-Witten theory, with insertion of the top lambda class, of log Calabi-Yau
surfaces. The answer is formulated in terms of algebraic and combinatorial objects: g-refined
scattering diagrams. The proof is done by reduction to the toric case, for which the main
result of Chapter 1 is used.

Chapter 3 is about deformation quantization of log Calabi-Yau surfaces. Using the log
Gromov-Witten invariants studied in Chapter 2 as input, we construct non-commutative
algebras, deformation quantizations of Poisson algebras of regular functions on the non-

compact surfaces U. It seems to be a new way to construct non-commutative algebras.

The genus zero/unrefined/commutative versions of these results were previously known.
More precisely, our Chapters 1-2-3 can be viewed as a higher genus/g-refined /non-commutative
generalization of the series of papers [Mik05][NS06]-[GPS10]-[GHK15a].

We give below detailed Introductions to each of the three Chapters.

INTRODUCTION TO CHAPTER 1

Tropical geometry gives a combinatorial way to approach problems in complex and real al-
gebraic geometry. An early success of this approach is Mikhalkin’s correspondence theorem
[Mik05], proved differently and generalized by Nishinou and Siebert [NS06], between counts
of complex algebraic curves in complex toric surfaces and counts with multiplicity of tropical
curves in R2. The main result of Chapter 1, Theorem 1, is an extension to a correspon-

dence between some generating series of higher genus log Gromov-Witten invariants of toric
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surfaces and counts with g-multiplicity of tropical curves in R?.

Counts of tropical curves in R? with g-multiplicity were introduced by Block and Gottsche
[BG16]. The usual multiplicity of a tropical curve is defined as a product of integer mul-
tiplicities attached to the vertices. Block and Gottsche remarked that one can obtain a

refinement by replacing the multiplicity m of a vertex by its g-analogue

4% ¢ % _ma _
[m]qlz T — =q 2 (1+q+...+qm 1).
q2 —q 2

The g-multiplicity of a tropical curve is then the product of the g-multiplicities of the vertices.
The count with g-multiplicity of tropical curves specializes for ¢ = 1 to the ordinary count
with multiplicity. This definition is done at the tropical level so is combinatorial in nature

and its geometric meaning is a prior: unclear.

Let A be a balanced collection of vectors in Z? and let n be a non-negative integer'. This
determines a complex toric surface XA and a counting problem of virtual dimension zero
for complex algebraic curves in Xa of some genus ga ,, of some class a, satisfying some
tangency conditions with respect to the toric boundary divisor, and passing through n points
of X in general position. Let N®™ € N be the solution to this counting problem. According
to Mikhalkin’s correspondence theorem, N2™ is a count with multiplicity of tropical curves
in R2, and so it has a Block-Gottsche refinement N2 (q) € N[¢*z].

For every g > ga n, we consider the same counting problem as before—same curve class,
same tangency conditions—but for curves of genus g. The virtual dimension is now g—ga .
To obtain a number, we integrate a class of degree g — ga », the lambda class A\, ,, over
the virtual fundamental class of a corresponding moduli space of stable log maps. For every
g 2 ga,n, we get a log Gromov-Witten invariant IV, gA”" €Q.

Theorem 1. For every A balanced collection of vectors in Z?, and for every non-negative

integer n such that ga n 2 0, we have the equality

A -2+]A A 1 _1.\29a,n-24]4]
D N M 27 HAL 2 NAR(g) ((_z)(qz —q 2))
9ZgA.n
of power series in u with rational coefficients, where
()"

n>0 n!

and |Al is the cardinality of A.
Remarks

e According to Theorem 1, the knowledge of the Block-Gottsche invariant N A’"(q) is
equivalent to the knowledge of the log Gromov-Witten invariants IV, gA’" for all g > ga n-
This provides a geometric meaning to Block-Gottsche invariants, independent of any

choice of tropical limit, making their deformation invariance manifest.

IPrecise definitions are given in Section 1.1.
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e Given a family 7:C — B of nodal curves, the Hodge bundle E is the rank g vector bundle
over B whose fiber over b € B is the space H°(Cy,wc,) of sections of the dualizing
sheaf we, of the curve Cp = m71(b). The lambda classes are classically [Mum83] the
Chern classes of the Hodge bundle:

/\j = Cj(E) .

. . . A . . “GA.n
The log Gromov-Witten invariants N> are defined by an insertion of (=1)9794m\,_,,

to cut down the virtual dimension from g — ga ,, to zero.

e One can interpret Theorem 1 as establishing integrality and positivity properties for

higher genus log Gromov-Witten invariants of X with one lambda class inserted.

e The change of variables ¢ = e’ makes the correspondence of Theorem 1 quite non-
trivial. In particular, it cannot be reduced to an easy enumerative correspondence. It
is essential to have a virtual/non-enumerative count on the Gromov-Witten side: for
g large enough, most of the contributions to IV, gA’” come from maps with contracted

components.

e In Theorem 1.5, we present a generalization of Theorem 1 where some intersection

points with the toric boundary divisor can be fixed.

e One could ask for a generalization of Theorem 1 including descendant log Gromov-
Witten invariants, i.e. with insertion of psi classes. In the simplest case of a trivalent
vertex with insertion of one psi class, we will show in Section 1.9 that it is possible
to reproduce the numerator ¢ + ¢~ 2 of the multiplicity introduced by Géttsche and
Schroeter [GS16a] in the context of refined broccoli invariants, in a way similar to how
we reproduce the numerator ¢ 2 —¢~ 2 of the Block-Gottsche multiplicity in Theorem 1.

RELATION WITH PREVIOUS WORKS
g-ANALOGUES

It is a general principle in mathematics, going back at least to Heine’s introduction of g-
hypergeometric series in 1846, that many “classical” notions have a g-analogue, recovering
the classical one in the limit ¢ — 1. The Block-Gottsche refinement of the tropical curve
counts in R? is clearly an example of this principle. In many other examples, it is well known
that it is a good idea to write ¢ = e”, the limit ¢ — 1 becoming the limit # — 0. From this

point of view, the change of variable ¢ = e in Theorem 1 is maybe not so surprising.

GOTTSCHE-SHENDE REFINEMENT BY HIRZEBRUCH GENUS

Whereas the specialization of Block-Go6ttsche invariants at g = 1 recovers a count of complex
algebraic curves, the specialization ¢ = —1 recovers in some cases a count of real algebraic
curves in the sense of Welschinger [Wel05]. This strongly suggests a motivic interpretation
of the Block-Go6ttsche invariants and indeed one of the original motivations of Block and
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Gottsche was the fact that, under some ampleness assumptions, the refined tropical curve
counts should coincide with the refined curve counts on toric surfaces defined by Gottsche and
Shende [GS14] in terms of Hirzebruch genera of Hilbert schemes. Using motivic integration,
Nicaise, Payne and Schroeter [NPS16] have reduced this conjecture to a conjecture about the
motivic measure of a semialgebraic piece of the Hilbert scheme attached to a given tropical

curve.

Our approach to the Block-Gottsche refined tropical curve counting is clearly different from
the Gottsche-Shende approach: we interpret the refined variable ¢ as coming from the
resummation of a genus expansion whereas they interpret it as a formal parameter keeping

track of the refinement from some Euler characteristic to some Hirzebruch genus.

The Gottsche-Shende refinement makes sense for surfaces more general than toric ones,
as do the higher genus log Gromov-Witten invariants with one lambda class inserted. So
one might ask if Theorem 1 can be extended to more general surfaces, as a relation between
Gottsche-Shende refined invariants and generating series of higher genus log Gromov-Witten
invariants. In Theorem 1.29 and 1.32, we show by combining known results that this is
indeed the case for K3 and abelian surfaces. In particular, Theorem 1 is not an isolated
fact but part of a family of similar results. The case of a log Calabi-Yau surface obtained as
complement of a smooth anticanonical divisor in a del Pezzo surface, and its relation with,
in physics terminology, a worldsheet definition of the refined topological string of local del

Pezzo 3-folds, will be discussed in a future work.

MNOP

The change of variables ¢ = €™ is reminiscent of the MNOP, [MNOPO06a], [MNOPOG6b],
Gromov-Witten/ Donaldson-Thomas (DT) correspondence on 3-folds. The log Gromov-
Witten invariants IV, gA’" can be rewritten as C*-equivariant log Gromov-Witten invariants
of the 3-fold XA xC, where C* acts by scaling on C, see Lemma 7 of Maulik-Pandharipande-
Thomas [MPT10]. If a log DT theory and a log MNOP correspondence were developed, this
would predict that the generating series of NgA’” is a rational function in ¢ = ™, which is
indeed true by Theorem 1. But it would not be enough to imply Theorem 1 because the
relation between log DT invariants and Block-Goéttsche invariants is a priori unclear. In
fact, the Gottsche-Shende conjecture and the result of Filippini and Stoppa suggest that
Block-Gottsche invariants are refined DT invariants whereas the MNOP correspondence

involves unrefined DT invariants. This topic will be discussed in more details elsewhere.

BPS INTEGRALITY

When the log Gromov-Witten invariants of XA x C coincide with ordinary Gromov-Witten
invariants of Xa x C, which is probably the case if |v| = 1 for every v € A and if the
toric boundary divisor of XA is positive enough, then the integrality implied by Theorem 1
coincides with the BPS integrality predicted by Pandharipande [Pan99], and proved via
symplectic methods by Zinger [Zinl1], for generating series of Gromov-Witten invariants of

a 3-fold and of curve class intersecting positively the anticanonical divisor.
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MIKHALKIN REFINED REAL COUNT

Mikhalkin [Mik15] has given an interpretation of some particular Block-Géttsche invariants
in terms of counts of real curves. We do not understand the relation with our approach in
terms of higher genus log Gromov-Witten invariants. We merely remark that both for us
and for Mikhalkin, it is the numerator of the Block-Go6ttsche multiplicities which appear
naturally.

PARKER THEORY OF EXPLODED MANIFOLDS

This Chapter owes a great intellectual debt towards the paper [Parl6] of Brett Parker,
where a correspondence theorem between tropical curves in R® and some generating series
of curve counts in exploded versions of toric 3-folds is proven. Indeed, a conjectural version of
Theorem 1 was known to the author around April 20162 but it was only after the appearance
of [Parl6] in August 2016 that it became clear that this result should be provable with
existing technology. In particular, the idea to reduce the amount of explicit computations

by exploiting the consistency of some gluing formula (see Section 1.7) follows [Par16].

PLAN OF CHAPTER 1

In Section 1.1, we fix our notations and we describe precisely the objects involved in the
formulation of Theorem 1. In Section 1.2, we review some gluing and vanishing properties
of the lambda classes.

The next five Sections form the proof of Theorem 1.

The first step of the proof, described in Section 1.3, is an application of the decomposition
formula of Abramovich, Chen, Gross and Siebert [ACGS17a] to the toric degeneration of
Nishinou, Siebert [NS06]. This gives a way to write our log Gromov-Witten invariants as a

sum of contributions indexed by tropical curves.

In the second step of the proof, described in Sections 1.5 and 1.6, we prove a gluing formula
which gives a way to write the contribution of a tropical curve as a product of contributions
of its vertices. Here, gluing and vanishing properties of the lambda classes reviewed in
Section 1.2, combined with a structure result for non-torically transverse stable log maps
proved in Section 1.4, play an essential role. In particular, we only have to glue torically
transverse stable log maps and we don’t need to worry about the technical issues making
the general gluing formula in log Gromov-Witten theory difficult (see Abramovich, Chen,
Gross, Siebert [ACGS17Db]).

After the decomposition and gluing steps, what remains to do is to compute the contribution
to the log Gromov-Witten invariants of a tropical curve with a single trivalent vertex. The
third and final step of the proof of Theorem 1, carried out in Section 1.7, is the explicit

evaluation of this vertex contribution. Consistency of the gluing formula leads to non-trivial

2And was for example presented at the Workshop: Curves on surfaces and 3-folds, EPFL, Lausanne, 21
June 2016.
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relations between these vertex contributions, which enable us to reduce the problem to
particularly simple vertices. The contribution of these simple vertices is computed explicitly
by reduction to Hodge integrals previously computed by Bryan and Pandharipande [BP05)
and this ends the proof of Theorem 1.

In Section 1.8, we prove Theorem 1.29 and Theorem 1.32, which are analogues for K3 and

abelian surfaces of Theorem 1 for toric surfaces.

In Section 1.9, we make contact in a simple case with refined broccoli invariants.

INTRODUCTION TO CHAPTER 2

STATEMENTS

We start by giving slightly imprecise versions of the main results of this Chapter. For us,
a log Calabi-Yau surface is a pair (Y, D), where Y is a smooth complex projective surface
and D is a reduced effective normal crossing anticanonical divisor on Y. A log Calabi-Yau
surface (Y, D) has maximal boundary® if D is singular.

Theorem 2. The functions attached to the rays of the q-deformed 2-dimensional Kontsevich-
Soibelman scattering diagrams are, after the change of variables q = ', generating series of
higher genus log Gromov- Witten invariants—uwith maximal tangency condition and insertion

of the top lambda class—of log Calabi-Yau surfaces with mazximal boundary.

A precise version of Theorem 2 is given by Theorems 2.6 and 2.7 in Section 2.3.

Theorem 3. Higher genus log Gromov- Witten invariants—with mazximal tangency condition
and insertion of the top lambda class—of log Calabi- Yau surfaces with mazximal boundary

satisfy an Ooguri-Vafa/open BPS integrality property.

A precise version of Theorem 3 is given by Theorem 2.30 in Section 2.8.

We also formulate a new conjecture.

Conjecture 4. Higher genus relative Gromov-Witten invariants-with maximal tangency
condition and insertion of the top lambda class—of a del Pezzo surface S relatively to a
smooth anticanonical divisor are related to refined counts of dimension one stable sheaves
on the local Calabi-Yau 3-fold TotKg, total space of the canonical line bundle of S.

A precise version of Conjecture 4 is given by Conjecture 2.41 in Section 2.8.6.

3In Chapter 3, following [GHK15a], a log Calabi-Yau surface with maximal boundary is called a Looijenga
pair.
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CONTEXT AND MOTIVATIONS
SYZ

The Strominger-Yau-Zaslow [SYZ96] picture of mirror symmetry suggests a two steps con-
struction of the mirror of a Calabi-Yau variety admitting a Lagrangian torus fibration: first,
construct the “semi-flat” mirror by dualizing the non-singular torus fibers; second, correct
the complex structure of the “semi-flat” mirror such that it extends across the locus of singu-
lar fibers. It is expected, [SYZ96], [Fuk05], that the corrections involved in the second step
are determined by some counts of holomorphic discs in the original variety with boundary

on torus fibers.

KS

In dimensional two and with at most nodal singular fibers in the torus fibration, Kontsevich-
Soibelman [KS06] had the insight that algebraic self-consistency constraints on the correc-
tions were strong enough to determine these corrections uniquely. More precisely, they
reduced the problem to an algebraic computation of commutators in a group of formal

families of symplectomorphisms of the dimension two algebraic torus.

This algebraic formalism, graphically encoded under the form of scattering diagrams, was
generalized and extended to higher dimensions by Gross-Siebert [GS11] and plays an essential

role in the Gross-Siebert algebraic approach to mirror symmetry.

GPS

In [GPS10], Gross-Pandharipande-Siebert made some progress in connecting the original
enumerative expectation and the algebraic recipe of scattering diagrams. They showed
that the 2-dimensional Kontsevich-Soibelman scattering diagrams indeed have an enumer-
ative meaning: they compute some genus zero log Gromov-Witten invariants of some log
Calabi-Yau surfaces with maximal boundary, i.e. complements of a singular normal crossing

anticanonical divisor in a smooth projective surface.

This agrees with the original expectation because these geometries admit Lagrangian torus
fibrations and these genus zero log Gromov-Witten invariants should be thought as algebraic

definitions of some counts of holomorphic discs with boundary on Lagrangian torus fibers?.

The combination of 2-dimensional scattering diagrams with their enumerative interpretation
given by [GPS10] was the main tool in the Gross-Hacking-Keel [GHK15a] construction of

mirrors for log Calabi-Yau surfaces with maximal boundary.

4For some symplectic approach, relating counts of holomorphic discs in hyperkéhler manifolds of real
dimension 4 and the Konstevich-Soibelman wall-crossing formula, we refer to the works of Lin [Lin17] and
Tacovino [lac17].
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Higher genus GPS = refined KS

At the end of their paper, Section 11.8 of [KS06] (see also [S0i09]), Kontsevich-Soibelman
already remarked that the 2-dimensional scattering diagram formalism has a natural g¢-
deformation, with the group of formal families of symplectomorphisms of the 2-dimensional
algebraic torus replaced by a group a formal families of automorphisms of the 2-dimensional
quantum torus, a natural non-commutative deformation of the 2-dimensional algebraic torus.

The enumerative meaning of this g-deformed scattering diagram was a priori unclear.

In Section 5.8 of [GPS10], Gross-Pandharipande-Siebert remarked that the genus zero log
Gromov-Witten invariants they consider have a natural extension to higher genus, by inte-
gration of the top lambda class, and they asked if there is an interpretation of these higher

genus invariants in terms of scattering diagrams.

The main result of the present Chapter, Theorem 2, is that the two previous questions, the
enumerative meaning of the algebraic g-deformation and the algebraic meaning of the higher

genus deformation, are answers to each other.

ov

The higher genus log Gromov-Witten invariants of log Calabi-Yau surfaces that we are
considering—with insertion of the top lambda class—should be thought as an algebro-geometric
definition of some counts of higher genus Riemann surfaces with boundary on a Lagrangian
torus fiber in a Calabi-Yau 3-fold geometry, essentially the product of the log Calabi-Yau
surface by a third trivial direction, see Section 2.2.4. For such counts of higher genus open
curves in a Calabi-Yau 3-fold geometry, Ooguri-Vafa [OV00] have conjectured an open BPS
integrality structure. Theorem 3, which is a consequence of Theorem 2 and of non-trivial
algebraic properties of g-deformed scattering diagrams, can be viewed as a check of this BPS

integrality structure.

DT

The non-trivial integrality properties of g-deformed scattering diagrams are well-known to
be related to integrality properties of refined Donaldson-Thomas (DT) invariants, [KS08].
Indeed, g-deformed scattering diagrams control the wall-crossing behavior of refined DT

invariants.

The fact that the integrality structure of DT invariants coincides with the Ooguri-Vafa
integrality structure of higher genus open Gromov-Witten invariants of Calabi-Yau 3-folds,
essentially involving the quantum dilogarithm in both cases, can be viewed as an early

indication that something like Theorem 2 should be true.

As consequence of Theorem 2, we get explicit relations between refined DT invariants of
some quivers and higher genus log Gromov-Witten invariants of log Calabi-Yau surfaces, see
Section 2.8.5, generalizing the unrefined/genus zero relation of [GP10], [RW13].
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Ccv

In fact, Cecotti-Vafa [CV09] have given a physical derivation of the wall-crossing formula in
DT theory going through the higher genus open Gromov-Witten theory of some Calabi-Yau
3-fold. We will explain in Section 2.9 that Theorem 2 and 3 are indeed fully compatible with
the Cecotti-Vafa argument. In particular, Theorem 2 can be viewed as a highly non-trivial
mathematical check of the connection predicted by Witten [Wit95] between higher genus

open A-model and quantum Chern-Simons theory.

del Pezzo

Theorem 2 and 3 are about log Calabi-Yau surfaces with maximal boundary, i.e. with a
singular normal crossing anticanonical divisor. Similar questions can be asked for log Calabi-
Yau surfaces with respect to a smooth anticanonical divisor. Conjecture 4 gives a non-trivial
correspondence in such case, suggested by the similarities between refined DT theory and
open higher genus Gromov-Witten invariants discussed above.

COMMENTS ON THE PROOF OF THEOREM 2

The curve counting invariants appearing in Theorem 2 are log Gromov-Witten invariants,
as defined by Gross and Siebert [GS13], and Abramovich and Chen [Chel4b], [AC14]. The
proof of Theorem 2 relies on recently developed general properties of log Gromov-Witten

invariants, such as the decomposition formula of [ACGS17a].

The main tool of [GPS10] is a reduction to a tropical setting using the correspondence
theorem of Mikhalkin [Mik05] and Nishinou-Siebert [NS06] between counts of curves in
complex toric surfaces and counts of tropical curves in R2. Similarly, the main tool of the
present Chapter is a reduction to a tropical setting using the main result, Theorem 1, of
Chapter 1.

Given the fact that the relation between g-deformed tropical invariants and g-deformed
scattering diagrams has already been worked out by Filippini-Stoppa [FS15], Theorem 2
should really be viewed as a combination of Theorem 1 and [FS15]. The new results required
for the proof of Theorem 2 are: the check that the degeneration step used in [GPS10] to go
from a log Calabi-Yau setting to a toric setting extends to the higher genus case and the
check that the correspondence given by Theorem 1 has exactly the correct form to be used
as input in [FS15].

The most technical part is the higher genus version of the degeneration step. As the gen-
eral version of the degeneration formula in log Gromov-Witten theory is not yet known,
we combine the general decomposition formula of [ACGS17a] with some situation specific
vanishing statements, which, as in Chapter 1, reduce the gluing operations to some torically

transverse locus where they are under control, for example thanks to [KLR18].

21



COMMENTS ON THE PROOF OF THEOREM 3.

The proof of Theorem 3 is a combination of Theorem 2 and of the non-trivial integral-
ity results about g-deformed scattering diagrams proved by Kontsevich and Soibelman in
Section 6 of [KS11]. In fact, to get the most general form of Theorem 3, the results contained
in [KS11] do not seem to be enough. We use an induction argument on scattering diagrams,
parallel to the one used in Appendix C3 of [GHKK18], to reduce the most general case to a
case which can be treated by [KS11].

A small technical point is to keep track of signs, because of the difference between quantum
tori and twisted quantum tori, see Section 2.8.3 on the quadratic refinement for details.

PLAN OF CHAPTER 2

In Section 2.1, we review the notion of 2-dimensional scattering diagrams, both classical
and quantum, with an emphasis on the symplectic/Hamiltonian aspects. In Section 2.2, we

introduce a class of log Calabi-Yau surfaces and their log Gromov-Witten invariants.

In Section 2.3, we state our main result, Theorem 2.6, precise version of Theorem 2, relat-
ing 2-dimensional quantum scattering diagrams and generating series of higher genus log
Gromov-Witten invariants of log Calabi-Yau surfaces. We also state a generalization of
Theorem 2.6, Theorem 2.7, phrased in terms of orbifold log Gromov-Witten invariants.

Sections 2.4, 2.5, 2.6, 2.7 are dedicated to the proof of Theorems 2.6 and 2.7. The general
structure of the proof is parallel to [GPS10]. In Section 2.4, we introduce higher genus
log Gromov-Witten invariants of toric surfaces. In Section 2.5, the most technical part
of this Chapter, we prove a degeneration formula relating log Gromov-Witten invariants
of log Calabi-Yau surfaces defined in Section 2.2 and appearing in Theorem 2.6, with log
Gromov-Witten invariants of toric surfaces defined in Section 2.4.2. In Section 2.6, following
Filippini-Stoppa [FS15], we review the connection between quantum scattering diagrams
and refined counts of tropical curves. We finish the proof of Theorem 2.6 in Section 2.7,
combining the results of Sections 2.5 and 2.6 with Theorem 1. The orbifold Gromov-Witten

computation needed to finish the proof of Theorem 2.7 is done in Section 2.7.2.

In Section 2.8.1, we formulate a BPS integrality conjecture for higher genus log Gromov-
Witten invariants of log Calabi-Yau surfaces. In Section 2.8.2, we state Theorem 2.30, precise
form of Theorem 3. The proof of Theorem 2.30 takes Sections 2.8.3, 2.8.4. In Section 2.8.5,
Proposition 2.38 gives an explicit connection with refined DT invariants of quivers. Finally,

in Section 2.8.6, we state Conjecture 2.41, precise version of Conjecture 4.

In Section 2.9, we explain how Theorem 2 can be viewed as a mathematical check of the
physics work of Cecotti-Vafa [CV09] and how Theorem 3 is compatible with the Ooguri-Vafa
integrality conjecture [OV00].
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INTRODUCTION TO CHAPTER 3

CONTEXT AND MOTIVATIONS
MIRROR SYMMETRY

The Strominger-Yau-Zaslow [SYZ96] picture of mirror symmetry suggests an original way of
constructing algebraic varieties: given a Calabi-Yau variety, its mirror geometry should be
constructed in terms of the enumerative geometry of holomorphic discs in the original variety.
This picture has been developed by Fukaya [Fuk05], Kontsevich-Soibelman [KS06], Gross-
Siebert [GS11], Auroux [Aur07] and many others. In particular, Gross and Siebert have
developed an algebraic approach in which the enumerative geometry of holomorphic discs is
replaced by some genus zero log Gromov-Witten invariants. Given the recent progress in log
Gromov-Witten theory, in particular the definition of punctured invariants by Abramovich-
Chen-Gross-Siebert [ACGS17b], it is likely that this approach will lead to some general
mirror symmetry construction in the algebraic setting, see Gross-Siebert [GS16b] for an

announcement.

THE WORK OF GROSS-HACKING-KEEL

An early version of this mirror construction has been used by Gross-Hacking-Keel [GHK15a]
to construct mirror families of log Calabi-Yau surfaces, with non-trivial applications to the
theory of surface singularities and in particular a proof of the Looijenga’s conjecture on
smoothing of cusp singularities. More precisely, the construction of [GHK15a] applies to
Looijenga pairs, i.e. to pairs (Y, D), where Y is a smooth projective complex surface and
D is some reduced effective normal crossing anticanonical divisor on Y. The upshot is in
general a formal flat family X — S of surfaces over a formal completion, near some point s,
the “large volume limit of Y”, of an algebraic approximation to a compactification of the

complexified Kahler cone of Y.

Furthermore, X is an affine Poisson formal variety with a canonical linear basis of so-called
theta functions and the map X — S is Poisson if S is equipped with the zero Poisson
bracket. Under some positivity assumptions on (Y, D), this family can be in fact extended
to an algebraic family over an algebraic base and the generic fiber is then a smooth algebraic

symplectic surface.

The first step of the construction involves defining the fiber Xy, i.e. the “large complex
structure limit” of the family X'. This step is essentially combinatorial and can be reduced

to some toric geometry: X, is a reducible union of toric varieties.

The second step is to construct X by smoothing of X,,. This construction is based on the
consideration of an algebraic object, a scattering diagram, notion introduced by Kontsevich-
Soibelman [KS06] and further developed by Gross-Siebert [GS11], whose definition encodes

genus zero log Gromov-Witten invariants® of (Y, D). The key non-trivial property to check

5Tn fact, in [GHK15a], an ad hoc definition of genus zero Gromov-Witten invariants is used,which was
supposed to coincide with genus zero log Gromov-Witten invariants. This fact follows from the Remark at
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is the so-called consistency of the scattering diagram. In [GHK15a], the consistency relies
on the work of Gross-Pandharipande-Siebert [GPS10], which itself relies on connection with
tropical geometry [Mik05], [NS06]. Once the consistency of the scattering diagram is guar-
anteed, some combinatorial objects, the broken lines [Grol0], [CPS10], are well-defined and
can be used to construct the algebra of functions H°(X,Oy) with its linear basis of theta

functions.

QUANTIZATION®

The variety X being a Poisson variety over S, it is natural to ask about its quantization, for
example in the sense of deformation quantization. As X and S are affine, the deformation
quantization problem takes its simplest form: to construct a structure of non-commutative
HO(S,05)[[h]-algebra on H(X,Ox)[[h]] whose commutator is given at the linear order
in A by the Poisson bracket on H°(X,Ox). There are general existence results, [Kon01],
[Yek05], for deformation quantizations of smooth affine Poisson varieties. Some useful ref-
erence on deformation quantization of algebraic symplectic varieties is [BK04]. In fact, on
the smooth locus of X — S, we have something relative symplectic of relative dimension two
and then the existence of a deformation is easy because the obstruction space vanishes for
dimension reasons. But they are no known general results which would guarantee a priori
the existence of a deformation quantization of X over S because X — S is singular, e.g.
over sg € S to start with. Specific examples of deformation quantization of such geometries
usually involve some situation-specific representation theory or geometry, e.g. see [Obl04],
[EORO7], [EG10], [AK17].

MAIN RESULTS.

The main result of the present Chapter is a construction of a deformation quantization of
X — S. Our construction follows the lines of Gross-Hacking-Keel [GHK15a] except that,
rather than to use only genus zero log Gromov-Witten invariants, we use higher genus
log Gromov-Witten invariants, the genus parameter playing the role of the quantization

parameter A on the mirror side.

We construct a quantum version of a scattering diagram and we prove its consistency using
the main result of Chapter 2. Once the consistency of the quantum scattering diagram is
guaranteed, some quantum version of the broken lines are well-defined and can be used to
construct a deformation quantization of H°(X,Ox). In fact, it follows from Chapter 2 that

the dependence on the deformation parameter A is in fact algebraic” in ¢ = e'®

, something
which in general cannot be obtained from some general deformation theoretic argument. In

other words, the main result of the present Chapter can be phrased in the following slightly

the end of Section 4 of Chapter 1. In the present Chapter, we use log Gromov-Witten theory systematically.
6The existence of theta functions is related to the geometric quantization of the real integrable system
formed by a Calabi-Yau manifold with a SYZ fibration. We do NOT refer to this quantization story. For
us, quantization always means deformation quantization of a holomorphic symplectic/Poisson variety.
"Because in general X is already a formal object, this claim has to be stated more precisely, see
Theorem 3.9. It is correct in the most naive sense if (Y, D) is positive enough and X is then really an
algebraic family.

24



vague terms (see Theorems 3.7, 3.8 and 3.9 for precise statements).

Theorem 5. The Gross-Hacking-Keel [GHK15a] Poisson family X — S, mirror of a Looi-
jenga pair (Y, D), admits a deformation quantization, which can be constructed in a syn-
thetic way from the higher genus log Gromouv-Witten theory of (Y, D). Furthermore, the
dependence on the deformation quantization parameter h is algebraic in q = e™.

The notion of quantum scattering diagram is already suggested at the end of Section 11.8
of [KS06] and was used by Soibelman [S0i09] to construct non-commutative deformations of
non-archimedean K3 surfaces. The connection with quantization, e.g. in the context of clus-
ter varieties [FG09al, [FG0O9b], was expected, and quantum broken lines have been studied by
Mandel [Manl5]. The key novelty is the connection between these algebraic/combinatorial
g-deformations and the geometric deformation given by higher genus log Gromov-Witten

theory.

This connection between higher genus Gromov-Witten theory and quantization is perhaps a
little surprising, even if similarly looking statement are known or expected. In Section 3.6,
we explain that Theorem 5 should be viewed as an example of higher genus mirror symmetry
relation, the deformation quantization being a 2-dimensional reduction of the 3-dimensional
higher genus B-model (BCOV theory). We also comment on the relation with some string

theoretic expectation, in a way parallel to Section 2.9 of Chapter 2.

In the context of mirror symmetry, there is a well-known symplectic interpretation of some
non-commutative deformations on the B-side, involving deformation of the complexified
symplectic form which do not preserve the Lagrangian nature of the fibers of the SYZ
fibration. An example of this phenomenon has been studied by Auroux-Katzarkov-Orlov
[AKOO06] in the context of mirror symmetry for del Pezzo surfaces. Further examples should
appear in some work of Sheridan and Pascaleff. This approach remains entirely into the
traditional realm of genus zero holomorphic curves and so is completely different® from our

approach using higher genus curves.

It is natural to ask how is the deformation quantization given by Theorem 5 related to
previously known examples of quantization. In Section 3.5, we treat a simple example and

we recover a well-known description of the Ay quantum X-cluster variety [FG09a].

For Y a cubic surface in P? and D a triangle of lines on Y, the quantum scattering diagram
can be explicitly computed and so using techniques similar to those developed in [GHK],
one should be able to show that the deformation quantization given by Theorem 5 coincides
with the one constructed by Oblomkov [Obl04] using Cherednik algebras (double affine
Hecke algebras). We leave this verification, and the general relation to quantum X-cluster

varieties, to some future work.

Similarly, if Y is a del Pezzo surface of degree 1, 2 or 3 and D a nodal cubic, it would
be interesting to compare Theorem 5 with the construction of Etingof, Oblomkov, Rains
[EOROT7] using Cherednik algebras. In these cases, the quantum scattering diagrams are

extremely complicated and new ideas are probably required.

Finally, we mention that Gross-Hacking-Keel-Siebert [GHKS] have given a mirror construc-

8The compatibility of these two approaches can be understood via a chain of string theoretic dualities.
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tion for K3 surfaces, producing canonical bases of theta functions for homogeneous coordi-
nate rings. This construction uses scattering diagrams whose initial data are the scattering
diagrams considered in [GHK15a] for the log Calabi-Yau surfaces which are irreducible com-
ponents of the special fiber of a maximal degeneration of K3 surfaces. By using the quantum
scattering diagrams leading to the proof of Theorem 5, we expect to be able to construct

deformation quantizations with canonical bases for K3 surfaces.

COMMENTS ON THE PROOF OF THEOREM 5

Our proof of Theorem 5 follows closely the structure of [GHK15a]. When an argument in the
quantum case is formally parallel to its classical version, we often simply refer to [GHK15a].
The parts that we treat with care are those involving the non-commutative rings, building
blocks of the gluing construction, and in particular the computations potentially affected
with ordering issues, which have no analogue in the commutative context of [GHK15a].

PLAN OoF CHAPTER 3

In Section 3.1, we set-up our notations and we give precise versions of the main results.
In Section 2.1, we describe the formalism of quantum scattering diagrams and quantum
broken lines. In Section 3.3, we explain how to associate to every Looijenga pair (Y, D) a
canonical quantum scattering diagram constructed in terms of higher genus log Gromov-
Witten invariants of (Y, D). The key result in our construction is Theorem 3.26 establishing
the consistency of the canonical quantum scattering diagram. The proof of Theorem 3.26
follows the reduction steps used by Gross-Hacking-Keel [GHK15a] in the genus zero case.
In the final step, we use the main result of Chapter 2 in place of the main result of [GPS10].
In Section 3.4, we finish the proofs of the main theorems. In Section 3.5, we work out
some explicit example. Finally, in Section 3.6, we discuss the relation of our main result,

Theorem 5, with higher genus mirror symmetry and some string theoretic arguments.
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TROPICAL REFINED CURVE COUNTING
FROM HIGHER GENERA

1.1 PRECISE STATEMENT OF THE MAIN RESULT

1.1.1 TORIC GEOMETRY

Let A be a balanced collection of vectors in Z2, i.e. a finite collection of vectors in Z2? — {0}
summing to zero!. Let |A| be the cardinality of A. For v € Z? - {0}, let |[v| the divisibility of
v in Z2, i.e. the largest positive integer k such that we can write v = kv’ with v’ € Z2. Then
the balanced collection A defines the following data by standard toric geometry.

e A projective? toric surface Xa over C, whose fan has rays Rsov generated by the
vectors v € Z? — {0} contained in A. We denote X the toric boundary divisor of
Xa.

e A curve class Sa on Xa, whose polytope is dual to A. If p is a ray in the fan of Xa,
we write D, for the prime toric divsisor of XA dual to p and A, the set of elements
v € A such that Rygv = p. Then we have

BA'DP = Z |v|7

veA,

and these intersection numbers uniquely determine S5. The total intersection number

LA given element of Z2 - {0} can appear several times in A. Here we follow the notation used by Itenberg
and Mikhalkin in [IM13].

2This is true only if the elements in A are not all collinear. If they are, we replace Xa by a toric
compactification whose choice will be irrelevant for our purposes.
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of Ba with the toric boundary divisor XA is given by

Ba-(-Kx,) =) vl.

veA

e Tangency conditions for curves of class Sa with respect to the toric boundary divisor
of Xa. We say that a curve C is of type A if it is of class Sa and if for every ray p in
the fan of Xa, the curve C' intersects D, in |A,| points with multiplicities |v], v € A,,.

Similarly, we have a notion of stable log map of type A.

e An asymptotic form for a parametrized tropical curve h:T' - R? in R?. We say that
a parametrized tropical curve in R? is of type A if it has |A| unbounded edges, with

directions v and with weights |v|, v € A.

1.1.2 LoG GROMOV-WITTEN INVARIANTS

The moduli space of n-pointed genus g stable maps to Xa of class Sa intersecting properly
the toric boundary divisor 0. XA with tangency conditions prescribed by A is not proper: a
limit of curves intersecting 0 XA properly does not necessarily intersect 0 Xa properly. A
nice compactification of this space is obtained by considering stable log maps. The idea is
to allow maps intersecting X A non-properly, but to remember some additional information
under the form of log structures, which give a way to make sense of tangency conditions even
for non-proper intersections. The theory of stable log maps has been developed by Gross
and Siebert [GS13], and Abramovich and Chen [Chel4b], [AC14]. By stable log maps, we
always mean basic stable log maps in the sense of [GS13]. We refer to Kato [Kat89] for

elementary notions of log geometry.

We consider the toric divisorial log structure on XA and use it to view X as a log scheme.
Let M, A be the moduli space of n-pointed genus g stable log maps to Xa of type A. By
n-pointed, we mean that the source curves are equipped with n marked points in addition
to the marked points keeping track of the tangency conditions with respect to the toric

boundary divisor. We consider that the latter are notationally already included in A.

By the work of Gross, Siebert [GS13] and Abramovich, Chen [Chel4b], [AC14], M, , A is a
proper Deligne-Mumford stack® of virtual dimension

Vdimﬂg’n,A:g—1+n+ﬁA.(—KXA)— Z(|v|—1):g—1+n+|A|,
veA

and it admits a virtual fundamental class

[Mg,n,A]v“t € AVdirﬂMg,n,A (Mg,n,A7 Q) .

The problem of counting n-pointed genus g curves passing though n fixed points has virtual

3Moduli spaces of stable log maps have a natural structure of log stack. The structure of log stack is
particularly important to treat correctly evaluation morphisms in log Gromov-Witten theory in general, see
[ACGM10]. We will always consider these moduli spaces as stacks over the category of schemes, not as log
stacks, and we will always work with naive evaluation morphisms between stacks, not log stacks. This will
be enough for us. See the remark at the end of Section 1.3.2 for some justification.
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dimension zero if

vdim My, A =21,

i.e. if the genus g is equal to
gan =n+1-|A.

In this case, the corresponding count of curves is given by

An ., .
N . <T0(pt)n>gA,,,“n)A = [

[MgA,n,n,A]Vir

n
evi(ot),
j=1

where pt € A2(X ) is the class of a point and ev; is the evaluation map at the j-th marked
points.

According to Mandel and Ruddat [MR16], Mikhalkin’s correspondence theorem can be re-
formulated in terms of these log Gromov-Witten invariants. Our refinement of the corre-

spondence theorem will involve curves of genus g > ga .

For g > ga n, inserting n points is no longer enough to cut down the virtual dimension to
zero. The idea is to consider the Hodge bundle E over M, , a. If m:C > M, , A is the

universal curve, of relative dualizing® sheaf w,, then
E = mowyr

is a rank g vector bundle over Mg’ny A. The Chern classes of the Hodge bundles are classically
[Mum83] called the lambda classes and denoted as

for j=0,...,g9. Because the virtual dimension of MQMA is given by
vdimﬂgm,A =g-gan+2n,

inserting the lambda class Ay, ., and n points will cut down the virtual dimension to zero,

so it is natural to consider the log Gromov-Witten invariants with one lambda class inserted

NAM = (((1)7795 X o () g m
. ‘/[‘MH,TL,A]‘”I"I (_1)gigA7n)\9*9A,n gI:II ev; (pt) .

Our refined correspondence result, Theorem 1.4, gives an interpretation of the generating

series of these invariants in terms of refined tropical curve counting.

4The dualizing line bundle of a nodal curve coincides with the log cotangent bundle up to some twist by
marked points and so is a completely natural object from the point of view of log geometry.
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1.1.3 TROPICAL CURVES

We refer to Mikhalkin [Mik05], Nishinou, Siebert [NS06], Mandel, Ruddat [MR16], and
Abramovich, Chen, Gross, Siebert [ACGS17a] for basics on tropical curves. Each of these
references uses a slightly different notion of parametrized tropical curve. We will use a
variant of [ACGS17al, Definition 2.5.3, because it is the one which is the most directly

related to log geometry. It is easy to go from one to the other.

For us, a graph T" has a finite set V(I') of vertices, a finite set E;(I") of bounded edges
connecting pairs of vertices and a finite set Eo (T") of legs attached to vertices that we view
as unbounded edges. By edge, we refer to a bounded or unbounded edge. We will always

consider connected graphs.

A parametrized tropical curve h:T' - R? is the following data:

e A non-negative integer g(V') for each vertex V, called the genus of V.

e A bijection of the set Foo(I") of unbounded edges with

{1, [E(D)]},

where |Es (T')| is the cardinality of Fo(T).

o A vector vy g € 72 for every vertex V and E an edge adjacent to V. If vy,g is not
zero, the divisibility |vy. g| of vy g in Z? is called the weight of E and is denoted w(E).
We require that vy g # 0 if E is unbounded and that for every vertex V, the following
balancing condition is satisfied:

Yoyp=0,
E

where the sum is over the edges E adjacent to V. In particular, the collection Ay of

non-zero vectors va g for I/ adjacent to V' is a balanced collection as in Section 1.1.1.
e A non-negative real number ¢(E) for every bounded edge of E, called the length of E.
e A proper map h:I' - R? such that

— If F is a bounded edge connecting the vertices V7 and V5, then A maps E affine
linearly on the line segment connecting h(V7) and h(V3), and h(Vs) — h(V7) =
L(E)vy, E.

— If F is an unbounded edge of vertex V, then h maps E affine linearly to the ray
h(V) +Rsovy,g.

The genus g, of a parametrized tropical curve h:T' - R? is defined by

gh=gr + Z g(V),
VeV (T)

where gr is the genus of the graph T.

We fix A a balanced collection of vectors in Z2, as in Section 1.1.1, and we fix a bijection
of A with {1,...,|A|}. We say that a parametrized tropical curve h:T' - R? is of type A if
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there exists a bijection between A and {vy, g} ge E..(r) compatible with the fixed bijections
to

{1 A= {1, [Ee (D)} -

Remark that

Z 'UV,EZO

EcEo(T)

by the balancing condition.

We say that a parametrized tropical curve h:I' — R? is n-pointed if we have chosen a
distribution of the labels 1,...,n over the vertices of I', a vertex having the possibility to
have several labels. Vertices without any label are said to be unpointed whereas those with
labels are said to be pointed. For j = 1,...,n, let V; be the pointed vertex having the
label j. Let p = (p1,...,pn) be a configuration of n points in R2. We say that a n-pointed
parametrized tropical curve h:I' - R? passes through p if h(V;) = p; for every j =1,...,n.
We say that a n-pointed parametrized tropical curve h:I' - R? passing through p is rigid if
it is not contained in a non-trivial family of n-pointed parametrized tropical curves passing
through p of the same combinatorial type.

Proposition 1.1. For every balanced collection A of vectors in Z2, and n a non-negative
integer such that ga n 2 0, there exists an open dense subset U , of (R?)™ such that if p =
(p1,..-,pn) €Uny then p; # pi for j #k and if B:T — R? is a rigid® n-pointed parametrized
tropical curve of genus g < ga n and of type A passing through p, then

® g=9gAmn-

We have g(V') =0 for every vertex V of I'. In particular, the graph I’ has genus ga n.

Images by h of distinct vertices are distinct.

No edge is contracted to a point.

Images by h of two distinct edges intersect in at most one point.

Unpointed vertices are trivalent.

Pointed vertices are bivalent.

Proof. This is essentially Proposition 4.11 of Mikhalkin [Mik05], which itself is essentially
some counting of dimensions. In [Mik05], there is no genus attached to the vertices but if we
have a parametrized tropical curve of genus g < ga , with some vertices of non-zero genus,
the underlying graph has genus strictly less than g and so strictly less than ga ,, which is
impossible by Proposition 4.11 of [Mik05] for p general enough. O

Proposition 1.2. If p € Ua n, then the set Ta , of rigid n-pointed genus ga n parametrized
tropical curves h:T' — R? of type A passing through p is finite.

5Here, the rigidity assumption is only necessary to forbid contracted edges. It happens to be the natural
assumption in the general form of the decomposition formula of [ACGS17a], as explained and used in
Section 1.3.3.
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Proof. This is Proposition 4.13 if Mikhalkin [Mik05]: there are finitely many possible com-
binatorial types for a parametrized tropical curve as in Proposition 1.1, and for a fixed
combinatorial type, the set of such tropical curves passing trough p is a zero dimensional

intersection of a linear subspace with an open convex polyhedron, so is a point. O

Lemma 1.3. Let h:T' > R? be a parametrized tropical curve in TAp. Then I has
29A,n -2+ |A|
trivalent vertices.

Proof. By definition of Th ,, the graph I is of genus ga ,, and its vertices are either trivalent
or bivalent. Replacing the two edges adjacent to each bivalent vertex by a unique edge, we
obtain a trivalent graph ' with the same genus and the same number of unbounded edges
as I'. Let |V (I')| be the number of vertices of ' and let |E;(T)| be the number of bounded
edges of I'. A count of half-edges using that I is trivalent gives

3IV(D)] = 2B, (D)]+14].
By definition of the genus, we have
L-gam = V(D) - |Es (D).

Eliminating | E;(I")| from the two previous equalities gives the desired formula and so finishes
the proof of Lemma 1.3. O

For h:T' - R? a parametrized tropical curve in R? and V a trivalent vertex of adjacent edges
FE4, Es and Ej3, the multiplicity of V is the integer defined by

m(V) = | det(vV,El » UV, Ey )| :
Thanks to the balancing condition
VV.E, +VV,E, + VUV E; =0,

we also have
m(V) = [det(vv,E,, vv,,)| = [det(vv, By, vv,, )] -

For (h:T' - R?) € Ta ,,, the multiplicity of & is defined by

mp= [ m(V),

Veve)(r)
where the product is over the trivalent, i.e. unpointed, vertices of I'.

Let Nﬁ‘(;’; be the count with multiplicity of n-pointed genus ga , parametrized tropical curves
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of type A passing through p, i.e.

NA’p'= Z mp .

trop °
hETAyp

This tropical count with multiplicity has a natural refinement, first suggested by Block and
Gottsche [BG16]. We can replace the integer valued multiplicity m;, of a parametrized
tropical curve h:I" - R? by the N[qi%]—valued multiplicity

m(V) m(V)
=5 -

_ m(V)-1 (V=1 .
ma(q) = H % _ H ( Z q_4<g> 1+J) 7
VeV ) (T) qz —q 2 VevB)(T) J=0

where the product is taken over the trivalent vertices of I'. The specialization ¢ = 1 recovers
the usual multiplicity:

mh(l) =mp .

Counting the parametrized tropical curves in Th , as above but with g-multiplicities, we

obtain a refined tropical count

NEP(q) =Y mau(q) eN[g*?],
hGTA,p

which specializes to the tropical count N@é’; at g=1":

A, A,
Ntrog(l) = Ntrog :

1.1.4 UNREFINED CORRESPONDENCE THEOREM

Let A be a balanced collection of vectors in Z?2, as in Section 1.1.1, and let n be a non-
negative integer and p € Ua . Then we have some log Gromov-Witten count N Amoof
n-pointed genus ga , curves of type A passing through n points in the toric surface Xa
(see Section 1.1.2), and we have some count with multiplicity Ntﬁ;g of n-pointed genus ga ,
tropical curves of type A passing through n points p = (p1,...,p,) in R? (see Section 1.1.3).
The (unrefined) correspondence theorem then takes the simple form

NA™ = N2P

trop*

The result proved by Mikhalkin [Mik05] and generalized by Nishinou, Siebert [NS06] is an

equality between the tropical count N, An

trop a1d an enumerative count of algebraic curves.

The fact that this enumerative count coincides with the log Gromov-Witten count N2 is
proved by Mandel and Ruddat in [MR16].

1.1.5 REFINED CORRESPONDENCE THEOREM

The Block-Géttsche refinement from NP to N4P(q), reviewed in Section 1.1.3, is done at

the tropical level so is combinatorial in nature and its geometric meaning is a priori unclear.
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The main result of the present Chapter is a new non-tropical interpretation of Block-Gottsche
invariants in terms of the higher genus log Gromov-Witten invariants with one lambda class
inserted NV gm that we introduced in Section 1.1.2. In particular, this geometric interpreta-
tion is independent of any tropical limit and makes the tropical deformation invariance of

Block-Gottsche invariants manifest.

More precisely, we prove a refined correspondence theorem, already stated as Theorem 1 in
the Introduction.

Theorem 1.4. For every A balanced collection of vectors in Z2, for every non-negative

integer n such that ga n 2 0, and for every p € Ua n, we have the equality
An, 20-2+A] _ A, N1 1)\ 29a 2 A
¥ NI NS (g) (i) (g% - q7?))
9ZgAa,n
of power series in u with rational coefficients, where
(iu)"

n>0 n!

Remarks

e The change of variables ¢ = e’ makes the above correspondence quite non-trivial. In
particular, in contrast to its unrefined version, it cannot be reduced to a finite to one
enumerative correspondence. It is essential to have a virtual/non-enumerative count
on the Gromov-Witten side: for g large enough, most of the contributions to N, gA’"

come from maps with contracted components.

e The refined tropical count has the symmetry Nt%(;;(q) = N@ég(q_l) and so, after the

change of variables ¢ = e, is a even power series in w. In particular, as
(=i)(a* -4 %) € uQ[’]),
the tropical side of Theorem 1.4 lies in
u29A="’2+‘A|Q[[u2]] 7

as does the Gromov-Witten side. Taking the leading order terms on both sides in the

o A
limit w — 0, ¢ — 1, we recover the unrefined correspondence theorem N2 = Nm;f,.

e By Lemma 1.3, we know that 2ga , —2 +|A| is the number of trivalent vertices of a
parametrized tropical curve in T ,. In particular, the tropical side of Theorem 1.4
can be obtained directly by considering only the numerators of the Block-Gottsche

multiplicities, i.e. Theorem 1.4 can be rewritten

> NAmg AL ST (¢ - )
v

929A,n heTA p

where ¢ = .
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1.1.6 FIXING POINTS ON THE TORIC BOUNDARY

It is possible to generalize Theorem 1.4 by fixing the position of some of the intersection
points with the toric boundary divisor. Let Af" be a subset of A and let

eVAF:Mg’nTA i (8XA)‘AF‘

be the evaluation map at the intersection points with the toric boundary divisor 9 X A indexed
by the elements of A,

The problem of counting n-pointed genus g curves of type A passing through n given points
of XA and with fixed position of the intersection points with X indexed by A, has

virtual dimension zero if the genus is equal to
A =n+1-]A[+|AF
gan =n+1-|A[+]AT].

F . .
For every g > gﬁ n» we define the invariants

An
NA f[ .

where r € AY(0XA) is the class of a point on dXn.

g-93", o (AN T ot
oom.a]viTt (_1) Am}‘g—gﬁi EVAF (T ) I—{ ev; (pt) )
n, , i

We can consider the corresponding tropical problem. Fix a generic configuration z =
(2y)pear of points in R? and say that a tropical curve of type A is of type (A, AF) if
the unbounded edges in correspondence with A" asymptotically coincide with the half-lines
T, + Ryov, v e AF.

We define a refined tropical count
A,p, 1
Neoviar (@) € N[¢™],
by counting with g-multiplicity the tropical curves of genus gﬁi and of type (A, Af") passing
through a generic configuration p = (p1,...,p,) of n points in R?.
The following result is the generalization of Theorem 1.4 to the case of non-empty AF.

Theorem 1.5. For every A balanced collection of vectors in 72, for every AF subset of A

and for every n non-negative integer such that gﬁz > 0, we have the equality

1 1 1 29§1*2+|A‘
A, —24|A A, N,Lo1 ,

Y Ny xeut '=( I |U|)Nm};”(q>((—z><q2 ~qh)

g;gﬁi veAF

of power series in u with rational coefficients, where g = e"™.

The proof of Theorem 1.5 is entirely parallel to the proof of Theorem 1.4 (Theorem 1 of the

Introduction). The required modifications are discussed at the end of Section 1.7.4.
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1.1.7 AN EXPLICIT EXAMPLE

In the present Section, we check by a direct computation one of the consequences of Theorem 1.
Let us consider the problem of counting rational cubic curves in P? passing through 8 points
in general position. To match the notations of the Introduction, we choose A containing

three times the vector (1,0), three times the vector (0,1) and three times the vector (-1, -1).

The toric surface XA is then P? and the curve class Ba is the class of a cubic curve in
P2, We have |A| =9, n =8, gan = 0. Let us write N, for NgA’". We have Ny = 12 and
the corresponding Block-Gottsche invariant is ¢ + 10 + ¢! (see Example 1.3 of [NPS16] for
pictures of tropical curves). From the point of view of Gottsche-Shende [GS14], the relevant
relative Hilbert scheme to consider happens to be the pencil of cubics passing trough the 8

given points, i.e. P2 blown-up in 9 points, whose Hirzebruch genus is indeed 1 + 10q + ¢>.

According to Theorem 1.4, we have
S NP = i(g+10+¢71) (g2 —q72)T
g>0

5

=i(q? +3q? —48¢7 + 1687 —294q7 +294q" 2 — 168¢ 2 +48¢ % — 3¢
9 4 137 1253
= 120" - S+ ot - Syt
27 160 11520

We will check directly that Ny = —g. Remark that a Block-Géttsche invariant equal to 12
rather than to g + 10 + ¢~! would lead to N; = —%. In particular, the value of IV is already

[V

sensitive to the choice of the correct refinement.

We have © .
N :fi ~1)'A ev:(pt),
! [M1,8<P2,3)]virt( )M ]1:[1 3 (pt)

where pt € A%(P?) is the class of a point. Introducing an extra marked point and using the

divisor equation, one can write

1

Ny=- [_
3 J[My 541 (P2,3)]virt

8
D'\ (q ev;(pt))GVS(h) :

where h € A'(P?) is the class of a line. On M 1, we have

1
M= —d
1 12 0,

where dq is the class of a point. Taking for representative of §; the point corresponding to

the nodal genus one curve, with j-invariant oo, and resolving the node, we can write

1 1 1 8 . ) . .
1 I1 evy (pt)) evg(h)(evig xeviy ) (D),
j=1

_E . 5 . § [ﬁ0’8+1+2(P2’3)]Virt ( S

6 A general choice of representative for A; cuts out a locus in the moduli space made entirely of torically
transverse stable maps. In particular, we do not have to worry about the difference between log and usual
stable maps. A general form of this argument is used in the proof of the gluing formula in Section 1.6.
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where the factor % comes from the two ways of labeling the two points resolving the node,
and D is the class of the diagonal in P? x P2, We have

D=1xpt+ptxl+hxh.

The first two terms do not contribute to N7 for dimension reasons so

1 11

Ny=—-—-—-—[__
12 2 3 J[Mo ss142(P2,3)]virt

8
(1?[1 ev; (pt)) evg(h)evig(h)evii(h).

Using the divisor equation, we obtain

11 L 9 9
le_f.,.g.gfi [Tevipt) |=-=—No=-=,
122 [Mo.s(B2,3)vire \jop 7 24 2

as expected.

1.2  GLUING AND VANISHING PROPERTIES OF LAMBDA CLASSES

In this Section, we review some well-known facts: a gluing result for lambda classes,
Lemma 1.6, and then a vanishing result, Lemma 1.7.

Lemma 1.6. Let B be a scheme over C. Let T’ be a graph, of genus gr, and let my:Cy — B
be prestable curves over B indexed by the vertices V of I'. For every edge E of T, connecting
vertices V1 and Va, let sg1 and sgo be smooth sections of my, and my, respectively. Let
m:C = B be the prestable curve over B obtained by gluing together the sections sy, g and
sv,,E corresponding to a same edge E' of I'. Then, we have an exact sequence

0> P (Tv)swny = Tatwr = O%T 50,
VeV (L)

where wr, and wy are the relative dualizing line bundles.

Proof. Let sg: B — C be the gluing sections. Then we have an exact sequence

0>0c~> @ Oc, > D Osym)~0.
VeV (T) EeE(T)

Applying Rm,, we obtain an exact sequence

0->7m1.0c—> @ m0c, - P 70,5
Vev(T) EeE(T)

- R'71.0c > @ R'7.0c, —0.
VeV (T)
The kernel of

Rlﬂ'*Ocﬁ @ Rlﬂ'*OcV
VeV (T)
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is a free sheaf of rank |[E(T')| - |V(T')|+1 = gr. We obtain the desired exact sequence by
Serre duality.

Equivalently, if we choose gr edges of I' whose complement is a tree, we can understand the
morphism

Ty — O®9r
as taking the residues at the corresponding gr sections. O

Lemma 1.7. Let B be a scheme over C. Let m:C - B be a prestable curve of arithmetic
genus g over B. For every integer g' such that 0 < ¢’ < g, let By be the closed subset of B
of points b such that the dual graph of the curve ©~1(b) is of genus > g'. Then the lambda
classes \j € H*1(B,Q), defined by \j = c;(m.wy), satisfy

Ajls,, =0
in H* (B, Q) for all j>g-g'.

Proof. Let Bgz be the finite cover of By given by the possible choices of ¢ fully separating
nodes, i.e. of nodes whose complement is of genus 0. Separating these ¢’ fully separating
nodes gives a way to write the pullback of C to égz as the gluing of curves according to
a dual graph T of genus ¢’. According to Lemma 1.6, the Hodge bundle of this family of
curves has a trivial rank ¢’ quotient. As Bg: is finite over B;, it is enough to guarantee the

desired vanishing in rational cohomology.

O

1.3 TORIC DEGENERATION AND DECOMPOSITION FORMULA

In Section 1.3.1, we review the natural link between log geometry and tropical geometry
given by tropicalization. In Section 1.3.2, we start the proof of Theorem 1 by considering the
Nishinou-Siebert toric degeneration. In Section 1.3.3, we apply the decomposition formula
of Abramovich, Chen, Gross, Siebert [ACGS17a] to this toric degeneration to write the log
Gromov-Witten invariants N, gA*” in terms of log Gromov-Witten invariants N, gA’h indexed
by parametrized tropical curves h:I' - R?. We use the vanishing result of Section 1.2 to

restrict the tropical curves appearing.

1.3.1 TROPICALIZATION

Log geometry is naturally related to tropical geometry. Every log scheme X admits a
tropicalization % (X).

Recall that a log scheme is a scheme X endowed with a sheaf of monoids M x and a morphism
of sheaves of monoids”

OéXIMX —>Ox,

7All the monoids considered will be commutative and with an identity element.
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where Ox is seen as a sheaf of multiplicative monoids, such that the restriction of ax to

-1 N . .
ax (O%) is an isomorphism.

The ghost sheaf of a log scheme X is the sheaf of monoids
Mx = Mx/a (O%).

For the kind of log schemes that we are considering, fine and saturated, the ghost sheaf is of
combinatorial nature. In this case, one can think of the log geometry of X as a combination
of the geometry of the underlying scheme X and of the combinatorics of the ghost sheaf
M x. Non-trivial interactions between these two aspects of log geometry are encoded in the
sequence

O;(ﬁMX%mx.

A cone complex is an abstract gluing of convex rational cones along their faces. If X is a log
scheme, the tropicalization X(X) of X is the cone complex defined by gluing together the
convex rational cones Hom(Mx ,, Rg) for all z € X according to the natural specialization
maps. Tropicalization is a functorial construction. For more details on tropicalization of
log schemes, we refer to Appendix B of [GS13] and Section 2 of [ACGS17a]. Tropicalization
gives a pictorial way to describe the combinatorial part of log geometry contained in the
ghost sheaf.

Examples
e Let X be a toric variety. We can view X as a log scheme for the toric divisorial log
structure, i.e. the divisorial log stucture with respect to the toric boundary divisor
0X. The sheaf M x is the sheaf of functions non-vanishing outside 0X and ax is the

natural inclusion of M x in Ox. The tropicalization ¥(X) of X is naturally isomorphic

as cone complex to the fan of X.

e Let M be a monoid whose only invertible element is 0. Let X be the log scheme of
underlying scheme the point pt = Spec C, with Mx = M & C* and

aXIMGB(C* - C

(m,a) = adpm.o-

We denote this log scheme as pty; and such a log scheme is called a log point. By
construction, we have ﬂptﬂ = M and so the tropicalization Y(ptyg) is the cone
Hom(M, Ry), i.e. the fan of the affine toric variety Spec C[M].

e The log point pty obtained for M = N is called the standard log point. Its tropicaliza-
tion is simply Y (pty) = Rsg, the fan of the affine line A’.

e The log point pt, obtained for M = 0 is called the trivial log point. Its tropicalization
Y (pty) is reduced to a point.

e A stable log map to some relative log scheme X — S determines a commutative
diagram in the category of log schemes,
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c % X
ptyg — S,

where pt7 is a log point and 7 is a log smooth proper integral curve. In particular, the
scheme underlying C' is a projective nodal curve with a natural set of smooth marked
points. We can take the tropicalization of this diagram to obtain a commutative

diagram of cone complexes

z(c) 2 w(x)

o

S(ptg) —— 5(S).

¥(C) is a family of graphs over the cone X(pty;) = Hom(M,Rs): the fiber of ()
over a point in the interior of the cone is the dual graph of C'. Fibers over faces of the
cone are contractions of the dual graph. In particular, the fiber over the origin of the
cone is obtained by fully contracting the dual graph of C' to a graph with a unique
vertex. If X is a toric variety with the toric divisorial log structure and S is the trivial
log point, then X(f) is a family of parametrized tropical curves in the fan of X. We
refer to Section 2.5 of [ACGS17a] for more details.

1.3.2 TORIC DEGENERATION

Let A be a balanced configuration of vectors, as in Section 1.1.1, and let n be a non-negative
integer such that ga , > 0. We fix p = (p1,...,pn) a configuration of n points in R? belonging
to the open dense subset Un ,, of (R?)™ given by Proposition 1.1. Let Ta , be the set of n-
pointed genus ga , parametrized tropical curves in R? of type A passing through p. The
set T p is finite by Proposition 1.2. Proposition 1.1 shows that the elements of Tx , are

particularly nice parametrized tropical curves.

We can slightly modify p such that p € (Q?)" n Ua, without changing the combinatorial
type of the elements of T , and so without changing the tropical counts Nt P and NOP (q).

rop trop
In that case, for every parametrized tropical curve h:T' - R? in Ta p and for every vertex

V of T, we have h(V) € Q? and for every edge F of I', we have {(F) € Q. Indeed, the
positions h(V) of vertices in R? and the lengths ¢(E) of edges are natural parameters on
the moduli space of genus ga , parametrized tropical curves of type A and this moduli space
is a rational polyhedron in the space of these parameters. The set Th , is obtained as zero
dimensional intersection of this rational polyhedron with the rational (because p € (Q?)™)
linear space imposing to pass through p. It follows that the parameters h(V') and ¢(F) are

rational for elements of Tx .

We follow the toric degeneration approach introduced by Nishinou and Siebert [NS06]
(see also Mandel and Ruddat [MR16]). According to [NS06] Proposition 3.9 and [MR16]

Lemma 3.1, there exists a rational polyhedral decomposition Pa , of R? such that

e The asymptotic fan of Pa j, is the fan of Xa.
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e For every parametrized tropical curve h:I' - R? in Th ,, the images h(V') of vertices
V of T are vertices of Pa , and the images h(E) of edges E of I" are contained in union
of edges of Pa ,

Remark that the points p; in R? are image of vertices of parametrized tropical curves in
Ta,p and so are vertices of Pa p.

Given a parametrized tropical curve h:T' - R? in TA p, we construct a new parametrized
tropical curve h:T' - R? by simply adding a genus zero bivalent unpointed vertex to I' at
each point h™*(V) for V a vertex of P, which is not the image by h of a vertex of I'. The
image }NL(E) of each edge E of T is now exactly an edge of Pa,p- The graph I has three

types of vertices:

e Trivalent unpointed vertices, coming from I'.

e Bivalent pointed vertices, coming from I'.

e Bivalent unpointed vertices, not coming from I'.
Doing a global rescaling of R? if necessary, we can assume that Pa ,, is an integral polyhedral
decomposition, i.e. that all the vertices of Pa , are in Z?, and that all the lengths £(E) of

edges E of parametrized tropical curves h:T - R2, coming from h:I' - R? in TA p, are

integral.

Taking the cone over P, x {1} in R? x R, we obtain the fan of a three dimensional toric
variety Xp, , equipped with a morphism

v XPA,p = Al

coming from the projection R? x R - R on the third R factor. We have v~ () ~ X, for
every t € A’ — {0}. The special fiber X, := v7!(0) is a reducible surface whose irreducible

components Xy, are toric surfaces in one to one correspondence with the vertices V' of Pa p,
Xo=JXv.
v

In other words, v: Xp, , — Al is a toric degeneration of Xa.

We consider the toric varieties Al, Xpa,» Xa and Xy as log schemes with respect to the
toric divisorial log structure. In particular, the toric morphism v induces a log smooth
morphism

viXpy, — Al

Restricting to the special fiber gives a structure of log scheme on Xy and a log smooth
morphism to the standard log point

vp: Xo = pty-

From now on, we will denote X, the scheme underlying the log scheme X,. Beware that

the toric divisorial log structure that we consider on Xy is not the restriction of the log
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structure that we consider on Xj.

For every j = 1,...,n, the ray R5o(p;j,1) in R? x R defines a one-parameter subgroup (C;j
of (C*)? ¢ Xp, . We choose a point P; € (C*)? and we write Zp, the affine line in Xp,
defined as the closure of the orbit of (F;,1) under the action of Cj; . We have

Zp,nv ' (1) =Zp, 0 Xa = P;,

and
P)=Zp nv'(0)

is a point in the dense torus (C*)? contained in the toric component of X, corresponding
to the vertex p; of Pa p. In other words, Zp, is a section of v degenerating P; € XA to some
PJQ € Xo.

Recall from Section 1.1.2 that the log Gromov-Witten invariants NgA’” are defined using

stable log maps of target Xa,
A n
Npme [ e TTev (o),
[Mg,n,A]v}rt j:l

where Mg,m A is the moduli space of n-pointed stable log maps to Xa of genus g and of
type A.

Let Mg,nyA(Xo/ptN) be the moduli space of n-pointed stable log maps to my: X9 — pty of
genus g and of type A. It is a proper Deligne-Mumford stack of virtual dimension

vdim M, A (Xo/pty) = vdim My, A = g — gan +2n
and it admits a virtual fundamental class

[Mg,n,A(XO/ptN)]Vilrt € Ag—gA,n+2n(Mg,n,A(XO/ptN)7Q) .

Considering the evaluation morphism
ev: Mg n,a(Xo/pty) - Xg

and the inclusion
tpo: (PY = (PY,...,PY)) = X[V,

we can define the moduli space®
Mg,n,A(XO/PthPO) = Mg,mL\(XO/ptN) xXu P,

of stable log maps passing through PY and by the Gysin refined homomorphism (see

8 As already mentioned in Section 1.1.2, we consider moduli spaces of stable log maps as stacks, not log
stacks. In particular, the morphisms ev, ¢ po and the fiber product defining My » A (Xo/pty, PY) are defined
in the category of stacks, not log stacks.

42



Section 6.2 of [Ful98]), a virtual fundamental class
[M g8 (Xo/pty, P)]™ = tpo[Mgn.a (Xo/pty) ™

€Agga.n (M g.n,a(Xo/pty, P%),Q).

Remark that this definition is compatible with [ACGS17a] because each PJQ7 seen as a log
morphism PJQ:ptN — X, is strict. This follows from the fact that we have chosen PjQ in
the dense torus (C*)? contained in the toric component of Xy dual to the vertex p; of
Pa,p- If it were not the case’, then, following Section 6.3.2 of [ACGS17a], the definition of
M g.n,a(Xo/pty, P°) should have been replaced by a fiber product in the category of fs log
stacks and [M ., a(Xo/pty, P°)]V"* should have been defined by some perfect obstruction
theory directly on M, a(Xo/pty, P°).

By deformation invariance of the virtual fundamental class on moduli spaces of stable log

maps in log smooth families, we have
NA’" = ff —1)979am) )
I 3y a oot P ) Ias

1.3.3 DECOMPOSITION FORMULA

As the toric degeneration breaks the toric surface Xa into many pieces, irreducible com-
ponents of the special fiber X, one can similarly expect that it breaks the moduli space
Mg,n’ A of stable log maps to X into many pieces, irreducible components of the moduli
space ngmA(Xo/ptN) of stable log maps to Xy. Tropicalization gives a way to understand

the combinatorics of this breaking into pieces.

As we recalled in Section 1.3.1, a n-pointed stable log maps to Xo/pty of type A gives a

commutative diagram of log schemes

c—1 X

bk

g
pti; — Pty

which can be tropicalized in a commutative diagram of cone complexes

2(C) — 9(Xy)

lzor) lwo)

S(9)
S(ptyg) — = S(pty).

We have ¥(pty) = Ry and the fiber ¥ (1)1 (1) is naturally identified with R? equipped with
the polyhedral decomposition Pa ,, whose asymptotic fan is the fan of Xa. So the above

91n Section 6.3.2 of [ACGS17a], sections defining point constraints have to interact non-trivially with the
log structure of the special fiber to produce something interesting because the degeneration considered there
is a trivial product, whereas we are considering a non-trivial degeneration

43



diagram gives a family over the polyhedron X(g)~*(1) of n-pointed parametrized tropical
curves in R? of type A

—t
The moduli space M ;:LP,)A of n-pointed genus g parametrized tropical curves in R? of type

A is a rational polyhedral complex. If M;ﬁ:ﬁA were the tropicalization of M, a(Xo/pty)
(seen as a log stack over pty), then MZZI?A would be the dual intersection complex of MZZI’)A.
In particular, irreducible components of M, ,, A(Xo/pty) would be in one to one correspon-
dence with the O-dimensional faces of MZZI?A. As the polyhedral decomposition of M;(:SA is
induced by the combinatorial type of tropical curves, the 0-dimensional faces of M;SEA cor-
respond to the rigid parametrized tropical curves, see Definition 4.3.1 of [ACGS17a], i.e. to
parametrized tropical curves which are not contained in a non-trivial family of parametrized

tropical curves of the same combinatorial type.

According to the decomposition formula of Abramovich, Chen, Gross and Siebert [ACGS17a],
this heuristic description of the pieces of M, a(Xo/pty) is correct at the virtual level: one
can express [M ., a(Xo/pty, P?)]"™™ as a sum of contributions indexed by rigid tropical

curves.

Let h:T' - R? be a n-pointed genus ¢ rigid parametrized tropical curve to R? of type A
passing through p. For every V vertex of I, let Ay be the balanced collection of vectors
vy,g for all edges E/ adjacent to V. Using the notations of Section 1.1.1 that we used all
along for A but now for Ay, the toric surface Xa, is the irreducible component of X
corresponding to the vertex h(V') of the polyhedral decomposition Pa .

A n-pointed genus ¢ stable log map to X° of type A passing through P° and marked by h
is the following data, see [ACGS17a], Definition 4.4.110,

e A n-pointed genus g stable log map f:C/pty; - Xo/pty of type A passing through
PO,

e For every vertex V of I, an ordinary stable map fy:Cy — Xa, of class fa, with
marked points z, for every v € Ay, such that fy(x,) € D,, where D, is the prime
toric divisor of Xa, dual to the ray Ryqv.

These data must satisfy the following compatibility conditions: the gluing of the curves Cy
along the points corresponding to the edges of T is isomorphic to the curve underlying the

log curve C, and the corresponding gluing of the maps fy is the map underlying the log
map f.

7 0
According to [ACGS17a], the moduli space M Z: A of n-pointed genus ¢ stable log maps of

type A passing through P° and marked by his a proper Deligne-Mumford stack, equipped
T 0

——h,P i . . F
with a natural virtual fundamental class [M gn, AJV Forgetting the marking by h gives a
morphism

. —h,P° — 0

Zﬁ:Mg,n,A - Mg,n»A(XO/ptNaP ) :

10Tn [ACGS17a)], the marking includes also a choice of curve classes for the stable maps fi-. In our case,
the curve classes are uniquely determined because a curve class in a toric variety is uniquely determined by
its intersection numbers with the components of the toric boundary divisor.
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According to the decomposition formula, [ACGS17a] Theorem 6.3.9, we have

~ T 0
ny —h,P

|:Mg,n7A()(0/ptl\]7 PO)]Vth — Z (iﬁ)*[Mg,nvA]Virt ,

7 |Aut(R)|

where the sum is over the n-pointed genus g rigid parametrized tropical curves to (R2, Pap)
of type A passing through p, nj, is the smallest positive integer such that the scaling of h by
n;, has integral vertices and integral lengths, and |Aut(h)] is the order of the automorphism

group of h.

Recall from Proposition 1.1 that a parametrized tropical curve h:I' — R? in Ta,p has a source
graph I' of genus ga , and that all vertices V of I' are of genus zero: g(V) = 0. In Section
1.3.2, we explained that the polyhedral decomposition Pp , defines a new parametrized
tropical 7:T — R?, for each h:T - R? in Ta ,, by addition of unmarked genus zero bivalent
vertices. Given such parametrized tropical curve h:D - R?, one can construct genus ¢

parametrized tropical curves by changing only the genus of vertices g(V) so that

Z g(V):g_gA,n-
VeV (T)

We denote Ti’p the set of genus g parametrized tropical curves obtained in this way.

Lemma 1.8. Parametrized tropical curves hT - R? in 3 p are rigid. Furthermore, for
such h, we have n; =1 and |Aut(h)| = 1.

Proof. The rigidity of parametrized tropical curves in Tgm follows from the rigidity of
parametrized tropical curves in Th j, because the genera attached to the vertices cannot
change under a deformation preserving the combinatorial type, and added bivalent vertices
to go from I to I are mapped to vertices of Pa , and so cannot move without changing the

combinatorial type.

We have nj =1 because in Section 1.3.2, we have chosen the polyhedral decomposition Pa ,
to be integral: vertices of h map to integral points of R? and edges E of T' have integral
lengths £(E). We have |Aut(h)| = 1 because & is an immersion. The genus of vertices never

enters in the above arguments. O

For every h:T > R? parametrized tropical curve in T3 o e define

A,TL . - n
N=2 = /[\Ma,po (-1)779~ )‘g—gA,n~

g,h o A JVirt

Proposition 1.9. For every A, n and g > gan, we have

An _ An
NpT= Y NAT
heTZ_p

Proof. This follows from the decomposition formula and from the vanishing property of

lambda classes.
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~ —h,P° |
If h is a rigid parametrized tropical curve of genus g > ga , then every point in M, A is a
stable log map whose tropicalization has genus g > ga . In particular, the dual intersection
complex of the source curve has genus g > ga ,,. By Lemma 1.7, A\;_,, . is zero on restriction

to such family of curves. O

Example. The generic way to deform a parametrized tropical curve in T&p is to open
g(V) small cycles in place of a vertex of genus g(V'). When the cycles coming from various
vertices grow and meet, we can obtain curves with vertices of valence strictly greater than
three which can be rigid. Proposition 1.9 guarantees that such rigid curves do not contribute

in the decomposition formula after integration of the lambda class.

Below is an illustration of a genus one vertex opening in one cycle and growing until forming

a 4-valent vertex.

1.4 NON-TORICALLY TRANSVERSE STABLE LOG MAPS IN XA

Let A be a balanced collections of vectors in Z?2, as in Section 1.1.1. We consider the toric
surface XA with the toric divisorial log structure. In this Section, we prove some general
properties of stable log maps of type A in Xa, using as tool the tropicalization procedure

reviewed in Section 1.3.1.

We say that a stable log map (f:C/pty; - Xa) to Xa is torically transverse'! if its image
does not contain any of the torus fixed points of Xa, i.e. if its image does not pass through
the “corners” of the toric boundary divisor 0Xa. The difficulty of log Gromov-Witten
theory, with respect to relative Gromov-Witten theory for example, comes from the log
stable maps which are not torically transverse: the “corners” of 9Xa are the points where
0Xa is not smooth and so are exactly the points where the log structure of X is locally

more complicated that the divisorial log structure along a smooth divisor.

The following result is a structure result for log stable maps of type A which are not torically
transverse. Combined with vanishing properties of lambda classes reviewed in Section 1.2,
this will give us in Section 1.6 a way to completely discard log stable maps which are not

torically transverse.

11 We allow a torically transverse stable log map to have components contracted to points of X which
are not torus fixed points. In particular, we use a notion of torically transverse map which is slightly different
from the one used by Nishinou and Siebert in [NSO06].
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Proposition 1.10. Let f:C/pty; — Xa be a stable log map to Xa of type A. Let
() 2(C) /X (pty) » X(Xa)

be the family of tropical curves obtained as tropicalization of f. Assume that f is not torically
transverse and that the unbounded edges of the fibers of X(f) are mapped to rays of the fan of
XA. Then the dual graph of C' has positive genus, i.e. C' contains at least one non-separating

node.

Proof. Recall that X (f) is a family over the cone X (pty) = Hom(M,Rq) of parametrized
tropical curves in R?. We assume that the unbounded edges of these parametrized tropical

curves are mapped to rays of the fan of Xa.

We fix a point in the interior of the cone Hom(M,Rs) and we consider the corresponding
parametrized tropical curve h:T' - R? in R%. Combinatorially, I is the dual graph of C.

Lemma 1.11. There exists a vertex V of I' mapping away from the origin in R? and a
non-contracted edge E adjacent to V' such that h(E) is not included in a ray of the fan of
XA

Proof. We are assuming that f is not torically transverse. This means that at least one
component of C' maps dominantly to a component of the toric boundary divisor 0Xa or
that at least one component of C' is contracted to a torus fixed point of Xa.

If one component of C' is contracted to a torus fixed point of Xa, then we are done because
the corresponding vertex V of I is mapped away from the origin and from the rays of the fan
of Xa, and any non-contracted edge of I" adjacent to V is not mapped to a ray of the fan of
XA. Remark that there exists such non-contracted edge because if not, as I is connected, all
the vertices of I' would be mapped to h(V') and so the curve C' would be entirely contracted

to a torus fixed point, contradicting Sa # 0.

So we can assume that no component of C' is contracted to a torus fixed point, i.e. that all
the vertices of I' are mapped either to the origin or to a point on a ray of the fan of Xa,
and that at least one component of C' maps dominantly to a component of 0XaA. We argue
by contradiction by assuming further that every edge of I' is either contracted to a point or

mapped inside a ray of the fan of Xa.

Let 'y be the subgraph of I" formed by vertices mapping to the origin and edges between
them. For every ray p of the fan of X, let A, be the set of v € A such that Ryov = p, and
let '), be the subgraph of I' formed by vertices of I' mapping to the ray p away from the

origin and the edges between them.

By our assumption, there is no edge in I' connecting I', and I', for two different rays p and
p'. For every ray p, let E(T'g,I',) the set of edges of I' connecting a vertex Vo(E) of I'y and
a vertex V,(E) of I',. It follows from the balancing condition that, for every ray p, we have

>, Uv(E)E= D, U

EeE(To,T')) veA,
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Let Cy be the curve obtained by taking the components of C' intersecting properly the toric
boundary divisor X a. The dual graph of Cj is I'y and the total intersection number of Cy

with the toric divisor D, is

> Jovee)els

EeE(Ty,T,)

where |vy, (g, g| is the divisibility of vy, (g, g in Z2, i.e. the multiplicity of the corresponding
intersection point of Cy and D,,.

From the previous equality, we obtain that the intersection numbers of Cy with the com-
ponents of 0Xa are equal to the intersection numbers of C' with the components of 0Xa
so [f(Co)] = Ba. Tt follows that all the components of C' not in Cy are contracted, which
contradicts the fact that at least one component of C' maps dominantly to a component of
8XA. O

We continue the proof of Proposition 1.10. By Lemma 1.11, there exists a vertex V of I’
mapping away from the origin in R? and a non-contracted edge E adjacent to V such that
h(E) is not included in a ray of the fan of Xa. We will use (V, E) as initial data for a

recursive construction of a non-trivial cycle in T'.

There exists a unique two-dimensional cone of the fan of X, containing h(V) € R? - {0}
and delimited by rays p; and po, such that the rays p;, Rsoh(V) and py are ordered in the
clockwise way and such that h(V') € p; if h(V) is on a ray. Let v; and ve be vectors in
R2 - {0} such that p; = Rygv; and pa = Rygua. The vectors vq and vy form a basis of R? and
for every v € R?, we write (v,v1) and (v,vs) for the coordinates of v in this basis, i.e. the
real numbers such that

v=(v,v1)v1 + (v,v2)v2.

By construction, we have (h(V),v1) >0 and (h(V),v2) 2 0. Asvy g # 0, we have (vy, g, v1) #
0 or (vy,g,v2) #0.

If (vy,p,ve) = 0 for every edge F adjacent to V, then (vy,g,v1) # 0 and (h(V),v2) > 0.
In particular, F is not an unbounded edge. By the balancing condition, up to replacing E
by another edge adjacent to V, one can assume that (vy g,v1) > 0. Then, the edge E is
adjacent to another vertex V' with (A(V'),v1) > (h(V),v1) and (A(V'),v2) = (h(V),v2).
By the balancing condition, there exists an edge E’ adjacent to V' such that (vy+ gr,v1) > 0.
If (vy,pr,v2) = 0 for every edge F' adjacent to V', then in particular we have (vy g, v2) =0
and so E' is adjacent to another vertex V" with (h(V"),v1) > (h(V'),v1) and (h(V"),v2) =
(h(V"),v2), and we can iterate the argument. Because I" has finitely many vertices, this
process has to stop: there exists a vertex V in the cone generated by p; and p2 and an edge
E adjacent to V such that (vi g v2) # 0.

The upshot of the previous paragraph is that, up to changing V' and E, one can assume
that (vy,g,v2) # 0. By the balancing condition, up to replacing E by another edge adjacent
to V/, one can assume that (vy,g,ve) > 0. The edge E is adjacent to another vertex V'
with (A(V"),v2) > (h(V),v2). By the balancing condition, one can find an edge E’ adjacent
to V' such that (vys gr,v2) > 0. If (V') is in the interior of the cone generated by p;
and pg, then E’ is not an unbounded edge and so is adjacent to another vertex V' with
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(h(V'"),v2) > (R(V"),v2). Repeating this construction, we obtain a sequence of vertices of
image in the cone generated by p; and p,. Because I' has finitely many vertices, this process
has to terminate: there exists a vertex V of I' such that h(V') € py and connected to V by a
path of edges mapping to the interior of the cone delimited by p; and ps.

Repeating the argument starting from V, and so on, we construct a path of edges in I" whose
projection in R? intersects successive rays in the clockwise order. Because the combinatorial
type of I is finite, this path has to close eventually and so I' contains a non-trivial closed

cycle, i.e. I' has positive genus. O

Remark: It follows from Proposition 1.10 that the ad hoc genus zero Gromov-Witten
invariants defined in terms of relative Gromov-Witten invariants of some open geometry
used by Gross, Pandharipande, Siebert in [GPS10](Section 4.4), and Gross, Hacking, Keel
in [GHK15a] (Section 3.1), coincide with log Gromov-Witten invariants'2. In fact, our proof
of Proposition 1.10 can be seen as a tropical analogue of the main properness argument of
[GPS10] (Proposition 4.2) which guarantees that the ad hoc invariants are well-defined.

1.5 STATEMENT OF THE GLUING FORMULA

We continue the proof of Theorem 1 started in Section 1.3. In Section 1.5, we state a gluing

formula, Corollary 1.15, expressing the invariants Nj‘}ll" attached to a parametrized tropical

curve h:T' » R? in terms of invariants N;’f/ attached to the vertices V' of I'. This gluing
formula is proved in Section 1.6, using the structure result of Section 1.4 and the vanishing
result of Section 1.2 to reduce the argument to the locus of torically transverse stable log

maps.

1.5.1 PRELIMINARIES

We fix h:T - R? a parametrized tropical curve in 7% " The purpose of the gluing formula

is to write the log Gromov-Witten invariant

AN 9-9a,
Ng ;L - \/[HIL’PO ]virt (_1) n)\g_gA,n ?
’ n,A

g,m,

introduced in Section 1.3.3, in terms of log Gromov-Witten invariants of the toric surfaces
Xa, attached to the vertices V' of I'. Recall from Section 1.3.2 that T has three types of

vertices:

e Trivalent unpointed vertices, coming from I'.
e Bivalent pointed vertices, coming from T.

e Bivalent unpointed vertices, not coming from I

12This result was expected: see Remark 3.4 of [GHK15a] but it seems that no proof was published until
now.
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According to Lemma 4.20 of Mikhalkin [Mik05], the connected components of the comple-
ment of the bivalent pointed vertices of T’ are trees with exactly one unbounded edge.

In particular, we can fix an orientation of edges of T' consistently from the bivalent pointed
vertices to the unbounded edges. Every trivalent vertex of [ has two ingoing and one
outgoing edges with respect to this orientation. Every bivalent pointed vertex has two
outgoing edges with respect to this orientation. Every bivalent unpointed vertex has one

ingoing and one outgoing edges with respect to this orientation.

1.5.2 CONTRIBUTION OF TRIVALENT VERTICES

Let V be a trivalent vertex of I'. Let Mg,Av be the moduli space of stable log maps to Xa,,
of genus g and of type Ay . It has virtual dimension

vdim My A, =g+2,
and admits a virtual fundamental class
[Mg,Av]Virt € Ag+2 (Mg,Av ) Q)

Let Ei}l’l and Eif’Q be the two ingoing edges adjacent to V, and let E{M be the outgoing
edge adjacent to V. Let Dpin1, Dgin2 and DE‘o/ut be the corresponding toric divisors of
\2 \4
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XA, . We have evaluation morphisms

in,1 in,2 out

E —
\4 \4 \4 . . .
(evyV ,evV ,evyV ):Mgna, = DE;),I x DE$,2 X DEx‘v/ut .
We define

1’2 ) Ein,l Ein,2 "
Ngvv . \/[-Mg A ]virt(_l)g)\g(evvv )*(ptEi\;hl)(evvv ) (ptE;l’z) ’
2V

_ 1 ‘ A 1 , : . .
where Ptgin € A (DE;IJ), Ptpgin> € A (DE;;,z) are classes of a point on DE,;,l, DE;.,Q
respectively.

1.5.3 CONTRIBUTION OF BIVALENT POINTED VERTICES

Let V is a bivalent pointed vertex of I'. Let M%AV be the moduli space of 1-pointed!'3
stable log maps to Xa, of genus g and of type Ay . It has virtual dimension

vdim My A, =g+2,
and admits a virtual fundamental class
(Mya, 1" € Agia(Mg a,, Q).
We have the evaluation morphism at the extra marked point,
eV:Mg,AV - XAy,

and we define

N2 ::f “1)9Agev* (pt)
5 S DA )

where pt € A%(Xa,, ) is the class of a point on Xa,,.

1.5.4 CONTRIBUTION OF BIVALENT UNPOINTED VERTICES

Let V is a bivalent unpointed vertex of I'. Let M, A, be the moduli space of stable log
maps to Xa, of genus g and of type Ay. It has virtual dimension

vdim My, =g+1,
and admits a virtual fundamental class

[M.%Av ]Virt ¢ A9+1 (M.%AV ’ Q)

13As in Section 1.1.2, 1-pointed means that the source curves are equipped with one marked point in
addition to the marked points keeping track of the tangency conditions.
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Let Ei® be the ingoing edge adjacent to V and Eg"* the outgoing edge adjacent to V. Let
Dpin and Dpgue the corresponding toric divisors ofXa, . We have evaluation morphisms

Ein Eout J—
\4 \4 . .
(evy¥,evy¥ ):Mga, = Dpgin x Doyt .

We define _
.ZVL2 = f -1 g)\ E{? * t pin 5
g,V [MQ,AV]V‘”( ) g(eVV ) (p Ev)

where pt g € A'(D i) is the class of a point on Dpin.
\4

1.5.5 STATEMENT OF THE GLUING FORMULA

The following gluing formula expresses the log Gromov-Witten invariant NgA}iL" attached to

a parametrized tropical curve h:T' > R? in terms of the log Gromov-Witten invariants N 91 ‘2/
attached to the vertices V of T’ and of the weights w(E) of the edges of T.

Proposition 1.12. For every h:T = R? parametrized tropical curve in T3 pr We have
An _ 1,2
Ng,iL - H~ Ng(v),v H - ’LU(E) ’
VeV () EeEs(T)

where the first product is over the vertices of T and the second product is over the bounded
edges of T.
The proof of Proposition 1.12 is given in Section 1.6.
In the following Lemmas, we compute the contributions Ngl(’%/) y of the bivalent vertices.
Lemma 1.13. Let V be a bivalent pointed vertex of T'. Then we have
1,2 _
N‘LV =0
for every g >0, and
1,2 _
Nov =1
for g=0.

Proof. Let w be the weight of the two edges of I adjacent to V. We can take Xa, =P xP!
and Ba, =w([P'] x [pt]). We have the evaluation map at the extra marked point

eviMy a, » P x P

We fix a point p = (p1,p2) € C* x C* ¢ P! x P! and we denote ¢:p = P! x P! and ¢),:p =

P! x {py} ~ P! the inclusion morphism.

Let My 1(P'/{0} U{oco},w;w,w) be the moduli space of genus g 1-pointed stable maps to

P!, of degree w, relative to the divisor {0} U {co}, with intersection multiplicities w both
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along {0} and {oo}. We have an evaluation morphism at the extra marked point

evlzﬁgJ(Pl/{O} U {oo}, w;w,w) - P,

Because an element (f:C — P1xP!) of ev=!(p) factors through P! x {p;} ~ P!, we have a nat-
ural identification of moduli spaces ev™(p) = evi!(p), but the natural virtual fundamental
classes are different. The class 1,[Mg A, ]"", defined by the refined Gysin homomorphism
(see Section 6.2 of [Ful98]), has degree g whereas the class

1y [M g1 (B {0} U {00}, wsw, )™
is of degree
2g-2+2w-(w-1)-(w-1)+(1-1)=2g.

The two obstruction theories differ by the bundle whose fiber at
f:C - P!

is HY(C, J*Nycypr«pr). Because 52‘/ =0, the normal bundle Ny cypiypr is trivial of rank
one, so the pullback f*Ngcypixpr is trivial of rank one and the two obstruction theories
differ by the dual of the Hodge bundle. Therefore, we have

X [M%A

p 17 = g (B*) Ny, [M g1 (P{0} U {00}, w;w, w) ™,

\4

and so
N} :f* —1g)\:/7 A2,
7V L;,[Mg,Av]virt( s o [M g1 (P1/{0}u{o0},wiw,w)]vire 7

But A2 =0 for g >0, as follows from Mumford’s relation [Mumg3]
(E)e(E) =1,

and so N;’V:Oifg>0.

If g = 0, we have A% = 1, the moduli space is a point, given by the degree w map P' —
P! fully ramified over 0 and oo, with trivial automorphism group (there is no non-trivial

automorphism of P! fixing 0, co and the extra marked point), and so

1,2 _
Nyw=1.

O

Lemma 1.14. Let V be a bivalent unpointed vertex of T' and w(Ey) the common weight of
the two edges adjacent to V. Then we have

1,2 _
N97V =0
for every g >0, and
12 _ 1
OV w(BEy)
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for g=0.

Proof. The argument is parallel to the one used to prove Lemma 1.13. The only difference
is that the vertex is no longer pointed and the invariant N;"Q/ is defined using the evaluation
map at one of the tangency point. The vanishing for g > 0 still follows from )\3 = 0. For
g = 0, the moduli space is a point, given by the degree w(Ey ) map P! — P! fully ramified
over 0 and oo, but now with an automorphism group Z/w(FEy ) (the extra marked point
in Lemma 1.13 is no longer there to kill all non-trivial automorphisms). It follows that

1,2 _ 1
No,v ~ w(Ey)®

O

Corollary 1.15. Let h:T > R2 be a parametrized tropical curve in T .

e If there exists one bivalent vertex V of T with g(V) 0, then

A,n
N="=0.
g,h 0

e If g(V) =0 for all the bivalent vertices V' of T, then

Noi=| T N;ng( I1 w<E>)a

Vev e (T) EeE;(T)

where the first product is over the trivalent vertices of T (or f‘), and the second product
is over the bounded edges of T (not T).

Proof. If T has a bivalent vertex V with g(V') > 0, then, according to Lemmas 1.13 and 1.14,

we have Ngl(’%/)’v =0 and so NgAﬁn =0 by Proposition 1.12.

If g(V') = 0 for all the bivalent vertices V of T, then, according to Lemma 1.13, we have

Ngl(’%/) v = 1 for all the bivalent pointed vertices V' of I and according to Lemma 1.14,

1,2 1
we have Ng(v),v = W By

Proposition 1.12 can be rewritten

for all the bivalent unpointed vertices V of T' . Tt follows that

1
w(Ey )

An _ 1,2
Ng,;l = H Ng(v),v H

VeV ) (T) VeV (2ur)(T)

[1 w®],

EcE;(T)

where the first product is over the trivalent vertices of T' (which can be naturally identified
with the trivalent vertices of I') and the second product is over the bivalent unpointed
vertices of I'. Recalling from Section 1.3.2 that the edges of T’ are obtained as subdivision

of the edges of I' by adding the bivalent unpointed vertices, we have

1
w(Ev)

[T wE)]= I w&).

VeV (2up)(T) EcE;(T) EeE(T)
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1.6 PROOF OF THE GLUING FORMULA

This Section is devoted to the proof of Proposition 1.12. Part of it is inspired the proof by
Chen [Chel4a] of the degeneration formula for expanded stable log maps, and the proof by
Kim, Lho and Ruddat [KLR18] of the degeneration formula for stable log maps in degen-
erations along a smooth divisor. In Section 1.6.1, we define a cut morphism. Restricted to
some open substack of torically transverse stable maps, we show in Section 1.6.2 that the
cut morphism is étale, and in Section 1.6.3, that the cut morphism is compatible with the
natural obstruction theories of the pieces. Using in addition Proposition 1.10 and the results
of Section 1.2, we prove a gluing formula in Section 1.6.4. To finish the proof of Proposition
1.12; we explain in Section 1.6.5 how to organize the glued pieces.

1.6.1 CUTTING

Let h:T' - R? be a parametrized tropical curve in szp. We denote V(?P)(T') the set of

bivalent pointed vertices of I and V (?*P)(T) the set of bivalent unpointed vertices of T'.

Evaluations evgzﬁg(v)’Av — Dp at the tangency points dual to the bounded edges of r
give a morphism

ev(©): [T Myvya, — I (Dg)?,
VeV (D) EcE;(T)

where Dpg is the divisor of Xy dual to an edge F of r.

Evaluations evg,p):ﬂg(v)’b‘v — Xa, at the extra marked points corresponding to the biva-

lent pointed vertices give a morphism

ev®: T Myvya, - [ Xay-
VeV (D) VeV (2r)(T)

Let

EeE;(T) EeE;(T)

be the diagonal morphism. Let

LPOZ(POZ(P‘(;)VEV(QP)(I"‘))% H XAV7
VeV @p)(T)

be the inclusion morphism of PY.

Using the fiber product diagram in the category of stacks

J— (6%t p0) J—
X Mgy ay = [T Myw)ay
VeV (L) Vev(T)

l lev(E)Xev(P)

( I DE)XPOM) M (Dg)?x I Xa,,

EeE;(T) EecE;(T) VeV (2p)(T)
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we define the substack Xyev (i Mg(V),Av of HVeV(f‘) MQ(V),AV consisting of curves whose
marked points keeping track of the tangency conditions match over the divisors Dg and

whose extra marked points associated to the bivalent pointed vertices map to P°.

Lemma 1.16. Let

C%X@

bl

g
ptw — Dty

be a n-pointed genus g stable log map of type A passing through P° and marked by h:T — R?,
7 0

. ) =P
i.e. a point of M, A. Let

2(C) =0 5(x0)

lzw) lE(Vo)

>
S(ptg) —25 N(pty).

be its tropicalization. For every be X(g)™'(1), let
S(Fp:E(C) =~ B(ro) ' (1) ~ R?

be the fiber of (f) over b. Let E be an edge of I' and let Ey, be the edge of £(C), marked
by E. Then S(f)y(Eyp) c h(E).

Proof. We recalled in Section 1.5 that the connected components of the complement of
the bivalent pointed vertices of I are trees with exactly one unbounded edge. We prove
mboxLemma 1.16 by induction, starting with the edges connected to the bivalent pointed
vertices and then we go through each tree following the orientation introduced in Section
1.5.

Let E be an edge of T' adjacent to a bivalent pointed vertex V of T'. Let P) € XA, be
the corresponding marked point. As f is marked by }~L, we have an ordinary stable map
fv:Cy — Xa,, a marked point zg in Cy such that f(zg) € Dg and fi(Cy) contains
PY. We can assume that Xa, = P! x P!, Dg = {0} x P!, Ba, = w(E)([P'] x [pt]), and
Py = (Py 4, Py,) € C*xC* c P xP'. Then fy factors through P'x{Pp,} and zp = (0, Py ).
It follows that X(f),(Efs) c h(E).

Let E be the outgoing edge of a trivalent vertex of I, of ingoing edges E' and E?. By
the induction hypothesis, we know that E(f)b(E},b) c h(EY) and E(f)b(E]%,b) c h(E?).
We conclude that X(f)y(Eyp) ¢ h(E) by an application of the balancing condition, as in
Proposition 30 (tropical Menelaus theorem) of Mikhalkin [Mik15]. O

For a stable log map
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C$>X0

Pk

g
ptxy — bty

marked by h, we have nodes of C' in correspondence with the bounded edges of I'. Cutting

C along these nodes, we obtain a morphism

—h,P° —
cut: My, A = ><~ M yovy,ay -
vev(T)

Let us give a precise definition of the cut morphism!*. By definition of the marking, for every
vertex V of T, we have an ordinary stable map fy:Cy — Xa,, such that the underlying
stable map to f is obtained by gluing together the maps fy along nodes corresponding to
the edges of I.

We have to give Cy the structure of a log curve, and enhance fy to a log morphism. In

particular, we need to construct a monoid My .

We fix a point b in the interior of X(g)~1(1). Let X(f)s: X(C)p — R? be the corresponding
parametrized tropical curve. Let X(C)y, be the subgraph of ¥(C), obtained by taking
the vertices of X(C), dual to irreducible components of Cy, the edges between them, and
considering the edges to other vertices of 3(C), as unbounded edges. Let X(f)y, be the
restriction of X(f), to X(C)y,p. It follows from Lemma 1.16 that one can view X(f)y, as
a parametrized tropical curve of type Ay to the fan of Xa,, .

We define My, as being the monoid whose dual is the monoid of integral points of the moduli
space of deformations of ¥(f)v, preserving its combinatorial type'®. Let ic,:Cy — C
and ix, :Xa, — Xo be the inclusion morphisms of ordinary (not log) schemes. The
parametrized tropical curves %(f)y encode a sheaf of monoids M¢,, and a map fi,* M x Ay
M, . We define a log structure on Cy by

i ~1
Me, = Mg, xialvmc ic, Mc .
The natural diagram

' Mxa, Mey,

! |

-1.-1 -—1
fV lXAVMXO —_— ’LCVMC

can be uniquely completed, by restriction, with a map

f\;lMXAV - Mec,

14We are considering a stable log map over a point. It is a notational exercise to extend the argument to
a stable log map over a general base, which is required to really define a morphism between moduli spaces

15The base monoid of a basic stable log map has always such description in terms of deformations of
tropical curves. See Remark 1.18 and Remark 1.21 of [GS13] for more details
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compatible with fi,! Mx ay = Mg, . This defines a log enhancement of fi and finishes the

construction of the cut morphism.

Remark: If one considers a general log smooth degeneration and if one applies the decom-
position formula, it is in general impossible to write the contribution of a tropical curves
in terms of log Gromov-Witten invariants attached to the vertices. This is already clear
at the tropical level. The theory of punctured invariants developed by Abramovich, Chen,
Gross, Siebert in [ACGS17b] is the correct extension of log Gromov-Witten theory which
is needed in order to be able to write down a general gluing formula. In our present case,
the Nishinou-Siebert toric degeneration is extremely special because it has been constructed
knowing a priori the relevant tropical curves. It follows from Lemma 1.16 that we always
cut edges contained in an edge of the polyhedral decomposition, and so we don’t have to

consider punctured invariants.

1.6.2 COUNTING LOG STRUCTURES

We say that a map to X is torically transverse if its image does not contain any of the
torus fixed points of the toric components Xa, . In other words, its corestriction to each

toric surface Xa, is torically transverse in the sense of Section 1.4.

7%,,]30,0 —;L,PO .
Let M, o be the open locus of M gmA formed by the torically transxirse stable log maps
to Xo, and for every vertex V of I, let M (yy o, be the open locus of M () A, formed by
the torically transverse stable log maps to Xa,,. The morphism cut restricts to a morphism
° —FL,PO,O —o0
wtMgnn > X Mywyay-
vev(T)

Proposition 1.17. The morphism

—h,P%0o —o0
cut™ My a = X My a,
Vev (D)

is €tale of degree

[1 w®,

EcEs(T)

where the product is over the bounded edges of T.

Proof. Let (fy:Cy — Xay)v € Xyev (F) M;(v),Av- We have to glue the stable log maps
fv together. Because we are assuming that the maps fy, are torically transverse, the image
in Xo by fyv of the curves Cy is away from the torus fixed points of the components Xa,, .
The gluing operation corresponding to the bounded edge E of r happens entirely along the

torus C* contained in the divisor Dg.

It follows that it is enough to study the following local model. Denote ¢ = {(E)w(E),
where ¢(F) is the length of F and w(FE) the weight of E. Let Xp be the toric variety
Spec C[z,y, u*, t]/(zy = t*), equipped with a morphism vg: X — C given by the coordinate

t. Using the natural toric divisorial log structures on Xg and C, we define by restriction a
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log structure on the special fiber Xo g = v5'(0) and a log smooth morphism to the standard
log point vy g: X0, = pty. The scheme underlying Xy g has two irreducible components,
X1,£=Cy xC}, and X3 g = Cy x C}, glued along the smooth divisor D%, = C},. We endow

X1 r and Xo g with their toric divisorial log structures.

Let f1:C1/ptﬂ1 — X1,g be the restriction to X; g of a torically transverse stable log map
to some toric compactification of X3 g, with one point p; of tangency order w(E) along D,
and let fo:Cy /ptﬂ2 - Xy g be the restriction to Xy g of a torically transverse stable log
map to some toric compactification of X5 g, with one point ps of tangency order w(E) along
Dpg. We assume that f(p1) = f(p2) and so we can glue the underlying maps ngl - X, g
and f,:Cy - X, p to obtain a map f:C - X, i where C'is the curve obtained from C'; and
C, by identification of p; and p;. We denote p the corresponding node of C. We have to
show that there are w(FE) ways to lift this map to a log map in a way compatible with the
log maps f1 and fo and with the basic condition. If C; and C5 had no component contracted
to f(p) € D%, this would follow from Proposition 7.1 of Nishinou, Siebert [NS06]. But we
allow contracted components, so we have to present a variant of the proof of Proposition 7.1
of [NS06].

We first give a tropical description of the relevant objects. The tropicalization of X g is
the cone %(Xo,g) = Hom(Mx, ,. #(p):Rs0). It is the fan of Xp, a two-dimensional cone
generated by rays p; and ps dual to the divisors X; g and X5 . The toric description
Xg = Spec C[z,y,u*,t]/(zy = t*) defines a natural chart for the log structure of Xp .
Denote s, sy, st the corresponding elements of Mx,  r(p) and 5,35y, their projections in
ﬂxo,&f(p). We have s,s, = st. Seeing elements of mXo,E,f(p) as functions on ¥(Xo g), we
have p; = §;1(0), p2 =5, (0) and 3;: 2(Xo g) = Ry is the tropicalization of the projection
Xo,E — pty- Level sets 5, (c) are line segments [Py, P,] in ¥(Xo,g), connecting a point P
of p1 to a point P, of po, of length lc.

Denote C; p and C p the irreducible components of C'; and C, containing p; and ps
respectively. We can see them as the two irreducible components of C' meeting at the node
p. Fix j =1 or 7 = 2. The tropicalization of Cj/ptﬂj is a family X(C;) of tropical curves
X(C;)p parametrized by b € E(ptﬂj) = Hom(M;,R50). Let V; g be the vertex of these
tropical curves dual to the irreducible component C'; p. The image X(f;)(Vj k) of Vjr
by the tropicalization X(f;) of f; is a point in the tropicalization £(X; g) = Ryo. This
induces a map Hom(ﬂj7R>0) — Ry defined by an element v; ¢ ﬂj. The component C S E
is contracted by f; onto f;(p;) if and only if v; # 0. In other words, v; is the measure
according to the log structures of “how” C; p is contracted by f;. The marked point p; on
C} g defines an unbounded edge E;, of weight w(E), whose image by X(f;) is the unbounded
interval [Z(f;)(Vj g),+o0) c £(X; ) = Rso.

We explain now the gluing at the tropical level. Let j =1 or j = 2. Let [0,1;] c (X, g) = Rso
be an interval. If ¢ is a large enough positive real number, we denote ¢7:[0,1;] = 5, (c) =
[P1, P»] the linear inclusion such that 7(0) = P; and %([0,1;]) is a subinterval of [Py, P,]
of length I;. Let b; € E(ptﬂj ). There exists [; large enough such that all images by 3(f;)
of vertices of X(f;)s, are contained in [0,1;] c 3(X; g) = Rx.
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For ¢ large enough, the line segments !([0,11]) and ©2([0,12]) are disjoint. We have
[P1, P,]
= [Pr,pe(B(£1) (V1)) [ (B(F1) (1)), 02(S(f2) (V2)] U (02 (2(f2) (V2)), P ).

We construct a new tropical curve X, , . by removing the unbounded edges F; and
Es of X(f1)s, and X(f2)p,, and gluing the remaining curves by an edge F connecting
Vi,g and Vo g, of weight w(E), and length ﬁ times the length of the line segment
[ (B(f1)(V1)), 92 (2(f2)(Va))]. We construct a tropical map Xy, 5,.. = %(Xo ) using

S(f1)brs E(f2)r. and mapping the edge F to [ (2(f1)(V1)), 92(2(f2)(V2))]. We define
M as being the monoid whose dual is the monoid of integral points of the moduli space of

deformations of these tropical maps.

We have M = M; ® My ® N. The element (0,0,1) € M defines the function on the
moduli space of tropical curves ¥(pty;) = Hom(M,Rsg) given by the length of the glu-
ing edge F. The function given by % times the length of the line segment [Py, P»] de-
fines an element Etm € M. The morphism of monoids N - M, 1 Etﬂ, induces a map
g:ptyg — pty. The decomposition of [Pr, P;] into the three intervals [Pr, ¢p (S(f1)(V1))),
[0 (E(f1)(V1)), 92(2(f2)(V2))] and (02 (2(f2)(V2)), P2], implies the relation

15 = (01,0,0) + (0,0, w(E)) + (0,v2,0)
inﬂzﬂ1 @MQ@N.

P2
Py

©2(S(f2)(Va))
X(Xo,r)
e (S(f1) (V1))

Dy

From the tropical description of the gluing and from the fact that we want to obtain a basic
log map, we find that there is a unique structure of log smooth curve C'/pt+; compatible with
the structures of log smooth curves on Cy and Cs. As p is a node of C, we have for the ghost
sheaf of C' at p: Mc, = M ey N?, with N> N? 1 (1,1), and N > M = M; @ My @ N,
1~ p,=1(0,0,1).

It remains to lift f:C' — X, ; to a log map f:C' — Xo g such that the diagram
f
C —— XO,E

b

g
bty — bty
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commutes. The restriction of f to C; /ptmj has to coincide with f;, for j =1 and j=2. It
follows from the explicit description of M and M that such f exists and is unique away

from the node p.

It follows from the tropical description of the gluing that at the ghost sheaves level, f at p
is given by

7b JR— E— —_— PR E—

FiMx, 1) > Mep = Moy N = (M; & M © N) @y N?

Sg > ((’01,070), (w(E),()))
5y = ((0,v2,0), (0, w(E)))

5 o (E) = (51.(0,0)).
The relation lgtﬂ = (v1,v2,w(E)) in M = M; ® Mz @ N implies that
F50) + T (3) = ((01,02,0), (w(E),w(E))) = ((v1,v2,w(E)), (0,0))
=7 s,
and so that this map is indeed well-defined.

The log maps flzCl/ptﬂ1 - X, g and fg:C’g/ptm2 — X5 g define morphisms

flb:MXLE,f(pl) - Mclapl ’

and

f2b:MX2,E7f(pz) > Mcy p, -

For j=1or j=2,let M; ®N > Oc, ;. be a chart of the log structure of C; at p;. This
realizes M, p; as a quotient of (M; @N) ® O, . Denote s, € M, ,; the image of (m, 1)
for me M; @ N.

We fix a coordinate v on C near p; such that

flb(sw) = 31,(v1,0)uw(E)

and a coordinate v on Cs near ps such that

fzb(sy) = 32,(v2,0)vw(E) .

We are trying to define some f*: Mx, . r(p) = Mc,p, lift of ?b7 compatible with f} and f2.
For every ¢ a w(E)-th root of unity, the map

M DN N2 - qu

a, a b -
fm=0
(m (@b >{ 0 "
0 ifm=+0.

defines a chart for the log structure of C' at p. This realizes M¢, as a quotient of (M ey
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N?) @ Of,,. Denote sS, € Mg, the image of (m,1) for m € M @y N2, Remark that

and s are independent of ( and we denote them

s s ¢
((11,00,(0,0) *((0,02,0).,(0,0)) ((0,0,0),(1,1))
simply as $((v,,0,0,(0,0)) $((0,02,0),(0,0)) 1A $((0,0,0),(1,1))-

Then
fb’C:MXo,Evf(P) - MC’P

S
527 8 ((11,0,0),(w(E),0))

¢
5" 5((0,02,0),(0,w(E)))
semw((51)
is a lift of ?b, compatible with f? and f3.

Assume that ¢ ~ f< for ¢ and ¢’ two w(E)-th roots of unity. It follows from the com-
patibility with f; and f} that there exists 1 € Of, , and @y € OF , such that 55(070,0)7(1)0)) =

¢ ¢ - e ips
$150(0,0,0),(0.1)) and 5((0,0,0),(0,1)) = £25((0,0,0),(0,1))" It follows from the definition of the
charts that @1 = ¢'¢"! in O¢, p, and 2 = 1 in Oc, p,. Compatibility with pty; - pty
implies that ¢ = 1. This implies that ¢1 =@ =1 and ¢ =(’.

It remains to show that any f°, lift of fb compatible with f! and f5, is of the form f"¢ for

some ¢ a w(E)-th root of unity. For such f*, there exists unique s’(1 0) € Mc,p and 320 1 €

Mec.p such that ac(s(, o)) = u, ac(s(g 1)) =v, and P(s2) = 3((1;1,0,0),(0,0))(521,0))10(15) and
w w v(E

fr(sy) = 5((071)270)7(070))(520,1)) (). From s,s, = 57, we get (5,(1,0)5,(0,1)) ) = 81(1((0,0),0),(1,1))

and so 52170)520’1) = (15((0,0,0),(1,1y) for some ¢ a w(E)-th root of unity. It is now easy to

- 16 = ¢ b fb,
check that s{, ) = ¢ 5((0,0,0),(1.00)7 5(01) = 5((0.0.0).(0,17) 28 S = 5.
O

Remarks:

e When v; = vy = 0, i.e. when the components C; g and Cy g are not contracted, the
above proof reduces to the proof of Proposition 7.1 of [NS06] (see also the proof of
Proposition 4.23 of [Groll]). In general, log geometry remembers enough information
about the contracted components, such as v; and vy, to make possible a parallel

argument.

e The gluing of stable log maps along a smooth divisor is discussed in Section 6 of
[KLR18], proving the degeneration formula along a smooth divisor. In the above
proof, we only have to glue along one edge connecting two vertices. In Section 6 of
[KLR18], further work is required to deal with pair of vertices connected by several

edges.

1.6.3 COMPARING OBSTRUCTION THEORIES

—h,P%0 —h,P°
As in the previous Section 1.6.2, let M, A be the open locus of M, n formed by the
torically transverse stable log maps to Xy, and for every vertex V of I', let M (1) A, be the
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open locus of Mg(v)7 A, formed by the torically transverse stable log maps to Xa, . The
morphism cut restricts to a morphism

}LP o —o
cut  Mgpn = X Mywya,-

The goal of the present Section is to use the morphism cut® to compare the virtual classes
—h,P°, —h,P°
[M,

¥t and [M g(V).Ay 17, which are obtained by restricting the virtual classes [M ), A]""
and [Mg(v),AV]Virt to the open loci of torically transverse stable log maps.

g,n,A g,n,A

Recall that Xo = v7'(0), where v: Xp, , — A'. Following Section 4.1 of [ACGS17a], we
define Xy = Ax x4,, {0}, where Ax and Ay are Artin fans, see Section 2.2 of [ACGS17a.
It is an algebraic log stack over pty. There is a natural morphism Xy — Aj.

Following Section 4.5 of [ACGS17a], let SDTB n,a be the stack of n-pointed genus g prestable
basic log maps to Xp/pty marked by h and of type A. There is a natural morphism of stacks

0
MZ,:A smg na - Let mC - Mg n.a be the universal curve and let f:C — Xo/pty be the
universal stable log map. According to Proposition 4.7.1 and Section 6.3.2 of [ACGS17a],

0
]¥I't is defined by E, the cone of the morphism

——h,P
the virtual fundamental class [M ), A

(ev(P) )Ly o [-1] = (R f*Txyx,) ", seen as a perfect obstruction theory relative to Sﬁg nA
Here, T'x,|x, is the relative log tangent bundle, and L, ,, = &y -y 7y (Tx 4, [po )" [1] is the

cotangent complex of tpo. As A} is log etale over pty, we have Tx |x, = T'x,|pt,- We denote

E° the restriction of E to the open locus M A of torically transverse stable log maps.

For every vertex V of I‘, let my:Cy — Mg(v>7AV be the universal curve and let fy:Cy - Xa,,
be the universal stable log map. Let Ax, be the Artin fan of X, and let M,y A, be
the stack of prestable basic log maps to .AXAV, of genus ¢g(V') and of type Ay. There is a
natural morphism of stacks M vy A, = My(vy,a, - According to Section 6.1 of [AW13], the
virtual fundamental class [M vy a, """ is defined by (R(mv)«fyTx,, )", seen as a perfect
obstruction theory relative to M,y A, . Here, T'x, = is the log tangent bundle.

Recall that X M g(V),Ay is defined by the fiber product diagram
VeV (D)

(6xtp0) J—
X Mywyay e [T Myv)ay
VeV (T) VeV (T)

(e)
l xev( lev(E)Xev(p)

( I1 DE) <P 2T D)2k 0 Xay

EcE;(T) EecE;(T) VeV (2p)(T)
We compare the deformation theory of the individual stable log maps fy and the deformation

theory of the stable log maps fi, constrained to match at the gluing nodes. Let F be the

cone of the natural morphism

(@ 5 ) L [1] > @i (B (ROv) 5T, )
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where Ly, ,, is the cotangent complex of the morphism d x¢po. It defines a perfect obstruc-

tion theory on X MQ(V),AV relative to [T 9My(yy,a,, whose corresponding virtual
VeV (T) VeV (T)
fundamental class is, using Proposition 5.10 of [BF97],

(6 X LPO)! H [Mg(v)vAv]Virt )
VeV (L)

where (0 x tpo)" is the refined Gysin homomorphism (see Section 6.2 of [Ful98]). We denote
F° the restriction of F to the open locus Xy, (5 M;(V), A, Of torically transverse stable log
maps.

The cut operation naturally extends to prestable log maps to Xy/pty marked by iL, and so

we have a commutative diagram

—B,Po,o cut® —o
Mgna —— X Myyya,

VeV(T)
lﬂ |

5 cut
My a — I My ay-
VeV (D)

By Proposition 1.17, the morphism cut® is étale and so (cut®)*F° defines a perfect obstruc-

7;7,,}30,0 .
tion theory on M, A relative to [T DMy ay-
VeV (T)

—;L,Po,o
The maps M a

A mt_f;m’A(XO/ptN) LN M,(vy,a, define an exact triangle of

VeV(T)
cotangent complexes

L—E,P“,o - L—R,Pﬂ,a i
g,n,A | I mﬂ(v)vAV MQJLA ‘mg,n,A g:m, VeV (P

(cut®)*F° E°
l | D
L po, — L_j po, - *)/.L*L i 1 4 .
My Al TT. Myvy,ay M, A DUSIN RUN V) gjt57(V)7Av[ ]
Vev( g VeV ()

Proposition 1.18. The above diagram can be completed into a morphism of exact triangles

[1
cut®)*F° > E° > Lo 5 1
(cut®) ’ e NI Emg(vmv[ ]
l l Vev (D)
’ i
L_j po, — L_jpoo _; — 1 Lgon 4 .
My A1 T Moevy,ay My lomk my oAl TT fmg(vmv[ ]
Vev (D) R Vev (D)

Proof. Denote X;, X}. , D} the objects obtained from Xy, Xa,, Dg by removing the
0 Ay E \4
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torus fixed points of the toric surfaces Xa, . Denote txq the inclusion morphism of X3
\%4
in X¢.

If F is a bounded edge of T', we denote Vi and V2 the two vertices of E. Let F be the sheaf

on the universal curve C|—j po , defined as the kernel of
g,n,A

D [lxg )Txg, > D (tB)«(ev®) Tps
VeV(T) EeE; (D)

(sv)v = (svalpg, = svzlps, ) e,

where evP

is the evaluation at the node pgp dual to E, and tg the section of C given
by pg. It follows from the exact triangle obtained by applying Rw. to the short exact
sequence defining F and from Ls = &, Ef(f)TBE [1] that (cut®)*F° is given by the cone of
the morphism (ev(p))*LLPO [-1] = (Rm.F)Y. So in order to compare E° and (cut®)*F°, we

have to compare f *TXS\ptN and F. The sheaf f *TXSIPtN can be written as the kernel of

f© @ (xg )elxg ) Txgpn, > D (1)« (ev®) Txeppt, -
Vev(f) EeE(T)

(sv)v = (svalpg, = svzlps, e -

Remark that because X is the special fiber of a toric degeneration, all the log tangent
bundles Tx,, T, Tp, are free sheaves (see e.g. Section 7 of [NS06]). In particular, the

restrictions (¢ X )*TXSIPtN — TXoA are isomorphisms, the restriction
\%4 v

&) (eVE)*TXSthN_) &) (EVE)*TD;’E
EeE () EeE;(T)

has kernel @ g, Ef(f)(evE )*Ope, and so there is an induced exact sequence

0= f"Txgpr, > F > €D (t5)+(ev?)* Ope -0,
EeE(T)

fL,Poo

which induces an exact triangle on M, A:

(cut’)’F°-E° > P (eVE)*ODoE[l] EINy

EcE;(T)

It remains to check the compatibility of this exact triangle with the exact triangle of cotan-
gent complexes. We have

Indeed, restricted to the locus of torically transverse stable log maps, cute is smooth, and,
given a torically transverse stable log map to Xy/pty, a basis of first order infinitesimal

deformations fixing its image by cutc in HVeV(f) Myvy,a, is indexed by the cutting nodes.
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The dual of the natural map

E\* " i i .
Eeg?(f)(ev ) Ops, > 1t Loni 1 T 9.y D (r)Op,

Vev (D) EcE;(T)

sends the canonical first order infinitesimal deformation indexed by the cutting node pg
to the canonical summand Ope in the normal bundle to the diagonal [T, g, Py in
[z Ef(f)(D?ﬂ)27 and so is an isomorphism. This guarantees the compatibility with the
exact triangle of cotangent complexes. O

Remark: Restricted to the open locus of torically transverse stable maps, the discussion is
essentially reduced to a collection of gluings along the smooth divisors D%,. A comparison of
the obstruction theories in the context of the degeneration formula along a smooth divisor
is given with full details in Section 7 of [KLR18].

Proposition 1.19. We have
o 7}~L7PO7° vir
(cut”). (37017

=| TT w®) [[@Exero)is TT [Myya, ™
EeE;(T) VeV (D)

Proof. Tt follows from Proposition 1.18 and from Theorem 4.8 of [Man12] that the relative
— _h.PY%o
obstruction theories E° and (cut®)*F° define the same virtual fundamental class on M Z: A
By Proposition 1.17, cut® is étale, and so, by Proposition 7.2 of [BF97], the virtual funda-
mental class defined by (cut®)*F° is the image by (cut®)* of the virtual fundamental class
defined by F°. It follows that
—h,P%0 virt o\ * ! a7° virt
[My a1 = (cut®) (6 x tpo)y, [1 (M yvya, 17
VeV(T)

According to Proposition 1.17, the morphism cut® is étale of degree HEeEf(f) w(E), and so
the result follows from the projection formula. O

1.6.4 GLUING

Recall that we have the morphism

(Oxepo)ars X Mgvyay = [T Mgy, -
VeV (D) VeV(T)

For every V e V(I'), we have a projection morphism

pry: [T Mywna,, > Mywyay -
VeV (T)

On each moduli space Mg(V),Ava we have the top lambda class (—1)9(V))\g(v).
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Proposition 1.20. We have

A,n * * \4
Ngjb :/(6><Lp0)! n (M (5XLPO)M H prV((_l)g( )AQ(V))'

My, Vit B
VeV (D) 9(V)by Vev ()

Proof. By definition (see Section 1.3.3), we have

An -
N — / ~ ( 1)9 LESUS W
—h,P . 9g—9ga,n *
g,h (M Jvirt

g,mn,
Using the gluing properties of lambda classes given by Lemma 1.6, we obtain that

(~1)9798m N o= (cut) (Fxepo)yy T pri (17N ) -
VeV ()

It follows from the projection formula that

NAin:f — dxipo)} pr (1)) .
g.h (cut)*[MZ:i()A]virt( P )Mvel;l(f) v (-1 o(v))

According to Proposition 1.19, the cycles
7}2’})0 virt
(CU-t)* [Mg,n,A]

and

[T w®) [[(@xepo) T [Myvya, ™
EeE(T) VeV (T)
have the same restriction to the open substack

X Myw)ay
VeV (T)

of

X Mywyay -
VeV (D)

Tt follows, by Proposition 1.8 of [Ful98], that their difference is rationally equivalent to a

cycle supported on the closed substack

— —0
Z‘=( X Mg(vmv)—( X Mg(vmv)-

VeV (D) VeV (D)

If we have
(fV:CV - XAv)VeV(f‘) € Za

then at least one stable log map fy:Cy - Xa,, is not torically transverse. By Lemma 1.16,
the unbounded edges of the tropicalization of fy are contained in the rays of the fan of X, .

It follows that we can apply Proposition 1.10 to obtain that at least one of the source curves
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Cy contains a non-trivial cycle of components. By the vanishing result of Lemma 1.7, this
implies that
L@xim)i TT wri (D" 20) = 0.

VeV (T)

It follows that

S e @xemie TT pri (D 00))
(cut) [M,, A]virt vev(T)

Oxepo)ie T1 P (D)) -

.[(5><LP(J)! I1 [M.LJ(V)VAV]Virt VEV(f)

Vev (D)

This finishes the proof of Proposition 1.20.

1.6.5 IDENTIFYING THE PIECES

Proposition 1.21. We have

Oxepo)ir T Py (G N0n) = TT Ny

f(émpo)! I [Myv)ay 7 VeV () VeV ()

VeV (D)

Proof. Using the definitions of § and ¢po, we have

(6xepo)iy TT pri ((-1)VN01)

ﬁéxtpo)! IT ‘)[HQ(V):AV]‘A” VeV (T)

vev(D

(ev(p))*([POD(eV(e))*([5]) H pr;}((—l)g(V)/\g(v)),

VeV (D)

[ T [Mgvy,a, ]Vt

Vev (D)

where

(P°1= ] Pred*l JI Xa,

VeV (2p)(T) VeV (2p)(T)

is the class of P° and

[6]ea”| I (Dp)?

EeE;(T)
is the class of the diagonal HEeEf(f) Dg. As each Dg is a projective line, we have

[6]1= [I (ptgx1+1xptg),
EecE;(T)

where pty € A'(Dg) is the class of a point.

We fix an orientation of edges of I as described in Section 1.5. In particular, every trivalent
vertex has two ingoing and one outgoing adjacent edges, every bivalent pointed vertex has
two outgoing adjacent edges, every bivalent unpointed vertex has one ingoing and one outgo-
ing edges. For every bounded edge E of T', we denote V5 the source vertex of E and V}, the

68



target vertex of E, as defined by the orientation. Furthermore, the connected components of
the complement of the bivalent pointed vertices of T' are trees with exactly one unbounded
edge.

We argue that the effect of the insertion (ev(®)*([P°])(ev(®))*([6]) can be computed in
terms of the combinatorics of ingoing and outgoing edges of [''6. More precisely, we claim

that the only term in

@) (D= TT () Gte) + (evl) (ts)) |

EeE(T)
giving a non-zero contribution after multiplication by

T ) @) TT erd (1) YN 00)
VeV (2p)(I) Vev(T)

and integration over [Ty 5 [Myvy.a, 170 is HEeEf(f)(evgé)*(ptE).

We prove this claim by induction, starting at the bivalent pointed vertices, where things are
constrained by the marked points P°, and propagating these constraints following the flow

on I defined by the orientation of edges.

Let V be a bivalent pointed vertex, F an edge adjacent to V and V' the other ver-
tex of E. The edge E is outgoing for V and ingoing for V', so V' = V. We have in
(ev®)*([P°])(ev(®))*([8]) a corresponding factor

(i) (PY) ((evE)* (pt) + (ev)* (pty)) -

But
(ev{?)* (PY)(evi)* (pty) (1) Ag(y = 0

for dimension reasons (its insertion over M 4(y) A, defines an enumerative problem of virtual

dimension —-1) and so only the factor

(i) (PY) (evi)* (ptp)
survives, which proves the initial step of the induction.

Let E be an outgoing edge of a trivalent vertex V, of ingoing edges E' and E?. Let V}
be the target vertex of E. By the induction hypothesis, every possibly non-vanishing term

contains the insertion of (ev‘h;1 )* (ptgn )(ev{”;2 )*(ptg2). But

(evE ) () (evE ) (ptpa) (evE)* (pt ) (-1)* A yrry = 0

for dimension reasons (its insertion over M () A, defines an enumerative problem of virtual

161t is essentially a cohomological reformulation and generalization of the way the gluing is organized in
Mikhalkin’s proof of the tropical correspondence theorem, [Mik05].
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dimension -1) and so only the factor

E'\x E? E \*
(evi )" (ptp)(eviy )" (ptE) (evyy )" (pt)
survives.

Let E be an outgoing edge of a bivalent unpointed vertex V, of ingoing edges E'. Let V}, the
target vertex of E. By the induction hypothesis, every possibly non-vanishing term contains
the insertion of (ev{”;l)*(ptEl ). But

(evE ) (pt ) (evE)* (pt) (-1)7VI N1y = 0

for dimension reasons (its insertion over M 4(yy A, defines an enumerative problem of virtual

dimension —1) and so only the factor

(evi )" (ptpn)(evi: ) (pty)
survives. This finishes the proof by induction of the claim.

Using the notations introduced in Section 1.5, we can rewrite

[T (ev&) (ots)

EcE;(T)
as
Ein,l " Ein,2 . Ein "
[T ey ) tgm)(evy” ) (ptyms) [T (evy") (otmp) |
VeV ) (T) VeV (2ur)(T)

and so we proved

_ 0 X 1po)y pri, ((-1)7V)\
/(“SXLPU)! nf‘)[Mg(V)yAv]Vi”( r )M H v (( ) g(V))

vev( VeV (D)
1,2 1,2 1,2
= II Ny || I1 Ny [T Ny
Vev®) (D) Vevep) (T VeV 2up) (T)
This finishes the proof of Proposition 1.21. O

1.6.6 END OF THE PROOF OF THE GLUING FORMULA

The gluing identity given by Proposition 1.12 follows from the combination of Proposition
1.20 and Proposition 1.21.

1.7 VERTEX CONTRIBUTION

In this Section, we evaluate the invariants N;"Q/ attached to the vertices V of I' and appearing
in the gluing formula of Corollary 1.15. The first step, carried out in Section 1.7.1 is to
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rewrite these invariants in terms of more symmetric invariants Ny depending only on the
multiplicity of the vertex V. In Section 1.7.2, we use the consistency of the gluing formula
to deduce non-trivial relations between these invariants and to reduce the question to the
computation of the invariants attached to vertices of multiplicity one and two. Invariants
attached to vertices of multiplicity one and two are explicitly computed in Section 1.7.3
and this finishes the proof of Theorem 1. Modifications needed to prove Theorem 1.5 are
discussed at the end of Section 1.7.4.

1.7.1 REDUCTION TO A FUNCTION OF THE MULTIPLICITY

The gluing formula of the previous Section, Corollary 1.15, expresses the log Gromov-Witten

invariant NgA}’L" attached to a parametrized tropical curve h:I' - R? as a product of log

Gromov-Witten Ngl(’?/)  attached to the trivalent vertices V' of T', and of the weights w(E)

of the edges E of I'. The definition of Ngl(’%/) v given in Section 1.5 depends on a specific

choice of orientation on the edges of I'. In particular, the definition of N;(’f/)  does not

treat the three edges adjacent to V' in a symmetric way.

Let Ei;l’l and Ei?’z be the two ingoing edges adjacent to V, and let E{M be the outgoing
edge adjacent to V. Let Dpin1, Dgin2 and Dngut be the corresponding toric divisors of
Vv \4

XA, . We have evaluation morphisms
ev = (evi,eva,evour ) Mg A, — DEi‘;),l x _DEi;A,z X DEOV\,t .
In Section 1.5, we defined

Nyt = [ D Aevi ot )evi (pta).

Mg,AV]Virt

where pt; € A'(Dgm.1) and pty, € A'(Dpginz2) are classes of a point on D i and D ginz
\%4 \%4 \%4 v

respectively.

But one could similarly define

N;:‘C;ut = [[— (_1)g)‘gevi(ptl)eV;ut(ptout)7

ngAv]Virt

and
1, * *
N;Rﬁ = [7 . (_1)g)‘gevout(ptout)evl (ptl) )
[Mg,a, ]virt

where pty,, € A*(DE%}ut) is the class of a point on E9". The following Lemma gives a

relation between these various invariants.

Lemma 1.22. We have
1,2 in,1 in,2 2,0u in,2 ou out,1 ou in,1
Nyvw(EY ) w(EY?) = No vt w(EY ) w(ER) = NoW o (B w(EY)
and we denote by Ny v this number.

Proof. Let I'y be the trivalent tropical curve given by V and its three edges Ei? ’1, E;‘ 2 and
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Et. Let I'y+ be the trivalent tropical curve with a unique vertex V' and edges E;l, 1, Eif,’Q
and EY4Y, such that

in,1y _ in,1 in,2y _ in,2 outy _ out
w(Ey) =w(Ey, ), w(Ey™”) =w(Ey”) ,w(Ey") =w(Ey),
and
Yvept = Ty gt Uy g2 T Ty pin2 s UV B = SOV B
Let T'y,y+ be the tropical curve obtained by gluing EP™ and E9N* together.

Taking
A={v in,1, —U in,1,V in,2, —U in,
{ v.ER Vv B Yy ER® V’,EV,'Z}
and n = 3, we have ga , = 0 and Th ;, consists of a unique tropical curve Ff/’v,, obtained

from I'y v by adding three bivalent vertices corresponding to the three point pq, p2 and ps
in R2.

Choosing differently p = (p1,p2,ps3), the tropical curve I'}, ., can look like

or like

Ein,2

in1
Ey;

But the log Gromov-Witten invariants N, gA’?’ are independent of the choice of p and so can
be computed for any choice of p. For each of the two above choice of p, the gluing formula
of Corollary 1.15 gives an expression for NgA’3. These two expressions have to be equal.
Writing

F(u) =Y Nyu*o*!

g20
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we obtain!?
F2(u) U (w)w( EE D w (B w( EY Yy w( B

1,0u 1,0u in,1 ou ou in,1
= By (u) Py (w)w (BY D w (BY Y w(EY Y w (B

and so after simplification
F&’Q(U)Fl’,out (u)w(E;;}Q) _ F&,out(u)Fl,,out (u)w(E‘o/ut )

By GL2(Z) invariance, we have F‘l/z(u) = F‘l/’,2(u) and F;°"(u) = Fiy?"(u). By the
unrefined correspondence theorem, we know that F‘l/’om(u) # 0, so we obtain

FEA () = L (u(E),
which finishes the proof of Lemma 1.22. O

We define the contribution Fy (u) € Q[[u]] of a trivalent vertex V of I' as being the power

series

Fv(u) = Z N, 7{/1,[,251-‘—1.

920

Proposition 1.23. For every A and n such that ga ,, 20, and for every p e Ua ,,, we have

> Ny [T A

929A,n (h:F%RZ)ETAJ, VeVv(3) (F)

where the product is over the trivalent vertices of T'.

Proof. This follows from the decomposition formula, Proposition 1.9, from the gluing for-
mula, Corollary 1.15, and from Lemma 1.22. Indeed, every bounded edge of I is an ingoing
edge for exactly one trivalent vertex of I' and every trivalent vertex of I' has exactly two
ingoing edges. Combining the invariant Ngl(’%/))v of a trivalent vertex V with the weights
of its two ingoing edges, one can rewrite the double product of Corollary 1.15 as a single

product in terms of the invariants defined by Lemma 1.22. O

Proposition 1.24. The contribution Fy (u) of a vertex V only depends on the multiplicity
m(V) of V.

In particular, for every m positive integer, one can define the contribution F,,(u) € Q[[u]]

as the contribution Fy(u) of a vertex V' of multiplicity m.

Proof. We follow closely Brett Parker, [Par16] (Section 3).

For vy,vy € Z* - {0}, let us denote by F,, ,,(u) the contribution Fy (u) of a vertex V
of adjacent edges Ey, F» and FEs such that vy g, = v1 and vy g, = va. The contribution
F,, »,(u) depends on (vy,v2) only up to linear action of GLy(Z) on Z?. In particular, we

can change the sign of v; and/or vy without changing F,, ,,(u).

17Recall that we are considering marked points as bivalent vertices and that this affects the notion of
bounded edge. According to the gluing formula of Corollary 1.15, we need to include one weight factor for
each bounded edge.
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By the balancing condition, we have vy, g, = -vv,g, —vv,g, and so

E)l,vg (u) = F—vl,vz (u) = E;l—vz,vz (u) .

By GLy(Z) invariance, we can assume v, = (|v1],0) and vy = (vag, *) with ve, > 0. If |vy]

divides vay, Vo, = alv1|, then replacing ve by ve — avy, which does not change F, we can

1,02
assume that vy = (Jv1],0) and vy = (0, *). If not, we do the Euclidean division of vg, by |v1],
vog = alv1|+b, 0 < b < |v1], and we replace vy by ve —av; to obtain vg = (b, *). Exchanging the
roles of v and vg, we can assume by GLo(Z) invariance that v; = (Jvu1],0), for some |v1] < b
and vy = (vog, *) for some vy, > 0, and we repeat the above procedure. By the Euclidean
algorithm, this process terminates and at the end we have v1 = (Ju1],0) and vy = (0, ]vz|). In
particular, for every vy, vy € Z* — {0}, the contribution F,, ,, only depends on ged(|v1], [v2])
and on the multiplicity |det(vy, v2)|.

By the previous paragraph, we can assume that vy = (Jv1],0) and ve = (0,]va|).

Taking
A= {(|U1|70)7 (Oa |U2|)7 (07 1)7 (_|U1|7 _|U2| - 1)}a

and n = 3, we have ga , =0 and T , contains a unique tropical curve I'P.

Choosing differently p = (p1,p2,p3), the tropical curve I'” can look like

(0,1) (0, |v2])
(|U1|a0)
(=lval, =lve[ = 1)

or like
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(07 |U2|) (071)

(v1],0)

(=lva; =Jv2] = 1)

But the log Gromov-Witten invariants NgA’?’ are independent of the choice of p and so can
be computed for any choice of p. For each of the two above choices of p, the gluing formula
of Proposition 1.23 gives an expression for N, gA’3. These two expressions have to be equal
and we obtain

F(1v11,0),00,va)) (W) (0,1, (o |~ losl-1) () = F1011,0),(0,1) (W) E(0,jva]), (=Jo1],~lwa]-1) (1) -

For both pairs of vectors (|v1],0),(0,1) and (0,1), (—|v1], —|v2|-1), the ged of the divisibilities
is equal to one and the absolute value of the determinant is equal to |v1], so we have

F0,1),(~fox],~lva-1) () = F{j,1,0),0,1) (1) -

As this quantity is non-zero by the unrefined correspondence theorem, we can simplify it

from the previous equality to obtain

F1011,0),0,lv21) () = F(0 Jua]). (~loa ] ~foal-1) () -

As
ged([(0, [v2) [, [(=lva], =[v2[ = D)[) = 1,

we obtain the desired result. O

1.7.2 REDUCTION TO VERTICES OF MULTIPLICITY 1 AND 2

We start reviewing the key step in the argument of Itenberg and Mikhalkin [IM13] proving
the tropical deformation invariance of Block-Goéttsche invariants. We consider a tropical
curve with a 4-valent vertex V. Let @ be the quadrilateral dual to V. We assume that
@ has no pair of parallel sides. In that case, there exists a unique parallelogram P having
two sides in common with @ and being contained in Q. Let A,B,C' and D denote the four
vertices of @, such that A,B and D are vertices of P. Let E be the fourth vertex of P,
contained in the interior of Q. There are three combinatorially distinct ways to deform
this tropical curve into a simple one, corresponding to the three ways to decompose () into

triangles or parallelograms:
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1. We can decompose @ into the triangles ABD and BCD.
2. We can decompose @ into the triangles ABC and ACD.

3. We can decompose @ into the triangles BCE, DEC and the parallelogram P.

Case (1):
A B
D
C
Case (2):
A B
D
C
Case (3):
A B
D
C

The deformation invariance result then follows from the identity

(q|ACD| _ q—\ACD\)(q|ABC| _ q—|ABC|)

|BOD| _ (-IBCDIy((|ABD| _ -|ABD]) |BOE| _ (~|BCE) ((|DEC] _ 4~IDECy

=(q +(q

where | — | denotes the area. This identity can be proved by elementary geometry consider-

ations.

The following result goes in the opposite direction and shows that the constraints imposed by
tropical deformation invariance are quite strong. The generating series of log Gromov-Witten
invariants Fy,(u) will satisfy these constraints. Indeed, they are defined independently of
any tropical limit, so applications of the gluing formula to different degenerations have to

give the same result.
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Proposition 1.25. Let F:Z.o = R be a function of positive integers valued in a commutative
ring R, such that, for any quadrilateral Q as above, we have'®

F(2|BCD|)F(2|ABD|) = F(2|ACD|)F(2|ABC|) + F(2|BCE|)F(2|DEC)).
Then for every integer n > 2, we have
F(n)>=F(2n-1)F(1)+ F(n-1)?
and for every integer n > 3, we have
F(n)*=F(2n-2)F(2)+ F(n-2)%

In particular, if F(1) and F(2) are invertible in R, then the function F is completely de-
termined by its values F (1) and F(2).

Proof. The first equality is obtained by taking @ to be the quadrilateral of vertices (-1,0),

(-1,1), (0,1), (n-1,-(n-1)).

Picture of @ for n =2:

The second equality is obtained by taking @ to be the quadrilateral of vertices (-1,0),
(_17 1)7 (la O)v (Tl -1, _(n - 1))

Picture of @ for n = 3:

18 All the relevant areas are half-integers and so their doubles are indeed integers.
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1.7.3 CONTRIBUTION OF VERTICES OF MULTIPLICITY 1 AND 2
VERTEX OF MULTIPLICITY ONE

We now evaluate the contribution Fi(u) of a vertex of multiplicity 1 by direct computation.

We consider A = {(~1,0),(0,-1),(1,1)}. The corresponding toric surface XA is simply P?,

of fan

Dout

D,
Do

and of dual polygon

Dl i Dout

D,

Let D1, Dy and Dy be the toric boundary divisors of P?. The class Sa is simply the class
of a curve of degree one, i.e. of a line, on P?. Let Mg, A be the moduli space of genus g stable

log maps of type A. We have evaluation maps
(evi, er):Mg,A — Dy x Dy,
and in Section 1.5, we defined
NA= [ o DA t)evi o).
where pt; € A*(D;) and pt, € A*(D2) are classes of a point on Dy and D respectively.
By definition (see Section 1.7.1), we have

Fi(u) = Z N;:Zu2g+1 '

g20

Proposition 1.26. The contribution of a vertex of multiplicity one is given by
Fi(u) = 2sin(g) = —i(q% - q_%)

where q = e*™.
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Proof. Let P; and P, be points on D; and D5 respectively, away from the torus fixed
points. Let S be the surface obtained by blowing-up P? at P, and P,. Denote by D the
strict transform of the class of a line in P? and by E:, Fs the exceptional divisors. Denote
05 the strict transform of the toric boundary 9P? of P2. We endow S with the divisorial log
structure with respect to 0S. Let MQ(S ) be the moduli space of genus g stable log maps to
S of class D — Ey — E» with tangency condition to intersect 0.5 in one point with multiplicity
one. It has virtual dimension g and we define

NS = /[7 (-1)9, .

Mg(s)]virt

The strict transform C' of the line L in P? passing through P, and P, is the unique genus
zero curve satisfying these conditions and has normal bundle N¢jg = Op1(~1) in S. All the
higher genus maps factor through C, and as C' is away from the preimage of the torus fixed
points of P2, log invariants coincide with relative invariants [AMW14]. More precisely, we
can consider the moduli space Mg (P!/o0,1,1) genus g stable maps to P, of degree one, and
relative to a point co € P1. If m:C — M ,(P'/00,1,1) is the universal curve and f:C - P! ~ C
is the universal map, the difference in obstruction theories between stable maps to S and
stable maps to P! comes from lef*NqS = R'7, f*Opi (-1).

These integrals have been computed by Bryan and Pandharipande[BP05], (see the proof of
the Theorem 5.1), and the result is

1
S 2g-
R T
920 251n(§)
So we obtain
NS:f ~1)Ag e (R'me f*Opi (-1))
! [Mg(Pl/w,l,l)]virc( ) ge( e f ]P,( ))

where e(-) is the Euler class. Rewriting
(-1)9), = e(R'1.0c) = e(R . f*Op1 ),

we get
NS = / R17 « | * Opr® O -1 .
g (M, (PL/ 7171)]vm€( ( Pt Pl( )))

As in [GPS10], we will work with the non-compact varieties (P?)°, D, D3, S° obtained by

removing the torus fixed points of P? and their preimages in S.

Denote P§ the projectivized normal bundle to D$ in (P?)°, coming with two natural sections
(D3)g and (D?)s. Denote PS the blow-up of P at the point P; € (D$)e, E the correspond-
ing exceptional divisor and C the strict transform of the fiber of IP{ passing through P;. In
particular, Ey and C; are both projective lines with degree —1 normal bundle in (P;)°. Fur-
thermore, F; and C; intersect in one point. Similarly, denote PS5 the projectivized normal
bundle to DS in (P?)°, coming with two natural sections (D$)o and (D$)e. Denote P the
blow-up of P§ at the point P € (D$) oo, F, the corresponding exceptional divisor and C5 the
strict transform of the fiber of P§ passing through Ps. In particular, E5 and C, are both

projective lines with degree —1 normal bundle in (]f”g)". Furthermore, E5 and Cs intersect
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in one point.

We degenerate S° as in Section 5.3 of [GPS10]. We first degenerate (P?)° to the normal
cone of DS u D3, i.e. we blow-up (DS uDS3)x {0} in (P?)° x C. The fiber over 0 € C has three
irreducible components: (P?)°, P, P5, with P and P glued along (D5)o and (D3)o to DS
and D§ in (P?)°. We then blow-up the strict transforms of the sections Py x C and P x C.
The fiber of the resulting family away from 0 € C is isomorphic to S°. The fiber over zero
has three irreducible components: (P?)°, P, PS.

We would like to apply a degeneration formula to this family in order to compute N, gS . As
discussed above, all the maps in Mg(S ) factor through C and so N, gS can be seen as a relative
Gromov-Witten invariant of the non-compact surface S°, relatively to the strict transforms
of D} and Ds.

The key point is that for homological degree reasons, the degenerating relative stable maps
do not leave the non-compact geometries we are considering. More precisely, any limiting
relative stable map has to factor through C; u L u Cy, with degree one over each of the
components C1, L and C5. So, even if the target geometry is non-compact, all the relevant
moduli spaces of relative stable maps are compact. It follows that we can apply the ordinary

degeneration formula in relative Gromov-Witten theory [Li02].

‘We obtain
S, 2g-1 _ 1,2 2g+1 C1,,29-1 C2, 2g-1
ZNgu = ZNgAu ZNQ U ZNg U .
g=0 g0 g0 g0

The invariants IV, gCl and N, gCQ, coming from curves factoring through C; and Cs, which are

(-1)-curves in If”‘i and ]f”; respectively, can be written as relative invariants of P

NclzNCQ:[ Rl**o ® O (-1
g g [Mg(]?l/oo,Ll)]virte( ™ f ( P P ( ))) )

which is exactly the formula giving N, 5 , and so

1
NC1y20-1 NC2q29-1 = .
I M T T ey

Remark that this equality is a higher genus version of Proposition 5.2 of [GPS10]. Combining

the previous equalities, we obtain

2
1 1,2 2g+1 1
- N2 20 -
ZSin(%) (;) Al )(QSin(g)) ’

1,2, 2g+1 _ o [ U
ZNg,A“ —251n(2).

920

and so
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VERTEX OF MULTIPLICITY 2

We now evaluate the contribution F»(u) of a vertex of multiplicity 2 by direct computation.

We consider A ={(-1,0),(0,-2),(1,2)}. The corresponding toric surface X is simply the
weighted projective plane P12, of fan

Dout
D,
Doy
and of dual polygon
Dout
D, \
Dy

Let Dy, Dy and Dy be the toric boundary divisors of P1:12, We have the following
numerical properties:
2Dl = D2 = 2Dout P
1
D;y.Dy =1, D1.Dout = 5, D3.Doyt =1,

1 1
D?==-.D2=92.D% =_.
1 2’ 2 » ~out 9

The class Ba satisfies SA.D1 =1, fa.Ds =2, Ba.Doys =1 and so
BA = 2-Dl = D2 = 2-Dout .

Let M, A be the moduli space of genus g stable log maps of type A. We have evaluation
maps
(eVl,eVQ)IMgﬁA g Dl X D2 s

and in Section 1.5, we defined

N2 - f[f (=1)7Agevi (pty )evi (pt) |

A[g,AV]Virt
where pt; € A*(D;) and pty € A*(D2) are classes of a point on Dy and D respectively.

By definition (see Section 1.7.1), we have

Fy(u) =2 (Z N;’ZUQQH) .

g20
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Proposition 1.27. The contribution of a vertex of multiplicity two is given by
Fy(u) = 2sin(u) = (<i)(g-q ")

where q = e*.

Proof. We have to prove that

> qu’izfg” =sin(u).
g0

Let P, be a point on Dy away from the torus fixed points. Let S be the surface obtained by
blowing-up P12 at P. Still denote Ba the strict transform of the class Ba and by F5 the
exceptional divisor. Denote dS the strict transform of the toric boundary P12 of P1:1:2,
We endow S with the divisorial log structure with respect to 9S. Let M ,(S) be the moduli
space of genus g stable log maps to .S of class S —2Fs with tangency condition to intersect
D1 in one point with multiplicity one and Dy, in one point with multiplicity one. It has

virtual dimension g and we have an evaluation map

evl:Mg75 — D1
We define

NS::fi -1)9 )\ evy(pty),
) SN CIDYE

where pt; € A1(D;) is the class of a point on Dj.

In fact, because a curve in the linear system Sa — 2Fs is of arithmetic genus g, given by

290 =2 = (Ba - 2E2) - (Ba - 2E2 + Ks)
=(2D1 - 2F5) - (2D1 -4D1 - E5)
= -4D? + 2F2
-4,

i.e. g, = —-1<0, all the moduli spaces M,(S) are empty and so

ZNgSuzg_1 =0.

g20

We write A = {(~1,0), (0,-1), (0,-1),(1,2)} and M%A the moduli space of genus g stable

log maps of type A. We have evaluation maps
(6V176V2,€V21)1Mg’A i D1 X D2 X DQ s
and we define

1,2,2" . * * *
N R = f[ﬁg A]vm(—1)g/\gev1(10'51)‘3"2(Ptz)e"Q'(Ptz)’

where pt; € A*(D1) and pty € A*(D3) are classes of a point on Dy and Dj respectively.
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As in [GPS10], we will work with the non-compact varieties (P%!:2)°, DS, D3, S° obtained
by removing the torus fixed points of P1'1'2 and their preimages in S. Denote Pj the
projectivized normal bundle to D3 in (P?)°, coming with two natural sections (D)o and
(DS)eo. Denote P§ the blow-up of P§ at the point Py € (DS)e, Es the corresponding
exceptional divisor and Cy the strict transform of the fiber of P§ passing through P». In
particular, F5 and Cy are both projective lines with degree —1 normal bundle in (I@’g)".

Furthermore, Eg and Cs intersect in one point.

We degenerate S° as in Section 5.3 of [GPS10]. We first degenerate (P''!:2)° to the normal
cone of D3, i.e. we blow-up D$x{0} in (P*1:2)°xC. The fiber over 0 € C has two components:
(P112)° and P§, with P§ glued along (D3)o to D3 in (P*'?)°. We then blow-up the strict
transform of the section P, x C. The fiber of the resulting family away from 0 € C is

isomorphic to S°. The fiber over zero has two components: (P12)° and P5.

We would like to apply a degeneration formula to this family in order to compute N, gS . The
key point is that for homological degree reasons, the relevant degenerating relative stable
maps do not leave the non-compact geometries we are considering. More precisely, after
fixing a point P; € D}, realizing the insertion evj(pt;), any limiting relative stable map has
to factor through L u Cy, with degree one over L and degree two over Cs, where L is the
unique curve in P12, of class Ba, passing through P, and through P, with tangency order
two along D3. So, even if the target geometry is non-compact, all the relevant moduli spaces
of relative stable maps are compact. It follows that we can apply the ordinary degeneration

formula in relative Gromov-Witten theory [Li02].

The application of the degeneration formula gives two terms, corresponding to the two

partitions 2 =1+ 1 and 2 = 2 of the intersection number
(Ba —2F5).Fy =2.

For the first term, the invariants on the side of P12 are Nl’A’ whereas on the side of ]:P)Q,
we have disconnected invariants, corresponding to two degree one maps to Cs. As in the

proof of Proposition 1.26, the relevant connected degree one invariants of Cs are given by
NC2 - /7 e(R'm. f*(Op1 ® Op1(-1))) ,
I [Mg(P'/oo,1,1)]virt ( ( ( )))

satisfying

1
ch 29—1 - .
2N ()

For the second term, the invariants on the side of P12 are Ngl’i, whereas on the side of Ps,
we have connected invariants, corresponding to one degree two map to Cy. More precisely,

the relevant connected degree two invariants of Cy are given by
Nz - [ e(R'7.f* (02 ® Opi (-1)))
I (Mg (P*/00,2,2)]irt (Bim. S (O © Op: (-1))

where Mg(]P’l/oo7 2,2) is the moduli space of genus g stable maps to P!, of degree two, and
relative to a point co € P! with maximal tangency order two. According to [BP05] (see the
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proof of Theorem 5.1), we have

T SRR
550 2 2sin(u)

It follows that the degeneration formula takes the form

e

g20

2
_ } Z Nl,g,z’uzg+2 : 1 +9 Z Nliuzgﬂ (—1) .1 )
2\530 94 2sin (%) a0 v 2 2sin(u)

2

The factor % in front of the fist term is a symmetry factor and the factor 2 in front of the

second term is a multiplicity.

There exists a unique tropical curve of type A, which looks like

This tropical curve has two vertices of multiplicity one, so using the gluing formula of

Proposition 1.23 and Proposition 1.26, we find

3 NI < (7 (u))? = (2sm(;‘))2 .

g20

Combining the previous results, we obtain

1 1 1,2 2g+1
0==-— > N 202t
2 2sin(u) (Z gAY ’

920

and so the desired formula. O

Remark: The proofs of Propositions 1.26 and 1.27 rely on the fact that the involved curves
have low degree. More precisely, in each case, the key point is that the dual polygon does not
contain any interior integral point, i.e. a generic curve in the corresponding linear system on
the surface has genus zero. This implies that, after imposing tangency constraints, all the
higher genus stable maps factor through some rigid genus zero curve in the surface. This
guarantees the compactness result needed to work as we did with relative Gromov-Witten

theory of non-compact geometries. The higher genus generalization of the most general case

84



of the degeneration argument of Section 5.3 of [GPS10] cannot be dealt with in the same

way. This generalization is one of the main topics of Chapter 2.

1.7.4 CONTRIBUTION OF A GENERAL VERTEX

Proposition 1.28. The contribution of a vertex of multiplicity m is given by
Fpn(u) = (=i)(¢% —¢7%).

Proof. By Proposition 1.26, the result is true for m = 1 and by Proposition 1.27, the result
is true for m = 2. By consistency of the gluing formula of Proposition 1.23, the function
F(m) = F,,, valued in the ring R = Q[[u]] satisfies the hypotheses of Proposition 1.25. The

result follows by induction on m using Proposition 1.25. O

The proof of Theorem 1 (Theorem 1.4 in Section 1.1.5) follows from the combination of

Proposition 1.23, Proposition 1.24 and Proposition 1.28.

To prove Theorem 1.5, generalizing Theorem 1 by allowing to fix the positions of some of the
intersection points with the toric boundary, we only have to organize the gluing procedure
slightly differently. The connected components of the complement of the bivalent vertices
of I', as at the beginning of Section 1.5, are trees with one unfixed unbounded edge and
possibly several fixed unbounded edges. We fix an orientation of the edges such that edges
adjacent to bivalent pointed vertices go out of the bivalent pointed vertices, such that the
fixed unbounded edges are ingoing and such that the unfixed unbounded edge is outgoing.
With respect to this orientation, every trivalent vertex has two ingoing and one outgoing
edges, and so, without any modification, we obtain the analogue of the gluing formula of
Corollary 1.15:
A _ 1,2

In Lemma 1.22, we defined Ny v = Nglg/)’vw(Eif’l)w(Eif’QL where E%f’l and Ei?’l are the
ingoing edges adjacent to V. Every bounded edge is an ingoing edge to some vertex but

some ingoing edges are fixed unbounded edges and so

NqA,iL":( [] w(££))( [1 Ng(V),v),

EEeEE(T) VeV 3)(T)

where the first product is over the fixed unbounded edges of I'. Theorem 1.5 then follows

from Proposition 1.28.

1.8 COMPARISON WITH KNOWN RESULTS FOR K3 AND ABELIAN SURFACES

In this Section, we prove two results, Theorem 1.29 and Theorem 1.32, which are analogues
for K3 and abelian surfaces of Theorem 1 for toric surfaces. We treat both cases in completely

parallel ways.
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1.8.1 K3 SURFACES

Some of the remarks below were already made by Gottsche and Shende in [GS14] (see
Theorem 71 and Conjecture 72) and merely interpreted as coincidences. The goal of this
section is to formulate these remarks in a way that makes clear their compatibility with our
work. More precisely, Theorem 1.29 is an analogue for K3 surfaces of Theorem 1 for toric

surfaces.

Let S be a smooth projective K3 surface over C and let 8 € H5(S,Z) be a non-zero effective
curve class. The moduli space Mg(S, B) of genus g stable maps to S of class 8 admits a
reduced virtual class [M (S, 3)]"? of degree g (see [MPT10] and references there).

Let us consider the problem of counting genus gy curves of class 8 passing through gy given

points. A Gromov-Witten definition of this counting problem is given by

90

(o (P )= [ [Tevi (o).

[MgOvQO (S”B)]md j=1

where pt € A%(S) is the class of a point. We assume for now that 3 is primitive.

We consider the same problem for curves of genus g, i.e. curves of genus g of class 8 passing
through gg points, and we cut down the virtual dimension from g— gg to zero by introducing

a (-1)979°\,_,,. In other words, we consider

90
—1)9790N,_,. 7o (pt)?° = fi —1)979°N,_ ev’(pt).
<( ) g-go O( ) )g,,@ [Mg,go(s,ﬁ)]"ed( ) 9-90 jljl ]( )

Because we are assuming (3 is primitive, (7o(pt)9°)y,,s coincides with the Severi degree
considered by Gottsche and Shende in [GS14] and so has a natural refinement, defined by
replacing Euler characteristics by Hirzebruch genera in a description in terms of Hilbert

schemes,
(10(pt)?)go.8(q) € Z[q*2].

Comparing explicit formulas for ((-1)979°A,_g, 70(pt)9°)4 s obtained in [MPT10] with ex-
plicit formulas for (7o(pt)9°),,,8(¢q) obtained in [GS14], we obtain:

Theorem 1.29. If § is primitive, then

S {(=1)77 A gy o (D)) g,50%9 2 = (=1) (g2 = g7 )% 2 (pt) ™ ), 5(q)
g29o

where q = e*".

Proof. We introduce the notations'®

A(g,2) =2 [T(1-2")*(1-¢z")*(1-¢2")°

n>1

19Beware the change of notations: we use q for what is y in [GS14], and z for what is ¢ in [GS14] and
[MPT10].
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and
2

m1(q?-q7
DGsy(q,2) = Y., mz Zd(q;;

-9
mz1 djm -q

)

Both sides of the equality in Theorem 1.29 only depends on 32 = 2k -2 and we write {. .. Yg.h

for (... )g -

According to [MPT10] (Theorem 3), we have, after some easy rewriting:

Z Z ((=1)779° Ay gy 0 (D)% )gyhu29722h71

h>0 9290

_ (_1\90+1 %_ —% 290—2(DG2(qaz))go
=(-1)"" (g2 -q72) A

where ¢ = e™. According to [GS14] (Conjecture 68, proven in [GS15]), we have

9 o1 _ (DGa(g,2))%
%:O(TO(Pt) Ygo.n(q)2" 7 = T A

Comparing the two previous formulas, we obtain the desired identity.

O

Theorem 1.29 is a perfect analogue of Theorem 1. In particular, the prefactors in (q% - q_%)

are remarkably similar.

If 5 is not primitive, one should extract multicover contributions to formulate the analogue

of Theorem 1.29. In [OP16] (Conjecture C2), a general conjecture is formulated for the mul-

ticovering structure of Gromov-Witten invariants of K3 surfaces with descendant insertions.

For the invariants we are considering, this conjecture takes the following form:

Conjecture 1.30. We have

((—1)g_g°>\g_go7'o(pt)g°)g,ﬁ _ Z k2(g+go)—3((_1)9—90/\g_g070(pt)go)9075, 7
B=kp’

where B is a primitive class such that (§)% = (8")2.

Combining Theorem 1.29 with this conjecture, we obtain:

Conjecture 1.31. For general 5, we have

D ACL)TON g To(P) ) g, pu 2
929o

— k _k —
= (1) 3 K27 (gE - )2 (o (p) ), 5 ()
bR

where B is a primitive class such that (8)% = (8')2, and q = e™.
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1.8.2 ABELIAN SURFACES

Let A be a smooth projective abelian surface over C and let 8 € Hy(A,Z) be a non-zero
effective curve class. The moduli space Mg(A, B) of genus g stable maps to A of class
admits a reduced virtual class [M,(A, 8)]™? of degree g -2 (see [BOPY15] and references
there).

Let us consider the problem of counting genus gg > 2 curves of class 8 passing through go —2

points. A Gromov-Witten definition of this counting problem is given by

go—2

(o () )= | [T evio0),

[MQO,QO—Z (Avﬁ)]md j=1

where pt € A%2(A) is the class of a point. Let us assume that 3 is primitive.

We consider the same problem for curves of genus g, i.e. curves of genus ¢ of class 8 passing
through go—2 points, and we cut down the virtual dimension from g—gg to zero by introducing

a (-1)979°\,_,,. In other words, we consider

90—2
Z1)979 ) oo (pt)902 - fi —1)9790 )\ _ ev:(pt).
((-1) g-90T0(Dt) Yo [Mg,go(s75)]red( ) 9-90 31:11 J(p )

Because we are assuming ( is primitive, (To(p)gf”Z)goﬁ coincides with the Severi degree
considered by Gottsche and Shende in [GS14] and so has a natural refinement, defined by
replacing Euler characteristics by Hirzebruch genera in a description in terms of Hilbert

schemes,
— 1
(T0(pt)* ™) go,5(q) € Z[g*].

Theorem 1.32. If (8 is primitive, then

D AL)TON g To(P) %) g g
g2go

= (-1)P" (g% - g 2)207 2 (pt) ) 4o,5()

where q = e*".

Proof. We introduce the notation’
2

1(qt-q%
Dastas) = ¥ 5 5 (40 )

m>1 dlm

According to [BOPY15] (Theorem 2), we have, after some easy rewriting (one has to remark
that the function S of [BOPY15] is equal to (g2 — ¢~2)2DG):

>, 2 A1) Ng g, To(pE) g 22"

h>0 9290

20Beware the change of notations: we use g for what is y in [GS14] and p in [BOPY15], and we use z for
what is ¢ in [GS14] and [BOPY15].
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- ()P (g gD (DGs (0,202 (24 ) DGa(a2).

where ¢ = ¢, According to [GS14] (statement before Proposition 74, proven in [GS15]), we

have d
D {70 (pt)?) gy n(q)2" = (DGa(g,2)) " (2*) DG>(q,z2).
hz0 dz
Comparing the two previous formulas, we obtain the desired identity. O

Theorem 1.32 is a perfect analogue of Theorem 1. In particular, the prefactors in (q% —q’%)

are remarkably similar.

1.9 DESCENDANTS AND REFINED BROCCOLI INVARIANTS

In [MR16], Mandel and Ruddat have extended the unrefined correspondence theorem to
include descendant log Gromov-Witten invariants, i.e. log Gromov-Witten invariants with
insertion of psi classes, in the case of genus zero curves?!. On the tropical side, one needs

to introduce extra markings corresponding to the various insertions of psi classes.

The simplest local model is a parametrized tropical curve h:I' - R2, of some type A, where
I" has a unique vertex, three unbounded edges, and [ markings corresponding to insertions
of psi classes 1/1]1"1, ceey lkl. In addition to the usual multiplicity, this tropical curve has to

be counted with an extra factor

( l )_ I
ki,... ki) kil k)

corresponding to the fact that

Lo l
—/Mo,us gwl - (kl,...,kl)’

where Mg ;3 is the moduli space of (I + 3)-pointed genus zero stable curves.

To include descendants in Theorem 1, one should study generating series of descendant log

Gromov-Witten invariants with a further insertion of one lambda class.

In this Appendix, we study the simplest possible case of a trivalent vertex with insertion of
only one psi class and we recover the numerator ¢ +¢~ 2 of the multiplicity introduced by
Gottsche and Schroeter [GS16a] in the context of refined broccoli invariants.

Let h:T' > R? be a parametrized tropical curve, of some type A, where I' has a unique
vertex, three unbounded edges, and one extra marking corresponding to the insertion of one
psi class ¥;. For the corresponding log Gromov-Witten invariants with one psi class and

one lambda class inserted, one can argue as in Sections 1.5, 1.6 and 1.7 to prove a gluing

211n positive genus with insertion of psi classes, superabundant tropical curves generically arise and so the
result of [MR16] cannot be applied.
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formula and use its consistency to reduce the problem to a generating series

Ey(u) = Y Ny
g>0

depending only on the multiplicity of the vertex.

Recall that we denoted F),(u) the analogue generating series without psi class and that by
Proposition 1.28, we have Fy,(u) = (=i)(¢g% — ¢ %), i.e. essentially the numerator of the
Block-Gottsche multiplicity.

In the following proposition, we show that F¥ (u) is essentially the numerator of the Gottsche-

Schroeter multiplicity.

Proposition 1.33. For every nonnegative integer m, we have

F¥(u) = ucos(%)

where q = e*™.

Proof. In Section 1.7.2, we use steps in the proof by Itenberg and Mikhalkin of the tropical
deformation invariance of the Block-Go6ttsche invariants to obtain identities which have to

be satisfied by the generating series F,,,(u) by consistency of the gluing formula.

Similarly, looking at the proof of Theorem 4.1 of [GS16a], we obtain that, by consistency of

the gluing formula, we have
Fo(u)Ey (u) = Fop_1(u) FY (u) = Frpoi (w)F_y (u)

Using that Fy,(u) = (=i)(¢* —¢~%), it is enough to compute F\’ (u) to determine all F¥ (u)

by induction.

Thus, we have to show that Fj(u) = ucos(%). We follow the argument used in the proof
of Proposition 1.26 to compute Fj(u). We consider A = {(-1,0),(0,-1),(1,1)}. The corre-
sponding toric surface X is simply P2. Let D;, Dy and Dy be the toric boundary divisors
of P2. The class fa is simply the class of a curve of degree one, i.e. of a line, on P?. Let
M;b) A be the moduli space of genus g stable log maps of type A with an extra marking
x3. We denote 3 the insertion of one psi class at this extra marking. We have the usual
evaluation maps

€evy,evy IM A Dl XDQ.
g,

‘We consider
NyRP = [ (FD)Agevi (Dt Jev (pty) s
’ [Mg.,AV]V“t

where pt; € A*(D1) and pty € A*(D3) are classes of a point on Dy and Dj respectively.

By definition, we have
1,2, 2g+1
FY(u) = > NgAwu gt
920

Let P; and P, be points on D; and D respectively, away from the torus fixed points. Let
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S be the surface obtained by blowing-up P? at P; and P,. Denote by D the strict transform
of the class of a line in P? and by E;, E, the exceptional divisors. Denote dS the strict
transform of the toric boundary OP? of P2. We endow S with the divisorial log structure
with respect to 05. Let MQ(S) be the moduli space of genus g stable log maps to S of class
D - E, - FE, with tangency condition to intersect 0.5 in one point with multiplicity one. Let
MZ)(S ) be the moduli space of the same stable log maps but with an extra marked point.

We define
NS = ‘/‘7 —1 g)\ 5
5 Joat, sy A0

and
Npvs [ DA
I (3 ($)]+irt I
where 1 is a psi class inserted at the extra marked point.

The strict transform C' of the line in P? passing through P; and P; is the unique genus
0 curves satisfying these conditions and has normal bundle N¢jg = Op1(-1) in S. All the
higher genus maps factor through C, and as C' is away from the preimage of the torus fixed

points of P2, log invariants coincide with relative invariants [AMW14].

By the proof of Proposition 1.26, we know that

1
NS 2g-1 — )
2N ()

We consider the moduli space M;ﬁ (P1/00,1,1) of degree 1 genus g stable maps to P!, relative
to a point co € P!, and with an extra marking. Let 7:C - M (P'/00,1,1) be the universal

curve and let f:C - P! ~ C be the universal map. We need to compute

9,

Nwl::f R, £ (Op1 ® Op1 (-1 ,
’ [M;”(nm/m,n]virtcg( mf"(Op 0 On (1)) ¥

where 1) is a psi class inserted at the extra marked point. Following the proof by Bryan and
Pandharipande of Theorem 5.1 in [BP05], and inserting the psi class, we find

2g-2
NiPl = /‘Mngwlg P2l
Applying formula (6) of [GP98], we obtain
2g-2
e )

and so

Z Nlb]PIUQg—Q _ i ( [ w%g—Q)\g) u29—1
o d 920 )

) s

We degenerate S as in Section 5.3 of [GPS10], and we apply the degeneration formula in
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relative Gromov-Witten theory [Li02]. There are three ways to distribute the psi class.

Using the previous results, we obtain

~ucos(3) (ZN;,Z,WQH)( 1(5))2_2(@08(3)

(2sin(2))? \iz 2sin

and so the desired identity. O
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THE QUANTUM TROPICAL VERTEX

2.1 SCATTERING

In this Section, we first fix our notations for the basic objects considered in this Chapter: tori,
quantum tori and automorphisms of formal families of them. We then introduce scattering
diagrams, both classical and quantum, following [KS06], [GS11], [GPS10] and [FS15].

2.1.1 Torus

We fix T = (C*)? a 2-dimensional complex algebraic torus. Let M := Hom(7T,C*) be the
2-dimensional lattice of characters of T. Characters form a linear basis of the algebra of

functions on T,

F(OT) = @ (CZm,

meM

with the product given by 2™ - 2™ =z In other words, the algebra of functions on T’

is the algebra of the lattice M: T'(Or) = C[M].

We fix
(-2 N' M5z

an orientation of M, i.e. an integral unimodular skew-symmetric bilinear form on M. This

defines a Poisson bracket on I'(Or), given by
{(z7, 2™} = (m,m/) 2"

and a corresponding algebraic symplectic form €2 on T

If we choose a basis (m1,mg) of M such that (mi,mg) = 1, then, denoting z; = z™ and
29 = 22, we have identifications T' = (C*)%, M = Z?, T(Or) = C[2F, 2] and Q = %2 A 422,

21 22
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2.1.2 (QUANTUM TORUS

Given the symplectic torus (7T,), or equivalently the Poisson algebra (I'(Or),{-,-}), it
is natural to look for a “quantization”. The quantum torus 79 is the non-commutative
“space” whose algebra of functions is the non-commutative C[qi%]—algebra I'(O4,), with

linear basis indexed by the lattice M,

N(Oz,) = @ Clg*2 )2,
meM
and with product defined by
zm ém' _ q%('rn,m')émﬂn' )

h

The quantum torus T9is a quantization of the torus 7' in the sense that writing ¢ = e** and

taking the limit A — 0, ¢ — 1, the linear term in A of the commutator [2™, ém’] is determined
by the Poisson bracket {z™, zm'}:

[2m ém'] _ (q%(m,m'} _ q—%(m,m'))ém,-#m' _ <m7m/>ih2m+m' i O(hZ) )

)

We denote 7" the non-commutative “space” whose algebra of functions is the C((h))-algebra
D(Og) =T(0,) & .y, C(H).

2.1.3 AUTOMORPHISMS OF FORMAL FAMILIES OF TORI

Let R be a complete local C-algebra and let mp be the maximal ideal of R. By definition
of completeness, we have
_1; 4
R= %nR/m R-

We denote S = Spf R the corresponding formal scheme and sy the closed point of S defined
by mpg. Let Ts be the trivial family of 2-dimensional complex algebraic tori parametrized

by S, i.e. Tg =5 xT. The corresponding algebra of functions is given by

T (Org) = lim(R/mp ® T(Or)) = lim(R/mf ® C[M]).
£ 14

Let Tg be the trivial family of non-commutative 2-dimensional tori parametrized by S, i.e.
T g =S xT". The corresponding algebra of functions is simply given by

: ¢
[(Ofp) = lim(R/mp @ T(Oza)) -
¢
The family T's of tori has a natural Poisson structure, whose symplectic leaves are the torus
fibers, and whose Poisson center is R. Explicitly, we have

{Hmzma Hm’zm,} = HmHm’{zmv Zm,} s
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for every H,,, H,,» € R and m,m’ € M. The family Tg of non-commutative tori is a quanti-

zation of the Poisson variety Ts.

Let

H-= Z H,,z2"
meM

be a function on Ts whose restriction to the fiber over the closed point sy € S vanishes, i.e.
such that H =0 mod mg. Then {H,-} defines a derivation of the algebra of functions on
Ts and so a vector field on Tg, the Hamiltonian vector field defined by H, whose restriction

to the fiber over the closed point sg € S vanishes.

The time one flow of this vector field defines an automorphism
Dy = exp ({H,-})

of T's, whose restriction to the fiber over the closed point sg € S is the identity. Remark that
®y is well-defined because of the assumptions that H = 0 mod mgr and R is a complete

local algebra, i.e. exp makes sense formally.

Let Vi be the subset of automorphisms of Ts which are of the form &y for H as above. By
the Baker-Campbell-Hausdorff formula, Vg is a subgroup of the group of automorphisms of
Ts. In [GPS10], Vg is called the tropical vertex group.

Let

meM

be a function on Tg whose restriction to the fiber over the closed point sy € S vanishes, i.e.

such that H =0 mod mg. Conjugation by exp (I:I ) defines an automorphism
Oy = Adexp(H) =exp(H)(-)exp(-H)

of Tg’ whose restriction to the fiber over the closed point sy € S is the identity. Remark that
P i is well-defined because of the assumption that H=0 mod mp and R is a compete local
algebra, i.e. everything makes sense formally. Let V'}% be the subset of automorphisms of T g
which are of the form & g for H as above. By the Baker-Campbell-Hausdorff formula, \7’}5
is a subgroup from the group of automorphisms of Tg We call V% the quantum tropical

vertex group1 .

If the limit

H = ’llli%(zhH)

exists, then, replacing 2™ by 2", H can be naturally viewed as a function on Ts and is the

classical limit of H. It is easy to check that @y is the classical limit of P -

IThis group is much bigger that the “quantum tropical vertex group” of [KS11]. We will meet the group
of [KS11] in Section 2.8, under the name “BPS quantum tropical vertex group”.
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2.1.4 SCATTERING DIAGRAMS

In this section, we work in the 2-dimensional real plane Mg = M ®; R. We call ray 0 a
half-line of rational slope in Mg, and we denote my € M —{0} its primitive integral direction,

pointing away from the origin.

Definition 2.1. A scattering diagram ® over R is a set of rays 0 in Mg, equipped with
functions Hy such that either

Hy e lim(R/mf, © C[z™]),
L

or
Hy e lim(R/mfy © C[z"™]).
¢

and such that Hy = 0 mod mpg, and for every £ > 1, only finitely many rays 0 have Hy #+ 0
mod mb;.

A ray (9, Hy) such that
H, € lim(R/mp ® C[z"™]),
¢

is called outgoing and a ray (0, Hy) such that

Hy ¢ yLn(R/m% ® C[z""™]),
¢

1s called ingoing.

Given a ray (0, Hy), we denote m(Hy) = my if (0, Hp) is outgoing, and m(Hy) = —my if

(0, Hy) is ingoing. In both cases, we have

H, elim(R/mf ® C[z"2)])
4

We will always consider scattering diagrams up to the following simplifying operations:

e A ray (0, H,) with Hy =0 is considered as trivial and can be safely removed from the

scattering diagram.

o If two rays (91, Hy,) and (02, Hp,) are such that 93 = 92 and are both ingoing or

outgoing, then they can be replaced by a single ray (0, Hy), where 0 = 0 = 02 and

H, = Hy, + Hy,. Remark that, because {Hy,, Hp,} = 0, we have &y, = by, P, =
q)HaZ (I)Hal .

Let ® be a scattering diagram. We call singular locus of © the union of the set of initial

points of rays and of the set of non-trivial intersection points of rays. Let 7:[0,1] — Mg be

a smooth path. We say that v is admissible if v does not intersect the singular locus of D,
if the endpoints of -y are not on rays of ®, and if v intersects transversely all the rays of ©.

Let v be an admissible smooth path in Mg. Let £ > 1 be a positive integer. By definition, ©
contains only finitely many rays (9, Hy) with Hy # 0 mod m%. So there exist finitely many
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0 <t <+ <ts <1, the times of intersection of v with rays (01, Ho, ), ..., (95, Hp,) of ® such
that Hp,. # 0 mod m;. Forr =1,... s, we define €, € {1} to be the sign of (m(Hy, ), (t)).
We then define

9%@1 = CI)EDS e @;}Dl .

Taking the limit £ — +oo, we define

0, o= lim 6 .
R Z~1>I+noo D4
Definition 2.2. A scattering diagram © over R is consistent if, for every closed admissible

smooth path v:[0,1] - Mg, we have 6, 5 =id.

The following result is due to Kontsevich-Soibelman [KS06], Theorem 6 (see also Theorem
1.4 of [GPS10)).

Proposition 2.3. Any scattering diagram © can be canonically completed by adding only

outgoing rays to form a consistent scattering diagram S(D).

Proof. Tt is enough to show that for every non-negative integer /¢, it is possible to add
outgoing rays to ® to get a scattering diagram %, consistent at the order ¢, i.e. such that
0y, =id mod m%l. The construction is done by induction on [, starting with ¢ = ©.
Let us assume we have constructed D1, consistent at the order £ —1. Let p be a point in
the singular locus of ®,_1 and let v be a small anticlockwise closed loop around p. As ©,_1
is consistent at the order £ -1, we can write 6., o, , = ®p for some H with H =0 mod m&,.

There are finitely many m; € M - {0} primitive such that we can write

H=3) H; modmy’
J

with H; € m4R® C[z]"]. We construct ®, by adding to D, the outgoing rays (p +
R;Qmj,(I’_Hj). O]

Adding hats everywhere, we get the definition of a quantum scattering diagram 9, with
functions

H, e lim(R/mp ® C((R)[2™]),
14

for outgoing rays and

Hy € lim(R/mf © C(A)[27™]),
£

for ingoing rays, the notion of consistent quantum scattering diagram, and the fact that
every quantum scattering diagram D can be canonically completed by adding only outgoing

rays to form a consistent quantum scattering diagram S(9).
We will often call Hy the Hamiltonian attached to the ray 0.

Remark: A general notion of scattering diagram, as in Section 2 of [KS13], takes as input
a lattice M and a M-graded Lie algebra g. What we call a (classical) scattering diagram is

the special case where M is the lattice of characters of a 2-dimensional symplectic torus T'
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and where g = (I'(Ory),{-,-}). What we call a quantum scattering diagram is the special
case where M is the lattice of characters of a 2-dimensional symplectic torus T' and where

g= (F(Ofg)v [_a _D

Remark: In our definition of a scattering diagram, we attach to each ray 0 a function

HD _ Z lefnL(Ha) ,
£20

such that Hy = 0 mod mp, which can be interpreted as Hamiltonian generating an auto-

morphism
P, =exp ({Ho,-}) .

In [GPS10], [GS11] or [FS15], the terminology is slightly different. To a ray 9, they attach

a function

fD = Z Clzém(Ha) 5
020

such that f; = 1 mod mg, and, to a path ~(¢) intersecting transversely 0 at time ¢, an
automorphism
f<na,m)

.om m
Oy i 2" = 2" fy )

where ny is the primitive generator of 0 such that (nq,7'(t0)) > 0. These two choices are
equivalent. Indeed, if € is the sign of (m(Hy),~ (to)), we have

(I);{D = efa Y

if Hy and f, are related by
log fo = > (Hz"™Ho)
£20

The formalism of [GS11] is more general because it treats the Calabi-Yau case and not
just a holomorphic symplectic case. For our purposes, focused on a holomorphic symplectic
situation, using the Hamiltonians H, rather than the functions f, makes the quantization
step transparent. The quantum version of the functions f, will be studied and used in
Chapter 3.

2.2  GROMOV-WITTEN THEORY OF LOG CALABI-YAU SURFACES

Our main result, Theorem 2.6, is an enumerative interpretation of a class of quantum scat-
tering diagrams, as introduced in the previous Section 2.1, in terms of higher genus log
Gromov-Witten invariants of a class of log Calabi-Yau surfaces. In Section 2.2.1 we re-
view the definition of these log Calabi-Yau surfaces, following [GPS10]. We define the
relevant higher genus log Gromov-Witten invariants in Sections 2.2.2 and 2.2.3. We give a
3-dimensional interpretation of these invariants in Section 2.2.4. Finally, we give a general-
ization of these invariants to some orbifold context in Section 2.2.5.
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2.2.1 LoG CALABI-YAU SURFACES

We fix m = (mq,...,m,) an n-tuple of primitive non-zero vectors of M = Z?. The fan in
R? with rays —Rsqm,...,~Rsqm,, defines a toric surface Y. Let Dy ooy Dy, be the
corresponding toric divisors. If m1,...,m, do not span M, i.e. if Yy, is non-compact, we

add some extra rays to the fan to make it span M and we still denote Y, the corresponding
compact toric surfaces. The choice of the added rays will be irrelevant for us (because of

the log birational invariance result in log Gromov-Witten theory proved in [AW13]).

For every j =1,...,n, we blow-up a point z; in general position on the toric divisor Dm]?.
Remark that it is possible to have Ryom; = Rygmyr, and so Dy, = ij,, for j # j’, and that
in this case we blow-up several distinct points on the same toric divisor. We denote Y, the
resulting projective surface and v:Yy — Y, the blow-up morphism. Let E; = u‘l(a:j) be
the exceptional divisor over x;. We denote 0Yy, the strict transform of the toric boundary
divisor. The divisor Y}, is an anticanonical cycle of rational curves and so the pair (Y, 0Yn)

is an example of log Calabi-Yau surface with maximal boundary.

2.2.2 CURVE CLASSES

We want to consider curves in Yy, meeting 0Yy, in a unique point. We first explain how
to parametrize the relevant curve classes in terms of their intersection numbers p; with the

exceptional divisors Fj;.

Let p:= (p1,...,pn) € P:=N". We assume that }7_; pjm; # 0 and so we can uniquely write

n
Z pymj = lymy,
j=1

with m,, € M primitive and ¢, € N.

We explain now how to define a curve class 8, € Hy(Yy,Z). In short, 5, is the class of a
curve in Yy, having for every j = 1,...,n, intersection number p; with the exceptional divisor

E;, and exactly one intersection point with the anticanonical cycle OYs,.

More precisely, the vector m, € M belongs to some cone of the fan of Y and we write the
corresponding decomposition

R
P

_ L L R
my = a,;m, +a,my,

where m£7 mf € M are primitive generators of rays of the fan of Y, and where aﬁ, af e N.

Remark that there is only one term in this decomposition if the ray Ryom, coincides with
one of the rays of the fan of Y. Let sz and Df be the toric divisors corresponding to the
rays R;Omﬁ and R;Omf. Let 8 € Hy(Y w,Z) be determined by the following intersection
numbers with the toric divisors:

2By deformation invariance of log Gromov-Witten invariants, the precise choice of x; will be irrelevant
for us.
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Intersection number with D,,;, 1 < j <n, distinct from DZE and Df:

B-Din; = Z by -

7 —
J yD'mj, —D'mj

Intersection number with Dﬁ:

L_, L ]
B.D, =tpa, + Z Dj -
ij'mj:Dzl,'

Intersection number with D;f:

R_, R
B.D, =Llpa, + Z Dj -
4.Dy,=DE

Intersection number with every toric divisor D different from the Dy, j =1,...,n,
and from le and Df: 5.D =0.

Such class 3 € Hy(Y ,7Z) exists by standard toric geometry because of the relation
n
Z pymj = Lymy .
j=1

Finally, we define
/Bp = V*ﬁ — ijEj € Hg(Ym,Z) .

j=1
By construction, we have
Bp-Ej =pj,
for j=1,...,n,
Bp.Dﬁ = ﬁpaﬁ,
Bp-Di = tyalt,
and

Bp- D=0,

for every component D of 9Y;, distinct from sz and Df.

2.2.3 LoG GROMOV-WITTEN INVARIANTS

For every p = (p1,...,pn) € P =N" we defined in the previous Section 2.2.2 positive integers
Ly, aé, af, some components Dé and D:f‘ of the divisor 0Y;, and a curve class 8, € Hy (Y, Z).
We would like to consider genus g stable maps f:C' — Yy, of class 3,, intersecting properly
the components of 0Yy,, and meeting dY;, in a unique point. At this point, such a map

necessarily has an intersection number ﬁpag with Dj and Epaf' with D;f.

The space of such stable maps is not proper in general: a limit of curves intersecting properly
0Y, does not necessarily intersect Y, properly. A nice compactification of this space is

100



obtained by considering stable log maps. The idea is to allow maps intersecting 9Y;, non-
properly, but to remember some additional information under the form of log structures,
which give a way to make sense of tangency conditions even for non-proper intersections. The
theory of stable log maps® has been developed by Gross and Siebert [GS13], and Abramovich
and Chen [Chel4b], [AC14]. We refer to Kato [Kat89] for elementary notions of log geometry.
We consider the divisorial log structure on Yy, defined by the divisor dY;, and use it to see

Y as a smooth log scheme.

Let ngp(Ym/é)Ym) be the moduli space of genus g stable log maps to Yy, of class §,, with
contact order along dYy, given by f,m,. It is a proper Deligne-Mumford stack of virtual

dimension g and it admits a virtual fundamental class
[Mg,p(Ym/aYm)]virt € Ag(M (Y /0Vw), Q).

Ifr:C - HL,M,(Ym /OY4) is the universal curve, of relative dualizing sheaf w,, then the Hodge
bundle

E:=m,w,

is a rank g vector bundle over M, ,(Yu/0Ym). Its Chern classes are classically called the
lambda classes, A; = ¢;(E) for j =0,...,g. Finally, we define the genus g log Gromov-Witten
invariants of Yy, which will be of interest for us by

Ny = (1), € Q.

MQ»P(Y“" /8}/‘“ )]virt

Remark that the top lambda class A\, has exactly the right degree to cut down the virtual

dimension from g to zero, so that Ng’f » is not obviously zero.

The fact that the top lambda class should be the natural insertion to consider for some
higher genus version of [GPS10] was already suggested in Section 5.8 of [GPS10]. From our
point of view, higher genus invariants with the top lambda class inserted are the correct
objects because it is to them that the correspondence tropical theorem of Chapter 1 applies.
In Section 2.9, we will explain how our main result Theorem 2.6 fits into an expected story
for higher genus open holomorphic curves in Calabi-Yau 3-folds. This is probably the most
conceptual understanding of the role of the invariants N;f‘/g they are really higher genus
invariants of the log Calabi-Yau 3-fold Yy, x P!, and the top lambda class is simply a measure
of the difference between surface and 3-fold obstruction theories. This will be made precise
in the following Section 2.2.4, whose analogue for K3 surfaces is well-known, see Lemma 7

of [MPT10].

2.2.4 3-DIMENSIONAL INTERPRETATION OF THE INVARIANTS Ng’f;

In this Section, we rewrite the log Gromov-Witten invariants IV, ;j n of the log Calabi-Yau

surface Yy, in terms of 3-dimensional geometries, first S x C and then S x P!,

We endow the 3-fold Y;, xC with the smooth log structure given by the divisorial log structure

3By stable log maps, we always mean basic stable log maps in the sense of [GS13].
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along the divisor Y, x C. Let
My, (Y x C/0Y x C)

be the moduli space of genus g stable log maps to Yy, of class 3,, with contact order along
0Yy, x C given by £,m,,. It is a Deligne-Mumford stack of virtual dimension 1 and it admits

a virtual fundamental class
[ngp(ym/aym)]wrt € Al(ngp(Ym/aYm)v Q).

Because C is not compact, M ,(Y x C/0Yy x C) is not compact and so one cannot simply
integrate over the virtual class. Using the standard action of C* on C, fixing 0 € C, we get
an action of C* on M ,(Ym x C/0Yym x C), with its perfect obstruction theory, whose fixed
point locus is the space of stable log maps mapping to Y, x {0}, i.e. My, (Ym/0Ywm), with
its natural perfect obstruction theory. Given the virtual localization formula [GP99], it is

natural to define equivariant log Gromov-Witten invariants

1
.Z\/V}/“‘X(C = / - ¢ t 7
op [ﬁyyp(ym/aifm)]v“t B(NOI'VIrt) Q( )

virt

where Nor"™" is the equivariant virtual normal bundle of M, ,(Yin/0Ys) in

Mg,p(ym x C[0Ym x C),

e(Nor"'™) is its equivariant Euler class, and ¢ is the generator of the C*-equivariant coho-

mology of a point.

Lemma 2.4. We have

1
YmxC _ Yo
N, gp tN g:p °
Proof. Because the 3-dimensional geometry Yy, x C, including the log/tangency conditions,
is obtained from the 2-dimensional geometry Y, by a trivial product with a trivial factor
C, with C* scaling this trivial factor, the virtual normal at a stable log map f:C — Y, is
HO(C, f*O)-HY(C,f*0O)=t-E'®t so

. 1(292(—1)i/\it9_i) ,

e(Nor™) ~ ¢\ 5
and
NYmX(C — / (_71)9)\9 = 1]\TY"’
g,p V3 virt - g.p -
[Mg,p(Ym,0Ym)] t t

O

Remark: The proof of Lemma 2.4 is identical to the proof of Lemma 7 in [MPT10] up
to some small point: in [MPT10], counts of expected dimensions work because of the use
of a reduced Gromov-Witten theory of K3 surfaces, whereas for us, counts of expected

dimensions work because of the use of log Gromov-Witten theory.
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We consider now the 3-fold Zy, = Yy xP! with the smooth log structure given by the divisorial

log structure along the divisor
0Zm = (O x P U (Yo x {0}) U (Vi x {o0}).

The divisor dZ,, is anticanonical, containing zero-dimensional strata, and so the pair (Zy, 0Zy)
is an example of log Calabi-Yau 3-fold with maximal boundary.

Let
Mg (Zn]0Z)

be the moduli space of genus g stable log maps to Z,, of class 3,, with contact order along
0Zy given by ¢,my,. It is a proper Deligne-Mumford stack of virtual dimension 1 and it

admits a virtual fundamental class
[Mg,p(Zm/aZm)]Virt € Al (ngp(zm/azm)a Q) .

Composing the natural evaluation map at the contact order point with 97, with the pro-
jection 0Zy — P, we get a map p: M ,(Zm/0Zw) — P! and we define log Gromov-Witten

invariants
N = ff p*(pt) €@,
IV I (Mg, (Zn [0Z0m)]vixt
where pt € A*(P!) is the class of a point.
Lemma 2.5. We have
Zm p— Ym
Ng,p - Ng,p ’

Proof. We use virtual localization [GP99] with respect to the action of C* on the P!-factor
with weight ¢ at 0 and weight —¢ at co. We choose pt, as equivariant lift of pt € A*(P').
Because of the insertion of pt, = ¢, only the fixed point 0 € P!, and not oo € P!, contributes

to the localization formula, and we get
Zm _ Y xC
N, g9:p = tN, g:p

hence the result by Lemma 2.4. O

2.2.5 ORBIFOLD GROMOV-WITTEN THEORY

We give an orbifold generalization of Sections 2.2.1, 2.2.2; 2.2.3, which will be necessary to
state Theorem 2.7 in Section 2.7.2.

As in Section 2.2.1, we fix m = (my,...,my) an n-tuple of primitive non-zero vectors of
M =72 and this defines a toric surface Y, with toric divisors Dy, 1< 5 <n. For every
t=(ry,...,r,) an n-tuple of positive integers, we define a projective surface Yy, . by blowing-
up a subscheme of length r; in general position on the toric divisor D, for every 1 < j <n.
For v=(1,...,1), we simply have Yy, « = Yy defined in Section 2.2.1.

Let v: Yy — Y be the blow-up morphism. If r; > 2, then Yy, . has a Arj_l—singularity on
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the exceptional divisor E; := V‘l(xj). We will consider Yy, . as a Deligne-Mumford stack
by taking the natural structure of smooth Deligne-Mumford stack on a A,y singularity.
The exceptional divisor E; is then a stacky projective line P'[r;,1], with a single Z/r;
stacky point 0 € P! [r;,1]. The normal bundle to E; in Yy . is the orbifold line bundle
Opi(r,11(=[0]/(Z[r;)) of degree =1/r;, and in particular we have E} = -1/r;.

Denote P, the set of (p1,...,pn) € P = N” such that r; divides p;, for every 1 < j < n.
Exactly as in Section 2.2.2, we define for every p € P, a curve class (8, € Hy(Ym ,Z). The
only difference is that now we have

BpE; =21,

T

We denote 0¥y . the strict transform of the toric boundary divisor OY w of YV, and we
endow Yy, with the divisorial log structure define by 9Y,,. So we see Yy, . as a smooth
Deligne-Mumford log stack. Because the non-trivial stacky structure is disjoint from the
divisor Yy . supporting the non-trivial log structure, there is no difficulty in combining
orbifold Gromov-Witten theory, [AGV08], [CR02], with log Gromov-Witten theory, [GS13],
[Chel4b], [AC14], to get a moduli space My ,(Ym /0¥ ¢) of genus g stable log maps to Yo,
of class f3,, with contact order along 0Y;, . given by ¢,m,. It is a proper Deligne-Mumford

stack of virtual dimension g, admitting a virtual fundamental class

[ngp(Ym,t/aym,t)]virt € Ag(ngp(Ym,t/aYm,t)vQ) .

We finally define genus g orbifold log Gromov-Witten invariants of Yy, . by
Nyp = f* 1), €Q.
o [Mg,p(Ym,,/ax,,,:)]varc( ) 9

2.3 MAIN RESULTS

In Section 2.3.1, we state the main result of the present Chapter, Theorem 2.6, precise
form of Theorem 2 mentioned in the Introduction. In Section 2.3.2, we give elementary
examples illustrating Theorem 2.6. In Section 2.3.3, we state Theorem 2.7, a generalization
of Theorem 2.6 including orbifold geometries. Finally, we give in Section 2.3.4 some brief

comments about the level of generality of Theorems 2.6 and 2.7.

2.3.1 STATEMENT

Using the notations of Section 2.1, we define a family of consistent quantum scattering
diagrams. Our main result, Theorem 2.6, is that the Hamiltonians attached to the rays of
these quantum scattering diagrams are generating series of the higher genus log Gromov-

Witten invariants defined in Section 2.2.

We fix m = (mg,...,m,) an n-tuple of primitive non-zero vectors of M. We denote P = N"
and we take R := C[[P]] = C[[t1,...,t,]] as complete local C-algebra. Let ®., be the quantum
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scattering diagram over R consisting of incoming rays (9, f[aj), 1< j < n, where
Dj = —R;()mj ;

and -1 -1
A w1l DT, 1 (-1)"
HD' =—1 - ezt = E _

! €>1€2SIH(%) ’ ezlgqg—q_%

l slm
;2707

where ¢ = e'?.

Let S (@m) be the corresponding consistent quantum scattering diagram given by Proposi-

tion 2.3, obtained by adding outgoing rays to Dm. We can assume that, for every m e M-{0}

primitive, S(®y,) contains a unique outgoing ray of support Ryom.

For every m € M - {0} primitive, let P, be the subset of p = (p1,...,pn) € P = N" such that

Z;-Ll p;m; is positively collinear with m:

n
Y. pimy = Lym
j=1

for some ¢, € N.

Recall that in Section 2.2, for every m = (my,...,m,), we introduced a log Calabi-Yau

surface Yy, and for every p = (p1,...,pn) € P = N, we defined some genus g log Gromov-
. Yin

Witten Ny of Y.

Theorem 2.6. For every m = (my,...,my) an n-tuple of primitive non-zero vectors in M

and for every m € M —{0} primitive, the Hamiltonian H,, attached to the outgoing ray Rygm

in the consistent quantum scattering diagram S(@m) is given by

(3 = (o) ([ )

pePp, \ 920
Remarks:

e In the classical limit A — 0, Theorem 2.6 reduces to the main result (Theorem 5.4) of
[GPS10], expressing the classical scattering diagram S(®Dy,) in terms of the genus zero

log Gromov-Witten invariants Ng/ ;‘4.

e The proof of Theorem 2.6 takes Sections 2.4, 2.5 2.6, and 2.7. In Section 2.2.3, we
define higher genus log Gromov-Witten invariants NZ;; of toric surfaces Y. In
Section 2.5, we prove a degeneration formula expressing the log Gromov-Witten invari-
ants N, gf = of the log Calabi-Yau surface Yy in terms of log Gromov-Witten invariants

N_Z;); of the toric surface Y. In Section 2.6, we review, following [FS15], the rela-

tion between quantum scattering diagrams and Block-Gottsche g-deformed tropical

curve count. In Section 2.7, we conclude the proof by using Theorem 1.4, the main

4In [GPS10], the genus zero invariants are defined as relative Gromov-Witten invariants of some open
geometry. The fact that they coincide with genus zero log Gromov-Witten invariants follows from the cycle
arguments used in the proofs of Proposition 1.10 and Lemma 2.12.
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result of Chapter 1, relating g-deformed tropical curve count and higher genus log

Gromov-Witten invariants of toric surfaces.

e The consistency of the quantum scattering diagram S(Dy,) translates into the fact
that the product, ordered according to the phase of the rays, of the elements P i,
j=1,...,n,and 5 ,me M- {0} primitive, of the quantum tropical vertex group
V’}@ is equal to the identity. So one can paraphrase Theorem 2.6 by saying that the
log Gromov-Witten invariants N Y"‘ produce relations in the quantum tropical vertex
group V 'n, or conversely that relatlonb in VR give constraints on the log Gromov-

Witten invariants N Y“‘

e The automorphism P i, attached to the incoming rays 9; of the quantum scattering

diagram S(D.,) are conjugation by e’°

eXp(Z ( 1)4 ! tf émJ)7

Z>1£q2—q 2

, i.e. by

which can be written as W (-¢;2™7) where

L

1 X 1
U, (x) =exp —— | = —_—,
o(2) ( Mq?_qg) g}l_qm%x

is the quantum dilogarithm®. We refer for example to [Zag07] for a nice review of the

many aspects of the dilogarithm, including its quantum version.

As the incoming rays of S(®p) are expressed in terms of quantum dilogarithms, it
is natural to ask if the outgoing rays, which by Theorem 2.6 are generating series
of higher genus log Gromov-Witten invariants, can be naturally expressed in terms
of quantum dilogarithms. This question is related to the multicover/BPS structure
of higher genus log Gromov-Witten theory and is fully answered by Theorem 3 in
Section 2.8.

2.3.2 EXAMPLES

In this Section, we give some elementary examples illustrating Theorem 2.6.

TRIVIAL SCATTERING: PROPAGATION OF A RAY.

We take n = 1 and m = (my) with m; = (1,0) € M = Z2. In this case, R = C[[t;]], and
the quantum scattering diagram @m contains a unique incoming ray: 9; = —R5¢(1,0) =
Rs0(-1,0) equipped with
Hy, = —i 1 (-t BT eseo
sl ‘ 2s1n( 5 )

5Warning: various conventions are used for the quantum dilogarithm throughout the literature.
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Then the consistent scattering diagram S (@m) is obtained by simply propagating the in-
coming ray, i.e. by adding the outgoing ray Rso(1,0) equipped with

1 (D o
Hag) = —z; / 251n(”‘)t £2(60)
We start with a fan consisting of the ray Ryo(—1,0). To get a proper toric surface, we add
to the fan the rays Rso(1,0), R50(0,1) and R5¢(0,-1). The corresponding toric surface Y,
is simply P! x P!. We get Yy, by blowing-up a point on {0} x C*, e.g. {0} x {1}. Denote E
the exceptional divisor and F' the strict transform of P! x {1}. We have E? = F? = -1 and
E.F =1. For £ € P =N, we have ; = {[F]. So, according to Theorem 2.6, one should have,

for every £> 1,

ZNYthQ 1 _ 1 ( 1)4

950 £ 25sin (Zzh )
As F is rigid, contributions to Ny, only come from ¢ to 1 multicoverings of F' and the
computation of Ny, can be reduced to a computation in relative Gromov-Witten theory of
P!. Using Theorem 5.1 of [BP05], one can check that the above formula is indeed correct. We

refer for more details to Lemma 2.20 which plays a crucial role in the proof of Theorem 2.6.

SIMPLE SCATTERING OF TWO RAYS

We take n = 2 and m = (my, my) with m; = (1,0) € M = Z? and my = (0,1) € M = Z%. In
this case, R = C[[t1,t2]], and the quantum scattering diagram ®,, contains two incoming
rays 01 = Ry0(-1,0) and 05 = R;0(0,-1), respectively equipped with
iy 1 1
Do

Hy =—i
0 £>1€251n((’h)

and o
i, - 1 (-1) D7 yes00,

Zbl 528111(22’1)

Then, because of the Faddeev-Kashaev [FK94] pentagon identity
\IJQ(Z(LO))\IJq(Z(O’l)) = \I’q(z(o’l))q}q('z(l”)q}q(z(LO))

satisfied by the quantum dilogarithm ¥, the consistent scattering diagram (D) is ob-
tained by propagation of the two incoming rays in outgoing rays, as in 2.3.2, and by addition

of a third outgoing ray Rs(1,1) equipped with

N 1 .
H(lvl) Z ( ) tetgz(e’é) .

SR 251n(42h)

We start with the fan consisting of the rays Ryo(-1,0) and Ry0(0,-1). To get a proper
toric surface, we can for example add to the fan the ray R;o(1,1). The corresponding toric
surface Yy, is simply P2, with its toric divisors Dy, Dy, D3. We get Yy, by blowing a point
p1 on Dy and a point ps on Do, both away from the torus fixed points. We denote F; and
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FE5 the corresponding exceptional divisors and F' the strict transform of the unique line in
P2 passing through p; and py. We have Ef = E3 = F?> = -1 and E,.F = E5.F = 1. For { ¢ N
and (£,0) € P = N?, we have () = ([F]. So according to Theorem 2.6, one should have,
for every £ > 1, o
Z N;"&z 0) R0 = 22(8_;)(“) '

2
As F'is rigid, contributions to Ny ¢y only come from ¢ to 1 multicoverings of F' and the
computations of Ny (4 ) reduces to a computation identical to the one used for N, in the

case of trivial scattering.

MORE COMPLICATED SCATTERINGS

Already at the classical level of [GPS10], general scattering diagrams can be very compli-
cated. A fortiori, general quantum scattering diagrams are extremely complicated. Direct
computation of the higher genus log Gromov-Witten invariants IV, ;j n is a difficult problem
in general. In particular, unlike what happens in the two previously described examples,
linear systems defined by (3, and the tangency condition contain in general curves of posi-
tive genus, and so genus g > 0 stable log maps appearing in the moduli space defining N, g’f o
do not factor through genus zero curves in general. As consistent scattering diagrams can
be algorithmically computed, one can view Theorem 2.6 as an answer to the problem of

. . . . . . Yl’l’l
effectively computing the higher genus log Gromov-Witten invariants N, .

2.3.3 ORBIFOLD GENERALIZATION

As in Section 5.5 and 5.6 of [GPS10] for the classical case, we can give an enumera-
tive interpretation of quantum scattering diagrams more general than those considered in

Theorem 2.6 if we allow ourself to work with orbifold Gromov-Witten invariants.

We fix m = (my,...,m,) an n-tuple of primitive non-zero vectors of M = Z? and t =
(r1,.- .,rn) an n-tuple of positive integers. We denote P := N” and we take R = C[[P]] =
C[[t1,---,tn]] as complete local C-algebra. Let P, be the set of p = (p1,...,pn) € P such
that r; d1v1des p; for every 1 <j <n. Let @m ¢ be the quantum scattering diagram over R

consisting of incoming rays (9, Haj)7 1< j <n, where
Dj = —R;Omj ;

and 1
~ . 1 (—1) - il ap b 75 srilm;
Haj:—zzz T]thﬂzﬂ J:ZZﬁtjjzj i,

1% 2sin 1% q 2 —q™ 2

where ¢ = . Let S (@m,t) be the corresponding consistent quantum scattering diagram
given by Proposition 2.3, obtained by adding outgoing rays to @m’t. For every m e M — {0},
let P be the subset of p = (p1,...,pn) € P such that ¥, p;jm; is positively collinear with

m:

n
Y. pimy = Lym
j=1
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for some ¢, € N.

Recall that in Section 2.2.5, for every m = (my,...,m,) and v = (r1,...,7,), we introduced
an orbifold log Calabi-Yau surface Yy, . and for every p = (p1,...,pn) € Pr, we defined some

genus g orbifold log Gromov-Witten N;/ »"of Yig e

Theorem 2.7. For every m = (myq,...,my) an n-tuple of primitive non-zero vectors in M,
every v = (r1,...,r,) an n-tuple of positive integers and for every m € M —{0} primitive, the
Hamiltonian H,, attached to the outgoing ray Rsom in the consistent quantum scattering

diagram S(’bm,t) is given by

() £z (i)

PePy m \ 920
Remarks:

e For t=(1,...,1), Theorem 2.7 reduces to Theorem 2.6.
e In the classical limit A — 0, Theorem 2.6 reduces to Theorem 5.6 of [GPS10].

e The proof of Theorem 2.7 is entirely parallel to the proof of its special case Theorem 2.6.
The key point is that orbifold and logarithmic questions never interact in a non-trivial
way. The only major needed modification is an orbifold version of the multicovering

formula of Lemma 2.20. This is done in Lemma 2.25, Section 2.7.2.

2.3.4 MORE GENERAL QUANTUM SCATTERING DIAGRAMS

We still fix m = (my,...,m,) an n-tuple of primitive vectors of M = Z? and we continue
to denote P = N™, so that R = C[[P]] = C[[t1,...,tn]]. One could try to further generalize
Theorem 2.7 by starting with a quantum scattering diagram over R consisting of incoming

rays (9, H}.j), 1< j<n, where 0; = -Ryom;, and where

] & £ s m
Hy, = ZHaj,éth 7,
221

for arbitrary

H,, 4 € C[[A]).

In the classical limit A — 0, Theorem 5.6 of [GPS10], classical limit of our Theorem 2.7, is
enough to give an enumerative interpretation of the resulting consistent scattering diagram
in such generality. Indeed, the genus zero orbifold Gromov-Witten story takes as input

classical Hamiltonians

(_1)Z71 rl _rl 1 r r+1
H, =% 172 = = (t2)" + O((t2)™),
51t r

for all r > 0, which form a basis of C[(¢z)]. In particular, at every finite order in mg, every

classical scattering diagram consisting of n incoming rays meeting at 0 € R? coincides with a
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classical scattering diagram whose consistent completion has an enumerative interpretation

in terms of genus zero orbifold Gromov-Witten invariants.

In the quantum story, because of the extra dependence in £, things are more complicated.
Theorem 2.7 only covers a class of Hamiltonians H},j whose form is dictated by the multi-

covering structure of higher genus orbifold Gromov-Witten theory.

2.4 GROMOV-WITTEN THEORY OF TORIC SURFACES

For every m = (my,...,m,) an n-tuple of primitive non-zero vectors in M = Z?2, we defined
in Section 2.2.1 a log Calabi-Yau surface Y;, obtained as blow-up of some toric surface Y,
and we introduced in Section 2.2.3 a collection of log Gromov-Witten invariants N, g’f = of Yin.

In the present Section, we define analogue log Gromov-Witten invariants N, g}j nof the toric

surface Y. In the next Section 2.5, we will compare the invariants N, g}f » of Y and Ng?,;; of

Vo

2.4.1 CURVE CLASSES ON TORIC SURFACES

Recall from Section 2.2.1 that Y, is a proper toric surface whose fan contains the rays
~Ryom; for j = 1,...,n. We denote 9Y, the union of toric divisors of Yy,. We want
to consider curves in Y, meeting Y, in a number of prescribed points with prescribed
tangency conditions and at one unprescribed point with prescribed tangency condition.
In this Section, we explain how to parametrize the relevant curve classes in terms of the

prescribed tangency conditions w; at the prescribed points.

Let s be a positive integer and let w = (wy,...,ws) be a s-tuple of non-zero vectors in M
such that for every r = 1,...,s, there exists 1 < j < n such that -Ryow, = -Ryom;. In
particular, the ray ~Rsow, belongs to the fan of Y, and we denote D,,, the corresponding
toric divisor of Y,. Remark that we can have D, = D, even if r # r'. We denote |w,|e N
the divisibility of w, € M = Z2, i.e. the largest positive integer k such that one can write
w, = kv with v € M. One should think about w, as defining a toric divisor D,, and an

intersection number |w,| with D, for a curve in Y.

We assume that Y7_; w, # 0 and so we can uniquely write
S
Z Wy = LoyMiyy y
r=1

with m,, € M primitive and £, € N.

We explain now how to define a curve class 3, € Ho(Y w,Z). In short, 3, is the class of a
curve in Y, having for every r = 1,...,s, an intersection point of intersection number |w.|

with D,, , and exactly one other intersection point with the toric boundary 9Y .

More precisely, the vector m,, € M belongs to some cone of the fan of Y, and we write the
corresponding decomposition

_ L L., R_R
May = Qg My, + Ay My,
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where mZ m € M are primitive generators of rays of the fan of Y, and where aZ, a e N.

Remark that there is only one term in this decomposition if the ray Rygm,, coincides with one
of the rays of the fan of Y. Let DL and DZ be the toric divisors of Y, corresponding to the
rays RyomZ and RyomP. Let B, € Hy(Y n,Z) be determined by the following intersection
numbers with the toric divisors:

e Intersection number with D,, , 1 <7 < s, distinct from D% and DE:

ﬁw-DwT = Z ‘wr’|7

! —
r'.Dyy =D,

e Intersection number with DZ:

Buw-DE=tyal+ Y fw.

e Intersection number with DZ:

Buw.DE =tlyal+ > |wl.
7Dy DR

o Intersection number with every toric divisor D different from the D,, , 1 <7 <s, and
from DL and DE: 8,.D =0.

Such class B, € Ho(Y m,Z) exists by standard toric geometry because of the relation

S
Z Wy = LyyMy -
r=1

2.4.2 LoG GROMOV-WITTEN INVARIANT OF TORIC SURFACES

In the previous Section, given w = (w1, ..., ws) a s-tuple of non-zero vectors in M, we defined
some positive integers £, a’ aﬁ, some toric divisors Di and Dﬁ of Yy, and a curve class

w?
Buw € Hy(Y , 7).

We would like to consider genus g stable map f:C — Y, of class 3, intersecting 0Yy, in
s+ 1 points, s of them being intersection with D,, at a point of intersection number |w;|
for r = 1,...,s, and the last one being a point of intersection number ¢,,a’ with DZ and
£pal? with DE. We also would like to fix the position of the s intersection numbers with the
divisors D,,, . It is easy to check that the expected dimension of this enumerative problem is
g. As in Section 2.2.3, we will cut down the virtual dimension from g to zero by integration

of the top lambda cass.

As in Section 2.2.3, to get proper moduli spaces, we work with stable log maps. We consider
the divisorial log structure on Y, defined by the toric divisor Y, and use it to view Yy, as
a smooth log scheme. Let ngw (Ym,0Y ) be the moduli space of genus g stable log maps
to Yo, of class 3, with s+ 1 tangency conditions along Y, defined by the s + 1 vectors
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—W1, ..., —Ws, LMy, in M. It is a proper Deligne-Mumford stack of virtual dimension g + s

and it admits a virtual fundamental class
[Mg,w (?ma a?m)]\,i]rt € Agis (ngw (?m» a?m)a Q).
For every r=1,...,s, we have an evaluation map
evr:M%w(?m, OY ) = Do, .

If m:C — Mg,w(?mﬁ?m) is the universal curve, of relative dualizing sheaf w,, then the
Hodge bundle E := 7w, is a rank g vector bundle over M, (Y m, Y ), of top Chern class
Ag =cg(E).

We define
Yo .

= -1)9A “(pt,.) €
g,w ‘/[-Mg,w(vn,,i??m)]"m( ) g!:Ilevr(p r) Qa

where pt,. € A'(D,,,) is the class of a point. It is a rigorous definition of the enumerative
problem sketched at the beginning of this Section.

2.5 DEGENERATION FROM LOG CALABI-YAU TO TORIC

2.5.1 DEGENERATION FORMULA: STATEMENT

We fix m = (myq,...,m,) an n-tuple of primitive non-zero vectors in M = Z?2. In Section 2.2.1,
we defined a log Calabi-Yau surface Yy, obtained as blow-up of some toric surface Y .
In Section 2.2.3, we introduced a collection of log Gromov-Witten invariants Ngif n of Y,
indexed by n-tuples p = (p1,...,p,) € P = N, In Section 2.4.2, we defined log Gromov-
Witten invariants Ng?ﬂ'u“ of the toric surface Y, indexed by s-tuples w = (wy,...,w,) € M*.
The main result of the present Section, Proposition 2.8, is the statement of an explicit

formula expressing the invariants IV, gY » in terms of the invariants N gY o

We first need to introduce some notations to relate the indices p = (p1,...,pn) indexing the
invariants N, ; » and the indices w = (wy,...,w,) indexing the invariants N g}j . The way it
goes is imposed by the degeneration formula in Gromov-Witten theory and hopefully will

become conceptually clear in Section 2.5.4.

We fix p = (p1,...,pn) € P =N". We call k a partition of p, and we write k + p, if k is an
n-tuple (k1,...,ky), with k; a partition of p;, for 1 < j <n. We encode a partition k; of p;
as a sequence k; = (kgj)¢s1 of non-negative integers, all zero except finitely many of them,
such that

Z@k@j =pj.

21

Given k a partition of p, we denote

1

S(k) = Z kgj.

J=1£21



We now define, given a partition k of p, a s(k)-tuple

w(k) = (wl(k)’ <o We(k) (k))

of non-zero vectors in M = Z?2, by the following formula:

wy (k) = lm;
if
j -1 j £-1
1+ Z Zk@/j/ §T§k5j+ Z Zkg/j/.
jr=14=1 j=1é=1

In particular, for every 1< j <n and ¢ > 1, the s(k)-tuple w(k) contains ky; copies of the
vector ¢m; € M. Remark that because m; is primitive in M, we have ¢ = |w,(k)|, where
|w, (k)| is the divisibility of w, (k) in M. Remark also that

s(k) n n
> we(k) = D keilmy = Y pymy = Lymy,
j=1051 i=1

r=1 j=
and so, comparing notations of Sections 2.2.2 and 2.4.1, £y, = £, and My, k) = myp.
Using the above notations, we can now state Proposition 2.8.

Proposition 2.8. For evey m = (my,...,my) an n-tuple of primitive non-zero vectors in
M =72, and for every p= (p1,...,pn) € P =N", the log Gromov-Witten invariants N;f;; of
the log Calabi-Yau surface Yy, are expressed in terms of the log Gromov-Witten invariants

NYm of the toric surface Y by the following formula:

g,w

Y 2971
Z Ngvph

g=0

kzj
vy (5T gzt | L e (G
g-w(k) ko ;! ¢ Zh) ’

krp \g>0 j=1621

where the first sum is over all partitions k of p.

The proof of Proposition 2.8 takes Sections 2.5.2, 2.5.3, 2.5.4, 2.5.5, 2.5.6. We consider the
degeneration from Yy, to Y, introduced in Section 5.3 of [GPS10] and we apply a higher
genus version of the argument of [GPS10]. Because the general degeneration formula in
log Gromov-Witten theory is not yet available, we give a proof of the needed degeneration
formula following the general strategy used in Chapter 1, which uses specific vanishing

properties of the top lambda class.

2.5.2 DEGENERATION SET-UP

We first review the construction of the degeneration considered in Section 5.3 of [GPS10].

We fix m = (m1,...,m,) an n-tuple of primitive non-zero vectors in M = Z?. Recall from

Section 2.2.1 that Y, is a proper toric surface whose fan contains the rays -Ryom; for
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j=1,...,n, and that we denote D,,, the corresponding toric divisors. For every j=1,...,n,
we also choose a point z; in general position on the toric divisor D,,;. Let YuwxC—C be
the trivial family over C and let {z;} x C be the sections determined by the points z;. Up
to doing some toric blow-ups, which do not change the log Gromov-Witten invariants we

are considering by [AW13], we can assume that the divisors D,,; are disjoint.

The degeneration of Y, to the normal cone of D,,, U---uD,, ,
5, Vm = C,

is obtained by blowing-up the loci D,,,,..., Dy, over 0 € C in Y, x C. The special fiber is
given by

. n
e (0)=Y,ulUP;,
where N, v is the normal line bundle to Dy, in Y, and IP; is the projective bundle over
’VYLJ‘ m

D,,, obtained by projectivization of the rank two vector bundle O D, ® N, V., over Dy,
’nl]‘ m
The embeddings Op,, = Op,, & N v ®Np v induce two

sections of P; — D, that we denote respectively Dy, oo and Dy, 0. In eyl (0), the divisor

and N - =0
m; m; Do [V Do

D,,; in Y is glued to the divisor Dy, 0 in Pj. The strict transform of the section {z;} xC

of Y x C is a section S; of €y, whose intersection with egm (0) is a point 2 co € Dy o0-

We then blow-up the sections S;, j =1,...,n, in YV and we obtain a family
€ym2ym hd (C, .

whose fibers away from zero are isomorphic to the surface Yy, and whose special fiber is

given by
Ym,o = 65/}“ 0)=YnulJ ]fpj )
Jj=1

where ]f”j is the blow-up of P; at all the points z;/  such that P;; = P;. We denote Ej
the corresponding exceptional divisor in IP; and C}s the strict transform in I@’j of the unique
Pl-fiber of P; — ij containing ;.. We have F;;.Cj =1 1in ]ﬁj.

We would like to get Proposition 2.8 by application of a degeneration formula in log Gromov-
Witten theory to the family
6ij : ym - C )

to relate the invariants Ng’f = of the general fiber Y, to the invariants NZ{; of Y which
appears as component of the special fiber Vi o. In [GPS10], Gross-Pandharipande-Siebert
work with an ad hoc definition of the genus 0 invariants as relative Gromov-Witten invariants
of some open geometry and they only need to apply the usual degeneration formula in
relative Gromov-Witten theory. In our present setting, with log Gromov-Witten invariants

in arbitrary genus, we cannot follow exactly the same path.

Because the general degeneration formula in log Gromov-Witten theory is not yet avail-
able, we follow the strategy used in Chapter 1. We apply the decomposition formula
of Abramovich-Chen-Gross-Siebert [ACGS17al, we use the vanishing property of the top
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lambda class to restrict the terms appearing in this formula and to prove a gluing formula
by working only with torically transverse stable log maps. We review the decomposition
formula of [ACGS17a] in Section 2.5.3. In Section 2.5.4, we identify the various terms
contributing to the decomposition formula. In Section 2.5.5, we prove a gluing formula

computing each of these terms. We finish the proof of Proposition 2.8 in Section 2.5.6.

2.5.3 STATEMENT OF THE DECOMPOSITION FORMULA

We consider Y, as a smooth log scheme for the divisorial log structure defined by the
divisor Ym0 union the strict transforms of the divisors Y @ xC in Y x C for j=1,...,n.
Considering C as a smooth log scheme for the divisorial log structure defined by the divisor
{0}, we get that ey, is a log smooth morphism. Restricting to the special fiber gives a
structure of log scheme on Yy, o and a log smooth morphism to the standard log point pty
(the point {0} equipped with the log structure restricted by {0} = C of the divisorial log
structure on C):

€V 0° Vm,0 = Py -

Let M, ,(Ym,0) be the moduli space of genus g stable log maps to €y, ,: Vm.0 = Dty, of class
Bp, with a marked point of contact order £,m,. It is a proper Deligne-Mumford stack of

virtual dimension g and it admits a virtual fundamental class

[M.MD(ym,O)]ViTt € Ag(Mg,p(ym,O)vQ) .

By deformation invariance of the virtual fundamental class on moduli spaces of stable log

maps in log smooth families, we have
NYw = fi (-1)7), .
PP Iy (Vo) !

The decomposition formula of [ACGS17a] gives a decomposition of [M, ,(Vm,0)]""™ indexed
by tropical curves mapping to the tropicalization of Vi, 0. These tropical curves encode the
intersection patterns of irreducible components of stable log maps mapping to the special
fiber of the degeneration. We refer to Appendix B of [GS13] and Section 2 of [ACGS17a] for
the general notion of tropicalization of a log scheme. We denote 3(X) the tropicalization

of a log scheme X, it is a cone complex, i.e. an abstract gluing of cones.

We start by describing the tropicalization ¥(Vm,0) of Ym,o. Tropicalizing the log mor-
phism €y, ;:Vm,0 = DPty, We get a morphism of cone complexes X(ey,, ) X(Vm,0) = X(pty).
We have X(pty) = Ryo and X(Ymo) is naturally identified with the cone over the fiber
S(€ymo) (1) at 1 € Ry. It is thus enough to describe the cone complex %(ey, ,) ' (1). We

denote
Vol = S(ey, ) (1)

The cone complex Y7 is the tropicalization of

m,0

ym,O:?mUUI@jv
j=1
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equipped with the divisorial log structure defined by the divisor Y U U?:l 8]13’3». In par-
ticular, it has one vertex vy dual to Y, and vertices v; dual to Pj, j=1,...,n. For every
J=1,...,n, there is an edge e, of integral length 1, connecting vy and vj, dual to Dy, o,

and an unbounded edge e; ., attached to v;, dual to ij,w.

The best way to understand yﬁf}f is probably to think about it as a modification of the
tropicalization of Y. As Y, is simply a toric surface, its tropicalization ¥(Y ) can be
naturally identified with R? endowed with the fan decomposition. In particular, X(Y )
has one vertex vy = 0 € R? and unbounded edges -Ryom;, attached to vy and dual to the
toric boundary divisors D,,;. To go from Y(Y ) to yf,ffg{ one adds a vertex v; on each
primitive integral point of ~Rym;, which has the effect to split -R;¢v; into a bounded edge
ej0 and an unbounded edge €; . One still has to cut along e; . and to insert there two
two-dimensional cones dual to the two “corners” of a@j which are on Dy, . In particular,
for j =1,...,n, the vertex v; is 4-valent and looks locally as the fan of the Hirzebruch surface

P;. In general, there is no global linear embedding of yf]fjg’ in R2.
~Ryoma

0 ~Ryomy

Y

Figure: tropicalization of Y .

62,00
U2

€2,0 ) €1,0

Figure: picture of Yo
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We refer to Definition 2.5.3 of [ACGS17a] for the general definition of parametrized tropical
curve h:Y — ygfjg". It is a natural generalization of the notion of parametrized tropical
curve in R? that we will use and review in Section 2.6.1. In particular, ¥ is a graph, with
bounded and unbounded edges mapped by h to yﬁffg’ in an affine linear way and vertices

V of ¥ are decorated by some genus g(V'). The total genus g of the parametrized tropical
curve is defined by gr + ¥ g(V'), where gr is the genus of the graph T'.

Some distinction between y]ﬁfjg’ and R2, related to the fact that the components P; of V.o

are non-toric, is that the usual form of the balancing condition for tropical curve in R? is

not necessarily valid at vertices of I' mapping to one of the vertices v;, j = 1,...,n, of y;ffg).
For vertices of I' mapping away from vj, j = 1,...,n, the usual balancing condition applies.

Following Definition 4.2.1 of [ACGS17a], a decorated parametrized tropical curve is a

parametrized tropical curve h:T' — Y"P where each vertex has a further decoration by

m,0

a curve class in the stratum of Yy o dual to the stratum of ytrop

no Where this vertex is

mapped. In short, a decorated parametrized tropical curve to yf]ffg’ encodes all the neces-

sary combinatorial information to be a fiber of the tropicalization of a stable log maps to

ym,O-

The decomposition formula of [ACGS17a] involves decorated parametrized tropical curves
which are rigid in their combinatorial type. This is easy to understand intuitively: the
decomposition formula is supposed to describe how the moduli space of stable log maps
breaks into pieces under degeneration. If the moduli space of tropical curves were the trop-
icalization, and so the dual intersection complex, of the moduli space of stable log maps,
components of the moduli space of stable log maps should be in bijection with the zero
dimensional strata of the moduli space of tropical curves, i.e. with exactly rigid tropical
curves. The decomposition formula [ACGS17a] expresses that this intuitive picture is cor-

rect, at least at the virtual level.

The tropical curves relevant in the study of M, ,(Vm,0) are genus g decorated parametrized

. t
tropical curve I' > Y%7

of type p, i.e. with only one unbounded edge, of weight ¢, and of

direction m,, and with total curve class 3,.

According to Section 4.4 of [ACGS17a], for every h:T' — y]ﬁ{jg’ rigid genus ¢ decorated
parametrized topical curve of type p, there exists a notion of stable log map marked by h,
and a moduli space Vi 0 — pty of stable log maps marked by h, which is a proper Deligne-
Mumford stack equipped with a virtual fundamental class [Mzg(ym@)]"i”. Forgetting the
marking by h gives a morphism

. —h —h
in: My (Ymo) = My ,(Vmo) -

We can finally state the decomposition formula, Theorem 4.8.1 of [ACGS17a]: we have

AT virt _ N . =—h virt
[Mg,p(ym,o)] = Zh: m(lh)*[Mg,p(ym,o)] )

where the sum is over rigid genus g decorated parametrized tropical curves h:T' — y;fjgp

of type p, n, is the smallest positive integer such that after scaling by ny, h gets integral
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vertices and integral lengths, and | Aut(h)| is the order of the automorphism group of h.

2.5.4 CLASSIFICATION OF RIGID TROPICAL CURVES

In order to extract some explicit information from the decomposition formula, the first step

is to identify the rigid decorated parametrized tropical curves h:T' — Y™ of type p. It is

m,0
in general a difficult question. But because we are only interested in invariants obtained
by integration of the top lambda class A4, and not in the full virtual class, the situation is

much simpler by the following Lemma.

Lemma 2.9. Let h:T - y};jgp be a genus g rigid decorated parametrized tropical curve of

type p with I' of positive genus. Then we have

“1)9\, =0.
/[MZ',p(ym.f))]v‘"( /A

—h
Proof. If f:C — yf;jgp is a stable log map in M, ,(Vm,0), then, by definition of the marking
by h, the dual intersection complex of C retracts onto I' and in particular, has genus bigger
than the genus of I', which is positive by hypothesis. It follows that C contains a cycle of
irreducible components. By Lemma 1.7, the class A, vanishes on families of curves containing

cycles of irreducible components. O

By Lemma 2.9, we only have to determine the rigid decorated parametrized tropical curves
h:T' — Y7 of type p with T' of genus zero.

m,0

Recall that we defined in Section 2.5.1 what is a partition of p and that we associated to
such partition k& of p a positive integer s(k) and a s(k)-tuple (w1,...,wy)) of non-zero
vectors in M = Z?2. In particular, each w, (k) can be naturally written w, (k) = ¢m; for some
>0 and some 1< j<n.

We first explain how to construct a genus g rigid decorated parametrized tropical curve
higlig — y,ﬁffg’ with I'y 5 of genus zero, for every partition k of p and for every g =
(90,915 -+, 9s(k))> (s(k) + 1)-tuple of non-negative integers such that |g| = go + Zi(j) gr =
g. We refer to Section 2.5 of [ACGS17a] for details on the general notion of decorated

parametrized tropical curve.

Let I'y, 5 be the genus zero graph® consisting of vertices Vj, Vi,. .., Vi(k), bounded edges E,,
r=1,...,s(k), connecting V; to V;, and an unbounded edge E,, attached to Vj.

We define a structure of tropical curve on I'y, 5 by assigning:

e Genera to the vertices. We assign gg to V, and g, to V;., for all 1 <r < s(k).
e Lengths to the bounded edges. We assign the length

1 1

B = o ™ 7

We assume for simplicity that mp does not coincide with any of the —m;. If not, we need to add a
2-valent vertex Vp on Ej, and we have hy 5(Vp) = v; for j such that mp = —m;.
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to the bounded edge E,, for all 1 <r < s(k).

Finally, we define a decorated parametrized tropical curve

trop

hi,g: Ty = m,0

by the following data:

e We define hy 5(Vo) = vg, and, writing w,.(k) = lm;, hy 5(V;) = v;, for all 1 <r < s(k).

e Edge markings of bounded edges. We define vy, g, = w, for all 1 < r < s(k). In
particular, the bounded edge E, has weight |w, (k)| = £. This is a valid choice because

1
h(‘/r) - h(V()) =my; = ng] = K(Er)UVg,ET .

This uniquely specifies an affine linear map hy, 3|, ..

e Edge marking of the unbounded edge. We define vy, g, = £,;m,. In particular, the

unbounded edge E, has weight £,,. This uniquely specifies an affine linear map hy. 4/, -
e Decoration of vertices by curve classes. We decorate Vj with the curve class By, €
Hy(Yw,Z). Writing w,.(k) = ¢m;, we decorate the vertex V, with the curve class
([C}] € Hy (P}, Z).
Figure: picture of I'y, 5.

By

Vs

Es™ % E, Vi

Ey

Vs
Lemma 2.10. The genus g decorated parametrized tropical curve

trop

hi,g: Thg = Vo

18 rigid.

Proof. This is obvious because hy, 5 has no contracted edge and all vertices of hy, 5 are mapped

. t
to vertices of Y oP:

m.0 . it is not possible to deform hj 5 without changing its combinatorial

type. O
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Proposition 2.11. Every genus g rigid decorated parametrized tropical curve h:I" — ygfg’

of type p, with I' of genus zero, is of the form hy g for some k partition of p and § =
(90,915 - -+, Gs(k)) some (s(k) + 1)-tuple of non-negative integers such that |g| = g.

Proof. The argument” is similar to the one used in the proof of Proposition 1.10, itself
a tropical version of the properness argument, Proposition 4.2, of [GPS10]. By iterative
application of the balancing condition, we will argue that the source I" of a rigid decorated
parametrized tropical curve h:T" — y};jgp
a closed cycle and so has positive genus.

of type p not of the form hy, g, necessarily contains

Let h:T — )}if%p be a genus g rigid parametrized tropical curve of type p. As h is rigid,
there is no edge of I' contracted by h. The fact that h has type p implies that A has only

one unbounded edge and this unbounded edge has weight ¢, and direction m,,.

Lemma 2.12. Assume that there exists a vertex V of T' such that
h(V) ¢ {vo,v1,..-,0n},

then T' has positive genus.

Proof. We first assume that h(V) is contained in the interior of one of the two-dimensional
cones C of y,ﬁfjgp. Because h(V') is away from the vertices v;, the situation is locally toric
and the balancing condition has to be satisfied in A(V). If h(V) ¢ Ryom,, there is no
unbounded edge of T ending at V', and so by balancing, not all edges attached to h(V') can
point towards the vertex of C, i.e. at least one edge of C points towards a boundary ray of
C. If h(V) € Ryym,, we can get the same conclusion: if all edges passing through h(V')
were parallel to Rygm,, this would contradict the rigidity of h because one could move h(V')

along Ryom,.

Then, we follow the proof of Proposition 1.10. Fixing a cyclic orientation on the collection

of cones and rays of VP, we can assume that this edge points towards the left (from the

m,0
point of view of the vertex of the cone, looking inside the cone) ray of C. If this edge ends on
some vertex still contained in the interior of C, then the balancing condition still applies and
so there is still an edge attached to this vertex pointing towards the left ray of C. Because
I" has finitely many vertices, iterating this construction finitely many times, we construct a

path starting from h(V') and ending at some vertex h(V") on the left boundary ray of C.

Let C’ be the two-dimensional cone of Y% adjacent to C near h(V'). Then we claim that
by the balancing condition, there exists an edge attached to h(V”) pointing towards the left
ray of C'. Indeed, the only case for which the balancing condition is not a priori satisfied is
if h(V") = v; for some j. But at v;, the non-toric nature of If”j only modifies the balancing
condition in the direction parallel to e; o and e; o: if there is an incoming edge with non-zero
transversal direction, then there is still an outgoing edge with non-zero transversal direction

(IP; is obtained from the Hirzebruch surface P; - D,,,; by blowing-up points on the divisors

"We assume for simplicity that myp is distinct from all —m;. It is easy to adapt the argument in this
special case.
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Dy 00 this does not affect the fact that the general fibers of ]@j — Dy, are still linearly

equivalent).

Iterating this construction, we get a path in I' whose image by h in y 0 is a path which
intersects successive rays in the anticlockwise order. Because I' has finitely many edges, this
path has to close eventually and so I' contains a non-trivial closed cycle, i.e. I has positive

genus.

It remains to treat the case where h(V) is in the interior of a one dimensional ray of y“‘)p

If all the edges attached to h(V') were parallel to the ray, this would contradict the ridigity
of h because one could move h(V') along the ray. So at least one of the edges attached
to h(V') is not parallel to the ray and by balancing, we can assume that there is an edge
attached to h(V') pointing towards the 2-dimensional cone of ytmp left to the ray. We can
then apply the iterative argument described above. O

We continue the proof of Proposition 2.11. Let us assume that I' has genus zero. By
Lemma 2.12; every vertex V of I' maps to one of the vertices vg,vy,...,v, of I'. If there
were an edge connecting a vertex mapped to v; with a vertex mapped to v, 1 < j,j' <n
with j # j', then we could apply the iterative argument used in the proof of Lemma 2.12,

and this would contradict the assumption that I' has genus zero.

It follows that every edge in I' adjacent to some vertex mapped to v; for some 1 < j < n is
also adjacent to some vertex mapped to vg. As I' is connected and there is no Contracted
edges, this implies that there is a unique vertex Vy of I such that h(Vp) = vo. As T is of type
p, the curve classes of the vertices mapping to v;, 1 < j < n, naturally define a partition % of
p, the genera of the various vertices define some § and it is easy to check that h = hy 4. O

Define
hi =
Nyyt = [ 1)92,
P [M3%7 (Ym0 )m( )Aq € Q.

Proposition 2.13. We have

Ym_ Thy,g hkj
Nob = 2 2 TRur(hg)

k-p g
l9l=g

Proof. This follows from integrating (-1)9), over the decomposition formula of [ACGS17a],
reviewed at the end of Section 2.5.3. By Lemma 2.9, rigid tropical curves h:T" — ylﬁj(gp, with
I" of positive genus, do not contribute, and by Proposition 2.11, all the relevant rigid tropical
curves h:T" — y“op are of the form hy 5: Tk 5 - )}t P for some k partition of p and some §

such that |g| = g. O

We fix k a partition of p and g such that |j| = g and we consider the decorated parametrized

trop

tropical curve h:l'p g > Yy o -

Lemma 2.14. We have

Nhy, , = lem{|w, (k)|, 1 <r <s(k)}.
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Proof. Recall that np, , is the smallest positive integer such that after scaling by ng, ., hi 3
gets integral vertices and integral lengths. By definition of hy, g, vertices of hy 5 are already
mapped to integral points of y“‘)p On the other hand, bounded edges E, of I'y ; have
fractional lengths 1/|w, (k)|. It follows that ny ; is the least common multiple of the positive
integers |w,(k)|, 1 <7 < s(k). O

For 1<j<mn,{>1anda20, denote kyj, the number of vertices of I'y 5 having genus a

among the ke¢; ones having curve class decoration £[C}]. Remark that we have

0y = Z kijay

az0
and

0= 355 ohise

Lemma 2.15. The order of the automorphism group of the decorated parametrized tropical

r=1

trop

curve hy 5: Tk g — Voo 15 given by

| Aut(hr,g)l = [TTT T kesa!-
j=1£>1a>0

Proof. For every 1 < j <n, £>1 and a > 0, there are kyj, of the vertices V,. having the
same curve class decoration ¢[C}], the same genus a, and the attached edges have the same
weight ellm;, so permutations of these kg;, vertices define automorphisms of the decorated
tropical curve hy . Any other permutation of the vertices of ¥, permutes vertices having
different curve class decorations and/or different genus, and so cannot be an automorphism

of the decorated tropical curve. O]

Corollary 2.16. We have

n hk .

Nyw= 3 3 (em{fw. (k)] 1 <r<s(k)})(H p ) :
k-p g j=1¢>1a>0 fja

lgl=g

Proof. Combination of Proposition 2.13, Lemma 2.14 and Lemma 2.15. O

2.5.5 GLUING FORMULA

The previous Section has reduced the computation of the log Gromov-Witten invariants

Ny Y‘“ to the computation of invariants

NP ::f “1)9), .
T

—h
where Mg:;g (Vm,0) is a moduli space of stable log maps to Y o marked by hy 3, i.e. whose

tropicalization is equipped with a retraction on hy .
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Let f:C = Ym0 be a stable log map of tropicalization hy . Then C has irreducible compo-
nents Co, C1,...,Cyyy, of genus go, g1, - - -, gs(x) and we have

e flc, is a genus g stable map to Y, of class Buw(k), transverse to OY , with s+ 1

tangency conditions along 0Y , defined by the s+ 1 vectors —wy, ..., ~Wg, £pmy € M8,

e For all 1 <7< s(k), w.(k) = Im;, flc, is a genus g, stable map to P;, of class ¢[C}],

with a full tangency condition of order £ along D, o-

This suggests to consider the moduli space Ma,e(@’j, 8]?’]-) of genus «a stable log maps to I@’w
equipped with the divisorial log structure with respect to the divisor 8If”j, of class ([C}],
with a full tangency condition of order ¢ along D,,,. It is a proper Deligne-Mumford stack

of virtual dimension a, admitting a virtual fundamental class
(Mo (,0P)]" € Ay(Mae(P;,0P;), Q).
We define

Nﬂ@]‘ = f 1)) .
¢ [ﬁa,é(f@j,a]}aj)]virt( ) a € @

The decomposition of a stable log map f:C' - Y into irreducible components suggests

that we should be able to express N9 in terms of N ™ and N7,
9P go,w(k)

The following Proposition 2.17 gives a gluing formula showing that it is indeed the case.

Proposition 2.17. We have

Y m n
Nhk,g _ Ngo,w(k) H Hgkzj H(NZI@,- )kzja
7 lem{lw, (K)|, 1< < s(k)} ‘ '

j=120>1 a0

Proof. We gave a brief description of stable log maps whose tropicalization is hy 5 as a
motivation for why a gluing formula like Proposition 2.17 should be true. But the moduli
space of such stable log maps is not proper. The relevant proper moduli space Msz;g (Yim0)
is a moduli space of stable log maps marked by hy g, containing stable log maps whose
tropicalization only retracts onto hj g. These stable log maps interact in a complicated way
with the log structure of YV o and the gluing of such stable log maps has not been worked
out yet.

We go around this issue by following the strategy used in Section 1.6. On an open locus
of torically transverse stable maps, the above mentioned problems do not arise and the
difficulty of the gluing problem is of the same level as the usual degeneration formula in
relative Gromov-Witten theory. The log version of this gluing problem has been recently
treated in full details by Kim, Lho and Ruddat [KLR18]. On the complement of the nice
locus of torically transverse stable log maps, a combinatorial argument of Proposition 1.10

implies that one of the relevant curves will always contain a non-trivial cycle of components.

8For simplicity, we are assuming that my is distinct from all —m;. It is easy to adapt the argument in
this special case. The gluing formula remains unchanged, for the same reason that 2-valent vertices play a
trivial role in Chapter 1: see Lemma 1.14.
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By standard vanishing properties of the lambda class, it follows that we can ignore this bad
locus if we only care about numerical invariants obtained by integration of a top lambda

class, which is our case.

We give now an outline of the proof, referring to [KLR18] and Section 1.6 for some of the

steps.

We have an evaluation morphism

_ _ _ _ - 5 s(k)
ev: Mg, () Vi, 0V m) x [T Mo o(By,0P;) 5% — [T (Duy, 1))
1<j<n r=1
&1
az0

Let
s(k) s(k)

5 [1 Dwriry = [T (Duwriiy)?
r=1 r=1

be the diagonal morphism. Using the morphisms ev and §, we define the fiber product

s(k)
_ |57 v av TF (B A ke
M= My i)Y, 0V wm) x [] Ma,e(P;,0P;)" ([ (Do )?) (H1 Dwr(k)) .

1<j<n
21
a>0

We define a cycle class [M]"'™* on M by

[M]virt — 5! [Mgo,w(k)(?m;a?m)]\,irt % H [Ma,e(ﬁpﬁaﬁpj)keja]virt 7
a>0

where §' is the refined Gysin morphism (see Section 6.2 of [Ful98]) defined by 4.
The following Lemma will play for us the same role played by Lemma 1.16 in Section 1.6.
Lemma 2.18. Let

C($>ymO

)

lﬂ |#5mn

W i> ptN7
be a point ofﬁzgg (Vm,0). Let
=(f
2(C) = S(Vm)

P(”) F(wm,o)

SW) =25 5(pty) .
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be its tropicalization. For every be X(g)™*(1), let
S B(Ch > By o) (1) = Vo

be the fiber of X(f) over b. For everyr = ,s(k), let Ez(f)” be the edge of X(f)» marked
by the edge E, of I'y, 5. Then, we have

h(EZDvY ¢ by, 2(B,).

Proof. This follows from the fact that for every 1 < j <n, the curve Cj is rigid in ]f”j, so the
vertices of I' marked by the vertex V,. of I'y 5 are mapped on hy 5(E,). O

Given a stable log map f:C — Yy 0 marked by Ay 5, we have nodes of C' in correspondence
with the bounded edges of I". Cutting C along these nodes, we obtain a morphism

;kg

cut: My * (Yin/OYi) — M
Because of Lemma 2.18, each cut is locally identical to the corresponding cut in a degener-
ation along a smooth divisor and so we can refer to Section 1.6 or Section 5 of [KLR18] for

a precise definition of the cut morphism, dealing with log structures.

We say that a stable log map f:C — Y, is torically transverse if its image does not contain
any of the torus fixed points of Y, i.e. if its image does not pass through the “corners”
of the toric boundary divisor 9Y n, i.e. if its tropicalization has no vertex mapping in the

interior of one of the two-dimensional cones of the fan of Y.

Let Mgo’w(k)(Vm, dY ) be the open substack of M g, (1) (Y m, Y ) consisting of torically

transverse stable log maps. We define

s(k)
—0 — — Evi - m i
M= My iy Vs 0V ) x T[] Mo o(B;,0B;)" e (M9 (D, (1)?) (H D“’T(k)) ’
1<j<n r=1 A wr (k) r=1
£1
az0

hk .50

(Y /OYm) = cut™ (M?),

and we denote
cut?: BT, 50" (Vo [0 rg) — MO

the corresponding restriction of the cut morphism.
Lemma 2.19. The morphism

cut?: 3L, 50" (Vo [0V rm) > MO

1s €tale of degree
TTj1 Mo 4%
lem{|w, (k),1<r<s(k)}’

125



Proof. Because of the restriction to the torically transverse locus, the gluing question is
locally isomorphic to the corresponding gluing question in a degeneration along a smooth
divisor, and so the result follows from formula (6.13) and Lemma 9.2 of [KLR18]°. O

Restricted to the torically transverse locus, the comparison of obstruction theories on
M’;Zﬁ (Yin/0Ys) and M reduces to the same question studied in Section 9 of[KLR18]| for
a degeneration along a smooth divisor. In particular, combining Lemma 2.19 with formula
9.14 of [KLR18], we obtain that the cycle classes

(cut) o (M, (Yo [0Yr) 1)

and N
n ‘
151 Tesa €7

lem{|w,(k)|,1 <7 <s(k)} (M

have the same restriction to the open substack M of M. It follows by [Ful98] Proposition 1.8,
that their difference is rationally equivalent to a cycle supported on the closed substack

Z=M-M".

At a point of Z, the corresponding stable log map f:C' — Y, to Y, is not torically transverse.
Using Lemma 2.18, we can apply Proposition 1.10 to get that C contains a non-trivial cycle
of components. Vanishing properties of lambda classes given by Lemma 1.7, combined with
gluing properties of lambda classes given by Lemma 1.6, finally imply the gluing formula

stated in Proposition 2.17, as in the end of Section 1.6. O

Remark: The most general form of the gluing formula in log Gromov-Witten theory, work in
progress of Abramovich-Chen-Gross-Siebert, requires the use of punctured Gromov-Witten
invariants, see [ACGS17b]. We do not see punctured invariants in our gluing formula because

we only consider rigid tropical curves contained in the polyhedral decomposition of y,iffg’.

2.5.6 END OF THE PROOF OF THE DEGENERATION FORMULA

We now finish the proof of the degeneration formula, Proposition 2.8.

Combining Corollary 2.16 with Proposition 2.17, we get

_ 1 )
Ym _ Y Eosi 0B \keja
Nop=20 2 Ny | TTTTE T1 ﬁ(Na )]
krp g Jz1ex1 a>0 Rtja-
lgl=g
Denote ) )
FZ]P’j(h) — Z prj h2a—1 ]

a0

91n the corresponding argument in Section 1.6, the denominator of the formula did not appear because
the relevant tropical curves had all edges of integral length.
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We have

(FZIF’]- (h))kej - Z k! (H (Nfﬁpj )keja) A Zaz0(2a-Dkeja

kej=Yas0 keja [azo keja! \aso

Using kej = Yaso kejar $(k) = g X1 ke and g — go = X721 Xpso Las akeje to count the
powers of h, we get

Z N;; hzg_l Z (Z g, w(k)th_1+S(k))

g0 kp \ g=0

n:]:

1
NPT Ol
21

It follows that the proof of the degeneration formula, Proposition 2.8, is finished by the

following Lemma.
Lemma 2.20. For every 1<j<n and ¢ >1, we have

(D" 1
/ 2sin(lh) '

2

Fi(h) =

Proof. 1t is a higher genus version of Proposition 5.2 of [GPS10]. As the curve C; ~ P! is
rigid in If"j, with normal bundle Op:i(-1), every stable log map, element of Ma,g(@j,alf”j),
factors through C; ~ P*.

Let M, ¢(P'/o0) be the moduli space of genus a stable log maps to P!, relative to co € P!,

of degree ¢ and with maximal tangency order ¢ along co. It has virtual dimension 2a —1 + ¢.

We have M, ((P;,0P;) = M, (P'/oo) as stacks but their natural obstruction theories are
different. Denoting m:C - M, ¢(P'/oco) the universal source log curve and f:C — P! the
universal log map, the two obstruction theories differ by Rz, f*N, o, = = R'7, f*Op (-1).
So we obtain

Na?’j:\/ Rl . * O O . ’
‘ [Mai(Pl/oo)]Virte( Qs f( P ]P’l( ))

where e(-) is the Euler class. We are now in a setting relative to a smooth divisor so
numerical invariants extracted from log Gromov-Witten theory coincide with those extracted
from relative Gromov-Witten theory by [AMW12]. These integrals in relative Gromov-
Witten theory have been computed by Bryan and Pandharipande ([BP05], see proof of
Theorem 5.1) and the result is

Z Nﬂ’ﬁz h?(l*l — (_l)é_1 1

az0 ¢ t QSIH(%) .

2.6 SCATTERING AND TROPICAL CURVES

In this Section, we review the connection established in [FS15] between quantum scattering

diagrams and refined tropical curve counting.
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2.6.1 REFINED TROPICAL CURVE COUNTING

In this Section, we review the definition of the refined tropical curve counts used in [FS15].
The relevant tropical curves are identical to those considered in [GPS10]. The only difference
is that they are counted with the Block-Géttsche refined multiplicity [BG16], g-deformation
of the usual Mikhalkin multiplicity [Mik05].

We first recall the definition of a parametrized tropical curve to R? by simply repeating the

presentation we gave in Chapter 1.

For us, a graph I" has a finite set V(I') of vertices, a finite set E;(I") of bounded edges
connecting pairs of vertices and a finite set Eo (I") of legs attached to vertices that we view
as unbounded edges. By edge, we refer to a bounded or unbounded edge. We will always

consider connected graphs.

A parametrized tropical curve h:T' - R? is the following data:

e A nonnegative integer g(V') for each vertex V, called the genus of V.
e A labeling of the elements of the set Fo.(T').

e A vector vy € Z? for every vertex V and E an edge adjacent to V. If vy g is not
zero, the divisibility |vy, g| of vy g in Z? is called the weight of E and is denoted w(E).
We require that vy g # 0 if ' is unbounded and that for every vertex V, the following

balancing condition is satisfied:
Yove=0,
E

where the sum is over the edges E adjacent to V. If F is an unbounded edge, we

denote vg for vy g, where V' is the unique vertex to which E is attached.
e A nonnegative real number ¢(E) for every bounded edge of E, called the length of E.
e A proper map h:T' - R? such that

— If F is a bounded edge connecting the vertices Vi and V3, then h maps FE affine
linearly on the line segment connecting h(V7) and h(V3), and h(Vs) — h(V7) =
UE)vv,, B

— If F is an unbounded edge of vertex V, then h maps E affine linearly to the ray
h(V) +Ryovy,&.

The genus gp, of a parametrized tropical curve h:T' - R? is defined by

gh=gr+ . g(V),
VeV (T)

where gr is the genus of the graph T'.

Let w = (wy,...,ws) be a s-tuple of non-zero vectors in M. We fix = = (z1,...,7,) € (R?)*.
We say that a parametrized tropical curve h:I' - R? is of type (w,x) if I has exactly s + 1
unbounded edges, labeled Fy, E1, ..., Es, such that
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L4 UEO = Zi:1 wT7

o v =-w, forallr=1,... s,

e E,. asymptotically coincides with the half-line -Ryqw, + x,, for all r = 1,... s.
Let T, , be the set of genus zero'? parametrized tropical curves h:T' — R? of type (w, )
without contracted edges. If z € (R?)® is general enough (in some appropriate open dense
subset), then it follows from [Mik05] or [NS06] that T, . is a finite set, and that if (h: T - R?),

then T is trivalent and h is an immersion (distinct vertices have distinct images and two

distinct edges have at most one point in common in their images).

For h:T' - R? a parametrized tropical curve in R? and V a trivalent vertex of adjacent edges
FE4, Es and Ej3, the multiplicity of V is the integer defined by

m(V) =|det(vv,p,, vv,8, )| -
Thanks to the balancing condition
VV,E, T OV,E, t UV Es =0,

this definition is symmetric in F1, Fq, E5. The Block-Gottsche [BG16] multiplicity of V' is a
Laurent polynomial in a formal variable q%:

2 _m(V)-1 m(V)-1

T T (LegergT ) eN[gHE].

For (h:T' - R?) a parametrized tropical curve with I trivalent, the refined multiplicity of h
is defined by

ma(q?) = T[] [m(V)],,

VeV (T)

where the product is over the vertices of T'.

If x € (R?)® is in general position, we count the elements of T}, , with refined multiplicities

and we get a refined count of tropical curves:

NU%P(q) = S mpu(q?) e N[¢*2].
h:I'-R2

According to Itenberg-Mikhalkin [IM13], varf;p(q%) does not depend on z if  is generall®,

and we simply denote Nltump(q%) the corresponding invariant.

2.6.2 ELEMENTARY QUANTUM SCATTERING

Let iy and my be two non-zero vectors in M = Z2. Let ® be the quantum scattering diagram

over an Artinian ring R consisting of two incoming rays —Rygm and —Rsgme equipped with

10Tn particular, the graph T' has genus zero and all the vertices have genus zero.
1 This also follows from Theorem 1.4
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the Hamiltonians

and
ﬁQ _ f2 2mso

=1
q2 —q
where f1, fo € R satisfy f2 = f2 =0. Let S (f)) be the resulting consistent quantum scattering
diagram given by Proposition 2.3. The following result is Lemma 4.3 of [FS15].

Lemma 2.21. The consistent quantum scattering diagram S(@) is obtained from D by

adding three outgoing rays:

o (Rsomy, Hy)
o (Rsoma, Hy)
e (Ryo(my +m2)7f112), where

fl f2 zma +mg

Hip = [(my,ma)]g—
qz —q

and

Proof. Using

N N {mi,m2) _{my mo) \
[z’"l,zm]:(q 2 —q 2 )zm”””

we compute that

[ﬁhffz] = [<m1,m2)]q%2m1+m2 .
qz —¢q

Nl

As f2 = f3 =0, it follows that H; and H, commute with [Hy, H,]. Using an easy case
of the Baker-Campbell-Hausdorff formula, according to which e®e’ = ev*tb+3labl if ¢ and b

commute with [a,b], we obtain

eH2o=Hig=Ha JHi _ [Hi, H:] ,
and so
-1 2.1 _&
q)ﬁgq)Hl(I)Hz H ~ (I)[Hl’HZ] )
hence the result 0

2.6.3 (QUANTUM SCATTERING FROM REFINED TROPICAL CURVE COUNTING

In this Section, we review the result of Filippini and Stoppa [FS15] expressing the Hamil-
tonians attached to the rays of the consistent quantum scattering diagram S (@m), defined
in Section 2.3.1, in tropical terms. We use the notations introduced at the beginning of
Section 2.5.1.
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Proposition 2.22. For every m = (my,...,my,) an n-tuple of primitive non-zero vectors in
M and for every m € M - {0}, the Hamiltonian H,, attached to the outgoing ray Rygm in

the consistent quantum scattering diagram S(@m) is given by

. f oV stym
frn= ¥ Y NS )(HH,% (EFe5) )(H) o

pe€Pp, k-p j=1¢>1

m\»—-

where q = €, and the first sum is over all partitions k of p.

Proof. This follows from the main result, Corollary 4.9, of [FS15], which is a ¢-deformed
version of the proof of Theorem 2.8 of [GPS10]. A higher dimensional generalization of this
argument has been given by Mandel in [Man15]. For completeness and because we organize

the combinatorics in a slightly different way, we provide a proof.

By definition, S (@m) is the consistent quantum scattering diagram obtained from the quan-

tum scattering diagram ., consisting of incoming rays (9, ﬁaj ), j=1,...,n, where
Dj = —R;()mj ;

and

- 1 (-1)"
HD' ( ) 7t€ ij.

J

€>1 é q2 —_ q 2
Let us work over the ring C[ty,...,¢,]/(#tN*!, ... tN*1). We embed this ring into

Cl{ujall <j<n,1<a<N}]/({uf]l <j<n,1<a<N})
by
N
= Zuya
a=1

for all 1 <j <n. We then have

L
tj = Z é' H Uja ,
Ac{1,...,.N} acA
|Al=¢

=y Y }(””ft)z‘(nu e

£=1 Ac{1,....N ¢ q2 —q 2 acA
|Al=¢

and so

This suggests to consider the quantum scattering diagram f)f,{)m

(jea, Hoypn), 1<SESN, Ac{l,...,N}, |A| = £, where

consisting of incoming rays

004 = —Ryomj + cjoa,

for cjpa € R? in general position, and

o= (150 (T ) o

€q2—q2 acA
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If we had taken all cjo4 = 0, then @f,lflit would have been equivalent to @m. But for cjea € R?
in general position, DP" is a perturbation of Dw: each ray (Oj,fiaj) of Dy, splits into

various rays (94, Ho,,,) of Dsplit,

The key simplifying fact is that the consistent scattering diagram S (@fﬁ)“t) can be obtained
from C‘jfflit by a recursive procedure involving only elementary scatterings in the sense of
Lemma 2.21. When two rays of @if’lit intersect, we are in the situation of Lemma 2.21
because u?a = (. The local consistency at this intersection is then guaranteed by emitting a
third ray according to Lemma 2.21. Further intersections of the old and newly created rays
can similarly be treated by application of Lemma 2.21. Indeed, the assumptions of general

position of the cj 4 guarantees that only double intersections occur.

The asymptotic scattering diagram of S (@i{’lit) is the scattering diagram obtained by taking
all the rays of S(®) and placing their origin at 0 € R%. By uniqueness of the consistent
completion, the asymptotic scattering diagram is precisely S (@m) To get the Hamiltonian
H,, attached to an outgoing ray Rom in S (@m), it is then enough to collect the various
contributions to the corresponding asymptotic ray of S (@i?lit) coming from the recursive
construction of S(DIY).

Let us study how the recursive construction of .S (@i{’ht) can produce a ray 0 asymptotic to
Rsom and equipped with a function Hp proportional to 2™, for some £, > 1. Such a ray
is obtained by successive applications of Lemma 2.21 starting from a subset of the initial

. . A split
incoming rays of D",

We focus on one particular sequence of such elementary scatterings. Such sequence naturally
defines a graph T' in R2. This graph starts with unbounded edges given by the initial rays
taking part to the sequence of scatterings. When two of these rays meet, they scatter and
produce a third ray given by Lemma 2.21. If this third ray does not contribute to further
scatterings ultimately contributing to H,, we do not include it in T' and we continue I by
propagating the two initial rays. In particular, I' contains a 4-valent vertex given by the two

initial rays crossing without non-trivial interaction.

If the third ray does contribute to further scatterings ultimately contributing to H,, we
include it in T and we do not propagate the two initial rays. In particular, I' gets a trivalent
vertex given by the two initial rays meeting and producing the third ray. Iterating this
construction, we get one trivalent vertex for each elementary scattering ultimately giving a
contribution to Hy. At the end of this process, the last elementary scattering produces the

ray 0 which becomes an unbounded edge of the graph.

The graph I' has two kinds of vertices: trivalent vertices where a non-trivial elementary
scattering happens and 4-valent vertices where two rays cross without non-trivial interaction.
For every 4-valent vertices, we can separate the two rays crossing, and we get a trivalent
graph I and a map h:T - I' c R? which is one to one except over the 4-valent vertices of T
where it is two to one. It follows from the iterative construction that the trivalent graph I’

is a tree, i.e. a graph of genus zero.

The function attached to initial ray of ﬁ)ﬁ?ht is a monomial in Z, whose power is proportional

to the direction of the ray. By Lemma 2.21, this property is preserved under elementary
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scattering. Each edge E of our I' is thus equipped with a function proportional to z™#
for some mp € M = Z? proportional to the direction of E. Furthermore, in an elementary
scattering of two edges E; and FEy equipped with mpg, and mg,, the produced edge Es
is equipped with mg, + mg, by Lemma 2.21. In other words, the balancing condition is
satisfied at each vertex and so we can view h:I' - R? as a parametrized tropical curve to R?

in the sense of Section 2.6.1.

For every 1 < j < n and ¢ > 1, there is a number k;; of subsets A of {1,...,n}, of size ¢,
such that 0,4 is one of the initial ray appearing in I'. Denote by AL e this set of subsets of
{1,...,n}. Writing p; = Y45, Lk¢;, we have by the balancing condition

n

Z p; = Ebm )

j=1

and in particular £, = £p,.

It follows from an iterative application of Lemma 2.21 that the contribution of T" to H, is

given by

k‘gj

N n -1 4 -1 3t
mh (IS4 ) @ | I T | =

T
AeAl, acA qz —q

where mp(q%) is the refined multiplicity of the tropical curve I'.
To get the complete expression for f[a, we have to sum over the possible T.

If we fix p=(p1,...,0n) € P =N" k a partition of p and for every 1 <j<n and £ 21, a set
Aj of ky; disjoint subsets of {1,..., N} of size £, we can consider the set Tje4,, of genus zero
tropical curves I' having one unbounded edge of asymptotic direction Ryom and weight £,m,
and for every 1 <j<n, £ >1, Aec Aj, an unbounded edge of weight ¢m; asymptotically
coinciding with 0;04. By Section 2.6.1, this set is finite.

We already saw how a sequence of elementary scatterings contributing to H, produces

an element I' € Tjpq,,. Conversely, any I' € Tjs4,, will define a sequence of elementary

spllt

scatterings appearing in the construction of S (CD ) and contributing to H,.

It follows that, for every m € M - {0}, we have

H, =

1 1 1k Slpm
(=) e 11 ML) 7
qQ—q 2 q2

AeAjpacA

>y T (ﬁ

peP,, k‘Fp.Ajz FGTngjé j=1/4>1

But by Section 2.6.1, we have

> mr(g?) = NP (q2),

FGT]’Z.AJ/

which is in particular independent of A;¢. So we can do the sum over Aj,. Given an Aj,
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we can form
B= |J A,
AEA_,’({
a subset of {1,...,N} of size ¥y, lk¢j = p;. Conversely, the number of ways to write a set
B of pj = Y451 lkej elements as a disjoint union of subsets, k;; of them being of size ¢, is

equal to
p;!
[gsq kej! ()0

Replacing the sum over Aj; by a sum over B, we get

T T LA R stom
> Y NI (g?) H T S E— [T X »!llup|v—=.
k[]. é q2 q 2 .

peP,, k-p

Finally, using that

we obtain the desired formula for H,,.

O
Corollary 2.23. We have
N n 1 ( 1)2 1 1 ke; N LBV ot
- 3 SN (i (S |t -y,
pePp, k-p =101 q2—q 2
Proof. We simply rearrange (q% - q‘%) factors in Proposition 2.22 and use that
s(k) = > kej-
j=le31
O

2.7 END OF THE PROOF OF THEOREMS 2.6 AND 2.7

2.7.1 END OF THE PROOF OF THEOREM 2.6

In this Section, we finish the proof of Theorem 2.6. We have to express the Hamiltonians
attached to the rays of the consistent quantum scattering diagram S (@m) in terms of the

log Gromov-Witten invariants N, gY » of the log Calabi-Yau surface Y.

We know already:

e Corollary 2.23, expressing the Hamiltonians attached to the rays of S (@m) in terms

of the refined counts Nfﬂr"p(q%) of tropical curves in R2.
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e Proposition 2.8, relating the log Gromov-Witten invariants IV, ;f = of the log Calabi-Yau

surface Y, to the log Gromov-Witten invariants Ng,;," of the toric surface Y .

It remains to connect the refined tropical counts Nfump(q%) to the log Gromov-Witten in-
variants N} m

g,w
is a special case of the main result, Theorem 1.4, of Chapter 1.

of the toric surface Y. This is given by the following Proposition 2.24, which

Proposition 2.24. For every m = (mq,...,my,) n-tuple of non-zero primitive vectors in

M =72, every p= (p1,...,pn) € P=N", and every k partition of p, we have

3 N7z i) - v (7 (QSin(h))S(k)_l
56 g,w(k) w(k) ‘wr| 9

r=1
n 1 h S(k)—l
R e
w(k)(q )(ﬂgf’%) sin >

Proof. We simply explain the change in notations needed to translate from Theorem 1.4.

In Chapter 1, we fixed a A a balanced collection of vectors in Z2, specifying a toric surface
X and tangency conditions for a curve along the toric divisors. We fixed a subset A" of
A, for which the corresponding tangency conditions happen at prescribed positions on the
toric divisors. Finally, we fixed a non-negative integer n. Theorem 1.4 is a correspondence
theorem between log Gromov-Witten invariants of Xa, counting curves in Xa satisfying
the tangency constraints imposed by A and Af', and passing through n points in general
position, and refined counts of tropical curves in R? satisfying the tropical analogue of these

constraints.

To get Proposition 2.24, we take A = (w1 (k), ..., wsk) (k), kwme) 2, AT = (w1 (k), ..., we (k)
and n = 0. Using the notations of Chapter 1, we have |A| = s(k)+1, |AF| = s(k) and gﬁf; =0.
Using finally that the variable u keeping track of the genus in Chapter 1 is denoted A in the
present Chapter, we see that Theorem 1.4 reduces to Proposition 2.24. O

By comparison of the explicit formulas of Corollary 2.23, Proposition 2.24 and Proposition 2.8,
and using the relation

S(k) = i Z k[j

j=1031

to collect the powers of i, we find exactly the formula given in Theorem 2.6 for the Hamiltoni-
ans of the quantum scattering diagram S(Dy, ) in terms of the log Gromov-Witten invariants
N, gif n of the log Calabi-Yau surface Yy,. This ends the proof of Theorem 2.6.

2.7.2 END OF THE PROOF OF THEOREM 2.7

The proof of Theorem 2.7 follows the one of Theorem 2.6, up to minor notational changes.
The only needed serious modification is an orbifold version of the multicovering formula of
Lemma 2.20. This is provided by Lemma 2.25 below.

12We then have XA = Y up to some toric blow ups, which do not change the relevant log Gromov-Witten
invariants by [AW13].
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We fix positive integers r and £. Let P'[r,1] be the stacky projective line with a single
orbifold point of isotropy group Z/r at 0. Let M, (P[r,1]/c0) be the moduli space of
genus g orbifold stable maps to P![r, 1], relative to oo € P1[r, 0o], of degree r¢, with maximal
tangency order rf along oo. It is a proper Deligne-Mumford stack of virtual dimension

2g — 1 + ¢, admitting a virtual fundamental class
[Mge(P*[r,1]/00) " € Agg_11e(Mg,e(P*[r,1]/00), Q).

Let Opip,.17(~[0]/(Z/r)) be the orbifold line bundle on P'[r,1] of degree —1/r. Denoting
m:C - M, (P'[r,1]/c0) the universal source curve and f:C — P![r, 1] the universal map,

we define

N, = f[f (=1)?Ag € (R'm. £* (Op gy (-[01/(Zfr)))) € Q.

Mg o (Pr,1]/o0)]virt
where e(-) is the Euler class.

Lemma 2.25. For every positive integers r and £, we have

o (=t 1
NZ h2g 1_ ( )
2 Now ¢ 2sin ()

2
Proof. Tt is an higher genus version of Proposition 5.7 of [GPS10] and an orbifold version
of Theorem 5.1 of [BP05]. Very similar localization computations of higher genus orbifold
Gromov-Witten invariants can be found in [JPT11]. The main thing we need to explain is
the replacement in the orbifold case for the Mumford relation ¢(E)c(EY) =1 playing a key
role in the proof of Theorem 5.1 of [BP05]. We will simply have to twist the usual Hodge

theoretic argument of [Mum83] by a local system.

We consider the action of C* on P![r,1] with tangent weights [1/r,~1] at the fixed points

[0, 00]. We choose the equivariant lifts of

Opi[r,1)(=[01/(Z]1))

and Opi,,1] having fibers over the fixed points [0, co] of weight [~1/r,0] and [0,0] respec-
tively. For such choices, the argument given in the proof of Theorem 5.1 of [BP05] shows
that only one graph I' contributes to the C*-localization formula computing IV, g’r. The graph
I" consists of a genus g vertex over 0, a unique edge of degree r¢ and a degenerate genus zero

vertex over oo.

The contribution of I' is computed using the virtual localization formula of [GP99]. The

corresponding C*-fixed locus is'? the fiber product

M,1(BZ/r) 7 B2/ BZ/(rd),

where M, 1(BZ/r) is the moduli stack of 1-pointed'? genus g orbifold stable maps to the
classifying stack BZ/r, IBZ/r is the rigidified inertia stack of BZ/r, and the classifying

13We are assuming g > 0. The case g = 0 is simpler and treated in Proposition 5.7 of [GPS10].
M4With a trivial stacky structure at the marked point.
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stack BZ/(rd) appears as moduli space of C*-invariant Galois covers P! — P1[r, 1] of degree
r¢. This fibered product is a cover of M, 1(BZ/r) of degree r/(rf).

We denote m:Co —~ M, 1(BZ/r) the universal source curve over M, 1(BZ/r). The data of
an orbifold stable map fy:Cy - BZ/r is equivalent to the data of an (orbifold) Z/r-local
system L on Cy. We denote by t the generator of the C*-equivariant cohomology of a point.

The computation of the inverse of the equivariant Euler class of the equivariant virtual
bundle is done in Section 2.2 [JPT11] and gives

e(Rl(Wo)* (Oco ole t)) (r0)* t 1 (r)am 3

r tee! L—p\t r

where 67,0 =1 if L is the trivial Z/r-local system and 0 else. The vector bundle
1 t
R (7o)« OCO®L®;

over M, 1(BZ/r) comes from the equivariant orbifold line bundle 7p: (r,1](=00)|[01/(z/r) OVer
BZ][r, restriction over [0]/(Z/r) of the degree 1/r orbifold line bundle Tpi, 17(~00) over
Pr,1].

The contribution of the integrand in the definition of N, rir is
gA 1 O L t v t 1_6R’D -1 (g - 1)‘ -1
(DB m) (0o (Lo 2] ) () D

The vector bundle R (7). (OCO ®(L® %)V) over M, 1(BZ/r) comes from the equivariant
orbifold line bundle Opi,.11(~[0]/(Z/7))|j0)/(zsr) over BZ[r, restriction over [0]/(Z/r) of
the degree —1/r orbifold line bundle Op:(,1)(~[0]/(Z/r)) over P'[r,1].

By Serre duality, we have

oo (oo 10 ) (o (o2

and so

e (Rl(wo)* (Oco ® (L ® i)v)) = (-1)™e ((7?0)* (Wmu ®Le® ;))

(1) (:)k Zk (:)J ¢; ((10)s (wry ® L))

J=0

1y (i)rkc:((m)*(wm o L)),

where 1k is the rank of (7). (wr, ® L), locally constant function on M, 1(BZ/r), equal to
g on the component with L trivial and to g — 1 on the components with L non-trivial, and

where

ca(B) = ) ale;(E)

330
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is the Chern polynomial of a vector bundle E. Similarly, we have

e(Rl(Tf'o)* ((900 ®L® ;)) = (t)rk er: (r)j ¢ (Rl(ﬂ'o)yr (Oc, ®L))

) oo\t

~(4) e (W) ©@c 0 1)

We twist now the Hodge theoretic argument of [Mum83] (see formulas (5.4) and (5.5)) (see
also Proposition 3.2 of [BGPO08]) by the local system L. The complex

we, 10— Oc, iwﬂo -0,
twisted by L, gives rise to an exact sequence
0~ (70)« (wro ® L) > R (m0) 4 (wl, ® L) = R'(m0)+(Oc, ® L) - 0.

By Hodge theory, we have the Gauss-Manin connection on the restriction of R* (7). (wg, ®L)
to the open dense subset of ngl(BZ/r) given by smooth curves, with regular singularities

and nilpotent residue along the divisor of nodal curves. This is enough to imply
Cy (Rl(ﬂo)*(wao ® L)) =1,

and so
ez ((m0) s (Wry ® L)) ¢y (Rl(ﬂ'o)*(oco ®L)) =1.

Using this relation to simplify the above expressions, we get

N :Lf (—1)“(—1)9”‘“1-%0(’f)zrk_%“1 Ay
Sl JM g (BZr) T L -9

Using that rk = g — 1+ 0 0, this can be rewritten as

N@ :f (_1)(—1 (t)Qg—l >‘g
or M, (Bzir) r Lo

ré

As the dimension of M 1 (BZ/r) is 3g—2, we have to extract the term proportional to 1972

N@ _ [ (_1)6_1 £2g—1Agw2g—2 .

9" Jat, . (Bzfr) L

and we get

The integrand is now pullback from the moduli space Mg,l of 1-pointed genus g stable maps.
As the forgetful map M, 1(BZ/r) - M, has degree'® 72971 we have

_ (_1)671 9=
NgZ’T = T(’I"f)2 1_/‘M

and the result then follows, as in the proof of Theorem 5.1 of [BP05], from the Hodge
integrals computations of [FP00]. O

2g-2
Ag¥™77,
1

g,

15 There are r29 Z/r-local systems on a smooth genus g curve, each with a Z/r group of automorphisms.
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2.8 INTEGRALITY RESULTS AND CONJECTURES

In Section 2.8.1, we state Conjecture 2.28, a log BPS integrality conjecture. In Section 2.8.2,
we state Theorem 2.30, precise version of Theorem 3 of the Introduction, establishing the
validity of Conjecture 2.28 for (Yu,0Ym). The proof of Theorem 3 takes Sections 2.8.3
and 2.8.4. In Section 2.8.5, we describe some explicit connection with refined Donaldson-
Thomas theory of quivers. Finally, in Section 2.8.6, we discuss del Pezzo surfaces with a
smooth anticanonical divisor and we formulate Conjecture 2.41, precise form of Conjecture 4

of the Introduction.

2.8.1 INTEGRALITY CONJECTURE

We formulate a higher genus analogue of the log BPS integrality conjecture, Conjecture 6.2,
of [GPS10]. We start by formulating a rationality conjecture, Conjecture 2.26, before stating
the integrality conjecture, Conjecture 2.28.

Let Y be a smooth projective surface and let Y c Y be a reduced normal crossing effective
divisor. We endow Y with the divisorial log structure defined by Y and we get a smooth
log scheme. Following Section 6.1 of [GPS10], we say that (Y,9Y) is log Calabi-Yau with
respect to some non-zero class 8 € Hy(Y,Z) if 8.(9Y) = B.(-Ky).

Two basic examples are:

e For every m = (my,...,m,) an n-tuple of primitive non-zero vectors in M = Z2, the
pair (Y, 0¥ )¢ defined in Section 2.2.1. Then (Y, dYy) is log Calabi-Yau with
respect to every class 8 € Hy(Ym,Z) and so in particular with respect to the classes
Bp € Hy(Yi,Z) defined in Section 2.2.2.

o Y a del Pezzo surface and 9Y a smooth anticanonical divisor. Then (Y,9Y) is log
Calabi-Yau with respect to every class 8 € Ho(Y,Z).

We fix (Y,0Y) log Calabi-Yau with respect to some 8 € Hy(Y,Z) such that 5.(9Y) # 0.
Let M, (Y /0Y) be the moduli space of genus g stable log maps to Y of class 8 and full
tangency of order 5.(9Y) at a single unspecified point of D. It is a proper Deligne-Mumford

stack of virtual dimension g admitting a virtual fundamental class
[Hg,ﬂ(y/ay)]"i“ € Ag(My5(Y/[0Y),Q).

We define

NY/OY f x o
90 [Mg,[i(Y/ay)]Virt( ) g Q
Remark that if (Y,9Y) is of the form (Yi,0Yn) and f is of the form (3, see Section 2.2.2,

Y /oY _ NY“‘

then we have Ng 5 9 where Ng)j';; are the invariants defined in Section 2.2.3.

We can now formulate the rationality conjecture.

16Strictly speaking, Y is not smooth, but log smooth. We can either make Yy, smooth by toric blow-ups
or allow log smooth objects in the definition of log Calabi-Yau.
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Conjecture 2.26. Let (Y,0Y) be a log Calabi-Yau pair with respect to some class 3 €
Hy(Y,Z) such that 5.(0Y) #0. Then there exists a rational function

Q3(q7) € Q(g**)

such that we have the equality of power series in h,

Qp(g?) = (~1)P- @+ (2 sin (g)) (Z N’f//fyh”"l) :

g0

after the change of variables q = e'™.

Remarks:

° ﬁg(q%) is unique if it exists.

e If the rational function ﬁg(q%) exists, then it is invariant under q% —~ q’%, because its

power series expansion in A after ¢ = e has real coefficients.

e Given the 3-dimensional interpretation of the invariants NZfY given in Section 2.2.4,
Conjecture 2.26 should follow from a log version of the MNOP conjectures, [MNOPO06a],
[MNOPOGb], once an appropriate theory of log Donaldson-Thomas invariants is devel-
oped. If 9Y is smooth, then Conjecture 2.26 indeed follows from the relative MNOP
conjectures, see Section 3.3 of [MNOPO6b].

Let (Y,9Y) be a log Calabi-Yau pair with respect to some primitive class 8 € Hy(Y,Z) such
that 8.(0Y) # 0. Let us assume that Conjecture 2.26 is true for all the classes multiple of .
So, for every n > 1, we have a rational function ﬁnﬁ(q%) € Q(q 2). We define a collection of

rational functions Qnﬂ(q ) e Q(g* 2) n 2 1, invariant under q2 e 3 , by the relations

MBS

nﬁ(q ) Z

Z|n

).

—— < =2s(q

N\\ m\»—-

-q
-q

m\(\ N\H

Lemma 2.27. These relations have a unique solution, given by

=< £
< 2s(q?),

Mh\ [SICS
[\J\r\ N‘H

u(f) q
Qns(q?) =S 52 p

-q
£n -q
where p is the Mobius function.

Proof. Indeed, we have




=

1
1l g2-q2 m = 1
Z — T m  _m %,@(q2 )5m,1 :Q7L,3(q2)7
mn m 2 q 2
where we used the Mdbius inversion formula ¥, (') = 6 1 O

We can now formulate the integrality conjecture.

Conjecture 2.28. Let (Y,0Y) be a log Calabi-Yau pair with respect to some class 3 €
Hs(Y,Z), such that 5.(0Y) # 0, and such that the rationality Conjecture 2.26 is true for all
multiples of B, so that the rational functions Qng(ql) € Q(q* %) are defined. Then, in fact,
for everyn > 1, Qng(zp) is a Laurent polynomial in q2 with integer coefficients, i.e.

Quslq?) € Z[g*?],

. . 1 _1
invariant under q2 — q 2.

Remark:

e In Section 2.9.3, we explain why this integrality conjecture can be interpreted in some
cases as a mathematically well-defined example of the general integrality for open
Gromov-Witten invariants in Calabi-Yau 3-folds predicted by Ooguri-Vafa [OV00]. In
particular, the log BPS invariants Qg(q%) should be thought as examples of Ooguri-
Vafa/open BPS invariants.

e In the classical limit A — 0, the integrality of Q,3 = Qn@(q% = 1) is equivalent to
Conjecture 6.2 of [GPS10].

o If 32 = -1, B.(3Y) = 1, and the class 3 only contains a smooth rational curve, then
it follows from Lemma 2.20 that Conjecture 2.28 is true. More precisely, we have

— 1
nB(q2)—l% for every n> 1, and so Q5(¢q?) = 1 and Qng(q ) =0 for n>1.

2.8.2 INTEGRALITY RESULT

Lemma 2.29. For every m = (my,...,my,) an n-tuple of primitive non-zero vectors in
M =72 and p € P = N", the rationality Conjecture 2.26 is true for the log Calabi-Yau pair
(Y, OYm) with respect to the curve class B, € Ha(Y,Z).

Proof. This follows from Theorem 2.6, expressing the generating series of invariants IV, ;f"]‘g‘
as a Hamiltonian H,, attached to some ray of the quantum scattering diagram S (C‘ADm)7

and from Proposition 2.22; giving a formula for ﬁm whose coefficients are manifestly in

Qlg*2][(1 - ¢) o1

Alternatively, one could argue that, because the initial quantum scattering diagram O
is defined over Q[qi%][(l — ¢“)7' )1, the resulting consistent quantum scattering diagram
S(D) is also defined over Q[¢*2][(1 - ¢*) " ]ss1 and so Lemma 2.29 follows directly from
Theorem 2.6. O
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By Lemma 2.29, we have rational functions

=Ym , L 1
Q," (¢7) e Q(q*7),

such that

ﬁzm(q%) = (-1)%*! (2 sin(g)) (Z NYm h2g—1) ’
g20

as power series in A, after the change of variables ¢ = e'®. Remark that we used the fact
that 8,.(0Ym) = 4.

The following result is, after Theorem 2.6, the second main result of this Chapter. It is the
precise form of Theorem 3 in the Introduction.

Theorem 2.30. For every m = (my,...,my,) an n-tuple of primitive non-zero vectors in
M =72 and p € P = N", the integrality Conjecture 2.28 is true for the log Calabi-Yau pair
(Y, 0Yw) with respect to the class B, € Ho(Yy,,Z). In other words, there exists QZ‘“ (q%) €
Z[q*2] such that

A¥m, 1 1gz-¢q
0, =Y ;L
p=Lp’ * q q

£
Qr(g?).

Nls | Nl
Nl | Nl

The proof of Theorem 2.30 takes the next Sections 2.8.3 and 2.8.4.

2.8.3 (QUADRATIC REFINEMENT

According to Theorem 2.6, generating series of the log Gromov-Witten invariants N;j 5
are Hamiltonians attached to the rays of some quantum scattering diagram S(D,). Our
integrality result, Theorem 2.30, will follow from a general integrality result for scattering
diagrams. Our main input, the integrality result of [KS11], is phrased in terms of twisted
quantum scattering diagrams, i.e. scattering diagrams valued in automorphisms of twisted
quantum tori. The comparison with quiver DT invariants, done in Section 2.8.5, also requires

to consider twisted quantum scattering diagrams.

In the present Section, we explain how to compare the quantum scattering diagram .S (@m)
with a twisted quantum scattering diagram S(©%). This comparison requires the notion
of quadratic refinement. A short and to the point discussion by Neitzke can be found in

[Neild]. Some related discussion can be found in Appendix A of [Linl7].

We start with P =N" = @}_ Ne;. For p=(p1,...,pn) € P =N", we denote ord(p) = ¥7_; p;.
An n-tuple m = (myq,...,m,) of primitive non-zero vectors in M = Z? naturally defines an

additive map
rP->M

ej'—>mj.

For every A a Z[q*%]—algebm7 we denote Tﬁtw the non-commutative “space” whose algebra
of functions is the algebra I'(O4a ) given by A[[P]], powers series in &P, p € P, with
Ptw
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coefficients in A, with the product defined by

2P 4P (_1)(T(p)yr(p’)>q%(r(p)7r(p')>£p+1)'.
The main difference with respect to the formalism of Section 2.1 is the twist by the extra
sign (_1)(T(p)7r(p')>.

We will use 4 = Z[[¢*2]], Z((q?)) and Q((¢2)). We have obviously the inclusions

DO ey | € T Oaarrzy | < T\ Oaarrzy | -
TP,tw TP,tw TP,tw

Every

rtw Ttw Ap
HY = Z Hp zP el (OT@((quz») 5
peP Pitw

such that H*™ =0 mod P, defines via conjugation by exp (f[ ) an automorphism

(ﬁtﬁwtw = Adexp(ﬁtw) = exp (I:Itw) (—) exp (—]f[tw)

of I' (OTESE\?VI/Z» )
Definition 2.31. A twisted quantum scattering diagram D™ over (r:P - M) is a set of

rays 0 in Mg, equipped with elements
H el (O A@«ql/?») ’
TP,tw
such that:

e There exists (a necessarily unique) p € P primitive such that HEY e #Q((¢2 )[[27]]
and either r(p) € -Ny1my or r(p) € Nyymy. We say that the ray (b,ﬁgw) is ingoing
if r(p) € -Ny1myp and outgoing if r(p) € Nyymy. We call p the P-direction of the ray
(0, HY™).

e For every £ > 0, there are only finitely many rays 0 of P-direction p satisfying ord(p) <
L.

tw
Htw?
quantum scattering diagram and one can prove that every twisted quantum scattering dia-

Using the automorphisms & we define as in Section 2.1.4 the notion of consistent twisted

gram D™ can be canonically completed by adding only outgoing rays to form a consistent
twisted quantum scattering diagram S(D™).

The following Lemma will give us a way to go back and forth between quantum scattering

diagrams and twisted quantum scattering diagrams.

Lemma 2.32. The map oa: M — {£1}, defined by o3,(0) = 1 and opr(m) = (D)™ for

m € M non-zero, where |m| is the divisibility of m in M, is a quadratic refinement of
AM - {£1}
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(m17m2) = (_1)(7711,7712)7

i.e. we have

)(m1,m2>

aM(m1+m2):(—1 O'M(ml)CTM(MQ),

for every my,ms € M. It is the unique quadratic refinement such that opr(m) = =1 for every

m e M primitive.

Proof. We fix a basis of M and we denote m = (m?®,m?) the coordinates of some m € M in
this basis. We define o,;: M — {+1} by

J?\/[(m) - (_1)mmmy+m’+my )
It is easy to check that o, is a quadratic refinement of (~1){(~7): the parity of
(m7 +m3)(mY +mb) +m{ + m3 +mY +m}

differs from the parity of

x Y x Y x, Y x Yy
m1m1+m1 +m1+m2m2+m2 +m2

by m{m$ +mimY, which has the parity of (mi,ms).

If m € M is primitive, then (m®,mY) is equal to (1,0), (0,1) or (1,1) modulo two, and in
all these three cases, we get of,(m) = —1. Combined with the fact that ¢}, is a quadratic
refinement, this implies that, for every m e M, we have o},;(m) = (-1l ie. oy =onm- In

particular, ops is a quadratic refinement and o, is independent of the choice of basis.

The uniqueness statement follows from the fact that a quadratic refinement is determined

by its value on a basis of M. O

Let ’}ADf]ZV be the twisted quantum scattering diagram consisting of incoming rays (Oj,figj"),
1< j <n, where
Dj = —R;Omj s

and
ﬁgjv == *ﬁfczej el (OT@«qW») ;
s1tqr-q2 Pitw
where we consider . )
- =—¢* Z " € Q((g?))-

z
2 k>0

r_
qz —q
Let S (C‘AD:EX") be the corresponding consistent twisted quantum scattering diagram obtained

by adding only outgoing rays.

Define op: P — {+1} by op = opr or. It follows from Lemma 2.32 that op is a quadratic

refinement and so

n
(H tﬁj)ér(p) = op(p)a”,

J=1

is an algebra isomorphism between quantum tori and twisted quantum tori. Using this
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isomorphism, we can construct a twisted quantum scattering diagram S (35,,1)tw from the

quantum scattering diagram D
The incoming rays of S(ﬁm)tW are (Dj,ﬁ;‘]fv), 1< j <n, where 9; = -Ryom; and

. 11
Y ==Y 2

ezlgq%—q

i:eej .

_Z
2
The outgoing rays of S(Dw)™ are (Rsom, HY) where

Y- Y

ﬁp(q%) _ 1 1
pePr, 4 H

_q_

N|=

Lemma 2.33. We have S(D) = $(Dp)™.

Proof. As (ITj, t?j )27(P) s 5 p(p)iP is an algebra isomorphism, the twisted quantum scat-

tering diagram S(D,)"" is consistent and so the result follows from the uniqueness of the

consistent completion of twisted quantum scattering diagrams. O

2.8.4 PROOF OF THE INTEGRALITY THEOREM

We give below the proof of Theorem 2.30. It is a combination of the scattering arguments
of Appendix C3 of [GHKK18] with the formalism of quantum admissible series of [KS11].
Because of the structure of the induction argument, we will in fact prove a more general
statement than Theorem 2.30. We will prove, Proposition 2.35, that the consistent comple-
tion of any (twisted) quantum scattering with incoming rays equipped with Hamiltonians
satisfying some BPS integrality condition has outgoing rays equipped Hamiltonians satisfy-

ing the BPS integrality condition.

We fix p € P primitive. Consider
H™ = 3 1™ (q7)a" € Q((¢? D[]
21
We define
Ot L1y prtw 1
Qu(q?) = (g2 ¢ 2)H;" (¢7) € Q(¢?)),
and

04(a%) € Q(a?).

l\J\r\ m\»a

1
ZN qz_q

£
oe U gz -q

It follows from Lemma 2.27 that we have

I\J\N

Qn(
T
q2 —q-

P>

n>1£21

a2) .

N\»—l

Definition 2.34. We say that H"™ € i?Q((q2 ))[27]] satisfies the BPS integrality condition
if the corresponding Ql(q%) € (@((q%)) are in fact Laurent polynomials with integer coeffi-
cients, i.e. Qu(q?) € Z[q2].
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Remarks:

o H™ satisfies the BPS integrality condition if and only if exp (I:I tw) is admissible in
the sense of Section 6 of [KS11].

e [t follows from the product form of the quantum dilogarithm, as recalled in Section
2.3.1, that if H®™ satisfies the BPS integrality condition, then é%w preserves the
subring I" (OTZ[[q1/2]]) of T (OTQ((ql/z)) ) We call BPS quantum tropical vertex group'”

Ptw Ptw

the subgroup of automorphisms of T’ OTZ[[Q1/2]]) generated by automorphisms of the
Ptw

form @;IWW with H™ satisfying the BPS integrality condition.

We fix a choice of twisted quantum scattering diagram in each equivalence class by consider-
ing as distinct rays with different P-directions and by merging rays with coinciding supports
and with the same P-direction.

Proposition 2.35. Let ny be a positive integer and (p',...,p"") be an nr-tuple of primitive
vectors in P. Let ™ be a twisted quantum scattering diagram over (r: P — M), consisting
of incoming rays (D]—,H';;V), 1< j<ng, withd; = -Ryor(p?) and Hg‘]” e 27 Qg2 )["']]
satisfying the BPS integrality condition. Then the consistent twisted quantum scattering
diagram S(D®) is such that for every outgoing ray (9, HE™), of P-direction p € P, we have
that HEY € PQ((q2))[27]] satisfies the BPS integrality condition.

Proof. If ny = 2, or if more generally all the initial rays —Rr(p;) are contained in a common
half-plane of Mg, then the result follows directly from Proposition 9 of [KS11].

We will reduce the general case to the case ny = 2 by using an argument parallel to the one
used in Appendix C.3 of [GHKK18] to prove some positivity property of classical scattering
diagrams.

For p = (p1,...,pn) € P =N", we denote ord(p) = ¥j_; p;. It is simply the total degree of
the monomial in several variables [T}_, t?j .

The result we will prove by induction over some positive integer N is:

Proposition 2.36. Let n be a positive integer and r: P = N® — M be an additive map.
Let ny be a positive integer and (p',...,p"") be an nr-tuple of primitive vectors in P.
Let % be a twisted quantum scattering diagram over (r: P — M), consisting of incoming
rays (D]—,H';;'_V), 1 < j < ny, with 9 = -Ryor(p?) and Iﬁj" e &7 Q((q2 )[[&”' ] satisfying
the BPS integrality condition. Then every outgoing ray (D,Iflgw) of the consistent twisted
quantum scattering diagram S(@tw), whose P-direction p satisfies ord(p) < N, is such that
H € PQ((q?))[27]] satisfies the BPS integrality condition.

Proposition 2.36 is obviously true for N = 1: the only outgoing rays with P-direction p
satisfying ord(p) = 1 are obtained by straight propagation of the initial rays and so satisfy
the BPS integrality condition if it is the case for the initial rays.

17Called the quantum tropical vertex group in [KS11].
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Let N > 1 be an integer. We assume by induction that Proposition 2.36 is true for all
integers strictly less than N and we want to prove it for N. As in Step IIT of Appendix C3
of [GHKK18], up to applying the perturbation trick, consisting in separating transversally
and generically the initial rays with the same support and then looking at the new local

scatterings, we can assume that at most two initial rays have order one.

We now use the change of monoid trick, as in Steps I and IV of Appendix C3 of [GHKK18].
Denote P’ = @71, Ne’; and

P’ M

&) ro'(es) = (1)

Let ®™ be the twisted quantum scattering diagram over (r’: P’ - M) obtained by replacing
27’ by 2% in ﬁ;:v Denote

wP' - P

e [

Let (9, HS™) be an outgoing ray of S(D), whose P-direction p satisfies ord(p) = N. Then
(0, ﬁgw) is the sum of images by u of outgoing rays of S(@tw’), of P'-direction mapping to
p by u. Let (0, ff;)”) be such outgoing ray of S(@tw').

Writing p = Y7, plel, (pi,....p),) € N7, we have

nr nr
ord(p") =ord| Y pief | = > 0},
j=1 j=1

whereas

ny . ny .
Zp}p]) = > pyord(p’).
i=1 =1

J

ord(p) = ord (

If only two p; are non-zero, then the ray (?’, I-AngV) belongs to a twisted quantum scattering
diagram with two incoming rays and so its BPS integrality follows from Proposition 9 of
[KS11]. If more than two of the p;» are non-zero, then, at least one of the p’ with n; # 0
satisfies ord(p?) > 2 and so ord(p’) < ord(p). The BPS integrality of the ray (?’, ﬁg‘,”) then
follows by the induction hypothesis. O

We can now finish the proof of Theorem 2.30. By Theorem 2.6 and Lemma 2.33, it is enough
to show that the outgoing rays of the twisted quantum scattering diagram S(D%) satisfy
the BPS integrality condition. As the initial rays of S (@f;v) satisfy the BPS integrality

condition, the result follows from Proposition 2.35.

2.8.5 INTEGRALITY AND QUIVER DT INVARIANTS

We refer to [KS08], [JS12], [Reil0], [Reill], [MR17] for Donaldson-Thomas (DT) theory of

quivers.

For every m = (my,...,m,) an n-tuple of primitive non-zero vectors in M = Z?, we define
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a quiver Qu, with set of vertices {1,2,...,n} and, for every 1 < j,k < n, (mj,my), =
max({m;,my),0) arrows from the vertex j to the vertex k. We identify P = ®}_;Ne; with

the set of dimension vectors for the quiver Q.

Lemma 2.37. The quiver Qu is acyclic, i.e. does not contain any oriented cycle, if and

only if the n vectors m1,...,m, are all contained in a closed half-plane of My = R2.

Proof. The quiver @, contains an arrow from the vertex i to the vertex j if and only if

(m;,m;) is an oriented basis of R?. O

Let us assume that the quiver Qu is acyclic. Every 0 = (0;)1<j<n € Z" defines a notion
of stability for representations of Q.. For every p € P, we then have a projective variety
Mg‘ss, moduli space of #-semistable representations of @)y, of dimension p, containing the
open smooth locus Mg’” of f-stable representations. Denote ¢ Mg’“ - Mg’ss the natural

inclusion. The main result of [MR17] is that the Laurent polynomials

dim M=t
QFn0(gh) = (-1 g I ST (dim HY (M, 0.Q))
3=0

c (_1)dim Mﬁ’“q—% dim Mﬁ’”N[q]

are the refined DT invariants of @y, for the stability 6. In the above formula, v, is the
intermediate extension functor defined by ¢ and so ¢, Q is a perverse sheaf on Mg_ss.

As Qn is acyclic, we can assume, up to relabeling my,...,m,, that (m;,mg) > 0 if j < k.
If 1 < 03 < -+ < O, then Q@~0(q%) = 1, for all 1 < j < n, and QF’(q%) = 0 for p e
P-{ey,...,e,}. We call such 6 a trivial stability condition.

If 0, >05>--->0,, we call § a maximally non-trivial stability condition. We simply denote

Qg“‘ (q2) for Qg“"e(q%) and 6 a maximally non-trivial stability condition.

Proposition 2.38. For everym = (myq,...,my) such that the quiver Qu, is acyclic, we have,

for every pe P =N", the equality
1 1
QP (q2) = (a7)

between the refined DT invariant QIC;?'" (q%) of the quiver Qu and the log BPS invariant
Q;)/“‘ (q%) of the log Calabi-Yau surface Yp,.

Proof. The twisted quantum scattering diagram S (@tmw) controls the wall-crossing of refined
DT invariants of ()., from the trivial stability condition to the maximally non-trivial stability
condition. O

Remarks:

e In the limit q% — 1, and if @, is complete bipartite, then Proposition 2.38 reduces to
the Gromov-Witten/Kronecker correspondence of [GP10], [RW13], [RSW12].
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e Proposition 2.38 can be viewed as a concrete example of equality between open BPS
invariants and DT invariants of quivers. The expectation for this kind of relation goes
back at least to [CV09], as reviewed in Section 2.9. Related recent stories include
[KRSS17a], [KRSS17b], where some knot invariants, which via some string theoretic
duality should be examples of open BPS invariants, are identified with some quiver DT
invariants, and [Zas18], where a precise correspondence between open BPS invariants
of some class of Lagrangian submanifolds in C* and some DT invariants of quivers is
conjectured.

e Proposition 2.38 gives a different proof of Theorem 2.30 when @, is acyclic. When Qy,
is not acyclic, it is unclear a priori how to relate the log BPS invariants Q;/"‘ (q%) to
some DT quiver theory. In the physics language, one should remove the contributions
of non-trivial single-centered (pure Higgs) indices (see [MPS13] and follow-ups). It
is still an open question to define mathematically the corresponding operation in DT
quiver theory. The fact that the integrality given by Theorem 2.30 holds even if Q,
is not acyclic is probably an additional evidence that it should be possible.

e When @, is acyclic, Proposition 2.38 gives a positivity result for the log BPS invariants

Qz‘“ (q%). It is unclear how to prove a similar positivity result if @y, is not acyclic.

We finish this Section by some remark about signs. The definition of QZ‘" (q?) given in
Section 2.8.2 includes a global sign (-1)%~! = (=1)%(®¥m)=1 " \whereas the formula given
above for Qg‘“(q%) includes a global sign (~1)%™ My~ Using that £,.(0Y) and 37 have
the same parity by Riemann-Roch on Yy, the following result gives a direct proof that these
two signs are identical.

Lemma 2.39. For every p € P, we have
dim M) =82 +1.

Proof. We write p = Z;L:l pje; € P. By standard quiver theory, we have
0 n n n 9
dim M™% = Z Z(mj,mk)+pjpk - ij +1.
j=1k=1 j=1
By definition, Section 2.2.2, we have
n
Bp=v'B-> pE;,
j=1

where v: Yy, — Y, is the blow-up morphism and 8 € Ho(Y ,Z) is defined by some intersec-
tion numbers. It follows that

n
By=B" -2}
j=1
From the intersection numbers defining 3, we see that the convex polygon dual to [ is

obtained by successively adding the vectors p;m; and ¢,m,, in the order given by the
counterclockwise ordering of the m; and m, given by their argument. By standard toric
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geometry, 32 is given by twice the area of the dual polygon and so we have

n

n
= Z m]zmk +P;jPk -
=1 k=1

It follows that

n

n
ﬂg = Z mjamk +PjPk — Zp] _dlmMe 58—
j=lk=1 j=1

2.8.6 DEL PEZZO SURFACES

In this Section, we study the conjectures of Section 2.8.1 in the case where Y is a del
Pezzo surface S and 9Y is a smooth anticanonical divisor E of Y. In particular, F is a
smooth genus one curve. We formulate Conjecture 2.41, precise form of Conjecture 4 of the
Introduction.

Lemma 2.40. Let S be a del Pezzo surface, and E be a smooth anticanonical divisor of S.
Then, for every B € Ho(Y,Z), the rationality Conjecture 2.26 is true for the log Calabi-Yau
pair (S, E) with respect to the curve class (3.

Proof. As in Section 2.2.4, the invariants N:gE can be written as equivariant Gromov-
Witten invariants of the 3-fold S x C relative to the divisor E x C. The rationality result
then follows from the Gromov-Witten/stable pairs correspondence for the relative 3-fold
geometry S x C/E x C.

This case of the Gromov-Witten /stable pairs correspondence can be proved following Section 5.3
of [MPT10]. This involves considering the degeneration of S'x C to the normal cone of ExC.
Denote N the normal bundle to F in S. The degeneration formula expresses equivariant
Gromov-Witten/stable pairs theories of S x C, without insertions, in terms of the relative
equivariant Gromov-Witten/stable pairs theories, without insertions, of S x C/E x C and
]P(N & OE) x C.

As S x C is deformation equivalent to a toric 3-fold'®, the Gromov-Witten/stable pairs
correspondence, without insertions, for S x C follows from Section 5.1 of [MPT10].

The equivariant Gromov-Witten/stable pairs theory of P(N @ Og) x C/E x C coincides
with the non-equivariant Gromov-Witten theory of P(N @ Og) x E/E x E. The 3-fold
P(N ® Op) x E is a P'-bundle over E x E and we are considering curves of degree 0 over
the second F factor. As E x E is holomorphic symplectic, the Gromov-Witten/stable pairs
theories vanish unless the curve class has also degree 0 over the first E factor. The Gromov-
Witten/stable pairs correspondence for P(NeOg)x E/ExE, without insertions, thus follows

from the Gromov-Witten/stable pairs correspondence, without insertions, for local curves.

It follows from Proposition 6 of [PP13] that the degeneration formula can be inverted to

8Indeed, a del Pezzo surface is deformation equivalent to a (non-necessarily del Pezzo) toric surface: if S
is a blow-up of P2 in n points, then S is deformation equivalent to a surface obtained by n successive toric
blow-ups of P2.
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imply the Gromov-Witten/stable pairs correspondence, without insertions, for S x C/E x
C. O

By Lemma 2.40, we have rational functions
/E, 1 1
(¢7) € Q(q™2),

such that

@b = (0 (2 (5) (ZNﬁéEth‘1)7

920

as power series in h, after the change of variables ¢ = e'”.

We define )
-q §
g Qp(g%) € Q(q7).

N\N N‘H

Oy = Y (f>

B=Lp’ q

According to Conjecture 2.28, one should have Qg/E(q%) € Z[qi%].

Let Mg be the moduli space of dimension one stable sheaves on S, of class 5 € Ho(S,Z),
and Euler characteristic 1. It is a smooth projective variety of dimension 52 + 1. We denote

B%+1 _ ) )
Xa(Mp) = g 30 S (1) Rk (M) € Z[q*3]
7,k=0

the normalized Hirzebruch genus of Mg, where h?* are the Hodge numbers. It follows
from Theorem 2 of [Mar07], following [ESm93] and [Bea95], that h/**(Mg) = 0 if j # k. In
particular, x,(Mpg) coincides with the normalized Poincaré polynomial of Mg.

Conjecture 2.41. We have

23/ (q%) = (-1)7 N (B.E)xq(Mp).
Remarks:

e We have % = .F mod 2 by Riemann-Roch.
e In the limit q% — 1, Conjecture 2.41 reduces to
s E- n2,p (BE
No,iaE = (_1)ﬁ E-1 Z (_1)(ﬁ) +1¥6(M5/)
B=Lp’
= (1) F(B.E) Z ( D e(My),
which is a known result. Indeed, by an application of the degeneration formula origi-
nally due to Graber-Hassett and generalized in [vGGR17], we have NS/E = (-1)P-F*Y(B.E)N; ﬁ,

where X is the local Calabi—Yau 3-fold given by the total space of the canonical line
bundle Kg of S, and N, /3 is the genus 0, class 8, Gromov-Witten invariant of X. So
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the above formula is equivalent to

1 N2
Nojs= 3 (D) e(My),
B=tp’
which is exactly the Katz conjecture (Conjecture 2.3 of [Kat08]) for X. As X is
deformation equivalent to a toric Calabi-Yau 3-fold, the Katz conjecture for X follows

from the combination of the Gromov-Witten/stable pairs correspondence (Section 5.1
of [MPT10]), the integrality result of [Kon06] and Theorem 6.4 of [Tod12].

e The right-hand side (—1)ﬁ2+1xq(M5) should be thought as a refined DT invariant of
X, counting dimension one sheaves. From this point of view, Conjecture 2.41 is an
equality between a log BPS invariant on one side and a refined DT invariant on the

other side, in a way completely parallel to Proposition 2.38.

e Further conceptual evidences for Conjecture 2.41 and a further refinement of Conjec-

ture 2.41 will be presented elsewhere.

2.9 RELATION WITH CECOTTI- VAFA

In [CV09], Cecotti-Vafa have given a physical derivation of the fact that the refined BPS
indices of a N = 2 4d quantum field theory admitting a Seiberg-Witten curve satisfy the
refined Kontsevich-Soibelman wall-crossing formula. To make connection with Theorem 2.6,
we focus on only one part of the argument, establishing the relation between open Gromov-
Witten invariants and wall-crossing formula via Chern-Simons theory. In particular, we do
not discuss the application to the BPS spectrum of N = 2 4d quantum field theories, which
would be related to our Section 2.8.5 on quiver DT invariants.

2.9.1 SUMMARY OF THE CECOTTI-VAFA ARGUMENT

Let U be a non-compact hyperkihler manifold'®, (I,.J, K) be a quaternionic triple of com-
patible complex structures, (wr,ws,wk ) be the corresponding triple of real symplectic forms

and (Q,Q7,QK) be the corresponding triple of holomorphic symplectic forms.

Let ¥ c U be a I-holomorphic Lagrangian subvariety of U, i.e. a submanifold such that
Qg|s = 0. It is an example of (B, A, A)-brane in U: it is a complex subvariety for the complex
structure I and a real Lagrangian for any of the real symplectic forms (cos6)w; + (sin0)wg,
0 € R. There is in fact a twistor sphere J¢, ¢ € P!, of compatible complex structures, such
that I = Jy, J=J; and K = J;.

Let X be the non-compact Calabi-Yau 3-fold, of underlying real manifold U x C* and
equipped with a complex structure twisted in a twistorial way, i.e. such that the fiber over
¢ € C* is the complex variety (U, J:). Consider S' ¢ C* and L =% x S' c X.

We consider the open topological string A-model on (X, L), i.e. the count of holomorphic

91n [CV09], Cecotti-Vafa consider U = C? but the generalization to an arbitrary hyperkahler surface is
clear and is considered for example in [CNV10] (in particular Appendix B).
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maps (C,0C) - (X, L) from an open Riemann surface C to X with boundary dC mapping
to L?°. We restrict ourselves to open Riemann surfaces with only one boundary component.
Given a class € Hy(X, L), let Ny g €Q be the “count” of holomorphic maps ¢: (C,9C) —
(X, L) with C a genus ¢g Riemann surface with one boundary component and [¢(C,9C)] = 8.
We denote

0B =[0C] e Hy (L),

i.e. the image of 8 by the natural boundary map Hy(X,L) —» H1(L). A holomorphic map
©:(C,0C) - (X, L) of class 8 € Ho(X, L) is a J.e-holomorphic map to U, at a constant
value €% € S', where 6 is the argument of fﬂ Qr.

According to Witten [Wit95], in absence of non-constant worldsheet instantons, the effective
spacetime theory of the A-model on the A-brane L is Chern-Simons theory of gauge group
U(1). The field of this theory is a U(1) gauge field A and its action is

1
Ios(4) =3 [LA/\dA.

The non-constant worldsheet instantons deform this result, see Section 4.4 of [Wit95]. The
effective spacetime theory on the A-brane L is still a U(1)-gauge theory but the Chern-
Simons action is deformed by additional terms involving the worldsheet instantons:

I(A) = ICS(A) + Z Z Ng’5h2ge’fﬂwefaﬁ‘4 .
B8 g20

The partition function of the deformed theory can be written as a correlation function in

L 1(A)
Z:fDAel ;

Chern-Simons theory

:(exp(z Z ZNgyﬂhgg_le_wae/c?ﬂA)>
BeH2(X,L) g0 cs

As L =X x S, we can adopt a Hamiltonian description where S plays the role of the time
direction. The classical phase space of U (1) Chern-Simons theory on L = ¥ x S! is the space
of U(1) flat connections on X. When ¥ is a torus, the classical phase space is the dual torus
T. For every m € Hy (L), the holonomy around m defined a function 2™ on T, i.e. a classical
observable,

2™(A) = efm?.
m' m

The algebra structure is given by zmzm = zm+m" and the Poisson structure by {z ,zm/} =

m+m’  The algebra of quantum observables is given by the non-commutative torus,
m.m/) gmim’ - where ¢ = e, Writing t# = e~ I3 we get

(m,m’)z

’
sm sm

gmam’ = g3t

Z = TI"H (T H Adexp(—i Zgzo Ny,ﬁhQ_q—ltﬁZ‘m)) 9
BeH2(X,L)

20Usually, A-branes, i.e. boundary conditions for the A-model, have to be Lagrangian submanifolds. In
fact, L is not Lagrangian in X but only totally real. Combined with specific aspects of the twistorial
geometry, it is probably enough to have well-defined worldsheet instantons contributions. As suggested in
[CV09], it would be interesting to clarify this point.
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where H is the Hilbert space of quantum Chern-Simons theory and where T[] is a time
ordered product, with ordering according to the phase of |, 5 Q.

The key physical input used by Cecotti-Vafa [CV09] is the continuity of the partition function
Z as function of the position of L in X. It follows that the jump of the invariants Ny g under
variation of L in X is controlled by the refined Kontsevich-Soibelman wall-crossing formula

formulated in terms of products of automorphisms of the quantum torus.

2.9.2 COMPARISON WITH THEOREM 2.6

Our main result, Theorem 2.6, expresses the log Gromov-Witten theory of a log Calabi-Yau
surface (Y, 0Yy,) in terms of the 2-dimensional Kontsevich-Soibelman scattering diagram.
The complement Uy, = Y, —9Y;, is a non-compact holomorphic symplectic surface admitting
a SYZ real Lagrangian torus fibration. In some cases, Uy, admits a hyperkahler metric, such
that the original complex structure of Uy, is the compatible complex structure J, and such
that the SYZ fibration becomes I-holomorphic Lagrangian. Typical examples include 2-
dimensional Hitchin moduli spaces, see [Boal2] for a nice review. In such cases, we can
apply the Cecotti-Vafa story summarized above to U = Uy,, with X a torus fiber of the SYZ
fibration.

The log Gromov-Witten invariants with insertion of a top lambda class Vg g, introduced in
Section 2.2, should be viewed as a rigorous definition of the open Gromov-Witten invariants
in the twistorial geometry X, with boundary on a torus fiber ¥ “near infinity”2!. This is in
part justified by the 3-dimensional interpretation of the invariants N;‘g given in Section 2.2.4

and in particular by Lemma 2.5.

Automorphisms of the quantum torus appearing in Section 2.9.1 coincide with the automor-
phisms of the quantum torus appearing in Theorem 2.6. It follows that Theorem 2.6 can
be viewed as a mathematically rigorous check of the physical argument given by Cecotti-
Vafa [CV09], based on the continuity of Chern-Simons correlation functions and on the
connection predicted by Witten [Wit95] between A-model topological string and quantum

Chern-Simons theory.

2.9.3 OOGURI-VAFA INTEGRALITY

Using the review of the Cecotti-Vafa paper [OV00] given in 2.9.1, we can explain the relation
between Conjecture 2.28 and Theorem 2.30 of Section 2.8 and the integrality conjecture of
Ooguri-Vafa [OV00].

If (Y,0Y) is a log Calabi-Yau surface, the complement U = Y - JY is a non-compact
holomorphic symplectic surface. Assuming that U admits a hyperkéhler metric such that the
original complex structure of U is the compatible complex structure, and an I-holomorphic

Lagrangian torus fibrations, we can apply Section 2.9.1, taking for ¥ a fiber of the torus

21 An early reference for the interpretation of some open Gromov-Witten invariants in terms of relative
stable maps is [LS06]. The intuitive picture to have in mind is that an open Riemann surface with a boundary
on a torus fiber very close to the divisor at infinity can be capped off by a holomorphic disc meeting the
divisor at infinity in one point.
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fibration. As in Section 2.9.2; the log Gromov-Witten invariants with insertion of a top
lambda class defined in Section 2.8 should be viewed as a rigorous definition of the open
Gromov-Witten invariants in the twistorial geometry X, with boundary on a torus fiber
“near infinity” i.e. near the anticanonical divisor Y of Y. Ooguri-Vafa have given a physical
derivation of an integrality result for these open Gromov-Witten invariants, analogue to the
Gopakumar-Vafa [GV98a] [GV9I8b] integrality for closed Gromov-Witten invariants.

The open topological string A-model has a natural embedding in physical string theory.
More precisely, in type ITA string theory on R* x X, it computes F-terms in the A" = (2,2)
2d quantum field theory on the non-compact worldvolume of a D4-brane on R? x L. In the
strong coupling limit of type ITA string theory, we get M-theory on R® x X, with some M5-
brane on R3 x L, and fundamental strings become M2-branes. Let Q, g € Z be the BPS index
given by counting M2-branes with boundary on L, of class 5 € Hyo(X, L), and defining BPS
states of spin r € %Z in R3. Comparing the type IIA string description and the M-theory
description, Ooguri-Vafa [OV00] obtained the relation

ZN h2g—1: Z (_1)4—1 1 Z 9 /eilrh
920 P P 2Sin(%) relz "

The corresponding integrality obviously coincides with the integrality of Conjecture 2.28
and Theorem 2.30.
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DEFORMATION QUANTIZATION OF LOG
CALABI-YAU SURFACES

3.1 BASICS AND MAIN RESULTS

3.1.1 LOOIJENGA PAIRS

Let (Y, D) be a Looijenga pair': Y is a smooth projective complex surface and D is a sin-
gular reduced normal crossings anticanonical effective divisor on Y. Writing the irreducible
components

D=Di+---+D,,

D is a cycle of r irreducible smooth rational curves D; if r > 2, or an irreducible nodal rational
curve if » = 1. The complement U :=Y — D is a non-compact Calabi-Yau surface, equipped
with a holomorphic symplectic form €7, defined up to non-zero scaling and having first order
poles along D. We refer to [Loo81], [Fril5], [GHK15a], [GHK15b], for more background on
Looijenga pairs.

There are two basic operations on Looijenga pairs:
e Corner blow-up. If (Y, D) is a Looijenga pair, then the blow-up Y of Y at one of the
corners of D, equipped with the preimage Dof D, is a Looijenga pair.
e Boundary blow-up. If (Y, D) is a Looijenga pair, then the blow-up ¥ of ¥ at a smooth

point of D, equipped with the strict transform D of D, is a Looijenga pair.

A corner blow-up does not change the interior U of a Looijenga pair (Y, D). An interior
blow-up changes the interior of a Looijenga pair: if (Y, D) is an interior blow-up of (¥, D),

'We follow the terminology of Gross-Hacking-Keel [GHK15a]
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then, for example, we have
e(U)=e(U) +1,

where U is the interior of (Y, D), U is the interior of (Y, D), and e(-) denotes the topological
Euler characteristic.

If Y is a smooth toric variety and D is its toric boundary divisor, then (Y, D) is a Looijenga
pair, of interior U = (C*)2. In particular, we have e(U) = e((C*)?) = 0. Such Looijenga
pairs are called toric. A Looijenga pair (Y, D) is toric if and only if its interior U =Y — D

has a vanishing Euler topological characteristic: e(U) = 0.

A toric model of a Looijenga pair (Y, D) is a toric Looijenga pair (Y, D) such that (Y, D)
is obtained from (Y, D) by applying successively a finite number of boundary blow-ups.

If (Y, D) is a Looijenga pair, then, by Proposition 1.3 of [GHK15a], there exists a Looijenga
pair (Y, D), obtained from (Y, D) by applying successively a finite number of corner blow-
ups, which admits a toric model. In particular, we have e(U) > 0, where U is the interior of
(Y, D).

Let (Y, D) be a toric model of a Looijenga pair (Y, D) of interior U. Let @ be a torus
invariant real symplectic form on (C*)? =Y - D. Then the corresponding moment map
for the torus action gives to Y the structure of toric fibration, whose restriction to U is
a smooth fibration in Lagrangian tori. By definition of a toric model, we have a map
p:(Y,D) - (Y, D), composition of successive boundary blow-ups. Let E; denote the excep-
tional divisors, j =1,...,e(U). Then for ¢; small enough positive real numbers, there exists
a symplectic form w in the class

e(U)
ple]- ) 6 E;
j=1
with respect to which Y admits an almost toric fibration, whose restriction to U is a fibration

in Lagrangian tori with e(U) nodal fibers, [AAK16].

Toric models of a given Looijenga pair are very far from being unique but are always related
by sequences of corner blow-ups/blow-downs and boundary blow-ups/blow-downs. The
corresponding almost toric fibrations are related by nodal trades, [Sym03].

Following Section 6.3 of [GHK15a], we say that (Y, D) is positive if one of the following

equivalent conditions is satisfied:

e There exists positive integers a1, ..., a, such that, for all 1 <k <r, we have
T
Z aij .Dk >0.
j=1

e U is deformation equivalent to an affine surface.

e U is the minimal resolution of Spec H°(U, Oy ), which is an affine surface with at worst
Du Val singularities.
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3.1.2 TROPICALIZATION OF LOOIJENGA PAIRS

We refer to Sections 1.2 and 2.1 of [GHK15a] and to Section 1 of [GHKS16] for details.
Let (Y, D) be a Looijenga pair. Let Dy,..., D, be the component of D, ordered in a cyclic
order, the index j of D; being considered modulo r. For every j modulo r, we consider an
integral affine cone o ;.1 = (Rx0)?2, of edges pj and p;.1. We abstractly glue together the
cones 0;-1,; and o; ;.1 along the edge p;. We obtain a topological space B, homeomorphic
to R2, equipped with a cone decomposition ¥ in two-dimensional cones 0j,j+1, all meeting
at a point that we call 0 € B, and pairwise meeting along one-dimensional cones p;. The
pair (B, X) is the dual intersection complex of (Y, D). We define an integral linear structure
on By = B - {0} by the charts
VU — R?,

where U; =Int(o;_1,; U0, j+1) and 9, is defined on the closure of U; by

i (vio1) = (1,0),45(v;) = (0,1),45(vjs1) = (-1,-D3),

where v; is a primitive generator of p; and 1); is defined linearly on the two-dimensional
cones. Let A be the sheaf of integral tangent vectors of By. It is a locally constant sheaf on
B, of fiber Z2.

The integral linear structure on By extends to B through 0 if and only if (Y, D) is toric.
In this case, B can be identified with R? as integral linear manifold and ¥ is simply the
fan of the toric variety Y. In general, the integral linear structure is singular at 0, with a

non-trivial monodromy along a loop going around 0.

As By is an integral linear manifold, its set Bo(Z) of integral points is well-defined. We
denote B(Z) = Bo(Z)u{0}. If (Y, D) is toric, with Y — D = (C*)?, then B(Z) is the lattice
of cocharacters of (C*)2, i.e. the lattice of one-parameter subgroups C* — (C*)2. Thus,
intuitively, a point of By(Z) is a way to go to infinity in (C*)2. This intuition remains true
in the non-toric case: a point in By(Z) is a way to go to infinity in the interior U of the pair
(Y, D).

More precisely, if we equip (Y, D) with its divisorial log structure, then p € B(Z) defines a
tangency condition along D for a marked point x on a stable log curve f:C — (Y,D). If
p=0, then f(z) ¢ D. If p=mjv;, m; €N, then f(x) € D; with tangency order m; along D;
and tangency order zero along D;_1 and Dj.1. If p= mjvji + mj1vj41, mj, mje € N, then

f(z) € Dj n Dj,; with tangency order m; along D; and tangency order mj,; along Dj+12.

Let P be a toric monoid and P#P be its group completion, a finitely generated abelian group.
Denote PEP := P @, R, a finite dimensional R-vector space. Let ¢ be a convex PgP-valued
multivalued X-piecewise linear function on By. Let A; be the fiber of the sheaf A of integral
tangent vectors over the chart U;. Let nj_q j,n;;+1 € A} ® P8 be the slopes of g0|0].71_j and
@lo; ;.- Let A, be the fiber of the sheaf of integral tangent vectors to the ray p;. Let
d;:Aj = Aj/A,, ~ 7 be the quotient map. We fix signs by requiring that J; is nonnegative

on tangent vectors pointing from p; to ;1. Then (nj 41 —nj-1;)(A,;) = 0 and hence

2This makes sense precisely because we are using log geometry.
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there exists «,; , € P with

Mg+l = Mj-1,j = 0jkp; 0
called the kink of ¢ along p;.

Let Bo,, be the PEP-torsor, which is set-theoretically By x P§” but with an integral affine

structure twisted by : for each chart v;:U; — R? of By, we define a chart on Bg,, by

i\T), ifl‘GO'j_l,j
(x’p)H{(w( ).)

(1 (x),p+0;(2)kp,.0) if T €050,

where Sjla'j’j+1 — Ry is the integral affine map of differential ;. By definition, ¢ can be
viewed as a section of the projection m:Bg , — Bo. Then P = ¢*Ag, , is a locally constant
sheaf on By, of fiber Z? ® PP and the projection m By, - Bp induces a short exact
sequence

0> PP P 5 A0

of locally constant sheaves on By, where P8P is the constant sheaf on By of fiber P8P, and

where t is the derivative of 7.

The sheaf A is naturally a sheaf of symplectic lattices: we have a skew-symmetric non-

degenerate form
(-,-)A®A->Z.

We extend (-, -) to a skew-symmetric form on P of kernel P®P.

3.1.3 ALGEBRAS AND QUANTUM ALGEBRAS

When we write “A is an R-algebra”, we mean that A is an associative algebra with unit
over a commutative ring with unit R. In particular, R is naturally contained in the center
of A.

We fix k an algebraically closed field of characteristic zero and i € k a square root of —1.

For every monoid® M equipped with a skew-symmetric bilinear form
<_a_>:MXM _)Za

we denote k[ M] the monoid algebra of M, consisting of monomials 2™, m € M, such that

2™ M = zm+m Tt is a Poisson algebra, of Poisson bracket determined by

{Zm’zm’} _ (m’m/)szrm'.

We denote k, = k[¢*2] and k,[M] the possibly non-commutative k,-algebra structure on
k[M] ®x k, such that

2m

~ ’ l ’ ~ ’
zm zm :qQ(m,m, )Zm+m )

3All the monoids considered will be commutative and with an identity element.
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We denote kj, = k[[h]]. We view kj as a complete topological ring for the h-adic topology
and in particular, we will use the operation of completed tensor product & with kp:

(-)&xkp = lim (-) ®x (k[R]/R).

We view kp, as a k,-module by the change of variables

Nk
qzeih:Z (ih) .

k=0 k!

We denote kp[M] = kq[M]®i, kn. The possibly non-commutative algebra kx[M] is a
deformation quantization of the Poisson algebra k[M] in the sense that kx[M] is flat as
kp-module, and taking the limit A — 0, ¢ — 1, the linear term in A of the commutator
[2™,2™] in kn[M] is determined by the Poisson bracket {27, 2™} in k[M]:

[2m72m’] _ (q%(m,m') _ q—%(m,m'))émﬁ-m' _ (m7m/>ih2m+m' 4 O(h2) )

We will often apply the constructions k[M] and kx[M] to M a fiber of the locally constant
sheaves A or P.

In particular, considering the toric monoid P with the zero skew-symmetric form, we denote
R =k[P]

and
R" = kp[P] = R&ykp, .

For every monomial ideal I of R, we denote
RI = R/I

RI = R/I @k, = Ri[¢*?]

and
R? = Rh/I = Rr®ikp = Rr[[A]] .

Remark that the algebras R", R? and R} are commutative.

3.1.4 ORE LOCALIZATION

As should be clear from the previous Section, we will be dealing with non-commutative
rings. Unlike what happens for commutative rings, it is not possible in general to localize
with respect to an arbitrary multiplicative subset of a non-commutative ring, because of
left-right issues. These left-right issues are absent by definition if the multiplicative subset

satisfies the so-called Ore conditions.

We refer for example to Section 2.1 of [Kap98] and Section 1.3 of [Gin98] for short presen-
tations of these elementary notions of non-commutative algebra. A multiplicative subset
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S c A-{0} of an associative ring A is said to satisfy the Ore conditions if

e For all ae A and s € S, there exists b€ A and t € S such that? ta = bs.

e For all a € A, if there exists s € S such that as = 0, then there exists ¢ € S such that
ta = 0.

e Forallbe A and t € S, there exists a € A and s € S such that® ta = bs.
e For all a € A, if there exists s € S such that sa = 0, then there exists t € S such that
at = 0.
If S is a multiplicative subset of an associative ring A and if S satisfies the Ore conditions,
then there is a well-defined localized ring A[S™].

Let R be a commutative ring. Denote R" := R[[A]].

Lemma 3.1. Let A be a R"-algebra such that Ag = A/hA is a commutative R-algebra.
Assume that A is h-nilpotent, i.e. that there exists j such that h A =0. Denote m: A - Ag
the natural projection. Let S c Ag— {0} be a multiplicative subset. Then the multiplicative
subset S =n1(S) of A satisfies the Ore conditions.

Proof. See the proof of Proposition 2.1.5 in [Kap98]. O

Definition 3.2. Let A be a R"-algebra such that Ay = AJhA is a commutative R-algebra.
Assume that A is h-complete, i.e. that A = liLnj A/WIA. By Lemma 3.1, each A/h/ A defines

a sheaf of algebras on X = Spec Ag, that we denote (’);L(O/hj. We define
0%, =lim O% /b
J
It is a sheaf in R"-algebras over Xy, such that Og(o/h =0x,.

Remark: Definition 3.2 gives us a systematic way to turn certain non-commutative algebras

into sheaves of non-commutatives algebras.

3.1.5 THE GROSS-HACKING-KEEL MIRROR FAMILY

We fix (Y, D) a Looijenga pair. Let NE(Y)r c A1(Y,R) be the cone generated by curve
classes and let NE(Y') be the monoid NE(Y)r n A1(Y,Z).

Let op ¢ A1(Y,R) be a strictly convex polyhedral cone containing NE(Y )g. Let P :=
op N A;(Y,Z) be the associated toric monoid and let R := k[P] be the corresponding k-
algebra. We denote t° the monomial in R defined by 8 ¢ P. Let mp be the maximal

4Informally, as™! = t~1b, i.e. every fraction with a denominator on the right can be rewritten as a fraction
with a denominator on the left.

5Informally, t71b = as™!, i.e. every fraction with a denominator on the left can be rewritten as a fraction
with a denominator on the right.
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monomial ideal of R. For every monomial ideal I of R with radical mpg, we denote Ry == R/I
and Sy = Spec Rj.

Let TP = Gy, be the torus whose character group has a basis ep; indexed by the irreducible

components D; of D. The map
B Y (8.Dj)en,
j=1

induces an action of TP on S;.

Theorem 0.1 of [GHK15a] gives the existence of a flat TP-equivariant morphism
XI - Sl;
with X affine. The algebra of functions of X is given as R;-module by

H(X1,0x,)=Ar= @ R1Y,,
peB(Z)

The algebra structure on H°(X7,Ox,) is determined by genus zero log Gromov-Witten
invariants of (Y, D).

By Theorem 0.2. of [GHK15a], there exists a unique smallest radical monomial ideal Jy,i, ¢ R
such that,

e For every monomial ideal I of R of radical containing Jp,, there is a finitely generated
Ry-algebra structure on A; compatible with the R;,,~-algebra structure on A, .~
given by Theorem 0.1 of [GHK15a] for all N > 0.

e The zero locus V (Jmin) © Spec R contains the union of the closed toric strata corre-
sponding to faces F' of op such that there exists 1 < j <r such that [D;] ¢ F. If (Y,D)
is positive, then Jyin =0 and V (Jmin) = Spec R.

e Let R/=i» denote the Jmin-adic completion of R. The algebras A; determine a TP
equivariant formal flat family of affine surfaces X/min — Spf R7min_ The theta functions
¥, determine a canonical embedding XJmin ¢ Amax(r3) » Qpf R/min In particular, if
(Y, D) is positive, then we get an algebraic family X — Spec R and the theta functions

¥, determine a canonical embedding X c A™2x(73) 5 Spec R.

3.1.6 DEFORMATION QUANTIZATION

We discuss below the notion of deformation quantization. There are two technical aspects to
keep in mind: first, we work relatively to a non-trivial base, second, we work in general with
formal schemes. We refer to [Kon01], [Yek05], [BKO04], for general facts about deformation

quantization in algebraic geometry.

Definition 3.3. A Poisson scheme over a scheme S is a scheme m: X — S over S, equipped

with a 7~ Og-bilinear Poisson bracket, i.e. a = Og-bilinear skew-symmetric map of sheaves
{=-}:0x xOx - Ox,
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which s a biderivation

{a,bc} ={a,b}c+{a,c}b,

and a Lie bracket

{a,{b,c}} +{b,{c,a}} +{c,{a,b}} =0.

The two definitions below give two notions of deformation quantization of a Poisson scheme.

Definition 3.4. Let m: (X, {-,-}) = S be a Poisson scheme over a scheme S. A deforma-
tion quantization of (X, {~,~}) over S is a sheaf O% of associative flat 7~ *Os&ky-algebras
on X, complete in the h-adic topology, equipped with an isomorphism O;’(/hO} ~Ox, such
that for every f and g in Ox, and f and g lifts of f and g in (9}, we have

[f,g]=ih{f,g} mod h*,

where [f,§] = f§-gf is the commutator in ok

Definition 3.5. Let m:(X,{-,-}) = S be a Poisson scheme over a scheme S. Assume
that both X and S are affine. A deformation quantization of (X,{-,-}) over S is a flat
HO(S,05)&kp-algebra A, complete in the h-adic topology, equipped with an isomorphism
AJhA~ H°(X,0x), such that for every f and g in H*(X,Ox), and f and § lifts of f and
g in A, we have

[f.g]=ih{f,g} mod h?,

where [f,§] = f§-Gf is the commutator in A.

The compatibility of these two definitions is guaranteed by the following lemma.

Lemma 3.6. When both X and S are affine, the notions of deformation quantization given

by Definitions 8.5 and 3.4 are equivalent.

Proof. One goes from a sheaf quantization to an algebra quantization by taking global
sections. One goes from an algebra quantization to a sheaf quantization by Ore localization,
see Section 3.1.4. n

Definitions 3.4 and 3.5 and Lemma 3.6 have obvious analogues if one replaces schemes by

formal schemes®.

3.1.7 MAIN RESULTS

We fix (Y, D) a Looijenga pair and we use notations introduced in Section 3.1.5. The Gross-
Hacking-Keel mirror family X; — S; has a natural structure of Poisson scheme over S;.
Indeed, the Gross-Hacking-Keel construction glues together simple pieces having natural
Poisson structures by Poisson preserving gluing maps. Our main result, Theorem 3.7, is the
construction of a deformation quantization of the Gross-Hacking-Keel mirror family by a

higher genus deformation of the Gross-Hacking-Keel construction.

Sor, in fact, any locally ringed space.
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Theorem 3.7. Let I be a monomial ideal of R with radical mg. Then there exists a flat
TP -equivariant RY-algebra A%, such that A? is a deformation quantization over S; of the

Gross-Hacking-Keel mirror family X; — Sy, and A? 1S given as R?—module by

A? = @ R)Ii 19177
peB(Z)
where the algebra structure is determined by higher genus log Gromov- Witten invariants of

(Y, D), with genus expansion parameter identified with the quantization parameter h.

Remark: Taking the limit over all monomial ideals I of R with radical mg, we get a

deformation quantization of the formal family

lim X7 - lim Sy .
— —
I I

The following Theorem is a quantum version of Theorem 0.2 of [GHK15a].

Theorem 3.8. There is a unique smallest radical monomial Jr’fl c R such that,

in

e For every monomial ideal I of R of radical containing J". , there is a finitely generated

min?’
R -algebra structure on
A? = EB R?ﬁp’
peB(Z)
compatible with the R?mk -algebra structure on A?+mk giwen by Theorem 3.7 for all
R R
k>0.

e The zero locus V (Jmin) € R contains the union of the closed toric strata corresponding
to faces F' of op such that there exists 1 < j < r such that [D;] ¢ F. If (Y,D) is
positive, then J'; =0, i.e. V(J
of the mirror family X — Spec R.

) = Spec R and Ag is a deformation quantization

in

The following result, Theorem 3.9, controls the dependence in h of the deformation quanti-

zation given by Theorem 3.8: this dependence is algebraic in g = .

Theorem 3.9. Let I be a monomial ideal of R with radical containing J" Then there

min *
exists a flat R}-algebra AY such that
Al = A% K,

where ky, is viewed as a kq-module via g = et

The proof of Theorems 3.7, 3.8, and 3.9 takes Sections 3.2, 3.3, 3.4. In Section 3.2, we
explain how a consistent quantum scattering diagram can be used as input to a construction
of quantum modified Mumford degeneration, giving a deformation quantization of the mod-
ified Mumford degeneration of [GHK15a], [GHKS16], constructed from a classical scattering
diagram. In Section 3.3, we explain how to construct a quantum scattering diagram from

higher genus log Gromov-Witten theory of a Looijenga pair and we prove its consistency
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using Theorem 2.6, the main result of Chapter 2. We finish the proof of Theorems 3.7, 3.8
and 3.9 in Section 3.4.

3.2 QUANTUM MODIFIED MUMFORD DEGENERATIONS

In this Section, we explain how to construct a quantization of the mirror family of a given
Looijenga pair (Y, D) starting from its tropicalization (B,X) and a consistent quantum

scattering diagram.

In Section 3.2.1, we describe the rings Rg, ; and R? ; involved in the construction of the
quantum version of modified Mumford degenerations. In Section 3.2.2, we review the notion
of quantum scattering diagrams. In Section 3.2.4, we explain how a consistent quantum
scattering diagram gives a way to glue together the rings Rg, ; and RZ’ ; to produce a quan-
tum modified Mumford degeneration. In Section 3.2.6, we review the notions of quantum
broken lines and theta functions and we use them in Section 3.2.7 to prove that the quan-
tum modified Mumford degeneration is indeed a deformation quantization of the modified
Mumford degeneration of [GHK15a]. In Section 3.2.8, we express the structure constants of

the quantum algebra of global sections in terms of quantum broken lines.

3.2.1 DBUILDING BLOCKS

The goal of this Section is to define non-commutative deformations ng ; and R? 7 of the
rings Ry,r and R, 1 defined in Sections 2.1 and 2.2 of [GHK15a]. The way to go from R, r

to RZ’ ; is fairly obvious. The deformation RZ) ; of R, 1 is maybe not so obvious.

We fix (Y, D) a Looijenga pair, (B,Y) its tropicalization, P a toric monoid, J a radical
monomial ideal of P, and ¢ a Pg"-valued multivalued convex Y-piecewise linear function on
B.

For any locally constant sheaf F on By and any simply connected subset 7 of By, we write
F. for the stalk of this local system at any point of 7. We will constantly use this notation
for 7 a cone of X.

If 7 is a cone of ¥, we define the localized fan 77'3 as being the fan in Ag , defined as
follows:

e If 7 is two-dimensional, then 7% consists just of the entire space Ag .

e If 7 is one-dimensional, then 77'3 consists of the tangent line of 7 in Ag , along with

the two half-planes with boundary this tangent line.

For each 7 cone of X, the X-piecewise P-convex function ¢: By — By, determines a -
piecewise linear P-convex function ¢,:Ag . — Pg . We define the toric monoid P, c P
by

P, ={seP:|s=p+e,(m) for some pe P, meA,}.
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If p is a one-dimensional cone of ¥, bounding the two-dimensional cones o, and o_ of 3, we

have P, cP,, , P,, cP,, ,and
PAPru. med_ _P@p
Figure: P,
Pos
O+ 'p g-
Figure: P, _
%004
[ ) [ ] (]
[ )
04 'p o-
Figure: P,,
%004

o p o-
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For every o two-dimensional cone of ¥, we define RZ’ 1 =kn[P,,]/1, deformation quantiza-
tion of Ry 1 = k[P, ]/I. We have a natural trivialization P, = P®A, and so Rg) ; is simply
the algebra of functions on a trivial family of two-dimensional quantum tori parametrized

by Spec Rj.

Let p be a one-dimensional cone of 3. Let k,, € P be the kink of ¢ across p, so that
zf»¢ e Rr. Let X be an invertible formal variable. We fix elements fpout € RM X' and

fom € REX].

Let R ; be the Rh—algebra generated by formal variables X,, X_ and X, with X invertible,
p,1 I
and with relations
XX, =gX, X,

XX_ =¢'X_X,
2 K ~ _ ~ _N2
X, X = qsP02%0 fron (g71X) frm (X)X D0
X X, =q 300550 froue(X) fom (X)X D0,

where g = ¢'". The R?-algebra RZ7 ; is flat as R?-module and so is a deformation quantization
of
2
Ryri= Ri[ X0, X, X*])(X, X = 2500 X5 [ (X) [0 (X))

Let o4 and o_ be the two-dimensional cones of ¥ bounding p, and let p, and p_ be the other
boundary rays of o, and o_ respectively, such that p_, p and p, are in anticlockwise order.
The precise form of RZ, ; is justified by the following Proposition.

Proposition 3.10. The map of R?—algebms
@[;pﬁ: R?<X+7 X,,Xi) - RZ,,I
defined by

,l;p,—(X) = 3%0(mp) 7
QZJP,_(X_) = éwﬂ(mp_) 9
Up—(X1) = fom (320(m)) 300 0mon) f o (5200m0))

= gsap(mp+)fpm (qz#e(me) )fpm (z%0(me))

induces a map of R}}—algebms

. ph h
’IZJPF'R;},I - Ra_,I .

The map of R'}—algebms
b RUX, Xo, X*) > Ry
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defined by

1/~Jp,+(X) = 3%p(mp) ,
B (XC) = Fyma (850(m0)) 560m00) o (36000
— ﬁwp(mp*)fpout (q—lz@‘PP(mp))prin (;:Wp(mp)) ,

Zf;p,Jr(XJr) = 3%0(mpy) ’

induces a map of R’}-algebms
¢p,+:RZ,z - RZ+,1 .
Proof. We have to check that 1, _ and ¢, . map the relations defining R:; ; to zero.

We have (m,,m,,) =1 and (m,,m,_) = -1. It follows that
Vo (XX, —qX,X)=0,

1/;p,+(XX+ -¢X,X)=0,

and
bp (XX -q'X_X)=0,

bp (XX —¢'X_X)=0.
Furthermore, we have
my_+D2m, +my,, =0

SO

(mp,,myp_) = D;QJ

and

Po(mp ) +@p(mp,) = kpp = Di@p(mp) :
It follows that

Q/ZPV_(XJrX_) - fpin (g%(mp) )gw(mm)]ﬁpom (gwp(mp) )2¢p(mp_)

= q%D/27 fpin (ZA'LPP(W‘P))prout (qiléﬂpp(mp) )g’ip,v’Di@p(mp)

= g3 P25 0y (i (X) fpoue (a7 X)X 7))

Do (K X) = 29007000 s (29000 20000 (35000

= q%D?J fpin (pr(mp))fpout (q—léﬁap(mp))2”/1,@_D,§</’p(mp)

=gy ( fon (X) fpoe (7 X)X 7P2))
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and
bp (XX, ) = 2000me) fon (5000m0)) 200 (M0) [0 (200 (M0))
= qiéD‘Q’ ,7:"{”""7D52)<pf’(mﬁ)fpin (éqWﬂ(mP) )fpout (étpp(mp))

=g 3Pz, ( fn(gX) fpoue (X)X P

l[;pﬁr (X7X+) - fpout (290;)(7”#) )2‘»09(7”‘#7 ) fpi“ (étpp(mp) )éwp(mﬁ+)

-1p2 2 4 m 2 m sk o—D2 m
=q gDpf'p(ZS”p( p))fpm(qu"p( p))z P Dp‘Pp( 0)

=g 3P0y ( fon (aX) fpoue (X)X 7P2) .

Remark:

e In the special case where D?) =0 and fpm = 1, our description of RZ 1 by generators and
relations coincides with the description given by Soibelman in Section 7.5 of [S0i09] of a

local model for deformation quantization of a neighborhood of a focus-focus singularity.

. Rg’ ; is a deformation quantization of R, ;, and RZ’ ; is a deformation quantization of
R, ;. The maps v, and 1, _ are quantizations of the maps v, _ and v, , defined
by formula (2.8) of [GHK15a]. Following [GHK15a], we denote U, ; = Spec R, 1
and U, = Spec R, ;. If p is a one-dimensional cone of ¥, and o, and o_ are the
two-dimensional cones of ¥ bounding p, then the maps %, _ and %, , induce open
immersions

UU—,I ing Up,]

and

Ua+,[ ind Up,I .

Using Ore localization (see Definition 3.2), we can produce from ng ; and RZ, 1 some sheaves
of flat kp-algebras O?L; , and O,’}p , on U 1 and U, 1, such that

o’g,g,l /ho{}m[ ~ Oy, ,

and
of ,[hOy =0y, ,

respectively.
3.2.2 (QUANTUM SCATTERING DIAGRAMS

Quantum scattering diagrams have been studied by Filippini-Stoppa [FS15] in dimension two

and by Mandel [Man15] in higher dimensions. We have already seen this kind of quantum
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scattering diagram in Chapter 2. Mandel [Man15] also studied quantum broken lines and
quantum theta functions. The quantum scattering diagrams studied in [FS15], [Manl5] or
in our Chapter 2 live on a smooth integral affine manifold. We need to make some changes
to include the case we care about, where the integral affine manifold is the tropicalization B
of a Looijenga pair and has a singularity at the origin with a non-trivial monodromy around
it.

As in the previous Section, we fix (Y, D) a Looijenga pair, (B,X) its tropicalization, P
a toric monoid, J a radical monomial ideal of P, and ¢ a Pg’-valued multivalued convex
Y-piecewise linear function on B. Recall from Section 3.1.2 that we then have an exact

sequence
0P >PSA-0

of locally constant sheaves on By.

We explained in Section 3.2.1 how to define for every cone 7 of ¥ a toric monoid P, . We
denote by

]kh[PsaT]

the J-adic completion of the ky-algebra kx[P,_]. The map r:P — A induces a morphism of

monoids r: P, — A;.

Definition 3.11. A quantum scattering diagram D for the data (B,X), P, J and ¢ is a
set

D ={(0, )}

where

e 0 C B is a ray of rational slope in B with endpoint the origin 0 € B.

o Let T be the smallest cone of ¥ containing 9 and let my € A, be the primitive generator

of 0 pointing away from the origin. Then we have either

Hy= Y HpP ekn[P,, ],
pEPV’Ta
t(p)eZeomy

or
Hy= Y Hp"ekn[P,, ]
pePy
t(p)eZsomo
In the first case, we say that the ray (D,ﬁa) is outgoing, and in the second case, we

say that the ray (D,H’D) is ingoing.

o Let 7 be the smallest cone of ¥ containing 0. If dimmy = 2, or if dimm = 1 and
Kry,o &J, then Ha =0 mod J.

e For any ideal I c P of radical J, there are only finitely many rays (D,]:Ia) such that
Efa #0 mod I.

Remark: Given a ray (9, H. ») of a quantum scattering diagram, we call H, the Hamiltonian

attached to p. This terminology is justified by the following Section 3.2.3, where we attach
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to (9, H ») the automorphism d fr, given by the time one evolution according to the quantum
Hamiltonian f[a.

3.2.3 (QUANTUM AUTOMORPHISMS

Let (0, ﬁa) is a ray of a quantum scattering diagram ® for the data (B,X), P, J and ¢. Let
To» be the smallest cone of ¥ containing 9 and let my € A, be the primitive generator of d
pointing away from the origin. Denote m(Hy,) = my if (9, Hy) is outgoing and m(Hy) = —my
if (0, Hy) is ingoing. Writing

Hy= Y Hy"ekn[P,, ],

pePy
we denote

fo = exp > (@ -DHE | eka[P, ],
pePy
w(p)=tm(ITs)

where ¢ = e®. Remark that, by our definition of m(lfla)7 we have ¢ < 0 when writing
r(p) = tm(Hy).

‘We write

fo= X f2P.

pePy

For every j € Z, we define

h(@2)= ¥ 4 ekP, ],
pePer,
t(p)=tm(Hy)

where ¢ = e'?.

Lemma 3.12. The automorphism (i)Ha of ]kh[P@Ta] given by conjugation by exp (ﬁa),

2P exp (Ha) 2P exp (—Ha) ,

s equal to
R (m(Ho),x(p))-1 - ' .
ZP I1 fo(d’2) if (m(Hy),t(p)) >0
§=0
[{m(Hs),e(p))-1

2 11 fola™712)™if (m(Hy),x(p)) < 0.

Proof. Using that 2P 5P = q<r(p’)’t(p)>épép’, we get

exp (Hy) P exp (-Hy) = Pexp| 3 (qNmHE®) _ 1) a7
p,epvfa
r(o)=tm(Hy)
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If (m(Hy),t(p)) >0, this can be written

. 1- qf(m(Ha)ﬁf(P)) ’ -
2P exp > #(q - 1)H, 2P
p'eP“,,’_D -q
r(p’)=tm(Hy)

(m(Fo)x(p)-1 ,
= 2P exp Z Z qgj(qe -1)H, 2P
p'ePy. J=0
r(p')=tm(Ho)

(m(Hoy),x(p))-1
= 2;0 H fg(qjé) .

j=0

If (m(Hy),t(p)) < 0, this can be written
. 1 — g~ MmH) ()] o
Zpexp - Z 1—(]_@ q Z(qg—l)firp’zp

p,EPVJTD
r(p")=tm(Hy)

A [(m(H>),x(p))|-1 _isINEy 0 5P
=Pexp|- ) > (7)) (g —1)Hy2"
;D’Engq—a j=0
T(p’):ém(ﬁa)

() e
= 2" I1 folg7t2)
=0

Remark: One can equivalently write P i, as

{m(fs),x(p))-1 . R
fola?2) |27 if (m(Ho),v(p)) 20

. j=0
2P

fp(qu)l) 2P if (m(Hy),t(p)) <0.

(m(Ho),e(p))I-1
3=0

A direct application of the definition of f, gives the following Lemma.

Lemma 3.13. If

(_1)2—1 é—[«p(m,o) o (_1)2—1 2—Z<p(ma)

H=i) —~

21 l 25111(%) 21 ¢ q%—q 2

)
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h

where q = €, we have m(H) = my and

~ -1 /-1 -4 _ 1 X
f=exp (— » CUT 0721 totmo) | _q 4 gmd zmetmo)
21 t gz —q 2
If
A —1 -1 '\&p("LO) -1 -1 Afgp(vna)
H:ZZ( ) Z~ th :_Z( ) Ze )
£21 ¢ 28111(’7) >1 L q2 —q° 2

h

where q = €™, we have m(H) = -my and

-1 0
(-1) q _15 2€¢(ma)):1+q—§2v(ma)_

g

£>1 t qg—q2

3.2.4 GLUING

We fix a quantum scattering diagram ® for the data (B,X), P, J and ¢, and an ideal I of
radical J.

Let p be a one-dimensional cone of X, bounding the two-dimensional cones o, and o_,
such that o_, p, o, are in an anticlockwise order. Identifying X with £%¥¢("¢) we define
fpou € RE[X '] by

fpout = J] fo modlI,

€D ,0=p
outgoing

where the product is over the outgoing rays of D of support p, and we define fpan € R’} [X]
by

fon= ] fo modI,
€D ,0=p
ingoing

where the product is over the ingoing rays of D of support p-

By Section 3.2.1, we then have R?-algebras R" RZﬂI, RQ,I.

oy, 1)

Let (D,]EID) be a ray of D such that To = 0 is a two-dimensional cone of 3. Let my € A,
be the primitive generator of 0 pointing away from the origin. Let v be a path in By which

crosses 0 transversally at time ty. We define
é%D:RZ,I - RZ,Ia
e & (),
where € € {+1} is the sign of —(m(Hy),~ (to)).

Let ©; ¢ D be the finite set of rays (D,ﬁa) with Hy #0 mod I, i.e. fo #1 mod I. If vis a
path in By entirely contained in the interior of a two-dimensional cone o of ¥, and crossing

elements of D transversally, we define

0,5, = 00,0000,
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where 7y crosses the elements 01,...,0, of D 7 in the given order.

For every o two-dimensional cone of X, bounded by rays p; and p_, such that p_, o, p, are
in anticlockwise order, we choose 7,:[0,1] = By a path whose image is entirely contained in
the interior of o, with v(0) close to p_ and (1) close to p,, such that -, crosses every ray
of ®; contained in o transversally exactly once. Let
. ph h
70,351' RU,I - RU,I

be the corresponding automorphism. In the classical limit, HA,Y 5, induces an automorphism
0y, of Usy. Gluing together the open sets U, ¢ U,_; and Uy c U,,  along these
automorphisms, we get the scheme X7 5 defined in [GHK15a].

Recall from the end of Section 3.2.1 that by Ore localization the algebras Rg) ; and R;ﬁ I
produce sheaves O(’}U , and O'[}p , on Uy 1 and U, 1 respectively. Using é7 H,» We can glue
together the sheaves OZN to get a sheaf of R}-algebras (’)?(},,3 on X7 5.

From the fact that the sheaves OZP , are deformation quantizations of U, , we deduce that
the sheaf O%. is a deformation quantization of X§ 5. In particular, we have O%., [hO%. =
I,© ’ I, I,©

Ox.  and C’)g(? L isa sheaf a flat RP-algebras.

Remark: Let p be a one-dimensional cone of . Let o, and o_ be the two two-dimensional
cones of ¥ bounding p, and let p, and p_ be the other boundary rays of o, and o_ re-
spectively, such that p_, p and p, are in anticlockwise order. According to Remark 2.6 of
[GHK15a], we have, in U, ,

Up 10Uy, 1= ((Grm)2 x Spec (Ry) 250

where (Ry),=p.¢ is the localization of R; defined by inverting z*#-¢. Similarly, the restriction
of O};’D to U, 1 nU,, 1 is the Ore localization of kp[M|&(Ry).re.s, where M = 72 is
the character lattice of (G,,)?, equipped with the standard unimodular integral symplectic
pairing. We have a natural identification M = A,. Restricted to kn[M]®(Ry).xp., and
assuming that fpsn =1 mod 27+ and fpout =1 mod 2"»¢, the expression ¢p+ o 1/3;} makes
sense’ and is given by
(o, 0, 1) (20 0m0)) = z0lme)
(@m ° @g})(éw(mpf)) - fpm(gw(mp))gw(mpf)fpm (2s0p(mp)) ,

wm ° 1;;} ) (2¢P(mp+ )) = f;l (gwp(mp) )éwp(fn;u )]?’;01‘1t (gsop(mp) ).

As (m,,m,_) = -1 and (m,,m,,) = 1, this implies that zZA)m o 1[1;_1 coincides with the trans-

formation

é%p: H émﬁw

€D ,0=p

where é,m is defined by the same formulas as above and with v a path intersecting p in a

single point and going from o_ to o,.

"Without restriction, ’LZ)p_ is not invertible and so 12);_1 does not make sense.
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3.2.5 RESULT OF THE GLUING FOR [ = J.

Assume r > 3 and K, , € J for every p one-dimensional cone of 3. The following Lemma
3.14 gives an explicit description of O?{; N for I=J.

Denote k[X] the k-algebra with a k-basis {z™ |m € B(Z)} with multiplication given by

7
, {zm+m if m and m’ lie in a common cone of ¥

0 otherwise.

Let 0 be the closed point of Spec k[X] whose ideal is generated by {z™|m # 0}. Denote
R;[X] = Ry ®k k[X]. According to Lemma 2.12 of [GHK15a], we have

X7 = (Spec Ry[X]) - ((Spec Ry) x {0}).

Denote kp[X] the kp-algebra with a kp-basis {2 |m € B(Z)} with multiplication given by

1 Noamam! - .
U gz M zm it and m’ lie in a common cone of ¥
0 otherwise.

Denote R[X] = Ry&iks[X].

Lemma 3.14. Assume r > 3 and K, € J for every p one-dimensional cone of ¥. Then
NX5 s, C’);’(3 D) = R"[¥], and the sheaf O o _ is the restriction to X5 of the Ore localization,
see Section 3.1.4, of R"[X] over Spec R;[X].

Proof. By definition of a quantum scattering diagram, if 9 is contained in the interior of a
two-dimensional cone of ¥, we have Hy =0 mod J and so the corresponding automorphism
o i, 1s the identity. As we are assuming k., € J, RZ s is the R’}-algebra generated by formal
variables X, X_ and X, with X invertible, and with relations

XX+ :qXX+7

XX_=¢'X_X,
X, X_=X_X, =0,

where g = e, Let o, and o_ be the two two-dimensional cones of ¥ bounding p, and let p,
and p_ be the other boundary rays of o, and o_ respectively, such that p_, p and p, are in
anticlockwise order.

From ¢,(m,_)+¢,(m,,) = /1,,7W—D%g0p(mp) and £, € J, we deduce that 22 ("e-) 200 (Mor) =
0in R, R! ; and R!_ ;. As 22¢(™e-) is invertible in R! ;, we have 22¢("s+) =0 in Rl .

Similarly, as 2%#("#+) is invertible in RZJ, we have 2¢¢(™e-) = in RZ+I.

So the map ﬁp,,:RZJ - Rﬁ_J is given by ﬁp,,(X) = %Mo) ﬁp,,(X,) = z¥e(mp )
Qﬁp,_(XJr) = 0. Similarly, the map 1&9’+:RZ:J - R§+,J is given by 1/3p7+(X) = 5eo(mp)
Vp+(X_) =0, Y, +(X,) = 290(Me) | The result follows. O
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3.2.6 (QUANTUM BROKEN LINES AND THETA FUNCTIONS

We fix (Y, D) a Looijenga pair, (B,X) its tropicalization, P a toric monoid, J a radical
monomial ideal of P, ¢ a PgP-valued multivalued convex Y-piecewise linear function on B,
and © a quantum scattering diagram for the data (B,X), P, J and ¢.

Quantum broken lines and quantum theta functions have been studied by Mandel [Man15],
for smooth integral affine manifolds. We make below the easy combination of the notion
of quantum broken lines and theta functions used by [Manl15] with the notion of classical
broken lines and theta functions used in Section 2.3 of [GHK15a] for the tropicalization B
of a Looijenga pair.

Definition 3.15. A quantum broken line of charge p € Bo(Z) with endpoint Q in By is a

proper continuous piecewise integral affine map
v (_007 O] - By

with only finitely many domains of linearity, together with, for each L c (-o0,0] a mazimal
connected domain of linearity of v, a choice of monomial my, = cr2Pt where cf, € k; and
pr € (L, v Y (P)|L), such that

e Foreach L andt € L, we have —r(pr) =7 (t), i.e. the direction of the line is determined

by the monomial attached to it.
e We have v(0) = Q € By.

e For the unique unbounded domain of linearity L, v|r goes off for t - —oo to infinity
in the cone o of X containing p and my, = 297P)_ j.e. the charge p is the asymptotic

direction of the broken line.

o Let t € (—00,0) be a point at which ~y is not linear, passing from the domain of lin-
earity L to the domain of linearity L'. Let T be the cone of ¥ containing v(t). Let
(01,Hy,),...,(0n, Hay ) be the rays of ® that contain ~v(t). Then ~ passes from one
side of these rays to the other side at time t.

Ezpand the product of

(m(Hi)x(pr))-1

H ka(qjé)

1<ksN j=0
(m(Hoy, ),v(pr))>0

and
Km(Hpr),e(pr))l-1

[T [T fou (47712,

1<k’'<N J'=0
(m(Ha,,),e(pL))<0

as a formal power series in ky[P,_|. Then there is a term cz® in this sum with

mp =mp.(c2%).
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Let @ € B-Supp; (55) be in the interior of a two-dimensional cone o of X. Let « be a quantum
broken line with endpoint . We denote Mono(7y) € k[P, ] the monomial attached to the
last domain of linearity of ~.

The following finiteness result is formally identical to Lemma 2.25 of [GHK15a).

Lemma 3.16. Let Q€ B - Supp[(@) be in the interior of a two-dimensional cone o of 3.
Fiz pe Bo(Z). Let I be an ideal of radical J. Assume that k, , € J for at least one ray p of
Y. Then

e The collection of quantum broken lines v of charge p with endpoint Q and such that
Mono(y) ¢ Ikn[P,, ] is finite.

e If one boundary ray of the connected component of B — Suppl(’b) containing @ is a
ray p of X, then for every quantum broken line v of charge p with endpoint ), we have
Mono(y) € kn[Py,].

Proof. Identical to the proof of Lemma 2.25 of [GHK15a]. O

Let Q € B - Supp; (D) be in the interior of a two-dimensional cone o of . Fix p € By(Z).
Let I be an ideal of radical J. We define

Lifto(p) = Y Mono(y) € ky[ Py, 1/I,

where the sum is over all the quantum broken lines 7 of charge p with endpoint ). According
to Lemma 3.16, there are only finitely many such « with Mono(~y) ¢ I'ks[ P, ] and so Liftg(p)
is well-defined.

The following definition is formally identical to Definition 2.26 of [GHK15a)].

Definition 3.17. Assume that r,, € J for at least one one-dimensional cone p of ¥. We
say that a quantum scattering diagram D for the data (B,X), P, J and ¢ is consistent if
for every ideal I of P of radical J and for all p € Bo(Z), the following holds. Let Q € By be
chosen so that the line joining the origin and Q has irrational slope, and Q' € By similarly.
Then

e If QQ and Q' are contained in a common two-dimensional cone o of ¥, then we have

Liftq: (p) = 6, 5, (Lift(p))

in R?,, for every v path in the interior of o connecting Q and Q', and intersecting
transversely the rays of@.

o If QQ_ is contained in a two-dimensional cone o_ of X3, and Q4 is contained in a two-
dimensional cone o, of X, such that o, and o_ intersect along a one-dimensional
cone p of X, and furthermore Q_ and Q4 are contained in connected components of
B - Supp; (D) whose closures contain p, then Liftg, (p) € Rh 1 and Liftg_(p) € RM 1
are both images under 1/),) + and 1/),) _ respectively of a single element Lift,(p) € Rh
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The following construction is formally identical to Construction 2.27 of [GHK15a]. Suppose
that D has r > 3 irreducible components, and that D is a consistent quantum scattering
diagram for the data (B,X), P, J and ¢. Assume that x,, € J for all one-dimensional

cones p of ¥.. Let I be an ideal of P of radical J. We construct below an element
ﬁp € F(X;,Z)v O.};(?D )

for each p e B(Z) = Bo(Z) u{0}.

We first define g = 1. Let p € Bo(Z). Recall that X7 o is defined by gluing together schemes
U1, indexed by p rays of 3, and that (’)h? . is defined by gluing together sheaves (’){’]p , on
U,.1, such that I'(U, 1, (9?(? 9) = RZJ' So, to define 1§p, it is enough to define elements of

RZ ; compatible with the gluing functions. But, by definition, the consistency of D gives us
such elements Lift,(p) € RZ,I'

The quantum theta functions 9, € N(X7 o, (’)g‘(? ij) reduce in the classical limit to the theta
functions ¥, € I'(X7 5, Oxs ) defined in [GHK15a].

3.2.7 DEFORMATION QUANTIZATION OF THE MIRROR FAMILY

Suppose D has r > 3 irreducible components, and let ¢ be a Pﬁp—valued convex Y-piecewise
linear function on B such that x, , € J for all one-dimensional cones p of ¥. Let D be a
consistent quantum scattering diagram for the data (B,X), P, J and . Let I be an ideal
of P of radical J.

Denote
X0 =5pec I'(X] 5,0x: )

the affinization of Xio and j:X] o - X;o the affinization morphism. It is proved in
[GHK15a], Theorem 2.28, that j is an open immersion, that JxOxs o = Ox, 5, and that X,
is flat over R;. More precisely, the Rj-algebra

Ap=T(X] 5,0x5 ) =T(X19,0x, 5)

is free as Ry-module and the set of theta functions 9,, p € B(Z) is a Ry-module basis of A;.

Theorem 3.18. Suppose D has r > 3 irreducible components, and let ¢ be a Pg"-valued
convex X-piecewise linear function on B such that k, , € J for all one-dimensional cones p
of X. Let D be a consistent quantum scattering diagram for the data (B,X), P, J and .
Let I be an ideal of P of radical J. Then

e The sheaf (9}1 o = j*O’}(; . of R?—algebms s a deformation quantization of Xrp over
Ry in the sense of Deﬁm‘iion 3.4.

o The R?—algebm
A} =T (X} 5,0k ) =T(X10,0%, )

is a deformation quantization of X1 o over Ry in the sense of Definition 3.5.
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e The Rl-algebra A% is free as R-module.

o The set of quantum theta functions
{05lpe B(Z)}

is a R?-module basis for A%

Proof. We follow the structure of the proof of Theorem 2.28 of [GHK15a].

We first prove the result for I = J. As r >3 and k,, € J for all one-dimensional cones p of
Y, the only broken line contributing to Liftg(p), for every @ in By and p € By(Z), is the
straight line of endpoint @) and direction p, and this provides a non-zero contribution only
if @ and p lie in the same two-dimensional cone of Y. Combined with Lemma 3.14, this

implies that the map

@ R}, A =T(X55.0% )=R}[2]
peB(Z) '

is given by

— 2P

>
S

and so is an isomorphism.

We now treat the case of a general ideal I of P of radical J. By construction, Og(? . is a

deformation quantization of Xy g over R;. In particular, (’);}? L isa sheaf in flat R?-algebras.
As used in [GHK15a], the fibers of X ;o — Spec R satisfy Serre’s condition Ss by [Ale02].
We have O% =~ Ox,  ®kp as ky-module and so it follows that j.j*O% _—=0O% . The

existence of quantum theta functions 1§p guarantees that the natural map
Og(l,ﬁ = j*OSl(I,@ - j*j*ogﬁ.z = OQ{JD
is surjective. So the result follows from the following Lemma, analogue of Lemma 2.29 of

[GHK15a].

Lemma 3.19. Let Xy/So be a flat family of surfaces such whose fibers satisfy Serre’s con-
dition Sy. Let j: X§ c Xo be the inclusion of an open subset such that the complement has
finite fiber. Let So c S be an infinitesimal thickening of So, and X /S a flat deformation of
Xo/So, inducing a flat deformation X°[S of X§/So. Let (9;"(0 be a deformation quantiza-
tion of Xo/So such that O% =~ Ox,&ky as Og,®kn-module, and so j.j*O% = O by the
relative Sy condition satisfied by Xo/So. Let O%. be a deformation quantization of X°/S,

restricting to j*(’);’(O over Xg. If the natural map
O% = j.0% > juj" Ok, = Ok,
is surjective, then (’)} is a deformation quantization of X/S.

Proof. We have to prove that O% is flat over Og®kp,.
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Let Z c Og be the nilpotent ideal defining Sy c S. Let X,,, X,, S, be the nth order
infinitesimal thickening of Xo, X§, Sp in S, ie. Ox, = Ox/I""!, Oxs = Oxo/I™"" and
Os, = 0g/T™ .

We define O&n = 7.O%,. We show by induction on n that O}n is flat over Og, ®kp.
For n =0, we have j*(’)gfg = j*j*(’)g(o = C’)g(o, which is flat over Og,®ky, by assumption.

Assume that the induction hypothesis is true for n - 1. Since O%. is flat over Og, &k, we

have an exact sequence

01"/ ®(9§(8 - (9&% - 0% -o0.

n-1

Applying j., we get an exact sequence
05 (I ©°0%,) » Ok, » 0%, , -

We have j,(Z"/I" @ j*O% ) =T"/T""' © O%, .

By assumption, the natural map (9?( - . j*(’)g(o = (’);‘(0 is surjective. By the induction

hypothesis, we have O%H /T = 0}0. As 7 is nilpotent, it follows that the map O}n - (9?(”71

is surjective. So we have an exact sequence
0-ZI"/IT"" ® (’);”(0 - O;L(n - O;b(nq -0,

implying that O% is flat over Og, ®kp. O

3.2.8 THE ALGEBRA STRUCTURE

This Section is a g-deformed version of Section 2.4 of [GHK15a).

We saw in the previous Section that the R’}—algebra
A} =T(X] 0, Oﬁ"(?@)

is free as R?-module, admitting a basis of quantum theta functions 19,,, p € B(Z). Theorem 3.20
below gives a combinatorial expression for the structure constants of the algebra A}} in the

basis of quantum theta functions.

If v is a quantum broken line of endpoint @ in a cone 7 of X, we can write the monomial

Mono(v) attached to the segment ending at @ as
Mono(v) = C(,Y)QWT(S(W))

with ¢(7y) € kp[P,, ] and s(y) € A-.

Theorem 3.20. Let p € B(Z) and let z € B—Supp; (’}ADC”) be very close to p. For every p1,
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p2 € B(Z), the structure constants Ch € R’} in the product expansion

Vp,Opy = Z 011:17]321917
peB(Z)

are given by

O pa = 2 clm)e(r2)gz 0002
Y1572

where the sum is over all broken lines v and v2, of asymptotic charges p1 and ps, satisfying
s(71) + s(72) = p, and both ending at the point z € By.

Proof. Let T be the smallest cone of ¥ containing p. Working in the algebra ky[P,_]/I, we

have

Lift. (p1) Lift-(p2) = 3 €2, Lift-(p).
peB(Z)

By definition, we have
Lift. (p1) = Z c(’yl)é%(s('“)) ,

71

and
Lift. (p2) = 3 e(q2) 297 (20

Y2

As p and z belongs to the cone 7, the only quantum broken line of charge p ending at z is

the straight line z + Rso equipped with the monomial 297 () and so we have
Lift. (p) = 277 ®) .

The result then follows from the multiplication rule
5or (1)) g7 (s(12)) = als(m):5(12)) 507 ()
O
Remark: In the formula given by the previous theorem, the non-commutativity of the

product of the quantum theta functions comes from the twist by the power of ¢,

q%(S(v1)75(72)) ’

which is obviously not symmetric in v; and 75 as (-, -) is skew-symmetric.

Taking the classical limit 2 — 0, we get an explicit formula for the Poisson bracket of classical

theta functions, which could have been written and proved in [GHK15a].

Corollary 3.21. Let p € B(Z) and let z € B — Supp; (D) be very close to p. For every
p1,p2 € B(Z), the Poisson bracket of the classical theta functions ¥p,, and 0, is given by

{19:01779102} = Z Plz;hpzﬁp’
peB(Z)
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where

PI€17P2 = Z (5(71),s(72))e(1)e(v2)

1,72
where the sum is over all broken lines v1 and v pf asymptotic charges p1 and ps, satisfying

s(v1) + s(y2) =p, and both ending at the point z € By.

3.3 THE CANONICAL QUANTUM SCATTERING DIAGRAM

In this Section, we construct a quantum deformation of the canonical scattering diagram
constructed in Section 3 of [GHK15a] and we prove its consistency. In Section 3.3.1, we give
the definition of a family of higher genus log Gromov-Witten invariants of a Looijenga pair.
In Section 3.3.2, we use these invariants to construct the quantum canonical scattering
diagram of a Looijenga pair and we state its consistency, Theorem 3.26. The proof of
Theorem 3.26 takes Sections 3.3.4, 3.3.5, 3.3.6, 3.3.7, and 3.3.8, and follows the general
structure of the proof given in the classical case by [GHK15al, the use of [GPS10] being
replaced by the use of Theorem 2.6.

3.3.1 LoG GROMOV-WITTEN INVARIANTS

We fix (Y, D) a Looijenga pair, (B, X) its tropicalization, P a toric monoid and n: NE(Y') —
P a morphism of monoids. Let ¢ be the unique® (up to addition of a linear function) PD%I’-
valued multivalued convex Y-piecewise linear function on B such that x,, = n([D,]) for
every p one-dimensional cone of ¥, where [D,] € NE(Y") is the class of the divisor D, dual

to p.

Let 0 ¢ B be a ray with endpoint the origin and with rational slope. Let 75 € ¥ be the
smallest cone containing 0 and let my € A, be the primitive generator of ? pointing away

from the origin.

Let us first assume that 7 = ¢ is a two-dimensional cone of ¥.. The ray 0 is then contained in
the interior of o. Let p, and p_ be the two rays of ¥ bounding o. Let m,, € A, be primitive
generators of p, pointing away from the origin. As o is isomorphic as integral affine manifold

to the standard positive quadrant (Ryo)? of R?, there exists a unique decomposition
My = NyMy,, +NoMy,_

with n, and n_ positive integers. Let NE(Y ), be the set of classes 5 € NE(Y) such that

there exists a positive integer ¢z such that

ﬁ.Dp+ = €5n+ y
5-Dp, = Zgn_ y
and
B.D,=0,

8See Lemma 1.13 of [GHK15a)].
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for every one-dimensional cone p of ¥ distinct of p, and p_.
If 7 = p is a one-dimensional cone of ¥, we define NE(Y ), as being the set of classes
B e NE(Y) such that there exists a positive integer ¢g such that
B.D, =13,
and
B8.Dy =0,
for every one-dimensional cone p’ of ¥ distinct of p.

The upshot of the preceding discussion is that, for any ray 9 with endpoint the origin and
of rational slope, we have defined a subset NE(Y ), of NE(Y).

We equip Y with the divisorial log structure defined by the normal crossing divisor D. The
resulting log scheme is log smooth. As reviewed in Section 3.1.2, integral points p € B(Z) of

the tropicalization naturally define tangency conditions for stable log maps to Y.

For every 3 € NE(Y)s, let M,(Y/D,$) be the moduli space of genus g stable log maps
to (Y, D), of class 3, and satisfying the tangency condition ¢gmy € B(Z). By the work of
Gross, Siebert [GS13] and Abramovich, Chen [Chel4b], [AC14], M,(Y/D,3) is a proper

Deligne-Mumford stack of virtual dimension ¢ and it admits a virtual fundamental class
[My(Y/D, )] € Ag(My(Y[D, 5), Q)

If m:C - M,(Y /D, ) is the universal curve, of relative dualizing sheaf w,, then the Hodge
bundle

E:=m.wr

is a rank g vector bundle over M,(Y/D,3). Its Chern classes are classically called the
lambda classes,
)‘j =G (E) ’

for j=0,...,9. We define genus g log Gromov-Witten invariants of (Y, D) by
NYIP ::f “1)9), € Q.
95 = e, pp s T

3.3.2 DEFINITION

Using the higher genus log Gromov-Witten invariants defined in the previous Section, we
can define a natural deformation of the canonical scattering diagram defined in Section 3.1
of [GHK15a].

Definition 3.22. We define Dean gg being the set of pairs (O,ﬁa), where 0 is a ray of ratio-
nal slope in B with endpoint the origin, and, denoting 7 the smallest cone of ¥ containing
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0, and my € A, the primitive generator of 0 pointing away from the origin, Hy is given by

R i v/ID e e .
Ho = (E) Z (Z Ny,é th) e ¢ Ikh[Psom] .
BeNE(Y), \920

The following Lemma is almost formally identical to Lemma 3.5 of [GHK15a].
Lemma 3.23. Let J be a radical ideal of P. Suppose that the map n: NE(Y') - P satisfies

the following conditions

e If 0 is contained in the interior of a two-dimensional cone of ¥, then n(B8) € J for
every B € NE(Y )y such that Ny g #0 for some g.

e Ifdis aray p of ¥ and K, ¢ J, then n(B) € J for every € NE(Y )y such that
Ny g #0 for some g.

e For any ideal I in P of radical J, there are only finitely may classes € NE(Y) such
that Ng g # 0 for some g and such that n(3) ¢ I.

Then D" js q quantum scattering diagram for the data (B,X), P, J, and @. Furthermore,

the quantum scattering diagram DA has only outgoing rays.

Proof. The assumptions guarantee the finiteness requirements in the definition of a quantum

scattering diagram, see Section 3.2.2. The ray (0, ﬁa) is outgoing because

r(n(B) - Pro (éﬂma)) =—Lgmy € LicgMyp -
O

Lemma 3.24. The canonical quantum scattering diagram DA s invariant under flat de-
formation of (Y, D).

Proof. This follows from deformation invariance of the log Gromov-Witten invariants N ;/éD.

O

Lemma 3.25. The classical limit of the canonical quantum scattering diagram DA s the
canonical scattering diagram defined in Section 3.1 of [GHK15q].

Proof. Tt follows from the cycle argument used in the proofs of Proposition 1.10 and 2.12,
and from the log birational invariance of log Gromov-Witten invariants [AW13], that the
relative genus zero Gromov-Witten invariants of non-compact surfaces used in [GHK15a]

coincide with the genus zero log Gromov-Witten invariants Ngz gD. O

3.3.3 CONSISTENCY

The following result states that the quantum scattering diagram " defined in Section 3.3.2,

is consistent in the sense of Section 3.2.6.
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Theorem 3.26. Suppose that

e For any class f € NE(Y') such that Ng g # 0 for some g, we have n(B) € J.

e For any ideal I of P of radical J, there are only finitely many classes 8 € NE(Y') such
that Ny g # 0 for some g and n(8) ¢ I.

e 1([D,]) € J for at least one boundary component D, c D.
Then the canonical quantum scattering diagram DA s consistent.

Let us review the various steps taken by [GHK15a] to prove the consistency of the canonical

scattering diagram in the classical case.

e Step I. We can replace (Y, D) by a corner blow-up of (Y, D).

Step II. Changing the monoid P.

Step III. Reduction to the Gross-Siebert locus.

Step IV. Pushing the singularities at infinity.

Step V. D satisfies the required compatibility condition.

Step I, see Proposition 3.10 of [GHK15a], is easy in the classical case. The quantum case is
similar: the scattering diagram changes only in a trivial way under corner blow-up and we

will not say more.

Step II, see Proposition 3.12 of [GHK15a], is more subtle and involves some regrouping of
monomials in the comparison of the broken lines for two different monoids. Exactly the

same regrouping operation deals with the quantum case too.

Step IIT in [GHK15a] requires an understanding of genus zero multicover contributions of
exceptional divisors of a toric model. We explain below, Section 3.3.4, how the quantum

analogue is obtained from the knowledge of higher genus multicover contributions.

Step IV in [GHK15a] is the reduction of the consistency of D" to the consistency of a
scattering diagram v(®°") on an integral affine manifold without singularities. We explain
in Sections 3.3.5, 3.3.7, 3.3.8, how the consistency of the quantum scattering diagram Dean
can be reduced to the consistency of a quantum scattering diagram u(@can) on an integral

affine manifold without singularities.

Step V in [GHK15a] is the proof of consistency of (") and ultimately relies on the main
result of [GPS10]. We explain in Section 3.3.6 how its g-analogue, i.e. the consistency of

V(@Cﬁn), ultimately relies on Theorem 2.6.

3.3.4 REDUCTION TO THE GROSS-SIEBERT LOCUS.

We start recalling some notations from Chapter 2.
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Let m = (mq,...,m,) be an n-tuple of primitive non-zero vectors of M = Z?. The fan in R?
with rays —Rsgmy,...,-Rsom, defines a toric surface Yy,. Denote 0Y;, the anticanonical
toric divisor of Yy, and let Dy, ..., Dy, be the irreducible components of 9Y;, dual to the

rays —Rsomy,...,—Rsomy,.

For every j =1,...,n, we blow-up a point z; in general position on the toric divisor Dy, .
Remark that it is possible to have Ryom; = Rygmy/, and so Dy, = ij,, for j # j', and that
in this case we blow-up several distinct points on the same toric divisor. We denote Y, the
resulting projective surface and m: Yy — Yy the blow-up morphism. Let E; = ﬂ’l(xj) be

the exceptional divisor over ;. We denote 0Y, the strict transform of Y.

Using Steps I and IT and the deformation invariance property of D" we can make the

following assumptions (see Assumptions 3.13 of [GHK15a]):

e There exists m = (my,...,m,) a n-tuple of primitive non-zero vectors of M = Z? such
that (Y, D) = (Y, Ym).

e The map n: NE(Y) — P is an inclusion and P* = {0}.

e There is an ample divisor H on Y such that there is a face of P whose intersection
with NE(Y') is the face NE(Y) n(p*H)* generated by the classes [E;] of exceptional
divisors. Let G be the prime monomial ideal of R generated by the complement of

this face.

J=P-{0}.

Following Definition 3.14 of [GHK15a], we call Gross-Siebert locus the open torus orbit 7%°
of the toric face Spec k[ P]/G of Spec k[P].

Proposition 3.27. For each ray p of ¥,with primitive generator m, € A, pointing away
from the origin, the Hamiltonian Hp attached to p in the scattering diagram Hean satisfies
-1
i, =i LD conmD-t20tm) mod @
D=, 51 £ 25in ()

Proof. The only contributions to H » mod G come from the multiple covers of the excep-
tional divisors E;. The result then follows from Lemma 2.20. O

Proposition 3.28. The canonical quantum scattering diagram DeAn g g scattering diagram
for the data (B,X), P, G and ¢. Concretely, for every ideal I of P of radical G, there are
only finitely many rays such (3, Hy) such that Hy #0 mod I.

Proof. This follows from the argument given in the proof of Corollary 3.16 in [GHK15a]. It
is a geometric argument about curve classes and the genus of the curves plays no role. [

Corollary 3.29. If DA s consistent as a quantum scattering diagram for the data (B,Y),
P, G and ¢, then D@ s consistent as a quantum scattering diagram for the data (B,Y),

P, J and ¢.
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Following Remark 3.18 of [GHK15a], we denote E c P#P the sublattice generated by the
face P\ G. We have naturally 7% = Spec k[ F] c Spec k[ P]. Denote mp,g = (P + E)\ E.

The following Lemma is formally identical to Lemma 3.19 of [GHK15a].

Lemma 3.30. If ’}5”‘“, viewed as a quantum scattering diagram for the data (B,X), P+ E,
@ and mp,g, is consistent, then @C*m, viewed as a quantum scattering diagram for the data

(B,X), P, ¢ and G, is consistent.
Proof. Identical to the proof of Lemma 3.19 of [GHK15a]. O

It follows that we can replace P by P + F, and so from now on, we assume that P* = F
and G = P\ E. Concretely, this means that it is enough to check the consistency of Hean by

working in rings in which the monomials 27([Fi]=¢2("%) are invertible.

3.3.5 PUSHING THE SINGULARITIES AT INFINITY

We first recall the notations introduced at the beginning of Step IV of [GHK15a].

We denote M = Z? the lattice of cocharacters of the torus acting on the toric surface
(Y,0Yy). Let (B,X) be the tropicalization of (Y,,,0Yy). The affine manifold B has no
singularity at the origin and so is naturally isomorphic to Mg = R%. The cone decomposition
¥ of Mg = R? is simply the fan of Y. Let @ be the single-valued PEP-valued on B such that

for every p one-dimensional cone of ¥ and where D; is the toric divisor dual to p. Since @ is
single-valued and B has no singularities, the sheaf P, as defined in Section 3.1.2 is constant
with fiber P8P & M.

There is a canonical piecewise linear map v: B — B which restricts to an integral affine
isomorphism v|,:0 — & from each two-dimensional cone o of ¥ to the corresponding two-
dimensional cone & of 3. This map naturally identifies B(Z) with B(Z). Restricted to each
two-dimensional cone o of ¥, the derivative v, of v induces a identification Ap , ¥ Ag 5, an
isomorphism of monoids

l~/a-: P‘Pc - P@E
P+ @o(m) = p+@s(v(m)),
for p e P and m € A,, and so an identification of algebras of k[P, ] and kx[Pg, ].

If p is a one-dimensional cone of X, then v, is only defined on the tangent space to p (not
on the full A, because v is only piecewise linear) and so give an identification

Up:{p +¢,(m)| m tangent to p, pe P} — {p+ @z(m)| m tangent to p, pe P}
p+pp(m) = p+@s(ve(m)).
We define below a quantum scattering diagram v(9°") for the data (B,%), P, @ and G.
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e For every ray (9, H. ) of DN contained in the interior of a two-dimensional cone of 3,

the quantum scattering diagram v(D") contains the ray
(v(0), 7r, (H))

which is outgoing.

e For every ray (p, H ), with p a one-dimensional cone of ¥, and so by Proposition 3.27,

H =G +i Z 1 (_1)6_1 2L[Es]-Lpp(m,p)
p=bp - )
jiDmr=n, 51 £ 25in ()

with Gp =0 mod G, the quantum scattering diagram V(f)ca“) contains two rays:

(ﬁv 177-0 (GP))a

which is outgoing, and

-1
D, i 1 (-1 2p(mp)—L[E;]
T i { 2sin (@)
4.Dm, =D, 51 2

which is ingoing.

Remark: In going from D 4 V(CSADCM), we invert 2/1Fi1-625(m0) which becomes %7 (me)~¢E;]

This makes sense because we are assuming P* = F.

3.3.6  CONSISTENCY OF v(D")

Let @m be the quantum scattering diagram for the data (B,%), P, ¢ and G, having, for

each j one-dimensional cone of ¥, a ray (5, H,) where

-1
Hp = ligw(mp)—é[&] .
j.D-p, 51 £ 25in ()
Writing ¢p(m,) - {[E;] = (bm,, o(fm,) - ([E;]), it is clear that f[,; € kp[P5], where the
monoid
Py ={(m,@(m) +p)lm e M,p e P}

is independent of p.

For such quantum scattering diagram @, with all Hamiltonians valued in the same ring, it
makes sense to define an automorphism HA%@ of this ring, as in Section 3.2.4, but for v an
arbitrary path in By transverse to the rays of the diagram. By [KS06], Theorem 6, there
exists another scattering diagram S (35) containing ®, such that S (@) - ® consists only of
outgoing rays and é% S(D) is the identity for v a loop in By going around the origin. We can

assume that there is at most one ray of S (@) -9 in each possible outgoing direction.
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The scattering diagram S (@m) was the main object of study of Chapter 2°.

For every m € M — {0}, let P, be the subset of p = (p1,...,pn) € N” such that };; p;m; is
positively collinear with m:

n

Zpimi ={lpm

i=1

for some ¢, e N. Given p € P,,, we defined in Section 2.2.2 a curve class 8, € A1(Yim,Z).

Recall that if 0 ¢ B is a ray with endpoint the origin and with rational slope, we denote
my € M the primitive generator of 0 pointing away from the origin.

The following Proposition expresses S(Dy,) in terms of the log Gromov-Witten invariants

Ngy‘g/ 9¥n Jefined in Section 3.3.1 and entering in the definition of Dean,

Proposition 3.31. The Hamiltonian H, attached to an outgoing ray 0 of S(@m) - D s
given by

2 i Y /0Ym 129 | 5(~€smo,Bp—@(Lgmo
poe(3) . (Gt scomacsns,

pePpm, \ 920

where (=lgmy, By — p(Lgmy)) € Pp.

Proof. This is Theorem 2.6. O

Proposition 3.32. We have S(Dy) = v(D).

Proof. We compare the explicit description of S (@m) given by Proposition 3.31 with the
explicit description of S (C‘jm) obtained from its definition in Section 3.3.5 and from the
definition of ®°" in Section 3.3.2.

The ingoing rays obviously coincide.

Let 9 be an outgoing ray. The corresponding Hamiltonian in v(D%") involves the log

. . . Y /0Ym
Gromov-Witten invariants Ng 5/ , for

BeNE(Y)ynG,

whereas the corresponding Hamiltonian in S (@m) involves the log Gromov-Witten invariants
NgY‘BI/)ay‘“ for p € P,,,. The only thing to show is that N;’l‘;/ay'“ =0if Be NE(Y),nG is not
of the form 3, for some p € P,,, .

Recall that we have the blow-up morphism 7:Yy, — Y. Let 8 € NE(Y), nG. We can
uniquely write 8 = 7*m. 3 -~ X7 p;E; for some p; € Z, j = 1,...,n. If p; > 0 for every
j=1,...,n,then p=(p1,...,pn) e N" and 5 = 3.

Assume that there exists 1 < j <n such that p; <0. Then 8.E; = p; <0 and so every stable
log map f:C — Yy of class 8 has a component dominating F;. If 9 # -Rygm;, then we
can do an analogue of the cycle argument of Proposition 1.10 and Lemma 2.12. Knowing
the asymptotic behavior of the tropical map to the tropicalization B of Y, imposed by

9Comparing the conventions of the present Chapter and of Chapter 2, the notions of outgoing and
ingoing rays are exchanged. This implies that a global sign must be included in comparing Hamiltonians of
the present Chapter and those of Chapter 2.
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the tangency condition £gmy, and using repetitively the balancing condition, we get that C

needs to contain a cycle of components mapping surjectively to dYy,. Vanishing properties

of the lambda class given by Lemma 1.7 then imply that N;%/ﬁy"‘ =0. If 9 = -Ryom,; for
some 7, then the same argument implies the vanishing of N;’B/ aY‘“, except if 8 is a multiple

of some Ej;, which is not the case by the assumption 3 € G.

O

The following Proposition is the quantum version of Theorem 3.30 of [GHK15a].

Proposition 3.33. Let I be an ideal of P of radical G. If Q and Q' are two points in
general position in Mg — Supp(S(@m))I, and v is a path connecting Q and Q' for which
é,y SDw)r is defined, then

Lifto (p) = éms@m)] (Liftg(p))

as elements of kp[Pgz]/1.

Proof. The key input is that, by construction, éy S@w) is the identity for ~ a loop in By going
around the origin. Proofs of the classical statement can be found in [CPS10], Section 5.4
of [Groll] and Section 3.2 of the first arxiv version of [GHK15a]. Putting hats everywhere,

the same argument proves the quantum version, without extra complication. O

3.3.7  COMPARING D" AND 1(D")

In order to obtain the consistency of D" from some properties of u(@ca“), we need to
compare the rings Rg’ I8 R;L’ ; coming from (B, X), ¢, and the corresponding rings RZ’ I Rg’ I
coming from (B,3), @. Such comparison is done in the following Lemma.

Lemma 3.34. There are isomorphisms pp:RzJ - R%I and pg:RgJ - Rg,l, intertwining

o the maps ﬁp,_:RﬁJ - Rgﬂ, and 1&5,_:]?2)1 - Rgﬂp

o the maps ﬁpﬁ: Rﬁ,[ - R§+,I and 1&5,+:R§)I - Rh

(o

o the automorphisms év Bean | RZ’I - RE’I and 9} p(Deany | RZ)I - ngl, where v is a path

in o for which é%@can is defined and 5 = v oy.

Proof. Tt is a quantum version of Lemma 3.27 of [GHK15a]. The isomorphism p, simply

comes from the isomorphism of monoids 75: P, — Pg, .

Recall from Section 3.2.1 that the rings RZ ; and R;L, 1 are generated by variables X, X_,
X and X,,X_, X respectively and we define D, as the morphism of R’}-algebras such that
pp(X+) = X4, pp(X_) = X_, p,(X) = X. We have to check that p, is compatible with the

relations defining RZ, ; and ng I
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We have fpin = 1. Using Proposition 3.27 and Lemma 3.13, we can write

fot(X)=g,(X) T[] (+q2sPx),

3.Dp =D,

for some §,(X) = 1 mod G. Using the definition of v(D) given in Section 3.3.5, and
Lemma 3.13, we have

fon(X)= T[] (+g¢25X),
ijnlj :Dp

and
oo (X) = ,(X).

We need to check that

Py (anpz«D» fom(X) fpm(q-l)()x-f’p) = q2 D520 f (X)) frout (TP X)X 05

We have D> = D2 -1, and D, = Dz =Y, p, _p, Ej and so the desired identity follows from
bl m]
(1+q 225 (" X)) = (1+¢225 X ) =g22% X (1+¢q 225 X).

Similarly, the relation

1

Po(q7 32200 frone (X) fon (aX)X700) = q 320207 frone (X) fm (¢ X) X720
follows from
(1+q 2P X ) =g 2P X N (14 g2 2P X) = 2 2P X T (1 + 2575 (X))
O

Lemma 3.35. The piecewise linear map v: B — B induces a bijection between broken lines
of D and broken lines of V(D).

Proof. Tt is a quantum version of Lemma 3.27 of [GHK15a].

It is enough to compare bending and attached monomials of broken lines near a one-
dimensional cone p of . Indeed, away from such p, v is linear and so the claim is obvious.

Let p be a one-dimensional cone of ¥. Let o, and o_ be the two-dimensional cones of
3 bounding p, and let p;, p— be the other boundary one-dimensional cones of o, and o_
respectively, such that p_, p and p, are in anticlockwise order. Let m, be the primitive
generator of p pointing away from the origin. We continue to use the notations introduced
in the proof of Lemma 3.34.

Let v be a quantum broken line in By, passing from o_ to o, across p. Let c2°, se P,__,
be the monomial attached to the domain of linearity of + preceding the crossing with p.
Without loss of generality, we can assume s = ¢,_(m,_). Indeed, the pairing (-, -) is trivial

on P, r(s) is a linear combination of m, and m,_, and 2#7-("#) transforms trivially across
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p-
By the Definition 3.15 of a quantum broken line, we have to show that

Do, (29700 f o (71 X)) = 2270 frowi (g7 X)) fm (X))

From the relations

2 2
520 (mpy) 500(mp) _ 03D 5D x =D,

in Ik[P%],
3P(mp,) 585(mp.) _ q%Dfsé‘,DﬁX—Dg
5

in k[Pg_], and using DizD%—lp and D, =D;-%; p, _p, Ej, we get
D =D, &

pm(gw(mp_)):é@ﬁ(mﬁ_) H (q’%Xé’EJ‘),
J:Dm;=D,

The result follows from the identity
X (g2 (g X)) =142 BX

O

Lemma 3.36. Let 0 be a two-dimensional cone of ¥. For every QQ € o and for every
p € Bo(Z), we have

po(Liftq(p)) = Lift, ) (v(p)) -

Proof. 1t is a direct consequence of Lemma 3.35. O

3.3.8 END OF THE PROOF OF THEOREM 3.26

This Section is parallel to the proof of Theorem 3.30 of [GHK15a]. We have to show that
DN gatisfies the two conditions entering the Definition 3.17 of consistency of a quantum

scattering diagram.

e Let Q and Q' be generic points in By contained in a common two-dimensional cone o
of ¥, and let v be a path in the interior of o connecting ) and Q’, and intersecting

transversely the rays of ©. We have to show that

Liftg: (p) = 0., gean (Lift(p)) -

By Lemma 3.34 and Lemma 3.36, it is enough to show that

Liftl,(Ql) (l/(p)) = éy(,y)yy(@can)(LiftV(Q)(V(p))) ’

which follows from the combination of Proposition 3.32 and Proposition 3.33.

e Let )_ and @, be two generic points in By, contained respectively in two-dimensional

cones o_ and o, of X, such that o, and o_ intersect along a one-dimensional cone p
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of ¥. Assuming further that Q- and @), are contained in connected components of
B - Supp; (D) whose closures contain p, we have to show that Lifte, (p) € R§+7 ; and
Liftg (p) € RZ_, ; are both images under 1[1p,+ and 1[)p7_ respectively of a single element
Lift,(p) € RZ,I' By Lemma 3.34 and Lemma 3.36, it is enough to prove the corre-
sponding statement after application of v. This result follows from the combination
of the Remark at the end of Section 3.2.4 and of the second point of Lemma 3.16.

3.4 EXTENSION OVER BOUNDARY STRATA

3.4.1 TORUS EQUIVARIANCE

Recall from Section 3.1.5 that TP := G”, is the torus whose character group x(7°) has a
basis ep, indexed by the irreducible components D; of D, 1< j <r. The map

B Y (B.D)en,
j=1

induces an action of TP on Sy = Spec Rj.

Following Section 5 of [GHK15a], we consider
wB > x(Tp) ®R,

the unique piecewise linear map such that w(0) = 0 and w(m,,;) = ep, for all 1 < j <7, where

my,, is the primitive generator of the ray p;.

According to Theorem 5.2 of [GHK15a], for every I monomial ideal of R such that X; gean —
Spec R; is defined, the TP-action on Spec R; has a natural lift to X7, ean, such that the
decomposition

HO(X1peon,Ox, gen) = A1= @ Rr9,
peB(Z)

as Rr-module is a weight decomposition, TP acting on 1, with weight w(p).

We extend the action of TP on R; by k-algebra automorphisms to an action of T on R’}

by kp-automorphism by assigning weight zero to h.

Proposition 3.37. The TP -action on A; by k-algebra automorphisms, equivariant for the
structure of Ry-algebra, lifts to a TP -action on A? by ky-automorphisms, equivariant for

the structure of R?-algebm. Furthermore, the decomposition

A?: GB R?ﬁp
peB(Z)

as R?—module is a weight decomposition, TP acting on 1§p with weight w(p).

Proof. Tt is a quantum deformation of the proof of Theorem 5.2 of [GHK15a]. As A? =
(X7 geans (’)g(; e ), it is enough to define the T"P-action on O%.

Lgcan.
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Remark that for every ray 0 of DN the monomials appearing in H, and so in fa have weight
zero. Indeed they are of the form 2#7%m (!am) with 8 € NE(Y )y, which by definition means
that 8.D; = £g(ma, D;) for all 1 < j <r. In other words, the scattering automorphisms have

weight zero.

Let p be a one-dimensional cone of ¥. Let o, and o_ be the two-dimensional cones of
3 bounding p, and let p,, p- be the other boundary one-dimensional cones of o, and o_
respectively, such that p_, p and p, are in anticlockwise order. From the explicit description
of ng ; by generator and relations given in Section 3.2.1, and recalling that ¢ is such that
Kp = [D,], we define an action of 77 on R:; 7, equivariant for the structure of equivariant
R’}—algebra by acting on X with the character ep,, on X, with the character ep, , and on
X_ with the character ep, . The fact that fpin and fpout have weight zero implies that the

relations defining RZ ; are equivariant and so this 7P-action is indeed well-defined on RZ I

As the scattering automorphisms have weight zero, these TP-actions on the various R/’i I

glue to define a TP-action on O%.,

I}gcan'

The check that 1§p is an eigenfunction of the TP-action with weight w(p) is now formally
identical to the corresponding classical check given in the proof of Theorem 5.2 of [GHK15a].
As the scattering automorphisms have weight zero, the weights of the monomials on the
various domains of linearity of a broken line are identical and so it is enough to consider

the unbounded domain of linearity. In this case, the monomial is 27 ("), which has weight
w(p). O

3.4.2 END OF THE PROOF OF THEOREM 3.7

We fix (Y, D) a Looijenga pair. Let op ¢ A;(Y,R) be a strictly convex polyhedral cone
containing NE(Y )g. Let P:=opn A1(Y,Z) be the associated monoid and let R :=k[P] be
the corresponding k-algebra. For J = mp the maximal ideal monomial of R, the assumptions
of Theorem 3.26 are satisfied and so the canonical quantum scattering diagram Dean g

consistent.

If (Y,D) admits a toric model, then D has r > 3 irreducible components, and so we can

apply Theorem 3.18. Combined with Proposition 3.37, this proves Theorem 3.7 in this case.

In general, it is proven in Section 6.2 of [GHK15a] that

HO(X[,OXI):AI:: @ R19p7
peB(Z)

with the Rj-algebra structure determined by the classical version of the product formula

given in Theorem 3.20. So Theorem 3.7 follows from the following Proposition 3.38.

Proposition 3.38. For every monomial ideal I of R of radical mp, the multiplication rule
of Theorem 3.20 defines a structure of R’}-algebm on the R?-module

A= P R?ép.

peB(Z)
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Proof. Tf (Y, D) admits a toric model, then D has r > 3 components and so the result follows
from Theorem 3.20.

In general, there is a corner blow-up (Y’, D’) of (Y, D) admitting a toric model. The result
for (Y',D") implies the result for (Y, D) as in Section 6.2 of [GHK15a)].

O

3.4.3 (QUANTIZATION OF Vi AND Vy

By Poposition 3.38, for every monomial ideal I of R of radical mg, we have a structure of
Rh-algebra on
A= @ RM,.
peB(Z)

In this Section, we describe explicitly this algebra for I = mg.

In the classical limit A = 0, we get a commutative Rj-algebra which, by [GHK15a] is the
algebra of functions on the variety V,, where r is the number of irreducible components of
D, and

o If r > 3, V. is the r-cycle of coordinates planes in the affine space A", V,. = A
A2 L U~ UAZ L c AT

T2,T3 Lr,T1

2
X1,T2 u

e If r =2, Vy is a union of two affine planes'®,

Vs, = Spec ]1{[$>yaz]/(xyz - 22) ’

affine cone over the union of the two rational curves z =0 and zy — z = 0, intersecting

in two points, embedded in the weighted projective plane P1:1:2,

2 _23), affine cone over a nodal curve embedded

in the weighted projective plane Pf,’i’zz).

o If r= 1, Vl = Spec Ik[x7y72]/('ryz -z

When r > 3, the explicit description of AﬁR follows from the combination of Section 3.2.5
and the beginning of the proof of Theorem 3.18: we have

l I\ A . . .
3 {qz(m’m )19m+mr if m and m’ lie in a common cone of ¥
Dy =

0 otherwise.

In particular, denoting vi,...,v, the primitive generators of the one-dimensional cones
P1y---,pr Of 2, AQIR is generated as kp-algebra by 191,1, e ,191,,,,.

h

For r =2 and r = 1, computing Ay, .

Propositions 3.39 and 3.40.

is slightly more subtle and the answer is given below in

Both V; and V3 are hypersurfaces in Ai,%z. Evey hypersurface F(x,y,z) =0 in A3 has

z,Y,2

10Tn [GHK15a], the description Va = Spec k[u, v, w]/(w?-u2v?) is given. Tt is equivalent to our description
via the change of variables z = V2u, y = V2v, z= w + uv.

195



a natural Poisson structure defined by

OF OF 0
{x7 y} = ’{y7z} = ’{Z7 x} =
0z ox

F
oy’
see [EG10] for example.

For Vy and F(z,y,2) = 2% — zyz, we get

{x’y} :ZZ_xy’{y?Z} :_yza{sz} =—ZT.

It follows from {y, z} = —yz and {z,z} = —zx that this bracket coincides with the one coming

from the standard symplectic form on the two natural copies of (G,,)? contained in V;.

2

For V; and F(z,y,2) = 2% + 2% — zyz, we get

{Jﬁ,y}:SZQ—J?y,{y,Z}:233—],/2,{2,56}:—21'-

It follows from {z,z} = xzz that the above Poisson structure is indeed the one induced by

the standard symplectic form on the natural copy of (G,,)? contained in Vs.

We first explain how to recover the above Poisson brackets from the formula given by
Corollary 3.21 in terms of classical broken lines. We then use the formula of Theorem 3.20
in terms of quantum broken lines to compute the g-commutators deforming these Poisson

brackets.

For V5, the tropicalization B contains two two-dimensional cones o1, and o2, and two one-
dimensional cones p; and po. Let v1 and vs in B(Z) be the primitive generators of p; and ps.
Cutting B along p;, we can identify B as the upper half-plane in R? with an identification
of the two boundary horizontal rays. Denote w = (1,0), w’ = (-1,0), vy = (0,1). We have
T =Yy, =y = Oy, Yy =y,, 2=0yiw,. The broken lines description of the product gives

Ty = 19111 797}2 = ﬂw-%—vg + ﬂw’+vz 3

and

1911)+v2 ﬁw’+v2 =0,

80 Vyrivy, =2y — z and (zy — z)z = 0, which is indeed the equation defining V. We have
{z,y} = {u,, P, } = ((1,0), (0, )}uwv, + {(=1,0), (0, )} svy = Vwvrvy = Puwrsvs
Using Yy 40, = Y — 2, we get {z,y} = 2z — xy. We have
{y: 2} = {Vus, Vs } = ((0,1), (1, 1)) wrs20, = =Dy Vo, = =42

Finally, we have
{z,2} = ((1,1),(1,0))020+vy = —FDrpiv, = =22 .

Using the formula of Theorem 3.20, we compute the g-commutators deforming the above
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Poisson brackets. We have

o ~ ~ 1 A~ ~

xry = 191;1 191)2 = q§/l911)+1)2 + q7§19w’+v2 »

SO ngur,@ = q%fcg —¢2%. On the other hand, we have

1 A

~ ) 0 -1 1
yxr = 79112191)1 =q 27911)’+112 + q219w’+vg ,

PN ~13 a
q 2yYyr=q ﬂw’ﬂjg + 19w’+v2 5

and so
1. 1 .
QZig-q gz =(q-q ")2%.
We have
QZA,’ = 191)2 §w+v2 = q_§7-9w+2v2 3
and
an & A 1A
2y = "*9’(1}4-1)219'(12 q? 'ﬂw+202 y
SO
1, . I N
q?yz-q 2z2y=0
We have
A A 3 3 145
2T = 19w+1)219w =q 2 192w+v2
and
A A 3 4 1A
Tz = 19’[1)191U+’U2 =q>2 792w+v2 P
SO

Finally, we compute the g-deformation of the cubic relation F' = 0:

~ 1 A~

537]5’ = ﬂwq_iﬁuHsz =q 2

1.
2z,

In summary, we proved:

Proposition 3.39. The deformation quantization of Vo given by the product formula of
Theorem 3.20 is the associative ky-algebra generated by variables &, 4,2 and with relations

1, . 1 . — ~
a?&g-q 7 9i=(q-q ")z,

For V1, the tropicalization B contains one two-dimensional cone o, and one one-dimensional
cone p. Let v in B(Z) be the primitive generator of p. Cutting B along p, we can identify
B as a quadrant in R? with an identification of the two boundary rays. Denote w = (1,0)
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and w’ = (0,1). The description of the product of classical theta functions by broken lines
is given in Section 6.2 of [GHK15a]. We have & = Vo, Y = Oy = Uy = Dy 2 = Dpipnr. We
have

{z,y} = {P2wsw, Do} = ((2,1), (1, 003040 + ((2,1), (0, 1)} 200

= _193w+w’ + 2192w+2w’ .

On the other hand, we have 2y = V31w + V22w and 22 = 9oy 12.7, and so {z,y} = 322 —xy.
We have

{y7’z} = {7‘911719w+w’} = ((170)7 (17 1)>192w+w’ + <(07 1)7 (17 1)>'l9w+2w’
= Vowiw’ = Vws2uwr -

On the other hand, we have yz = Yopsw + Fwrow and & = Yoy, and so {y,z} = 2z - yz.
We have

{Z,.’L’} = {19104-’(1)'7 792w+w’} = ((17 1)7 (27 1)>193w+2w’ = _193w+2w’ .
On the other hand, we have zz = U342, and so {z,2} = —zx.

Using the formula of Theorem 3.20, we compute the g-commutators deforming the above

Poisson brackets. We have
an B a L A
Ty = 192w+w”l9v =q 2 193w+w' + q792w+2w’ 5

SO

2

3 .
2z7.

- 1,
193w+w’ =927y —¢q
On the other hand, we have

A 3 4 1A 13
yr = 791)192w+w’ = q21931u+w’ +q 192w+2w’ ’

1 .. 3 _3 .
q 2y37:?93w+w'+q 2227

and so
1. 1. 3 _3.,.9
q?2)-q 29t =(q2 -q )%
We have
n Ao 14 14
Yz = Vo Wwrw = Q202040 + @ 2020
SO

1.
Drow = q292 —qT.
On the other hand, we have

N . 14 1A
Y = Vwrw Vv = ¢ 202psw + 2 Vpr2w

1, . S N a
q22)=q T+ V2w,

and so
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We have

A _l A
2% = Vprw V2wsw = ¢ 2V3we20
-~ 1, .
193w+2w’ =q2zx.

On the other hand, we have
P o 1
22 = Vowsw Vwrw = q? V30420 )

and so

Finally, we compute the g-deformation of the cubic relation F' = 0O:

3
2

A~ 3 14 _1A 149 1 ~
Yz = ﬂ2w+w’(q2 192w+w’ + q 2 ﬁw+2w’) = q2 7‘92w+w’ + q 2 q 193w+3w’ )

292 =q23% +q5

In summary, we proved:

Proposition 3.40. The deformation quantization of Vy given by the product formula of

Theorem 3.20 is the associative ky-algebra generated by variables &, 9,2 and with relations

qiij-q

3.4.4 END OF THE PROOF OF THEOREM 3.8

In this Section, we finish the proof of Theorem 3.8, which is done by combination of
Proposition 3.41 and Proposition 3.42. We follow Section 6.1 of [GHK15a].

For every I monomial ideal of P, we define the free R?-module

A= P RM,.
peB(Z)

According to Proposition 3.38, if I has radical mpg, then there is a natural R?—algebra
structure on A?.

Let T' c B(Z) be a finite collection of integral points such that the corresponding quantum
theta functions 1§p generate the kp-algebra A” .- Using the notations of Section 3.4.3, we
can take ' = {vy,..., 0.} if 7 23, T ={vy,v0,w+wvy} if r =2, and ' = {v,w + w’, 2w + w'} if

r=1.

Proposition 3.41. There exists a unique minimal radical monomial ideal J". —of P such

in

that, for every I monomial ideal of P of radical containing Jr}}lin,
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e There exists a R’}-algebm structure on A’} such that, for every k > 0, the natural

isomorphism of R’}erk -modules A? ® R?erk = A?+m’“ is an isomorphism of R’}+mk'
algebras.
e The quantum theta functions 19,,, pel’, generate A? as an R'}—algebm.
Proof. Follows as its classical version in Section 6.1 of [GHK15a]. O

As in Section 6.1 of [GHK15a), the first point of Proposition 3.41 is equivalent to the fact
that for every pi1,ps € B(Z), at most finitely many terms éﬁﬁp with 5 ¢ I appear in the

expansion given by Theorem 3.20 for 19,,119,,2.

Proposition 3.42. Suppose that F' c op is a face such that F does not contain the class of

every component of D, then Jh. c P~ F. If (Y, D) is positive, then J"; =0.

Proof. The proof is formally identical to the proof of its classical version, Proposition 6.6 of

[GHK15a]. The main input, the TP-equivariance, is given in our case by Proposition 3.37.
O

Remark: Let Jp,;i, be the ideal defined by Proposition 6.5 of [GHK15a]. We obviously have
Jmin c JI};
of genus zero Gromov-Witten invariants. If (Y, D) is positive then Jyi, = Jh

min

as the vanishing of all genus Gromov-Witten invariants includes the vanishing
=0. In

general, it is unclear if we always have Jyi, = Jfflin or if there are examples with Jyn # J7

min"*

in?

Geometrically, it is the question to know if some vanishing of genus zero Gromov-Witten
invariants implies (or not) a vanishing of all higher genus Gromov-Witten invariants.

3.4.5 @-INTEGRALITY: END OF THE PROOF OF THEOREM 3.9

The R?-algebra structure on
A? = @ R?ﬁp
peB(Z)

is given by the product formula of Theorem 3.20,

épl §p2 = Z 011))1 ,ngp N
peB(Z)

A priori, we have CP € R? = R;[[h]]. Theorem 3.9 follows from the following Proposition.

Proposition 3.43. For every p1,p2,ps € B(Z), we have

C? R =R[q*?],

P1,p2

_ Lih : ; ; ; _
where q = €. More precisely, Cl ., is the power series expansion around h =0 of a Laurent
h

polynomial in q% after the change of variables q = €.
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Proof. Recall that, if v is a quantum broken line of endpoint @ in a cone 7 of X, we write
the monomial Mono(y) attached to the segment ending at @ as

Mono(7) = e(7)£#7¢)

with ¢(7y) € kp[P,, ] and s(v) € A.

By definition, we have
1 S S
CP o= > c(m)e(r2)q2 002

Y1572
where the sum is over all broken lines 7; and ~s, of asymptotic charges p; and ps, satisfying
s(v1) + s(2) = p, and both ending at the point z € By, an where z € B — Supp;(D") very

close to p.

So it is enough to show that, for every v quantum broken line of endpoint @ in a cone 7
of ¥, we have ¢() € kq[P,,]. We will show more generally that for every quantum broken
line v of D0 and for every L domain of linearity of -, the attached monomial mj, = ¢, 2P~

satisfies cr, € k.

It is obviously true if L is the unbounded domain of linearity of v since then ¢z = 1. Given
the formula in Definition 3.15 specifying the change of monomials when the quantum broken
line bends, it is then enough to show that, for every ray (0, ﬁa) of 55“”‘, the corresponding

fois in k[P, .

Given the argument used in Section 6.2 of [GHK15al], we can assume that (Y, D) admits a
toric model, and, using the deformation invariance of @"an, see Lemma 3.24, we can assume
further that there exists m = (my,...,m,) such that (Y, D) = (Y, 0Yn), as in Section 3.3.4.
In Section 3.3.5, we introduced a quantum scattering diagram y(”)ADca“). From the definition
of (D) and the explicit formulas given in the proof of Lemma 3.34 comparing D" and

v(D"), it is enough to prove the result for outgoing rays v(D").

By Proposition 3.32, we have V(@Cfm) = S(@m). So it remains to show that, for every
outgoing ray (9, Hy) of S(®w), the corresponding fo is in qu[l%].

By Proposition 3.31, the Hamiltonian H, attached to an outgoing ray 9 of $(Dm) - D is
given by

. 7 Yu/0Ym 229 | 280-3(Lsmo
Ha:(g) Z (ZNg,ﬂp hg)zﬁ @(Lgma)

pePm, \ 920

According to Theorem 2.30, for every p € P, , there exists

1 J 1
G (ah) = 2 Y5a* e Zle,
je

such that

(g 2 ot

g=0

201



which can be rewritten

1 08..0Ym O Ym L
T OO

(D(zwsm)-2 21
g20 2

jeLp=tp’ * 4

Using Lemma 3.13, we get that

fo= T1 TI0+a'% shmsomnys,

PEP,, jel

which concludes the proof. O

3.5 EXAMPLE: DEGREE 5 DEL PEZZO SURFACES

Let Y be a del Pezzo surface of degree 5, i.e. a blow-up of P? in four points in general
position, and let D be an anticanonical cycle of five (—1)-curves on Y. The Looijenga pair
(Y, D) is studied in Example 1.9, Example 3.7 and Example 6.12 of [GHK15a]. Remark
that the interior U =Y — D has topological Euler characteristic e(U) = 2.

Let j be an index modulo 5. We denote D; the components of D and p; the corresponding
one-dimensional cones in the tropicalization (B, X) of (Y, D). Let v; be the primitive gen-
erator of p; and E; be the unique (-1)-curve in Y which is not contained in D and meets

Dj transversally in one point.

The only curve classes contributing to the canonical quantum scattering diagram DA are

multiples of some [E;], and so DN consists of five rays (pj, I:ij ). By Lemma 2.20, we have

-
L DT ey, )

:Z&lZZSin(%)

P

and so, by Lemma 3.13, the corresponding fpj are given by
Foy = 14q 355700, ()
J

Proposition 3.44. The k[ NE(Y)]-algebra defined by the product formula of Theorem 3.20

is generated by the quantum theta functions 1§j, satisfying the relations

Proof. The description of quantum broken lines is identical to the description of classical
broken lines given in Example 3.7 of [GHK15a].

The term 2[2712[Ei] is the coefficient of Jo = 1. The final directions of the broken lines Y
and o satisfy s(y1) + s(72) =0, so (s(71), s(72)) = 0 and the quantum result is identical to
the classical one.

The term 2[Dj]1§vj corresponds to two straight broken lines for v;_; and v;.1, with endpoint
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the point v; of p;. The corresponding extra power of ¢ in Theorem 3.20 is qi%(vﬂ'*l’”i“) =

q* O

[SIE

Remark: Setting [E;] = [D,] = 0, we recover some well-known description of the As
quantum X-cluster algebra, see formula (60) in Section 3.3 of [FG09a].

3.6 HIGHER GENUS MIRROR SYMMETRY AND STRING THEORY

3.6.1 FROM HIGHER GENUS TO QUANTIZATION VIA CHERN-SIMONS

In Section 2.9, we compared our enumerative interpretation of the g-refined 2-dimensional
Kontsevich-Soibelman scattering diagrams in terms of higher genus log Gromov-Witten
invariants of log Calabi-Yau surfaces with the physical derivation of the refined wall-crossing

formula from topological string given by Cecotti-Vafa [CV09].

A parallel discussion shows that the main result of the present Chapter, the connection
between higher genus log Gromov-Witten invariants of log Calabi-Yau surfaces and quanti-

zation of the mirror geometry, also fits naturally into this story.

Let (Y, D) be a Looijenga pair. The complement U =Y — D is a non-compact holomorphic
symplectic surface admitting a real Lagrangian torus fibration. According to the SYZ picture
of mirror symmetry, the mirror of U should be obtained by taking the dual Lagrangian torus
fibration, corrected by counts of holomorphic discs in U with boundary on the torus fibers.

As in Section 2.9, we assume that U admits a hyperkahler metric, such that the original
complex structure of U is the compatible complex structure .J, and such that the torus
fibration is I-holomorphic Lagrangian. Let X be the non-compact Calabi-Yau 3-fold, of
underlying real manifold UxC* and equipped with a complex structure twisted in a twistorial
way, i.e. such that the fiber over ( € C* is the complex variety (U, J;). Consider S* ¢ C*
and L =% x S' c X. Again following Section 2.9, the log Gromov-Witten invariants with
insertion of a top lambda class IV g, introduced in Section 3.3, should be viewed as a
rigorous definition of the open Gromov-Witten invariants in the twistorial geometry X,

with boundary on a torus fiber L “near infinity”.

Always following Section 2.9, according to Witten [Wit95], in absence of non-constant world-
sheet instantons, the effective spacetime theory of the A-model on the A-brane L is Chern-
Simons theory of gauge group U(1). The non-constant worldsheet instantons deform this
result. The effective spacetime theory on the A-brane L is still a U(1)-gauge theory but
the Chern-Simons action is deformed by additional terms involving the worldsheet instan-
tons. The genus zero worldsheet instantons correct the classical action whereas higher genus

worldsheet instantons give higher quantum corrections.

We now arrive at the key point, i.e. the relation between the SYZ mirror construction
in terms of dual tori and the Chern-Simons story, whose quantization is supposed to be
naturally related to higher genus curves. As L = ¥ x S!, we can adopt a Hamiltonian
description where S plays the role of the time direction. The key point is that the classical
phase space of U(1) Chern-Simons theory on L = ¥ x S! is the space of U(1) flat connections
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on X, i.e. it is exactly the dual torus of ¥ used in the construction of the SYZ mirror. The
genus zero worldsheet instantons corrections to U(1) Chern-Simons theory then translate

into the genus zero worldsheet instantons corrections in the SYZ construction of the mirror.

The Poisson structure on the mirror comes from the natural Poisson structure on the classical
phase spaces of Chern-Simons theory. It is then natural to think that a quantization of
the mirror should be obtained from quantization of Chern-Simons theory. Quantization of
the torus of flat connections gives a quantum torus and higher genus worldsheet instantons
corrections to quantum Chern-Simons theory imply that these quantum tori should be glued
together in a non-trivial way. We recover the main construction of the present Chapter:
gluing quantum tori together using higher genus curve counts in the gluing functions. The
fact that we have been able to give a rigorous version of this construction should be viewed

as a highly non-trivial mathematical check of the above string-theoretic expectations.

3.6.2 (QUANTIZATION AND HIGHER GENUS MIRROR SYMMETRY

In the previous Section, we explained how to understand the connection between higher
genus log Gromov-Witten invariants and deformation quantization using Chern-Simons the-
ory as an intermediate step. In this explanation, a key role is played by the non-compact
Calabi-Yau 3-fold X, partial twistor family of U.

In the present Section, we adopt a slightly different point of view, and we also consider
a similar non-compact Calabi-Yau 3-fold on the mirror side: Y = V x C*. It is natural
to expect that the mirror symmetry relation between U and V lifts to a mirror symmetry
relation between the Calabi-Yau 3-folds X and Y.

As explained in the previous Section, the higher genus log Gromov-Witten invariants that
we are considering should be viewed as part of an algebraic version of the open higher genus
A-model on X. Open higher genus A-model should be mirror to open higher genus B-model
on Y. We briefly explain below why the open higher genus B-model on Y = V x C* has

something to do with quantization of the holomorphic symplectic variety V.

String field theory of open higher genus B-model for a single B-brane wrapping Y is holo-

morphic Chern-Simons theory, of field a (0, 1)-connection A and action
S(A) = f Oy AANDA,
Y

where y is the holomorphic volume form of V. We will be rather interested in a single
B-brane wrapping a curve C¥ = {v} x C* ¢ Y, where v is a point in V. The study of the
dimensional reduction of holomorphic Chern-Simons to describe a B-brane wrapping a curve
was first done by Aganagic and Vafa [AV00] (Section 4). Writing locally

Qy=d$/\dp/\%,
z

where (x, p) are local holomorphic Darboux coordinates on V near v and z a linear coordinate
along C*, the fields of the reduced theory on C; are functions (x(z, z), p(z,Z)) and the action
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is

S(m,p):f@ %/\p/\éx.

A further dimensional reduction from the cylinder C} to a real line R; leads to a theory of

a particle moving on V, of position (z(t), z(t)), of action
S.p) = [ p(t)dat).

In particular, p(t) and z(t) are canonically conjugate variables and in the corresponding
quantum theory, obtained as dimensional reduction of the higher genus B-model, they should
become operator satisfying the canonical commutation relations [z,p] = h. We conclude
that the higher genus B-model of the B-branes C; should lead to a quantization of the
holomorphic symplectic surface V. The same relation between higher genus B-model and
quantization appears in [ADK*06] and follow-ups.

We conclude that Theorem 5 should be viewed as an example of higher genus mirror sym-

metry relation.
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