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Abstract

We present three results, at the intersection of tropical geometry, enumerative geometry,

mirror symmetry and non-commutative algebra.

1. A correspondence between Block-Göttsche q-refined tropical curve counting and higher

genus log Gromov-Witten theory of toric surfaces.

2. A correspondence between q-refined two-dimensional Kontsevich-Soibelman scattering

diagrams and higher genus log Gromov-Witten theory of log Calabi-Yau surfaces.

3. A q-deformation of the Gross-Hacking-Keel mirror construction, producing a defor-

mation quantization with canonical basis for the Gross-Hacking-Keel families of log

Calabi-Yau surfaces.

These results are logically dependent: the proof of the third result relies on the second,

whose proof itself relies on the first. Nevertheless, each of them is of independent interest.
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Introduction

In this thesis, we present some contributions at the intersection of tropical geometry, enu-

merative geometry, mirror symmetry and non-commutative algebra. The text is divided in

three chapters.

Chapter 1 is about enumerative geometry, more precisely log Gromov-Witten invariants, of

complex toric surfaces, and tropical geometry of the real plane. We solve the all genus log

Gromov-Witten theory, with insertion of the top lambda class, of toric surfaces. The answer

is formulated in terms of q-refined counts of tropical curves and conversely gives a previously

unknown geometric meaning to these q-refined counts.

Chapter 2 is about enumerative geometry, more precisely log Gromov-Witten invariants, of

log Calabi-Yau surfaces with maximal boundary, i.e. of pairs (Y,D), where Y is a smooth

projective complex surface and D is a singular reduced normal crossing effective anticanon-

ical divisor. The class of log Calabi-Yau surfaces is a natural extension of the class of toric

surfaces. In particular, the complement U = Y −D is a non-compact algebraic symplectic

surface, generalization of (C∗)2, and non-compact analogue of K3 surfaces. We solve the all

genus log Gromov-Witten theory, with insertion of the top lambda class, of log Calabi-Yau

surfaces. The answer is formulated in terms of algebraic and combinatorial objects: q-refined

scattering diagrams. The proof is done by reduction to the toric case, for which the main

result of Chapter 1 is used.

Chapter 3 is about deformation quantization of log Calabi-Yau surfaces. Using the log

Gromov-Witten invariants studied in Chapter 2 as input, we construct non-commutative

algebras, deformation quantizations of Poisson algebras of regular functions on the non-

compact surfaces U . It seems to be a new way to construct non-commutative algebras.

The genus zero/unrefined/commutative versions of these results were previously known.

More precisely, our Chapters 1-2-3 can be viewed as a higher genus/q-refined/non-commutative

generalization of the series of papers [Mik05][NS06]-[GPS10]-[GHK15a].

We give below detailed Introductions to each of the three Chapters.

Introduction to Chapter 1

Tropical geometry gives a combinatorial way to approach problems in complex and real al-

gebraic geometry. An early success of this approach is Mikhalkin’s correspondence theorem

[Mik05], proved differently and generalized by Nishinou and Siebert [NS06], between counts

of complex algebraic curves in complex toric surfaces and counts with multiplicity of tropical

curves in R2. The main result of Chapter 1, Theorem 1, is an extension to a correspon-

dence between some generating series of higher genus log Gromov-Witten invariants of toric

13



surfaces and counts with q-multiplicity of tropical curves in R2.

Counts of tropical curves in R2 with q-multiplicity were introduced by Block and Göttsche

[BG16]. The usual multiplicity of a tropical curve is defined as a product of integer mul-

tiplicities attached to the vertices. Block and Göttsche remarked that one can obtain a

refinement by replacing the multiplicity m of a vertex by its q-analogue

[m]q ∶=
q
m
2 − q−

m
2

q
1
2 − q−

1
2

= q−
m−1

2 (1 + q + ⋅ ⋅ ⋅ + qm−1
) .

The q-multiplicity of a tropical curve is then the product of the q-multiplicities of the vertices.

The count with q-multiplicity of tropical curves specializes for q = 1 to the ordinary count

with multiplicity. This definition is done at the tropical level so is combinatorial in nature

and its geometric meaning is a priori unclear.

Let ∆ be a balanced collection of vectors in Z2 and let n be a non-negative integer1. This

determines a complex toric surface X∆ and a counting problem of virtual dimension zero

for complex algebraic curves in X∆ of some genus g∆,n, of some class β∆, satisfying some

tangency conditions with respect to the toric boundary divisor, and passing through n points

of X∆ in general position. Let N∆,n ∈ N be the solution to this counting problem. According

to Mikhalkin’s correspondence theorem, N∆,n is a count with multiplicity of tropical curves

in R2, and so it has a Block-Göttsche refinement N∆,n(q) ∈ N[q± 1
2 ].

For every g ⩾ g∆,n, we consider the same counting problem as before—same curve class,

same tangency conditions—but for curves of genus g. The virtual dimension is now g−g∆,n.

To obtain a number, we integrate a class of degree g − g∆,n, the lambda class λg−g∆,n
, over

the virtual fundamental class of a corresponding moduli space of stable log maps. For every

g ⩾ g∆,n, we get a log Gromov-Witten invariant N∆,n
g ∈ Q.

Theorem 1. For every ∆ balanced collection of vectors in Z2, and for every non-negative

integer n such that g∆,n ⩾ 0, we have the equality

∑
g⩾g∆,n

N∆,n
g u2g−2+∣∆∣

= N∆,n
(q) ((−i)(q

1
2 − q−

1
2 ))

2g∆,n−2+∣∆∣

of power series in u with rational coefficients, where

q = eiu = ∑
n⩾0

(iu)n

n!
,

and ∣∆∣ is the cardinality of ∆.

Remarks

• According to Theorem 1, the knowledge of the Block-Göttsche invariant N∆,n(q) is

equivalent to the knowledge of the log Gromov-Witten invariants N∆,n
g for all g ⩾ g∆,n.

This provides a geometric meaning to Block-Göttsche invariants, independent of any

choice of tropical limit, making their deformation invariance manifest.

1Precise definitions are given in Section 1.1.
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• Given a family π∶ C → B of nodal curves, the Hodge bundle E is the rank g vector bundle

over B whose fiber over b ∈ B is the space H0(Cb, ωCb) of sections of the dualizing

sheaf ωCb of the curve Cb = π
−1(b). The lambda classes are classically [Mum83] the

Chern classes of the Hodge bundle:

λj ∶= cj(E) .

The log Gromov-Witten invariantsN∆,n
g are defined by an insertion of (−1)g−g∆,nλg−g∆,n

to cut down the virtual dimension from g − g∆,n to zero.

• One can interpret Theorem 1 as establishing integrality and positivity properties for

higher genus log Gromov-Witten invariants of X∆ with one lambda class inserted.

• The change of variables q = eiu makes the correspondence of Theorem 1 quite non-

trivial. In particular, it cannot be reduced to an easy enumerative correspondence. It

is essential to have a virtual/non-enumerative count on the Gromov-Witten side: for

g large enough, most of the contributions to N∆,n
g come from maps with contracted

components.

• In Theorem 1.5, we present a generalization of Theorem 1 where some intersection

points with the toric boundary divisor can be fixed.

• One could ask for a generalization of Theorem 1 including descendant log Gromov-

Witten invariants, i.e. with insertion of psi classes. In the simplest case of a trivalent

vertex with insertion of one psi class, we will show in Section 1.9 that it is possible

to reproduce the numerator q
m
2 + q−

m
2 of the multiplicity introduced by Göttsche and

Schroeter [GS16a] in the context of refined broccoli invariants, in a way similar to how

we reproduce the numerator q
m
2 −q−

m
2 of the Block-Göttsche multiplicity in Theorem 1.

Relation with previous works

q-analogues

It is a general principle in mathematics, going back at least to Heine’s introduction of q-

hypergeometric series in 1846, that many “classical” notions have a q-analogue, recovering

the classical one in the limit q → 1. The Block-Göttsche refinement of the tropical curve

counts in R2 is clearly an example of this principle. In many other examples, it is well known

that it is a good idea to write q = eh̵, the limit q → 1 becoming the limit h̵ → 0. From this

point of view, the change of variable q = eiu in Theorem 1 is maybe not so surprising.

Göttsche-Shende refinement by Hirzebruch genus

Whereas the specialization of Block-Göttsche invariants at q = 1 recovers a count of complex

algebraic curves, the specialization q = −1 recovers in some cases a count of real algebraic

curves in the sense of Welschinger [Wel05]. This strongly suggests a motivic interpretation

of the Block-Göttsche invariants and indeed one of the original motivations of Block and
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Göttsche was the fact that, under some ampleness assumptions, the refined tropical curve

counts should coincide with the refined curve counts on toric surfaces defined by Göttsche and

Shende [GS14] in terms of Hirzebruch genera of Hilbert schemes. Using motivic integration,

Nicaise, Payne and Schroeter [NPS16] have reduced this conjecture to a conjecture about the

motivic measure of a semialgebraic piece of the Hilbert scheme attached to a given tropical

curve.

Our approach to the Block-Göttsche refined tropical curve counting is clearly different from

the Göttsche-Shende approach: we interpret the refined variable q as coming from the

resummation of a genus expansion whereas they interpret it as a formal parameter keeping

track of the refinement from some Euler characteristic to some Hirzebruch genus.

The Göttsche-Shende refinement makes sense for surfaces more general than toric ones,

as do the higher genus log Gromov-Witten invariants with one lambda class inserted. So

one might ask if Theorem 1 can be extended to more general surfaces, as a relation between

Göttsche-Shende refined invariants and generating series of higher genus log Gromov-Witten

invariants. In Theorem 1.29 and 1.32, we show by combining known results that this is

indeed the case for K3 and abelian surfaces. In particular, Theorem 1 is not an isolated

fact but part of a family of similar results. The case of a log Calabi-Yau surface obtained as

complement of a smooth anticanonical divisor in a del Pezzo surface, and its relation with,

in physics terminology, a worldsheet definition of the refined topological string of local del

Pezzo 3-folds, will be discussed in a future work.

MNOP

The change of variables q = eiu is reminiscent of the MNOP, [MNOP06a], [MNOP06b],

Gromov-Witten/ Donaldson-Thomas (DT) correspondence on 3-folds. The log Gromov-

Witten invariants N∆,n
g can be rewritten as C∗-equivariant log Gromov-Witten invariants

of the 3-fold X∆×C, where C∗ acts by scaling on C, see Lemma 7 of Maulik-Pandharipande-

Thomas [MPT10]. If a log DT theory and a log MNOP correspondence were developed, this

would predict that the generating series of N∆,n
g is a rational function in q = eiu, which is

indeed true by Theorem 1. But it would not be enough to imply Theorem 1 because the

relation between log DT invariants and Block-Göttsche invariants is a priori unclear. In

fact, the Göttsche-Shende conjecture and the result of Filippini and Stoppa suggest that

Block-Göttsche invariants are refined DT invariants whereas the MNOP correspondence

involves unrefined DT invariants. This topic will be discussed in more details elsewhere.

BPS integrality

When the log Gromov-Witten invariants of X∆ ×C coincide with ordinary Gromov-Witten

invariants of X∆ × C, which is probably the case if ∣v∣ = 1 for every v ∈ ∆ and if the

toric boundary divisor of X∆ is positive enough, then the integrality implied by Theorem 1

coincides with the BPS integrality predicted by Pandharipande [Pan99], and proved via

symplectic methods by Zinger [Zin11], for generating series of Gromov-Witten invariants of

a 3-fold and of curve class intersecting positively the anticanonical divisor.
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Mikhalkin refined real count

Mikhalkin [Mik15] has given an interpretation of some particular Block-Göttsche invariants

in terms of counts of real curves. We do not understand the relation with our approach in

terms of higher genus log Gromov-Witten invariants. We merely remark that both for us

and for Mikhalkin, it is the numerator of the Block-Göttsche multiplicities which appear

naturally.

Parker theory of exploded manifolds

This Chapter owes a great intellectual debt towards the paper [Par16] of Brett Parker,

where a correspondence theorem between tropical curves in R3 and some generating series

of curve counts in exploded versions of toric 3-folds is proven. Indeed, a conjectural version of

Theorem 1 was known to the author around April 20162 but it was only after the appearance

of [Par16] in August 2016 that it became clear that this result should be provable with

existing technology. In particular, the idea to reduce the amount of explicit computations

by exploiting the consistency of some gluing formula (see Section 1.7) follows [Par16].

Plan of Chapter 1

In Section 1.1, we fix our notations and we describe precisely the objects involved in the

formulation of Theorem 1. In Section 1.2, we review some gluing and vanishing properties

of the lambda classes.

The next five Sections form the proof of Theorem 1.

The first step of the proof, described in Section 1.3, is an application of the decomposition

formula of Abramovich, Chen, Gross and Siebert [ACGS17a] to the toric degeneration of

Nishinou, Siebert [NS06]. This gives a way to write our log Gromov-Witten invariants as a

sum of contributions indexed by tropical curves.

In the second step of the proof, described in Sections 1.5 and 1.6, we prove a gluing formula

which gives a way to write the contribution of a tropical curve as a product of contributions

of its vertices. Here, gluing and vanishing properties of the lambda classes reviewed in

Section 1.2, combined with a structure result for non-torically transverse stable log maps

proved in Section 1.4, play an essential role. In particular, we only have to glue torically

transverse stable log maps and we don’t need to worry about the technical issues making

the general gluing formula in log Gromov-Witten theory difficult (see Abramovich, Chen,

Gross, Siebert [ACGS17b]).

After the decomposition and gluing steps, what remains to do is to compute the contribution

to the log Gromov-Witten invariants of a tropical curve with a single trivalent vertex. The

third and final step of the proof of Theorem 1, carried out in Section 1.7, is the explicit

evaluation of this vertex contribution. Consistency of the gluing formula leads to non-trivial

2And was for example presented at the Workshop: Curves on surfaces and 3-folds, EPFL, Lausanne, 21
June 2016.
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relations between these vertex contributions, which enable us to reduce the problem to

particularly simple vertices. The contribution of these simple vertices is computed explicitly

by reduction to Hodge integrals previously computed by Bryan and Pandharipande [BP05]

and this ends the proof of Theorem 1.

In Section 1.8, we prove Theorem 1.29 and Theorem 1.32, which are analogues for K3 and

abelian surfaces of Theorem 1 for toric surfaces.

In Section 1.9, we make contact in a simple case with refined broccoli invariants.

Introduction to Chapter 2

Statements

We start by giving slightly imprecise versions of the main results of this Chapter. For us,

a log Calabi-Yau surface is a pair (Y,D), where Y is a smooth complex projective surface

and D is a reduced effective normal crossing anticanonical divisor on Y . A log Calabi-Yau

surface (Y,D) has maximal boundary3 if D is singular.

Theorem 2. The functions attached to the rays of the q-deformed 2-dimensional Kontsevich-

Soibelman scattering diagrams are, after the change of variables q = eih̵, generating series of

higher genus log Gromov-Witten invariants—with maximal tangency condition and insertion

of the top lambda class—of log Calabi-Yau surfaces with maximal boundary.

A precise version of Theorem 2 is given by Theorems 2.6 and 2.7 in Section 2.3.

Theorem 3. Higher genus log Gromov-Witten invariants–with maximal tangency condition

and insertion of the top lambda class–of log Calabi-Yau surfaces with maximal boundary

satisfy an Ooguri-Vafa/open BPS integrality property.

A precise version of Theorem 3 is given by Theorem 2.30 in Section 2.8.

We also formulate a new conjecture.

Conjecture 4. Higher genus relative Gromov-Witten invariants-with maximal tangency

condition and insertion of the top lambda class–of a del Pezzo surface S relatively to a

smooth anticanonical divisor are related to refined counts of dimension one stable sheaves

on the local Calabi-Yau 3-fold TotKS, total space of the canonical line bundle of S.

A precise version of Conjecture 4 is given by Conjecture 2.41 in Section 2.8.6.

3In Chapter 3, following [GHK15a], a log Calabi-Yau surface with maximal boundary is called a Looijenga
pair.
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Context and motivations

SYZ

The Strominger-Yau-Zaslow [SYZ96] picture of mirror symmetry suggests a two steps con-

struction of the mirror of a Calabi-Yau variety admitting a Lagrangian torus fibration: first,

construct the “semi-flat” mirror by dualizing the non-singular torus fibers; second, correct

the complex structure of the “semi-flat” mirror such that it extends across the locus of singu-

lar fibers. It is expected, [SYZ96], [Fuk05], that the corrections involved in the second step

are determined by some counts of holomorphic discs in the original variety with boundary

on torus fibers.

KS

In dimensional two and with at most nodal singular fibers in the torus fibration, Kontsevich-

Soibelman [KS06] had the insight that algebraic self-consistency constraints on the correc-

tions were strong enough to determine these corrections uniquely. More precisely, they

reduced the problem to an algebraic computation of commutators in a group of formal

families of symplectomorphisms of the dimension two algebraic torus.

This algebraic formalism, graphically encoded under the form of scattering diagrams, was

generalized and extended to higher dimensions by Gross-Siebert [GS11] and plays an essential

role in the Gross-Siebert algebraic approach to mirror symmetry.

GPS

In [GPS10], Gross-Pandharipande-Siebert made some progress in connecting the original

enumerative expectation and the algebraic recipe of scattering diagrams. They showed

that the 2-dimensional Kontsevich-Soibelman scattering diagrams indeed have an enumer-

ative meaning: they compute some genus zero log Gromov-Witten invariants of some log

Calabi-Yau surfaces with maximal boundary, i.e. complements of a singular normal crossing

anticanonical divisor in a smooth projective surface.

This agrees with the original expectation because these geometries admit Lagrangian torus

fibrations and these genus zero log Gromov-Witten invariants should be thought as algebraic

definitions of some counts of holomorphic discs with boundary on Lagrangian torus fibers4.

The combination of 2-dimensional scattering diagrams with their enumerative interpretation

given by [GPS10] was the main tool in the Gross-Hacking-Keel [GHK15a] construction of

mirrors for log Calabi-Yau surfaces with maximal boundary.

4For some symplectic approach, relating counts of holomorphic discs in hyperkähler manifolds of real
dimension 4 and the Konstevich-Soibelman wall-crossing formula, we refer to the works of Lin [Lin17] and
Iacovino [Iac17].
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Higher genus GPS = refined KS

At the end of their paper, Section 11.8 of [KS06] (see also [Soi09]), Kontsevich-Soibelman

already remarked that the 2-dimensional scattering diagram formalism has a natural q-

deformation, with the group of formal families of symplectomorphisms of the 2-dimensional

algebraic torus replaced by a group a formal families of automorphisms of the 2-dimensional

quantum torus, a natural non-commutative deformation of the 2-dimensional algebraic torus.

The enumerative meaning of this q-deformed scattering diagram was a priori unclear.

In Section 5.8 of [GPS10], Gross-Pandharipande-Siebert remarked that the genus zero log

Gromov-Witten invariants they consider have a natural extension to higher genus, by inte-

gration of the top lambda class, and they asked if there is an interpretation of these higher

genus invariants in terms of scattering diagrams.

The main result of the present Chapter, Theorem 2, is that the two previous questions, the

enumerative meaning of the algebraic q-deformation and the algebraic meaning of the higher

genus deformation, are answers to each other.

OV

The higher genus log Gromov-Witten invariants of log Calabi-Yau surfaces that we are

considering–with insertion of the top lambda class–should be thought as an algebro-geometric

definition of some counts of higher genus Riemann surfaces with boundary on a Lagrangian

torus fiber in a Calabi-Yau 3-fold geometry, essentially the product of the log Calabi-Yau

surface by a third trivial direction, see Section 2.2.4. For such counts of higher genus open

curves in a Calabi-Yau 3-fold geometry, Ooguri-Vafa [OV00] have conjectured an open BPS

integrality structure. Theorem 3, which is a consequence of Theorem 2 and of non-trivial

algebraic properties of q-deformed scattering diagrams, can be viewed as a check of this BPS

integrality structure.

DT

The non-trivial integrality properties of q-deformed scattering diagrams are well-known to

be related to integrality properties of refined Donaldson-Thomas (DT) invariants, [KS08].

Indeed, q-deformed scattering diagrams control the wall-crossing behavior of refined DT

invariants.

The fact that the integrality structure of DT invariants coincides with the Ooguri-Vafa

integrality structure of higher genus open Gromov-Witten invariants of Calabi-Yau 3-folds,

essentially involving the quantum dilogarithm in both cases, can be viewed as an early

indication that something like Theorem 2 should be true.

As consequence of Theorem 2, we get explicit relations between refined DT invariants of

some quivers and higher genus log Gromov-Witten invariants of log Calabi-Yau surfaces, see

Section 2.8.5, generalizing the unrefined/genus zero relation of [GP10], [RW13].
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CV

In fact, Cecotti-Vafa [CV09] have given a physical derivation of the wall-crossing formula in

DT theory going through the higher genus open Gromov-Witten theory of some Calabi-Yau

3-fold. We will explain in Section 2.9 that Theorem 2 and 3 are indeed fully compatible with

the Cecotti-Vafa argument. In particular, Theorem 2 can be viewed as a highly non-trivial

mathematical check of the connection predicted by Witten [Wit95] between higher genus

open A-model and quantum Chern-Simons theory.

del Pezzo

Theorem 2 and 3 are about log Calabi-Yau surfaces with maximal boundary, i.e. with a

singular normal crossing anticanonical divisor. Similar questions can be asked for log Calabi-

Yau surfaces with respect to a smooth anticanonical divisor. Conjecture 4 gives a non-trivial

correspondence in such case, suggested by the similarities between refined DT theory and

open higher genus Gromov-Witten invariants discussed above.

Comments on the proof of Theorem 2

The curve counting invariants appearing in Theorem 2 are log Gromov-Witten invariants,

as defined by Gross and Siebert [GS13], and Abramovich and Chen [Che14b], [AC14]. The

proof of Theorem 2 relies on recently developed general properties of log Gromov-Witten

invariants, such as the decomposition formula of [ACGS17a].

The main tool of [GPS10] is a reduction to a tropical setting using the correspondence

theorem of Mikhalkin [Mik05] and Nishinou-Siebert [NS06] between counts of curves in

complex toric surfaces and counts of tropical curves in R2. Similarly, the main tool of the

present Chapter is a reduction to a tropical setting using the main result, Theorem 1, of

Chapter 1.

Given the fact that the relation between q-deformed tropical invariants and q-deformed

scattering diagrams has already been worked out by Filippini-Stoppa [FS15], Theorem 2

should really be viewed as a combination of Theorem 1 and [FS15]. The new results required

for the proof of Theorem 2 are: the check that the degeneration step used in [GPS10] to go

from a log Calabi-Yau setting to a toric setting extends to the higher genus case and the

check that the correspondence given by Theorem 1 has exactly the correct form to be used

as input in [FS15].

The most technical part is the higher genus version of the degeneration step. As the gen-

eral version of the degeneration formula in log Gromov-Witten theory is not yet known,

we combine the general decomposition formula of [ACGS17a] with some situation specific

vanishing statements, which, as in Chapter 1, reduce the gluing operations to some torically

transverse locus where they are under control, for example thanks to [KLR18].
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Comments on the proof of Theorem 3.

The proof of Theorem 3 is a combination of Theorem 2 and of the non-trivial integral-

ity results about q-deformed scattering diagrams proved by Kontsevich and Soibelman in

Section 6 of [KS11]. In fact, to get the most general form of Theorem 3, the results contained

in [KS11] do not seem to be enough. We use an induction argument on scattering diagrams,

parallel to the one used in Appendix C3 of [GHKK18], to reduce the most general case to a

case which can be treated by [KS11].

A small technical point is to keep track of signs, because of the difference between quantum

tori and twisted quantum tori, see Section 2.8.3 on the quadratic refinement for details.

Plan of Chapter 2

In Section 2.1, we review the notion of 2-dimensional scattering diagrams, both classical

and quantum, with an emphasis on the symplectic/Hamiltonian aspects. In Section 2.2, we

introduce a class of log Calabi-Yau surfaces and their log Gromov-Witten invariants.

In Section 2.3, we state our main result, Theorem 2.6, precise version of Theorem 2, relat-

ing 2-dimensional quantum scattering diagrams and generating series of higher genus log

Gromov-Witten invariants of log Calabi-Yau surfaces. We also state a generalization of

Theorem 2.6, Theorem 2.7, phrased in terms of orbifold log Gromov-Witten invariants.

Sections 2.4, 2.5, 2.6, 2.7 are dedicated to the proof of Theorems 2.6 and 2.7. The general

structure of the proof is parallel to [GPS10]. In Section 2.4, we introduce higher genus

log Gromov-Witten invariants of toric surfaces. In Section 2.5, the most technical part

of this Chapter, we prove a degeneration formula relating log Gromov-Witten invariants

of log Calabi-Yau surfaces defined in Section 2.2 and appearing in Theorem 2.6, with log

Gromov-Witten invariants of toric surfaces defined in Section 2.4.2. In Section 2.6, following

Filippini-Stoppa [FS15], we review the connection between quantum scattering diagrams

and refined counts of tropical curves. We finish the proof of Theorem 2.6 in Section 2.7,

combining the results of Sections 2.5 and 2.6 with Theorem 1. The orbifold Gromov-Witten

computation needed to finish the proof of Theorem 2.7 is done in Section 2.7.2.

In Section 2.8.1, we formulate a BPS integrality conjecture for higher genus log Gromov-

Witten invariants of log Calabi-Yau surfaces. In Section 2.8.2, we state Theorem 2.30, precise

form of Theorem 3. The proof of Theorem 2.30 takes Sections 2.8.3, 2.8.4. In Section 2.8.5,

Proposition 2.38 gives an explicit connection with refined DT invariants of quivers. Finally,

in Section 2.8.6, we state Conjecture 2.41, precise version of Conjecture 4.

In Section 2.9, we explain how Theorem 2 can be viewed as a mathematical check of the

physics work of Cecotti-Vafa [CV09] and how Theorem 3 is compatible with the Ooguri-Vafa

integrality conjecture [OV00].
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Introduction to Chapter 3

Context and motivations

Mirror symmetry

The Strominger-Yau-Zaslow [SYZ96] picture of mirror symmetry suggests an original way of

constructing algebraic varieties: given a Calabi-Yau variety, its mirror geometry should be

constructed in terms of the enumerative geometry of holomorphic discs in the original variety.

This picture has been developed by Fukaya [Fuk05], Kontsevich-Soibelman [KS06], Gross-

Siebert [GS11], Auroux [Aur07] and many others. In particular, Gross and Siebert have

developed an algebraic approach in which the enumerative geometry of holomorphic discs is

replaced by some genus zero log Gromov-Witten invariants. Given the recent progress in log

Gromov-Witten theory, in particular the definition of punctured invariants by Abramovich-

Chen-Gross-Siebert [ACGS17b], it is likely that this approach will lead to some general

mirror symmetry construction in the algebraic setting, see Gross-Siebert [GS16b] for an

announcement.

The work of Gross-Hacking-Keel

An early version of this mirror construction has been used by Gross-Hacking-Keel [GHK15a]

to construct mirror families of log Calabi-Yau surfaces, with non-trivial applications to the

theory of surface singularities and in particular a proof of the Looijenga’s conjecture on

smoothing of cusp singularities. More precisely, the construction of [GHK15a] applies to

Looijenga pairs, i.e. to pairs (Y,D), where Y is a smooth projective complex surface and

D is some reduced effective normal crossing anticanonical divisor on Y . The upshot is in

general a formal flat family X → S of surfaces over a formal completion, near some point s0,

the “large volume limit of Y”, of an algebraic approximation to a compactification of the

complexified Kähler cone of Y .

Furthermore, X is an affine Poisson formal variety with a canonical linear basis of so-called

theta functions and the map X → S is Poisson if S is equipped with the zero Poisson

bracket. Under some positivity assumptions on (Y,D), this family can be in fact extended

to an algebraic family over an algebraic base and the generic fiber is then a smooth algebraic

symplectic surface.

The first step of the construction involves defining the fiber Xs0 , i.e. the “large complex

structure limit” of the family X . This step is essentially combinatorial and can be reduced

to some toric geometry: Xs0 is a reducible union of toric varieties.

The second step is to construct X by smoothing of Xs0 . This construction is based on the

consideration of an algebraic object, a scattering diagram, notion introduced by Kontsevich-

Soibelman [KS06] and further developed by Gross-Siebert [GS11], whose definition encodes

genus zero log Gromov-Witten invariants5 of (Y,D). The key non-trivial property to check

5In fact, in [GHK15a], an ad hoc definition of genus zero Gromov-Witten invariants is used,which was
supposed to coincide with genus zero log Gromov-Witten invariants. This fact follows from the Remark at
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is the so-called consistency of the scattering diagram. In [GHK15a], the consistency relies

on the work of Gross-Pandharipande-Siebert [GPS10], which itself relies on connection with

tropical geometry [Mik05], [NS06]. Once the consistency of the scattering diagram is guar-

anteed, some combinatorial objects, the broken lines [Gro10], [CPS10], are well-defined and

can be used to construct the algebra of functions H0(X ,OX ) with its linear basis of theta

functions.

Quantization6

The variety X being a Poisson variety over S, it is natural to ask about its quantization, for

example in the sense of deformation quantization. As X and S are affine, the deformation

quantization problem takes its simplest form: to construct a structure of non-commutative

H0(S,OS)[[h̵]]-algebra on H0(X ,OX )[[h̵]] whose commutator is given at the linear order

in h̵ by the Poisson bracket on H0(X ,OX ). There are general existence results, [Kon01],

[Yek05], for deformation quantizations of smooth affine Poisson varieties. Some useful ref-

erence on deformation quantization of algebraic symplectic varieties is [BK04]. In fact, on

the smooth locus of X → S, we have something relative symplectic of relative dimension two

and then the existence of a deformation is easy because the obstruction space vanishes for

dimension reasons. But they are no known general results which would guarantee a priori

the existence of a deformation quantization of X over S because X → S is singular, e.g.

over s0 ∈ S to start with. Specific examples of deformation quantization of such geometries

usually involve some situation-specific representation theory or geometry, e.g. see [Obl04],

[EOR07], [EG10], [AK17].

Main results.

The main result of the present Chapter is a construction of a deformation quantization of

X → S. Our construction follows the lines of Gross-Hacking-Keel [GHK15a] except that,

rather than to use only genus zero log Gromov-Witten invariants, we use higher genus

log Gromov-Witten invariants, the genus parameter playing the role of the quantization

parameter h̵ on the mirror side.

We construct a quantum version of a scattering diagram and we prove its consistency using

the main result of Chapter 2. Once the consistency of the quantum scattering diagram is

guaranteed, some quantum version of the broken lines are well-defined and can be used to

construct a deformation quantization of H0(X ,OX ). In fact, it follows from Chapter 2 that

the dependence on the deformation parameter h̵ is in fact algebraic7 in q = eih̵, something

which in general cannot be obtained from some general deformation theoretic argument. In

other words, the main result of the present Chapter can be phrased in the following slightly

the end of Section 4 of Chapter 1. In the present Chapter, we use log Gromov-Witten theory systematically.
6The existence of theta functions is related to the geometric quantization of the real integrable system

formed by a Calabi-Yau manifold with a SYZ fibration. We do NOT refer to this quantization story. For
us, quantization always means deformation quantization of a holomorphic symplectic/Poisson variety.

7Because in general X is already a formal object, this claim has to be stated more precisely, see
Theorem 3.9. It is correct in the most naive sense if (Y,D) is positive enough and X is then really an
algebraic family.
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vague terms (see Theorems 3.7, 3.8 and 3.9 for precise statements).

Theorem 5. The Gross-Hacking-Keel [GHK15a] Poisson family X → S, mirror of a Looi-

jenga pair (Y,D), admits a deformation quantization, which can be constructed in a syn-

thetic way from the higher genus log Gromov-Witten theory of (Y,D). Furthermore, the

dependence on the deformation quantization parameter h̵ is algebraic in q = eih̵.

The notion of quantum scattering diagram is already suggested at the end of Section 11.8

of [KS06] and was used by Soibelman [Soi09] to construct non-commutative deformations of

non-archimedean K3 surfaces. The connection with quantization, e.g. in the context of clus-

ter varieties [FG09a], [FG09b], was expected, and quantum broken lines have been studied by

Mandel [Man15]. The key novelty is the connection between these algebraic/combinatorial

q-deformations and the geometric deformation given by higher genus log Gromov-Witten

theory.

This connection between higher genus Gromov-Witten theory and quantization is perhaps a

little surprising, even if similarly looking statement are known or expected. In Section 3.6,

we explain that Theorem 5 should be viewed as an example of higher genus mirror symmetry

relation, the deformation quantization being a 2-dimensional reduction of the 3-dimensional

higher genus B-model (BCOV theory). We also comment on the relation with some string

theoretic expectation, in a way parallel to Section 2.9 of Chapter 2.

In the context of mirror symmetry, there is a well-known symplectic interpretation of some

non-commutative deformations on the B-side, involving deformation of the complexified

symplectic form which do not preserve the Lagrangian nature of the fibers of the SYZ

fibration. An example of this phenomenon has been studied by Auroux-Katzarkov-Orlov

[AKO06] in the context of mirror symmetry for del Pezzo surfaces. Further examples should

appear in some work of Sheridan and Pascaleff. This approach remains entirely into the

traditional realm of genus zero holomorphic curves and so is completely different8 from our

approach using higher genus curves.

It is natural to ask how is the deformation quantization given by Theorem 5 related to

previously known examples of quantization. In Section 3.5, we treat a simple example and

we recover a well-known description of the A2 quantum X -cluster variety [FG09a].

For Y a cubic surface in P3 and D a triangle of lines on Y , the quantum scattering diagram

can be explicitly computed and so using techniques similar to those developed in [GHK],

one should be able to show that the deformation quantization given by Theorem 5 coincides

with the one constructed by Oblomkov [Obl04] using Cherednik algebras (double affine

Hecke algebras). We leave this verification, and the general relation to quantum X -cluster

varieties, to some future work.

Similarly, if Y is a del Pezzo surface of degree 1, 2 or 3 and D a nodal cubic, it would

be interesting to compare Theorem 5 with the construction of Etingof, Oblomkov, Rains

[EOR07] using Cherednik algebras. In these cases, the quantum scattering diagrams are

extremely complicated and new ideas are probably required.

Finally, we mention that Gross-Hacking-Keel-Siebert [GHKS] have given a mirror construc-

8The compatibility of these two approaches can be understood via a chain of string theoretic dualities.
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tion for K3 surfaces, producing canonical bases of theta functions for homogeneous coordi-

nate rings. This construction uses scattering diagrams whose initial data are the scattering

diagrams considered in [GHK15a] for the log Calabi-Yau surfaces which are irreducible com-

ponents of the special fiber of a maximal degeneration of K3 surfaces. By using the quantum

scattering diagrams leading to the proof of Theorem 5, we expect to be able to construct

deformation quantizations with canonical bases for K3 surfaces.

Comments on the proof of Theorem 5

Our proof of Theorem 5 follows closely the structure of [GHK15a]. When an argument in the

quantum case is formally parallel to its classical version, we often simply refer to [GHK15a].

The parts that we treat with care are those involving the non-commutative rings, building

blocks of the gluing construction, and in particular the computations potentially affected

with ordering issues, which have no analogue in the commutative context of [GHK15a].

Plan of Chapter 3

In Section 3.1, we set-up our notations and we give precise versions of the main results.

In Section 2.1, we describe the formalism of quantum scattering diagrams and quantum

broken lines. In Section 3.3, we explain how to associate to every Looijenga pair (Y,D) a

canonical quantum scattering diagram constructed in terms of higher genus log Gromov-

Witten invariants of (Y,D). The key result in our construction is Theorem 3.26 establishing

the consistency of the canonical quantum scattering diagram. The proof of Theorem 3.26

follows the reduction steps used by Gross-Hacking-Keel [GHK15a] in the genus zero case.

In the final step, we use the main result of Chapter 2 in place of the main result of [GPS10].

In Section 3.4, we finish the proofs of the main theorems. In Section 3.5, we work out

some explicit example. Finally, in Section 3.6, we discuss the relation of our main result,

Theorem 5, with higher genus mirror symmetry and some string theoretic arguments.
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1
Tropical refined curve counting

from higher genera

1.1 Precise statement of the main result

1.1.1 Toric geometry

Let ∆ be a balanced collection of vectors in Z2, i.e. a finite collection of vectors in Z2 − {0}

summing to zero1. Let ∣∆∣ be the cardinality of ∆. For v ∈ Z2 −{0}, let ∣v∣ the divisibility of

v in Z2, i.e. the largest positive integer k such that we can write v = kv′ with v′ ∈ Z2. Then

the balanced collection ∆ defines the following data by standard toric geometry.

• A projective2 toric surface X∆ over C, whose fan has rays R⩾0v generated by the

vectors v ∈ Z2 − {0} contained in ∆. We denote ∂X∆ the toric boundary divisor of

X∆.

• A curve class β∆ on X∆, whose polytope is dual to ∆. If ρ is a ray in the fan of X∆,

we write Dρ for the prime toric divsisor of X∆ dual to ρ and ∆ρ the set of elements

v ∈∆ such that R⩾0v = ρ. Then we have

β∆.Dρ = ∑
v∈∆ρ

∣v∣ ,

and these intersection numbers uniquely determine β∆. The total intersection number

1A given element of Z2
−{0} can appear several times in ∆. Here we follow the notation used by Itenberg

and Mikhalkin in [IM13].
2This is true only if the elements in ∆ are not all collinear. If they are, we replace X∆ by a toric

compactification whose choice will be irrelevant for our purposes.
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of β∆ with the toric boundary divisor ∂X∆ is given by

β∆.(−KX∆
) = ∑

v∈∆

∣v∣ .

• Tangency conditions for curves of class β∆ with respect to the toric boundary divisor

of X∆. We say that a curve C is of type ∆ if it is of class β∆ and if for every ray ρ in

the fan of X∆, the curve C intersects Dρ in ∣∆ρ∣ points with multiplicities ∣v∣, v ∈∆ρ.

Similarly, we have a notion of stable log map of type ∆.

• An asymptotic form for a parametrized tropical curve h∶Γ → R2 in R2. We say that

a parametrized tropical curve in R2 is of type ∆ if it has ∣∆∣ unbounded edges, with

directions v and with weights ∣v∣, v ∈∆.

1.1.2 Log Gromov-Witten invariants

The moduli space of n-pointed genus g stable maps to X∆ of class β∆ intersecting properly

the toric boundary divisor ∂X∆ with tangency conditions prescribed by ∆ is not proper: a

limit of curves intersecting ∂X∆ properly does not necessarily intersect ∂X∆ properly. A

nice compactification of this space is obtained by considering stable log maps. The idea is

to allow maps intersecting ∂X∆ non-properly, but to remember some additional information

under the form of log structures, which give a way to make sense of tangency conditions even

for non-proper intersections. The theory of stable log maps has been developed by Gross

and Siebert [GS13], and Abramovich and Chen [Che14b], [AC14]. By stable log maps, we

always mean basic stable log maps in the sense of [GS13]. We refer to Kato [Kat89] for

elementary notions of log geometry.

We consider the toric divisorial log structure on X∆ and use it to view X∆ as a log scheme.

Let Mg,n,∆ be the moduli space of n-pointed genus g stable log maps to X∆ of type ∆. By

n-pointed, we mean that the source curves are equipped with n marked points in addition

to the marked points keeping track of the tangency conditions with respect to the toric

boundary divisor. We consider that the latter are notationally already included in ∆.

By the work of Gross, Siebert [GS13] and Abramovich, Chen [Che14b], [AC14], Mg,n,∆ is a

proper Deligne-Mumford stack3 of virtual dimension

vdimMg,n,∆ = g − 1 + n + β∆.(−KX∆
) − ∑

v∈∆

(∣v∣ − 1) = g − 1 + n + ∣∆∣ ,

and it admits a virtual fundamental class

[Mg,n,∆]
virt
∈ AvdimMg,n,∆

(Mg,n,∆,Q) .

The problem of counting n-pointed genus g curves passing though n fixed points has virtual

3Moduli spaces of stable log maps have a natural structure of log stack. The structure of log stack is
particularly important to treat correctly evaluation morphisms in log Gromov-Witten theory in general, see
[ACGM10]. We will always consider these moduli spaces as stacks over the category of schemes, not as log
stacks, and we will always work with naive evaluation morphisms between stacks, not log stacks. This will
be enough for us. See the remark at the end of Section 1.3.2 for some justification.
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dimension zero if

vdimMg,n,∆ = 2n ,

i.e. if the genus g is equal to

g∆,n ∶= n + 1 − ∣∆∣ .

In this case, the corresponding count of curves is given by

N∆,n ∶= ⟨τ0(pt)n⟩g∆,n,n,∆
∶= ∫

[Mg∆,n,n,∆
]virt

n

∏
j=1

ev∗j (pt) ,

where pt ∈ A2(X∆) is the class of a point and evj is the evaluation map at the j-th marked

points.

According to Mandel and Ruddat [MR16], Mikhalkin’s correspondence theorem can be re-

formulated in terms of these log Gromov-Witten invariants. Our refinement of the corre-

spondence theorem will involve curves of genus g ⩾ g∆,n.

For g > g∆,n, inserting n points is no longer enough to cut down the virtual dimension to

zero. The idea is to consider the Hodge bundle E over Mg,n,∆. If π∶ C → Mg,n,∆ is the

universal curve, of relative dualizing4 sheaf ωπ, then

E ∶= π∗ωπ

is a rank g vector bundle over Mg,n,∆. The Chern classes of the Hodge bundles are classically

[Mum83] called the lambda classes and denoted as

λj ∶= cj(E) ,

for j = 0, . . . , g. Because the virtual dimension of Mg,n,∆ is given by

vdimMg,n,∆ = g − g∆,n + 2n ,

inserting the lambda class λg−g∆,n
and n points will cut down the virtual dimension to zero,

so it is natural to consider the log Gromov-Witten invariants with one lambda class inserted

N∆,n
g ∶= ⟨(−1)g−g∆,nλg−g∆,n

τ0(pt)n⟩g,n,∆

∶= ∫
[Mg,n,∆]

virt
(−1)g−g∆,nλg−g∆,n

n

∏
j=1

ev∗j (pt) .

Our refined correspondence result, Theorem 1.4, gives an interpretation of the generating

series of these invariants in terms of refined tropical curve counting.

4The dualizing line bundle of a nodal curve coincides with the log cotangent bundle up to some twist by
marked points and so is a completely natural object from the point of view of log geometry.
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1.1.3 Tropical curves

We refer to Mikhalkin [Mik05], Nishinou, Siebert [NS06], Mandel, Ruddat [MR16], and

Abramovich, Chen, Gross, Siebert [ACGS17a] for basics on tropical curves. Each of these

references uses a slightly different notion of parametrized tropical curve. We will use a

variant of [ACGS17a], Definition 2.5.3, because it is the one which is the most directly

related to log geometry. It is easy to go from one to the other.

For us, a graph Γ has a finite set V (Γ) of vertices, a finite set Ef(Γ) of bounded edges

connecting pairs of vertices and a finite set E∞(Γ) of legs attached to vertices that we view

as unbounded edges. By edge, we refer to a bounded or unbounded edge. We will always

consider connected graphs.

A parametrized tropical curve h∶Γ→ R2 is the following data:

• A non-negative integer g(V ) for each vertex V , called the genus of V .

• A bijection of the set E∞(Γ) of unbounded edges with

{1, . . . , ∣E∞(Γ)∣} ,

where ∣E∞(Γ)∣ is the cardinality of E∞(Γ).

• A vector vV,E ∈ Z2 for every vertex V and E an edge adjacent to V . If vV,E is not

zero, the divisibility ∣vV,E ∣ of vV,E in Z2 is called the weight of E and is denoted w(E).

We require that vV,E ≠ 0 if E is unbounded and that for every vertex V , the following

balancing condition is satisfied:

∑
E

vV,E = 0 ,

where the sum is over the edges E adjacent to V . In particular, the collection ∆V of

non-zero vectors v∆,E for E adjacent to V is a balanced collection as in Section 1.1.1.

• A non-negative real number `(E) for every bounded edge of E, called the length of E.

• A proper map h∶Γ→ R2 such that

– If E is a bounded edge connecting the vertices V1 and V2, then h maps E affine

linearly on the line segment connecting h(V1) and h(V2), and h(V2) − h(V1) =

`(E)vV1,E .

– If E is an unbounded edge of vertex V , then h maps E affine linearly to the ray

h(V ) +R⩾0vV,E .

The genus gh of a parametrized tropical curve h∶Γ→ R2 is defined by

gh ∶= gΓ + ∑
V ∈V (Γ)

g(V ) ,

where gΓ is the genus of the graph Γ.

We fix ∆ a balanced collection of vectors in Z2, as in Section 1.1.1, and we fix a bijection

of ∆ with {1, . . . , ∣∆∣}. We say that a parametrized tropical curve h∶Γ → R2 is of type ∆ if
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there exists a bijection between ∆ and {vV,E}E∈E∞(Γ) compatible with the fixed bijections

to

{1, . . . , ∣∆∣} = {1, . . . , ∣E∞(Γ)∣} .

Remark that

∑
E∈E∞(Γ)

vV,E = 0

by the balancing condition.

We say that a parametrized tropical curve h∶Γ → R2 is n-pointed if we have chosen a

distribution of the labels 1, . . . , n over the vertices of Γ, a vertex having the possibility to

have several labels. Vertices without any label are said to be unpointed whereas those with

labels are said to be pointed. For j = 1, . . . , n, let Vj be the pointed vertex having the

label j. Let p = (p1, . . . , pn) be a configuration of n points in R2. We say that a n-pointed

parametrized tropical curve h∶Γ → R2 passes through p if h(Vj) = pj for every j = 1, . . . , n.

We say that a n-pointed parametrized tropical curve h∶Γ→ R2 passing through p is rigid if

it is not contained in a non-trivial family of n-pointed parametrized tropical curves passing

through p of the same combinatorial type.

Proposition 1.1. For every balanced collection ∆ of vectors in Z2, and n a non-negative

integer such that g∆,n ⩾ 0, there exists an open dense subset U∆,n of (R2)n such that if p =

(p1, . . . , pn) ∈ U∆,n then pj ≠ pk for j ≠ k and if h∶Γ→ R2 is a rigid5 n-pointed parametrized

tropical curve of genus g ≤ g∆,n and of type ∆ passing through p, then

• g = g∆,n.

• We have g(V ) = 0 for every vertex V of Γ. In particular, the graph Γ has genus g∆,n.

• Images by h of distinct vertices are distinct.

• No edge is contracted to a point.

• Images by h of two distinct edges intersect in at most one point.

• Unpointed vertices are trivalent.

• Pointed vertices are bivalent.

Proof. This is essentially Proposition 4.11 of Mikhalkin [Mik05], which itself is essentially

some counting of dimensions. In [Mik05], there is no genus attached to the vertices but if we

have a parametrized tropical curve of genus g ≤ g∆,n with some vertices of non-zero genus,

the underlying graph has genus strictly less than g and so strictly less than g∆,n, which is

impossible by Proposition 4.11 of [Mik05] for p general enough.

Proposition 1.2. If p ∈ U∆,n, then the set T∆,p of rigid n-pointed genus g∆,n parametrized

tropical curves h∶Γ→ R2 of type ∆ passing through p is finite.

5Here, the rigidity assumption is only necessary to forbid contracted edges. It happens to be the natural
assumption in the general form of the decomposition formula of [ACGS17a], as explained and used in
Section 1.3.3.
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Proof. This is Proposition 4.13 if Mikhalkin [Mik05]: there are finitely many possible com-

binatorial types for a parametrized tropical curve as in Proposition 1.1, and for a fixed

combinatorial type, the set of such tropical curves passing trough p is a zero dimensional

intersection of a linear subspace with an open convex polyhedron, so is a point.

Lemma 1.3. Let h∶Γ→ R2 be a parametrized tropical curve in T∆,p. Then Γ has

2g∆,n − 2 + ∣∆∣

trivalent vertices.

Proof. By definition of T∆,p, the graph Γ is of genus g∆,n and its vertices are either trivalent

or bivalent. Replacing the two edges adjacent to each bivalent vertex by a unique edge, we

obtain a trivalent graph Γ̂ with the same genus and the same number of unbounded edges

as Γ. Let ∣V (Γ̂)∣ be the number of vertices of Γ̂ and let ∣Ef(Γ̂)∣ be the number of bounded

edges of Γ̂. A count of half-edges using that Γ̂ is trivalent gives

3∣V (Γ̂)∣ = 2∣Ef(Γ̂)∣ + ∣∆∣ .

By definition of the genus, we have

1 − g∆,n = ∣V (Γ̂)∣ − ∣Ef(Γ̂)∣ .

Eliminating ∣Ef(Γ̂)∣ from the two previous equalities gives the desired formula and so finishes

the proof of Lemma 1.3.

For h∶Γ→ R2 a parametrized tropical curve in R2 and V a trivalent vertex of adjacent edges

E1, E2 and E3, the multiplicity of V is the integer defined by

m(V ) ∶= ∣det(vV,E1 , vV,E2)∣ .

Thanks to the balancing condition

vV,E1 + vV,E2 + vV,E3 = 0 ,

we also have

m(V ) = ∣det(vV,E2 , vV,E3)∣ = ∣det(vV,E3 , vV,E1)∣ .

For (h∶Γ→ R2) ∈ T∆,p, the multiplicity of h is defined by

mh ∶= ∏
V ∈V (3)(Γ)

m(V ) ,

where the product is over the trivalent, i.e. unpointed, vertices of Γ.

Let N∆,p
trop be the count with multiplicity of n-pointed genus g∆,n parametrized tropical curves
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of type ∆ passing through p, i.e.

N∆,p
trop ∶= ∑

h∈T∆,p

mh .

This tropical count with multiplicity has a natural refinement, first suggested by Block and

Göttsche [BG16]. We can replace the integer valued multiplicity mh of a parametrized

tropical curve h∶Γ→ R2 by the N[q± 1
2 ]-valued multiplicity

mh(q) ∶= ∏
V ∈V (3)(Γ)

q
m(V )

2 − q−
m(V )

2

q
1
2 − q−

1
2

= ∏
V ∈V (3)(Γ)

⎛

⎝

m(V )−1

∑
j=0

q−
m(V )−1

2 +j⎞

⎠
,

where the product is taken over the trivalent vertices of Γ. The specialization q = 1 recovers

the usual multiplicity:

mh(1) =mh .

Counting the parametrized tropical curves in T∆,p as above but with q-multiplicities, we

obtain a refined tropical count

N∆,p
trop(q) ∶= ∑

h∈T∆,p

mh(q) ∈ N[q±
1
2 ] ,

which specializes to the tropical count N∆,p
trop at q = 1 :

N∆,p
trop(1) = N

∆,p
trop .

1.1.4 Unrefined correspondence theorem

Let ∆ be a balanced collection of vectors in Z2, as in Section 1.1.1, and let n be a non-

negative integer and p ∈ U∆,n. Then we have some log Gromov-Witten count N∆,n of

n-pointed genus g∆,n curves of type ∆ passing through n points in the toric surface X∆

(see Section 1.1.2), and we have some count with multiplicity N∆,n
trop of n-pointed genus g∆,n

tropical curves of type ∆ passing through n points p = (p1, . . . , pn) in R2 (see Section 1.1.3).

The (unrefined) correspondence theorem then takes the simple form

N∆,n
= N∆,p

trop.

The result proved by Mikhalkin [Mik05] and generalized by Nishinou, Siebert [NS06] is an

equality between the tropical count N∆,n
trop and an enumerative count of algebraic curves.

The fact that this enumerative count coincides with the log Gromov-Witten count N∆,n is

proved by Mandel and Ruddat in [MR16].

1.1.5 Refined correspondence theorem

The Block-Göttsche refinement from N∆,p to N∆,p(q), reviewed in Section 1.1.3, is done at

the tropical level so is combinatorial in nature and its geometric meaning is a priori unclear.
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The main result of the present Chapter is a new non-tropical interpretation of Block-Göttsche

invariants in terms of the higher genus log Gromov-Witten invariants with one lambda class

inserted Ng
∆,n that we introduced in Section 1.1.2. In particular, this geometric interpreta-

tion is independent of any tropical limit and makes the tropical deformation invariance of

Block-Göttsche invariants manifest.

More precisely, we prove a refined correspondence theorem, already stated as Theorem 1 in

the Introduction.

Theorem 1.4. For every ∆ balanced collection of vectors in Z2, for every non-negative

integer n such that g∆,n ⩾ 0, and for every p ∈ U∆,n, we have the equality

∑
g⩾g∆,n

N∆,n
g u2g−2+∣∆∣

= N∆,p
trop(q) ((−i)(q

1
2 − q−

1
2 ))

2g∆,n−2+∣∆∣

of power series in u with rational coefficients, where

q = eiu = ∑
n⩾0

(iu)n

n!
.

Remarks

• The change of variables q = eiu makes the above correspondence quite non-trivial. In

particular, in contrast to its unrefined version, it cannot be reduced to a finite to one

enumerative correspondence. It is essential to have a virtual/non-enumerative count

on the Gromov-Witten side: for g large enough, most of the contributions to N∆,n
g

come from maps with contracted components.

• The refined tropical count has the symmetry N∆,n
trop(q) = N

∆,n
trop(q

−1) and so, after the

change of variables q = eiu, is a even power series in u. In particular, as

(−i)(q
1
2 − q−

1
2 ) ∈ uQ[[u2

]] ,

the tropical side of Theorem 1.4 lies in

u2g∆,n−2+∣∆∣Q[[u2
]] ,

as does the Gromov-Witten side. Taking the leading order terms on both sides in the

limit u→ 0, q → 1, we recover the unrefined correspondence theorem N∆,n = N∆,p
trop.

• By Lemma 1.3, we know that 2g∆,n − 2 + ∣∆∣ is the number of trivalent vertices of a

parametrized tropical curve in T∆,p. In particular, the tropical side of Theorem 1.4

can be obtained directly by considering only the numerators of the Block-Göttsche

multiplicities, i.e. Theorem 1.4 can be rewritten

∑
g⩾g∆,n

N∆,n
g u2g−2+∣∆∣

= ∑
h∈T∆,p

∏
V

(−i) (q
m(V )

2 − q−
m(V )

2 ) ,

where q = eiu.
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1.1.6 Fixing points on the toric boundary

It is possible to generalize Theorem 1.4 by fixing the position of some of the intersection

points with the toric boundary divisor. Let ∆F be a subset of ∆ and let

ev∆F ∶Mg,n,∆ → (∂X∆)
∣∆F
∣

be the evaluation map at the intersection points with the toric boundary divisor ∂X∆ indexed

by the elements of ∆F .

The problem of counting n-pointed genus g curves of type ∆ passing through n given points

of X∆ and with fixed position of the intersection points with ∂X∆ indexed by ∆F , has

virtual dimension zero if the genus is equal to

g∆F

∆,n ∶= n + 1 − ∣∆∣ + ∣∆F
∣ .

For every g ⩾ g∆F

∆,n, we define the invariants

N∆,n
g,∆F ∶= ∫

[Mg,n,∆]
virt
(−1)g−g

∆F

∆,nλ
g−g∆F

∆,n

ev∗∆F (r
∣∆F
∣
)
n

∏
j=1

ev∗j (pt) ,

where r ∈ A1(∂X∆) is the class of a point on ∂X∆.

We can consider the corresponding tropical problem. Fix a generic configuration x =

(xv)v∈∆F of points in R2 and say that a tropical curve of type ∆ is of type (∆,∆F ) if

the unbounded edges in correspondence with ∆F asymptotically coincide with the half-lines

xv +R⩾0v, v ∈∆F .

We define a refined tropical count

N∆,p,x
trop,∆F (q) ∈ N[q±

1
2 ] ,

by counting with q-multiplicity the tropical curves of genus g∆F

∆,n and of type (∆,∆F ) passing

through a generic configuration p = (p1, . . . , pn) of n points in R2.

The following result is the generalization of Theorem 1.4 to the case of non-empty ∆F .

Theorem 1.5. For every ∆ balanced collection of vectors in Z2, for every ∆F subset of ∆

and for every n non-negative integer such that g∆F

∆,n ⩾ 0, we have the equality

∑

g⩾g∆F

∆,n

N∆,n
g,∆F u

2g−2+∣∆∣
= ( ∏

v∈∆F

1

∣v∣
)N∆,p,x

trop (q) ((−i)(q
1
2 − q−

1
2 ))

2g∆F

∆,n−2+∣∆∣

of power series in u with rational coefficients, where q = eiu.

The proof of Theorem 1.5 is entirely parallel to the proof of Theorem 1.4 (Theorem 1 of the

Introduction). The required modifications are discussed at the end of Section 1.7.4.
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1.1.7 An explicit example

In the present Section, we check by a direct computation one of the consequences of Theorem 1.

Let us consider the problem of counting rational cubic curves in P2 passing through 8 points

in general position. To match the notations of the Introduction, we choose ∆ containing

three times the vector (1,0), three times the vector (0,1) and three times the vector (−1,−1).

The toric surface X∆ is then P2 and the curve class β∆ is the class of a cubic curve in

P2. We have ∣∆∣ = 9, n = 8, g∆,n = 0. Let us write Ng for N∆,n
g . We have N0 = 12 and

the corresponding Block-Göttsche invariant is q + 10 + q−1 (see Example 1.3 of [NPS16] for

pictures of tropical curves). From the point of view of Göttsche-Shende [GS14], the relevant

relative Hilbert scheme to consider happens to be the pencil of cubics passing trough the 8

given points, i.e. P2 blown-up in 9 points, whose Hirzebruch genus is indeed 1 + 10q + q2.

According to Theorem 1.4, we have

∑
g≥0

Ngu
2g−2+9

= i(q + 10 + q−1
)(q

1
2 − q−

1
2 )

7

= i(q
9
2 + 3q

7
2 − 48q

5
2 + 168q

3
2 − 294q

1
2 + 294q−

1
2 − 168q−

3
2 + 48q−

5
2 − 3q−

7
2 − q−

9
2 )

= 12u7
−

9

2
u9
+

137

160
u11
−

1253

11520
u13
+ . . .

We will check directly that N1 = −
9
2
. Remark that a Block-Göttsche invariant equal to 12

rather than to q + 10 + q−1 would lead to N1 = −
7
2
. In particular, the value of N1 is already

sensitive to the choice of the correct refinement.

We have 6

N1 = ∫
[M1,8(P2,3)]virt

(−1)1λ1

8

∏
j=1

ev∗j (pt) ,

where pt ∈ A2(P2) is the class of a point. Introducing an extra marked point and using the

divisor equation, one can write

N1 =
1

3
∫
[M1,8+1(P2,3)]virt

(−1)1λ1

⎛

⎝

8

∏
j=1

ev∗j (pt)
⎞

⎠
ev∗9(h) ,

where h ∈ A1(P2) is the class of a line. On M1,1, we have

λ1 =
1

12
δ0 ,

where δ0 is the class of a point. Taking for representative of δ0 the point corresponding to

the nodal genus one curve, with j-invariant i∞, and resolving the node, we can write

N1 = −
1

12
⋅
1

2
⋅
1

3
∫
[M0,8+1+2(P2,3)]virt

⎛

⎝

8

∏
j=1

ev∗j (pt)
⎞

⎠
ev∗9(h)(ev∗10 × ev∗11)(D) ,

6A general choice of representative for λ1 cuts out a locus in the moduli space made entirely of torically
transverse stable maps. In particular, we do not have to worry about the difference between log and usual
stable maps. A general form of this argument is used in the proof of the gluing formula in Section 1.6.
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where the factor 1
2

comes from the two ways of labeling the two points resolving the node,

and D is the class of the diagonal in P2 × P2. We have

D = 1 × pt + pt × 1 + h × h .

The first two terms do not contribute to N1 for dimension reasons so

N1 = −
1

12
⋅
1

2
⋅
1

3
∫
[M0,8+1+2(P2,3)]virt

⎛

⎝

8

∏
j=1

ev∗j (pt)
⎞

⎠
ev∗9(h)ev∗10(h)ev∗11(h) .

Using the divisor equation, we obtain

N1 = −
1

12
⋅
1

2
⋅ 3 ⋅ 3∫

[M0,8(P2,3)]virt

⎛

⎝

8

∏
j=1

ev∗j (pt)
⎞

⎠
= −

9

24
N0 = −

9

2
,

as expected.

1.2 Gluing and vanishing properties of lambda classes

In this Section, we review some well-known facts: a gluing result for lambda classes,

Lemma 1.6, and then a vanishing result, Lemma 1.7.

Lemma 1.6. Let B be a scheme over C. Let Γ be a graph, of genus gΓ, and let πV ∶ CV → B

be prestable curves over B indexed by the vertices V of Γ. For every edge E of Γ, connecting

vertices V1 and V2, let sE,1 and sE,2 be smooth sections of πV1 and πV2 respectively. Let

π∶ C → B be the prestable curve over B obtained by gluing together the sections sV1,E and

sV2,E corresponding to a same edge E of Γ. Then, we have an exact sequence

0→ ⊕
V ∈V (Γ)

(πV )∗ωπV → π∗ωπ →O
⊕gΓ → 0 ,

where ωπV and ωπ are the relative dualizing line bundles.

Proof. Let sE ∶B → C be the gluing sections. Then we have an exact sequence

0→OC → ⊕
V ∈V (Γ)

OCV → ⊕
E∈E(Γ)

OsE(B) → 0 .

Applying Rπ∗, we obtain an exact sequence

0→ π∗OC → ⊕
V ∈V (Γ)

π∗OCV → ⊕
E∈E(Γ)

π∗OsE(B)

→ R1π∗OC → ⊕
V ∈V (Γ)

R1π∗OCV → 0 .

The kernel of

R1π∗OC → ⊕
V ∈V (Γ)

R1π∗OCV
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is a free sheaf of rank ∣E(Γ)∣ − ∣V (Γ)∣ + 1 = gΓ. We obtain the desired exact sequence by

Serre duality.

Equivalently, if we choose gΓ edges of Γ whose complement is a tree, we can understand the

morphism

π∗ωπ →O
⊕gΓ

as taking the residues at the corresponding gΓ sections.

Lemma 1.7. Let B be a scheme over C. Let π∶ C → B be a prestable curve of arithmetic

genus g over B. For every integer g′ such that 0 ≤ g′ ≤ g, let Bg′ be the closed subset of B

of points b such that the dual graph of the curve π−1(b) is of genus ⩾ g′. Then the lambda

classes λj ∈H
2j(B,Q), defined by λj = cj(π∗ωπ), satisfy

λj ∣Bg′ = 0

in H2j(Bg′ ,Q) for all j > g − g′.

Proof. Let B̃g′ be the finite cover of Bg′ given by the possible choices of g′ fully separating

nodes, i.e. of nodes whose complement is of genus 0. Separating these g′ fully separating

nodes gives a way to write the pullback of C to B̃g′ as the gluing of curves according to

a dual graph Γ of genus g′. According to Lemma 1.6, the Hodge bundle of this family of

curves has a trivial rank g′ quotient. As B̃g′ is finite over B′g, it is enough to guarantee the

desired vanishing in rational cohomology.

1.3 Toric degeneration and decomposition formula

In Section 1.3.1, we review the natural link between log geometry and tropical geometry

given by tropicalization. In Section 1.3.2, we start the proof of Theorem 1 by considering the

Nishinou-Siebert toric degeneration. In Section 1.3.3, we apply the decomposition formula

of Abramovich, Chen, Gross, Siebert [ACGS17a] to this toric degeneration to write the log

Gromov-Witten invariants N∆,n
g in terms of log Gromov-Witten invariants N∆,h

g indexed

by parametrized tropical curves h∶Γ → R2. We use the vanishing result of Section 1.2 to

restrict the tropical curves appearing.

1.3.1 Tropicalization

Log geometry is naturally related to tropical geometry. Every log scheme X admits a

tropicalization Σ(X).

Recall that a log scheme is a schemeX endowed with a sheaf of monoidsMX and a morphism

of sheaves of monoids7

αX ∶MX →OX ,

7All the monoids considered will be commutative and with an identity element.

38



where OX is seen as a sheaf of multiplicative monoids, such that the restriction of αX to

α−1
X (O

∗
X) is an isomorphism.

The ghost sheaf of a log scheme X is the sheaf of monoids

MX ∶= MX/α
−1
(O
∗
X) .

For the kind of log schemes that we are considering, fine and saturated, the ghost sheaf is of

combinatorial nature. In this case, one can think of the log geometry of X as a combination

of the geometry of the underlying scheme X and of the combinatorics of the ghost sheaf

MX . Non-trivial interactions between these two aspects of log geometry are encoded in the

sequence

O
∗
X →MX →MX .

A cone complex is an abstract gluing of convex rational cones along their faces. If X is a log

scheme, the tropicalization Σ(X) of X is the cone complex defined by gluing together the

convex rational cones Hom(MX,x,R⩾0) for all x ∈X according to the natural specialization

maps. Tropicalization is a functorial construction. For more details on tropicalization of

log schemes, we refer to Appendix B of [GS13] and Section 2 of [ACGS17a]. Tropicalization

gives a pictorial way to describe the combinatorial part of log geometry contained in the

ghost sheaf.

Examples

• Let X be a toric variety. We can view X as a log scheme for the toric divisorial log

structure, i.e. the divisorial log stucture with respect to the toric boundary divisor

∂X. The sheaf MX is the sheaf of functions non-vanishing outside ∂X and αX is the

natural inclusion ofMX in OX . The tropicalization Σ(X) of X is naturally isomorphic

as cone complex to the fan of X.

• Let M be a monoid whose only invertible element is 0. Let X be the log scheme of

underlying scheme the point pt = Spec C, with MX =M⊕C∗ and

αX ∶M⊕C∗ → C

(m,a) ↦ aδm,0 .

We denote this log scheme as pt
M

and such a log scheme is called a log point. By

construction, we have Mpt
M

= M and so the tropicalization Σ(pt
M
) is the cone

Hom(M,R⩾0), i.e. the fan of the affine toric variety Spec C[M] .

• The log point ptN obtained forM= N is called the standard log point. Its tropicaliza-

tion is simply Σ(ptN) = R⩾0, the fan of the affine line A1.

• The log point pt0 obtained forM= 0 is called the trivial log point. Its tropicalization

Σ(pt0) is reduced to a point.

• A stable log map to some relative log scheme X → S determines a commutative

diagram in the category of log schemes,
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C X

pt
M

S ,

f

π

where pt
M

is a log point and π is a log smooth proper integral curve. In particular, the

scheme underlying C is a projective nodal curve with a natural set of smooth marked

points. We can take the tropicalization of this diagram to obtain a commutative

diagram of cone complexes

Σ(C) Σ(X)

Σ(pt
M
) Σ(S) .

Σ(f)

Σ(π)

Σ(C) is a family of graphs over the cone Σ(ptM) = Hom(M,R⩾0): the fiber of Σ(π)

over a point in the interior of the cone is the dual graph of C. Fibers over faces of the

cone are contractions of the dual graph. In particular, the fiber over the origin of the

cone is obtained by fully contracting the dual graph of C to a graph with a unique

vertex. If X is a toric variety with the toric divisorial log structure and S is the trivial

log point, then Σ(f) is a family of parametrized tropical curves in the fan of X. We

refer to Section 2.5 of [ACGS17a] for more details.

1.3.2 Toric degeneration

Let ∆ be a balanced configuration of vectors, as in Section 1.1.1, and let n be a non-negative

integer such that g∆,n ⩾ 0. We fix p = (p1, . . . , pn) a configuration of n points in R2 belonging

to the open dense subset U∆,n of (R2)n given by Proposition 1.1. Let T∆,p be the set of n-

pointed genus g∆,n parametrized tropical curves in R2 of type ∆ passing through p. The

set T∆,p is finite by Proposition 1.2. Proposition 1.1 shows that the elements of T∆,p are

particularly nice parametrized tropical curves.

We can slightly modify p such that p ∈ (Q2)n ∩ U∆,n without changing the combinatorial

type of the elements of T∆,p and so without changing the tropical counts N∆,p
trop and N∆,p

trop(q).

In that case, for every parametrized tropical curve h∶Γ → R2 in T∆,p and for every vertex

V of Γ, we have h(V ) ∈ Q2 and for every edge E of Γ, we have `(E) ∈ Q. Indeed, the

positions h(V ) of vertices in R2 and the lengths `(E) of edges are natural parameters on

the moduli space of genus g∆,n parametrized tropical curves of type ∆ and this moduli space

is a rational polyhedron in the space of these parameters. The set T∆,p is obtained as zero

dimensional intersection of this rational polyhedron with the rational (because p ∈ (Q2)n)

linear space imposing to pass through p. It follows that the parameters h(V ) and `(E) are

rational for elements of T∆,p.

We follow the toric degeneration approach introduced by Nishinou and Siebert [NS06]

(see also Mandel and Ruddat [MR16]). According to [NS06] Proposition 3.9 and [MR16]

Lemma 3.1, there exists a rational polyhedral decomposition P∆,p of R2 such that

• The asymptotic fan of P∆,p is the fan of X∆.
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• For every parametrized tropical curve h∶Γ → R2 in T∆,p, the images h(V ) of vertices

V of Γ are vertices of P∆,p and the images h(E) of edges E of Γ are contained in union

of edges of P∆,p

Remark that the points pj in R2 are image of vertices of parametrized tropical curves in

T∆,p and so are vertices of P∆,p.

Given a parametrized tropical curve h∶Γ → R2 in T∆,p, we construct a new parametrized

tropical curve h̃∶ Γ̃ → R2 by simply adding a genus zero bivalent unpointed vertex to Γ at

each point h−1(V ) for V a vertex of P∆,p which is not the image by h of a vertex of Γ. The

image h̃(E) of each edge E of Γ̃ is now exactly an edge of P∆,p. The graph Γ̃ has three

types of vertices:

• Trivalent unpointed vertices, coming from Γ.

• Bivalent pointed vertices, coming from Γ.

• Bivalent unpointed vertices, not coming from Γ.

Doing a global rescaling of R2 if necessary, we can assume that P∆,p is an integral polyhedral

decomposition, i.e. that all the vertices of P∆,p are in Z2, and that all the lengths `(E) of

edges E of parametrized tropical curves h̃∶ Γ̃ → R2, coming from h∶Γ → R2 in T∆,p, are

integral.

Taking the cone over P∆,p × {1} in R2 × R, we obtain the fan of a three dimensional toric

variety XP∆,p
equipped with a morphism

ν∶XP∆,p
→ A1

coming from the projection R2 × R → R on the third R factor. We have ν−1(t) ≃ X∆ for

every t ∈ A1 − {0}. The special fiber X0 ∶= ν
−1(0) is a reducible surface whose irreducible

components XV are toric surfaces in one to one correspondence with the vertices V of P∆,p,

X0 = ⋃
V

XV .

In other words, ν∶XP∆,p
→ A1 is a toric degeneration of X∆.

We consider the toric varieties A1, XP∆,p
, X∆ and XV as log schemes with respect to the

toric divisorial log structure. In particular, the toric morphism ν induces a log smooth

morphism

ν∶XP∆,n
→ A1 .

Restricting to the special fiber gives a structure of log scheme on X0 and a log smooth

morphism to the standard log point

ν0∶X0 → ptN.

From now on, we will denote X0 the scheme underlying the log scheme X0. Beware that

the toric divisorial log structure that we consider on XV is not the restriction of the log
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structure that we consider on X0.

For every j = 1, . . . , n, the ray R⩾0(pj ,1) in R2 × R defines a one-parameter subgroup C∗pj
of (C∗)3 ⊂ XP∆,n

. We choose a point Pj ∈ (C∗)2 and we write ZPj the affine line in XP∆,n

defined as the closure of the orbit of (Pj ,1) under the action of C∗pj . We have

ZPj ∩ ν
−1
(1) = ZPj ∩X∆ = Pj ,

and

P 0
j ∶= ZPj ∩ ν

−1
(0)

is a point in the dense torus (C∗)2 contained in the toric component of X0 corresponding

to the vertex pj of P∆,p. In other words, ZPj is a section of ν degenerating Pj ∈X∆ to some

P 0
j ∈X0.

Recall from Section 1.1.2 that the log Gromov-Witten invariants N∆,n
g are defined using

stable log maps of target X∆,

N∆,n
g ∶= ∫

[Mg,n,∆]
virt
(−1)g−g∆,nλg−g∆,n

n

∏
j=1

ev∗j (pt) ,

where Mg,n,∆ is the moduli space of n-pointed stable log maps to X∆ of genus g and of

type ∆.

Let Mg,n,∆(X0/ptN) be the moduli space of n-pointed stable log maps to π0∶X0 → ptN of

genus g and of type ∆. It is a proper Deligne-Mumford stack of virtual dimension

vdimMg,n,∆(X0/ptN) = vdimMg,n,∆ = g − g∆,n + 2n

and it admits a virtual fundamental class

[Mg,n,∆(X0/ptN)]
virt
∈ Ag−g∆,n+2n(Mg,n,∆(X0/ptN),Q) .

Considering the evaluation morphism

ev∶Mg,n,∆(X0/ptN) →Xn
0

and the inclusion

ιP 0 ∶ (P 0 ∶= (P 0
1 , . . . , P

0
n)) ↪Xn

0 ,

we can define the moduli space8

Mg,n,∆(X0/ptN, P
0
) ∶=Mg,n,∆(X0/ptN) ×Xn0 P

0 ,

of stable log maps passing through P 0, and by the Gysin refined homomorphism (see

8As already mentioned in Section 1.1.2, we consider moduli spaces of stable log maps as stacks, not log
stacks. In particular, the morphisms ev, ιP0 and the fiber product defining Mg,n,∆(X0/ptN, P

0
) are defined

in the category of stacks, not log stacks.
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Section 6.2 of [Ful98]), a virtual fundamental class

[Mg,n,∆(X0/ptN, P
0
)]

virt ∶= ι!P 0[Mg,n,∆(X0/ptN)]
virt

∈ Ag−g∆,n
(Mg,n,∆(X0/ptN, P

0
),Q) .

Remark that this definition is compatible with [ACGS17a] because each P 0
j , seen as a log

morphism P 0
j ∶ptN → X0, is strict. This follows from the fact that we have chosen P 0

j in

the dense torus (C∗)2 contained in the toric component of X0 dual to the vertex pj of

P∆,p. If it were not the case9, then, following Section 6.3.2 of [ACGS17a], the definition of

Mg,n,∆(X0/ptN, P
0) should have been replaced by a fiber product in the category of fs log

stacks and [Mg,n,∆(X0/ptN, P
0)]virt should have been defined by some perfect obstruction

theory directly on Mg,n,∆(X0/ptN, P
0).

By deformation invariance of the virtual fundamental class on moduli spaces of stable log

maps in log smooth families, we have

N∆,n
g = ∫

[Mg,n,∆(X0/ptN,P
0)]virt

(−1)g−g∆,nλg−g∆,n
.

1.3.3 Decomposition formula

As the toric degeneration breaks the toric surface X∆ into many pieces, irreducible com-

ponents of the special fiber X0, one can similarly expect that it breaks the moduli space

Mg,n,∆ of stable log maps to X∆ into many pieces, irreducible components of the moduli

space Mg,n,∆(X0/ptN) of stable log maps to X0. Tropicalization gives a way to understand

the combinatorics of this breaking into pieces.

As we recalled in Section 1.3.1, a n-pointed stable log maps to X0/ptN of type ∆ gives a

commutative diagram of log schemes

C X0

pt
M

ptN ,

f

π ν0

g

which can be tropicalized in a commutative diagram of cone complexes

Σ(C) Σ(X0)

Σ(pt
M
) Σ(ptN) .

Σ(f)

Σ(π) Σ(ν0)

Σ(g)

We have Σ(ptN) ≃ R⩾0 and the fiber Σ(ν0)
−1(1) is naturally identified with R2 equipped with

the polyhedral decomposition P∆,p, whose asymptotic fan is the fan of X∆. So the above

9In Section 6.3.2 of [ACGS17a], sections defining point constraints have to interact non-trivially with the
log structure of the special fiber to produce something interesting because the degeneration considered there
is a trivial product, whereas we are considering a non-trivial degeneration
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diagram gives a family over the polyhedron Σ(g)−1(1) of n-pointed parametrized tropical

curves in R2 of type ∆

The moduli space M
trop

g,n,∆ of n-pointed genus g parametrized tropical curves in R2 of type

∆ is a rational polyhedral complex. If M
trop

g,n,∆ were the tropicalization of Mg,n,∆(X0/ptN)

(seen as a log stack over ptN), then M
trop

g,n,∆ would be the dual intersection complex of M
trop

g,n,∆.

In particular, irreducible components of Mg,n,∆(X0/ptN) would be in one to one correspon-

dence with the 0-dimensional faces of M
trop

g,n,∆. As the polyhedral decomposition of M
trop

g,n,∆ is

induced by the combinatorial type of tropical curves, the 0-dimensional faces of M
trop

g,n,∆ cor-

respond to the rigid parametrized tropical curves, see Definition 4.3.1 of [ACGS17a], i.e. to

parametrized tropical curves which are not contained in a non-trivial family of parametrized

tropical curves of the same combinatorial type.

According to the decomposition formula of Abramovich, Chen, Gross and Siebert [ACGS17a],

this heuristic description of the pieces of Mg,n,∆(X0/ptN) is correct at the virtual level: one

can express [Mg,n,∆(X0/ptN, P
0)]virt as a sum of contributions indexed by rigid tropical

curves.

Let h̃∶ Γ̃ → R2 be a n-pointed genus g rigid parametrized tropical curve to R2 of type ∆

passing through p. For every V vertex of Γ̃, let ∆V be the balanced collection of vectors

vV,E for all edges E adjacent to V . Using the notations of Section 1.1.1 that we used all

along for ∆ but now for ∆V , the toric surface X∆V
is the irreducible component of X0

corresponding to the vertex h(V ) of the polyhedral decomposition P∆,p.

A n-pointed genus g stable log map to X0 of type ∆ passing through P 0 and marked by h̃

is the following data, see [ACGS17a], Definition 4.4.110,

• A n-pointed genus g stable log map f ∶C/pt
M
→ X0/ptN of type ∆ passing through

P 0.

• For every vertex V of Γ̃, an ordinary stable map fV ∶CV → X∆V
of class β∆V

with

marked points xv for every v ∈ ∆V , such that fV (xv) ∈ Dv, where Dv is the prime

toric divisor of X∆V
dual to the ray R⩾0v.

These data must satisfy the following compatibility conditions: the gluing of the curves CV

along the points corresponding to the edges of Γ̃ is isomorphic to the curve underlying the

log curve C, and the corresponding gluing of the maps fV is the map underlying the log

map f .

According to [ACGS17a], the moduli space M
h̃,P 0

g,n,∆ of n-pointed genus g stable log maps of

type ∆ passing through P 0 and marked by h̃ is a proper Deligne-Mumford stack, equipped

with a natural virtual fundamental class [M
h̃,P 0

g,n,∆]
virt. Forgetting the marking by h̃ gives a

morphism

ih̃∶M
h̃,P 0

g,n,∆ →Mg,n,∆(X0/ptN, P
0
) .

10In [ACGS17a], the marking includes also a choice of curve classes for the stable maps fV . In our case,
the curve classes are uniquely determined because a curve class in a toric variety is uniquely determined by
its intersection numbers with the components of the toric boundary divisor.
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According to the decomposition formula, [ACGS17a] Theorem 6.3.9, we have

[Mg,n,∆(X0/ptN, P
0
)]

virt
= ∑

h̃

nh̃
∣Aut(h̃)∣

(ih̃)∗[M
h̃,P 0

g,n,∆]
virt ,

where the sum is over the n-pointed genus g rigid parametrized tropical curves to (R2,P∆,p)

of type ∆ passing through p, nh̃ is the smallest positive integer such that the scaling of h̃ by

nh̃ has integral vertices and integral lengths, and ∣Aut(h̃)∣ is the order of the automorphism

group of h̃.

Recall from Proposition 1.1 that a parametrized tropical curve h∶Γ→ R2 in T∆,p has a source

graph Γ of genus g∆,n and that all vertices V of Γ are of genus zero: g(V ) = 0. In Section

1.3.2, we explained that the polyhedral decomposition P∆,p defines a new parametrized

tropical h̃∶ Γ̃ → R2, for each h∶Γ → R2 in T∆,p, by addition of unmarked genus zero bivalent

vertices. Given such parametrized tropical curve h̃∶ Γ̃ → R2, one can construct genus g

parametrized tropical curves by changing only the genus of vertices g(V ) so that

∑
V ∈V (Γ)

g(V ) = g − g∆,n .

We denote T g∆,p the set of genus g parametrized tropical curves obtained in this way.

Lemma 1.8. Parametrized tropical curves h̃∶ Γ̃ → R2 in T g∆,p are rigid. Furthermore, for

such h̃, we have nh̃ = 1 and ∣Aut(h̃)∣ = 1.

Proof. The rigidity of parametrized tropical curves in T g∆,p follows from the rigidity of

parametrized tropical curves in T∆,p because the genera attached to the vertices cannot

change under a deformation preserving the combinatorial type, and added bivalent vertices

to go from Γ to Γ̃ are mapped to vertices of P∆,p and so cannot move without changing the

combinatorial type.

We have nh̃ = 1 because in Section 1.3.2, we have chosen the polyhedral decomposition P∆,p

to be integral: vertices of h̃ map to integral points of R2 and edges E of Γ̃ have integral

lengths `(E). We have ∣Aut(h̃)∣ = 1 because h̃ is an immersion. The genus of vertices never

enters in the above arguments.

For every h̃∶ Γ̃→ R2 parametrized tropical curve in T g∆,p, we define

N∆,n

g,h̃
∶= ∫

[M
h̃,P0

g,n,∆]
virt
(−1)g−g∆,nλg−g∆,n

.

Proposition 1.9. For every ∆, n and g ⩾ g∆,n, we have

N∆,n
g = ∑

h̃∈T g
∆,p

N∆,n

g,h̃
.

Proof. This follows from the decomposition formula and from the vanishing property of

lambda classes.
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If h̃ is a rigid parametrized tropical curve of genus g > g∆,n, then every point in M
h̃,P 0

g,n,∆ is a

stable log map whose tropicalization has genus g > g∆,n. In particular, the dual intersection

complex of the source curve has genus g > g∆,n. By Lemma 1.7, λg−g∆,n
is zero on restriction

to such family of curves.

Example. The generic way to deform a parametrized tropical curve in T g∆,p is to open

g(V ) small cycles in place of a vertex of genus g(V ). When the cycles coming from various

vertices grow and meet, we can obtain curves with vertices of valence strictly greater than

three which can be rigid. Proposition 1.9 guarantees that such rigid curves do not contribute

in the decomposition formula after integration of the lambda class.

Below is an illustration of a genus one vertex opening in one cycle and growing until forming

a 4-valent vertex.
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1.4 Non-torically transverse stable log maps in X∆

Let ∆ be a balanced collections of vectors in Z2, as in Section 1.1.1. We consider the toric

surface X∆ with the toric divisorial log structure. In this Section, we prove some general

properties of stable log maps of type ∆ in X∆, using as tool the tropicalization procedure

reviewed in Section 1.3.1.

We say that a stable log map (f ∶C/pt
M
→X∆) to X∆ is torically transverse11 if its image

does not contain any of the torus fixed points of X∆, i.e. if its image does not pass through

the “corners” of the toric boundary divisor ∂X∆. The difficulty of log Gromov-Witten

theory, with respect to relative Gromov-Witten theory for example, comes from the log

stable maps which are not torically transverse: the “corners” of ∂X∆ are the points where

∂X∆ is not smooth and so are exactly the points where the log structure of X∆ is locally

more complicated that the divisorial log structure along a smooth divisor.

The following result is a structure result for log stable maps of type ∆ which are not torically

transverse. Combined with vanishing properties of lambda classes reviewed in Section 1.2,

this will give us in Section 1.6 a way to completely discard log stable maps which are not

torically transverse.

11We allow a torically transverse stable log map to have components contracted to points of ∂X∆ which
are not torus fixed points. In particular, we use a notion of torically transverse map which is slightly different
from the one used by Nishinou and Siebert in [NS06].
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Proposition 1.10. Let f ∶C/pt
M
→X∆ be a stable log map to X∆ of type ∆. Let

Σ(f)∶Σ(C)/Σ(ptN) → Σ(X∆)

be the family of tropical curves obtained as tropicalization of f . Assume that f is not torically

transverse and that the unbounded edges of the fibers of Σ(f) are mapped to rays of the fan of

X∆. Then the dual graph of C has positive genus, i.e. C contains at least one non-separating

node.

Proof. Recall that Σ(f) is a family over the cone Σ(ptN) = Hom(M,R⩾0) of parametrized

tropical curves in R2. We assume that the unbounded edges of these parametrized tropical

curves are mapped to rays of the fan of X∆.

We fix a point in the interior of the cone Hom(M,R⩾0) and we consider the corresponding

parametrized tropical curve h∶Γ→ R2 in R2. Combinatorially, Γ is the dual graph of C.

Lemma 1.11. There exists a vertex V of Γ mapping away from the origin in R2 and a

non-contracted edge E adjacent to V such that h(E) is not included in a ray of the fan of

X∆.

Proof. We are assuming that f is not torically transverse. This means that at least one

component of C maps dominantly to a component of the toric boundary divisor ∂X∆ or

that at least one component of C is contracted to a torus fixed point of X∆.

If one component of C is contracted to a torus fixed point of X∆, then we are done because

the corresponding vertex V of Γ is mapped away from the origin and from the rays of the fan

of X∆, and any non-contracted edge of Γ adjacent to V is not mapped to a ray of the fan of

X∆. Remark that there exists such non-contracted edge because if not, as Γ is connected, all

the vertices of Γ would be mapped to h(V ) and so the curve C would be entirely contracted

to a torus fixed point, contradicting β∆ ≠ 0.

So we can assume that no component of C is contracted to a torus fixed point, i.e. that all

the vertices of Γ are mapped either to the origin or to a point on a ray of the fan of X∆,

and that at least one component of C maps dominantly to a component of ∂X∆. We argue

by contradiction by assuming further that every edge of Γ is either contracted to a point or

mapped inside a ray of the fan of X∆.

Let Γ0 be the subgraph of Γ formed by vertices mapping to the origin and edges between

them. For every ray ρ of the fan of X∆, let ∆ρ be the set of v ∈ ∆ such that R⩾0v = ρ, and

let Γρ be the subgraph of Γ formed by vertices of Γ mapping to the ray ρ away from the

origin and the edges between them.

By our assumption, there is no edge in Γ connecting Γρ and Γρ′ for two different rays ρ and

ρ′. For every ray ρ, let E(Γ0,Γρ) the set of edges of Γ connecting a vertex V0(E) of Γ0 and

a vertex Vρ(E) of Γρ. It follows from the balancing condition that, for every ray ρ, we have

∑
E∈E(Γ0,Γρ)

vV0(E),E = ∑
v∈∆ρ

v .
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Let C0 be the curve obtained by taking the components of C intersecting properly the toric

boundary divisor ∂X∆. The dual graph of C0 is Γ0 and the total intersection number of C0

with the toric divisor Dρ is

∑
E∈E(Γ0,Γρ)

∣vV0(E),E ∣ ,

where ∣vV0(E),E ∣ is the divisibility of vV0(E),E in Z2, i.e. the multiplicity of the corresponding

intersection point of C0 and Dρ.

From the previous equality, we obtain that the intersection numbers of C0 with the com-

ponents of ∂X∆ are equal to the intersection numbers of C with the components of ∂X∆

so [f(C0)] = β∆. It follows that all the components of C not in C0 are contracted, which

contradicts the fact that at least one component of C maps dominantly to a component of

∂X∆.

We continue the proof of Proposition 1.10. By Lemma 1.11, there exists a vertex V of Γ

mapping away from the origin in R2 and a non-contracted edge E adjacent to V such that

h(E) is not included in a ray of the fan of X∆. We will use (V,E) as initial data for a

recursive construction of a non-trivial cycle in Γ.

There exists a unique two-dimensional cone of the fan of X∆, containing h(V ) ∈ R2 − {0}

and delimited by rays ρ1 and ρ2, such that the rays ρ1, R⩾0h(V ) and ρ2 are ordered in the

clockwise way and such that h(V ) ∈ ρ1 if h(V ) is on a ray. Let v1 and v2 be vectors in

R2 −{0} such that ρ1 = R⩾0v1 and ρ2 = R⩾0v2. The vectors v1 and v2 form a basis of R2 and

for every v ∈ R2, we write (v, v1) and (v, v2) for the coordinates of v in this basis, i.e. the

real numbers such that

v = (v, v1)v1 + (v, v2)v2 .

By construction, we have (h(V ), v1) > 0 and (h(V ), v2) ⩾ 0. As vV,E ≠ 0, we have (vV,E , v1) ≠

0 or (vV,E , v2) ≠ 0.

If (vV,F , v2) = 0 for every edge F adjacent to V , then (vV,E , v1) ≠ 0 and (h(V ), v2) > 0.

In particular, E is not an unbounded edge. By the balancing condition, up to replacing E

by another edge adjacent to V , one can assume that (vV,E , v1) > 0. Then, the edge E is

adjacent to another vertex V ′ with (h(V ′), v1) > (h(V ), v1) and (h(V ′), v2) = (h(V ), v2).

By the balancing condition, there exists an edge E′ adjacent to V ′ such that (vV ′,E′ , v1) > 0.

If (vV,F ′ , v2) = 0 for every edge F ′ adjacent to V ′, then in particular we have (vV,E′ , v2) = 0

and so E′ is adjacent to another vertex V ′′ with (h(V ′′), v1) > (h(V
′), v1) and (h(V ′′), v2) =

(h(V ′), v2), and we can iterate the argument. Because Γ has finitely many vertices, this

process has to stop: there exists a vertex Ṽ in the cone generated by ρ1 and ρ2 and an edge

Ẽ adjacent to Ṽ such that (vṼ ,Ẽ , v2) ≠ 0.

The upshot of the previous paragraph is that, up to changing V and E, one can assume

that (vV,E , v2) ≠ 0. By the balancing condition, up to replacing E by another edge adjacent

to V , one can assume that (vV,E , v2) > 0. The edge E is adjacent to another vertex V ′

with (h(V ′), v2) > (h(V ), v2). By the balancing condition, one can find an edge E′ adjacent

to V ′ such that (vV ′,E′ , v2) > 0. If h(V ′) is in the interior of the cone generated by ρ1

and ρ2, then E′ is not an unbounded edge and so is adjacent to another vertex V ′′ with
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(h(V ′′), v2) > (h(V
′), v2). Repeating this construction, we obtain a sequence of vertices of

image in the cone generated by ρ1 and ρ2. Because Γ has finitely many vertices, this process

has to terminate: there exists a vertex Ṽ of Γ such that h(Ṽ ) ∈ ρ2 and connected to V by a

path of edges mapping to the interior of the cone delimited by ρ1 and ρ2.

Repeating the argument starting from Ṽ , and so on, we construct a path of edges in Γ whose

projection in R2 intersects successive rays in the clockwise order. Because the combinatorial

type of Γ is finite, this path has to close eventually and so Γ contains a non-trivial closed

cycle, i.e. Γ has positive genus.

Remark: It follows from Proposition 1.10 that the ad hoc genus zero Gromov-Witten

invariants defined in terms of relative Gromov-Witten invariants of some open geometry

used by Gross, Pandharipande, Siebert in [GPS10](Section 4.4), and Gross, Hacking, Keel

in [GHK15a] (Section 3.1), coincide with log Gromov-Witten invariants12. In fact, our proof

of Proposition 1.10 can be seen as a tropical analogue of the main properness argument of

[GPS10] (Proposition 4.2) which guarantees that the ad hoc invariants are well-defined.

1.5 Statement of the gluing formula

We continue the proof of Theorem 1 started in Section 1.3. In Section 1.5, we state a gluing

formula, Corollary 1.15, expressing the invariants N∆,n

g,h̃
attached to a parametrized tropical

curve h̃∶ Γ̃ → R2 in terms of invariants N1,2
g,V attached to the vertices V of Γ. This gluing

formula is proved in Section 1.6, using the structure result of Section 1.4 and the vanishing

result of Section 1.2 to reduce the argument to the locus of torically transverse stable log

maps.

1.5.1 Preliminaries

We fix h̃∶ Γ̃ → R2 a parametrized tropical curve in T g∆,p. The purpose of the gluing formula

is to write the log Gromov-Witten invariant

N∆,n

g,h̃
= ∫

[M
h̃,P0

g,n,∆]
virt
(−1)g−g∆,nλg−g∆,n

,

introduced in Section 1.3.3, in terms of log Gromov-Witten invariants of the toric surfaces

X∆V
attached to the vertices V of Γ̃. Recall from Section 1.3.2 that Γ̃ has three types of

vertices:

• Trivalent unpointed vertices, coming from Γ.

• Bivalent pointed vertices, coming from Γ.

• Bivalent unpointed vertices, not coming from Γ.

12This result was expected: see Remark 3.4 of [GHK15a] but it seems that no proof was published until
now.
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According to Lemma 4.20 of Mikhalkin [Mik05], the connected components of the comple-

ment of the bivalent pointed vertices of Γ̃ are trees with exactly one unbounded edge.
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In particular, we can fix an orientation of edges of Γ̃ consistently from the bivalent pointed

vertices to the unbounded edges. Every trivalent vertex of Γ̃ has two ingoing and one

outgoing edges with respect to this orientation. Every bivalent pointed vertex has two

outgoing edges with respect to this orientation. Every bivalent unpointed vertex has one

ingoing and one outgoing edges with respect to this orientation.
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1.5.2 Contribution of trivalent vertices

Let V be a trivalent vertex of Γ̃. Let Mg,∆V
be the moduli space of stable log maps to X∆V

of genus g and of type ∆V . It has virtual dimension

vdimMg,∆V
= g + 2 ,

and admits a virtual fundamental class

[Mg,∆V
]
virt
∈ Ag+2(Mg,∆V

,Q).

Let Ein,1
V and Ein,2

V be the two ingoing edges adjacent to V , and let Eout
V be the outgoing

edge adjacent to V . Let DEin,1
V

, DEin,2
V

and DEout
V

be the corresponding toric divisors of
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X∆V
. We have evaluation morphisms

(ev
Ein,1
V

V , ev
Ein,2
V

V , ev
Eout
V

V )∶Mg,∆V
→DEin,1

V
×DEin,2

V
×DEout

V
.

We define

N1,2
g,V ∶= ∫

[Mg,∆V
]virt
(−1)gλg(ev

Ein,1
V

V )
∗
(ptEin,1

V
)(ev

Ein,2
V

V )
∗
(ptEin,2

V
) ,

where ptEin,1
V
∈ A1(DEin,1

V
), ptEin,2

V
∈ A1(DEin,2

V
) are classes of a point on DEin,1

V
, DEin,2

V

respectively.

1.5.3 Contribution of bivalent pointed vertices

Let V is a bivalent pointed vertex of Γ̃. Let Mg,∆V
be the moduli space of 1-pointed13

stable log maps to X∆V
of genus g and of type ∆V . It has virtual dimension

vdimMg,∆V
= g + 2 ,

and admits a virtual fundamental class

[Mg,∆V
]
virt
∈ Ag+2(Mg,∆V

,Q).

We have the evaluation morphism at the extra marked point,

ev∶Mg,∆V
→X∆V

,

and we define

N1,2
g,V ∶= ∫

[Mg,∆V
]virt
(−1)gλgev∗(pt) ,

where pt ∈ A2(X∆V
) is the class of a point on X∆V

.

1.5.4 Contribution of bivalent unpointed vertices

Let V is a bivalent unpointed vertex of Γ̃. Let Mg,∆V
be the moduli space of stable log

maps to X∆V
of genus g and of type ∆V . It has virtual dimension

vdimMg,∆V
= g + 1 ,

and admits a virtual fundamental class

[Mg,∆V
]
virt
∈ Ag+1(Mg,∆V

,Q).
13As in Section 1.1.2, 1-pointed means that the source curves are equipped with one marked point in

addition to the marked points keeping track of the tangency conditions.
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Let Ein
V be the ingoing edge adjacent to V and Eout

V the outgoing edge adjacent to V . Let

DEin
V

and DEout
V

the corresponding toric divisors ofX∆V
. We have evaluation morphisms

(ev
Ein
V

V , ev
Eout
V

V )∶Mg,∆V
→DEin

V
×DEout

V
.

We define

N1,2
g,V ∶= ∫

[Mg,∆V
]virt
(−1)gλg(ev

Ein
V

V )
∗
(ptEin

V
) ,

where ptEin
V
∈ A1(DEin,1

V
) is the class of a point on DEin

V
.

1.5.5 Statement of the gluing formula

The following gluing formula expresses the log Gromov-Witten invariant N∆,n

g,h̃
attached to

a parametrized tropical curve h̃∶ Γ̃→ R2 in terms of the log Gromov-Witten invariants N1,2
g,V

attached to the vertices V of Γ̃ and of the weights w(E) of the edges of Γ̃.

Proposition 1.12. For every h̃∶ Γ̃→ R2 parametrized tropical curve in T g∆,p, we have

N∆,n

g,h̃
=
⎛
⎜
⎝
∏

V ∈V (Γ̃)

N1,2
g(V ),V

⎞
⎟
⎠

⎛
⎜
⎝
∏

E∈Ef (Γ̃)

w(E)
⎞
⎟
⎠
,

where the first product is over the vertices of Γ̃ and the second product is over the bounded

edges of Γ̃.

The proof of Proposition 1.12 is given in Section 1.6.

In the following Lemmas, we compute the contributions N1,2
g(V ),V

of the bivalent vertices.

Lemma 1.13. Let V be a bivalent pointed vertex of Γ̃. Then we have

N1,2
g,V = 0

for every g > 0, and

N1,2
0,V = 1

for g = 0.

Proof. Let w be the weight of the two edges of Γ̃ adjacent to V . We can take X∆V
= P1 ×P1

and β∆V
= w([P1] × [pt]). We have the evaluation map at the extra marked point

ev∶Mg,∆V
→ P1

× P1 .

We fix a point p = (p1, p2) ∈ C∗ × C∗ ⊂ P1 × P1 and we denote ιp∶p ↪ P1 × P1 and ιp1 ∶p ↪

P1 × {p2} ≃ P1 the inclusion morphism.

Let Mg,1(P1/{0} ∪ {∞},w;w,w) be the moduli space of genus g 1-pointed stable maps to

P1, of degree w, relative to the divisor {0} ∪ {∞}, with intersection multiplicities w both
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along {0} and {∞}. We have an evaluation morphism at the extra marked point

ev1∶Mg,1(P1
/{0} ∪ {∞},w;w,w) → P1 ,

Because an element (f ∶C → P1×P1) of ev−1(p) factors through P1×{p2} ≃ P1, we have a nat-

ural identification of moduli spaces ev−1(p) = ev−1
1 (p), but the natural virtual fundamental

classes are different. The class ι!p[Mg,∆V
]virt, defined by the refined Gysin homomorphism

(see Section 6.2 of [Ful98]), has degree g whereas the class

ι!p1
[Mg,1(P1

/{0} ∪ {∞},w;w,w)]virt

is of degree

2g − 2 + 2w − (w − 1) − (w − 1) + (1 − 1) = 2g .

The two obstruction theories differ by the bundle whose fiber at

f ∶C → P1

is H1(C, f∗Nf(C)∣P1×P1). Because β2
∆V
= 0, the normal bundle Nf(C)∣P1×P1 is trivial of rank

one, so the pullback f∗Nf(C)∣P1×P1 is trivial of rank one and the two obstruction theories

differ by the dual of the Hodge bundle. Therefore, we have

ι!p[Mg,∆V
]
virt
= cg(E∗) ∩ ι!p1

[Mg,1(P1
/{0} ∪ {∞},w;w,w)]virt ,

and so

N1
g,V = ∫

ι!p[Mg,∆V
]virt
(−1)gλg = ∫

ι!p1
[Mg,1(P1/{0}∪{∞},w;w,w)]virt

λ2
g .

But λ2
g = 0 for g > 0, as follows from Mumford’s relation [Mum83]

c(E)c(E∗) = 1 ,

and so N1
g,V = 0 if g > 0.

If g = 0, we have λ2
0 = 1, the moduli space is a point, given by the degree w map P1 →

P1 fully ramified over 0 and ∞, with trivial automorphism group (there is no non-trivial

automorphism of P1 fixing 0, ∞ and the extra marked point), and so

N1,2
0,V = 1 .

Lemma 1.14. Let V be a bivalent unpointed vertex of Γ̃ and w(EV ) the common weight of

the two edges adjacent to V . Then we have

N1,2
g,V = 0

for every g > 0, and

N1,2
0,V =

1

w(EV )
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for g = 0.

Proof. The argument is parallel to the one used to prove Lemma 1.13. The only difference

is that the vertex is no longer pointed and the invariant N1,2
g,V is defined using the evaluation

map at one of the tangency point. The vanishing for g > 0 still follows from λ2
g = 0. For

g = 0, the moduli space is a point, given by the degree w(EV ) map P1 → P1 fully ramified

over 0 and ∞, but now with an automorphism group Z/w(EV ) (the extra marked point

in Lemma 1.13 is no longer there to kill all non-trivial automorphisms). It follows that

N1,2
0,V =

1
w(EV )

.

Corollary 1.15. Let h̃∶ Γ̃→ R2 be a parametrized tropical curve in T g∆,p.

• If there exists one bivalent vertex V of Γ̃ with g(V ) ≠ 0, then

N∆,n

g,h̃
= 0 .

• If g(V ) = 0 for all the bivalent vertices V of Γ̃, then

N∆,n

g,h̃
=
⎛
⎜
⎝
∏

V ∈V (3)(Γ̃)

N1,2
g(V ),V

⎞
⎟
⎠

⎛

⎝
∏

E∈Ef (Γ)

w(E)
⎞

⎠
,

where the first product is over the trivalent vertices of Γ (or Γ̃), and the second product

is over the bounded edges of Γ (not Γ̃).

Proof. If Γ̃ has a bivalent vertex V with g(V ) > 0, then, according to Lemmas 1.13 and 1.14,

we have N1,2
g(V ),V

= 0 and so N∆,n

g,h̃
= 0 by Proposition 1.12.

If g(V ) = 0 for all the bivalent vertices V of Γ̃, then, according to Lemma 1.13, we have

N1,2
g(V ),V

= 1 for all the bivalent pointed vertices V of Γ̃ and according to Lemma 1.14,

we have N1,2
g(V ),V

= 1
w(EV )

for all the bivalent unpointed vertices V of Γ̃ . It follows that

Proposition 1.12 can be rewritten

N∆,n

g,h̃
=
⎛
⎜
⎝
∏

V ∈V (3)(Γ̃)

N1,2
g(V ),V

⎞
⎟
⎠

⎛
⎜
⎝

∏
V ∈V (2up)(Γ̃)

1

w(EV )

⎞
⎟
⎠

⎛
⎜
⎝
∏

E∈Ef (Γ̃)

w(E)
⎞
⎟
⎠
,

where the first product is over the trivalent vertices of Γ̃ (which can be naturally identified

with the trivalent vertices of Γ) and the second product is over the bivalent unpointed

vertices of Γ̃. Recalling from Section 1.3.2 that the edges of Γ̃ are obtained as subdivision

of the edges of Γ by adding the bivalent unpointed vertices, we have

⎛
⎜
⎝

∏
V ∈V (2up)(Γ̃)

1

w(EV )

⎞
⎟
⎠

⎛
⎜
⎝
∏

E∈Ef (Γ̃)

w(E)
⎞
⎟
⎠
= ∏
E∈Ef (Γ)

w(E) .
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1.6 Proof of the gluing formula

This Section is devoted to the proof of Proposition 1.12. Part of it is inspired the proof by

Chen [Che14a] of the degeneration formula for expanded stable log maps, and the proof by

Kim, Lho and Ruddat [KLR18] of the degeneration formula for stable log maps in degen-

erations along a smooth divisor. In Section 1.6.1, we define a cut morphism. Restricted to

some open substack of torically transverse stable maps, we show in Section 1.6.2 that the

cut morphism is étale, and in Section 1.6.3, that the cut morphism is compatible with the

natural obstruction theories of the pieces. Using in addition Proposition 1.10 and the results

of Section 1.2, we prove a gluing formula in Section 1.6.4. To finish the proof of Proposition

1.12, we explain in Section 1.6.5 how to organize the glued pieces.

1.6.1 Cutting

Let h̃∶ Γ̃ → R2 be a parametrized tropical curve in T g∆,p. We denote V (2p)(Γ̃) the set of

bivalent pointed vertices of Γ̃ and V (2up)(Γ̃) the set of bivalent unpointed vertices of Γ̃.

Evaluations evEV ∶Mg(V ),∆V
→ DE at the tangency points dual to the bounded edges of Γ̃

give a morphism

ev(e)∶ ∏
V ∈V (Γ̃)

Mg(V ),∆V
→ ∏

E∈Ef (Γ̃)

(DE)
2 ,

where DE is the divisor of X0 dual to an edge E of Γ̃.

Evaluations ev
(p)
V ∶Mg(V ),∆V

→ X∆V
at the extra marked points corresponding to the biva-

lent pointed vertices give a morphism

ev(p)∶ ∏
V ∈V (Γ̃)

Mg(V ),∆V
→ ∏

V ∈V (2p)(Γ̃)

X∆V
.

Let

δ∶ ∏
E∈Ef (Γ̃)

DE → ∏
E∈Ef (Γ̃)

(DE)
2

be the diagonal morphism. Let

ιP 0 ∶ (P 0
= (P 0

V )V ∈V (2p)(Γ̃)) ↪ ∏
V ∈V (2p)(Γ̃)

X∆V
,

be the inclusion morphism of P 0.

Using the fiber product diagram in the category of stacks

⨉
V ∈V (Γ̃)

Mg(V ),∆V ∏
V ∈V (Γ̃)

Mg(V ),∆V

⎛

⎝
∏

E∈Ef (Γ̃)

DE

⎞

⎠
× P 0

∏
E∈Ef (Γ̃)

(DE)
2 × ∏

V ∈V (2p)(Γ̃)

X∆V
,

(δ×ιP0)M

ev(e)×ev(p)

δ×ιP0
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we define the substack ⨉V ∈V (Γ̃)Mg(V ),∆V
of ∏V ∈V (Γ̃)Mg(V ),∆V

consisting of curves whose

marked points keeping track of the tangency conditions match over the divisors DE and

whose extra marked points associated to the bivalent pointed vertices map to P 0.

Lemma 1.16. Let

C X0

pt
M

ptN ,

f

π ν0

g

be a n-pointed genus g stable log map of type ∆ passing through P 0 and marked by h̃∶ Γ̃→ R2,

i.e. a point of M
h̃,P 0

g,n,∆. Let

Σ(C) Σ(X0)

Σ(pt
M
) Σ(ptN) .

Σ(f)

Σ(π) Σ(ν0)

Σ(g)

be its tropicalization. For every b ∈ Σ(g)−1(1), let

Σ(f)b∶Σ(C)b → Σ(ν0)
−1
(1) ≃ R2

be the fiber of Σ(f) over b. Let E be an edge of Γ and let Ef,b be the edge of Σ(C)b marked

by E. Then Σ(f)b(Ef,b) ⊂ h̃(E).

Proof. We recalled in Section 1.5 that the connected components of the complement of

the bivalent pointed vertices of Γ̃ are trees with exactly one unbounded edge. We prove

mboxLemma 1.16 by induction, starting with the edges connected to the bivalent pointed

vertices and then we go through each tree following the orientation introduced in Section

1.5.

Let E be an edge of Γ̃ adjacent to a bivalent pointed vertex V of Γ̃. Let P 0
V ∈ X∆V

be

the corresponding marked point. As f is marked by h̃, we have an ordinary stable map

fV ∶CV → X∆V
, a marked point xE in CV such that f(xE) ∈ DE and fV (CV ) contains

P 0
V . We can assume that X∆V

= P1 × P1, DE = {0} × P1, β∆V
= w(E)([P1] × [pt]), and

P 0
V = (P

0
V,1, P

0
V,2) ∈ C∗×C∗ ⊂ P1×P1. Then fV factors through P1×{P 0

V,2} and xE = (0, P
0
V,2).

It follows that Σ(f)b(Ef,b) ⊂ h̃(E).

Let E be the outgoing edge of a trivalent vertex of Γ̃, of ingoing edges E1 and E2. By

the induction hypothesis, we know that Σ(f)b(E
1
f,b) ⊂ h̃(E

1) and Σ(f)b(E
2
f,b) ⊂ h̃(E

2).

We conclude that Σ(f)b(Ef,b) ⊂ h̃(E) by an application of the balancing condition, as in

Proposition 30 (tropical Menelaus theorem) of Mikhalkin [Mik15].

For a stable log map
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C X0

pt
M

ptN

f

π ν0

g

marked by h̃, we have nodes of C in correspondence with the bounded edges of Γ̃. Cutting

C along these nodes, we obtain a morphism

cut∶M
h̃,P 0

g,n,∆ → ⨉
V ∈V (Γ̃)

Mg(V ),∆V
.

Let us give a precise definition of the cut morphism14. By definition of the marking, for every

vertex V of Γ̃, we have an ordinary stable map fV ∶CV → X∆V
, such that the underlying

stable map to f is obtained by gluing together the maps fV along nodes corresponding to

the edges of Γ̃.

We have to give CV the structure of a log curve, and enhance fV to a log morphism. In

particular, we need to construct a monoid MV .

We fix a point b in the interior of Σ(g)−1(1). Let Σ(f)b∶Σ(C)b → R2 be the corresponding

parametrized tropical curve. Let Σ(C)V,b be the subgraph of Σ(C)b obtained by taking

the vertices of Σ(C)b dual to irreducible components of CV , the edges between them, and

considering the edges to other vertices of Σ(C)b as unbounded edges. Let Σ(f)V,b be the

restriction of Σ(f)b to Σ(C)V,b. It follows from Lemma 1.16 that one can view Σ(f)V,b as

a parametrized tropical curve of type ∆V to the fan of X∆V
.

We defineMV as being the monoid whose dual is the monoid of integral points of the moduli

space of deformations of Σ(f)V,b preserving its combinatorial type15. Let iCV ∶CV → C

and iX∆V
∶X∆V

→ X0 be the inclusion morphisms of ordinary (not log) schemes. The

parametrized tropical curves Σ(f)V encode a sheaf of monoidsMCV and a map f−1
V MX∆V

→

MCV . We define a log structure on CV by

MCV =MCV ×i−1
CV
MC

i−1
CV
MC .

The natural diagram

f−1
V MX∆V

MCV

f−1
V i−1

X∆V
MX0 i−1

CV
MC

can be uniquely completed, by restriction, with a map

f−1
V MX∆V

→MCV

14We are considering a stable log map over a point. It is a notational exercise to extend the argument to
a stable log map over a general base, which is required to really define a morphism between moduli spaces

15The base monoid of a basic stable log map has always such description in terms of deformations of
tropical curves. See Remark 1.18 and Remark 1.21 of [GS13] for more details
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compatible with f−1
V MX∆V

→MCV . This defines a log enhancement of fV and finishes the

construction of the cut morphism.

Remark: If one considers a general log smooth degeneration and if one applies the decom-

position formula, it is in general impossible to write the contribution of a tropical curves

in terms of log Gromov-Witten invariants attached to the vertices. This is already clear

at the tropical level. The theory of punctured invariants developed by Abramovich, Chen,

Gross, Siebert in [ACGS17b] is the correct extension of log Gromov-Witten theory which

is needed in order to be able to write down a general gluing formula. In our present case,

the Nishinou-Siebert toric degeneration is extremely special because it has been constructed

knowing a priori the relevant tropical curves. It follows from Lemma 1.16 that we always

cut edges contained in an edge of the polyhedral decomposition, and so we don’t have to

consider punctured invariants.

1.6.2 Counting log structures

We say that a map to X0 is torically transverse if its image does not contain any of the

torus fixed points of the toric components X∆V
. In other words, its corestriction to each

toric surface X∆V
is torically transverse in the sense of Section 1.4.

Let M
h̃,P 0,○

g,n,∆ be the open locus of M
h̃,P 0

g,n,∆ formed by the torically transverse stable log maps

to X0, and for every vertex V of Γ̃, let M
○

g(V ),∆V
be the open locus of Mg(V ),∆V

formed by

the torically transverse stable log maps to X∆V
. The morphism cut restricts to a morphism

cut○∶M
h̃,P 0,○

g,n,∆ → ⨉
V ∈V (Γ̃)

M
○

g(V ),∆V
.

Proposition 1.17. The morphism

cut○∶M
h̃,P 0,○

g,n,∆ → ⨉
V ∈V (Γ̃)

M
○

g(V ),∆V

is étale of degree

∏
E∈Ef (Γ̃)

w(E) ,

where the product is over the bounded edges of Γ̃.

Proof. Let (fV ∶CV → X∆V
)V ∈ ⨉V ∈V (Γ̃)M

○

g(V ),∆V
. We have to glue the stable log maps

fV together. Because we are assuming that the maps fV are torically transverse, the image

in X0 by fV of the curves CV is away from the torus fixed points of the components X∆V
.

The gluing operation corresponding to the bounded edge E of Γ̃ happens entirely along the

torus C∗ contained in the divisor DE .

It follows that it is enough to study the following local model. Denote ` ∶= `(E)w(E),

where `(E) is the length of E and w(E) the weight of E. Let XE be the toric variety

Spec C[x, y, u±, t]/(xy = t`), equipped with a morphism νE ∶XE → C given by the coordinate

t. Using the natural toric divisorial log structures on XE and C, we define by restriction a
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log structure on the special fiber X0,E ∶= ν
−1
E (0) and a log smooth morphism to the standard

log point ν0,E ∶X0,E → ptN. The scheme underlying X0,E has two irreducible components,

X1,E ∶= Cx ×C∗u and X2,E ∶= Cy ×C∗u, glued along the smooth divisor D○E ∶= C∗u. We endow

X1,E and X2,E with their toric divisorial log structures.

Let f1∶C1/pt
M1
→ X1,E be the restriction to X1,E of a torically transverse stable log map

to some toric compactification of X1,E , with one point p1 of tangency order w(E) along DE ,

and let f2∶C2/pt
M2
→ X2,E be the restriction to X2,E of a torically transverse stable log

map to some toric compactification of X2,E , with one point p2 of tangency order w(E) along

DE . We assume that f(p1) = f(p2) and so we can glue the underlying maps f
1
∶C1 →X1,E

and f
2
∶C2 →X2,E to obtain a map f ∶C →X0,E where C is the curve obtained from C1 and

C2 by identification of p1 and p2. We denote p the corresponding node of C. We have to

show that there are w(E) ways to lift this map to a log map in a way compatible with the

log maps f1 and f2 and with the basic condition. If C1 and C2 had no component contracted

to f(p) ∈ D○E , this would follow from Proposition 7.1 of Nishinou, Siebert [NS06]. But we

allow contracted components, so we have to present a variant of the proof of Proposition 7.1

of [NS06].

We first give a tropical description of the relevant objects. The tropicalization of X0,E is

the cone Σ(X0,E) = Hom(MX0,E ,f(p),R⩾0). It is the fan of XE , a two-dimensional cone

generated by rays ρ1 and ρ2 dual to the divisors X1,E and X2,E . The toric description

XE = Spec C[x, y, u±, t]/(xy = t`) defines a natural chart for the log structure of X0,E .

Denote sx, sy, st the corresponding elements ofMX0,E ,f(p) and sx, sy, st their projections in

MX0,E ,f(p). We have sxsy = s
`
t. Seeing elements ofMX0,E ,f(p) as functions on Σ(X0,E), we

have ρ1 = s
−1
y (0), ρ2 = s

−1
x (0) and st∶Σ(X0,E) → R⩾0 is the tropicalization of the projection

X0,E → ptN. Level sets s−1
t (c) are line segments [P1, P2] in Σ(X0,E), connecting a point P1

of ρ1 to a point P2 of ρ2, of length lc.

Denote C1,E and C2,E the irreducible components of C1 and C2 containing p1 and p2

respectively. We can see them as the two irreducible components of C meeting at the node

p. Fix j = 1 or j = 2. The tropicalization of Cj/pt
Mj

is a family Σ(Cj) of tropical curves

Σ(Cj)b parametrized by b ∈ Σ(pt
Mj
) = Hom(Mj ,R⩾0). Let Vj,E be the vertex of these

tropical curves dual to the irreducible component Cj,E . The image Σ(fj)(Vj,E) of Vj,E

by the tropicalization Σ(fj) of fj is a point in the tropicalization Σ(Xj,E) = R⩾0. This

induces a map Hom(Mj ,R⩾0) → R⩾0 defined by an element vj ∈ Mj . The component Cj,E
is contracted by fj onto fj(pj) if and only if vj ≠ 0. In other words, vj is the measure

according to the log structures of “how” Cj,E is contracted by fj . The marked point pj on

Cj,E defines an unbounded edge Ej , of weight w(E), whose image by Σ(fj) is the unbounded

interval [Σ(fj)(Vj,E),+∞) ⊂ Σ(Xj,E) = R⩾0.

We explain now the gluing at the tropical level. Let j = 1 or j = 2. Let [0, lj] ⊂ Σ(Xj,E) = R⩾0
be an interval. If c is a large enough positive real number, we denote ϕjc∶ [0, lj] ↪ s−1

t (c) =

[P1, P2] the linear inclusion such that ϕjc(0) = Pj and ϕjc([0, lj]) is a subinterval of [P1, P2]

of length lj . Let bj ∈ Σ(pt
Mj
). There exists lj large enough such that all images by Σ(fj)

of vertices of Σ(fj)bj are contained in [0, lj] ⊂ Σ(Xj,E) = R⩾0.
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For c large enough, the line segments ϕ1
c([0, l1]) and ϕ2

c([0, l2]) are disjoint. We have

[P1, P2]

= [P1, ϕ
1
c(Σ(f1)(V1))) ∪ [ϕ

1
c(Σ(f1)(V1)), ϕ

2
c(Σ(f2)(V2))] ∪ (ϕ

2
c(Σ(f2)(V2)), P2] .

We construct a new tropical curve Σb1,b2,c by removing the unbounded edges E1 and

E2 of Σ(f1)b1 and Σ(f2)b2 , and gluing the remaining curves by an edge F connecting

V1,E and V2,E , of weight w(E), and length 1
w(E)

times the length of the line segment

[ϕ1
c(Σ(f1)(V1)), ϕ

2
c(Σ(f2)(V2))]. We construct a tropical map Σb1,b2,c → Σ(X0,E) using

Σ(f1)b1 , Σ(f2)b2 and mapping the edge F to [ϕ1
c(Σ(f1)(V1)), ϕ

2
c(Σ(f2)(V2))]. We define

M as being the monoid whose dual is the monoid of integral points of the moduli space of

deformations of these tropical maps.

We have M = M1 ⊕ M2 ⊕ N. The element (0,0,1) ∈ M defines the function on the

moduli space of tropical curves Σ(pt
M
) = Hom(M,R⩾0) given by the length of the glu-

ing edge F . The function given by 1
l

times the length of the line segment [P1, P2] de-

fines an element sMt ∈ M. The morphism of monoids N → M, 1 ↦ sMt , induces a map

g∶pt
M
→ ptN. The decomposition of [P1, P2] into the three intervals [P1, ϕ

1
c(Σ(f1)(V1))),

[ϕ1
c(Σ(f1)(V1)), ϕ

2
c(Σ(f2)(V2))] and (ϕ2

c(Σ(f2)(V2)), P2], implies the relation

l sMt = (v1,0,0) + (0,0,w(E)) + (0, v2,0)

in M=M1 ⊕M2 ⊕N.

r

r

@
@

@
@
@

@
@

@
@

r
r

ρ1

ρ2

P2

P1

ϕ1
c(Σ(f1)(V1))

ϕ2
c(Σ(f2)(V2))

Σ(X0,E)

From the tropical description of the gluing and from the fact that we want to obtain a basic

log map, we find that there is a unique structure of log smooth curve C/pt
M

compatible with

the structures of log smooth curves on C1 and C2. As p is a node of C, we have for the ghost

sheaf of C at p: MC,p = M⊕N N2, with N → N2, 1 ↦ (1,1), and N →M =M1 ⊕M2 ⊕N,

1↦ ρp = (0,0,1).

It remains to lift f ∶C →X0,E to a log map f ∶C →X0,E such that the diagram

C X0,E

pt
M

ptN

f

π ν0,E

g
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commutes. The restriction of f to Cj/pt
Mj

has to coincide with fj , for j = 1 and j = 2. It

follows from the explicit description of M and MC that such f exists and is unique away

from the node p.

It follows from the tropical description of the gluing that at the ghost sheaves level, f at p

is given by

f
♭
∶MX0,E ,f(p) →MC,p =M⊕N N2

= (M1 ⊕M2 ⊕N) ⊕N N2

sx ↦ ((v1,0,0), (w(E),0))

sy ↦ ((0, v2,0), (0,w(E)))

st ↦ π♭(sMt ) = (s
M
t , (0,0)) .

The relation l sMt = (v1, v2,w(E)) in M=M1 ⊕M2 ⊕N implies that

f
♭
(sx) + f

♭
(sy) = ((v1, v2,0), (w(E),w(E))) = ((v1, v2,w(E)), (0,0))

= f
♭
(lsMt ) ,

and so that this map is indeed well-defined.

The log maps f1∶C1/pt
M1
→X1,E and f2∶C2/pt

M2
→X2,E define morphisms

f ♭1∶MX1,E ,f(p1) →MC1,p1 ,

and

f ♭2∶MX2,E ,f(p2) →MC2,p2 .

For j = 1 or j = 2, let Mj ⊕ N → OCj ,pj be a chart of the log structure of Cj at pj . This

realizesMCj ,pj as a quotient of (Mj ⊕N)⊕O∗C,p. Denote sj,m ∈ MCj ,pj the image of (m,1)

for m ∈ Mj ⊕N.

We fix a coordinate u on C1 near p1 such that

f ♭1(sx) = s1,(v1,0)u
w(E)

and a coordinate v on C2 near p2 such that

f ♭2(sy) = s2,(v2,0)v
w(E) .

We are trying to define some f ♭∶MX0,E ,f(p) →MC,p, lift of f
♭
, compatible with f ♭1 and f ♭2.

For every ζ a w(E)-th root of unity, the map

M⊕N N2
→OC,p

(m, (a, b)) ↦

⎧⎪⎪
⎨
⎪⎪⎩

ζauavb if m = 0

0 if m ≠ 0 .

defines a chart for the log structure of C at p. This realizes MC,p as a quotient of (M⊕N
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N2) ⊕ O∗C,p. Denote sζm ∈ MC,p the image of (m,1) for m ∈ M ⊕N N2. Remark that

sζ
((v1,0,0),(0,0))

, sζ
((0,v2,0),(0,0))

and sζ
((0,0,0),(1,1))

are independent of ζ and we denote them

simply as s((v1,0,0),(0,0)), s((0,v2,0),(0,0)) and s((0,0,0),(1,1)).

Then

f ♭,ζ ∶MX0,E ,f(p) →MC,p

sx ↦ sζ
((v1,0,0),(w(E),0))

sy ↦ sζ
((0,v2,0),(0,w(E)))

st ↦ π♭((sMt ,1))

is a lift of f
♭
, compatible with f ♭1 and f ♭2.

Assume that f ♭,ζ ≃ f ♭,ζ
′

for ζ and ζ ′ two w(E)-th roots of unity. It follows from the com-

patibility with f ♭1 and f ♭2 that there exists ϕ1 ∈ O
∗
C,p and ϕ2 ∈ O

∗
C,p such that sζ

′

((0,0,0),(1,0))
=

ϕ1s
ζ
((0,0,0),(0,1))

and sζ
′

((0,0,0),(0,1))
= ϕ2s

ζ
((0,0,0),(0,1))

. It follows from the definition of the

charts that ϕ1 = ζ
′ζ−1 in OC1,p1 and ϕ2 = 1 in OC2,p2 . Compatibility with pt

M
→ ptN

implies that ϕ1ϕ2 = 1. This implies that ϕ1 = ϕ2 = 1 and ζ = ζ ′.

It remains to show that any f ♭, lift of f
♭

compatible with f ♭1 and f ♭2, is of the form f ♭,ζ for

some ζ a w(E)-th root of unity. For such f ♭, there exists unique s′
(1,0) ∈ MC,p and s′

(0,1) ∈

MC,p such that αC(s
′
(1,0)) = u, αC(s

′
(0,1)) = v, and f ♭(sx) = s((v1,0,0),(0,0))(s

′
(1,0))

w(E) and

f ♭(sy) = s((0,v2,0),(0,0))(s
′
(0,1))

w(E). From sxsy = s
`
t, we get (s′

(1,0)s
′
(0,1))

w(E) = s
w(E)

((0,0,0),(1,1))

and so s′
(1,0)s

′
(0,1) = ζ

−1s((0,0,0),(1,1)) for some ζ a w(E)-th root of unity. It is now easy to

check that s′
(1,0) = ζ

−1sζ
((0,0,0),(1,0))

, s′
(0,1) = s

ζ
((0,0,0),(0,1))

and f ♭ = f ♭,ζ .

Remarks:

• When v1 = v2 = 0, i.e. when the components C1,E and C2,E are not contracted, the

above proof reduces to the proof of Proposition 7.1 of [NS06] (see also the proof of

Proposition 4.23 of [Gro11]). In general, log geometry remembers enough information

about the contracted components, such as v1 and v2, to make possible a parallel

argument.

• The gluing of stable log maps along a smooth divisor is discussed in Section 6 of

[KLR18], proving the degeneration formula along a smooth divisor. In the above

proof, we only have to glue along one edge connecting two vertices. In Section 6 of

[KLR18], further work is required to deal with pair of vertices connected by several

edges.

1.6.3 Comparing obstruction theories

As in the previous Section 1.6.2, let M
h̃,P 0,○

g,n,∆ be the open locus of M
h̃,P 0

g,n,∆ formed by the

torically transverse stable log maps to X0, and for every vertex V of Γ̃, let M
○

g(V ),∆V
be the
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open locus of Mg(V ),∆V
formed by the torically transverse stable log maps to X∆V

. The

morphism cut restricts to a morphism

cut○∶M
h̃,P 0,○

g,n,∆ → ⨉
V ∈V (Γ̃)

M
○

g(V ),∆V
.

The goal of the present Section is to use the morphism cut○ to compare the virtual classes

[M
h̃,P 0,○

g,n,∆ ]
virt and [M

○

g(V ),∆V
]virt, which are obtained by restricting the virtual classes [M

h̃,P 0

g,n,∆]
virt

and [Mg(V ),∆V
]virt to the open loci of torically transverse stable log maps.

Recall that X0 = ν
−1(0), where ν∶XP∆,n

→ A1. Following Section 4.1 of [ACGS17a], we

define X0 ∶= AX ×AA1 {0}, where AX and AA1 are Artin fans, see Section 2.2 of [ACGS17a].

It is an algebraic log stack over ptN. There is a natural morphism X0 → X0.

Following Section 4.5 of [ACGS17a], let Mh̃
g,n,∆ be the stack of n-pointed genus g prestable

basic log maps to X0/ptN marked by h̃ and of type ∆. There is a natural morphism of stacks

M
h̃,P 0

g,n,∆ →Mh̃
g,n,∆ . Let π∶ C → M

h̃,P 0

g,n,∆ be the universal curve and let f ∶ C → X0/ptN be the

universal stable log map. According to Proposition 4.7.1 and Section 6.3.2 of [ACGS17a],

the virtual fundamental class [M
h̃,P 0

g,n,∆]
virt is defined by E, the cone of the morphism

(ev(p))∗LιP0 [−1] → (Rπ∗f
∗TX0∣X0

)∨, seen as a perfect obstruction theory relative to Mh̃
g,n,∆.

Here, TX0∣X0
is the relative log tangent bundle, and LιP0 = ⊕V ∈V (2p)(Γ̃)(TX∆V

∣P 0
V
)∨[1] is the

cotangent complex of ιP 0 . As X0 is log étale over ptN, we have TX0∣X0
= TX0∣ptN

. We denote

E○ the restriction of E to the open locus M
h̃,P 0,○

g,n,∆ of torically transverse stable log maps.

For every vertex V of Γ̃, let πV ∶ CV →Mg(V ),∆V
be the universal curve and let fV ∶ CV →X∆V

be the universal stable log map. Let AX∆V
be the Artin fan of X∆V

and let Mg(V ),∆V
be

the stack of prestable basic log maps to AX∆V
, of genus g(V ) and of type ∆V . There is a

natural morphism of stacks Mg(V ),∆V
→Mg(V ),∆V

. According to Section 6.1 of [AW13], the

virtual fundamental class [Mg(V ),∆V
]virt is defined by (R(πV )∗f

∗
V TX∆V

)∨, seen as a perfect

obstruction theory relative to Mg(V ),∆V
. Here, TX∆V

is the log tangent bundle.

Recall that ⨉
V ∈V (Γ̃)

Mg(V ),∆V
is defined by the fiber product diagram

⨉
V ∈V (Γ̃)

Mg(V ),∆V ∏
V ∈V (Γ̃)

Mg(V ),∆V

⎛

⎝
∏

E∈Ef (Γ̃)

DE

⎞

⎠
× P 0

∏
E∈Ef (Γ̃)

(DE)
2 × ∏

V ∈V (2p)(Γ̃)

X∆V
,

(δ×ιP0)M

ev(e)×ev(p)
ev(e)×ev(p)

δ×ιP0

We compare the deformation theory of the individual stable log maps fV and the deformation

theory of the stable log maps fV constrained to match at the gluing nodes. Let F be the

cone of the natural morphism

(ev(e) × ev(p))∗Lδ×ιP0 [−1] → (δ × ιP 0)
∗
M ( ⊠

V ∈V (Γ̃)
(R(πV )∗f

∗
V TX∆V

)
∨
) ,
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where Lδ×ιP0 is the cotangent complex of the morphism δ× ιP 0 . It defines a perfect obstruc-

tion theory on ⨉
V ∈V (Γ̃)

Mg(V ),∆V
relative to ∏

V ∈V (Γ̃)

Mg(V ),∆V
, whose corresponding virtual

fundamental class is, using Proposition 5.10 of [BF97],

(δ × ιP 0)
!
∏

V ∈V (Γ̃)

[Mg(V ),∆V
]
virt ,

where (δ × ιP 0)! is the refined Gysin homomorphism (see Section 6.2 of [Ful98]). We denote

F○ the restriction of F to the open locus ⨉V ∈V (Γ̃)M
○

g(V ),∆V
of torically transverse stable log

maps.

The cut operation naturally extends to prestable log maps to X0/ptN marked by h̃, and so

we have a commutative diagram

M
h̃,P 0,○

g,n,∆ ⨉
V ∈V (Γ̃)

M
○

g(V ),∆V

Mh̃
g,n,∆ ∏

V ∈V (Γ̃)

Mg(V ),∆V
.

cut○

µ

cutC

By Proposition 1.17, the morphism cut○ is étale and so (cut○)∗F○ defines a perfect obstruc-

tion theory on M
h̃,P 0,○

g,n,∆ relative to ∏
V ∈V (Γ̃)

Mg(V ),∆V
.

The maps M
h̃,P 0,○

g,n,∆

µ
Ð→ Mh̃

g,n,∆(X0/ptN)
cutC
ÐÐ→ ∏

V ∈V (Γ̃)

Mg(V ),∆V
define an exact triangle of

cotangent complexes

L
M
h̃,P0,○

g,n,∆ ∣ ∏
V ∈V (Γ̃)

Mg(V ),∆V

→ L
M
h̃,P0,○

g,n,∆ ∣M
h̃
g,n,∆

→ µ∗L
Mh̃
g,n,∆

∣ ∏
V ∈V (Γ̃)

Mg(V ),∆V

[1]
[1]
Ð→ .

Adding the perfect obstruction theories (cut○)∗F○ and E○, we get a diagram

(cut○)∗F○ E○

L
M
h̃,P0,○

g,n,∆ ∣ ∏
V ∈V (Γ̃)

Mg(V ),∆V

L
M
h̃,P0,○

g,n,∆ ∣M
h̃
g,n,∆

µ∗L
Mh̃
g,n,∆

∣ ∏
V ∈V (Γ̃)

Mg(V ),∆V

[1] .
[1]

Proposition 1.18. The above diagram can be completed into a morphism of exact triangles

(cut○)∗F○ E○ µ∗L
Mh̃
g,n,∆

∣ ∏
V ∈V (Γ̃)

Mg(V ),∆V

[1] .

L
M
h̃,P0,○

g,n,∆ ∣ ∏
V ∈V (Γ̃)

Mg(V ),∆V

L
M
h̃,P0,○

g,n,∆ ∣M
h̃
g,n,∆

µ∗L
Mh̃
g,n,∆

∣ ∏
V ∈V (Γ̃)

Mg(V ),∆V

[1] .

[1]

[1]

Proof. Denote X○0 , X○∆V
, D○E the objects obtained from X0, X∆V

, DE by removing the
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torus fixed points of the toric surfaces X∆V
. Denote ιX○

∆V
the inclusion morphism of X○∆V

in X○0 .

If E is a bounded edge of Γ̃, we denote V 1
E and V 2

E the two vertices of E. Let F be the sheaf

on the universal curve C∣
M
h̃,P0,○

g,n,∆

defined as the kernel of

⊕
V ∈V (Γ̃)

f∗(ιX○
∆V
)∗TX○

∆V
→ ⊕

E∈Ef (Γ̃)

(ιE)∗(evE)∗TD○
E

(sV )V ↦ (sV 1
E
∣D○
E
− sV 2

E
∣D○
E
)E ,

where evE is the evaluation at the node pE dual to E, and ιE the section of C given

by pE . It follows from the exact triangle obtained by applying Rπ∗ to the short exact

sequence defining F and from Lδ = ⊕E∈Ef (Γ̃)T
∨
DE
[1] that (cut○)∗F○ is given by the cone of

the morphism (ev(p))∗LιP0 [−1] → (Rπ∗F)
∨. So in order to compare E○ and (cut○)∗F○, we

have to compare f∗TX○0 ∣ptN
and F . The sheaf f∗TX○0 ∣ptN

can be written as the kernel of

f∗ ⊕
V ∈V (Γ̃)

(ιX○
∆V
)∗(ιX○

∆V
)
∗TX○0 ∣ptN

→ ⊕
E∈Ef (Γ̃)

(ιE)∗(evE)∗TX○0 ∣ptN
.

(sV )V ↦ (sV 1
E
∣D○
E
− sV 2

E
∣D○
E
)E .

Remark that because X0 is the special fiber of a toric degeneration, all the log tangent

bundles TX0 , TX∆V
, TDE are free sheaves (see e.g. Section 7 of [NS06]). In particular, the

restrictions (ιX○
∆V
)∗TX○0 ∣ptN

→ TX○
∆V

are isomorphisms, the restriction

⊕
E∈Ef (Γ̃)

(evE)∗TX○0 ∣ptN
→ ⊕

E∈Ef (Γ̃)

(evE)∗TD○
E

has kernel ⊕E∈Ef (Γ̃)(evE)∗OD○
E

and so there is an induced exact sequence

0→ f∗TX○0 ∣ptN
→ F → ⊕

E∈Ef (Γ̃)

(ιE)∗(evE)∗OD○
E
→ 0 ,

which induces an exact triangle on M
h̃,P 0

○

g,n,∆ :

(cut○)∗F○ → E○ → ⊕
E∈Ef (Γ̃)

(evE)∗OD○
E
[1]

[1]
Ð→ .

It remains to check the compatibility of this exact triangle with the exact triangle of cotan-

gent complexes. We have

µ∗L
Mh̃
g,n,∆

∣ ∏
V ∈V (Γ̃)

Mg(V ),∆V

= ⊕
E∈Ef (Γ̃)

(ιE)
∗
OpE .

Indeed, restricted to the locus of torically transverse stable log maps, cutC is smooth, and,

given a torically transverse stable log map to X0/ptN, a basis of first order infinitesimal

deformations fixing its image by cutC in ∏V ∈V (Γ̃)Mg(V ),∆V
is indexed by the cutting nodes.
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The dual of the natural map

⊕
E∈Ef (Γ̃)

(evE)∗OD○
E
→ µ∗L

Mh̃
g,n,∆

∣ ∏
V ∈V (Γ̃)

Mg(V ),∆V

= ⊕
E∈Ef (Γ̃)

(ιE)
∗
OpE

sends the canonical first order infinitesimal deformation indexed by the cutting node pE

to the canonical summand OD○
E

in the normal bundle to the diagonal ∏E∈Ef (Γ̃)D
○
E in

∏E∈Ef (Γ̃)(D
○
E)

2, and so is an isomorphism. This guarantees the compatibility with the

exact triangle of cotangent complexes.

Remark: Restricted to the open locus of torically transverse stable maps, the discussion is

essentially reduced to a collection of gluings along the smooth divisors D○E . A comparison of

the obstruction theories in the context of the degeneration formula along a smooth divisor

is given with full details in Section 7 of [KLR18].

Proposition 1.19. We have

(cut○)∗ ([M
h̃,P 0,○

g,n,∆ ]
virt
)

=
⎛
⎜
⎝
∏

E∈Ef (Γ̃)

w(E)
⎞
⎟
⎠

⎛
⎜
⎝
(δ × ιP 0)

!
M ∏
V ∈V (Γ̃)

[M
○

g(V ),∆V
]
virt
⎞
⎟
⎠
.

Proof. It follows from Proposition 1.18 and from Theorem 4.8 of [Man12] that the relative

obstruction theories E○ and (cut○)∗F○ define the same virtual fundamental class on M
h̃,P 0,○

g,n,∆ .

By Proposition 1.17, cut○ is étale, and so, by Proposition 7.2 of [BF97], the virtual funda-

mental class defined by (cut○)∗F○ is the image by (cut○)∗ of the virtual fundamental class

defined by F○. It follows that

[M
h̃,P 0,○

g,n,∆ ]
virt
= (cut○)∗(δ × ιP 0)

!
M ∏
V ∈V (Γ̃)

[M
○

g(V ),∆V
]
virt .

According to Proposition 1.17, the morphism cut○ is étale of degree ∏E∈Ef (Γ̃)w(E), and so

the result follows from the projection formula.

1.6.4 Gluing

Recall that we have the morphism

(δ × ιP 0)M ∶ ⨉
V ∈V (Γ̃)

Mg(V ),∆V
→ ∏

V ∈V (Γ̃)

Mg(V ),∆V
.

For every V ∈ V (Γ̃), we have a projection morphism

prV ∶ ∏
V ′∈V (Γ̃)

Mg(V ′),∆V ′
→Mg(V ),∆V

.

On each moduli space Mg(V ),∆V
, we have the top lambda class (−1)g(V )λg(V ).
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Proposition 1.20. We have

N∆,n

g,h̃
= ∫

(δ×ιP0)! ∏
V ∈V (Γ̃)

[Mg(V ),∆V
]virt
(δ × ιP 0)

∗
M ∏
V ∈V (Γ̃)

pr∗V ((−1)g(V )λg(V )) .

Proof. By definition (see Section 1.3.3), we have

N∆,n

g,h̃
= ∫

[M
h̃,P0

g,n,∆]
virt
(−1)g−g∆,nλg−g∆,n

.

Using the gluing properties of lambda classes given by Lemma 1.6, we obtain that

(−1)g−g∆,nλg−g∆,n
= (cut)∗(δ × ιP 0)

∗
M ∏
V ∈V (Γ̃)

pr∗V ((−1)g(V )λg(V )) .

It follows from the projection formula that

N∆,n

g,h̃
= ∫

(cut)∗[M
h̃,P0

g,n,∆]
virt
(δ × ιP 0)

∗
M ∏
V ∈V (Γ̃)

pr∗V ((−1)g(V )λg(V )) .

According to Proposition 1.19, the cycles

(cut)∗ ([M
h̃,P 0

g,n,∆]
virt
)

and
⎛
⎜
⎝
∏

E∈Ef (Γ̃)

w(E)
⎞
⎟
⎠

⎛
⎜
⎝
(δ × ιP 0)

!
∏

V ∈V (Γ̃)

[Mg(V ),∆V
]
virt
⎞
⎟
⎠

have the same restriction to the open substack

⨉
V ∈V (Γ̃)

M
○

g(V ),∆V

of

⨉
V ∈V (Γ̃)

Mg(V ),∆V
.

It follows, by Proposition 1.8 of [Ful98], that their difference is rationally equivalent to a

cycle supported on the closed substack

Z ∶=
⎛

⎝
⨉

V ∈V (Γ̃)

Mg(V ),∆V

⎞

⎠
−
⎛

⎝
⨉

V ∈V (Γ̃)

M
0

g(V ),∆V

⎞

⎠
.

If we have

(fV ∶CV →X∆V
)V ∈V (Γ̃) ∈ Z ,

then at least one stable log map fV ∶CV →X∆V
is not torically transverse. By Lemma 1.16,

the unbounded edges of the tropicalization of fV are contained in the rays of the fan of X∆V
.

It follows that we can apply Proposition 1.10 to obtain that at least one of the source curves
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CV contains a non-trivial cycle of components. By the vanishing result of Lemma 1.7, this

implies that

∫
Z
(δ × ιP 0)

∗
M ∏
V ∈V (Γ̃)

pr∗V ((−1)g(V )λg(V )) = 0 .

It follows that

∫
(cut)∗[M

h̃,P0

g,n,∆]
virt
(δ × ιP 0)

∗
M ∏
V ∈V (Γ̃)

pr∗V ((−1)g(V )λg(V ))

= ∫
(δ×ιP0)! ∏

V ∈V (Γ̃)

[Mg(V ),∆V
]virt
(δ × ιP 0)

∗
M ∏
V ∈V (Γ̃)

pr∗V ((−1)g(V )λg(V )) .

This finishes the proof of Proposition 1.20.

1.6.5 Identifying the pieces

Proposition 1.21. We have

∫
(δ×ιP0)! ∏

V ∈V (Γ̃)

[Mg(V ),∆V
]virt
(δ × ιP 0)

∗
M ∏
V ∈V (Γ̃)

pr∗V ((−1)g(V )λg(V )) = ∏
V ∈V (Γ̃)

N1,2
g(V ),V

.

Proof. Using the definitions of δ and ιP 0 , we have

∫
(δ×ιP0)! ∏

V ∈V (Γ̃)

[Mg(V ),∆V
]virt
(δ × ιP 0)

∗
M ∏
V ∈V (Γ̃)

pr∗V ((−1)g(V )λg(V ))

= ∫
∏

V ∈V (Γ̃)

[Mg(V ),∆V
]virt
(ev(p))∗([P 0

])(ev(e))∗([δ]) ∏
V ∈V (Γ̃)

pr∗V ((−1)g(V )λg(V )) ,

where

[P 0
] = ∏

V ∈V (2p)(Γ̃)

P 0
V ∈ A

∗
⎛
⎜
⎝

∏
V ∈V (2p)(Γ̃)

X∆V

⎞
⎟
⎠

is the class of P 0 and

[δ] ∈ A∗
⎛
⎜
⎝
∏

E∈Ef (Γ̃)

(DE)
2
⎞
⎟
⎠

is the class of the diagonal ∏E∈Ef (Γ̃)DE . As each DE is a projective line, we have

[δ] = ∏
E∈Ef (Γ̃)

(ptE × 1 + 1 × ptE) ,

where ptE ∈ A
1(DE) is the class of a point.

We fix an orientation of edges of Γ̃ as described in Section 1.5. In particular, every trivalent

vertex has two ingoing and one outgoing adjacent edges, every bivalent pointed vertex has

two outgoing adjacent edges, every bivalent unpointed vertex has one ingoing and one outgo-

ing edges. For every bounded edge E of Γ̃, we denote V sE the source vertex of E and V tE the
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target vertex of E, as defined by the orientation. Furthermore, the connected components of

the complement of the bivalent pointed vertices of Γ̃ are trees with exactly one unbounded

edge.

We argue that the effect of the insertion (ev(p))∗([P 0])(ev(e))∗([δ]) can be computed in

terms of the combinatorics of ingoing and outgoing edges of Γ̃16. More precisely, we claim

that the only term in

(ev(e))∗([δ]) = ∏
E∈Ef (Γ̃)

((evEV s
E
)
∗
(ptE) + (evEV t

E
)
∗
(ptE)) ,

giving a non-zero contribution after multiplication by

⎛
⎜
⎝

∏
V ∈V (2p)(Γ̃)

(ev
(p)
V )

∗
(P 0

V )
⎞
⎟
⎠
∏

V ∈V (Γ̃)

pr∗V ((−1)g(V )λg(V ))

and integration over ∏V ∈V (Γ̃)[Mg(V ),∆V
]virt is ∏E∈Ef (Γ̃)(evEV t

E
)∗(ptE).

We prove this claim by induction, starting at the bivalent pointed vertices, where things are

constrained by the marked points P 0, and propagating these constraints following the flow

on Γ̃ defined by the orientation of edges.

Let V be a bivalent pointed vertex, E an edge adjacent to V and V ′ the other ver-

tex of E. The edge E is outgoing for V and ingoing for V ′, so V ′ = V tE . We have in

(ev(p))∗([P 0])(ev(e))∗([δ]) a corresponding factor

(ev
(p)
V )

∗
(P 0

V ) ((evEV )
∗
(ptE) + (evEV ′)

∗
(ptE)) .

But

(ev
(p)
V )

∗
(P 0

V )(evEV )
∗
(ptE)(−1)g(V )λg(V ) = 0

for dimension reasons (its insertion over Mg(V ),∆V
defines an enumerative problem of virtual

dimension −1) and so only the factor

(ev
(p)
V )

∗
(P 0

V )(evEV ′)
∗
(ptE)

survives, which proves the initial step of the induction.

Let E be an outgoing edge of a trivalent vertex V , of ingoing edges E1 and E2. Let V tE
be the target vertex of E. By the induction hypothesis, every possibly non-vanishing term

contains the insertion of (evE
1

V )
∗(ptE1)(evE

2

V )
∗(ptE2). But

(evE
1

V )
∗
(ptE1)(evE

2

V )
∗
(ptE2)(evEV )

∗
(ptE)(−1)g(V )λg(V ) = 0

for dimension reasons (its insertion over Mg(V ),∆V
defines an enumerative problem of virtual

16It is essentially a cohomological reformulation and generalization of the way the gluing is organized in
Mikhalkin’s proof of the tropical correspondence theorem, [Mik05].
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dimension −1) and so only the factor

(evE
1

V )
∗
(pt1

E)(evE
2

V )
∗
(pt2

E)(evEV t
E
)
∗
(ptE)

survives.

Let E be an outgoing edge of a bivalent unpointed vertex V , of ingoing edges E1. Let V tE the

target vertex of E. By the induction hypothesis, every possibly non-vanishing term contains

the insertion of (evE
1

V )
∗(ptE1). But

(evE
1

V )
∗
(ptE1)(evEV )

∗
(ptE)(−1)g(V )λg(V ) = 0

for dimension reasons (its insertion over Mg(V ),∆V
defines an enumerative problem of virtual

dimension −1) and so only the factor

(evE
1

V )
∗
(ptE1)(evEV t

E
)
∗
(ptE)

survives. This finishes the proof by induction of the claim.

Using the notations introduced in Section 1.5, we can rewrite

∏
E∈Ef (Γ̃)

(evEV t
E
)
∗
(ptE)

as

⎛
⎜
⎝
∏

V ∈V (3)(Γ̃)

(ev
Ein,1
V

V )
∗
(ptEin,1

V
)(ev

Ein,2
V

V )
∗
(ptEin,2

V
)
⎞
⎟
⎠

⎛
⎜
⎝

∏
V ∈V (2up)(Γ̃)

(ev
Ein
V

V )
∗
(ptEin

V
)
⎞
⎟
⎠
,

and so we proved

∫
(δ×ιP0)! ∏

V ∈V (Γ̃)

[Mg(V ),∆V
]virt
(δ × ιP 0)

∗
M ∏
V ∈V (Γ̃)

pr∗V ((−1)g(V )λg(V ))

=
⎛
⎜
⎝
∏

V ∈V (3)(Γ̃)

N1,2
g(V ),V

⎞
⎟
⎠

⎛
⎜
⎝

∏
V ∈V (2p)(Γ̃)

N1,2
g(V ),V

⎞
⎟
⎠

⎛
⎜
⎝

∏
V ∈V (2up)(Γ̃)

N1,2
g(V ),V

⎞
⎟
⎠
.

This finishes the proof of Proposition 1.21.

1.6.6 End of the proof of the gluing formula

The gluing identity given by Proposition 1.12 follows from the combination of Proposition

1.20 and Proposition 1.21.

1.7 Vertex contribution

In this Section, we evaluate the invariants N1,2
g,V attached to the vertices V of Γ and appearing

in the gluing formula of Corollary 1.15. The first step, carried out in Section 1.7.1 is to
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rewrite these invariants in terms of more symmetric invariants Ng,V depending only on the

multiplicity of the vertex V . In Section 1.7.2, we use the consistency of the gluing formula

to deduce non-trivial relations between these invariants and to reduce the question to the

computation of the invariants attached to vertices of multiplicity one and two. Invariants

attached to vertices of multiplicity one and two are explicitly computed in Section 1.7.3

and this finishes the proof of Theorem 1. Modifications needed to prove Theorem 1.5 are

discussed at the end of Section 1.7.4.

1.7.1 Reduction to a function of the multiplicity

The gluing formula of the previous Section, Corollary 1.15, expresses the log Gromov-Witten

invariant N∆,n
g,h attached to a parametrized tropical curve h∶Γ → R2 as a product of log

Gromov-Witten N1,2
g(V ),V

attached to the trivalent vertices V of Γ, and of the weights w(E)

of the edges E of Γ. The definition of N1,2
g(V ),V

given in Section 1.5 depends on a specific

choice of orientation on the edges of Γ. In particular, the definition of N1,2
g(V ),V

does not

treat the three edges adjacent to V in a symmetric way.

Let Ein,1
V and Ein,2

V be the two ingoing edges adjacent to V , and let Eout
V be the outgoing

edge adjacent to V . Let DEin,1
V

, DEin,2
V

and DEout
V

be the corresponding toric divisors of

X∆V
. We have evaluation morphisms

ev = (ev1, ev2, evout)∶Mg,∆V
→DEin,1

V
×DEin,2

V
×DEout

V
.

In Section 1.5, we defined

N1,2
g,V = ∫

[Mg,∆V
]virt
(−1)gλgev∗1(pt1)ev∗2(pt2) ,

where pt1 ∈ A
1(DEin,1

V
) and pt2 ∈ A

1(DEin,2
V
) are classes of a point on DEin,1

V
and DEin,2

V

respectively.

But one could similarly define

N2,out
g,V ∶= ∫

[Mg,∆V
]virt
(−1)gλgev∗1(pt1)ev∗out(ptout) ,

and

Nout,1
g,V ∶= ∫

[Mg,∆V
]virt
(−1)gλgev∗out(ptout)ev∗1(pt1) ,

where ptout ∈ A
∗(DEout

V
) is the class of a point on Eout

V . The following Lemma gives a

relation between these various invariants.

Lemma 1.22. We have

N1,2
g,V w(E

in,1
V )w(Ein,2

V ) = N2,out
g,V w(Ein,2

V )w(Eout
V ) = N

out,1
g,V w(Eout

V )w(E
in,1
V )

and we denote by Ng,V this number.

Proof. Let ΓV be the trivalent tropical curve given by V and its three edges Ein,1
V , Ein,2

V and
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Eout
V . Let ΓV ′ be the trivalent tropical curve with a unique vertex V ′ and edges Ein,1

V ′ , Ein,2
V ′

and Eout
V ′ , such that

w(Ein,1
V ) = w(Ein,1

V ′ ) ,w(E
in,2
V ) = w(Ein,2

V ′ ) ,w(E
out
V ) = w(E

out
V ′ ) ,

and

vV,Ein,1
V
= −vV ′,Ein,1

V ′
, vV,Ein,2

V
= −vV ′,Ein,2

V ′
, vV,Eout

V
= −vV ′,Eout

V ′
.

Let ΓV,V ′ be the tropical curve obtained by gluing Eout
V and Eout

V ′ together.

Taking

∆ = {vV,Ein,1
V
,−vV ′,Ein,1

V ′
, vV,Ein,2

V
,−vV ′,Ein,2

V ′
}

and n = 3, we have g∆,n = 0 and T∆,p consists of a unique tropical curve ΓpV,V ′ , obtained

from ΓV,V ′ by adding three bivalent vertices corresponding to the three point p1, p2 and p3

in R2.

Choosing differently p = (p1, p2, p3), the tropical curve ΓpV,V ′ can look like

�
�
�

Ein,1
V

Ein,2
V

Eout
V Ein,1

V ′

Ein,2
V ′

r r
r

or like

�
�
�

Ein,1
V

Ein,2
V

Eout
V Ein,1

V ′

Ein,2
V ′

r r r

But the log Gromov-Witten invariants N∆,3
g are independent of the choice of p and so can

be computed for any choice of p. For each of the two above choice of p, the gluing formula

of Corollary 1.15 gives an expression for N∆,3
g . These two expressions have to be equal.

Writing

F (u) = ∑
g⩾0

Ngu
2g+1
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we obtain17

F 1,2
V (u)F

1,out
V ′ (u)w(E

in,1
V )w(Ein,2

V )w(Eout
V )w(E

in,1
V ′ )

= F 1,out
V (u)F 1,out

V ′ (u)w(E
in,1
V )w(Eout

V )w(E
out
V )w(E

in,1
V ′ ) ,

and so after simplification

F 1,2
V (u)F

1,out
V ′ (u)w(E

in,2
V ) = F 1,out

V (u)F 1,out
V ′ (u)w(E

out
V ) .

By GL2(Z) invariance, we have F 1,2
V (u) = F

1,2
V ′ (u) and F 1,out

V (u) = F 1,out
V ′ (u). By the

unrefined correspondence theorem, we know that F 1,out
V (u) ≠ 0, so we obtain

F 1,2
V (u)w(E

in,2
V ) = F 1,out

V (u)w(Eout
V ) ,

which finishes the proof of Lemma 1.22.

We define the contribution FV (u) ∈ Q[[u]] of a trivalent vertex V of Γ as being the power

series

FV (u) = ∑
g⩾0

Ng,V u
2g+1.

Proposition 1.23. For every ∆ and n such that g∆,n ⩾ 0, and for every p ∈ U∆,n, we have

∑
g⩾g∆,n

N∆,n
g u2g−2+∣∆∣

= ∑
(h∶Γ→R2)∈T∆,p

∏
V ∈V (3)(Γ)

FV (u)

where the product is over the trivalent vertices of Γ.

Proof. This follows from the decomposition formula, Proposition 1.9, from the gluing for-

mula, Corollary 1.15, and from Lemma 1.22. Indeed, every bounded edge of Γ is an ingoing

edge for exactly one trivalent vertex of Γ and every trivalent vertex of Γ has exactly two

ingoing edges. Combining the invariant N1,2
g(V ),V

of a trivalent vertex V with the weights

of its two ingoing edges, one can rewrite the double product of Corollary 1.15 as a single

product in terms of the invariants defined by Lemma 1.22.

Proposition 1.24. The contribution FV (u) of a vertex V only depends on the multiplicity

m(V ) of V .

In particular, for every m positive integer, one can define the contribution Fm(u) ∈ Q[[u]]
as the contribution FV (u) of a vertex V of multiplicity m.

Proof. We follow closely Brett Parker, [Par16] (Section 3).

For v1, v2 ∈ Z2 − {0}, let us denote by Fv1,v2(u) the contribution FV (u) of a vertex V

of adjacent edges E1, E2 and E3 such that vV,E1 = v1 and vV,E2 = v2. The contribution

Fv1,v2(u) depends on (v1, v2) only up to linear action of GL2(Z) on Z2. In particular, we

can change the sign of v1 and/or v2 without changing Fv1,v2(u).

17Recall that we are considering marked points as bivalent vertices and that this affects the notion of
bounded edge. According to the gluing formula of Corollary 1.15, we need to include one weight factor for
each bounded edge.
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By the balancing condition, we have vV,E3 = −vV,E1 − vV,E2 and so

Fv1,v2(u) = F−v1,v2(u) = Fv1−v2,v2(u) .

By GL2(Z) invariance, we can assume v1 = (∣v1∣,0) and v2 = (v2x,∗) with v2x ⩾ 0. If ∣v1∣

divides v2x, v2x = a∣v1∣, then replacing v2 by v2 − av1, which does not change Fv1,v2 , we can

assume that v1 = (∣v1∣,0) and v2 = (0,∗). If not, we do the Euclidean division of v2x by ∣v1∣,

v2x = a∣v1∣+b, 0 ≤ b < ∣v1∣, and we replace v2 by v2−av1 to obtain v2 = (b,∗). Exchanging the

roles of v1 and v2, we can assume by GL2(Z) invariance that v1 = (∣v1∣,0), for some ∣v1∣ ≤ b

and v2 = (v2x,∗) for some v2x ⩾ 0, and we repeat the above procedure. By the Euclidean

algorithm, this process terminates and at the end we have v1 = (∣v1∣,0) and v2 = (0, ∣v2∣). In

particular, for every v1, v2 ∈ Z2 − {0}, the contribution Fv1,v2 only depends on gcd(∣v1∣, ∣v2∣)

and on the multiplicity ∣det(v1, v2)∣.

By the previous paragraph, we can assume that v1 = (∣v1∣,0) and v2 = (0, ∣v2∣).

Taking

∆ = {(∣v1∣,0), (0, ∣v2∣), (0,1), (−∣v1∣,−∣v2∣ − 1)} ,

and n = 3, we have g∆,n = 0 and T∆,p contains a unique tropical curve Γp.

Choosing differently p = (p1, p2, p3), the tropical curve Γp can look like

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

(∣v1∣,0)

(0, ∣v2∣)(0,1)

(−∣v1∣,−∣v2∣ − 1)

or like
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�
�
�
�
�
�
�
�
�

�
�
�

(∣v1∣,0)

(0,1)(0, ∣v2∣)

(−∣v1∣,−∣v2∣ − 1)

But the log Gromov-Witten invariants N∆,3
g are independent of the choice of p and so can

be computed for any choice of p. For each of the two above choices of p, the gluing formula

of Proposition 1.23 gives an expression for N∆,3
g . These two expressions have to be equal

and we obtain

F(∣v1∣,0),(0,∣v2∣)(u)F(0,1),(−∣v1∣,−∣v2∣−1)(u) = F(∣v1∣,0),(0,1)(u)F(0,∣v2∣),(−∣v1∣,−∣v2∣−1)(u) .

For both pairs of vectors (∣v1∣,0), (0,1) and (0,1), (−∣v1∣,−∣v2∣−1), the gcd of the divisibilities

is equal to one and the absolute value of the determinant is equal to ∣v1∣, so we have

F(0,1),(−∣v1∣,−∣v2∣−1)(u) = F(∣v1∣,0),(0,1)(u) .

As this quantity is non-zero by the unrefined correspondence theorem, we can simplify it

from the previous equality to obtain

F(∣v1∣,0),(0,∣v2∣)(u) = F(0,∣v2∣),(−∣v1∣,−∣v2∣−1)(u) .

As

gcd(∣(0, ∣v2∣)∣, ∣(−∣v1∣,−∣v2∣ − 1)∣) = 1 ,

we obtain the desired result.

1.7.2 Reduction to vertices of multiplicity 1 and 2

We start reviewing the key step in the argument of Itenberg and Mikhalkin [IM13] proving

the tropical deformation invariance of Block-Göttsche invariants. We consider a tropical

curve with a 4-valent vertex V . Let Q be the quadrilateral dual to V . We assume that

Q has no pair of parallel sides. In that case, there exists a unique parallelogram P having

two sides in common with Q and being contained in Q. Let A,B,C and D denote the four

vertices of Q, such that A,B and D are vertices of P . Let E be the fourth vertex of P ,

contained in the interior of Q. There are three combinatorially distinct ways to deform

this tropical curve into a simple one, corresponding to the three ways to decompose Q into

triangles or parallelograms:
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1. We can decompose Q into the triangles ABD and BCD.

2. We can decompose Q into the triangles ABC and ACD.

3. We can decompose Q into the triangles BCE, DEC and the parallelogram P .

Case (1):
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r r
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Case (2):
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Case (3):

r r
r r

r
H
HHH

HH

A
A
A
A
A
A

@
@
@

A B
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C

E

The deformation invariance result then follows from the identity

(q∣ACD∣ − q−∣ACD∣)(q∣ABC∣ − q−∣ABC∣)

= (q∣BCD∣ − q−∣BCD∣)(q∣ABD∣ − q−∣ABD∣) + (q∣BCE∣ − q−∣BCE∣)(q∣DEC∣ − q−∣DEC∣)

where ∣ − ∣ denotes the area. This identity can be proved by elementary geometry consider-

ations.

The following result goes in the opposite direction and shows that the constraints imposed by

tropical deformation invariance are quite strong. The generating series of log Gromov-Witten

invariants Fm(u) will satisfy these constraints. Indeed, they are defined independently of

any tropical limit, so applications of the gluing formula to different degenerations have to

give the same result.
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Proposition 1.25. Let F ∶Z>0 → R be a function of positive integers valued in a commutative

ring R, such that, for any quadrilateral Q as above, we have18

F (2∣BCD∣)F (2∣ABD∣) = F (2∣ACD∣)F (2∣ABC ∣) + F (2∣BCE∣)F (2∣DEC ∣).

Then for every integer n ⩾ 2, we have

F (n)2 = F (2n − 1)F (1) + F (n − 1)2

and for every integer n ⩾ 3, we have

F (n)2 = F (2n − 2)F (2) + F (n − 2)2.

In particular, if F (1) and F (2) are invertible in R, then the function F is completely de-

termined by its values F (1) and F (2).

Proof. The first equality is obtained by taking Q to be the quadrilateral of vertices (−1,0),

(−1,1), (0,1), (n − 1,−(n − 1)).

Picture of Q for n = 2:
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The second equality is obtained by taking Q to be the quadrilateral of vertices (−1,0),

(−1,1), (1,0), (n − 1,−(n − 1)).

Picture of Q for n = 3:
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18All the relevant areas are half-integers and so their doubles are indeed integers.
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1.7.3 Contribution of vertices of multiplicity 1 and 2

Vertex of multiplicity one

We now evaluate the contribution F1(u) of a vertex of multiplicity 1 by direct computation.

We consider ∆ = {(−1,0), (0,−1), (1,1)}. The corresponding toric surface X∆ is simply P2,

of fan

�
�
�

D1

D2

Dout

and of dual polygon

r r@
@
@

r
D1

D2

Dout

Let D1, D2 and Dout be the toric boundary divisors of P2. The class β∆ is simply the class

of a curve of degree one, i.e. of a line, on P2. Let Mg,∆ be the moduli space of genus g stable

log maps of type ∆. We have evaluation maps

(ev1, ev2)∶Mg,∆ →D1 ×D2 ,

and in Section 1.5, we defined

N1,2
g,∆ = ∫

[Mg,∆V
]virt
(−1)gλgev∗1(pt1)ev∗2(pt2) ,

where pt1 ∈ A
∗(D1) and pt2 ∈ A

∗(D2) are classes of a point on D1 and D2 respectively.

By definition (see Section 1.7.1), we have

F1(u) = ∑
g⩾0

N1,2
g,∆u

2g+1 .

Proposition 1.26. The contribution of a vertex of multiplicity one is given by

F1(u) = 2 sin(
u

2
) = −i(q

1
2 − q−

1
2 )

where q = eiu.
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Proof. Let P1 and P2 be points on D1 and D2 respectively, away from the torus fixed

points. Let S be the surface obtained by blowing-up P2 at P1 and P2. Denote by D the

strict transform of the class of a line in P2 and by E1, E2 the exceptional divisors. Denote

∂S the strict transform of the toric boundary ∂P2 of P2. We endow S with the divisorial log

structure with respect to ∂S. Let Mg(S) be the moduli space of genus g stable log maps to

S of class D−E1−E2 with tangency condition to intersect ∂S in one point with multiplicity

one. It has virtual dimension g and we define

NS
g ∶= ∫

[Mg(S)]virt
(−1)gλg .

The strict transform C of the line L in P2 passing through P1 and P2 is the unique genus

zero curve satisfying these conditions and has normal bundle NC∣S = OP1(−1) in S. All the

higher genus maps factor through C, and as C is away from the preimage of the torus fixed

points of P2, log invariants coincide with relative invariants [AMW14]. More precisely, we

can consider the moduli space Mg(P1/∞,1,1) genus g stable maps to P1, of degree one, and

relative to a point ∞ ∈ P1. If π∶ C →Mg(P1/∞,1,1) is the universal curve and f ∶ C → P1 ≃ C

is the universal map, the difference in obstruction theories between stable maps to S and

stable maps to P1 comes from R1π∗f
∗NC∣S = R

1π∗f
∗OP1(−1).

These integrals have been computed by Bryan and Pandharipande[BP05], (see the proof of

the Theorem 5.1), and the result is

∑
g⩾0

NS
g u

2g−1
=

1

2 sin (u
2
)
.

So we obtain

NS
g = ∫

[Mg(P1/∞,1,1)]virt
(−1)gλg e (R

1π∗f
∗
OP1(−1)) ,

where e(−) is the Euler class. Rewriting

(−1)gλg = e(R
1π∗OC) = e(R

1π∗f
∗
OP1) ,

we get

NS
g = ∫

[Mg(P1/∞,1,1)]virt
e (R1π∗f

∗
(OP1 ⊕OP1(−1))) .

As in [GPS10], we will work with the non-compact varieties (P2)○, D○1, D○2, S○ obtained by

removing the torus fixed points of P2 and their preimages in S.

Denote P○1 the projectivized normal bundle to D○1 in (P2)○, coming with two natural sections

(D○1)0 and (D○1)∞. Denote P̃○1 the blow-up of P○1 at the point P1 ∈ (D
○
1)∞, Ẽ1 the correspond-

ing exceptional divisor and C1 the strict transform of the fiber of P○1 passing through P1. In

particular, Ẽ1 and C1 are both projective lines with degree −1 normal bundle in (P̃1)
○. Fur-

thermore, Ẽ1 and C1 intersect in one point. Similarly, denote P○2 the projectivized normal

bundle to D○2 in (P2)○, coming with two natural sections (D○2)0 and (D○2)∞. Denote P̃○2 the

blow-up of P○2 at the point P2 ∈ (D
○
2)∞, Ẽ2 the corresponding exceptional divisor and C2 the

strict transform of the fiber of P○2 passing through P2. In particular, Ẽ2 and C2 are both

projective lines with degree −1 normal bundle in (P̃2)
○. Furthermore, Ẽ2 and C2 intersect
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in one point.

We degenerate S○ as in Section 5.3 of [GPS10]. We first degenerate (P2)○ to the normal

cone of D○1 ∪D
○
2, i.e. we blow-up (D○1 ∪D

○
2)×{0} in (P2)○ ×C. The fiber over 0 ∈ C has three

irreducible components: (P2)○, P○1, P○2, with P○1 and P○2 glued along (D○1)0 and (D○2)0 to D○1
and D○2 in (P2)○. We then blow-up the strict transforms of the sections P1 ×C and P2 ×C.

The fiber of the resulting family away from 0 ∈ C is isomorphic to S○. The fiber over zero

has three irreducible components: (P2)○, P̃○1, P̃○2.

We would like to apply a degeneration formula to this family in order to compute NS
g . As

discussed above, all the maps in Mg(S) factor through C and so NS
g can be seen as a relative

Gromov-Witten invariant of the non-compact surface S○, relatively to the strict transforms

of D○1 and D○2.

The key point is that for homological degree reasons, the degenerating relative stable maps

do not leave the non-compact geometries we are considering. More precisely, any limiting

relative stable map has to factor through C1 ∪ L ∪ C2, with degree one over each of the

components C1, L and C2. So, even if the target geometry is non-compact, all the relevant

moduli spaces of relative stable maps are compact. It follows that we can apply the ordinary

degeneration formula in relative Gromov-Witten theory [Li02].

We obtain

∑
g⩾0

NS
g u

2g−1
=
⎛

⎝
∑
g⩾0

N1,2
g,∆u

2g+1⎞

⎠

⎛

⎝
∑
g⩾0

NC1
g u2g−1⎞

⎠

⎛

⎝
∑
g⩾0

NC2
g u2g−1⎞

⎠
.

The invariants NC1
g and NC2

g , coming from curves factoring through C1 and C2, which are

(−1)-curves in P̃○1 and P̃○2 respectively, can be written as relative invariants of P1:

NC1
g = N

C2
g = ∫

[Mg(P1/∞,1,1)]virt
e (R1π∗f

∗
(OP1 ⊕OP1(−1))) ,

which is exactly the formula giving NS
g , and so

∑
g⩾0

NC1
g u2g−1

= ∑
g⩾0

NC2
g u2g−1

=
1

2 sin (u
2
)
.

Remark that this equality is a higher genus version of Proposition 5.2 of [GPS10]. Combining

the previous equalities, we obtain

1

2 sin (u
2
)
=
⎛

⎝
∑
g⩾0

N1,2
g,∆u

2g+1⎞

⎠

⎛

⎝

1

2 sin (u
2
)

⎞

⎠

2

,

and so

∑
g⩾0

N1,2
g,∆u

2g+1
= 2 sin(

u

2
) .
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Vertex of multiplicity 2

We now evaluate the contribution F2(u) of a vertex of multiplicity 2 by direct computation.

We consider ∆ = {(−1,0), (0,−2), (1,2)}. The corresponding toric surface X∆ is simply the

weighted projective plane P1,1,2, of fan

�
�
�
�
�
�

D1

D2

Dout

and of dual polygon

r r r
H
HHH

HH

r
D1

D2

Dout

Let D1, D2 and Dout be the toric boundary divisors of P1,1,2. We have the following

numerical properties:

2D1 =D2 = 2Dout ,

D1.D2 = 1, D1.Dout =
1

2
, D2.Dout = 1 ,

D2
1 =

1

2
,D2

2 = 2,D2
out =

1

2
.

The class β∆ satisfies β∆.D1 = 1, β∆.D2 = 2, β∆.Dout = 1 and so

β∆ = 2D1 =D2 = 2Dout .

Let Mg,∆ be the moduli space of genus g stable log maps of type ∆. We have evaluation

maps

(ev1, ev2)∶Mg,∆ →D1 ×D2 ,

and in Section 1.5, we defined

N1,2
g,∆ = ∫

[Mg,∆V
]virt
(−1)gλgev∗1(pt1)ev∗2(pt2) ,

where pt1 ∈ A
∗(D1) and pt2 ∈ A

∗(D2) are classes of a point on D1 and D2 respectively.

By definition (see Section 1.7.1), we have

F1(u) = 2
⎛

⎝
∑
g⩾0

N1,2
g,∆u

2g+1⎞

⎠
.
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Proposition 1.27. The contribution of a vertex of multiplicity two is given by

F2(u) = 2 sin(u) = (−i)(q − q−1
)

where q = eiu.

Proof. We have to prove that

∑
g⩾0

N1,2
g,∆u

2g+1
= sin(u) .

Let P2 be a point on D2 away from the torus fixed points. Let S be the surface obtained by

blowing-up P1,1,2 at P2. Still denote β∆ the strict transform of the class β∆ and by E2 the

exceptional divisor. Denote ∂S the strict transform of the toric boundary ∂P1,1,2 of P1,1,2.

We endow S with the divisorial log structure with respect to ∂S. Let Mg(S) be the moduli

space of genus g stable log maps to S of class β∆ −2E2 with tangency condition to intersect

D1 in one point with multiplicity one and Dout in one point with multiplicity one. It has

virtual dimension g and we have an evaluation map

ev1∶Mg,S →D1

We define

NS
g ∶= ∫

[Mg(S)]virt
(−1)gλgev∗1(pt1) ,

where pt1 ∈ A
1(D1) is the class of a point on D1.

In fact, because a curve in the linear system β∆ − 2E2 is of arithmetic genus ga given by

2ga − 2 = (β∆ − 2E2) ⋅ (β∆ − 2E2 +KS)

= (2D1 − 2E2) ⋅ (2D1 − 4D1 −E2)

= −4D2
1 + 2E2

2

= −4 ,

i.e. ga = −1 < 0, all the moduli spaces Mg(S) are empty and so

∑
g⩾0

NS
g u

2g−1
= 0 .

We write ∆̃ = {(−1,0), (0,−1), (0,−1), (1,2)} and Mg,∆̃ the moduli space of genus g stable

log maps of type ∆̃. We have evaluation maps

(ev1, ev2, ev2′)∶Mg,∆̃ →D1 ×D2 ×D2 ,

and we define

N1,2,2′

g,∆̃
∶= ∫

[Mg,∆̃]
virt
(−1)gλgev∗1(pt1)ev∗2(pt2)ev∗2′(pt2) ,

where pt1 ∈ A
∗(D1) and pt2 ∈ A

∗(D2) are classes of a point on D1 and D2 respectively.
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As in [GPS10], we will work with the non-compact varieties (P1,1,2)○, D○1, D○2, S○ obtained

by removing the torus fixed points of P1,1,2 and their preimages in S. Denote P○2 the

projectivized normal bundle to D○2 in (P2)○, coming with two natural sections (D○2)0 and

(D○2)∞. Denote P̃○2 the blow-up of P○2 at the point P2 ∈ (D
○
2)∞, Ẽ2 the corresponding

exceptional divisor and C2 the strict transform of the fiber of P○2 passing through P2. In

particular, Ẽ2 and C2 are both projective lines with degree −1 normal bundle in (P̃2)
○.

Furthermore, Ẽ2 and C2 intersect in one point.

We degenerate S○ as in Section 5.3 of [GPS10]. We first degenerate (P1,1,2)○ to the normal

cone of D○2, i.e. we blow-up D○2×{0} in (P1,1,2)○×C. The fiber over 0 ∈ C has two components:

(P1,1,2)○ and P○2, with P○2 glued along (D○2)0 to D○2 in (P1,1,2)○. We then blow-up the strict

transform of the section P2 × C. The fiber of the resulting family away from 0 ∈ C is

isomorphic to S○. The fiber over zero has two components: (P1,1,2)○ and P̃○2.

We would like to apply a degeneration formula to this family in order to compute NS
g . The

key point is that for homological degree reasons, the relevant degenerating relative stable

maps do not leave the non-compact geometries we are considering. More precisely, after

fixing a point P1 ∈D
○
1, realizing the insertion ev∗1(pt1), any limiting relative stable map has

to factor through L ∪ C2, with degree one over L and degree two over C2, where L is the

unique curve in P1,1,2, of class β∆, passing through P1 and through P2 with tangency order

two along D○2. So, even if the target geometry is non-compact, all the relevant moduli spaces

of relative stable maps are compact. It follows that we can apply the ordinary degeneration

formula in relative Gromov-Witten theory [Li02].

The application of the degeneration formula gives two terms, corresponding to the two

partitions 2 = 1 + 1 and 2 = 2 of the intersection number

(β∆ − 2E2).E2 = 2 .

For the first term, the invariants on the side of P1,1,2 are N1,2,2′

g,∆̃
, whereas on the side of P̃2,

we have disconnected invariants, corresponding to two degree one maps to C2. As in the

proof of Proposition 1.26, the relevant connected degree one invariants of C2 are given by

NC2
g = ∫

[Mg(P1/∞,1,1)]virt
e (R1π∗f

∗
(OP1 ⊕OP1(−1))) ,

satisfying

∑
g⩾0

NC2
g u2g−1

=
1

2 sin (u
2
)
.

For the second term, the invariants on the side of P1,1,2 are N1,2
g,∆, whereas on the side of P̃2,

we have connected invariants, corresponding to one degree two map to C2. More precisely,

the relevant connected degree two invariants of C2 are given by

N2C2
g = ∫

[Mg(P1/∞,2,2)]virt
e (R1π∗f

∗
(OP1 ⊕OP1(−1))) ,

where Mg(P1/∞,2,2) is the moduli space of genus g stable maps to P1, of degree two, and

relative to a point ∞ ∈ P1 with maximal tangency order two. According to [BP05] (see the
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proof of Theorem 5.1), we have

∑
g⩾0

N2C2
g u2g−1

= −
1

2

1

2 sin(u)
.

It follows that the degeneration formula takes the form

∑
g⩾0

NS
g u

2g−1

=
1

2

⎛

⎝
∑
g⩾0

N1,2,2′

g,∆̃
u2g+2⎞

⎠

⎛

⎝

1

2 sin (u
2
)

⎞

⎠

2

+ 2
⎛

⎝
∑
g⩾0

N1,2
g,∆u

2g+1⎞

⎠

(−1)

2

1

2 sin(u)
.

The factor 1
2

in front of the fist term is a symmetry factor and the factor 2 in front of the

second term is a multiplicity.

There exists a unique tropical curve of type ∆̃, which looks like

�
�
�
�
�
�
�
�
�

This tropical curve has two vertices of multiplicity one, so using the gluing formula of

Proposition 1.23 and Proposition 1.26, we find

∑
g⩾0

N1,2,2′

g,∆̃
u2g+2

= (F1(u))
2
= (2 sin(

u

2
))

2

.

Combining the previous results, we obtain

0 =
1

2
−

1

2 sin(u)

⎛

⎝
∑
g⩾0

N1,2
g,∆u

2g+1⎞

⎠
,

and so the desired formula.

Remark: The proofs of Propositions 1.26 and 1.27 rely on the fact that the involved curves

have low degree. More precisely, in each case, the key point is that the dual polygon does not

contain any interior integral point, i.e. a generic curve in the corresponding linear system on

the surface has genus zero. This implies that, after imposing tangency constraints, all the

higher genus stable maps factor through some rigid genus zero curve in the surface. This

guarantees the compactness result needed to work as we did with relative Gromov-Witten

theory of non-compact geometries. The higher genus generalization of the most general case
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of the degeneration argument of Section 5.3 of [GPS10] cannot be dealt with in the same

way. This generalization is one of the main topics of Chapter 2.

1.7.4 Contribution of a general vertex

Proposition 1.28. The contribution of a vertex of multiplicity m is given by

Fm(u) = (−i)(q
m
2 − q−

m
2 ).

Proof. By Proposition 1.26, the result is true for m = 1 and by Proposition 1.27, the result

is true for m = 2. By consistency of the gluing formula of Proposition 1.23, the function

F (m) ∶= Fm valued in the ring R ∶= Q[[u]] satisfies the hypotheses of Proposition 1.25. The

result follows by induction on m using Proposition 1.25.

The proof of Theorem 1 (Theorem 1.4 in Section 1.1.5) follows from the combination of

Proposition 1.23, Proposition 1.24 and Proposition 1.28.

To prove Theorem 1.5, generalizing Theorem 1 by allowing to fix the positions of some of the

intersection points with the toric boundary, we only have to organize the gluing procedure

slightly differently. The connected components of the complement of the bivalent vertices

of Γ, as at the beginning of Section 1.5, are trees with one unfixed unbounded edge and

possibly several fixed unbounded edges. We fix an orientation of the edges such that edges

adjacent to bivalent pointed vertices go out of the bivalent pointed vertices, such that the

fixed unbounded edges are ingoing and such that the unfixed unbounded edge is outgoing.

With respect to this orientation, every trivalent vertex has two ingoing and one outgoing

edges, and so, without any modification, we obtain the analogue of the gluing formula of

Corollary 1.15:

N∆,n
g,h =

⎛

⎝
∏

V ∈V (3)(Γ)

N1,2
g(V ),V

⎞

⎠

⎛

⎝
∏

E∈Ef (Γ)

w(E)
⎞

⎠
.

In Lemma 1.22, we defined Ng,V ∶= N
1,2
g(V ),V

w(Ein,1
V )w(Ein,2

V ), where Ein,1
V and Ein,1

V are the

ingoing edges adjacent to V . Every bounded edge is an ingoing edge to some vertex but

some ingoing edges are fixed unbounded edges and so

N∆,n
g,h =

⎛

⎝
∏

EF
∞
∈EF
∞
(Γ)

1

w(EF∞)

⎞

⎠

⎛

⎝
∏

V ∈V (3)(Γ)

Ng(V ),V
⎞

⎠
,

where the first product is over the fixed unbounded edges of Γ. Theorem 1.5 then follows

from Proposition 1.28.

1.8 Comparison with known results for K3 and abelian surfaces

In this Section, we prove two results, Theorem 1.29 and Theorem 1.32, which are analogues

for K3 and abelian surfaces of Theorem 1 for toric surfaces. We treat both cases in completely

parallel ways.
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1.8.1 K3 surfaces

Some of the remarks below were already made by Göttsche and Shende in [GS14] (see

Theorem 71 and Conjecture 72) and merely interpreted as coincidences. The goal of this

section is to formulate these remarks in a way that makes clear their compatibility with our

work. More precisely, Theorem 1.29 is an analogue for K3 surfaces of Theorem 1 for toric

surfaces.

Let S be a smooth projective K3 surface over C and let β ∈H2(S,Z) be a non-zero effective

curve class. The moduli space Mg(S,β) of genus g stable maps to S of class β admits a

reduced virtual class [Mg(S,β)]
red of degree g (see [MPT10] and references there).

Let us consider the problem of counting genus g0 curves of class β passing through g0 given

points. A Gromov-Witten definition of this counting problem is given by

⟨τ0(pt)g0⟩g0,β ∶= ∫
[Mg0,g0

(S,β)]red

g0

∏
j=1

ev∗j (pt) ,

where pt ∈ A2(S) is the class of a point. We assume for now that β is primitive.

We consider the same problem for curves of genus g, i.e. curves of genus g of class β passing

through g0 points, and we cut down the virtual dimension from g−g0 to zero by introducing

a (−1)g−g0λg−g0 . In other words, we consider

⟨(−1)g−g0λg−g0τ0(pt)g0⟩g,β ∶= ∫
[Mg,g0

(S,β)]red
(−1)g−g0λg−g0

g0

∏
j=1

ev∗j (pt) .

Because we are assuming β is primitive, ⟨τ0(pt)g0⟩g0,β coincides with the Severi degree

considered by Göttsche and Shende in [GS14] and so has a natural refinement, defined by

replacing Euler characteristics by Hirzebruch genera in a description in terms of Hilbert

schemes,

⟨τ0(pt)g0⟩g0,β(q) ∈ Z[q
± 1

2 ] .

Comparing explicit formulas for ⟨(−1)g−g0λg−g0τ0(pt)g0⟩g,β obtained in [MPT10] with ex-

plicit formulas for ⟨τ0(pt)g0⟩g0,β(q) obtained in [GS14], we obtain:

Theorem 1.29. If β is primitive, then

∑
g≥g0

⟨(−1)g−g0λg−g0τ0(pt)g0⟩g,βu
2g−2
= (−1)g0+1

(q
1
2 − q−

1
2 )

2g0−2
⟨τ0(pt)g0⟩g0,β(q) ,

where q = eiu.

Proof. We introduce the notations19

∆(q, z) ∶= z∏
n≥1

(1 − zn)20
(1 − qzn)2(1 − q−1zn)2

19Beware the change of notations: we use q for what is y in [GS14], and z for what is q in [GS14] and
[MPT10].
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and

DG2(q, z) ∶= ∑
m≥1

mzm∑
d∣m

1

d
(
q
d
2 − q−

d
2

q
1
2 − q−

1
2

)

2

.

Both sides of the equality in Theorem 1.29 only depends on β2 = 2h−2 and we write ⟨. . . ⟩g,h

for ⟨. . . ⟩g,β .

According to [MPT10] (Theorem 3), we have, after some easy rewriting:

∑
h≥0

∑
g≥g0

⟨(−1)g−g0λg−g0τ0(pt)g0⟩g,hu
2g−2zh−1

= (−1)g0+1
(q

1
2 − q−

1
2 )

2g0−2 (DG2(q, z))
g0

∆(q, z)
,

where q = eiu. According to [GS14] (Conjecture 68, proven in [GS15]), we have

∑
h≥0

⟨τ0(pt)g0⟩g0,h(q)z
h−1
=
(DG2(q, z))

g0

∆(q, z)
.

Comparing the two previous formulas, we obtain the desired identity.

Theorem 1.29 is a perfect analogue of Theorem 1. In particular, the prefactors in (q
1
2 −q−

1
2 )

are remarkably similar.

If β is not primitive, one should extract multicover contributions to formulate the analogue

of Theorem 1.29. In [OP16] (Conjecture C2), a general conjecture is formulated for the mul-

ticovering structure of Gromov-Witten invariants of K3 surfaces with descendant insertions.

For the invariants we are considering, this conjecture takes the following form:

Conjecture 1.30. We have

⟨(−1)g−g0λg−g0τ0(pt)g0⟩g,β = ∑
β=kβ′

k2(g+g0)−3
⟨(−1)g−g0λg−g0τ0(pt)g0⟩g0,β̃′

,

where β̃′ is a primitive class such that (β̃′)2 = (β′)2.

Combining Theorem 1.29 with this conjecture, we obtain:

Conjecture 1.31. For general β, we have

∑
g≥g0

⟨(−1)g−g0λg−g0τ0(pt)g0⟩g,βu
2g−2

= (−1)g0+1
∑
β=kβ′

k2g0−1
(q

k
2 − q−

k
2 )

2g0−2
⟨τ0(pt)g0⟩g0,β̃′

(qk) ,

where β̃′ is a primitive class such that (β̃′)2 = (β′)2, and q = eiu.
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1.8.2 Abelian surfaces

Let A be a smooth projective abelian surface over C and let β ∈ H2(A,Z) be a non-zero

effective curve class. The moduli space Mg(A,β) of genus g stable maps to A of class β

admits a reduced virtual class [Mg(A,β)]
red of degree g − 2 (see [BOPY15] and references

there).

Let us consider the problem of counting genus g0 ≥ 2 curves of class β passing through g0−2

points. A Gromov-Witten definition of this counting problem is given by

⟨τ0(pt)g0−2
⟩g0,β ∶= ∫

[Mg0,g0−2
(A,β)]red

g0−2

∏
j=1

ev∗j (pt) ,

where pt ∈ A2(A) is the class of a point. Let us assume that β is primitive.

We consider the same problem for curves of genus g, i.e. curves of genus g of class β passing

through g0−2 points, and we cut down the virtual dimension from g−g0 to zero by introducing

a (−1)g−g0λg−g0 . In other words, we consider

⟨(−1)g−g0λg−g0τ0(pt)g0−2
⟩g,β ∶= ∫

[Mg,g0
(S,β)]red

(−1)g−g0λg−g0

g0−2

∏
j=1

ev∗j (pt) .

Because we are assuming β is primitive, ⟨τ0(p)
g0−2⟩g0,β coincides with the Severi degree

considered by Göttsche and Shende in [GS14] and so has a natural refinement, defined by

replacing Euler characteristics by Hirzebruch genera in a description in terms of Hilbert

schemes,

⟨τ0(pt)g0−2
⟩g0,β(q) ∈ Z[q

± 1
2 ] .

Theorem 1.32. If β is primitive, then

∑
g≥g0

⟨(−1)g−g0λg−g0τ0(pt)g0−2
⟩g,βu

2g−2

= (−1)g0+1
(q

1
2 − q−

1
2 )

2g0−2
⟨τ0(pt)g0−2

⟩g0,β(q) ,

where q = eiu.

Proof. We introduce the notation20

DG2(q, z) ∶= ∑
m≥1

mzm∑
d∣m

1

d
(
q
d
2 − q−

d
2

q
1
2 − q−

1
2

)

2

.

According to [BOPY15] (Theorem 2), we have, after some easy rewriting (one has to remark

that the function S of [BOPY15] is equal to −(q
1
2 − q−

1
2 )2DG2):

∑
h≥0

∑
g≥g0

⟨(−1)g−g0λg−g0τ0(pt)g0−2
⟩g,hu

2g−2zh

20Beware the change of notations: we use q for what is y in [GS14] and p in [BOPY15], and we use z for
what is q in [GS14] and [BOPY15].
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= (−1)g0+1
(q

1
2 − q−

1
2 )

2g0−2
(DG2(q, z))

g0−2
(z

d

dz
)DG2(q, z) ,

where q = eiu. According to [GS14] (statement before Proposition 74, proven in [GS15]), we

have

∑
h≥0

⟨τ0(pt)g0⟩g0,h(q)z
h
= (DG2(q, z))

g0−2
(z

d

dz
)DG2(q, z) .

Comparing the two previous formulas, we obtain the desired identity.

Theorem 1.32 is a perfect analogue of Theorem 1. In particular, the prefactors in (q
1
2 −q−

1
2 )

are remarkably similar.

1.9 Descendants and refined broccoli invariants

In [MR16], Mandel and Ruddat have extended the unrefined correspondence theorem to

include descendant log Gromov-Witten invariants, i.e. log Gromov-Witten invariants with

insertion of psi classes, in the case of genus zero curves21. On the tropical side, one needs

to introduce extra markings corresponding to the various insertions of psi classes.

The simplest local model is a parametrized tropical curve h∶Γ→ R2, of some type ∆, where

Γ has a unique vertex, three unbounded edges, and l markings corresponding to insertions

of psi classes ψk1

1 , . . . , ψkll . In addition to the usual multiplicity, this tropical curve has to

be counted with an extra factor

(
l

k1, . . . , kl
) =

l!

k1! . . . kl!
,

corresponding to the fact that

∫
M0,l+3

l

∏
i=1

ψkii = (
l

k1, . . . , kl
) ,

where M0,l+3 is the moduli space of (l + 3)-pointed genus zero stable curves.

To include descendants in Theorem 1, one should study generating series of descendant log

Gromov-Witten invariants with a further insertion of one lambda class.

In this Appendix, we study the simplest possible case of a trivalent vertex with insertion of

only one psi class and we recover the numerator q
m
2 + q−

m
2 of the multiplicity introduced by

Göttsche and Schroeter [GS16a] in the context of refined broccoli invariants.

Let h∶Γ → R2 be a parametrized tropical curve, of some type ∆, where Γ has a unique

vertex, three unbounded edges, and one extra marking corresponding to the insertion of one

psi class ψ1. For the corresponding log Gromov-Witten invariants with one psi class and

one lambda class inserted, one can argue as in Sections 1.5, 1.6 and 1.7 to prove a gluing

21In positive genus with insertion of psi classes, superabundant tropical curves generically arise and so the
result of [MR16] cannot be applied.
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formula and use its consistency to reduce the problem to a generating series

Fψm(u) = ∑
g≥0

Nψ
g,V u

2g+1

depending only on the multiplicity of the vertex.

Recall that we denoted Fm(u) the analogue generating series without psi class and that by

Proposition 1.28, we have Fm(u) = (−i)(q
m
2 − q−

m
2 ), i.e. essentially the numerator of the

Block-Göttsche multiplicity.

In the following proposition, we show that Fψm(u) is essentially the numerator of the Göttsche-

Schroeter multiplicity.

Proposition 1.33. For every nonnegative integer m, we have

Fψm(u) = u cos(
mu

2
)

where q = eiu.

Proof. In Section 1.7.2, we use steps in the proof by Itenberg and Mikhalkin of the tropical

deformation invariance of the Block-Göttsche invariants to obtain identities which have to

be satisfied by the generating series Fm(u) by consistency of the gluing formula.

Similarly, looking at the proof of Theorem 4.1 of [GS16a], we obtain that, by consistency of

the gluing formula, we have

Fm(u)F
ψ
m(u) = F2m−1(u)F

ψ
1 (u) − Fm−1(u)F

ψ
m−1(u) .

Using that Fm(u) = (−i)(q
m
2 −q−

m
2 ), it is enough to compute Fψ1 (u) to determine all Fψm(u)

by induction.

Thus, we have to show that F1(u) = u cos (u
2
). We follow the argument used in the proof

of Proposition 1.26 to compute F1(u). We consider ∆ = {(−1,0), (0,−1), (1,1)}. The corre-

sponding toric surface X∆ is simply P2. Let D1, D2 and Dout be the toric boundary divisors

of P2. The class β∆ is simply the class of a curve of degree one, i.e. of a line, on P2. Let

M
ψ

g,∆ be the moduli space of genus g stable log maps of type ∆ with an extra marking

x3. We denote ψ3 the insertion of one psi class at this extra marking. We have the usual

evaluation maps

(ev1, ev2)∶Mg,∆ →D1 ×D2 .

We consider

N1,2,ψ
g,∆ = ∫

[M
ψ

g,∆V
]virt
(−1)gλgev∗1(pt1)ev∗2(pt2)ψ3 ,

where pt1 ∈ A
∗(D1) and pt2 ∈ A

∗(D2) are classes of a point on D1 and D2 respectively.

By definition, we have

Fψ1 (u) = ∑
g≥0

N1,2,ψ
g,∆ u2g+1 .

Let P1 and P2 be points on D1 and D2 respectively, away from the torus fixed points. Let
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S be the surface obtained by blowing-up P2 at P1 and P2. Denote by D the strict transform

of the class of a line in P2 and by E1, E2 the exceptional divisors. Denote ∂S the strict

transform of the toric boundary ∂P2 of P2. We endow S with the divisorial log structure

with respect to ∂S. Let Mg(S) be the moduli space of genus g stable log maps to S of class

D −E1 −E2 with tangency condition to intersect ∂S in one point with multiplicity one. Let

M
ψ

g (S) be the moduli space of the same stable log maps but with an extra marked point.

We define

NS
g ∶= ∫

[Mg(S)]virt
(−1)gλg ,

and

NS,ψ
g ∶= ∫

[M
ψ

g (S)]
virt
(−1)gλgψ ,

where ψ is a psi class inserted at the extra marked point.

The strict transform C of the line in P2 passing through P1 and P2 is the unique genus

0 curves satisfying these conditions and has normal bundle NC∣S = OP1(−1) in S. All the

higher genus maps factor through C, and as C is away from the preimage of the torus fixed

points of P2, log invariants coincide with relative invariants [AMW14].

By the proof of Proposition 1.26, we know that

∑
g≥0

NS
g u

2g−1
=

1

2 sin (u
2
)
.

We consider the moduli space M
ψ

g (P1/∞,1,1) of degree 1 genus g stable maps to P1, relative

to a point ∞ ∈ P1, and with an extra marking. Let π∶ C →Mg(P1/∞,1,1) be the universal

curve and let f ∶ C → P1 ≃ C be the universal map. We need to compute

Nψ
g,P1 ∶= ∫

[M
ψ

g (P1/∞,1,1)]virt
cg (R

1π∗f
∗
(OP1 ⊕OP1(−1)))ψ ,

where ψ is a psi class inserted at the extra marked point. Following the proof by Bryan and

Pandharipande of Theorem 5.1 in [BP05], and inserting the psi class, we find

Nψ
g,P1 = ∫

Mg,2

ψ2g−2
1 ψ2λg .

Applying formula (6) of [GP98], we obtain

Nψ
g,P1 = (2g − 1)∫

Mg,1

ψ2g−2
1 λg ,

and so

∑
g≥0

Nψ
g,P1u

2g−2
=
d

du

⎛

⎝
∑
g≥0

(∫
Mg,1

ψ2g−2
1 λg)u

2g−1⎞

⎠

=
d

du

⎛

⎝

1

2 sin (u
2
)

⎞

⎠
= −

cos (u
2
)

(2 sin (u
2
))

2
.

We degenerate S as in Section 5.3 of [GPS10], and we apply the degeneration formula in
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relative Gromov-Witten theory [Li02]. There are three ways to distribute the psi class.

Using the previous results, we obtain

−
u cos (u

2
)

(2 sin (u
2
))

2
=
⎛

⎝
∑
g≥0

N1,2,ψ
g,∆ u2g+1⎞

⎠

⎛

⎝

1

2 sin (u
2
)

⎞

⎠

2

− 2
u cos (u

2
)

(2 sin (u
2
))

2
,

and so the desired identity.
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2
The quantum tropical vertex

2.1 Scattering

In this Section, we first fix our notations for the basic objects considered in this Chapter: tori,

quantum tori and automorphisms of formal families of them. We then introduce scattering

diagrams, both classical and quantum, following [KS06], [GS11], [GPS10] and [FS15].

2.1.1 Torus

We fix T = (C∗)2 a 2-dimensional complex algebraic torus. Let M ∶= Hom(T,C∗) be the

2-dimensional lattice of characters of T . Characters form a linear basis of the algebra of

functions on T ,

Γ(OT ) = ⊕
m∈M

Czm ,

with the product given by zm ⋅ zm
′

= zm+m
′

. In other words, the algebra of functions on T

is the algebra of the lattice M : Γ(OT ) = C[M].

We fix

⟨−,−⟩∶⋀
2
M

∼
Ð→ Z

an orientation of M , i.e. an integral unimodular skew-symmetric bilinear form on M . This

defines a Poisson bracket on Γ(OT ), given by

{zm, zm
′

} = ⟨m,m′⟩zm+m
′

,

and a corresponding algebraic symplectic form Ω on T .

If we choose a basis (m1,m2) of M such that ⟨m1,m2⟩ = 1, then, denoting z1 ∶= z
m1 and

z2 ∶= z
m2 , we have identifications T = (C∗)2, M = Z2, Γ(OT ) = C[z±1 , z±2 ] and Ω = dz1

z1
∧ dz2

z2
.
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2.1.2 Quantum torus

Given the symplectic torus (T,Ω), or equivalently the Poisson algebra (Γ(OT ),{−,−}), it

is natural to look for a “quantization”. The quantum torus T̂ q is the non-commutative

“space” whose algebra of functions is the non-commutative C[q± 1
2 ]-algebra Γ(OT̂ q), with

linear basis indexed by the lattice M ,

Γ(OT̂ q) = ⊕
m∈M

C[q±
1
2 ]ẑm ,

and with product defined by

ẑm ⋅ ẑm
′

= q
1
2 ⟨m,m

′
⟩ẑm+m

′

.

The quantum torus T̂ q is a quantization of the torus T in the sense that writing q = eih̵ and

taking the limit h̵→ 0, q → 1, the linear term in h̵ of the commutator [ẑm, ẑm
′

] is determined

by the Poisson bracket {zm, zm
′

}:

[ẑm, ẑm
′

] = (q
1
2 ⟨m,m

′
⟩
− q−

1
2 ⟨m,m

′
⟩
)ẑm+m

′

= ⟨m,m′⟩ih̵ẑm+m
′

+O(h̵2
) .

We denote T̂ h̵ the non-commutative “space” whose algebra of functions is the C((h̵))-algebra

Γ(OT̂ h̵) ∶= Γ(OT̂ q) ⊗C[q±
1
2 ]

C((h̵)).

2.1.3 Automorphisms of formal families of tori

Let R be a complete local C-algebra and let mR be the maximal ideal of R. By definition

of completeness, we have

R = lim
←Ð
`

R/m`R .

We denote S ∶= Spf R the corresponding formal scheme and s0 the closed point of S defined

by mR. Let TS be the trivial family of 2-dimensional complex algebraic tori parametrized

by S, i.e. TS ∶= S × T . The corresponding algebra of functions is given by

Γ(OTS) = lim
←Ð
`

(R/m`R ⊗ Γ(OT )) = lim
←Ð
`

(R/m`R ⊗C[M]) .

Let T̂ h̵S be the trivial family of non-commutative 2-dimensional tori parametrized by S, i.e.

T̂ h̵S ∶= S × T̂
h̵. The corresponding algebra of functions is simply given by

Γ(OT̂ h̵
S
) = lim
←Ð
`

(R/m`R ⊗ Γ(OT̂ h̵)) .

The family TS of tori has a natural Poisson structure, whose symplectic leaves are the torus

fibers, and whose Poisson center is R. Explicitly, we have

{Hmz
m,Hm′z

m′
} =HmHm′{z

m, zm
′

} ,
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for every Hm,Hm′ ∈ R and m,m′ ∈M . The family T̂ h̵S of non-commutative tori is a quanti-

zation of the Poisson variety TS .

Let

H = ∑
m∈M

Hmz
m

be a function on TS whose restriction to the fiber over the closed point s0 ∈ S vanishes, i.e.

such that H = 0 mod mR. Then {H,−} defines a derivation of the algebra of functions on

TS and so a vector field on TS , the Hamiltonian vector field defined by H, whose restriction

to the fiber over the closed point s0 ∈ S vanishes.

The time one flow of this vector field defines an automorphism

ΦH ∶= exp ({H,−})

of TS , whose restriction to the fiber over the closed point s0 ∈ S is the identity. Remark that

ΦH is well-defined because of the assumptions that H = 0 mod mR and R is a complete

local algebra, i.e. exp makes sense formally.

Let VR be the subset of automorphisms of TS which are of the form ΦH for H as above. By

the Baker-Campbell-Hausdorff formula, VR is a subgroup of the group of automorphisms of

TS . In [GPS10], VR is called the tropical vertex group.

Let

Ĥ = ∑
m∈M

Ĥmẑ
m

be a function on T̂ h̵S whose restriction to the fiber over the closed point s0 ∈ S vanishes, i.e.

such that Ĥ = 0 mod mR. Conjugation by exp (Ĥ) defines an automorphism

Φ̂Ĥ ∶= Adexp(Ĥ) = exp (Ĥ) (−) exp (−Ĥ)

of T̂ h̵S whose restriction to the fiber over the closed point s0 ∈ S is the identity. Remark that

Φ̂Ĥ is well-defined because of the assumption that Ĥ = 0 mod mR and R is a compete local

algebra, i.e. everything makes sense formally. Let V̂h̵R be the subset of automorphisms of T̂ h̵S
which are of the form Φ̂Ĥ for Ĥ as above. By the Baker-Campbell-Hausdorff formula, V̂h̵R
is a subgroup from the group of automorphisms of T̂ h̵S . We call V̂h̵R the quantum tropical

vertex group1.

If the limit

H ∶= lim
h̵→0
(ih̵Ĥ)

exists, then, replacing ẑm by zm, H can be naturally viewed as a function on TS and is the

classical limit of Ĥ. It is easy to check that ΦH is the classical limit of Φ̂Ĥ .

1This group is much bigger that the “quantum tropical vertex group” of [KS11]. We will meet the group
of [KS11] in Section 2.8, under the name “BPS quantum tropical vertex group”.
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2.1.4 Scattering diagrams

In this section, we work in the 2-dimensional real plane MR ∶= M ⊗Z R. We call ray d a

half-line of rational slope in MR, and we denote md ∈M −{0} its primitive integral direction,

pointing away from the origin.

Definition 2.1. A scattering diagram D over R is a set of rays d in MR, equipped with

functions Hd such that either

Hd ∈ lim
←Ð
`

(R/m`R ⊗C[zmd]) ,

or

Hd ∈ lim
←Ð
`

(R/m`R ⊗C[z−md]) ,

and such that Hd = 0 mod mR, and for every ` ⩾ 1, only finitely many rays d have Hd ≠ 0

mod m`R.

A ray (d,Hd) such that

Hd ∈ lim
←Ð
`

(R/m`R ⊗C[zmd]) ,

is called outgoing and a ray (d,Hd) such that

Hd ∈ lim
←Ð
`

(R/m`R ⊗C[z−md]) ,

is called ingoing.

Given a ray (d,Hd), we denote m(Hd) ∶= md if (d,Hd) is outgoing, and m(Hd) ∶= −md if

(d,Hd) is ingoing. In both cases, we have

Hd ∈ lim
←Ð
`

(R/m`R ⊗C[zm(Hd)]) ,

We will always consider scattering diagrams up to the following simplifying operations:

• A ray (d,Hd) with Hd = 0 is considered as trivial and can be safely removed from the

scattering diagram.

• If two rays (d1,Hd1) and (d2,Hd2) are such that d1 = d2 and are both ingoing or

outgoing, then they can be replaced by a single ray (d,Hd), where d = d1 = d2 and

Hd = Hd1 +Hd2 . Remark that, because {Hd1 ,Hd2} = 0, we have ΦHd
= ΦHd1

ΦHd2
=

ΦHd2
ΦHd1

.

Let D be a scattering diagram. We call singular locus of D the union of the set of initial

points of rays and of the set of non-trivial intersection points of rays. Let γ∶ [0,1] →MR be

a smooth path. We say that γ is admissible if γ does not intersect the singular locus of D,

if the endpoints of γ are not on rays of D, and if γ intersects transversely all the rays of D.

Let γ be an admissible smooth path in MR. Let ` ⩾ 1 be a positive integer. By definition, D

contains only finitely many rays (d,Hd) with Hd ≠ 0 mod m`R. So there exist finitely many
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0 < t1 ⩽ ⋅ ⋅ ⋅ ⩽ ts < 1, the times of intersection of γ with rays (d1,Hd1), . . . , (ds,Hds) of D such

that Hdr ≠ 0 mod ml. For r = 1, . . . , s, we define εr ∈ {±1} to be the sign of ⟨m(Hdi), γ
′(tr)⟩.

We then define

θγ,D,` ∶= ΦεsHds
. . .Φε1Hd1

.

Taking the limit `→ +∞, we define

θγ,D ∶= lim
`→+∞

θγ,D,` .

Definition 2.2. A scattering diagram D over R is consistent if, for every closed admissible

smooth path γ∶ [0,1] →MR, we have θγ,D = id .

The following result is due to Kontsevich-Soibelman [KS06], Theorem 6 (see also Theorem

1.4 of [GPS10]).

Proposition 2.3. Any scattering diagram D can be canonically completed by adding only

outgoing rays to form a consistent scattering diagram S(D).

Proof. It is enough to show that for every non-negative integer `, it is possible to add

outgoing rays to D to get a scattering diagram D` consistent at the order `, i.e. such that

θγ,D`
= id mod m`+1

R . The construction is done by induction on l, starting with D0 = D.

Let us assume we have constructed D`−1, consistent at the order ` − 1. Let p be a point in

the singular locus of D`−1 and let γ be a small anticlockwise closed loop around p. As D`−1

is consistent at the order ` − 1, we can write θγ,D`−1
= ΦH for some H with H = 0 mod m`R.

There are finitely many mj ∈M − {0} primitive such that we can write

H = ∑
j

Hj mod m`+1
R

with Hj ∈ m`RR ⊗ C[zmj ]. We construct D` by adding to D`−1 the outgoing rays (p +

R⩾0mj ,Φ−Hj).

Adding hats everywhere, we get the definition of a quantum scattering diagram D̂, with

functions

Ĥd ∈ lim
←Ð
`

(R/m`R ⊗C((h̵))[ẑmd]) ,

for outgoing rays and

Ĥd ∈ lim
←Ð
`

(R/m`R ⊗C((h̵))[ẑ−md]) ,

for ingoing rays, the notion of consistent quantum scattering diagram, and the fact that

every quantum scattering diagram D̂ can be canonically completed by adding only outgoing

rays to form a consistent quantum scattering diagram S(D̂).

We will often call Ĥd the Hamiltonian attached to the ray d.

Remark: A general notion of scattering diagram, as in Section 2 of [KS13], takes as input

a lattice M and a M -graded Lie algebra g. What we call a (classical) scattering diagram is

the special case where M is the lattice of characters of a 2-dimensional symplectic torus T
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and where g = (Γ(OTS),{−,−}). What we call a quantum scattering diagram is the special

case where M is the lattice of characters of a 2-dimensional symplectic torus T and where

g = (Γ(OT̂ h̵
S
), [−,−]).

Remark: In our definition of a scattering diagram, we attach to each ray d a function

Hd = ∑
`⩾0

Hlz
`m(Hd) ,

such that Hd = 0 mod mR, which can be interpreted as Hamiltonian generating an auto-

morphism

ΦHd
= exp ({Hd,−}) .

In [GPS10], [GS11] or [FS15], the terminology is slightly different. To a ray d, they attach

a function

fd = ∑
`⩾0

c`z
`m(Hd) ,

such that fd = 1 mod mR, and, to a path γ(t) intersecting transversely d at time t0, an

automorphism

θfd,γ ∶ z
m
↦ zmf

⟨nd,m⟩
d ,

where nd is the primitive generator of d such that ⟨nd, γ
′(t0)⟩ > 0. These two choices are

equivalent. Indeed, if ε is the sign of ⟨m(Hd), γ
′(t0)⟩, we have

ΦεHd
= θfd,γ

if Hd and fd are related by

log fd = ∑
`⩾0

`H`z
`m(Hd) .

The formalism of [GS11] is more general because it treats the Calabi-Yau case and not

just a holomorphic symplectic case. For our purposes, focused on a holomorphic symplectic

situation, using the Hamiltonians Hd rather than the functions fd makes the quantization

step transparent. The quantum version of the functions fd will be studied and used in

Chapter 3.

2.2 Gromov-Witten theory of log Calabi-Yau surfaces

Our main result, Theorem 2.6, is an enumerative interpretation of a class of quantum scat-

tering diagrams, as introduced in the previous Section 2.1, in terms of higher genus log

Gromov-Witten invariants of a class of log Calabi-Yau surfaces. In Section 2.2.1 we re-

view the definition of these log Calabi-Yau surfaces, following [GPS10]. We define the

relevant higher genus log Gromov-Witten invariants in Sections 2.2.2 and 2.2.3. We give a

3-dimensional interpretation of these invariants in Section 2.2.4. Finally, we give a general-

ization of these invariants to some orbifold context in Section 2.2.5.
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2.2.1 Log Calabi-Yau surfaces

We fix m = (m1, . . . ,mn) an n-tuple of primitive non-zero vectors of M = Z2. The fan in

R2 with rays −R⩾0m1, . . . ,−R⩾0mn defines a toric surface Y m. Let Dm1 , . . . ,Dmn be the

corresponding toric divisors. If m1, . . . ,mn do not span M , i.e. if Y m is non-compact, we

add some extra rays to the fan to make it span M and we still denote Y m the corresponding

compact toric surfaces. The choice of the added rays will be irrelevant for us (because of

the log birational invariance result in log Gromov-Witten theory proved in [AW13]).

For every j = 1, . . . , n, we blow-up a point xj in general position on the toric divisor Dmj
2.

Remark that it is possible to have R⩾0mj = R⩾0mj′ , and so Dmj =Dmj′ , for j ≠ j′, and that

in this case we blow-up several distinct points on the same toric divisor. We denote Ym the

resulting projective surface and ν∶Ym → Y m the blow-up morphism. Let Ej ∶= ν
−1(xj) be

the exceptional divisor over xj . We denote ∂Ym the strict transform of the toric boundary

divisor. The divisor ∂Ym is an anticanonical cycle of rational curves and so the pair (Ym, ∂Ym)

is an example of log Calabi-Yau surface with maximal boundary.

2.2.2 Curve classes

We want to consider curves in Ym meeting ∂Ym in a unique point. We first explain how

to parametrize the relevant curve classes in terms of their intersection numbers pj with the

exceptional divisors Ej .

Let p ∶= (p1, . . . , pn) ∈ P ∶= Nn. We assume that ∑
n
j=1 pjmj ≠ 0 and so we can uniquely write

n

∑
j=1

pjmj = `pmp ,

with mp ∈M primitive and `p ∈ N.

We explain now how to define a curve class βp ∈ H2(Ym,Z). In short, βp is the class of a

curve in Ym having for every j = 1, . . . , n, intersection number pj with the exceptional divisor

Ej , and exactly one intersection point with the anticanonical cycle ∂Ym.

More precisely, the vector mp ∈M belongs to some cone of the fan of Y m and we write the

corresponding decomposition

mp = a
L
pm

L
p + a

R
pm

R
p ,

where mL
p , mR

p ∈M are primitive generators of rays of the fan of Y m and where aLp , aRp ∈ N.

Remark that there is only one term in this decomposition if the ray R⩾0mp coincides with

one of the rays of the fan of Y m. Let DL
p and DR

p be the toric divisors corresponding to the

rays R⩾0mL
p and R⩾0mR

p . Let β ∈ H2(Y m,Z) be determined by the following intersection

numbers with the toric divisors:

2By deformation invariance of log Gromov-Witten invariants, the precise choice of xj will be irrelevant
for us.
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• Intersection number with Dmj , 1 ⩽ j ⩽ n, distinct from DL
p and DR

p :

β.Dmj = ∑
j′,Dmj′ =Dmj

pj′ .

• Intersection number with DL
p :

β.DL
p = `pa

L
p + ∑

j,Dmj =D
L
p

pj .

• Intersection number with DR
p :

β.DR
p = `pa

R
p + ∑

j,Dmj =D
R
p

pj .

• Intersection number with every toric divisor D different from the Dmj , j = 1, . . . , n,

and from DL
p and DR

p : β.D = 0.

Such class β ∈H2(Y m,Z) exists by standard toric geometry because of the relation

n

∑
j=1

pjmj = `pmp .

Finally, we define

βp ∶= ν
∗β −

n

∑
j=1

pjEj ∈H2(Ym,Z) .

By construction, we have

βp.Ej = pj ,

for j = 1, . . . , n,

βp.D
L
p = `pa

L
p ,

βp.D
R
p = `pa

R
p ,

and

βp.D = 0 ,

for every component D of ∂Ym distinct from DL
p and DR

p .

2.2.3 Log Gromov-Witten invariants

For every p = (p1, . . . , pn) ∈ P = Nn, we defined in the previous Section 2.2.2 positive integers

`p, a
L
p , aRp , some componentsDL

p andDR
p of the divisor ∂Ym and a curve class βp ∈H2(Ym,Z).

We would like to consider genus g stable maps f ∶C → Ym of class βp, intersecting properly

the components of ∂Ym, and meeting ∂Ym in a unique point. At this point, such a map

necessarily has an intersection number `pa
L
p with DL

p and `pa
R
p with DR

p .

The space of such stable maps is not proper in general: a limit of curves intersecting properly

∂Ym does not necessarily intersect ∂Ym properly. A nice compactification of this space is
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obtained by considering stable log maps. The idea is to allow maps intersecting ∂Ym non-

properly, but to remember some additional information under the form of log structures,

which give a way to make sense of tangency conditions even for non-proper intersections. The

theory of stable log maps3 has been developed by Gross and Siebert [GS13], and Abramovich

and Chen [Che14b], [AC14]. We refer to Kato [Kat89] for elementary notions of log geometry.

We consider the divisorial log structure on Ym defined by the divisor ∂Ym and use it to see

Ym as a smooth log scheme.

Let Mg,p(Ym/∂Ym) be the moduli space of genus g stable log maps to Ym, of class βp, with

contact order along ∂Ym given by `pmp. It is a proper Deligne-Mumford stack of virtual

dimension g and it admits a virtual fundamental class

[Mg,p(Ym/∂Ym)]
virt
∈ Ag(Mg,p(Ym/∂Ym),Q) .

If π∶ C →Mg,p(Ym/∂Ym) is the universal curve, of relative dualizing sheaf ωπ, then the Hodge

bundle

E ∶= π∗ωπ

is a rank g vector bundle over Mg,p(Ym/∂Ym). Its Chern classes are classically called the

lambda classes, λj ∶= cj(E) for j = 0, . . . , g. Finally, we define the genus g log Gromov-Witten

invariants of Ym which will be of interest for us by

NYm
g,p ∶= ∫

[Mg,p(Ym/∂Ym)]virt
(−1)gλg ∈ Q .

Remark that the top lambda class λg has exactly the right degree to cut down the virtual

dimension from g to zero, so that NYm
g,p is not obviously zero.

The fact that the top lambda class should be the natural insertion to consider for some

higher genus version of [GPS10] was already suggested in Section 5.8 of [GPS10]. From our

point of view, higher genus invariants with the top lambda class inserted are the correct

objects because it is to them that the correspondence tropical theorem of Chapter 1 applies.

In Section 2.9, we will explain how our main result Theorem 2.6 fits into an expected story

for higher genus open holomorphic curves in Calabi-Yau 3-folds. This is probably the most

conceptual understanding of the role of the invariants NYm

g,β : they are really higher genus

invariants of the log Calabi-Yau 3-fold Ym×P1, and the top lambda class is simply a measure

of the difference between surface and 3-fold obstruction theories. This will be made precise

in the following Section 2.2.4, whose analogue for K3 surfaces is well-known, see Lemma 7

of [MPT10].

2.2.4 3-dimensional interpretation of the invariants NYm
g,p

In this Section, we rewrite the log Gromov-Witten invariants NYm
g,p of the log Calabi-Yau

surface Ym in terms of 3-dimensional geometries, first S ×C and then S × P1.

We endow the 3-fold Ym×C with the smooth log structure given by the divisorial log structure

3By stable log maps, we always mean basic stable log maps in the sense of [GS13].

101



along the divisor ∂Ym ×C. Let

Mg,p(Ym ×C/∂Ym ×C)

be the moduli space of genus g stable log maps to Ym, of class βp, with contact order along

∂Ym ×C given by `pmp. It is a Deligne-Mumford stack of virtual dimension 1 and it admits

a virtual fundamental class

[Mg,p(Ym/∂Ym)]
virt
∈ A1(Mg,p(Ym/∂Ym),Q) .

Because C is not compact, Mg,p(Ym ×C/∂Ym ×C) is not compact and so one cannot simply

integrate over the virtual class. Using the standard action of C∗ on C, fixing 0 ∈ C, we get

an action of C∗ on Mg,p(Ym ×C/∂Ym ×C), with its perfect obstruction theory, whose fixed

point locus is the space of stable log maps mapping to Ym × {0}, i.e. Mg,p(Ym/∂Ym), with

its natural perfect obstruction theory. Given the virtual localization formula [GP99], it is

natural to define equivariant log Gromov-Witten invariants

NYm×C
g,p ∶= ∫

[Mg,p(Ym/∂Ym)]virt

1

e(Norvirt
)
∈ Q(t) ,

where Norvirt is the equivariant virtual normal bundle of Mg,p(Ym/∂Ym) in

Mg,p(Ym ×C/∂Ym ×C) ,

e(Norvirt
) is its equivariant Euler class, and t is the generator of the C∗-equivariant coho-

mology of a point.

Lemma 2.4. We have

NYm×C
g,p =

1

t
NYm
g,p .

Proof. Because the 3-dimensional geometry Ym ×C, including the log/tangency conditions,

is obtained from the 2-dimensional geometry Ym by a trivial product with a trivial factor

C, with C∗ scaling this trivial factor, the virtual normal at a stable log map f ∶C → Ym is

H0(C, f∗O) −H1(C, f∗O) = t −E∨ ⊗ t so

1

e(Norvirt
)
=

1

t
(

g

∑
i=0

(−1)iλit
g−i
) ,

and

NYm×C
g,p = ∫

[Mg,p(Ym,∂Ym)]virt

(−1)gλg

t
=

1

t
NYm
g,p .

Remark: The proof of Lemma 2.4 is identical to the proof of Lemma 7 in [MPT10] up

to some small point: in [MPT10], counts of expected dimensions work because of the use

of a reduced Gromov-Witten theory of K3 surfaces, whereas for us, counts of expected

dimensions work because of the use of log Gromov-Witten theory.
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We consider now the 3-fold Zm ∶= Ym×P1 with the smooth log structure given by the divisorial

log structure along the divisor

∂Zm ∶= (∂Ym × P1
) ∪ (Ym × {0}) ∪ (Ym × {∞}) .

The divisor ∂Zm is anticanonical, containing zero-dimensional strata, and so the pair (Zm, ∂Zm)

is an example of log Calabi-Yau 3-fold with maximal boundary.

Let

Mg,p(Zm/∂Zm)

be the moduli space of genus g stable log maps to Zm, of class βp, with contact order along

∂Zm given by `pmp. It is a proper Deligne-Mumford stack of virtual dimension 1 and it

admits a virtual fundamental class

[Mg,p(Zm/∂Zm)]
virt
∈ A1(Mg,p(Zm/∂Zm),Q) .

Composing the natural evaluation map at the contact order point with ∂Zm with the pro-

jection ∂Zm → P1, we get a map ρ∶Mg,p(Zm/∂Zm) → P1 and we define log Gromov-Witten

invariants

NZm
g,p ∶= ∫

[Mg,p(Zm/∂Zm)]virt
ρ∗(pt) ∈ Q ,

where pt ∈ A1(P1) is the class of a point.

Lemma 2.5. We have

NZm
g,p = N

Ym
g,p .

Proof. We use virtual localization [GP99] with respect to the action of C∗ on the P1-factor

with weight t at 0 and weight −t at ∞. We choose pt0 as equivariant lift of pt ∈ A1(P1).

Because of the insertion of pt0 = t, only the fixed point 0 ∈ P1, and not ∞ ∈ P1, contributes

to the localization formula, and we get

NZm
g,p = tN

Ym×C
g,p ,

hence the result by Lemma 2.4.

2.2.5 Orbifold Gromov-Witten theory

We give an orbifold generalization of Sections 2.2.1, 2.2.2, 2.2.3, which will be necessary to

state Theorem 2.7 in Section 2.7.2.

As in Section 2.2.1, we fix m = (m1, . . . ,mn) an n-tuple of primitive non-zero vectors of

M = Z2 and this defines a toric surface Y m, with toric divisors Dmj , 1 ⩽ j ⩽ n. For every

r = (r1, . . . , rn) an n-tuple of positive integers, we define a projective surface Ym,r by blowing-

up a subscheme of length rj in general position on the toric divisor Dmj , for every 1 ⩽ j ⩽ n.

For r = (1, . . . ,1), we simply have Ym,r = Ym defined in Section 2.2.1.

Let ν∶Ym,r → Y m be the blow-up morphism. If rj ⩾ 2, then Ym,r has a Arj−1-singularity on
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the exceptional divisor Ej ∶= ν
−1(xj). We will consider Ym,r as a Deligne-Mumford stack

by taking the natural structure of smooth Deligne-Mumford stack on a Arj−1 singularity.

The exceptional divisor Ej is then a stacky projective line P1[rj ,1], with a single Z/rj
stacky point 0 ∈ P1[rj ,1]. The normal bundle to Ej in Ym,r is the orbifold line bundle

OP1[rj ,1](−[0]/(Z/rj)) of degree −1/rj , and in particular we have E2
j = −1/rj .

Denote Pr the set of (p1, . . . , pn) ∈ P = Nn such that rj divides pj , for every 1 ⩽ j ⩽ n.

Exactly as in Section 2.2.2, we define for every p ∈ Pr a curve class βp ∈ H2(Ym,r,Z). The

only difference is that now we have

βp.Ej =
pj

rj
.

We denote ∂Ym,r the strict transform of the toric boundary divisor ∂Y m of Y m, and we

endow Ym with the divisorial log structure define by ∂Ym. So we see Ym,r as a smooth

Deligne-Mumford log stack. Because the non-trivial stacky structure is disjoint from the

divisor ∂Ym,r supporting the non-trivial log structure, there is no difficulty in combining

orbifold Gromov-Witten theory, [AGV08], [CR02], with log Gromov-Witten theory, [GS13],

[Che14b], [AC14], to get a moduli space Mg,p(Ym,r/∂Ym,r) of genus g stable log maps to Ym,r,

of class βp, with contact order along ∂Ym,r given by `pmp. It is a proper Deligne-Mumford

stack of virtual dimension g, admitting a virtual fundamental class

[Mg,p(Ym,r/∂Ym,r)]
virt
∈ Ag(Mg,p(Ym,r/∂Ym,r),Q) .

We finally define genus g orbifold log Gromov-Witten invariants of Ym,r by

NYm,r
g,p ∶= ∫

[Mg,p(Ym,r/∂Ym,r)]virt
(−1)gλg ∈ Q .

2.3 Main results

In Section 2.3.1, we state the main result of the present Chapter, Theorem 2.6, precise

form of Theorem 2 mentioned in the Introduction. In Section 2.3.2, we give elementary

examples illustrating Theorem 2.6. In Section 2.3.3, we state Theorem 2.7, a generalization

of Theorem 2.6 including orbifold geometries. Finally, we give in Section 2.3.4 some brief

comments about the level of generality of Theorems 2.6 and 2.7.

2.3.1 Statement

Using the notations of Section 2.1, we define a family of consistent quantum scattering

diagrams. Our main result, Theorem 2.6, is that the Hamiltonians attached to the rays of

these quantum scattering diagrams are generating series of the higher genus log Gromov-

Witten invariants defined in Section 2.2.

We fix m = (m1, . . . ,mn) an n-tuple of primitive non-zero vectors of M . We denote P ∶= Nn

and we take R ∶= C[[P ]] = C[[t1, . . . , tn]] as complete local C-algebra. Let D̂m be the quantum

104



scattering diagram over R consisting of incoming rays (dj , Ĥdj), 1 ⩽ j ⩽ n, where

dj = −R⩾0mj ,

and

Ĥdj = −i∑
`⩾1

1

`

(−1)`−1

2 sin ( `h̵
2
)
t`j ẑ

`mj = ∑
`⩾1

1

`

(−1)`−1

q
`
2 − q−

`
2

t`j ẑ
`mj ,

where q = eih̵.

Let S(D̂m) be the corresponding consistent quantum scattering diagram given by Proposi-

tion 2.3, obtained by adding outgoing rays to D̂m. We can assume that, for every m ∈M−{0}

primitive, S(D̂m) contains a unique outgoing ray of support R⩾0m.

For every m ∈M −{0} primitive, let Pm be the subset of p = (p1, . . . , pn) ∈ P = Nn such that

∑
n
j=1 pjmj is positively collinear with m:

n

∑
j=1

pjmj = `pm

for some `p ∈ N.

Recall that in Section 2.2, for every m = (m1, . . . ,mn), we introduced a log Calabi-Yau

surface Ym and for every p = (p1, . . . , pn) ∈ P = Nn, we defined some genus g log Gromov-

Witten NYm
g,p of Ym.

Theorem 2.6. For every m = (m1, . . . ,mn) an n-tuple of primitive non-zero vectors in M

and for every m ∈M−{0} primitive, the Hamiltonian Ĥm attached to the outgoing ray R⩾0m
in the consistent quantum scattering diagram S(D̂m) is given by

Ĥm = (−
i

h̵
) ∑
p∈Pm

⎛

⎝
∑
g⩾0

NYm
g,p h̵

2g⎞

⎠

⎛

⎝

n

∏
j=1

t
pj
j

⎞

⎠
ẑ`pm .

Remarks:

• In the classical limit h̵ → 0, Theorem 2.6 reduces to the main result (Theorem 5.4) of

[GPS10], expressing the classical scattering diagram S(Dm) in terms of the genus zero

log Gromov-Witten invariants NYm

0,p
4.

• The proof of Theorem 2.6 takes Sections 2.4, 2.5 2.6, and 2.7. In Section 2.2.3, we

define higher genus log Gromov-Witten invariants NY m
g,w of toric surfaces Y m. In

Section 2.5, we prove a degeneration formula expressing the log Gromov-Witten invari-

ants NYm
g,p of the log Calabi-Yau surface Ym in terms of log Gromov-Witten invariants

NY m
g,w of the toric surface Y m. In Section 2.6, we review, following [FS15], the rela-

tion between quantum scattering diagrams and Block-Göttsche q-deformed tropical

curve count. In Section 2.7, we conclude the proof by using Theorem 1.4, the main

4In [GPS10], the genus zero invariants are defined as relative Gromov-Witten invariants of some open
geometry. The fact that they coincide with genus zero log Gromov-Witten invariants follows from the cycle
arguments used in the proofs of Proposition 1.10 and Lemma 2.12.
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result of Chapter 1, relating q-deformed tropical curve count and higher genus log

Gromov-Witten invariants of toric surfaces.

• The consistency of the quantum scattering diagram S(D̂m) translates into the fact

that the product, ordered according to the phase of the rays, of the elements Φ̂Ĥj ,

j = 1, . . . , n, and Φ̂Ĥm
, m ∈ M − {0} primitive, of the quantum tropical vertex group

V̂h̵R, is equal to the identity. So one can paraphrase Theorem 2.6 by saying that the

log Gromov-Witten invariants NYm
g,p produce relations in the quantum tropical vertex

group V̂h̵R, or conversely that relations in V̂h̵R give constraints on the log Gromov-

Witten invariants NYm
g,p .

• The automorphism Φ̂Ĥj attached to the incoming rays dj of the quantum scattering

diagram S(D̂m) are conjugation by eĤdj , i.e. by

exp(∑
`⩾1

1

`

(−1)`−1

q
`
2 − q−

`
2

t`j ẑ
`mj) ,

which can be written as Ψq(−tj ẑ
mj) where

Ψq(x) ∶= exp(−∑
`⩾1

1

`

x`

q
`
2 − q−

`
2

) = ∏
k⩾0

1

1 − qk+
1
2x

,

is the quantum dilogarithm5. We refer for example to [Zag07] for a nice review of the

many aspects of the dilogarithm, including its quantum version.

As the incoming rays of S(D̂m) are expressed in terms of quantum dilogarithms, it

is natural to ask if the outgoing rays, which by Theorem 2.6 are generating series

of higher genus log Gromov-Witten invariants, can be naturally expressed in terms

of quantum dilogarithms. This question is related to the multicover/BPS structure

of higher genus log Gromov-Witten theory and is fully answered by Theorem 3 in

Section 2.8.

2.3.2 Examples

In this Section, we give some elementary examples illustrating Theorem 2.6.

Trivial scattering: propagation of a ray.

We take n = 1 and m = (m1) with m1 = (1,0) ∈ M = Z2. In this case, R = C[[t1]], and

the quantum scattering diagram D̂m contains a unique incoming ray: d1 = −R⩾0(1,0) =
R⩾0(−1,0) equipped with

Ĥd1 = −i∑
`⩾1

1

`

(−1)`−1

2 sin ( `h̵
2
)
t`1ẑ
(`,0) .

5Warning: various conventions are used for the quantum dilogarithm throughout the literature.

106



Then the consistent scattering diagram S(D̂m) is obtained by simply propagating the in-

coming ray, i.e. by adding the outgoing ray R⩾0(1,0) equipped with

Ĥ(1,0) = −i∑
`⩾1

1

`

(−1)`−1

2 sin ( `h̵
2
)
t`1ẑ
(`,0) .

We start with a fan consisting of the ray R⩾0(−1,0). To get a proper toric surface, we add

to the fan the rays R⩾0(1,0), R⩾0(0,1) and R⩾0(0,−1). The corresponding toric surface Y m

is simply P1 × P1. We get Ym by blowing-up a point on {0} ×C∗, e.g. {0} × {1}. Denote E

the exceptional divisor and F the strict transform of P1 × {1}. We have E2 = F 2 = −1 and

E.F = 1. For ` ∈ P = N, we have β` = `[F ]. So, according to Theorem 2.6, one should have,

for every ` ⩾ 1,

∑
g⩾0

NYm

g,` h̵
2g−1
=

1

`

(−1)`−1

2 sin ( `h̵
2
)
.

As F is rigid, contributions to Ng,` only come from ` to 1 multicoverings of F and the

computation of Ng,` can be reduced to a computation in relative Gromov-Witten theory of

P1. Using Theorem 5.1 of [BP05], one can check that the above formula is indeed correct. We

refer for more details to Lemma 2.20 which plays a crucial role in the proof of Theorem 2.6.

Simple scattering of two rays

We take n = 2 and m = (m1,m2) with m1 = (1,0) ∈ M = Z2 and m2 = (0,1) ∈ M = Z2. In

this case, R = C[[t1, t2]], and the quantum scattering diagram D̂m contains two incoming

rays d1 = R⩾0(−1,0) and d2 = R⩾0(0,−1), respectively equipped with

Ĥd1 = −i∑
`⩾1

1

`

(−1)`−1

2 sin ( `h̵
2
)
t`1ẑ
(`,0) ,

and

Ĥd2 = −i∑
`⩾1

1

`

(−1)`−1

2 sin ( `h̵
2
)
t`2ẑ
(0,`) .

Then, because of the Faddeev-Kashaev [FK94] pentagon identity

Ψq(z
(1,0)
)Ψq(z

(0,1)
) = Ψq(z

(0,1)
)Ψq(z

(1,1)
)Ψq(z

(1,0)
)

satisfied by the quantum dilogarithm Ψq, the consistent scattering diagram S(D̂m) is ob-

tained by propagation of the two incoming rays in outgoing rays, as in 2.3.2, and by addition

of a third outgoing ray R⩾0(1,1) equipped with

Ĥ(1,1) = −i∑
`⩾1

1

`

(−1)`−1

2 sin ( `h̵
2
)
t`1t

`
2ẑ
(`,`) .

We start with the fan consisting of the rays R⩾0(−1,0) and R⩾0(0,−1). To get a proper

toric surface, we can for example add to the fan the ray R⩾0(1,1). The corresponding toric

surface Y m is simply P2, with its toric divisors D1, D2, D3. We get Ym by blowing a point

p1 on D1 and a point p2 on D2, both away from the torus fixed points. We denote E1 and
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E2 the corresponding exceptional divisors and F the strict transform of the unique line in

P2 passing through p1 and p2. We have E2
1 = E

2
2 = F

2 = −1 and E1.F = E2.F = 1. For ` ∈ N
and (`, `) ∈ P = N2, we have β(`,`) = `[F ]. So according to Theorem 2.6, one should have,

for every ` ⩾ 1,

∑
g⩾0

NYm

g,(`,`)
h̵2g−1

=
1

`

(−1)`−1

2 sin ( `h̵
2
)
.

As F is rigid, contributions to Ng,(`,`) only come from ` to 1 multicoverings of F and the

computations of Ng,(`,`) reduces to a computation identical to the one used for Ng,` in the

case of trivial scattering.

More complicated scatterings

Already at the classical level of [GPS10], general scattering diagrams can be very compli-

cated. A fortiori, general quantum scattering diagrams are extremely complicated. Direct

computation of the higher genus log Gromov-Witten invariants NYm
g,p is a difficult problem

in general. In particular, unlike what happens in the two previously described examples,

linear systems defined by βp and the tangency condition contain in general curves of posi-

tive genus, and so genus g > 0 stable log maps appearing in the moduli space defining NYm
g,p

do not factor through genus zero curves in general. As consistent scattering diagrams can

be algorithmically computed, one can view Theorem 2.6 as an answer to the problem of

effectively computing the higher genus log Gromov-Witten invariants NYm
g,p .

2.3.3 Orbifold generalization

As in Section 5.5 and 5.6 of [GPS10] for the classical case, we can give an enumera-

tive interpretation of quantum scattering diagrams more general than those considered in

Theorem 2.6 if we allow ourself to work with orbifold Gromov-Witten invariants.

We fix m = (m1, . . . ,mn) an n-tuple of primitive non-zero vectors of M = Z2 and r =

(r1, . . . , rn) an n-tuple of positive integers. We denote P ∶= Nn and we take R ∶= C[[P ]] ∶=
C[[t1, . . . , tn]] as complete local C-algebra. Let Pr be the set of p = (p1, . . . , pn) ∈ P such

that rj divides pj for every 1 ⩽ j ⩽ n. Let D̂m,r be the quantum scattering diagram over R

consisting of incoming rays (dj , Ĥdj), 1 ⩽ j ⩽ n, where

dj = −R⩾0mj ,

and

Ĥdj = −i∑
`⩾1

1

`

(−1)`−1

2 sin (
rj`h̵

2
)
t
rj`
j ẑrj`mj = ∑

`⩾1

1

`

(−1)`−1

q
rj`

2 − q−
rj`

2

t
rj`
j ẑrj`mj ,

where q = eih̵. Let S(D̂m,r) be the corresponding consistent quantum scattering diagram

given by Proposition 2.3, obtained by adding outgoing rays to D̂m,r. For every m ∈M −{0},

let Pr,m be the subset of p = (p1, . . . , pn) ∈ Pr such that ∑
n
j=1 pjmj is positively collinear with

m:
n

∑
j=1

pjmj = `pm
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for some `p ∈ N.

Recall that in Section 2.2.5, for every m = (m1, . . . ,mn) and r = (r1, . . . , rn), we introduced

an orbifold log Calabi-Yau surface Ym,r and for every p = (p1, . . . , pn) ∈ Pr, we defined some

genus g orbifold log Gromov-Witten N
Ym,r
g,p of Ym,r.

Theorem 2.7. For every m = (m1, . . . ,mn) an n-tuple of primitive non-zero vectors in M ,

every r = (r1, . . . , rn) an n-tuple of positive integers and for every m ∈M −{0} primitive, the

Hamiltonian Ĥm attached to the outgoing ray R⩾0m in the consistent quantum scattering

diagram S(D̂m,r) is given by

Ĥm = (−
i

h̵
) ∑
p∈Pr,m

⎛

⎝
∑
g⩾0

NYm,r
g,p h̵2g⎞

⎠

⎛

⎝

n

∏
j=1

t
pj
j

⎞

⎠
ẑ`pm .

Remarks:

• For r = (1, . . . ,1), Theorem 2.7 reduces to Theorem 2.6.

• In the classical limit h̵→ 0, Theorem 2.6 reduces to Theorem 5.6 of [GPS10].

• The proof of Theorem 2.7 is entirely parallel to the proof of its special case Theorem 2.6.

The key point is that orbifold and logarithmic questions never interact in a non-trivial

way. The only major needed modification is an orbifold version of the multicovering

formula of Lemma 2.20. This is done in Lemma 2.25, Section 2.7.2.

2.3.4 More general quantum scattering diagrams

We still fix m = (m1, . . . ,mn) an n-tuple of primitive vectors of M = Z2 and we continue

to denote P = Nn, so that R = C[[P ]] = C[[t1, . . . , tn]]. One could try to further generalize

Theorem 2.7 by starting with a quantum scattering diagram over R consisting of incoming

rays (dj , Ĥdj), 1 ⩽ j ⩽ n, where dj = −R⩾0mj , and where

Ĥdj = ∑
`⩾1

Ĥdj ,`t
`
j ẑ
`mj ,

for arbitrary

Ĥdj ,` ∈ C[[h̵]] .

In the classical limit h̵ → 0, Theorem 5.6 of [GPS10], classical limit of our Theorem 2.7, is

enough to give an enumerative interpretation of the resulting consistent scattering diagram

in such generality. Indeed, the genus zero orbifold Gromov-Witten story takes as input

classical Hamiltonians

Hr = ∑
`⩾1

(−1)`−1

r`2
tr`zr` =

1

r
(tz)r +O((tz)r+1

) ,

for all r ⩾ 0, which form a basis of C[(tz)]. In particular, at every finite order in mR, every

classical scattering diagram consisting of n incoming rays meeting at 0 ∈ R2 coincides with a
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classical scattering diagram whose consistent completion has an enumerative interpretation

in terms of genus zero orbifold Gromov-Witten invariants.

In the quantum story, because of the extra dependence in h̵, things are more complicated.

Theorem 2.7 only covers a class of Hamiltonians Ĥdj whose form is dictated by the multi-

covering structure of higher genus orbifold Gromov-Witten theory.

2.4 Gromov-Witten theory of toric surfaces

For every m = (m1, . . . ,mn) an n-tuple of primitive non-zero vectors in M = Z2, we defined

in Section 2.2.1 a log Calabi-Yau surface Ym obtained as blow-up of some toric surface Y m,

and we introduced in Section 2.2.3 a collection of log Gromov-Witten invariants NYm
g,p of Ym.

In the present Section, we define analogue log Gromov-Witten invariants NY m
g,w of the toric

surface Y m. In the next Section 2.5, we will compare the invariants NYm
g,p of Ym and NY m

g,w of

Y m.

2.4.1 Curve classes on toric surfaces

Recall from Section 2.2.1 that Y m is a proper toric surface whose fan contains the rays

−R⩾0mj for j = 1, . . . , n. We denote ∂Y m the union of toric divisors of Y m. We want

to consider curves in Y m meeting ∂Y m in a number of prescribed points with prescribed

tangency conditions and at one unprescribed point with prescribed tangency condition.

In this Section, we explain how to parametrize the relevant curve classes in terms of the

prescribed tangency conditions wj at the prescribed points.

Let s be a positive integer and let w = (w1, . . . ,ws) be a s-tuple of non-zero vectors in M

such that for every r = 1, . . . , s, there exists 1 ⩽ j ⩽ n such that −R⩾0wr = −R⩾0mj . In

particular, the ray −R⩾0wr belongs to the fan of Y m and we denote Dwr the corresponding

toric divisor of Y m. Remark that we can have Dwr =Dwr′ even if r ≠ r′. We denote ∣wr ∣ ∈ N
the divisibility of wr ∈ M = Z2, i.e. the largest positive integer k such that one can write

wr = kv with v ∈ M . One should think about wr as defining a toric divisor Dwr and an

intersection number ∣wr ∣ with Dwr for a curve in Y m.

We assume that ∑
s
r=1wr ≠ 0 and so we can uniquely write

s

∑
r=1

wr = `wmw ,

with mw ∈M primitive and `w ∈ N.

We explain now how to define a curve class βw ∈ H2(Y m,Z). In short, βw is the class of a

curve in Y m having for every r = 1, . . . , s, an intersection point of intersection number ∣wr ∣

with Dwr , and exactly one other intersection point with the toric boundary ∂Y m.

More precisely, the vector mw ∈M belongs to some cone of the fan of Y m and we write the

corresponding decomposition

mw = a
L
wm

L
w + a

R
wm

R
w ,
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where mL
w, mR

w ∈M are primitive generators of rays of the fan of Y m and where aLw, aRw ∈ N.

Remark that there is only one term in this decomposition if the ray R⩾0mw coincides with one

of the rays of the fan of Y m. Let DL
w and DR

w be the toric divisors of Y m corresponding to the

rays R⩾0mL
w and R⩾0mR

w. Let βw ∈ H2(Y m,Z) be determined by the following intersection

numbers with the toric divisors:

• Intersection number with Dwr , 1 ⩽ r ⩽ s, distinct from DL
w and DR

w :

βw.Dwr = ∑
r′,Dwr′ =Dwr

∣wr′ ∣ ,

• Intersection number with DL
w:

βw.D
L
w = `wa

L
w + ∑

r,Dwr=D
L
w

∣wr ∣ .

• Intersection number with DR
w :

βw.D
R
w = `wa

R
w + ∑

r,Dwr=D
R
w

∣wr ∣ .

• Intersection number with every toric divisor D different from the Dwr , 1 ⩽ r ⩽ s, and

from DL
w and DR

w : βw.D = 0.

Such class βw ∈H2(Y m,Z) exists by standard toric geometry because of the relation

s

∑
r=1

wr = `wmw .

2.4.2 Log Gromov-Witten invariant of toric surfaces

In the previous Section, given w = (w1, . . . ,ws) a s-tuple of non-zero vectors in M , we defined

some positive integers `w, aLw, aRw, some toric divisors DL
w and DR

w of Y m, and a curve class

βw ∈H2(Y m,Z).

We would like to consider genus g stable map f ∶C → Y m of class βw, intersecting ∂Ym in

s + 1 points, s of them being intersection with Dwr at a point of intersection number ∣wr ∣

for r = 1, . . . , s, and the last one being a point of intersection number `wa
L
w with DL

w and

`wa
R
w with DR

w . We also would like to fix the position of the s intersection numbers with the

divisors Dwr . It is easy to check that the expected dimension of this enumerative problem is

g. As in Section 2.2.3, we will cut down the virtual dimension from g to zero by integration

of the top lambda cass.

As in Section 2.2.3, to get proper moduli spaces, we work with stable log maps. We consider

the divisorial log structure on Y m defined by the toric divisor ∂Y m and use it to view Y m as

a smooth log scheme. Let Mg,w(Y m, ∂Y m) be the moduli space of genus g stable log maps

to Y m, of class βw, with s + 1 tangency conditions along ∂Y m defined by the s + 1 vectors
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−w1, . . . ,−ws, `wmw in M . It is a proper Deligne-Mumford stack of virtual dimension g + s

and it admits a virtual fundamental class

[Mg,w(Y m, ∂Y m)]
virt
∈ Ag+s(Mg,w(Y m, ∂Y m),Q) .

For every r = 1, . . . , s, we have an evaluation map

evr ∶Mg,w(Y m, ∂Y m) →Dwr .

If π∶ C → Mg,w(Y m, ∂Y m) is the universal curve, of relative dualizing sheaf ωπ, then the

Hodge bundle E ∶= π∗ωπ is a rank g vector bundle over Mg,w(Y m, ∂Y m), of top Chern class

λg ∶= cg(E).

We define

NY m
g,w ∶= ∫

[Mg,w(Y m,∂Y m)]virt
(−1)gλg

s

∏
r=1

ev∗r(ptr) ∈ Q ,

where ptr ∈ A
1(Dwi) is the class of a point. It is a rigorous definition of the enumerative

problem sketched at the beginning of this Section.

2.5 Degeneration from log Calabi-Yau to toric

2.5.1 Degeneration formula: statement

We fix m = (m1, . . . ,mn) an n-tuple of primitive non-zero vectors inM = Z2. In Section 2.2.1,

we defined a log Calabi-Yau surface Ym obtained as blow-up of some toric surface Y m.

In Section 2.2.3, we introduced a collection of log Gromov-Witten invariants NYm
g,p of Ym,

indexed by n-tuples p = (p1, . . . , pn) ∈ P = Nn. In Section 2.4.2, we defined log Gromov-

Witten invariants NY m
g,w of the toric surface Y m indexed by s-tuples w = (w1, . . . ,ws) ∈M

s.

The main result of the present Section, Proposition 2.8, is the statement of an explicit

formula expressing the invariants NYm
g,p in terms of the invariants NY m

g,p .

We first need to introduce some notations to relate the indices p = (p1, . . . , pn) indexing the

invariants NYm
g,p and the indices w = (w1, . . . ,ws) indexing the invariants NY m

g,w . The way it

goes is imposed by the degeneration formula in Gromov-Witten theory and hopefully will

become conceptually clear in Section 2.5.4.

We fix p = (p1, . . . , pn) ∈ P = Nn. We call k a partition of p, and we write k ⊢ p, if k is an

n-tuple (k1, . . . , kn), with kj a partition of pj , for 1 ⩽ j ⩽ n. We encode a partition kj of pj

as a sequence kj = (k`j)`⩾1 of non-negative integers, all zero except finitely many of them,

such that

∑
`⩾1

`k`j = pj .

Given k a partition of p, we denote

s(k) ∶=
n

∑
j=1

∑
`⩾1

k`j .
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We now define, given a partition k of p, a s(k)-tuple

w(k) = (w1(k), . . . ,ws(k)(k))

of non-zero vectors in M = Z2, by the following formula:

wr(k) ∶= `mj

if

1 +
j

∑
j′=1

`−1

∑
`′=1

k`′j′ ⩽ r ⩽ k`j +
j

∑
j′=1

`−1

∑
`′=1

k`′j′ .

In particular, for every 1 ⩽ j ⩽ n and ` ⩾ 1, the s(k)-tuple w(k) contains k`j copies of the

vector `mj ∈ M . Remark that because mj is primitive in M , we have ` = ∣wr(k)∣, where

∣wr(k)∣ is the divisibility of wr(k) in M . Remark also that

s(k)

∑
r=1

wr(k) =
n

∑
j=1

∑
`⩾1

k`j`mj =
n

∑
j=1

pjmj = `pmp ,

and so, comparing notations of Sections 2.2.2 and 2.4.1, `w(k) = `p and mw(k) =mp.

Using the above notations, we can now state Proposition 2.8.

Proposition 2.8. For evey m = (m1, . . . ,mn) an n-tuple of primitive non-zero vectors in

M = Z2, and for every p = (p1, . . . , pn) ∈ P = Nn, the log Gromov-Witten invariants NYm
g,p of

the log Calabi-Yau surface Ym are expressed in terms of the log Gromov-Witten invariants

NY m
g,w of the toric surface Y m by the following formula:

∑
g⩾0

NYm
g,p h̵

2g−1

= ∑
k⊢p

⎛

⎝
∑
g⩾0

NY m

g,w(k)
h̵2g−1+s(k)⎞

⎠

n

∏
j=1

∏
`⩾1

1

k`j !
`k`j
⎛

⎝

(−1)`−1

`

1

2 sin ( `h̵
2
)

⎞

⎠

k`j

,

where the first sum is over all partitions k of p.

The proof of Proposition 2.8 takes Sections 2.5.2, 2.5.3, 2.5.4, 2.5.5, 2.5.6. We consider the

degeneration from Ym to Y m introduced in Section 5.3 of [GPS10] and we apply a higher

genus version of the argument of [GPS10]. Because the general degeneration formula in

log Gromov-Witten theory is not yet available, we give a proof of the needed degeneration

formula following the general strategy used in Chapter 1, which uses specific vanishing

properties of the top lambda class.

2.5.2 Degeneration set-up

We first review the construction of the degeneration considered in Section 5.3 of [GPS10].

We fix m = (m1, . . . ,mn) an n-tuple of primitive non-zero vectors in M = Z2. Recall from

Section 2.2.1 that Y m is a proper toric surface whose fan contains the rays −R⩾0mj for
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j = 1, . . . , n, and that we denote Dmj the corresponding toric divisors. For every j = 1, . . . , n,

we also choose a point xj in general position on the toric divisor Dmj . Let Y m ×C → C be

the trivial family over C and let {xj} ×C be the sections determined by the points xj . Up

to doing some toric blow-ups, which do not change the log Gromov-Witten invariants we

are considering by [AW13], we can assume that the divisors Dmj are disjoint.

The degeneration of Y m to the normal cone of Dm1 ∪ ⋅ ⋅ ⋅ ∪Dmn ,

ε
Ym
∶ Ym → C ,

is obtained by blowing-up the loci Dm1 , . . . ,Dmn over 0 ∈ C in Y m ×C. The special fiber is

given by

ε−1
Ym
(0) = Y m ∪

n

⋃
j=1

Pj ,

where NDmj ∣Y m
is the normal line bundle to Dmj in Y m, and Pj is the projective bundle over

Dmj obtained by projectivization of the rank two vector bundle ODmj ⊕NDmj ∣Y m
over Dmj .

The embeddings ODmj ↪ ODmj ⊕NDmj ∣Y m
and NDmj ∣Y m

↪ ODmj ⊕NDmj ∣Y m
induce two

sections of Pj →Dmj that we denote respectively Dmj ,∞ and Dmj ,0. In ε−1
Ym
(0), the divisor

Dmj in Y m is glued to the divisor Dmj ,0 in Pj . The strict transform of the section {xj}×C
of Y m ×C is a section Sj of ε

Ym
, whose intersection with ε−1

Ym
(0) is a point xj,∞ ∈Dmj ,∞.

We then blow-up the sections Sj , j = 1, . . . , n, in Ym and we obtain a family

εYm
∶ Ym → C, .

whose fibers away from zero are isomorphic to the surface Ym, and whose special fiber is

given by

Ym,0 ∶= ε
−1
Ym
(0) = Y m ∪

n

⋃
j=1

P̃j ,

where P̃j is the blow-up of Pj at all the points xj′,∞ such that Pj′ = Pj . We denote Ej′

the corresponding exceptional divisor in Pj and Cj′ the strict transform in P̃j of the unique

P1-fiber of Pj →Dmj containing xj′,∞. We have Ej′ .Cj′ = 1 in P̃j .

We would like to get Proposition 2.8 by application of a degeneration formula in log Gromov-

Witten theory to the family

εYm
∶ Ym → C ,

to relate the invariants NYm
g,p of the general fiber Ym to the invariants NY m

g,w of Y m which

appears as component of the special fiber Ym,0. In [GPS10], Gross-Pandharipande-Siebert

work with an ad hoc definition of the genus 0 invariants as relative Gromov-Witten invariants

of some open geometry and they only need to apply the usual degeneration formula in

relative Gromov-Witten theory. In our present setting, with log Gromov-Witten invariants

in arbitrary genus, we cannot follow exactly the same path.

Because the general degeneration formula in log Gromov-Witten theory is not yet avail-

able, we follow the strategy used in Chapter 1. We apply the decomposition formula

of Abramovich-Chen-Gross-Siebert [ACGS17a], we use the vanishing property of the top
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lambda class to restrict the terms appearing in this formula and to prove a gluing formula

by working only with torically transverse stable log maps. We review the decomposition

formula of [ACGS17a] in Section 2.5.3. In Section 2.5.4, we identify the various terms

contributing to the decomposition formula. In Section 2.5.5, we prove a gluing formula

computing each of these terms. We finish the proof of Proposition 2.8 in Section 2.5.6.

2.5.3 Statement of the decomposition formula

We consider Ym as a smooth log scheme for the divisorial log structure defined by the

divisor Ym,0 union the strict transforms of the divisors ∂Y m ×C in Y m ×C for j = 1, . . . , n.

Considering C as a smooth log scheme for the divisorial log structure defined by the divisor

{0}, we get that εYm
is a log smooth morphism. Restricting to the special fiber gives a

structure of log scheme on Ym,0 and a log smooth morphism to the standard log point ptN
(the point {0} equipped with the log structure restricted by {0} ↪ C of the divisorial log

structure on C):

εYm,0 ∶ Ym,0 → ptN .

Let Mg,p(Ym,0) be the moduli space of genus g stable log maps to εYm,0 ∶ Ym,0 → ptN, of class

βp, with a marked point of contact order `pmp. It is a proper Deligne-Mumford stack of

virtual dimension g and it admits a virtual fundamental class

[Mg,p(Ym,0)]
virt
∈ Ag(Mg,p(Ym,0),Q) .

By deformation invariance of the virtual fundamental class on moduli spaces of stable log

maps in log smooth families, we have

NYm
g,p = ∫

[Mg,p(Ym,0)]virt
(−1)gλg .

The decomposition formula of [ACGS17a] gives a decomposition of [Mg,p(Ym,0)]
virt indexed

by tropical curves mapping to the tropicalization of Ym,0. These tropical curves encode the

intersection patterns of irreducible components of stable log maps mapping to the special

fiber of the degeneration. We refer to Appendix B of [GS13] and Section 2 of [ACGS17a] for

the general notion of tropicalization of a log scheme. We denote Σ(X) the tropicalization

of a log scheme X, it is a cone complex, i.e. an abstract gluing of cones.

We start by describing the tropicalization Σ(Ym,0) of Ym,0. Tropicalizing the log mor-

phism εYm,0 ∶ Ym,0 → ptN, we get a morphism of cone complexes Σ(εYm,0)∶Σ(Ym,0) → Σ(ptN).

We have Σ(ptN) = R⩾0 and Σ(Ym,0) is naturally identified with the cone over the fiber

Σ(εYm,0)
−1(1) at 1 ∈ R⩾0. It is thus enough to describe the cone complex Σ(εYm,0)

−1(1). We

denote

Y
trop
m,0 ∶= Σ(εYm,0)

−1
(1) .

The cone complex Ytrop
m,0 is the tropicalization of

Ym,0 = Y m ∪
n

⋃
j=1

P̃j ,
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equipped with the divisorial log structure defined by the divisor ∂Y m ∪ ⋃
n
j=1 ∂P̃j . In par-

ticular, it has one vertex v0 dual to Y m and vertices vj dual to P̃j , j = 1, . . . , n. For every

j = 1, . . . , n, there is an edge ej,0 of integral length 1, connecting v0 and vj , dual to Dmj ,0,

and an unbounded edge ej,∞ attached to vj , dual to Dmj ,∞.

The best way to understand Ytrop
m,0 is probably to think about it as a modification of the

tropicalization of Y m. As Y m is simply a toric surface, its tropicalization Σ(Y m) can be

naturally identified with R2 endowed with the fan decomposition. In particular, Σ(Y m)

has one vertex v0 = 0 ∈ R2 and unbounded edges −R⩾0mj , attached to v0 and dual to the

toric boundary divisors Dmj . To go from Σ(Y m) to Ytrop
m,0 , one adds a vertex vj on each

primitive integral point of −R⩾mj , which has the effect to split −R⩾0vj into a bounded edge

ej,0 and an unbounded edge ej,∞. One still has to cut along ej,∞ and to insert there two

two-dimensional cones dual to the two “corners” of ∂P̃j which are on Dmj ,∞. In particular,

for j = 1, . . . , n, the vertex vj is 4-valent and looks locally as the fan of the Hirzebruch surface

Pj . In general, there is no global linear embedding of Ytrop
m,0 in R2.
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Figure: tropicalization of Y m.
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Figure: picture of Ytrop
m,0 .
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We refer to Definition 2.5.3 of [ACGS17a] for the general definition of parametrized tropical

curve h∶Σ → Ytrop
m,0 . It is a natural generalization of the notion of parametrized tropical

curve in R2 that we will use and review in Section 2.6.1. In particular, Σ is a graph, with

bounded and unbounded edges mapped by h to Ytrop
m,0 in an affine linear way and vertices

V of Σ are decorated by some genus g(V ). The total genus g of the parametrized tropical

curve is defined by gΓ +∑V g(V ), where gΓ is the genus of the graph Γ.

Some distinction between Ytrop
m,0 and R2, related to the fact that the components P̃j of Ym,0

are non-toric, is that the usual form of the balancing condition for tropical curve in R2 is

not necessarily valid at vertices of Γ mapping to one of the vertices vj , j = 1, . . . , n, of Ytrop
m,0 .

For vertices of Γ mapping away from vj , j = 1, . . . , n, the usual balancing condition applies.

Following Definition 4.2.1 of [ACGS17a], a decorated parametrized tropical curve is a

parametrized tropical curve h∶Γ → Ytrop
m,0 where each vertex has a further decoration by

a curve class in the stratum of Ym,0 dual to the stratum of Ytrop
m,0 where this vertex is

mapped. In short, a decorated parametrized tropical curve to Ytrop
m,0 encodes all the neces-

sary combinatorial information to be a fiber of the tropicalization of a stable log maps to

Ym,0.

The decomposition formula of [ACGS17a] involves decorated parametrized tropical curves

which are rigid in their combinatorial type. This is easy to understand intuitively: the

decomposition formula is supposed to describe how the moduli space of stable log maps

breaks into pieces under degeneration. If the moduli space of tropical curves were the trop-

icalization, and so the dual intersection complex, of the moduli space of stable log maps,

components of the moduli space of stable log maps should be in bijection with the zero

dimensional strata of the moduli space of tropical curves, i.e. with exactly rigid tropical

curves. The decomposition formula [ACGS17a] expresses that this intuitive picture is cor-

rect, at least at the virtual level.

The tropical curves relevant in the study of Mg,p(Ym,0) are genus g decorated parametrized

tropical curve Γ → Ytrop
m,0 of type p, i.e. with only one unbounded edge, of weight `p and of

direction mp, and with total curve class βp.

According to Section 4.4 of [ACGS17a], for every h∶Γ → Ytrop
m,0 rigid genus g decorated

parametrized topical curve of type p, there exists a notion of stable log map marked by h,

and a moduli space Ym,0 → ptN of stable log maps marked by h, which is a proper Deligne-

Mumford stack equipped with a virtual fundamental class [M
hk
g,p(Ym,0)]

virt. Forgetting the

marking by h gives a morphism

ih∶M
h

g,p(Ym,0) →M
h

g,p(Ym,0) .

We can finally state the decomposition formula, Theorem 4.8.1 of [ACGS17a]: we have

[Mg,p(Ym,0)]
virt
= ∑

h

nh
∣Aut(h)∣

(ih)∗[M
h

g,p(Ym,0)]
virt ,

where the sum is over rigid genus g decorated parametrized tropical curves h∶Γ → Ytrop
m,0

of type p, nh is the smallest positive integer such that after scaling by nh, h gets integral
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vertices and integral lengths, and ∣Aut(h)∣ is the order of the automorphism group of h.

2.5.4 Classification of rigid tropical curves

In order to extract some explicit information from the decomposition formula, the first step

is to identify the rigid decorated parametrized tropical curves h∶Γ → Ytrop
m,0 of type p. It is

in general a difficult question. But because we are only interested in invariants obtained

by integration of the top lambda class λg, and not in the full virtual class, the situation is

much simpler by the following Lemma.

Lemma 2.9. Let h∶Γ → Ytrop
m,0 be a genus g rigid decorated parametrized tropical curve of

type p with Γ of positive genus. Then we have

∫
[M

h

g,p(Ym,0)]virt
(−1)gλg = 0 .

Proof. If f ∶C → Ytrop
m,0 is a stable log map in M

h

g,p(Ym,0), then, by definition of the marking

by h, the dual intersection complex of C retracts onto Γ and in particular, has genus bigger

than the genus of Γ, which is positive by hypothesis. It follows that C contains a cycle of

irreducible components. By Lemma 1.7, the class λg vanishes on families of curves containing

cycles of irreducible components.

By Lemma 2.9, we only have to determine the rigid decorated parametrized tropical curves

h∶Γ→ Ytrop
m,0 of type p with Γ of genus zero.

Recall that we defined in Section 2.5.1 what is a partition of p and that we associated to

such partition k of p a positive integer s(k) and a s(k)-tuple (w1, . . . ,ws(k)) of non-zero

vectors in M = Z2. In particular, each wr(k) can be naturally written wr(k) = `mj for some

` ⩾ 0 and some 1 ⩽ j ⩽ n.

We first explain how to construct a genus g rigid decorated parametrized tropical curve

hk,g⃗ ∶Γk,g⃗ → Y
trop
m,0 with Γk,g⃗ of genus zero, for every partition k of p and for every g⃗ =

(g0, g1, . . . , gs(k)), (s(k) + 1)-tuple of non-negative integers such that ∣g⃗∣ ∶= g0 + ∑
s(k)
r=1 gr =

g. We refer to Section 2.5 of [ACGS17a] for details on the general notion of decorated

parametrized tropical curve.

Let Γk,g⃗ be the genus zero graph6 consisting of vertices V0, V1, . . . , Vs(k), bounded edges Er,

r = 1, . . . , s(k), connecting V0 to Vr, and an unbounded edge Ep attached to V0.

We define a structure of tropical curve on Γk,g⃗ by assigning:

• Genera to the vertices. We assign g0 to V0, and gr to Vr, for all 1 ⩽ r ⩽ s(k).

• Lengths to the bounded edges. We assign the length

`(Er) ∶=
1

∣wr(k)∣
=

1

`

6We assume for simplicity that mp does not coincide with any of the −mj . If not, we need to add a
2-valent vertex Vp on Ep and we have hk,g⃗(Vp) = vj for j such that mp = −mj .
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to the bounded edge Er, for all 1 ⩽ r ⩽ s(k).

Finally, we define a decorated parametrized tropical curve

hk,g⃗ ∶Γk,g⃗ → Y
trop
m,0

by the following data:

• We define hk,g⃗(V0) ∶= v0, and, writing wr(k) = lmj , hk,g⃗(Vr) ∶= vj , for all 1 ⩽ r ⩽ s(k).

• Edge markings of bounded edges. We define vV0,Er ∶= wr for all 1 ⩽ r ⩽ s(k). In

particular, the bounded edge Er has weight ∣wr(k)∣ = `. This is a valid choice because

h(Vr) − h(V0) =mj =
1

`
`mj = `(Er)vV0,Er .

This uniquely specifies an affine linear map hk,g⃗ ∣Er .

• Edge marking of the unbounded edge. We define vV0,Ep ∶= `pmp. In particular, the

unbounded edge Ep has weight `p. This uniquely specifies an affine linear map hk,g⃗ ∣Ep .

• Decoration of vertices by curve classes. We decorate V0 with the curve class βw(k) ∈

H2(Y m,Z). Writing wr(k) = `mj , we decorate the vertex Vr with the curve class

`[Cj] ∈H2(P̃j ,Z).

Figure: picture of Γk,g⃗.
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Lemma 2.10. The genus g decorated parametrized tropical curve

hk,g⃗ ∶Γk,g⃗ → Y
trop
m,0

is rigid.

Proof. This is obvious because hk,g⃗ has no contracted edge and all vertices of hk,g⃗ are mapped

to vertices of Ytrop
m,0 : it is not possible to deform hk,g⃗ without changing its combinatorial

type.
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Proposition 2.11. Every genus g rigid decorated parametrized tropical curve h∶Γ → Ytrop
m,0

of type p, with Γ of genus zero, is of the form hk,g⃗ for some k partition of p and g⃗ =

(g0, g1, . . . , gs(k)) some (s(k) + 1)-tuple of non-negative integers such that ∣g⃗∣ = g.

Proof. The argument7 is similar to the one used in the proof of Proposition 1.10, itself

a tropical version of the properness argument, Proposition 4.2, of [GPS10]. By iterative

application of the balancing condition, we will argue that the source Γ of a rigid decorated

parametrized tropical curve h∶Γ→ Ytrop
m,0 of type p not of the form hk,g⃗, necessarily contains

a closed cycle and so has positive genus.

Let h∶Γ → Ytrop
m,0 be a genus g rigid parametrized tropical curve of type p. As h is rigid,

there is no edge of Γ contracted by h. The fact that h has type p implies that h has only

one unbounded edge and this unbounded edge has weight `p and direction mp.

Lemma 2.12. Assume that there exists a vertex V of Γ such that

h(V ) ∉ {v0, v1, . . . , vn} ,

then Γ has positive genus.

Proof. We first assume that h(V ) is contained in the interior of one of the two-dimensional

cones C of Ytrop
m,0 . Because h(V ) is away from the vertices vj , the situation is locally toric

and the balancing condition has to be satisfied in h(V ). If h(V ) ∉ R⩾0mp, there is no

unbounded edge of Γ ending at V , and so by balancing, not all edges attached to h(V ) can

point towards the vertex of C, i.e. at least one edge of C points towards a boundary ray of

C. If h(V ) ∈ R⩾0mp, we can get the same conclusion: if all edges passing through h(V )

were parallel to R⩾0mp, this would contradict the rigidity of h because one could move h(V )

along R⩾0mp.

Then, we follow the proof of Proposition 1.10. Fixing a cyclic orientation on the collection

of cones and rays of Ytrop
m,0 , we can assume that this edge points towards the left (from the

point of view of the vertex of the cone, looking inside the cone) ray of C. If this edge ends on

some vertex still contained in the interior of C, then the balancing condition still applies and

so there is still an edge attached to this vertex pointing towards the left ray of C. Because

Γ has finitely many vertices, iterating this construction finitely many times, we construct a

path starting from h(V ) and ending at some vertex h(V ′) on the left boundary ray of C.

Let C′ be the two-dimensional cone of Ytrop
m,0 adjacent to C near h(V ′). Then we claim that

by the balancing condition, there exists an edge attached to h(V ′) pointing towards the left

ray of C′. Indeed, the only case for which the balancing condition is not a priori satisfied is

if h(V ′) = vj for some j. But at vj , the non-toric nature of P̃j only modifies the balancing

condition in the direction parallel to ej,0 and ej,∞: if there is an incoming edge with non-zero

transversal direction, then there is still an outgoing edge with non-zero transversal direction

(P̃j is obtained from the Hirzebruch surface Pj →Dmj by blowing-up points on the divisors

7We assume for simplicity that mp is distinct from all −mj . It is easy to adapt the argument in this
special case.
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Dmj ,∞: this does not affect the fact that the general fibers of P̃j → Dmj are still linearly

equivalent).

Iterating this construction, we get a path in Γ whose image by h in Ytrop
m,0 is a path which

intersects successive rays in the anticlockwise order. Because Γ has finitely many edges, this

path has to close eventually and so Γ contains a non-trivial closed cycle, i.e. Γ has positive

genus.

It remains to treat the case where h(V ) is in the interior of a one dimensional ray of Ytrop
m,0 .

If all the edges attached to h(V ) were parallel to the ray, this would contradict the ridigity

of h because one could move h(V ) along the ray. So at least one of the edges attached

to h(V ) is not parallel to the ray and by balancing, we can assume that there is an edge

attached to h(V ) pointing towards the 2-dimensional cone of Ytrop
m,0 left to the ray. We can

then apply the iterative argument described above.

We continue the proof of Proposition 2.11. Let us assume that Γ has genus zero. By

Lemma 2.12, every vertex V of Γ maps to one of the vertices v0, v1, . . . , vn of Γ. If there

were an edge connecting a vertex mapped to vj with a vertex mapped to vj′ , 1 ⩽ j, j′ ⩽ n

with j ≠ j′, then we could apply the iterative argument used in the proof of Lemma 2.12,

and this would contradict the assumption that Γ has genus zero.

It follows that every edge in Γ adjacent to some vertex mapped to vj for some 1 ⩽ j ⩽ n is

also adjacent to some vertex mapped to v0. As Γ is connected and there is no contracted

edges, this implies that there is a unique vertex V0 of Γ such that h(V0) = v0. As Γ is of type

p, the curve classes of the vertices mapping to vj , 1 ⩽ j ⩽ n, naturally define a partition k of

p, the genera of the various vertices define some g⃗ and it is easy to check that h = hk,g⃗.

Define

N
hk,g⃗
g,p ∶= ∫

[M
hk,g⃗
g,p (Ym,0)]virt

(−1)gλg ∈ Q .

Proposition 2.13. We have

NYm
g,p = ∑

k⊢p

∑
g⃗
∣g⃗∣=g

nhk,g⃗
∣Aut(hk,g⃗)∣

N
hk,g⃗
g,p .

Proof. This follows from integrating (−1)gλg over the decomposition formula of [ACGS17a],

reviewed at the end of Section 2.5.3. By Lemma 2.9, rigid tropical curves h∶Γ→ Ytrop
m,0 , with

Γ of positive genus, do not contribute, and by Proposition 2.11, all the relevant rigid tropical

curves h∶Γ → Ytrop
m,0 are of the form hk,g⃗ ∶Γk,g⃗ → Y

trop
m,0 for some k partition of p and some g⃗

such that ∣g⃗∣ = g.

We fix k a partition of p and g⃗ such that ∣g⃗∣ = g and we consider the decorated parametrized

tropical curve h∶Γk,g⃗ → Y
trop
m,0 .

Lemma 2.14. We have

nhk,g⃗ = lcm{∣wr(k)∣,1 ⩽ r ⩽ s(k)} .
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Proof. Recall that nhk,g⃗ is the smallest positive integer such that after scaling by nkk,g⃗ , hk,g⃗

gets integral vertices and integral lengths. By definition of hk,g⃗, vertices of hk,g⃗ are already

mapped to integral points of Ytrop
m,0 . On the other hand, bounded edges Er of Γk,g⃗ have

fractional lengths 1/∣wr(k)∣. It follows that nk,g⃗ is the least common multiple of the positive

integers ∣wr(k)∣, 1 ⩽ r ⩽ s(k).

For 1 ⩽ j ⩽ n, ` ⩾ 1 and a ⩾ 0, denote k`ja the number of vertices of Γk,g⃗ having genus a

among the k`j ones having curve class decoration `[Cj]. Remark that we have

k`j = ∑
a⩾0

k`ja ,

and
s(k)

∑
r=1

gr =
n

∑
j=1

∑
`⩾1

∑
a⩾0

ak`ja .

Lemma 2.15. The order of the automorphism group of the decorated parametrized tropical

curve hk,g⃗ ∶Γk,g⃗ → Y
trop
m,0 is given by

∣Aut(hk,g⃗)∣ =
n

∏
j=1

∏
`⩾1

∏
a⩾0

k`ja! .

Proof. For every 1 ⩽ j ⩽ n, ` ⩾ 1 and a ⩾ 0, there are k`ja of the vertices Vr having the

same curve class decoration `[Cj], the same genus a, and the attached edges have the same

weight ellmj , so permutations of these k`ja vertices define automorphisms of the decorated

tropical curve hk,g⃗. Any other permutation of the vertices of Σk permutes vertices having

different curve class decorations and/or different genus, and so cannot be an automorphism

of the decorated tropical curve.

Corollary 2.16. We have

NYm
g,p = ∑

k⊢p

∑
g⃗
∣g⃗∣=g

(lcm{∣wr(k)∣,1 ⩽ r ⩽ s(k)})
⎛

⎝

n

∏
j=1

∏
`⩾1

∏
a⩾0

1

k`ja!

⎞

⎠
N
hk,g⃗
g,p .

Proof. Combination of Proposition 2.13, Lemma 2.14 and Lemma 2.15.

2.5.5 Gluing formula

The previous Section has reduced the computation of the log Gromov-Witten invariants

NYm
g,p to the computation of invariants

N
hk,g⃗
g,p ∶= ∫

[M
hk,g⃗
g,p (Ym,0)]virt

(−1)gλg .

where M
hk,g⃗
g,p (Ym,0) is a moduli space of stable log maps to Ym,0 marked by hk,g⃗, i.e. whose

tropicalization is equipped with a retraction on hk,g⃗.
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Let f ∶C → Ym,0 be a stable log map of tropicalization hk,g⃗. Then C has irreducible compo-

nents C0,C1, . . . ,Cs(k), of genus g0, g1, . . . , gs(k) and we have

• f ∣C0 is a genus g0 stable map to Y m of class βw(k), transverse to ∂Y m, with s + 1

tangency conditions along ∂Y m defined by the s + 1 vectors −w1, . . . ,−ws, `pmp ∈M
8.

• For all 1 ⩽ r ⩽ s(k), wr(k) = lmj , f ∣Cr is a genus gr stable map to P̃j , of class `[Cj],

with a full tangency condition of order ` along Dmj ,0.

This suggests to consider the moduli space Ma,`(P̃j , ∂P̃j) of genus a stable log maps to P̃j ,
equipped with the divisorial log structure with respect to the divisor ∂P̃j , of class `[Cj],

with a full tangency condition of order ` along Dmj . It is a proper Deligne-Mumford stack

of virtual dimension a, admitting a virtual fundamental class

[Ma,`(P̃j , ∂P̃j)]virt
∈ Aa(Ma,`(P̃j , ∂P̃j),Q) .

We define

N `P̃j
a ∶= ∫

[Ma,`(P̃j ,∂P̃j)]virt
(−1)aλa ∈ Q .

The decomposition of a stable log map f ∶C → Ym,0 into irreducible components suggests

that we should be able to express N
hk,g⃗
g,p in terms of NY m

g0,w(k)
and N

`P̃j
a .

The following Proposition 2.17 gives a gluing formula showing that it is indeed the case.

Proposition 2.17. We have

N
hk,g⃗
g,p =

NY m

g0,w(k)

lcm{∣wr(k)∣,1 ⩽ r ⩽ s(k)}

⎛

⎝

n

∏
j=1

∏
`⩾1

`k`j∏
a⩾0

(N `P̃j
a )

k`ja
⎞

⎠
.

Proof. We gave a brief description of stable log maps whose tropicalization is hk,g⃗ as a

motivation for why a gluing formula like Proposition 2.17 should be true. But the moduli

space of such stable log maps is not proper. The relevant proper moduli space M
hk,g⃗
g,p (Ym,0)

is a moduli space of stable log maps marked by hk,g⃗, containing stable log maps whose

tropicalization only retracts onto hk,g⃗. These stable log maps interact in a complicated way

with the log structure of Ym,0 and the gluing of such stable log maps has not been worked

out yet.

We go around this issue by following the strategy used in Section 1.6. On an open locus

of torically transverse stable maps, the above mentioned problems do not arise and the

difficulty of the gluing problem is of the same level as the usual degeneration formula in

relative Gromov-Witten theory. The log version of this gluing problem has been recently

treated in full details by Kim, Lho and Ruddat [KLR18]. On the complement of the nice

locus of torically transverse stable log maps, a combinatorial argument of Proposition 1.10

implies that one of the relevant curves will always contain a non-trivial cycle of components.

8For simplicity, we are assuming that mp is distinct from all −mj . It is easy to adapt the argument in
this special case. The gluing formula remains unchanged, for the same reason that 2-valent vertices play a
trivial role in Chapter 1: see Lemma 1.14.
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By standard vanishing properties of the lambda class, it follows that we can ignore this bad

locus if we only care about numerical invariants obtained by integration of a top lambda

class, which is our case.

We give now an outline of the proof, referring to [KLR18] and Section 1.6 for some of the

steps.

We have an evaluation morphism

ev∶Mg0,w(k)(Y m, ∂Y m) × ∏
1⩽j⩽n
`⩾1
a⩾0

Ma,`(P̃j , ∂P̃j)k`ja →
s(k)

∏
r=1

(Dwr(k))
2 .

Let

δ∶
s(k)

∏
r=1

Dwr(k) →

s(k)

∏
r=1

(Dwr(k))
2

be the diagonal morphism. Using the morphisms ev and δ, we define the fiber product

M ∶=

⎛
⎜
⎜
⎜
⎜
⎝

Mg0,w(k)(Y m, ∂Y m) × ∏
1⩽j⩽n
`⩾1
a⩾0

Ma,`(P̃j , ∂P̃j)k`ja
⎞
⎟
⎟
⎟
⎟
⎠

×
(∏

s(k)
r=1 (Dwr(k))

2)

⎛

⎝

s(k)

∏
r=1

Dwr(k)

⎞

⎠
.

We define a cycle class [M]virt on M by

[M]
virt ∶= δ!

⎛
⎜
⎜
⎜
⎜
⎝

[Mg0,w(k)(Y m, ∂Y m)]
virt
× ∏

1⩽j⩽n
`⩾1
a⩾0

[Ma,`(P̃j , ∂P̃j)k`ja]virt

⎞
⎟
⎟
⎟
⎟
⎠

,

where δ! is the refined Gysin morphism (see Section 6.2 of [Ful98]) defined by δ.

The following Lemma will play for us the same role played by Lemma 1.16 in Section 1.6.

Lemma 2.18. Let

C Ym,0

W ptN ,

f

π εYm,0

g

be a point of M
hk,g⃗
g,p (Ym,0). Let

Σ(C) Σ(Ym,0)

Σ(W ) Σ(ptN) .

Σ(f)

Σ(π) Σ(εYm,0
)

Σ(g)
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be its tropicalization. For every b ∈ Σ(g)−1(1), let

Σ(f)b∶Σ(C)b → Σ(εYm,0)
−1
(1) = Ytrop

m,0

be the fiber of Σ(f) over b. For every r = 1, . . . , s(k), let E
Σ(f)b
r be the edge of Σ(f)b marked

by the edge Er of Γk,g⃗. Then, we have

h(EΣ(f)b
r ) ⊂ hk,g⃗(Er) .

Proof. This follows from the fact that for every 1 ⩽ j ⩽ n, the curve Cj is rigid in P̃j , so the

vertices of Γ marked by the vertex Vr of Γk,g⃗ are mapped on hk,g⃗(Er).

Given a stable log map f ∶C → Ym,0 marked by hk,g⃗, we have nodes of C in correspondence

with the bounded edges of Γ. Cutting C along these nodes, we obtain a morphism

cut∶M
hk,g⃗
g,p (Ym/∂Ym) →M .

Because of Lemma 2.18, each cut is locally identical to the corresponding cut in a degener-

ation along a smooth divisor and so we can refer to Section 1.6 or Section 5 of [KLR18] for

a precise definition of the cut morphism, dealing with log structures.

We say that a stable log map f ∶C → Y m is torically transverse if its image does not contain

any of the torus fixed points of Y m, i.e. if its image does not pass through the “corners”

of the toric boundary divisor ∂Y m, i.e. if its tropicalization has no vertex mapping in the

interior of one of the two-dimensional cones of the fan of Y m.

Let M
0

g0,w(k)(Y m, ∂Y m) be the open substack of Mg0,w(k)(Y m, ∂Y m) consisting of torically

transverse stable log maps. We define

M
0 ∶=

⎛
⎜
⎜
⎜
⎜
⎝

M
0

g0,w(k)(Y m, ∂Y m) × ∏
1⩽j⩽n
`⩾1
a⩾0

Ma,`(P̃j , ∂P̃j)k`ja
⎞
⎟
⎟
⎟
⎟
⎠

×
(∏

s(k)
r=1 (Dwr(k))

2)

⎛

⎝

s(k)

∏
r=1

Dwr(k)

⎞

⎠
,

M
hk,g⃗,0

g,p (Ym/∂Ym) ∶= cut−1
(M

0
) ,

and we denote

cut0
∶M

hk,g⃗,0

g,p (Ym/∂Ym) →M
0

the corresponding restriction of the cut morphism.

Lemma 2.19. The morphism

cut0
∶M

hk,g⃗,0

g,p (Ym/∂Ym) →M
0

is étale of degree
∏
n
j=1∏`⩾1 `

k`j

lcm{∣wr(k)∣,1 ⩽ r ⩽ s(k)}
.
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Proof. Because of the restriction to the torically transverse locus, the gluing question is

locally isomorphic to the corresponding gluing question in a degeneration along a smooth

divisor, and so the result follows from formula (6.13) and Lemma 9.2 of [KLR18]9.

Restricted to the torically transverse locus, the comparison of obstruction theories on

M
hk,g⃗
g,p (Ym/∂Ym) and M reduces to the same question studied in Section 9 of[KLR18] for

a degeneration along a smooth divisor. In particular, combining Lemma 2.19 with formula

9.14 of [KLR18], we obtain that the cycle classes

(cut)∗([M
hk,g⃗
g,p (Ym/∂Ym)]

virt
)

and
∏
n
j=1∏`⩾1 `

k`j

lcm{∣wr(k)∣,1 ⩽ r ⩽ s(k)}
[M]

virt

have the same restriction to the open substackM0 ofM. It follows by [Ful98] Proposition 1.8,

that their difference is rationally equivalent to a cycle supported on the closed substack

Z ∶= M−M0 .

At a point of Z, the corresponding stable log map f ∶C → Y m to Y m is not torically transverse.

Using Lemma 2.18, we can apply Proposition 1.10 to get that C contains a non-trivial cycle

of components. Vanishing properties of lambda classes given by Lemma 1.7, combined with

gluing properties of lambda classes given by Lemma 1.6, finally imply the gluing formula

stated in Proposition 2.17, as in the end of Section 1.6.

Remark: The most general form of the gluing formula in log Gromov-Witten theory, work in

progress of Abramovich-Chen-Gross-Siebert, requires the use of punctured Gromov-Witten

invariants, see [ACGS17b]. We do not see punctured invariants in our gluing formula because

we only consider rigid tropical curves contained in the polyhedral decomposition of Ytrop
m,0 .

2.5.6 End of the proof of the degeneration formula

We now finish the proof of the degeneration formula, Proposition 2.8.

Combining Corollary 2.16 with Proposition 2.17, we get

NYm
g,p = ∑

k⊢p

∑
g⃗
∣g⃗∣=g

NY m

g0,w(k)

⎛

⎝
∏
j⩾1

∏
`⩾1

`k`j∏
a⩾0

1

k`ja!
(N `P̃j

a )
k`ja
⎞

⎠
.

Denote

F `P̃j(h̵) ∶= ∑
a⩾0

N `P̃j
a h̵2a−1 .

9In the corresponding argument in Section 1.6, the denominator of the formula did not appear because
the relevant tropical curves had all edges of integral length.
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We have

(F `P̃j(h̵))k`j = ∑
k`j=∑a⩾0 k`ja

k`j !

∏a⩾0 k`ja!
(∏
a⩾0

(N `P̃j
a )

k`ja) h̵∑a⩾0(2a−1)k`ja .

Using k`j = ∑a⩾0 k`ja, s(k) = ∑
n
j=1∑`⩾1 k`j and g − g0 = ∑

n
j=1∑`⩾0∑a⩾ ak`ja to count the

powers of h̵, we get

∑
g⩾0

NYm
g,p h̵

2g−1
= ∑
k⊢p

⎛

⎝
∑
g⩾0

NY m

g,w(k)
h̵2g−1+s(k)⎞

⎠

n

∏
j=1

∏
`⩾1

1

k`j !
`k`j(F `P̃j(h̵))k`j .

It follows that the proof of the degeneration formula, Proposition 2.8, is finished by the

following Lemma.

Lemma 2.20. For every 1 ⩽ j ⩽ n and ` ⩾ 1, we have

F `P̃j(h̵) =
(−1)`−1

`

1

2 sin ( `h̵
2
)
.

Proof. It is a higher genus version of Proposition 5.2 of [GPS10]. As the curve Cj ≃ P1 is

rigid in P̃j , with normal bundle OP1(−1), every stable log map, element of Ma,`(P̃j , ∂P̃j),
factors through Cj ≃ P1.

Let Ma,`(P1/∞) be the moduli space of genus a stable log maps to P1, relative to ∞ ∈ P1,

of degree ` and with maximal tangency order ` along ∞. It has virtual dimension 2a− 1+ `.

We have Ma,`(P̃j , ∂P̃j) = Ma,`(P1/∞) as stacks but their natural obstruction theories are

different. Denoting π∶ C → Ma,`(P1/∞) the universal source log curve and f ∶ C → P1 the

universal log map, the two obstruction theories differ by R1π∗f
∗NCj ∣P̃j = R

1π∗f
∗OP1(−1).

So we obtain

N `P̃j
a = ∫

[Ma,`(P1/∞)]virt
e (R1π∗f

∗
(OP1 ⊕OP1(−1)) ,

where e(−) is the Euler class. We are now in a setting relative to a smooth divisor so

numerical invariants extracted from log Gromov-Witten theory coincide with those extracted

from relative Gromov-Witten theory by [AMW12]. These integrals in relative Gromov-

Witten theory have been computed by Bryan and Pandharipande ([BP05], see proof of

Theorem 5.1) and the result is

∑
a⩾0

N `P̃j
a h̵2a−1

=
(−1)`−1

`

1

2 sin ( `h̵
2
)
.

2.6 Scattering and tropical curves

In this Section, we review the connection established in [FS15] between quantum scattering

diagrams and refined tropical curve counting.
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2.6.1 Refined tropical curve counting

In this Section, we review the definition of the refined tropical curve counts used in [FS15].

The relevant tropical curves are identical to those considered in [GPS10]. The only difference

is that they are counted with the Block-Göttsche refined multiplicity [BG16], q-deformation

of the usual Mikhalkin multiplicity [Mik05].

We first recall the definition of a parametrized tropical curve to R2 by simply repeating the

presentation we gave in Chapter 1.

For us, a graph Γ has a finite set V (Γ) of vertices, a finite set Ef(Γ) of bounded edges

connecting pairs of vertices and a finite set E∞(Γ) of legs attached to vertices that we view

as unbounded edges. By edge, we refer to a bounded or unbounded edge. We will always

consider connected graphs.

A parametrized tropical curve h∶Γ→ R2 is the following data:

• A nonnegative integer g(V ) for each vertex V , called the genus of V .

• A labeling of the elements of the set E∞(Γ).

• A vector vV,E ∈ Z2 for every vertex V and E an edge adjacent to V . If vV,E is not

zero, the divisibility ∣vV,E ∣ of vV,E in Z2 is called the weight of E and is denoted w(E).

We require that vV,E ≠ 0 if E is unbounded and that for every vertex V , the following

balancing condition is satisfied:

∑
E

vV,E = 0 ,

where the sum is over the edges E adjacent to V . If E is an unbounded edge, we

denote vE for vV,E , where V is the unique vertex to which E is attached.

• A nonnegative real number `(E) for every bounded edge of E, called the length of E.

• A proper map h∶Γ→ R2 such that

– If E is a bounded edge connecting the vertices V1 and V2, then h maps E affine

linearly on the line segment connecting h(V1) and h(V2), and h(V2) − h(V1) =

`(E)vV1,E .

– If E is an unbounded edge of vertex V , then h maps E affine linearly to the ray

h(V ) +R≥0vV,E .

The genus gh of a parametrized tropical curve h∶Γ→ R2 is defined by

gh ∶= gΓ + ∑
V ∈V (Γ)

g(V ) ,

where gΓ is the genus of the graph Γ.

Let w = (w1, . . . ,ws) be a s-tuple of non-zero vectors in M . We fix x = (x1, . . . , xs) ∈ (R2)s.

We say that a parametrized tropical curve h∶Γ → R2 is of type (w,x) if Γ has exactly s + 1

unbounded edges, labeled E0,E1, . . . ,Es, such that
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• vE0 = ∑
s
r=1wr,

• vEr = −wr for all r = 1, . . . , s,

• Er asymptotically coincides with the half-line −R⩾0wr + xr, for all r = 1, . . . , s.

Let Tw,x be the set of genus zero10 parametrized tropical curves h∶Γ → R2 of type (w,x)

without contracted edges. If x ∈ (R2)s is general enough (in some appropriate open dense

subset), then it follows from [Mik05] or [NS06] that Tw,x is a finite set, and that if (h∶Γ→ R2),

then Γ is trivalent and h is an immersion (distinct vertices have distinct images and two

distinct edges have at most one point in common in their images).

For h∶Γ→ R2 a parametrized tropical curve in R2 and V a trivalent vertex of adjacent edges

E1, E2 and E3, the multiplicity of V is the integer defined by

m(V ) ∶= ∣det(vV,E1 , vV,E2)∣ .

Thanks to the balancing condition

vV,E1 + vV,E2 + vV,E3 = 0 ,

this definition is symmetric in E1,E2,E3. The Block-Göttsche [BG16] multiplicity of V is a

Laurent polynomial in a formal variable q
1
2 :

[mV ]q ∶=
q
m(V )

2 − q−
m(V )

2

q
1
2 − q−

1
2

= q−
m(V )−1

2 (1 + q + ⋅ ⋅ ⋅ + q
m(V )−1

2 ) ∈ N[q±
1
2 ] .

For (h∶Γ→ R2) a parametrized tropical curve with Γ trivalent, the refined multiplicity of h

is defined by

mh(q
1
2 ) ∶= ∏

V ∈V (Γ)

[m(V )]q ,

where the product is over the vertices of Γ.

If x ∈ (R2)s is in general position, we count the elements of Tw,x with refined multiplicities

and we get a refined count of tropical curves:

N trop
w,x (q

1
2 ) ∶= ∑

h∶Γ→R2

mh(q
1
2 ) ∈ N[q±

1
2 ] .

According to Itenberg-Mikhalkin [IM13], N trop
w,x (q

1
2 ) does not depend on x if x is general11,

and we simply denote N trop
w (q

1
2 ) the corresponding invariant.

2.6.2 Elementary quantum scattering

Let m1 and m2 be two non-zero vectors in M = Z2. Let D̂ be the quantum scattering diagram

over an Artinian ring R consisting of two incoming rays −R⩾0m1 and −R⩾0m2 equipped with

10In particular, the graph Γ has genus zero and all the vertices have genus zero.
11This also follows from Theorem 1.4
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the Hamiltonians

Ĥ1 =
f1

q
1
2 − q−

1
2

ẑm1 ,

and

Ĥ2 =
f2

q
1
2 − q−

1
2

ẑm2 ,

where f1, f2 ∈ R satisfy f2
1 = f

2
2 = 0. Let S(D̂) be the resulting consistent quantum scattering

diagram given by Proposition 2.3. The following result is Lemma 4.3 of [FS15].

Lemma 2.21. The consistent quantum scattering diagram S(D̂) is obtained from D̂ by

adding three outgoing rays:

• (R⩾0m1, Ĥ1)

• (R⩾0m2, Ĥ2)

• (R⩾0(m1 +m2), Ĥ12), where

Ĥ12 ∶= [⟨m1,m2⟩]q
f1f2

q
1
2 − q−

1
2

ẑm1+m2 ,

and

[⟨m1,m2⟩]q ∶=
q
⟨m1,m2⟩

2 − q−
⟨m1,m2⟩

2

q
1
2 − q−

1
2

.

Proof. Using

[ẑm1 , ẑm2] = (q
⟨m1,m2⟩

2 − q−
⟨m1,m2⟩

2 ) ẑm1+m2 ,

we compute that

[Ĥ1, Ĥ2] = [⟨m1,m2⟩]q
f1f2

q
1
2 − q−

1
2

ẑm1+m2 .

As f2
1 = f

2
2 = 0, it follows that Ĥ1 and Ĥ2 commute with [Ĥ1, Ĥ2]. Using an easy case

of the Baker-Campbell-Hausdorff formula, according to which eaeb = ea+b+
1
2 [a,b] if a and b

commute with [a, b], we obtain

eĤ2e−Ĥ1e−Ĥ2eĤ1 = e[Ĥ1,Ĥ2] ,

and so

Φ̂−1
Ĥ2

Φ̂Ĥ1
Φ̂Ĥ2

Φ̂−1
Ĥ1
= Φ̂

[Ĥ1,Ĥ2]
,

hence the result

2.6.3 Quantum scattering from refined tropical curve counting

In this Section, we review the result of Filippini and Stoppa [FS15] expressing the Hamil-

tonians attached to the rays of the consistent quantum scattering diagram S(D̂m), defined

in Section 2.3.1, in tropical terms. We use the notations introduced at the beginning of

Section 2.5.1.
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Proposition 2.22. For every m = (m1, . . . ,mn) an n-tuple of primitive non-zero vectors in

M and for every m ∈M − {0}, the Hamiltonian Ĥm attached to the outgoing ray R⩾0m in

the consistent quantum scattering diagram S(D̂m) is given by

Ĥm = ∑
p∈Pm

∑
k⊢p

N trop
w(k)
(q

1
2 )
⎛

⎝

n

∏
j=1

∏
`⩾1

1

k`j !
(
(−1)`−1

`

q
1
2 − q−

1
2

q
`
2 − q−

`
2

)

k`j
⎞

⎠

⎛

⎝

n

∏
j=1

t
pj
j

⎞

⎠

ẑ`pm

q
1
2 − q−

1
2

,

where q = eih̵, and the first sum is over all partitions k of p.

Proof. This follows from the main result, Corollary 4.9, of [FS15], which is a q-deformed

version of the proof of Theorem 2.8 of [GPS10]. A higher dimensional generalization of this

argument has been given by Mandel in [Man15]. For completeness and because we organize

the combinatorics in a slightly different way, we provide a proof.

By definition, S(D̂m) is the consistent quantum scattering diagram obtained from the quan-

tum scattering diagram D̂m consisting of incoming rays (di, Ĥdj), j = 1, . . . , n, where

dj = −R⩾0mj ,

and

Ĥdj = ∑
`⩾1

1

`

(−1)`−1

q
`
2 − q−

`
2

t`j ẑ
`mj .

Let us work over the ring C[t1, . . . , tn]/(tN+1
1 , . . . , tN+1

n ). We embed this ring into

C[{uja∣1 ⩽ j ⩽ n,1 ⩽ a ⩽ N}]/⟨{u2
ja∣1 ⩽ j ⩽ n,1 ⩽ a ⩽ N}⟩

by

tj =
N

∑
a=1

uja

for all 1 ⩽ j ⩽ n. We then have

t`j = ∑
A⊂{1,...,N}
∣A∣=`

`!∏
a∈A

uja ,

and so

Ĥdj =
N

∑
`=1

∑
A⊂{1,...,N}
∣A∣=`

(
1

`

(−1)`−1

q
`
2 − q−

`
2

) `!(∏
a∈A

uja) ẑ
`mj .

This suggests to consider the quantum scattering diagram D̂split
m consisting of incoming rays

(dj`A, Ĥdj`A), 1 ⩽ ` ⩽ N , A ⊂ {1, . . . ,N}, ∣A∣ = `, where

dj`A = −R⩾0mj + cj`A ,

for cj`A ∈ R2 in general position, and

Ĥdj`A = (
1

`

(−1)`−1

q
`
2 − q−

`
2

) `!(∏
a∈A

uja) ẑ
`mj .

131



If we had taken all cj`A = 0, then D̂split
m would have been equivalent to D̂m. But for cj`A ∈ R2

in general position, D̂split
m is a perturbation of D̂m: each ray (dj , Ĥ∂j) of Dm splits into

various rays (dj`A, Ĥdj`A) of D̂split
m .

The key simplifying fact is that the consistent scattering diagram S(D̂split
m ) can be obtained

from D̂split
m by a recursive procedure involving only elementary scatterings in the sense of

Lemma 2.21. When two rays of D̂split
m intersect, we are in the situation of Lemma 2.21

because u2
ja = 0. The local consistency at this intersection is then guaranteed by emitting a

third ray according to Lemma 2.21. Further intersections of the old and newly created rays

can similarly be treated by application of Lemma 2.21. Indeed, the assumptions of general

position of the cj`A guarantees that only double intersections occur.

The asymptotic scattering diagram of S(D̂split
m ) is the scattering diagram obtained by taking

all the rays of S(D̂) and placing their origin at 0 ∈ R2. By uniqueness of the consistent

completion, the asymptotic scattering diagram is precisely S(D̂m). To get the Hamiltonian

Ĥm attached to an outgoing ray R⩾0m in S(D̂m), it is then enough to collect the various

contributions to the corresponding asymptotic ray of S(D̂split
m ) coming from the recursive

construction of S(D̂split
m ).

Let us study how the recursive construction of S(D̂split
m ) can produce a ray d asymptotic to

R⩾0m and equipped with a function Ĥd proportional to ẑ`dm, for some `d ⩾ 1. Such a ray

is obtained by successive applications of Lemma 2.21 starting from a subset of the initial

incoming rays of D̂split
m .

We focus on one particular sequence of such elementary scatterings. Such sequence naturally

defines a graph Γ̄ in R2. This graph starts with unbounded edges given by the initial rays

taking part to the sequence of scatterings. When two of these rays meet, they scatter and

produce a third ray given by Lemma 2.21. If this third ray does not contribute to further

scatterings ultimately contributing to Ĥd, we do not include it in Γ̄ and we continue Γ̄ by

propagating the two initial rays. In particular, Γ̄ contains a 4-valent vertex given by the two

initial rays crossing without non-trivial interaction.

If the third ray does contribute to further scatterings ultimately contributing to Ĥd, we

include it in Γ̄ and we do not propagate the two initial rays. In particular, Γ̄ gets a trivalent

vertex given by the two initial rays meeting and producing the third ray. Iterating this

construction, we get one trivalent vertex for each elementary scattering ultimately giving a

contribution to Ĥd. At the end of this process, the last elementary scattering produces the

ray d which becomes an unbounded edge of the graph.

The graph Γ̄ has two kinds of vertices: trivalent vertices where a non-trivial elementary

scattering happens and 4-valent vertices where two rays cross without non-trivial interaction.

For every 4-valent vertices, we can separate the two rays crossing, and we get a trivalent

graph Γ and a map h∶Γ→ Γ̄ ⊂ R2 which is one to one except over the 4-valent vertices of Γ̄

where it is two to one. It follows from the iterative construction that the trivalent graph Γ

is a tree, i.e. a graph of genus zero.

The function attached to initial ray of D̂split
m is a monomial in ẑ, whose power is proportional

to the direction of the ray. By Lemma 2.21, this property is preserved under elementary
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scattering. Each edge E of our Γ is thus equipped with a function proportional to ẑmE

for some mE ∈ M = Z2 proportional to the direction of E. Furthermore, in an elementary

scattering of two edges E1 and E2 equipped with mE1 and mE2 , the produced edge E3

is equipped with mE1 +mE2 by Lemma 2.21. In other words, the balancing condition is

satisfied at each vertex and so we can view h∶Γ→ R2 as a parametrized tropical curve to R2

in the sense of Section 2.6.1.

For every 1 ⩽ j ⩽ n and ` ⩾ 1, there is a number k`j of subsets A of {1, . . . , n}, of size `,

such that dj`A is one of the initial ray appearing in Γ. Denote by AΓ
j` this set of subsets of

{1, . . . , n}. Writing pj ∶= ∑`≥1 `k`j , we have by the balancing condition

n

∑
j=1

pj = `dm,

and in particular `d = `p.

It follows from an iterative application of Lemma 2.21 that the contribution of Γ to Ĥd is

given by

mΓ(q
1
2 )
⎛
⎜
⎝

n

∏
j=1

∏
`⩾1

(
(−1)`−1

`

q
1
2 − q−

1
2

q
`
2 − q−

`
2

)

k`j

(`!)k`j
⎛
⎜
⎝
∏

A∈AΓ
j`

∏
a∈A

uja
⎞
⎟
⎠

⎞
⎟
⎠

ẑ`pm

q
1
2 − q−

1
2

,

where mΓ(q
1
2 ) is the refined multiplicity of the tropical curve Γ.

To get the complete expression for Ĥd, we have to sum over the possible Γ.

If we fix p = (p1, . . . , pn) ∈ P = Nn, k a partition of p and for every 1 ⩽ j ⩽ n and ` ⩾ 1, a set

Aj` of k`j disjoint subsets of {1, . . . ,N} of size `, we can consider the set Tj`Aj` of genus zero

tropical curves Γ having one unbounded edge of asymptotic direction R⩾0m and weight `pm,

and for every 1 ⩽ j ⩽ n, ` ⩾ 1, A ∈ Aj`, an unbounded edge of weight `mj asymptotically

coinciding with dj`A. By Section 2.6.1, this set is finite.

We already saw how a sequence of elementary scatterings contributing to Ĥd produces

an element Γ ∈ Tj`Aj` . Conversely, any Γ ∈ Tj`Aj` will define a sequence of elementary

scatterings appearing in the construction of S(D̂split
m ) and contributing to Ĥd.

It follows that, for every m ∈M − {0}, we have

Ĥm =

∑
p∈Pm

∑
k⊢p

∑
Aj`

⎛
⎜
⎝
∑

Γ∈Tj`Aj`

mΓ(q
1
2 )
⎞
⎟
⎠

⎛

⎝

n

∏
j=1

∏
`⩾1

(
(−1)`−1

`

q
1
2 − q−

1
2

q
`
2 − q−

`
2

)

k`j

(`!)k`j
⎛

⎝
∏

A∈Aj`

∏
a∈A

uja
⎞

⎠

⎞

⎠

ẑ`pm

q
1
2 − q−

1
2

,

But by Section 2.6.1, we have

∑
Γ∈Tj`Aj`

mΓ(q
1
2 ) = N trop

w(k)
(q

1
2 ) ,

which is in particular independent of Aj`. So we can do the sum over Aj`. Given an Aj`,
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we can form

B ∶= ⋃
A∈Aj`

A,

a subset of {1, . . . ,N} of size ∑`⩾1 `k`j = pj . Conversely, the number of ways to write a set

B of pj = ∑`⩾1 `k`j elements as a disjoint union of subsets, k`j of them being of size `, is

equal to
pj !

∏`⩾1 k`j !(`!)
k`j

.

Replacing the sum over Aj` by a sum over B, we get

Ĥm =

∑
p∈Pm

∑
k⊢p

N trop
w(k)
(q

1
2 )
⎛

⎝

n

∏
j=1

∏
`⩾1

1

k`j !
(
(−1)`−1

`

q
1
2 − q−

1
2

q
`
2 − q−

`
2

)

k`j
⎞

⎠

⎛
⎜
⎜
⎜
⎝

n

∏
j=1

∑
B⊂{1,...,N}
∣B∣=pj

pj !∏
b∈B

ujb

⎞
⎟
⎟
⎟
⎠

ẑ`pm

q
1
2 − q−

1
2

,

Finally, using that

t
pj
j = ∑

B⊂{1,...,N}
∣B∣=pj

pj !∏
b∈B

ujb ,

we obtain the desired formula for Ĥm.

Corollary 2.23. We have

Ĥm = ∑
p∈Pm

∑
k⊢p

N trop
w(k)
(q

1
2 )
⎛

⎝

n

∏
j=1

∏
`⩾1

1

k`j !
(
(−1)`−1

`

1

q
`
2 − q−

`
2

)

k`j
⎞

⎠
(q

1
2 − q−

1
2 )
s(k)−1ẑ`pm .

Proof. We simply rearrange (q
1
2 − q−

1
2 ) factors in Proposition 2.22 and use that

s(k) =
n

∑
j=1

∑
`⩾1

k`j .

2.7 End of the proof of Theorems 2.6 and 2.7

2.7.1 End of the proof of Theorem 2.6

In this Section, we finish the proof of Theorem 2.6. We have to express the Hamiltonians

attached to the rays of the consistent quantum scattering diagram S(D̂m) in terms of the

log Gromov-Witten invariants NYm
g,p of the log Calabi-Yau surface Ym.

We know already:

• Corollary 2.23, expressing the Hamiltonians attached to the rays of S(D̂m) in terms

of the refined counts N trop
w (q

1
2 ) of tropical curves in R2.

134



• Proposition 2.8, relating the log Gromov-Witten invariants NYm
g,p of the log Calabi-Yau

surface Ym to the log Gromov-Witten invariants NY m
g,w of the toric surface Y m.

It remains to connect the refined tropical counts N trop
w (q

1
2 ) to the log Gromov-Witten in-

variants NY m
g,w of the toric surface Y m. This is given by the following Proposition 2.24, which

is a special case of the main result, Theorem 1.4, of Chapter 1.

Proposition 2.24. For every m = (m1, . . . ,mn) n-tuple of non-zero primitive vectors in

M = Z2, every p = (p1, . . . , pn) ∈ P = Nn, and every k partition of p, we have

∑
g⩾0

NY m

g,w(k)
h̵2g−1+s(k)

= N trop
w(k)
(q

1
2 )
⎛

⎝

s(k)

∏
r=1

1

∣wr ∣

⎞

⎠
(2 sin(

h̵

2
))

s(k)−1

= N trop
w(k)
(q

1
2 )
⎛

⎝

n

∏
j=1

∏
`⩾1

1

`k`j

⎞

⎠
(2 sin(

h̵

2
))

s(k)−1

.

Proof. We simply explain the change in notations needed to translate from Theorem 1.4.

In Chapter 1, we fixed a ∆ a balanced collection of vectors in Z2, specifying a toric surface

X∆ and tangency conditions for a curve along the toric divisors. We fixed a subset ∆F of

∆, for which the corresponding tangency conditions happen at prescribed positions on the

toric divisors. Finally, we fixed a non-negative integer n. Theorem 1.4 is a correspondence

theorem between log Gromov-Witten invariants of X∆, counting curves in X∆ satisfying

the tangency constraints imposed by ∆ and ∆F , and passing through n points in general

position, and refined counts of tropical curves in R2 satisfying the tropical analogue of these

constraints.

To get Proposition 2.24, we take ∆ = (w1(k), . . . ,ws(k)(k), kwmw)
12, ∆F = (w1(k), . . . ,ws(k)(k))

and n = 0. Using the notations of Chapter 1, we have ∣∆∣ = s(k)+1, ∣∆F ∣ = s(k) and g∆F

∆,n = 0.

Using finally that the variable u keeping track of the genus in Chapter 1 is denoted h̵ in the

present Chapter, we see that Theorem 1.4 reduces to Proposition 2.24.

By comparison of the explicit formulas of Corollary 2.23, Proposition 2.24 and Proposition 2.8,

and using the relation

s(k) =
n

∑
j=1

∑
`⩾1

k`j

to collect the powers of i, we find exactly the formula given in Theorem 2.6 for the Hamiltoni-

ans of the quantum scattering diagram S(D̂m) in terms of the log Gromov-Witten invariants

NYm
g,p of the log Calabi-Yau surface Ym. This ends the proof of Theorem 2.6.

2.7.2 End of the proof of Theorem 2.7

The proof of Theorem 2.7 follows the one of Theorem 2.6, up to minor notational changes.

The only needed serious modification is an orbifold version of the multicovering formula of

Lemma 2.20. This is provided by Lemma 2.25 below.

12We then have X∆ = Y m up to some toric blow ups, which do not change the relevant log Gromov-Witten
invariants by [AW13].
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We fix positive integers r and `. Let P1[r,1] be the stacky projective line with a single

orbifold point of isotropy group Z/r at 0. Let Mg,`(P1[r,1]/∞) be the moduli space of

genus g orbifold stable maps to P1[r,1], relative to∞ ∈ P1[r,∞], of degree r`, with maximal

tangency order r` along ∞. It is a proper Deligne-Mumford stack of virtual dimension

2g − 1 + `, admitting a virtual fundamental class

[Mg,`(P1
[r,1]/∞)]virt

∈ A2g−1+`(Mg,`(P1
[r,1]/∞),Q) .

Let OP1[r,1](−[0]/(Z/r)) be the orbifold line bundle on P1[r,1] of degree −1/r. Denoting

π∶ C → Mg,`(P1[r,1]/∞) the universal source curve and f ∶ C → P1[r,1] the universal map,

we define

N `
g,r ∶= ∫

[Mg,`(P1[r,1]/∞)]virt
(−1)gλg e (R

1π∗f
∗ (OP1[r,1](−[0]/(Z/r)))) ∈ Q ,

where e(−) is the Euler class.

Lemma 2.25. For every positive integers r and `, we have

∑
g⩾0

N `
g,rh̵

2g−1
=
(−1)`−1

`

1

2 sin ( r`h̵
2
)
.

Proof. It is an higher genus version of Proposition 5.7 of [GPS10] and an orbifold version

of Theorem 5.1 of [BP05]. Very similar localization computations of higher genus orbifold

Gromov-Witten invariants can be found in [JPT11]. The main thing we need to explain is

the replacement in the orbifold case for the Mumford relation c(E)c(E∨) = 1 playing a key

role in the proof of Theorem 5.1 of [BP05]. We will simply have to twist the usual Hodge

theoretic argument of [Mum83] by a local system.

We consider the action of C∗ on P1[r,1] with tangent weights [1/r,−1] at the fixed points

[0,∞]. We choose the equivariant lifts of

OP1[r,1](−[0]/(Z/r))

and OP1[r,1] having fibers over the fixed points [0,∞] of weight [−1/r,0] and [0,0] respec-

tively. For such choices, the argument given in the proof of Theorem 5.1 of [BP05] shows

that only one graph Γ contributes to the C∗-localization formula computing N `
g,r. The graph

Γ consists of a genus g vertex over 0, a unique edge of degree r` and a degenerate genus zero

vertex over ∞.

The contribution of Γ is computed using the virtual localization formula of [GP99]. The

corresponding C∗-fixed locus is13 the fiber product

Mg,1(BZ/r) ×IBZ/r BZ/(rd) ,

where Mg,1(BZ/r) is the moduli stack of 1-pointed14 genus g orbifold stable maps to the

classifying stack BZ/r, IBZ/r is the rigidified inertia stack of BZ/r, and the classifying

13We are assuming g > 0. The case g = 0 is simpler and treated in Proposition 5.7 of [GPS10].
14With a trivial stacky structure at the marked point.
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stack BZ/(rd) appears as moduli space of C∗-invariant Galois covers P1 → P1[r,1] of degree

r`. This fibered product is a cover of Mg,1(BZ/r) of degree r/(r`).

We denote π0∶ C0 →Mg,1(BZ/r) the universal source curve over Mg,1(BZ/r). The data of

an orbifold stable map f0∶C0 → BZ/r is equivalent to the data of an (orbifold) Z/r-local

system L on C0. We denote by t the generator of the C∗-equivariant cohomology of a point.

The computation of the inverse of the equivariant Euler class of the equivariant virtual

bundle is done in Section 2.2 [JPT11] and gives

e(R1
(π0)∗ (OC0 ⊗L⊗

t

r
))
(r`)`

t``!

1
t
r`
−ψ
(
r

t
)
δL,0 t

r
,

where δL,0 = 1 if L is the trivial Z/r-local system and 0 else. The vector bundle

R1
(π0)∗ (OC0 ⊗L⊗

t

r
)

over Mg,1(BZ/r) comes from the equivariant orbifold line bundle TP1[r,1](−∞)∣[0]/(Z/r) over

BZ/r, restriction over [0]/(Z/r) of the degree 1/r orbifold line bundle TP1[r,1](−∞) over

P1[r,1].

The contribution of the integrand in the definition of N `
g,r is

(−1)gλge(R
1
(π0)∗ (OC0 ⊗ (L⊗

t

r
)
∨

))(−
t

r
)

1−δR,0

(−1)`−1 (` − 1)!

(r`)`−1
t`−1 .

The vector bundle R1(π0)∗ (OC0 ⊗ (L⊗
t
r
)
∨
) over Mg,1(BZ/r) comes from the equivariant

orbifold line bundle OP1[r,1](−[0]/(Z/r))∣[0]/(Z/r) over BZ/r, restriction over [0]/(Z/r) of

the degree −1/r orbifold line bundle OP1[r,1](−[0]/(Z/r)) over P1[r,1].

By Serre duality, we have

R1
(π0)∗ (OC0 ⊗ (L⊗

t

r
)
∨

) = ((π0)∗ (ωπ0 ⊗L⊗
t

r
))
∨

,

and so

e(R1
(π0)∗ (OC0 ⊗ (L⊗

t

r
)
∨

)) = (−1)rke((π0)∗ (ωπ0 ⊗L⊗
t

r
))

= (−1)rk (
t

r
)

rk rk

∑
j=0

(
r

t
)
j

cj ((π0)∗ (ωπ0 ⊗L))

= (−1)rk (
t

r
)

rk

c r
t
((π0)∗(ωπ0 ⊗L)) ,

where rk is the rank of (π0)∗ (ωπ0 ⊗L), locally constant function on Mg,1(BZ/r), equal to

g on the component with L trivial and to g − 1 on the components with L non-trivial, and

where

cx(E) ∶= ∑
j⩾0

xjcj(E)
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is the Chern polynomial of a vector bundle E. Similarly, we have

e(R1
(π0)∗ (OC0 ⊗L⊗

t

r
)) = (

t

r
)

rk rk

∑
j=0

(
r

t
)
j

cj (R
1
(π0)∗ (OC0 ⊗L))

= (
t

r
)

rk

c r
t
(R1
(π0)∗ (OC0 ⊗L)) .

We twist now the Hodge theoretic argument of [Mum83] (see formulas (5.4) and (5.5)) (see

also Proposition 3.2 of [BGP08]) by the local system L. The complex

ω●C0
∶0→OC0

d
Ð→ ωπ0 → 0 ,

twisted by L, gives rise to an exact sequence

0→ (π0)∗(ωπ0 ⊗L) → R1
(π0)∗(ω

●
C0
⊗L) → R1

(π0)∗(OC0 ⊗L) → 0 .

By Hodge theory, we have the Gauss-Manin connection on the restriction of R1(π0)∗(ω
●
C0
⊗L)

to the open dense subset of Mg,1(BZ/r) given by smooth curves, with regular singularities

and nilpotent residue along the divisor of nodal curves. This is enough to imply

cx (R
1
(π0)∗(ω

●
C0
⊗L)) = 1 ,

and so

cx ((π0)∗(ωπ0 ⊗L)) cx (R
1
(π0)∗(OC0 ⊗L)) = 1 .

Using this relation to simplify the above expressions, we get

N `
g,r =

r

r`
∫
Mg,1(BZ/r)

(−1)`−1
(−1)g+rk+1−δL,0 (

t

r
)

2 rk−2δL,0+1 λg
t
r`
−ψ

.

Using that rk = g − 1 + δR,0, this can be rewritten as

N `
g,r = ∫

Mg,1(BZ/r)

(−1)`−1

`
(
t

r
)

2g−1 λg
t
r`
−ψ

.

As the dimension of Mg,1(BZ/r) is 3g−2, we have to extract the term proportional to ψ2g−2

and we get

N `
g,r = ∫

Mg,1(BZ/r)

(−1)`−1

`
`2g−1λgψ

2g−2 .

The integrand is now pullback from the moduli space Mg,1 of 1-pointed genus g stable maps.

As the forgetful map Mg,1(BZ/r) →Mg,n has degree15 r2g−1, we have

N `
g,r =

(−1)`−1

`
(r`)2g−1

∫
Mg,1

λgψ
2g−2 ,

and the result then follows, as in the proof of Theorem 5.1 of [BP05], from the Hodge

integrals computations of [FP00].

15There are r2g Z/r-local systems on a smooth genus g curve, each with a Z/r group of automorphisms.
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2.8 Integrality results and conjectures

In Section 2.8.1, we state Conjecture 2.28, a log BPS integrality conjecture. In Section 2.8.2,

we state Theorem 2.30, precise version of Theorem 3 of the Introduction, establishing the

validity of Conjecture 2.28 for (Ym, ∂Ym). The proof of Theorem 3 takes Sections 2.8.3

and 2.8.4. In Section 2.8.5, we describe some explicit connection with refined Donaldson-

Thomas theory of quivers. Finally, in Section 2.8.6, we discuss del Pezzo surfaces with a

smooth anticanonical divisor and we formulate Conjecture 2.41, precise form of Conjecture 4

of the Introduction.

2.8.1 Integrality conjecture

We formulate a higher genus analogue of the log BPS integrality conjecture, Conjecture 6.2,

of [GPS10]. We start by formulating a rationality conjecture, Conjecture 2.26, before stating

the integrality conjecture, Conjecture 2.28.

Let Y be a smooth projective surface and let ∂Y ⊂ Y be a reduced normal crossing effective

divisor. We endow Y with the divisorial log structure defined by ∂Y and we get a smooth

log scheme. Following Section 6.1 of [GPS10], we say that (Y, ∂Y ) is log Calabi-Yau with

respect to some non-zero class β ∈H2(Y,Z) if β.(∂Y ) = β.(−KY ).

Two basic examples are:

• For every m = (m1, . . . ,mn) an n-tuple of primitive non-zero vectors in M = Z2, the

pair (Ym, ∂Ym)
16 defined in Section 2.2.1. Then (Ym, ∂Ym) is log Calabi-Yau with

respect to every class β ∈ H2(Ym,Z) and so in particular with respect to the classes

βp ∈H2(Ym,Z) defined in Section 2.2.2.

• Y a del Pezzo surface and ∂Y a smooth anticanonical divisor. Then (Y, ∂Y ) is log

Calabi-Yau with respect to every class β ∈H2(Y,Z).

We fix (Y, ∂Y ) log Calabi-Yau with respect to some β ∈ H2(Y,Z) such that β.(∂Y ) ≠ 0.

Let Mg,β(Y /∂Y ) be the moduli space of genus g stable log maps to Y of class β and full

tangency of order β.(∂Y ) at a single unspecified point of D. It is a proper Deligne-Mumford

stack of virtual dimension g admitting a virtual fundamental class

[Mg,β(Y /∂Y )]
virt
∈ Ag(Mg,β(Y /∂Y ),Q) .

We define

N
Y /∂Y
g,β ∶= ∫

[Mg,β(Y /∂Y )]virt
(−1)gλg ∈ Q .

Remark that if (Y, ∂Y ) is of the form (Ym, ∂Ym) and β is of the form βp, see Section 2.2.2,

then we have N
Y /∂Y
g,β = NYm

g,p where NYm
g,p are the invariants defined in Section 2.2.3.

We can now formulate the rationality conjecture.

16Strictly speaking, Ym is not smooth, but log smooth. We can either make Ym smooth by toric blow-ups
or allow log smooth objects in the definition of log Calabi-Yau.
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Conjecture 2.26. Let (Y, ∂Y ) be a log Calabi-Yau pair with respect to some class β ∈

H2(Y,Z) such that β.(∂Y ) ≠ 0. Then there exists a rational function

Ωβ(q
1
2 ) ∈ Q(q±

1
2 )

such that we have the equality of power series in h̵,

Ωβ(q
1
2 ) = (−1)β.(∂Y )+1

(2 sin(
h̵

2
))
⎛

⎝
∑
g⩾0

N
Y /∂Y
g,β h̵2g−1⎞

⎠
,

after the change of variables q = eih̵.

Remarks:

• Ωβ(q
1
2 ) is unique if it exists.

• If the rational function Ωβ(q
1
2 ) exists, then it is invariant under q

1
2 ↦ q−

1
2 , because its

power series expansion in h̵ after q = eih̵ has real coefficients.

• Given the 3-dimensional interpretation of the invariants NY,∂Y
g,β given in Section 2.2.4,

Conjecture 2.26 should follow from a log version of the MNOP conjectures, [MNOP06a],

[MNOP06b], once an appropriate theory of log Donaldson-Thomas invariants is devel-

oped. If ∂Y is smooth, then Conjecture 2.26 indeed follows from the relative MNOP

conjectures, see Section 3.3 of [MNOP06b].

Let (Y, ∂Y ) be a log Calabi-Yau pair with respect to some primitive class β ∈H2(Y,Z) such

that β.(∂Y ) ≠ 0. Let us assume that Conjecture 2.26 is true for all the classes multiple of β.

So, for every n ⩾ 1, we have a rational function Ωnβ(q
1
2 ) ∈ Q(q± 1

2 ). We define a collection of

rational functions Ωnβ(q
1
2 ) ∈ Q(q± 1

2 ), n ⩾ 1, invariant under q
1
2 ↦ q−

1
2 , by the relations

Ωnβ(q
1
2 ) = ∑

`∣n

1

`

q
1
2 − q−

1
2

q
`
2 − q−

`
2

Ωn
` β
(q

`
2 ) .

Lemma 2.27. These relations have a unique solution, given by

Ωnβ(q
1
2 ) = ∑

`∣n

µ(`)

`

q
1
2 − q−

1
2

q
`
2 − q−

`
2

Ωn
` β
(q

`
2 ) ,

where µ is the Möbius function.

Proof. Indeed, we have

∑
`∣n

1

`

q
1
2 − q−

1
2

q
`
2 − q−

`
2

⎛

⎝
∑
`′∣n`

µ(`′)

`′
q
`
2 − q−

`
2

q
``′

2 − q−
``′

2

Ω n
``′
β(q

``′

2 )
⎞

⎠

= ∑
`∣n

∑
`′∣n`

µ(`′)

``′
q

1
2 − q−

1
2

q
``′

2 − q−
``′

2

Ω n
``′
β(q

``′

2 ) = ∑
m∣n

1

m

q
1
2 − q−

1
2

q
m
2 − q−

m
2

Ω n
mβ
(q

m
2 )
⎛

⎝
∑
`′∣m

µ(`′)
⎞

⎠
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= ∑
m∣n

1

m

q
1
2 − q−

1
2

q
m
2 − q−

m
2

Ω n
mβ
(q

m
2 )δm,1 = Ωnβ(q

1
2 ) ,

where we used the Möbius inversion formula ∑`′∣m µ(`
′) = δm,1.

We can now formulate the integrality conjecture.

Conjecture 2.28. Let (Y, ∂Y ) be a log Calabi-Yau pair with respect to some class β ∈

H2(Y,Z), such that β.(∂Y ) ≠ 0, and such that the rationality Conjecture 2.26 is true for all

multiples of β, so that the rational functions Ωnβ(q
1
2 ) ∈ Q(q± 1

2 ), are defined. Then, in fact,

for every n ⩾ 1, Ωnβ(q
1
2 ) is a Laurent polynomial in q

1
2 with integer coefficients, i.e.

Ωnβ(q
1
2 ) ∈ Z[q±

1
2 ] ,

invariant under q
1
2 ↦ q−

1
2 .

Remark:

• In Section 2.9.3, we explain why this integrality conjecture can be interpreted in some

cases as a mathematically well-defined example of the general integrality for open

Gromov-Witten invariants in Calabi-Yau 3-folds predicted by Ooguri-Vafa [OV00]. In

particular, the log BPS invariants Ωβ(q
1
2 ) should be thought as examples of Ooguri-

Vafa/open BPS invariants.

• In the classical limit h̵ → 0, the integrality of Ωnβ ∶= Ωnβ(q
1
2 = 1) is equivalent to

Conjecture 6.2 of [GPS10].

• If β2 = −1, β.(∂Y ) = 1, and the class β only contains a smooth rational curve, then

it follows from Lemma 2.20 that Conjecture 2.28 is true. More precisely, we have

Ωnβ(q
1
2 ) = 1

n
q

1
2 −q−

1
2

q
n
2 −q−

n
2

for every n ⩾ 1, and so Ωβ(q
1
2 ) = 1 and Ωnβ(q

1
2 ) = 0 for n > 1.

2.8.2 Integrality result

Lemma 2.29. For every m = (m1, . . . ,mn) an n-tuple of primitive non-zero vectors in

M = Z2 and p ∈ P = Nn, the rationality Conjecture 2.26 is true for the log Calabi-Yau pair

(Ym, ∂Ym) with respect to the curve class βp ∈H2(Y,Z).

Proof. This follows from Theorem 2.6, expressing the generating series of invariants NYm
g,p

as a Hamiltonian Ĥm attached to some ray of the quantum scattering diagram S(D̂m),

and from Proposition 2.22, giving a formula for Ĥm whose coefficients are manifestly in

Q[q± 1
2 ][(1 − q`)−1]`⩾1.

Alternatively, one could argue that, because the initial quantum scattering diagram D̂m

is defined over Q[q± 1
2 ][(1 − q`)−1]`⩾1, the resulting consistent quantum scattering diagram

S(D̂m) is also defined over Q[q± 1
2 ][(1 − q`)−1]`⩾1 and so Lemma 2.29 follows directly from

Theorem 2.6.
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By Lemma 2.29, we have rational functions

Ω
Ym

p (q
1
2 ) ∈ Q(q±

1
2 ) ,

such that

Ω
Ym

p (q
1
2 ) = (−1)`p+1

(2 sin(
h̵

2
))
⎛

⎝
∑
g⩾0

NYm
g,p h̵

2g−1⎞

⎠
,

as power series in h̵, after the change of variables q = eih̵. Remark that we used the fact

that βp.(∂Ym) = `p.

The following result is, after Theorem 2.6, the second main result of this Chapter. It is the

precise form of Theorem 3 in the Introduction.

Theorem 2.30. For every m = (m1, . . . ,mn) an n-tuple of primitive non-zero vectors in

M = Z2 and p ∈ P = Nn, the integrality Conjecture 2.28 is true for the log Calabi-Yau pair

(Ym, ∂Ym) with respect to the class βp ∈ H2(Ym,Z). In other words, there exists ΩYm
p (q

1
2 ) ∈

Z[q± 1
2 ] such that

Ω
Ym

p (q
1
2 ) = ∑

p=`p′

1

`

q
1
2 − q−

1
2

q
`
2 − q−

`
2

ΩYm

p′ (q
`
2 ) .

The proof of Theorem 2.30 takes the next Sections 2.8.3 and 2.8.4.

2.8.3 Quadratic refinement

According to Theorem 2.6, generating series of the log Gromov-Witten invariants NYm
g,p

are Hamiltonians attached to the rays of some quantum scattering diagram S(D̂m). Our

integrality result, Theorem 2.30, will follow from a general integrality result for scattering

diagrams. Our main input, the integrality result of [KS11], is phrased in terms of twisted

quantum scattering diagrams, i.e. scattering diagrams valued in automorphisms of twisted

quantum tori. The comparison with quiver DT invariants, done in Section 2.8.5, also requires

to consider twisted quantum scattering diagrams.

In the present Section, we explain how to compare the quantum scattering diagram S(D̂m)

with a twisted quantum scattering diagram S(D̂tw
m ). This comparison requires the notion

of quadratic refinement. A short and to the point discussion by Neitzke can be found in

[Nei14]. Some related discussion can be found in Appendix A of [Lin17].

We start with P = Nn = ⊕nj=1Nej . For p = (p1, . . . , pn) ∈ P = Nn, we denote ord(p) ∶= ∑
n
j=1 pj .

An n-tuple m = (m1, . . . ,mn) of primitive non-zero vectors in M = Z2 naturally defines an

additive map

r∶P →M

ej ↦mj .

For every A a Z[q± 1
2 ]-algebra, we denote T̂AP,tw the non-commutative “space” whose algebra

of functions is the algebra Γ(OT̂A
P,tw
) given by A[[P ]], powers series in x̂p, p ∈ P , with
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coefficients in A, with the product defined by

x̂p.x̂p
′

= (−1)⟨r(p),r(p
′
)⟩q

1
2 ⟨r(p),r(p

′
)⟩x̂p+p

′

.

The main difference with respect to the formalism of Section 2.1 is the twist by the extra

sign (−1)⟨r(p),r(p
′
)⟩.

We will use A = Z[[q± 1
2 ]], Z((q 1

2 )) and Q((q 1
2 )). We have obviously the inclusions

Γ(O
T̂

Z[[q±1/2]]
P,tw

) ⊂ Γ(O
T̂

Z((q1/2))
P,tw

) ⊂ Γ(O
T̂

Q((q1/2))
P,tw

) .

Every

Ĥtw
= ∑
p∈P

Ĥtw
p x̂p ∈ Γ(O

T̂
Q((q1/2))
P,tw

) ,

such that Ĥtw = 0 mod P , defines via conjugation by exp (Ĥtw) an automorphism

Φ̂tw
Ĥtw = Adexp(Ĥtw)

= exp (Ĥtw) (−) exp (−Ĥtw)

of Γ(O
T̂

Q((q1/2))
P,tw

).

Definition 2.31. A twisted quantum scattering diagram D̂tw over (r∶P →M) is a set of

rays d in MR, equipped with elements

Ĥtw
d ∈ Γ(O

T̂
Q((q1/2))
P,tw

) ,

such that:

• There exists (a necessarily unique) p ∈ P primitive such that Ĥtw
d ∈ x̂pQ((q 1

2 ))[[x̂p]]

and either r(p) ∈ −N⩾1md or r(p) ∈ N⩾1md. We say that the ray (d, Ĥtw
d ) is ingoing

if r(p) ∈ −N⩾1md and outgoing if r(p) ∈ N⩾1md. We call p the P -direction of the ray

(d, Ĥtw
d ).

• For every ` ⩾ 0, there are only finitely many rays d of P -direction p satisfying ord(p) ⩽

`.

Using the automorphisms Φ̂tw
Ĥtw

, we define as in Section 2.1.4 the notion of consistent twisted

quantum scattering diagram and one can prove that every twisted quantum scattering dia-

gram Dtw can be canonically completed by adding only outgoing rays to form a consistent

twisted quantum scattering diagram S(Dtw).

The following Lemma will give us a way to go back and forth between quantum scattering

diagrams and twisted quantum scattering diagrams.

Lemma 2.32. The map σM ∶M → {±1}, defined by σM(0) = 1 and σM(m) = (−1)∣m∣ for

m ∈M non-zero, where ∣m∣ is the divisibility of m in M , is a quadratic refinement of

∧
2M → {±1}
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(m1,m2) ↦ (−1)⟨m1,m2⟩ ,

i.e. we have

σM(m1 +m2) = (−1)⟨m1,m2⟩σM(m1)σM(m2) ,

for every m1,m2 ∈M . It is the unique quadratic refinement such that σM(m) = −1 for every

m ∈M primitive.

Proof. We fix a basis of M and we denote m = (mx,my) the coordinates of some m ∈M in

this basis. We define σ′M ∶M → {±1} by

σ′M(m) = (−1)m
xmy+mx+my .

It is easy to check that σ′M is a quadratic refinement of (−1)⟨−,−⟩: the parity of

(mx
1 +m

x
2)(m

y
1 +m

y
2) +m

x
1 +m

x
2 +m

y
1 +m

y
2

differs from the parity of

mx
1m

y
1 +m

x
1 +m

y
1 +m

x
2m

y
2 +m

x
2 +m

y
2

by mx
1m

y
2 +m

x
2m

y
1, which has the parity of ⟨m1,m2⟩.

If m ∈M is primitive, then (mx,my) is equal to (1,0), (0,1) or (1,1) modulo two, and in

all these three cases, we get σ′M(m) = −1. Combined with the fact that σ′M is a quadratic

refinement, this implies that, for every m ∈M , we have σ′M(m) = (−1)∣m∣, i.e. σ′M = σM . In

particular, σM is a quadratic refinement and σ′M is independent of the choice of basis.

The uniqueness statement follows from the fact that a quadratic refinement is determined

by its value on a basis of M .

Let D̂tw
m be the twisted quantum scattering diagram consisting of incoming rays (dj , Ĥ

tw
dj ),

1 ⩽ j ⩽ n, where

dj = −R⩾0mj ,

and

Ĥtw
dj = −∑

`⩾1

1

`

1

q
`
2 − q−

`
2

x̂`ej ∈ Γ(O
T̂

Q((q1/2))
P,tw

) ,

where we consider
1

q
`
2 − q−

`
2

= −q
`
2 ∑
k⩾0

qk` ∈ Q((q
1
2 )) .

Let S(D̂tw
m ) be the corresponding consistent twisted quantum scattering diagram obtained

by adding only outgoing rays.

Define σP ∶P → {±1} by σP ∶= σM ○ r. It follows from Lemma 2.32 that σP is a quadratic

refinement and so
⎛

⎝

n

∏
j=1

t
pj
j

⎞

⎠
ẑr(p) ↦ σP (p)x̂

p ,

is an algebra isomorphism between quantum tori and twisted quantum tori. Using this
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isomorphism, we can construct a twisted quantum scattering diagram S(D̂m)
tw from the

quantum scattering diagram D̂m.

The incoming rays of S(D̂m)
tw are (dj , Ĥ

tw
dj ), 1 ⩽ j ⩽ n, where dj = −R⩾0mj and

Ĥtw
dj = −∑

`⩾1

1

`

1

q
`
2 − q−

`
2

x̂`ej .

The outgoing rays of S(D̂m)
tw are (R⩾0m,Ĥtw

m ) where

Ĥtw
m = − ∑

p∈Pm

Ωp(q
1
2 )

q
1
2 − q−

1
2

x̂p = − ∑
p∈Pm

∑
p=`p′

1

`

1

q
`
2 − q−

`
2

ΩYm

p′ (q
`
2 )x̂p .

Lemma 2.33. We have S(D̂tw
m ) = S(D̂m)

tw.

Proof. As (∏
n
j=1 t

pj
j )ẑ

r(p) ↦ σP (p)x̂
p is an algebra isomorphism, the twisted quantum scat-

tering diagram S(D̂m)
tw is consistent and so the result follows from the uniqueness of the

consistent completion of twisted quantum scattering diagrams.

2.8.4 Proof of the integrality theorem

We give below the proof of Theorem 2.30. It is a combination of the scattering arguments

of Appendix C3 of [GHKK18] with the formalism of quantum admissible series of [KS11].

Because of the structure of the induction argument, we will in fact prove a more general

statement than Theorem 2.30. We will prove, Proposition 2.35, that the consistent comple-

tion of any (twisted) quantum scattering with incoming rays equipped with Hamiltonians

satisfying some BPS integrality condition has outgoing rays equipped Hamiltonians satisfy-

ing the BPS integrality condition.

We fix p ∈ P primitive. Consider

Ĥtw
= ∑
`⩾1

Ĥtw
` (q

1
2 )x̂`p ∈ x̂pQ((q

1
2 ))[[x̂p]] .

We define

Ω`(q
1
2 ) ∶= −(q

1
2 − q−

1
2 )Ĥtw

` (q
1
2 ) ∈ Q((q

1
2 )) ,

and

Ω`(q
1
2 ) ∶= ∑

`′∣`

µ(`′)

`′
q

1
2 − q−

1
2

q
`
2 − q−

`
2

Ω `
`′
(q

`
2 ) ∈ Q((q

1
2 )) .

It follows from Lemma 2.27 that we have

Ĥtw
= − ∑

n⩾1
∑
`⩾1

1

`

Ωn(q
`
2 )

q
`
2 − q−

`
2

x̂`np .

Definition 2.34. We say that Ĥtw ∈ x̂pQ((q 1
2 ))[[x̂p]] satisfies the BPS integrality condition

if the corresponding Ωl(q
1
2 ) ∈ Q((q 1

2 )) are in fact Laurent polynomials with integer coeffi-

cients, i.e. Ω`(q
1
2 ) ∈ Z[q 1

2 ].
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Remarks:

• Ĥtw satisfies the BPS integrality condition if and only if exp (Ĥtw) is admissible in

the sense of Section 6 of [KS11].

• It follows from the product form of the quantum dilogarithm, as recalled in Section

2.3.1, that if Ĥtw satisfies the BPS integrality condition, then Φ̂tw
Ĥtw

preserves the

subring Γ(O
T̂

Z[[q1/2]]
P,tw

) of Γ(O
T̂

Q((q1/2))
P,tw

). We call BPS quantum tropical vertex group17

the subgroup of automorphisms of Γ(O
T̂

Z[[q1/2]]
P,tw

) generated by automorphisms of the

form Φ̂tw
Ĥtw

with Ĥtw satisfying the BPS integrality condition.

We fix a choice of twisted quantum scattering diagram in each equivalence class by consider-

ing as distinct rays with different P -directions and by merging rays with coinciding supports

and with the same P -direction.

Proposition 2.35. Let nI be a positive integer and (p1, . . . , pnI ) be an nI-tuple of primitive

vectors in P . Let D̂tw be a twisted quantum scattering diagram over (r∶P →M), consisting

of incoming rays (dj , Ĥ
tw
dj ), 1 ⩽ j ⩽ nI , with dj = −R⩾0r(pj) and Ĥtw

dj ∈ x̂
pjQ((q 1

2 ))[[x̂p
j

]]

satisfying the BPS integrality condition. Then the consistent twisted quantum scattering

diagram S(D̂tw) is such that for every outgoing ray (d, Ĥtw
d ), of P -direction p ∈ P , we have

that Ĥtw
d ∈ x̂

pQ((q 1
2 ))[[x̂p]] satisfies the BPS integrality condition.

Proof. If nI = 2, or if more generally all the initial rays −Rr(pj) are contained in a common

half-plane of MR, then the result follows directly from Proposition 9 of [KS11].

We will reduce the general case to the case nI = 2 by using an argument parallel to the one

used in Appendix C.3 of [GHKK18] to prove some positivity property of classical scattering

diagrams.

For p = (p1, . . . , pn) ∈ P = Nn, we denote ord(p) ∶= ∑
n
j=1 pj . It is simply the total degree of

the monomial in several variables ∏
n
j=1 t

pj
j .

The result we will prove by induction over some positive integer N is:

Proposition 2.36. Let n be a positive integer and r∶P = Nn → M be an additive map.

Let nI be a positive integer and (p1, . . . , pnI ) be an nI-tuple of primitive vectors in P .

Let D̂tw be a twisted quantum scattering diagram over (r∶P → M), consisting of incoming

rays (dj , Ĥ
tw
dj ), 1 ⩽ j ⩽ nI , with dj = −R⩾0r(pj) and Ĥtw

dj ∈ x̂
pjQ((q 1

2 ))[[x̂p
j

]] satisfying

the BPS integrality condition. Then every outgoing ray (d, Ĥtw
d ) of the consistent twisted

quantum scattering diagram S(D̂tw), whose P -direction p satisfies ord(p) ⩽ N , is such that

Ĥtw
d ∈ x̂

pQ((q 1
2 ))[[x̂p]] satisfies the BPS integrality condition.

Proposition 2.36 is obviously true for N = 1: the only outgoing rays with P -direction p

satisfying ord(p) = 1 are obtained by straight propagation of the initial rays and so satisfy

the BPS integrality condition if it is the case for the initial rays.

17Called the quantum tropical vertex group in [KS11] .
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Let N > 1 be an integer. We assume by induction that Proposition 2.36 is true for all

integers strictly less than N and we want to prove it for N . As in Step III of Appendix C3

of [GHKK18], up to applying the perturbation trick, consisting in separating transversally

and generically the initial rays with the same support and then looking at the new local

scatterings, we can assume that at most two initial rays have order one.

We now use the change of monoid trick, as in Steps I and IV of Appendix C3 of [GHKK18].

Denote P ′ = ⊕nIj=1Ne
′
j and

r′∶P ′ →M

e′j ↦ r′(ej) ∶= r(p
j
) .

Let D̂tw′ be the twisted quantum scattering diagram over (r′∶P ′ →M) obtained by replacing

x̂p
j

by x̂e
′

j in Ĥtw
dj . Denote

u∶P ′ → P

e′j ↦ pj .

Let (d, Ĥtw
d ) be an outgoing ray of S(D̂tw), whose P -direction p satisfies ord(p) = N . Then

(d, Ĥtw
d ) is the sum of images by u of outgoing rays of S(D̂tw′), of P ′-direction mapping to

p by u. Let (d′, Ĥtw
d′ ) be such outgoing ray of S(D̂tw′).

Writing p′ = ∑
nI
j=1 p

′
je
′
j , (p

′
1, . . . , p

′
n) ∈ NnI , we have

ord(p′) = ord
⎛

⎝

nI

∑
j=1

p′je
′
j

⎞

⎠
=
nI

∑
j=1

p′j ,

whereas

ord(p) = ord
⎛

⎝

nI

∑
j=1

p′jp
j⎞

⎠
=
nI

∑
j=1

p′j ord(pj) .

If only two p′j are non-zero, then the ray (d′, Ĥtw
d′ ) belongs to a twisted quantum scattering

diagram with two incoming rays and so its BPS integrality follows from Proposition 9 of

[KS11]. If more than two of the p′j are non-zero, then, at least one of the pj with nj ≠ 0

satisfies ord(pj) ⩾ 2 and so ord(p′) < ord(p). The BPS integrality of the ray (d′, Ĥtw
d′ ) then

follows by the induction hypothesis.

We can now finish the proof of Theorem 2.30. By Theorem 2.6 and Lemma 2.33, it is enough

to show that the outgoing rays of the twisted quantum scattering diagram S(D̂tw
m ) satisfy

the BPS integrality condition. As the initial rays of S(D̂tw
m ) satisfy the BPS integrality

condition, the result follows from Proposition 2.35.

2.8.5 Integrality and quiver DT invariants

We refer to [KS08], [JS12], [Rei10], [Rei11], [MR17] for Donaldson-Thomas (DT) theory of

quivers.

For every m = (m1, . . . ,mn) an n-tuple of primitive non-zero vectors in M = Z2, we define
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a quiver Qm, with set of vertices {1,2, . . . , n} and, for every 1 ⩽ j, k ⩽ n, ⟨mj ,mk⟩+ ∶=

max(⟨mj ,mk⟩,0) arrows from the vertex j to the vertex k. We identify P = ⊕nj=1Nej with

the set of dimension vectors for the quiver Qm.

Lemma 2.37. The quiver Qm is acyclic, i.e. does not contain any oriented cycle, if and

only if the n vectors m1, . . . ,mn are all contained in a closed half-plane of MR = R2.

Proof. The quiver Qm contains an arrow from the vertex i to the vertex j if and only if

(mi,mj) is an oriented basis of R2.

Let us assume that the quiver Qm is acyclic. Every θ = (θj)1⩽j⩽n ∈ Zn defines a notion

of stability for representations of Qm. For every p ∈ P , we then have a projective variety

Mθ−ss
p , moduli space of θ-semistable representations of Qm of dimension p, containing the

open smooth locus Mθ−st
p of θ-stable representations. Denote ι∶Mθ−st

p →Mθ−ss
p the natural

inclusion. The main result of [MR17] is that the Laurent polynomials

ΩQm,θ
p (q

1
2 ) ∶= (−1)dimMθ−ss

p q−
1
2 dimMθ−ss

p

dimMθ−st
p

∑
j=0

(dimH2j
(Mθ−ss

p , ι!∗Q)) qj

∈ (−1)dimMθ−ss
p q−

1
2 dimMθ−ss

p N[q]

are the refined DT invariants of Qm for the stability θ. In the above formula, ι!∗ is the

intermediate extension functor defined by ι and so ι!∗Q is a perverse sheaf on Mθ−ss
p .

As Qm is acyclic, we can assume, up to relabeling m1, . . . ,mn, that ⟨mj ,mk⟩ ⩾ 0 if j ⩽ k.

If θ1 < θ2 < ⋅ ⋅ ⋅ < θn, then ΩQm,θ
ej (q

1
2 ) = 1, for all 1 ⩽ j ⩽ n, and ΩQm,θ

p (q
1
2 ) = 0 for p ∈

P − {e1, . . . , en}. We call such θ a trivial stability condition.

If θ1 > θ2 > ⋅ ⋅ ⋅ > θn, we call θ a maximally non-trivial stability condition. We simply denote

ΩQm
p (q

1
2 ) for ΩQm,θ

p (q
1
2 ) and θ a maximally non-trivial stability condition.

Proposition 2.38. For every m = (m1, . . . ,mn) such that the quiver Qm is acyclic, we have,

for every p ∈ P = Nn, the equality

ΩQm
p (q

1
2 ) = ΩYm

p (q
1
2 )

between the refined DT invariant ΩQm
p (q

1
2 ) of the quiver Qm and the log BPS invariant

ΩYm
p (q

1
2 ) of the log Calabi-Yau surface Ym.

Proof. The twisted quantum scattering diagram S(D̂tw
m ) controls the wall-crossing of refined

DT invariants of Qm from the trivial stability condition to the maximally non-trivial stability

condition.

Remarks:

• In the limit q
1
2 → 1, and if Qm is complete bipartite, then Proposition 2.38 reduces to

the Gromov-Witten/Kronecker correspondence of [GP10], [RW13], [RSW12].
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• Proposition 2.38 can be viewed as a concrete example of equality between open BPS

invariants and DT invariants of quivers. The expectation for this kind of relation goes

back at least to [CV09], as reviewed in Section 2.9. Related recent stories include

[KRSS17a], [KRSS17b], where some knot invariants, which via some string theoretic

duality should be examples of open BPS invariants, are identified with some quiver DT

invariants, and [Zas18], where a precise correspondence between open BPS invariants

of some class of Lagrangian submanifolds in C3 and some DT invariants of quivers is

conjectured.

• Proposition 2.38 gives a different proof of Theorem 2.30 when Qm is acyclic. When Qm

is not acyclic, it is unclear a priori how to relate the log BPS invariants ΩYm
p (q

1
2 ) to

some DT quiver theory. In the physics language, one should remove the contributions

of non-trivial single-centered (pure Higgs) indices (see [MPS13] and follow-ups). It

is still an open question to define mathematically the corresponding operation in DT

quiver theory. The fact that the integrality given by Theorem 2.30 holds even if Qm

is not acyclic is probably an additional evidence that it should be possible.

• When Qm is acyclic, Proposition 2.38 gives a positivity result for the log BPS invariants

ΩYm
p (q

1
2 ). It is unclear how to prove a similar positivity result if Qm is not acyclic.

We finish this Section by some remark about signs. The definition of ΩYm
p (q

1
2 ) given in

Section 2.8.2 includes a global sign (−1)`p−1 = (−1)βp.(∂Ym)−1, whereas the formula given

above for ΩQm
p (q

1
2 ) includes a global sign (−1)dimMθ−ss

p . Using that βp.(∂Ym) and β2
p have

the same parity by Riemann-Roch on Ym, the following result gives a direct proof that these

two signs are identical.

Lemma 2.39. For every p ∈ P , we have

dimMθ−ss
p = β2

p + 1 .

Proof. We write p = ∑
n
j=1 pjej ∈ P . By standard quiver theory, we have

dimMθ−ss
p =

n

∑
j=1

n

∑
k=1

⟨mj ,mk⟩+pjpk −
n

∑
j=1

p2
j + 1 .

By definition, Section 2.2.2, we have

βp = ν
∗β −

n

∑
j=1

pjEj ,

where ν∶Ym → Y m is the blow-up morphism and β ∈H2(Y m,Z) is defined by some intersec-

tion numbers. It follows that

β2
p = β

2
−

n

∑
j=1

p2
j .

From the intersection numbers defining β, we see that the convex polygon dual to β is

obtained by successively adding the vectors pjmj and `pmp, in the order given by the

counterclockwise ordering of the mj and mp given by their argument. By standard toric
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geometry, β2 is given by twice the area of the dual polygon and so we have

β2
=

n

∑
j=1

n

∑
k=1

⟨mj ,mk⟩+pjpk .

It follows that

β2
p =

n

∑
j=1

n

∑
k=1

⟨mj ,mk⟩+pjpk −
n

∑
j=1

p2
j = dimMθ−ss

p − 1 .

2.8.6 del Pezzo surfaces

In this Section, we study the conjectures of Section 2.8.1 in the case where Y is a del

Pezzo surface S and ∂Y is a smooth anticanonical divisor E of Y . In particular, E is a

smooth genus one curve. We formulate Conjecture 2.41, precise form of Conjecture 4 of the

Introduction.

Lemma 2.40. Let S be a del Pezzo surface, and E be a smooth anticanonical divisor of S.

Then, for every β ∈ H2(Y,Z), the rationality Conjecture 2.26 is true for the log Calabi-Yau

pair (S,E) with respect to the curve class β.

Proof. As in Section 2.2.4, the invariants N
S/E
g,β can be written as equivariant Gromov-

Witten invariants of the 3-fold S × C relative to the divisor E × C. The rationality result

then follows from the Gromov-Witten/stable pairs correspondence for the relative 3-fold

geometry S ×C/E ×C.

This case of the Gromov-Witten/stable pairs correspondence can be proved following Section 5.3

of [MPT10]. This involves considering the degeneration of S×C to the normal cone of E×C.

Denote N the normal bundle to E in S. The degeneration formula expresses equivariant

Gromov-Witten/stable pairs theories of S × C, without insertions, in terms of the relative

equivariant Gromov-Witten/stable pairs theories, without insertions, of S × C/E × C and

P(N ⊕OE) ×C.

As S × C is deformation equivalent to a toric 3-fold18, the Gromov-Witten/stable pairs

correspondence, without insertions, for S ×C follows from Section 5.1 of [MPT10].

The equivariant Gromov-Witten/stable pairs theory of P(N ⊕ OE) × C/E × C coincides

with the non-equivariant Gromov-Witten theory of P(N ⊕ OE) × E/E × E. The 3-fold

P(N ⊕OE) ×E is a P1-bundle over E × E and we are considering curves of degree 0 over

the second E factor. As E ×E is holomorphic symplectic, the Gromov-Witten/stable pairs

theories vanish unless the curve class has also degree 0 over the first E factor. The Gromov-

Witten/stable pairs correspondence for P(N⊕OE)×E/E×E, without insertions, thus follows

from the Gromov-Witten/stable pairs correspondence, without insertions, for local curves.

It follows from Proposition 6 of [PP13] that the degeneration formula can be inverted to

18Indeed, a del Pezzo surface is deformation equivalent to a (non-necessarily del Pezzo) toric surface: if S
is a blow-up of P2 in n points, then S is deformation equivalent to a surface obtained by n successive toric
blow-ups of P2.
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imply the Gromov-Witten/stable pairs correspondence, without insertions, for S × C/E ×
C.

By Lemma 2.40, we have rational functions

Ω
S/E

β (q
1
2 ) ∈ Q(q±

1
2 ) ,

such that

Ω
S/E

β (q
1
2 ) = (−1)β.E+1

(2 sin(
h̵

2
))
⎛

⎝
∑
g⩾0

N
S/E
g,β h̵2g−1⎞

⎠
,

as power series in h̵, after the change of variables q = eih̵.

We define

Ω
S/E
β (q

1
2 ) = ∑

β=`β′

µ(`)

`

q
1
2 − q−

1
2

q
`
2 − q−

`
2

Ωβ′(q
`
2 ) ∈ Q(q

1
2 ) .

According to Conjecture 2.28, one should have Ω
S/E
β (q

1
2 ) ∈ Z[q± 1

2 ].

Let Mβ be the moduli space of dimension one stable sheaves on S, of class β ∈ H2(S,Z),
and Euler characteristic 1. It is a smooth projective variety of dimension β2 + 1. We denote

χq(Mβ) ∶= q
− 1

2 (β
2
+1)

β2
+1

∑
j,k=0

(−1)j+khj,k(Mβ)q
j
∈ Z[q±

1
2 ]

the normalized Hirzebruch genus of Mβ , where hj,k are the Hodge numbers. It follows

from Theorem 2 of [Mar07], following [ESm93] and [Bea95], that hj,k(Mβ) = 0 if j ≠ k. In

particular, χq(Mβ) coincides with the normalized Poincaré polynomial of Mβ .

Conjecture 2.41. We have

Ω
S/E
β (q

1
2 ) = (−1)β

2
+1
(β.E)χq(Mβ) .

Remarks:

• We have β2 = β.E mod 2 by Riemann-Roch.

• In the limit q
1
2 → 1, Conjecture 2.41 reduces to

N
S/E
0,β = (−1)β.E−1

∑
β=`β′
(−1)(β

′
)
2
+1 (β

′.E)

`2
e(Mβ′)

= (−1)β.E−1
(β.E) ∑

β=`β′

1

`3
(−1)(β

′
)
2
+1e(Mβ′) ,

which is a known result. Indeed, by an application of the degeneration formula origi-

nally due to Graber-Hassett and generalized in [vGGR17], we haveN
S/E
0,β = (−1)β.E+1(β.E)NX

0,β ,

where X is the local Calabi-Yau 3-fold given by the total space of the canonical line

bundle KS of S, and NX
0,β is the genus 0, class β, Gromov-Witten invariant of X. So

151



the above formula is equivalent to

NX
0,β = ∑

β=`β′

1

`3
(−1)(β

′
)
2
+1e(Mβ′) ,

which is exactly the Katz conjecture (Conjecture 2.3 of [Kat08]) for X. As X is

deformation equivalent to a toric Calabi-Yau 3-fold, the Katz conjecture for X follows

from the combination of the Gromov-Witten/stable pairs correspondence (Section 5.1

of [MPT10]), the integrality result of [Kon06] and Theorem 6.4 of [Tod12].

• The right-hand side (−1)β
2
+1χq(Mβ) should be thought as a refined DT invariant of

X, counting dimension one sheaves. From this point of view, Conjecture 2.41 is an

equality between a log BPS invariant on one side and a refined DT invariant on the

other side, in a way completely parallel to Proposition 2.38.

• Further conceptual evidences for Conjecture 2.41 and a further refinement of Conjec-

ture 2.41 will be presented elsewhere.

2.9 Relation with Cecotti-Vafa

In [CV09], Cecotti-Vafa have given a physical derivation of the fact that the refined BPS

indices of a N = 2 4d quantum field theory admitting a Seiberg-Witten curve satisfy the

refined Kontsevich-Soibelman wall-crossing formula. To make connection with Theorem 2.6,

we focus on only one part of the argument, establishing the relation between open Gromov-

Witten invariants and wall-crossing formula via Chern-Simons theory. In particular, we do

not discuss the application to the BPS spectrum of N = 2 4d quantum field theories, which

would be related to our Section 2.8.5 on quiver DT invariants.

2.9.1 Summary of the Cecotti-Vafa argument

Let U be a non-compact hyperkähler manifold19, (I, J,K) be a quaternionic triple of com-

patible complex structures, (ωI , ωJ , ωK) be the corresponding triple of real symplectic forms

and (ΩI ,ΩJ ,ΩK) be the corresponding triple of holomorphic symplectic forms.

Let Σ ⊂ U be a I-holomorphic Lagrangian subvariety of U , i.e. a submanifold such that

ΩI ∣Σ = 0. It is an example of (B,A,A)-brane in U : it is a complex subvariety for the complex

structure I and a real Lagrangian for any of the real symplectic forms (cos θ)ωJ +(sin θ)ωK ,

θ ∈ R. There is in fact a twistor sphere Jζ , ζ ∈ P1, of compatible complex structures, such

that I = J0, J = J1 and K = Ji.

Let X be the non-compact Calabi-Yau 3-fold, of underlying real manifold U × C∗ and

equipped with a complex structure twisted in a twistorial way, i.e. such that the fiber over

ζ ∈ C∗ is the complex variety (U,Jζ). Consider S1 ⊂ C∗ and L ∶= Σ × S1 ⊂X.

We consider the open topological string A-model on (X,L), i.e. the count of holomorphic

19In [CV09], Cecotti-Vafa consider U = C2 but the generalization to an arbitrary hyperkähler surface is
clear and is considered for example in [CNV10] (in particular Appendix B).
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maps (C,∂C) → (X,L) from an open Riemann surface C to X with boundary ∂C mapping

to L20. We restrict ourselves to open Riemann surfaces with only one boundary component.

Given a class β ∈ H2(X,L), let Ng,β ∈ Q be the “count” of holomorphic maps ϕ∶ (C,∂C) →

(X,L) with C a genus g Riemann surface with one boundary component and [ϕ(C,∂C)] = β.

We denote

∂β = [∂C] ∈H1(L) ,

i.e. the image of β by the natural boundary map H2(X,L) → H1(L). A holomorphic map

ϕ∶ (C,∂C) → (X,L) of class β ∈ H2(X,L) is a Jeiθ -holomorphic map to U , at a constant

value eiθ ∈ S1, where θ is the argument of ∫β ΩI .

According to Witten [Wit95], in absence of non-constant worldsheet instantons, the effective

spacetime theory of the A-model on the A-brane L is Chern-Simons theory of gauge group

U(1). The field of this theory is a U(1) gauge field A and its action is

ICS(A) ∶=
1

2
∫
L
A ∧ dA .

The non-constant worldsheet instantons deform this result, see Section 4.4 of [Wit95]. The

effective spacetime theory on the A-brane L is still a U(1)-gauge theory but the Chern-

Simons action is deformed by additional terms involving the worldsheet instantons:

I(A) = ICS(A) +∑
β

∑
g⩾0

Ng,βh̵
2ge−∫β ωe∫∂β A .

The partition function of the deformed theory can be written as a correlation function in

Chern-Simons theory

Z = ∫ DAei
I(A)
h̵

= ⟨ exp
⎛

⎝
i ∑
β∈H2(X,L)

∑
g⩾0

Ng,βh̵
2g−1e−∫β ωe∫∂β A

⎞

⎠
⟩

CS

.

As L = Σ × S1, we can adopt a Hamiltonian description where S1 plays the role of the time

direction. The classical phase space of U(1) Chern-Simons theory on L = Σ×S1 is the space

of U(1) flat connections on Σ. When Σ is a torus, the classical phase space is the dual torus

T . For every m ∈H1(L), the holonomy around m defined a function zm on T , i.e. a classical

observable,

zm(A) ∶= e∫mA .

The algebra structure is given by zmzm
′

= zm+m
′

and the Poisson structure by {zm, zm
′

} =

⟨m,m′⟩zm+m
′

. The algebra of quantum observables is given by the non-commutative torus,

ẑmẑm
′

= q
1
2 ⟨m,m

′
⟩ẑm+m

′

, where q = eih̵. Writing tβ = e−∫β ω, we get

Z = TrH
⎛

⎝
T ∏
β∈H2(X,L)

Adexp(−i∑g⩾0Ng,β h̵
2g−1tβ ẑm)

⎞

⎠
,

20Usually, A-branes, i.e. boundary conditions for the A-model, have to be Lagrangian submanifolds. In
fact, L is not Lagrangian in X but only totally real. Combined with specific aspects of the twistorial
geometry, it is probably enough to have well-defined worldsheet instantons contributions. As suggested in
[CV09], it would be interesting to clarify this point.
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where H is the Hilbert space of quantum Chern-Simons theory and where T ∏β is a time

ordered product, with ordering according to the phase of ∫β ΩI .

The key physical input used by Cecotti-Vafa [CV09] is the continuity of the partition function

Z as function of the position of L in X. It follows that the jump of the invariants Ng,β under

variation of L in X is controlled by the refined Kontsevich-Soibelman wall-crossing formula

formulated in terms of products of automorphisms of the quantum torus.

2.9.2 Comparison with Theorem 2.6

Our main result, Theorem 2.6, expresses the log Gromov-Witten theory of a log Calabi-Yau

surface (Ym, ∂Ym) in terms of the 2-dimensional Kontsevich-Soibelman scattering diagram.

The complement Um ∶= Ym−∂Ym is a non-compact holomorphic symplectic surface admitting

a SYZ real Lagrangian torus fibration. In some cases, Um admits a hyperkähler metric, such

that the original complex structure of Um is the compatible complex structure J , and such

that the SYZ fibration becomes I-holomorphic Lagrangian. Typical examples include 2-

dimensional Hitchin moduli spaces, see [Boa12] for a nice review. In such cases, we can

apply the Cecotti-Vafa story summarized above to U ∶= Um, with Σ a torus fiber of the SYZ

fibration.

The log Gromov-Witten invariants with insertion of a top lambda class Ng,β , introduced in

Section 2.2, should be viewed as a rigorous definition of the open Gromov-Witten invariants

in the twistorial geometry X, with boundary on a torus fiber Σ “near infinity”21. This is in

part justified by the 3-dimensional interpretation of the invariants NYm

g,β given in Section 2.2.4

and in particular by Lemma 2.5.

Automorphisms of the quantum torus appearing in Section 2.9.1 coincide with the automor-

phisms of the quantum torus appearing in Theorem 2.6. It follows that Theorem 2.6 can

be viewed as a mathematically rigorous check of the physical argument given by Cecotti-

Vafa [CV09], based on the continuity of Chern-Simons correlation functions and on the

connection predicted by Witten [Wit95] between A-model topological string and quantum

Chern-Simons theory.

2.9.3 Ooguri-Vafa integrality

Using the review of the Cecotti-Vafa paper [OV00] given in 2.9.1, we can explain the relation

between Conjecture 2.28 and Theorem 2.30 of Section 2.8 and the integrality conjecture of

Ooguri-Vafa [OV00].

If (Y, ∂Y ) is a log Calabi-Yau surface, the complement U ∶= Y − ∂Y is a non-compact

holomorphic symplectic surface. Assuming that U admits a hyperkähler metric such that the

original complex structure of U is the compatible complex structure, and an I-holomorphic

Lagrangian torus fibrations, we can apply Section 2.9.1, taking for Σ a fiber of the torus

21An early reference for the interpretation of some open Gromov-Witten invariants in terms of relative
stable maps is [LS06]. The intuitive picture to have in mind is that an open Riemann surface with a boundary
on a torus fiber very close to the divisor at infinity can be capped off by a holomorphic disc meeting the
divisor at infinity in one point.

154



fibration. As in Section 2.9.2, the log Gromov-Witten invariants with insertion of a top

lambda class defined in Section 2.8 should be viewed as a rigorous definition of the open

Gromov-Witten invariants in the twistorial geometry X, with boundary on a torus fiber Σ

“near infinity”, i.e. near the anticanonical divisor ∂Y of Y . Ooguri-Vafa have given a physical

derivation of an integrality result for these open Gromov-Witten invariants, analogue to the

Gopakumar-Vafa [GV98a] [GV98b] integrality for closed Gromov-Witten invariants.

The open topological string A-model has a natural embedding in physical string theory.

More precisely, in type IIA string theory on R4 ×X, it computes F -terms in the N = (2,2)

2d quantum field theory on the non-compact worldvolume of a D4-brane on R2 ×L. In the

strong coupling limit of type IIA string theory, we get M-theory on R5 ×X, with some M5-

brane on R3×L, and fundamental strings become M2-branes. Let Ωr,β ∈ Z be the BPS index

given by counting M2-branes with boundary on L, of class β ∈H2(X,L), and defining BPS

states of spin r ∈ 1
2
Z in R3. Comparing the type IIA string description and the M-theory

description, Ooguri-Vafa [OV00] obtained the relation

∑
g⩾0

Ng,βh̵
2g−1
= ∑
β=`β′

(−1)`−1

`

1

2 sin ( `h̵
2
)

⎛
⎜
⎝
∑
r∈ 1

2Z
Ωr,β′e

i`rh̵
⎞
⎟
⎠
.

The corresponding integrality obviously coincides with the integrality of Conjecture 2.28

and Theorem 2.30.
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3
Deformation quantization of log

Calabi-Yau surfaces

3.1 Basics and main results

3.1.1 Looijenga pairs

Let (Y,D) be a Looijenga pair1: Y is a smooth projective complex surface and D is a sin-

gular reduced normal crossings anticanonical effective divisor on Y . Writing the irreducible

components

D =D1 + ⋅ ⋅ ⋅ +Dr ,

D is a cycle of r irreducible smooth rational curvesDj if r ⩾ 2, or an irreducible nodal rational

curve if r = 1. The complement U ∶= Y −D is a non-compact Calabi-Yau surface, equipped

with a holomorphic symplectic form ΩU , defined up to non-zero scaling and having first order

poles along D. We refer to [Loo81], [Fri15], [GHK15a], [GHK15b], for more background on

Looijenga pairs.

There are two basic operations on Looijenga pairs:

• Corner blow-up. If (Y,D) is a Looijenga pair, then the blow-up Ỹ of Y at one of the

corners of D, equipped with the preimage D̃ of D, is a Looijenga pair.

• Boundary blow-up. If (Y,D) is a Looijenga pair, then the blow-up Ỹ of Y at a smooth

point of D, equipped with the strict transform D̃ of D, is a Looijenga pair.

A corner blow-up does not change the interior U of a Looijenga pair (Y,D). An interior

blow-up changes the interior of a Looijenga pair: if (Ỹ , D̃) is an interior blow-up of (Y,D),

1We follow the terminology of Gross-Hacking-Keel [GHK15a]
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then, for example, we have

e(Ũ) = e(U) + 1 ,

where U is the interior of (Y,D), Ũ is the interior of (Ỹ , D̃), and e(−) denotes the topological

Euler characteristic.

If Ȳ is a smooth toric variety and D̄ is its toric boundary divisor, then (Ȳ , D̄) is a Looijenga

pair, of interior U = (C∗)2. In particular, we have e(U) = e((C∗)2) = 0. Such Looijenga

pairs are called toric. A Looijenga pair (Y,D) is toric if and only if its interior U = Y −D

has a vanishing Euler topological characteristic: e(U) = 0.

A toric model of a Looijenga pair (Y,D) is a toric Looijenga pair (Ȳ , D̄) such that (Y,D)

is obtained from (Ȳ , D̄) by applying successively a finite number of boundary blow-ups.

If (Y,D) is a Looijenga pair, then, by Proposition 1.3 of [GHK15a], there exists a Looijenga

pair (Ỹ , D̃), obtained from (Y,D) by applying successively a finite number of corner blow-

ups, which admits a toric model. In particular, we have e(U) ⩾ 0, where U is the interior of

(Y,D).

Let (Ȳ , D̄) be a toric model of a Looijenga pair (Y,D) of interior U . Let ω̄ be a torus

invariant real symplectic form on (C∗)2 = Ȳ − D̄. Then the corresponding moment map

for the torus action gives to Ȳ the structure of toric fibration, whose restriction to U is

a smooth fibration in Lagrangian tori. By definition of a toric model, we have a map

p∶ (Y,D) → (Ȳ , D̄), composition of successive boundary blow-ups. Let Ej denote the excep-

tional divisors, j = 1, . . . , e(U). Then for εj small enough positive real numbers, there exists

a symplectic form ω in the class

p∗[ω̄] −
e(U)

∑
j=1

εjEj

with respect to which Y admits an almost toric fibration, whose restriction to U is a fibration

in Lagrangian tori with e(U) nodal fibers, [AAK16].

Toric models of a given Looijenga pair are very far from being unique but are always related

by sequences of corner blow-ups/blow-downs and boundary blow-ups/blow-downs. The

corresponding almost toric fibrations are related by nodal trades, [Sym03].

Following Section 6.3 of [GHK15a], we say that (Y,D) is positive if one of the following

equivalent conditions is satisfied:

• There exists positive integers a1, . . . , ar such that, for all 1 ⩽ k ⩽ r, we have

⎛

⎝

r

∑
j=1

ajDj

⎞

⎠
.Dk > 0 .

• U is deformation equivalent to an affine surface.

• U is the minimal resolution of Spec H0(U,OU), which is an affine surface with at worst

Du Val singularities.
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3.1.2 Tropicalization of Looijenga pairs

We refer to Sections 1.2 and 2.1 of [GHK15a] and to Section 1 of [GHKS16] for details.

Let (Y,D) be a Looijenga pair. Let D1, . . . ,Dr be the component of D, ordered in a cyclic

order, the index j of Dj being considered modulo r. For every j modulo r, we consider an

integral affine cone σj,j+1 = (R⩾0)2, of edges ρj and ρj+1. We abstractly glue together the

cones σj−1,j and σj,j+1 along the edge ρj . We obtain a topological space B, homeomorphic

to R2, equipped with a cone decomposition Σ in two-dimensional cones σj,j+1, all meeting

at a point that we call 0 ∈ B, and pairwise meeting along one-dimensional cones ρj . The

pair (B,Σ) is the dual intersection complex of (Y,D). We define an integral linear structure

on B0 = B − {0} by the charts

ψj ∶Uj → R2 ,

where Uj ∶= Int(σj−1,j ∪ σj,j+1) and ψj is defined on the closure of Uj by

ψj(vj−1) = (1,0) , ψj(vj) = (0,1) , ψj(vj+1) = (−1,−D2
j ) ,

where vj is a primitive generator of ρj and ψj is defined linearly on the two-dimensional

cones. Let Λ be the sheaf of integral tangent vectors of B0. It is a locally constant sheaf on

B0 of fiber Z2.

The integral linear structure on B0 extends to B through 0 if and only if (Y,D) is toric.

In this case, B can be identified with R2 as integral linear manifold and Σ is simply the

fan of the toric variety Y . In general, the integral linear structure is singular at 0, with a

non-trivial monodromy along a loop going around 0.

As B0 is an integral linear manifold, its set B0(Z) of integral points is well-defined. We

denote B(Z) ∶= B0(Z) ∪ {0}. If (Y,D) is toric, with Y −D = (C∗)2, then B(Z) is the lattice

of cocharacters of (C∗)2, i.e. the lattice of one-parameter subgroups C∗ → (C∗)2. Thus,

intuitively, a point of B0(Z) is a way to go to infinity in (C∗)2. This intuition remains true

in the non-toric case: a point in B0(Z) is a way to go to infinity in the interior U of the pair

(Y,D).

More precisely, if we equip (Y,D) with its divisorial log structure, then p ∈ B(Z) defines a

tangency condition along D for a marked point x on a stable log curve f ∶C → (Y,D). If

p = 0, then f(x) ∉D. If p =mjvj , mj ∈ N, then f(x) ∈Dj with tangency order mj along Dj

and tangency order zero along Dj−1 and Dj+1. If p =mjvj+1 +mj+1vj+1, mj ,mj+1 ∈ N, then

f(x) ∈Dj ∩Dj+1 with tangency order mj along Dj and tangency order mj+1 along Dj+1
2.

Let P be a toric monoid and P gp be its group completion, a finitely generated abelian group.

Denote P gp
R ∶= P

gp ⊗Z R, a finite dimensional R-vector space. Let ϕ be a convex P gp
R -valued

multivalued Σ-piecewise linear function on B0. Let Λj be the fiber of the sheaf Λ of integral

tangent vectors over the chart Uj . Let nj−1,j , nj,j+1 ∈ Λ∨i ⊗ P
gp be the slopes of ϕ∣σj−1,j and

ϕ∣σj,j+1 . Let Λρj be the fiber of the sheaf of integral tangent vectors to the ray ρj . Let

δj ∶Λj → Λj/Λρj ≃ Z be the quotient map. We fix signs by requiring that δj is nonnegative

on tangent vectors pointing from ρj to σj,j+1. Then (nj,j+1 − nj−1,j)(Λρj) = 0 and hence

2This makes sense precisely because we are using log geometry.
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there exists κρj ,ϕ ∈ P with

nj,j+1 − nj−1,j = δjκρj ,ϕ ,

called the kink of ϕ along ρj .

Let B0,ϕ be the P gp
R -torsor, which is set-theoretically B0 × P

gp
R but with an integral affine

structure twisted by ϕ: for each chart ψj ∶Uj → R2 of B0, we define a chart on B0,ϕ by

(x, p) ↦

⎧⎪⎪
⎨
⎪⎪⎩

(ψj(x), p) if x ∈ σj−1,j

(ψj(x), p + δ̃j(x)κρj ,ϕ) if x ∈ σj,j+1 ,

where δ̃j ∶σj,j+1 → R⩾0 is the integral affine map of differential δj . By definition, ϕ can be

viewed as a section of the projection π∶B0,ϕ → B0. Then P ∶= ϕ∗ΛB0,ϕ is a locally constant

sheaf on B0,ϕ, of fiber Z2 ⊕ P gp, and the projection π∶B0,ϕ → B0 induces a short exact

sequence

0→ P gp
→ P

r
Ð→ Λ→ 0

of locally constant sheaves on B0, where P gp is the constant sheaf on B0 of fiber P gp, and

where r is the derivative of π.

The sheaf Λ is naturally a sheaf of symplectic lattices: we have a skew-symmetric non-

degenerate form

⟨−,−⟩∶Λ⊗Λ→ Z .

We extend ⟨−,−⟩ to a skew-symmetric form on P of kernel P gp.

3.1.3 Algebras and quantum algebras

When we write “A is an R-algebra”, we mean that A is an associative algebra with unit

over a commutative ring with unit R. In particular, R is naturally contained in the center

of A.

We fix k an algebraically closed field of characteristic zero and i ∈ k a square root of −1.

For every monoid3 M equipped with a skew-symmetric bilinear form

⟨−,−⟩∶M ×M → Z ,

we denote k[M] the monoid algebra of M , consisting of monomials zm, m ∈M , such that

zm.zm
′

= zm+m
′

. It is a Poisson algebra, of Poisson bracket determined by

{zm, zm
′

} = ⟨m,m′⟩zm+m
′

.

We denote kq ∶= k[q
± 1

2 ] and kq[M] the possibly non-commutative kq-algebra structure on

k[M] ⊗k kq such that

ẑm.ẑm
′

= q
1
2 ⟨m,m

′
⟩ẑm+m

′

.

3All the monoids considered will be commutative and with an identity element.
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We denote kh̵ ∶= k[[h̵]]. We view kh̵ as a complete topological ring for the h̵-adic topology

and in particular, we will use the operation of completed tensor product ⊗̂ with kh̵:

(−)⊗̂kkh̵ ∶= lim
←Ð
j

(−) ⊗k (k[h̵]/h̵
j
) .

We view kh̵ as a kq-module by the change of variables

q = eih̵ = ∑
k⩾0

(ih̵)k

k!
.

We denote kh̵[M] ∶= kq[M]⊗̂kqkh̵. The possibly non-commutative algebra kh̵[M] is a

deformation quantization of the Poisson algebra k[M] in the sense that kh̵[M] is flat as

kh̵-module, and taking the limit h̵ → 0, q → 1, the linear term in h̵ of the commutator

[ẑm, ẑm
′

] in kh̵[M] is determined by the Poisson bracket {ẑm, ẑm
′

} in k[M]:

[ẑm, ẑm
′

] = (q
1
2 ⟨m,m

′
⟩
− q−

1
2 ⟨m,m

′
⟩
)ẑm+m

′

= ⟨m,m′⟩ih̵ẑm+m
′

+O(h̵2
) .

We will often apply the constructions k[M] and kh̵[M] to M a fiber of the locally constant

sheaves Λ or P .

In particular, considering the toric monoid P with the zero skew-symmetric form, we denote

R ∶= k[P ]

and

Rh̵ ∶= kh̵[P ] = R⊗̂kkh̵ .

For every monomial ideal I of R, we denote

RI ∶= R/I

RqI ∶= R/I ⊗k kq = RI[q
± 1

2 ]

and

Rh̵I ∶= R
h̵
/I = RI⊗̂kkh̵ = RI[[h̵]] .

Remark that the algebras Rh̵, RqI and Rh̵I are commutative.

3.1.4 Ore localization

As should be clear from the previous Section, we will be dealing with non-commutative

rings. Unlike what happens for commutative rings, it is not possible in general to localize

with respect to an arbitrary multiplicative subset of a non-commutative ring, because of

left-right issues. These left-right issues are absent by definition if the multiplicative subset

satisfies the so-called Ore conditions.

We refer for example to Section 2.1 of [Kap98] and Section 1.3 of [Gin98] for short presen-

tations of these elementary notions of non-commutative algebra. A multiplicative subset
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S ⊂ A − {0} of an associative ring A is said to satisfy the Ore conditions if

• For all a ∈ A and s ∈ S, there exists b ∈ A and t ∈ S such that4 ta = bs.

• For all a ∈ A, if there exists s ∈ S such that as = 0, then there exists t ∈ S such that

ta = 0.

• For all b ∈ A and t ∈ S, there exists a ∈ A and s ∈ S such that5 ta = bs.

• For all a ∈ A, if there exists s ∈ S such that sa = 0, then there exists t ∈ S such that

at = 0.

If S is a multiplicative subset of an associative ring A and if S satisfies the Ore conditions,

then there is a well-defined localized ring A[S−1].

Let R be a commutative ring. Denote Rh̵ ∶= R[[h̵]].

Lemma 3.1. Let A be a Rh̵-algebra such that A0 ∶= A/h̵A is a commutative R-algebra.

Assume that A is h̵-nilpotent, i.e. that there exists j such that h̵jA = 0. Denote π∶A → A0

the natural projection. Let S ⊂ A0 − {0} be a multiplicative subset. Then the multiplicative

subset S ∶= π−1(S) of A satisfies the Ore conditions.

Proof. See the proof of Proposition 2.1.5 in [Kap98].

Definition 3.2. Let A be a Rh̵-algebra such that A0 ∶= A/h̵A is a commutative R-algebra.

Assume that A is h̵-complete, i.e. that A = lim
←Ðj

A/h̵jA. By Lemma 3.1, each A/h̵jA defines

a sheaf of algebras on X0 ∶= Spec A0, that we denote Oh̵X0
/h̵j. We define

O
h̵
X0
∶= lim
←Ð
j

O
h̵
X0
/h̵j .

It is a sheaf in Rh̵-algebras over X0, such that Oh̵X0
/h̵ = OX0 .

Remark: Definition 3.2 gives us a systematic way to turn certain non-commutative algebras

into sheaves of non-commutatives algebras.

3.1.5 The Gross-Hacking-Keel mirror family

We fix (Y,D) a Looijenga pair. Let NE(Y )R ⊂ A1(Y,R) be the cone generated by curve

classes and let NE(Y ) be the monoid NE(Y )R ∩A1(Y,Z).

Let σP ⊂ A1(Y,R) be a strictly convex polyhedral cone containing NE(Y )R. Let P ∶=

σP ∩ A1(Y,Z) be the associated toric monoid and let R ∶= k[P ] be the corresponding k-

algebra. We denote tβ the monomial in R defined by β ∈ P . Let mR be the maximal

4Informally, as−1
= t−1b, i.e. every fraction with a denominator on the right can be rewritten as a fraction

with a denominator on the left.
5Informally, t−1b = as−1, i.e. every fraction with a denominator on the left can be rewritten as a fraction

with a denominator on the right.
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monomial ideal of R. For every monomial ideal I of R with radical mR, we denote RI ∶= R/I

and SI ∶= Spec RI .

Let TD ∶= Grm be the torus whose character group has a basis eDj indexed by the irreducible

components Dj of D. The map

β ↦
r

∑
j=1

(β.Dj)eDj

induces an action of TD on SI .

Theorem 0.1 of [GHK15a] gives the existence of a flat TD-equivariant morphism

XI → SI ,

with XI affine. The algebra of functions of XI is given as RI -module by

H0
(XI ,OXI ) = AI ∶= ⊕

p∈B(Z)
RIϑp ,

The algebra structure on H0(XI ,OXI ) is determined by genus zero log Gromov-Witten

invariants of (Y,D).

By Theorem 0.2. of [GHK15a], there exists a unique smallest radical monomial ideal Jmin ⊂ R

such that,

• For every monomial ideal I of R of radical containing Jmin, there is a finitely generated

RI -algebra structure on AI compatible with the RI+mN -algebra structure on AI+mN

given by Theorem 0.1 of [GHK15a] for all N > 0.

• The zero locus V (Jmin) ⊂ Spec R contains the union of the closed toric strata corre-

sponding to faces F of σP such that there exists 1 ⩽ j ⩽ r such that [Dj] ∉ F . If (Y,D)

is positive, then Jmin = 0 and V (Jmin) = Spec R.

• Let R̂Jmin denote the Jmin-adic completion of R. The algebras AI determine a TD-

equivariant formal flat family of affine surfaces X Jmin → Spf R̂Jmin . The theta functions

ϑp determine a canonical embedding X Jmin ⊂ Amax(r,3) × Spf R̂Jmin . In particular, if

(Y,D) is positive, then we get an algebraic family X → Spec R and the theta functions

ϑp determine a canonical embedding X ⊂ Amax(r,3) × Spec R.

3.1.6 Deformation quantization

We discuss below the notion of deformation quantization. There are two technical aspects to

keep in mind: first, we work relatively to a non-trivial base, second, we work in general with

formal schemes. We refer to [Kon01], [Yek05], [BK04], for general facts about deformation

quantization in algebraic geometry.

Definition 3.3. A Poisson scheme over a scheme S is a scheme π∶X → S over S, equipped

with a π−1OS-bilinear Poisson bracket, i.e. a π−1OS-bilinear skew-symmetric map of sheaves

{−,−}∶OX ×OX →OX ,
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which is a biderivation

{a, bc} = {a, b}c + {a, c}b ,

and a Lie bracket

{a,{b, c}} + {b,{c, a}} + {c,{a, b}} = 0 .

The two definitions below give two notions of deformation quantization of a Poisson scheme.

Definition 3.4. Let π∶ (X,{−,−}) → S be a Poisson scheme over a scheme S. A deforma-

tion quantization of (X,{−,−}) over S is a sheaf Oh̵X of associative flat π−1OS⊗̂kh̵-algebras

on X, complete in the h̵-adic topology, equipped with an isomorphism Oh̵X/h̵O
h̵
X ≃ OX , such

that for every f and g in OX , and f̃ and g̃ lifts of f and g in Oh̵X , we have

[f̃ , g̃] = ih̵{f, g} mod h̵2 ,

where [f̃ , g̃] ∶= f̃ g̃ − g̃f̃ is the commutator in Oh̵X .

Definition 3.5. Let π∶ (X,{−,−}) → S be a Poisson scheme over a scheme S. Assume

that both X and S are affine. A deformation quantization of (X,{−,−}) over S is a flat

H0(S,OS)⊗̂kh̵-algebra A, complete in the h̵-adic topology, equipped with an isomorphism

A/h̵A ≃H0(X,OX), such that for every f and g in H0(X,OX), and f̃ and g̃ lifts of f and

g in A, we have

[f̃ , g̃] = ih̵{f, g} mod h̵2 ,

where [f̃ , g̃] ∶= f̃ g̃ − g̃f̃ is the commutator in A.

The compatibility of these two definitions is guaranteed by the following lemma.

Lemma 3.6. When both X and S are affine, the notions of deformation quantization given

by Definitions 3.5 and 3.4 are equivalent.

Proof. One goes from a sheaf quantization to an algebra quantization by taking global

sections. One goes from an algebra quantization to a sheaf quantization by Ore localization,

see Section 3.1.4.

Definitions 3.4 and 3.5 and Lemma 3.6 have obvious analogues if one replaces schemes by

formal schemes6.

3.1.7 Main results

We fix (Y,D) a Looijenga pair and we use notations introduced in Section 3.1.5. The Gross-

Hacking-Keel mirror family XI → SI has a natural structure of Poisson scheme over SI .

Indeed, the Gross-Hacking-Keel construction glues together simple pieces having natural

Poisson structures by Poisson preserving gluing maps. Our main result, Theorem 3.7, is the

construction of a deformation quantization of the Gross-Hacking-Keel mirror family by a

higher genus deformation of the Gross-Hacking-Keel construction.

6or, in fact, any locally ringed space.
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Theorem 3.7. Let I be a monomial ideal of R with radical mR. Then there exists a flat

TD-equivariant Rh̵I -algebra Ah̵I , such that Ah̵I is a deformation quantization over SI of the

Gross-Hacking-Keel mirror family XI → SI , and Ah̵I is given as Rh̵I -module by

Ah̵I = ⊕
p∈B(Z)

Rh̵I ϑ̂p ,

where the algebra structure is determined by higher genus log Gromov-Witten invariants of

(Y,D), with genus expansion parameter identified with the quantization parameter h̵.

Remark: Taking the limit over all monomial ideals I of R with radical mR, we get a

deformation quantization of the formal family

lim
Ð→
I

XI → lim
Ð→
I

SI .

The following Theorem is a quantum version of Theorem 0.2 of [GHK15a].

Theorem 3.8. There is a unique smallest radical monomial J h̵min ⊂ R such that,

• For every monomial ideal I of R of radical containing J h̵min, there is a finitely generated

Rh̵I -algebra structure on

Ah̵I = ⊕
p∈B(Z)

Rh̵I ϑ̂p ,

compatible with the Rh̵
I+mk

R

-algebra structure on Ah̵
I+mk

R

given by Theorem 3.7 for all

k > 0.

• The zero locus V (Jmin) ⊂ R contains the union of the closed toric strata corresponding

to faces F of σP such that there exists 1 ⩽ j ⩽ r such that [Dj] ∉ F . If (Y,D) is

positive, then J h̵min = 0, i.e. V (J h̵min) = Spec R and Ah̵0 is a deformation quantization

of the mirror family X → Spec R.

The following result, Theorem 3.9, controls the dependence in h̵ of the deformation quanti-

zation given by Theorem 3.8: this dependence is algebraic in q = eih̵.

Theorem 3.9. Let I be a monomial ideal of R with radical containing J h̵min. Then there

exists a flat RqI-algebra AqI such that

Ah̵I = A
q
I⊗̂kqkh̵ ,

where kh̵ is viewed as a kq-module via q = eih̵.

The proof of Theorems 3.7, 3.8, and 3.9 takes Sections 3.2, 3.3, 3.4. In Section 3.2, we

explain how a consistent quantum scattering diagram can be used as input to a construction

of quantum modified Mumford degeneration, giving a deformation quantization of the mod-

ified Mumford degeneration of [GHK15a], [GHKS16], constructed from a classical scattering

diagram. In Section 3.3, we explain how to construct a quantum scattering diagram from

higher genus log Gromov-Witten theory of a Looijenga pair and we prove its consistency
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using Theorem 2.6, the main result of Chapter 2. We finish the proof of Theorems 3.7, 3.8

and 3.9 in Section 3.4.

3.2 Quantum modified Mumford degenerations

In this Section, we explain how to construct a quantization of the mirror family of a given

Looijenga pair (Y,D) starting from its tropicalization (B,Σ) and a consistent quantum

scattering diagram.

In Section 3.2.1, we describe the rings Rh̵σ,I and Rh̵σ,I involved in the construction of the

quantum version of modified Mumford degenerations. In Section 3.2.2, we review the notion

of quantum scattering diagrams. In Section 3.2.4, we explain how a consistent quantum

scattering diagram gives a way to glue together the rings Rh̵σ,I and Rh̵σ,I to produce a quan-

tum modified Mumford degeneration. In Section 3.2.6, we review the notions of quantum

broken lines and theta functions and we use them in Section 3.2.7 to prove that the quan-

tum modified Mumford degeneration is indeed a deformation quantization of the modified

Mumford degeneration of [GHK15a]. In Section 3.2.8, we express the structure constants of

the quantum algebra of global sections in terms of quantum broken lines.

3.2.1 Building blocks

The goal of this Section is to define non-commutative deformations Rh̵σ,I and Rh̵ρ,I of the

rings Rσ,I and Rρ,I defined in Sections 2.1 and 2.2 of [GHK15a]. The way to go from Rσ,I

to Rh̵σ,I is fairly obvious. The deformation Rh̵ρ,I of Rρ,I is maybe not so obvious.

We fix (Y,D) a Looijenga pair, (B,Σ) its tropicalization, P a toric monoid, J a radical

monomial ideal of P , and ϕ a P gp
R -valued multivalued convex Σ-piecewise linear function on

B.

For any locally constant sheaf F on B0 and any simply connected subset τ of B0, we write

Fτ for the stalk of this local system at any point of τ . We will constantly use this notation

for τ a cone of Σ.

If τ is a cone of Σ, we define the localized fan τ−1Σ as being the fan in ΛR,τ defined as

follows:

• If τ is two-dimensional, then τ−1Σ consists just of the entire space ΛR,τ .

• If τ is one-dimensional, then τ−1Σ consists of the tangent line of τ in ΛR,τ along with

the two half-planes with boundary this tangent line.

For each τ cone of Σ, the Σ-piecewise P -convex function ϕ∶B0 → B0,ϕ determines a τ−1Σ-

piecewise linear P -convex function ϕτ ∶ΛR,τ → PR,τ . We define the toric monoid Pϕτ ⊂ Pτ

by

Pϕτ ∶= {s ∈ Pτ ∣ s = p +ϕτ(m) for some p ∈ P , m ∈ Λτ}.
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If ρ is a one-dimensional cone of Σ, bounding the two-dimensional cones σ+ and σ− of Σ, we

have Pϕρ ⊂ Pϕσ+ , Pϕρ ⊂ Pϕσ− , and

Pϕσ+ ∩ Pϕσ− = Pϕρ .

Figure: Pϕσ+
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For every σ two-dimensional cone of Σ, we define Rh̵σ,I ∶= kh̵[Pϕσ ]/I, deformation quantiza-

tion of Rσ,I ∶= k[Pϕσ ]/I. We have a natural trivialization Pϕσ = P ⊕Λσ and so Rh̵σ,I is simply

the algebra of functions on a trivial family of two-dimensional quantum tori parametrized

by Spec RI .

Let ρ be a one-dimensional cone of Σ. Let κρ,ϕ ∈ P be the kink of ϕ across ρ, so that

zκρ,ϕ ∈ RI . Let X be an invertible formal variable. We fix elements f̂ρout ∈ Rh̵I [X
−1] and

f̂ρin ∈ Rh̵I [X].

Let Rh̵ρ,I be the Rh̵I -algebra generated by formal variables X+, X− and X, with X invertible,

and with relations

XX+ = qX+X ,

XX− = q
−1X−X ,

X+X− = q
1
2D

2
ρ ẑκρ,ϕ f̂ρout(q−1X)f̂ρin(X)X−D

2
ρ ,

X−X+ = q
− 1

2D
2
ρ ẑκρ,ϕ f̂ρout(X)f̂ρin(qX)X−D

2
ρ ,

where q = eih̵. The Rh̵I -algebra Rh̵ρ,I is flat as Rh̵I -module and so is a deformation quantization

of

Rρ,I ∶= RI[X+,X−,X
±
]/(X+X− − z

κρ,ϕX−D
2
ρfρout(X)fρin(X)) .

Let σ+ and σ− be the two-dimensional cones of Σ bounding ρ, and let ρ+ and ρ− be the other

boundary rays of σ+ and σ− respectively, such that ρ−, ρ and ρ+ are in anticlockwise order.

The precise form of Rh̵ρ,I is justified by the following Proposition.

Proposition 3.10. The map of Rh̵I -algebras

ψ̃ρ,−∶R
h̵
I ⟨X+,X−,X

±
⟩ → Rh̵σ−,I

defined by

ψ̃ρ,−(X) = ẑ
ϕρ(mρ) ,

ψ̃ρ,−(X−) = ẑ
ϕρ(mρ−) ,

ψ̃ρ,−(X+) = f̂ρin(ẑϕρ(mρ))ẑϕρ(mρ+)f̂ρout(ẑϕρ(mρ))

= ẑϕρ(mρ+)f̂ρin(qẑϕρ(mρ))f̂ρout(ẑϕρ(mρ)) ,

induces a map of Rh̵I -algebras

ψ̂ρ,−∶R
h̵
ρ,I → Rh̵σ−,I .

The map of Rh̵I -algebras

ψ̃ρ,+∶R
h̵
I ⟨X+,X−,X

±
⟩ → Rh̵σ+,I ,
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defined by

ψ̃ρ,+(X) = ẑ
ϕρ(mρ) ,

ψ̃ρ,+(X−) = f̂ρout(ẑϕρ(mρ))ẑϕρ(mρ−)f̂ρin(ẑϕρ(mρ))

= ẑϕρ(mρ−)f̂ρout(q−1ẑϕρ(mρ))f̂ρin(ẑϕρ(mρ)) ,

ψ̃ρ,+(X+) = ẑ
ϕρ(mρ+) ,

induces a map of Rh̵I -algebras

ψ̂ρ,+∶R
h̵
ρ,I → Rh̵σ+,I .

Proof. We have to check that ψ̃ρ,− and ψ̃ρ,+ map the relations defining Rh̵ρ,I to zero.

We have ⟨mρ,mρ+⟩ = 1 and ⟨mρ,mρ−⟩ = −1. It follows that

ψ̃ρ,−(XX+ − qX+X) = 0 ,

ψ̃ρ,+(XX+ − qX+X) = 0 ,

and

ψ̃ρ,−(XX− − q
−1X−X) = 0 ,

ψ̃ρ,+(XX− − q
−1X−X) = 0 .

Furthermore, we have

mρ− +D
2
ρmρ +mρ+ = 0

so

⟨mρ+ ,mρ−⟩ =D
2
ρ

and

ϕρ(mρ−) +ϕρ(mρ+) = κρ,ϕ −D
2
ρϕρ(mρ) .

It follows that

ψ̃ρ,−(X+X−) = f̂ρin(ẑϕρ(mρ))ẑϕρ(mρ+)f̂ρout(ẑϕρ(mρ))ẑϕρ(mρ−)

= q
1
2D

2
ρ f̂ρin(ẑϕρ(mρ))f̂ρout(q−1ẑϕρ(mρ))ẑκρ,ϕ−D

2
ρϕρ(mρ)

= q
1
2D

2
ρ ẑκρ,ϕ ψ̃ρ,− (f̂ρin(X)f̂ρout(q−1X)X−D

2
ρ) ,

ψ̃ρ,+(X+X−) = ẑ
ϕρ(mρ+)f̂ρout(ẑϕρ(mρ))ẑϕρ(mρ−)f̂ρin(ẑϕρ(mρ))

= q
1
2D

2
ρ f̂ρin(ẑϕρ(mρ))f̂ρout(q−1ẑϕρ(mρ))ẑκρ,ϕ−D

2
ρϕρ(mρ)

= q
1
2D

2
ρ ẑκρ,ϕ ψ̃ρ,+ (f̂ρin(X)f̂ρout(q−1X)X−D

2
ρ) ,
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and

ψ̃ρ,−(X−X+) = ẑ
ϕρ(mρ−)fρin(ẑϕρ(mρ))ẑϕρ(mρ+)fρout(ẑϕρ(mρ))

= q−
1
2D

2
ρ ẑκρ,ϕ−D

2
ρϕρ(mρ)fρin(ẑqϕρ(mρ))fρout(ẑϕρ(mρ))

= q−
1
2D

2
ρ ẑκρ,ϕ ψ̃ρ,− (f̂ρin(qX)f̂ρout(X)X−D

2
ρ) ,

ψ̃ρ,+(X−X+) = f̂ρout(ẑϕρ(mρ))ẑϕρ(mρ−)fρin(ẑϕρ(mρ))ẑϕρ(mρ+)

= q−
1
2D

2
ρ f̂ρ(ẑ

ϕρ(mρ))fρin(qẑϕρ(mρ))ẑκρ,ϕ−D
2
ρϕρ(mρ)

= q−
1
2D

2
ρ ẑκρ,ϕ ψ̃ρ,+ (f̂ρin(qX)f̂ρout(X)X−D

2
ρ) .

Remark:

• In the special case where D2
ρ = 0 and f̂ρin = 1, our description of Rh̵ρ,I by generators and

relations coincides with the description given by Soibelman in Section 7.5 of [Soi09] of a

local model for deformation quantization of a neighborhood of a focus-focus singularity.

• Rh̵σ,I is a deformation quantization of Rσ,I , and Rh̵ρ,I is a deformation quantization of

Rρ,I . The maps ψ̂ρ,+ and ψ̂ρ,− are quantizations of the maps ψρ,− and ψρ,+ defined

by formula (2.8) of [GHK15a]. Following [GHK15a], we denote Uσ,I ∶= Spec Rσ,I

and Uρ,I ∶= Spec Rρ,I . If ρ is a one-dimensional cone of Σ, and σ+ and σ− are the

two-dimensional cones of Σ bounding ρ, then the maps ψρ,− and ψρ,+ induce open

immersions

Uσ−,I ↪ Uρ,I

and

Uσ+,I ↪ Uρ,I .

Using Ore localization (see Definition 3.2), we can produce from Rh̵σ,I and Rh̵ρ,I some sheaves

of flat kh̵-algebras Oh̵Uσ,I and Oh̵Uρ,I on Uσ,I and Uρ,I , such that

O
h̵
Uσ,I
/h̵Oh̵Uσ,I ≃ OUσ,I

and

O
h̵
Uρ,I
/h̵Oh̵Uρ,I ≃ OUρ,I

respectively.

3.2.2 Quantum scattering diagrams

Quantum scattering diagrams have been studied by Filippini-Stoppa [FS15] in dimension two

and by Mandel [Man15] in higher dimensions. We have already seen this kind of quantum
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scattering diagram in Chapter 2. Mandel [Man15] also studied quantum broken lines and

quantum theta functions. The quantum scattering diagrams studied in [FS15], [Man15] or

in our Chapter 2 live on a smooth integral affine manifold. We need to make some changes

to include the case we care about, where the integral affine manifold is the tropicalization B

of a Looijenga pair and has a singularity at the origin with a non-trivial monodromy around

it.

As in the previous Section, we fix (Y,D) a Looijenga pair, (B,Σ) its tropicalization, P

a toric monoid, J a radical monomial ideal of P , and ϕ a P gp
R -valued multivalued convex

Σ-piecewise linear function on B. Recall from Section 3.1.2 that we then have an exact

sequence

0→ P gp
→ P

r
Ð→ Λ→ 0

of locally constant sheaves on B0.

We explained in Section 3.2.1 how to define for every cone τ of Σ a toric monoid Pϕτ . We

denote by

kh̵[̂Pϕτ ]

the J-adic completion of the kh̵-algebra kh̵[Pϕτ ]. The map r∶ P → Λ induces a morphism of

monoids r∶Pϕτ → Λτ .

Definition 3.11. A quantum scattering diagram D̂ for the data (B,Σ), P , J and ϕ is a

set

D̂ = {(d, Ĥd)}

where

• d ⊂ B is a ray of rational slope in B with endpoint the origin 0 ∈ B.

• Let τd be the smallest cone of Σ containing d and let md ∈ Λτd be the primitive generator

of d pointing away from the origin. Then we have either

Ĥd = ∑
p∈Pϕτd

r(p)∈Z<0md

Hpẑ
p
∈ kh̵[̂Pϕτd ] ,

or

Ĥd = ∑
p∈Pϕτd

r(p)∈Z>0md

Hpẑ
p
∈ kh̵[̂Pϕτd ] .

In the first case, we say that the ray (d, Ĥd) is outgoing, and in the second case, we

say that the ray (d, Ĥd) is ingoing.

• Let τd be the smallest cone of Σ containing d. If dim τd = 2, or if dim τd = 1 and

κτd,ϕ ∉ J , then Ĥd = 0 mod J .

• For any ideal I ⊂ P of radical J , there are only finitely many rays (d, Ĥd) such that

Ĥd ≠ 0 mod I.

Remark: Given a ray (d, Ĥd) of a quantum scattering diagram, we call Ĥd the Hamiltonian

attached to ρ. This terminology is justified by the following Section 3.2.3, where we attach

170



to (d, Ĥd) the automorphism Φ̂Ĥd
given by the time one evolution according to the quantum

Hamiltonian Ĥd.

3.2.3 Quantum automorphisms

Let (d, Ĥd) is a ray of a quantum scattering diagram D̂ for the data (B,Σ), P , J and ϕ. Let

τd be the smallest cone of Σ containing d and let md ∈ Λτd be the primitive generator of d

pointing away from the origin. Denote m(Ĥd) =md if (d, Ĥd) is outgoing and m(Ĥd) = −md

if (d, Ĥd) is ingoing. Writing

Ĥd = ∑
p∈Pϕτd

Hpẑ
p
∈ kh̵[̂Pϕτd ] ,

we denote

f̂d ∶= exp

⎛
⎜
⎜
⎜
⎜
⎝

∑
p∈Pϕτd

r(p)=`m(Ĥd)

(q` − 1)Hpẑ
p

⎞
⎟
⎟
⎟
⎟
⎠

∈ kh̵[̂Pϕτd ] ,

where q = eih̵. Remark that, by our definition of m(Ĥd), we have ` ⩽ 0 when writing

r(p) = `m(Ĥd).

We write

f̂d = ∑
p∈Pϕτd

fpẑ
p .

For every j ∈ Z, we define

f̂d(q
j ẑ) ∶= ∑

p∈Pϕτd
r(p)=`m(Ĥd)

q`jfpẑ
p
∈ kh̵[̂Pϕτd ] ,

where q = eih̵.

Lemma 3.12. The automorphism Φ̂Ĥd
of kh̵[̂Pϕτd ] given by conjugation by exp (Ĥd),

ẑp ↦ exp (Ĥd) ẑ
p exp (−Ĥd) ,

is equal to

ẑp ↦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẑp
⟨m(Ĥd),r(p)⟩−1

∏
j=0

f̂d(q
j ẑ) if ⟨m(Ĥd), r(p)⟩ ⩾ 0

ẑp
∣⟨m(Ĥd),r(p)⟩∣−1

∏
j=0

f̂d(q
−j−1ẑ)−1 if ⟨m(Ĥd), r(p)⟩ < 0 .

Proof. Using that ẑp
′

ẑp = q⟨r(p
′
),r(p)⟩ẑpẑp

′

, we get

exp (Ĥd) ẑ
p exp (−Ĥd) = ẑ

p exp

⎛
⎜
⎜
⎜
⎜
⎝

∑
p′∈Pϕτd

r(p′)=`m(Ĥd)

(q`⟨m(Ĥd),r(p)⟩ − 1)Hp′ ẑ
p′

⎞
⎟
⎟
⎟
⎟
⎠

.
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If ⟨m(Ĥd), r(p)⟩ ⩾ 0, this can be written

ẑp exp

⎛
⎜
⎜
⎜
⎜
⎝

∑
p′∈Pϕτd

r(p′)=`m(Ĥd)

1 − q`⟨m(Ĥd),r(p)⟩

1 − q`
(q` − 1)Hp′ ẑ

p′

⎞
⎟
⎟
⎟
⎟
⎠

= ẑp exp

⎛
⎜
⎜
⎜
⎜
⎝

∑
p′∈Pϕτd

r(p′)=`m(Ĥd)

⟨m(Ĥd),r(p)⟩−1

∑
j=0

q`j(q` − 1)Hp′ ẑ
p′

⎞
⎟
⎟
⎟
⎟
⎠

= ẑp
⟨m(Ĥd),r(p)⟩−1

∏
j=0

f̂d(q
j ẑ) .

If ⟨m(Ĥd), r(p)⟩ < 0, this can be written

ẑp exp

⎛
⎜
⎜
⎜
⎜
⎝

− ∑
p′∈Pϕτd

r(p′)=`m(Ĥd)

1 − q−`∣⟨m(Ĥd),r(p)⟩∣

1 − q−`
q−`(q` − 1)Hp′ ẑ

p′

⎞
⎟
⎟
⎟
⎟
⎠

= ẑp exp

⎛
⎜
⎜
⎜
⎜
⎝

− ∑
p′∈Pϕτd

r(p′)=`m(Ĥd)

∣⟨m(Ĥd),r(p)⟩∣−1

∑
j=0

(q−j−1
)
`
(q` − 1)Hp′ ẑ

p′

⎞
⎟
⎟
⎟
⎟
⎠

= ẑp
∣⟨m(Ĥd),r(p)⟩∣−1

∏
j=0

f̂d(q
−j−1ẑ)−1 .

Remark: One can equivalently write Φ̂Ĥd
as

ẑp ↦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎝

⟨m(Ĥd),r(p)⟩−1

∏
j=0

f̂ρ(q
−j−1z)

⎞

⎠
ẑp if ⟨m(Ĥd), r(p)⟩ ⩾ 0

⎛

⎝

∣⟨m(Ĥd),r(p)⟩∣−1

∏
j=0

f̂ρ(q
jz)−1⎞

⎠
ẑp if ⟨m(Ĥd), r(p)⟩ < 0 .

A direct application of the definition of f̂d gives the following Lemma.

Lemma 3.13. If

Ĥ = i∑
`⩾1

(−1)`−1

`

ẑ−`ϕ(md)

2 sin ( `h̵
2
)
= −∑

`⩾1

(−1)`−1

`

ẑ−`ϕ(md)

q
`
2 − q−

`
2

,
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where q = eih̵, we have m(Ĥ) =md and

f̂ = exp(−∑
`⩾1

(−1)`−1

`

q−` − 1

q
`
2 − q−

`
2

ẑ−`ϕ(md)) = 1 + q−
1
2 ẑ−ϕ(md) .

If

Ĥ = i∑
`⩾1

(−1)`−1

`

ẑ`ϕ(md)

2 sin ( `h̵
2
)
= −∑

`⩾1

(−1)`−1

`

ẑ`ϕ(md)

q
`
2 − q−

`
2

,

where q = eih̵, we have m(Ĥ) = −md and

f̂ = exp(−∑
`⩾1

(−1)`−1

`

q−` − 1

q
`
2 − q−

`
2

ẑ`ϕ(md)) = 1 + q−
1
2 ẑϕ(md) .

3.2.4 Gluing

We fix a quantum scattering diagram D̂ for the data (B,Σ), P , J and ϕ, and an ideal I of

radical J .

Let ρ be a one-dimensional cone of Σ, bounding the two-dimensional cones σ+ and σ−,

such that σ−, ρ, σ+ are in an anticlockwise order. Identifying X with ẑϕρ(mρ), we define

f̂ρout ∈ Rh̵I [X
−1] by

f̂ρout ∶= ∏
d∈D,d=ρ
outgoing

f̂d mod I ,

where the product is over the outgoing rays of D̂ of support ρ, and we define f̂ρin ∈ Rh̵I [X]

by

f̂ρin ∶= ∏
d∈D,d=ρ
ingoing

f̂d mod I ,

where the product is over the ingoing rays of D̂ of support ρ.

By Section 3.2.1, we then have Rh̵I -algebras Rh̵σ+,I , R
h̵
σ−,I

, Rh̵ρ,I .

Let (d, Ĥd) be a ray of D̂ such that τd = σ is a two-dimensional cone of Σ. Let md ∈ Λτd
be the primitive generator of d pointing away from the origin. Let γ be a path in B0 which

crosses d transversally at time t0. We define

θ̂γ,d∶R
h̵
σ,I → Rh̵σ,I ,

ẑp ↦ Φ̂ε
Ĥd
(ẑp) ,

where ε ∈ {±1} is the sign of −⟨m(Ĥd), γ
′(t0)⟩.

Let D̂I ⊂ D̂ be the finite set of rays (d, Ĥd) with Ĥd ≠ 0 mod I, i.e. f̂d ≠ 1 mod I. If γ is a

path in B0 entirely contained in the interior of a two-dimensional cone σ of Σ, and crossing

elements of DI transversally, we define

θ̂γ,D̂I
∶= θ̂γ,dn ○ ⋅ ⋅ ⋅ ○ θ̂γ,d1 ,
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where γ crosses the elements d1, . . . ,dn of D̂I in the given order.

For every σ two-dimensional cone of Σ, bounded by rays ρ+ and ρ−, such that ρ−, σ, ρ+ are

in anticlockwise order, we choose γσ ∶ [0,1] → B0 a path whose image is entirely contained in

the interior of σ, with γ(0) close to ρ− and γ(1) close to ρ+, such that γσ crosses every ray

of D̂I contained in σ transversally exactly once. Let

θ̂γσ,D̂I
∶Rh̵σ,I → Rh̵σ,I

be the corresponding automorphism. In the classical limit, θ̂γ,D̂I
induces an automorphism

θγ,DI
of Uσ,I . Gluing together the open sets Uσ,I ⊂ Uρ−,I and Uσ,I ⊂ Uρ+,I along these

automorphisms, we get the scheme X○I,D defined in [GHK15a].

Recall from the end of Section 3.2.1 that by Ore localization the algebras Rh̵σ,I and Rh̵ρ,I
produce sheaves Oh̵Uσ,I and Oh̵Uρ,I on Uσ,I and Uρ,I respectively. Using θ̂γσ,D̂I

, we can glue

together the sheaves Oh̵Uρ,I to get a sheaf of Rh̵I -algebras Oh̵X○
I,D

on X○I,D.

From the fact that the sheaves Oh̵Uρ,I are deformation quantizations of Uρ,I , we deduce that

the sheafOh̵X○
I,D

is a deformation quantization ofX○I,D. In particular, we haveOh̵X○
I,D
/h̵Oh̵X○

I,D
=

OX○
I,D

and Oh̵X○
I,D

is a sheaf a flat Rh̵I -algebras.

Remark: Let ρ be a one-dimensional cone of Σ. Let σ+ and σ− be the two two-dimensional

cones of Σ bounding ρ, and let ρ+ and ρ− be the other boundary rays of σ+ and σ− re-

spectively, such that ρ−, ρ and ρ+ are in anticlockwise order. According to Remark 2.6 of

[GHK15a], we have, in Uρ,I ,

Uρ−,I ∩Uρ+,I ≃ (Gm)
2
× Spec (RI)zκρ,ϕ ,

where (RI)zκρ,ϕ is the localization of RI defined by inverting zκρ,ϕ . Similarly, the restriction

of Oh̵X○
I,D

to Uρ−,I ∩ Uρ+,I is the Ore localization of kh̵[M]⊗̂(RI)zκρ,ϕ , where M = Z2 is

the character lattice of (Gm)2, equipped with the standard unimodular integral symplectic

pairing. We have a natural identification M = Λρ. Restricted to kh̵[M]⊗̂(RI)zκρ,ϕ , and

assuming that f̂ρin = 1 mod ẑκρ,ϕ and f̂ρout = 1 mod ẑκρ,ϕ , the expression ψ̂ρ+ ○ ψ̂
−1
ρ− makes

sense7 and is given by

(ψ̂ρ+ ○ ψ̂
−1
ρ− )(ẑ

ϕρ(mρ)) = ẑϕρ(mρ) ,

(ψ̂ρ+ ○ ψ̂
−1
ρ− )(ẑ

ϕρ(mρ−)) = f̂ρout(ẑϕρ(mρ))ẑϕρ(mρ−)f̂ρin(ẑϕρ(mρ)) ,

(ψ̂ρ+ ○ ψ̂
−1
ρ− )(ẑ

ϕρ(mρ+)) = f̂−1
ρin(ẑ

ϕρ(mρ))ẑϕρ(mρ+)f̂−1
ρout(ẑϕρ(mρ)) .

As ⟨mρ,mρ−⟩ = −1 and ⟨mρ,mρ+⟩ = 1, this implies that ψ̂ρ+ ○ ψ̂
−1
ρ− coincides with the trans-

formation

θ̂γ,ρ = ∏
d∈D,d=ρ

θ̂γ,d, ,

where θ̂γ,d is defined by the same formulas as above and with γ a path intersecting ρ in a

single point and going from σ− to σ+.

7Without restriction, ψ̂ρ− is not invertible and so ψ̂−1
ρ− does not make sense.
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3.2.5 Result of the gluing for I = J .

Assume r ⩾ 3 and κρ,ϕ ∈ J for every ρ one-dimensional cone of Σ. The following Lemma

3.14 gives an explicit description of Oh̵X○
I,D

for I = J .

Denote k[Σ] the k-algebra with a k-basis {zm ∣m ∈ B(Z)} with multiplication given by

zm ⋅ zm
′

=

⎧⎪⎪
⎨
⎪⎪⎩

zm+m
′

if m and m′ lie in a common cone of Σ

0 otherwise.

Let 0 be the closed point of Spec k[Σ] whose ideal is generated by {zm ∣m ≠ 0}. Denote

RJ[Σ] ∶= RJ ⊗k k[Σ]. According to Lemma 2.12 of [GHK15a], we have

X○J ≃ (Spec RJ[Σ]) − ((Spec RJ) × {0}) .

Denote kh̵[Σ] the kh̵-algebra with a kh̵-basis {ẑm ∣m ∈ B(Z)} with multiplication given by

ẑm ⋅ ẑm
′

=

⎧⎪⎪
⎨
⎪⎪⎩

q
1
2 ⟨m,m

′
⟩ẑm+m

′

if m and m′ lie in a common cone of Σ

0 otherwise.

Denote Rh̵J[Σ] ∶= RJ ⊗̂kkh̵[Σ].

Lemma 3.14. Assume r ⩾ 3 and κρ,ϕ ∈ J for every ρ one-dimensional cone of Σ. Then

Γ(X○J,D,O
h̵
X○
J,D
) = Rh̵J[Σ], and the sheaf Oh̵X○

J,D
is the restriction to X○J of the Ore localization,

see Section 3.1.4, of Rh̵J[Σ] over Spec RJ[Σ].

Proof. By definition of a quantum scattering diagram, if d is contained in the interior of a

two-dimensional cone of Σ, we have Ĥd = 0 mod J and so the corresponding automorphism

Φ̂Ĥd
is the identity. As we are assuming κρ,ϕ ∈ J , Rh̵ρ,J is the Rh̵J -algebra generated by formal

variables X+, X− and X, with X invertible, and with relations

XX+ = qXX+ ,

XX− = q
−1X−X ,

X+X− =X−X+ = 0 ,

where q = eih̵. Let σ+ and σ− be the two two-dimensional cones of Σ bounding ρ, and let ρ+

and ρ− be the other boundary rays of σ+ and σ− respectively, such that ρ−, ρ and ρ+ are in

anticlockwise order.

From ϕρ(mρ−)+ϕρ(mρ+) = κρ,ϕ−D
2
ρϕρ(mρ) and κρ,ϕ ∈ J , we deduce that ẑϕρ(mρ−)ẑϕρ(mρ+) =

0 in Rh̵ρ,I , R
h̵
σ−I

and Rh̵σ+,I . As ẑϕρ(mρ−) is invertible in Rh̵σ−I , we have ẑϕρ(mρ+) = 0 in Rh̵σ−I .

Similarly, as ẑϕρ(mρ+) is invertible in Rh̵σ+I , we have ẑϕρ(mρ−) = 0 in Rh̵σ+I .

So the map ψ̂ρ,−∶R
h̵
ρ,J → Rh̵σ−,J is given by ψ̂ρ,−(X) = ẑϕρ(mρ), ψ̂ρ,−(X−) = ẑϕρ(mρ−),

ψ̂ρ,−(X+) = 0. Similarly, the map ψ̂ρ,+∶R
h̵
ρ,J → Rh̵σ+,J is given by ψ̂ρ,+(X) = ẑϕρ(mρ),

ψ̂ρ,+(X−) = 0, ψ̂ρ,+(X+) = ẑ
ϕρ(mρ+). The result follows.
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3.2.6 Quantum broken lines and theta functions

We fix (Y,D) a Looijenga pair, (B,Σ) its tropicalization, P a toric monoid, J a radical

monomial ideal of P , ϕ a P gp
R -valued multivalued convex Σ-piecewise linear function on B,

and D̂ a quantum scattering diagram for the data (B,Σ), P , J and ϕ.

Quantum broken lines and quantum theta functions have been studied by Mandel [Man15],

for smooth integral affine manifolds. We make below the easy combination of the notion

of quantum broken lines and theta functions used by [Man15] with the notion of classical

broken lines and theta functions used in Section 2.3 of [GHK15a] for the tropicalization B

of a Looijenga pair.

Definition 3.15. A quantum broken line of charge p ∈ B0(Z) with endpoint Q in B0 is a

proper continuous piecewise integral affine map

γ∶ (−∞,0] → B0

with only finitely many domains of linearity, together with, for each L ⊂ (−∞,0] a maximal

connected domain of linearity of γ, a choice of monomial mL = cLẑ
pL where cL ∈ k

∗
h̵ and

pL ∈ Γ(L,γ−1(P)∣L), such that

• For each L and t ∈ L, we have −r(pL) = γ
′(t), i.e. the direction of the line is determined

by the monomial attached to it.

• We have γ(0) = Q ∈ B0.

• For the unique unbounded domain of linearity L, γ∣L goes off for t → −∞ to infinity

in the cone σ of Σ containing p and mL = ẑ
ϕσ(p), i.e. the charge p is the asymptotic

direction of the broken line.

• Let t ∈ (−∞,0) be a point at which γ is not linear, passing from the domain of lin-

earity L to the domain of linearity L′. Let τ be the cone of Σ containing γ(t). Let

(d1, Ĥd1), . . . , (dN , ĤdN ) be the rays of D̂ that contain γ(t). Then γ passes from one

side of these rays to the other side at time t.

Expand the product of

∏
1⩽k⩽N

⟨m(Hdk
),r(pL)⟩>0

⟨m(Hk),r(pL)⟩−1

∏
j=0

f̂dk(q
j ẑ)

and

∏
1⩽k′⩽N

⟨m(Hdk′
),r(pL)⟩<0

∣⟨m(Hk′),r(pL)⟩∣−1

∏
j′=0

f̂dk′ (q
−j′−1ẑ) ,

as a formal power series in kh̵[̂Pϕτ ]. Then there is a term cẑs in this sum with

mL′ =mL.(cẑ
s
) .
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Let Q ∈ B−SuppI(D̂) be in the interior of a two-dimensional cone σ of Σ. Let γ be a quantum

broken line with endpoint Q. We denote Mono(γ) ∈ kh̵[Pϕσ ] the monomial attached to the

last domain of linearity of γ.

The following finiteness result is formally identical to Lemma 2.25 of [GHK15a].

Lemma 3.16. Let Q ∈ B − SuppI(D̂) be in the interior of a two-dimensional cone σ of Σ.

Fix p ∈ B0(Z). Let I be an ideal of radical J . Assume that κρ,ϕ ∈ J for at least one ray ρ of

Σ. Then

• The collection of quantum broken lines γ of charge p with endpoint Q and such that

Mono(γ) ∉ Ikh̵[Pϕσ ] is finite.

• If one boundary ray of the connected component of B − SuppI(D̂) containing Q is a

ray ρ of Σ, then for every quantum broken line γ of charge p with endpoint Q, we have

Mono(γ) ∈ kh̵[Pϕρ].

Proof. Identical to the proof of Lemma 2.25 of [GHK15a].

Let Q ∈ B − SuppI(D̂) be in the interior of a two-dimensional cone σ of Σ. Fix p ∈ B0(Z).
Let I be an ideal of radical J . We define

LiftQ(p) ∶= ∑
γ

Mono(γ) ∈ kh̵[Pϕσ ]/I ,

where the sum is over all the quantum broken lines γ of charge p with endpoint Q. According

to Lemma 3.16, there are only finitely many such γ with Mono(γ) ∉ Ikh̵[Pϕσ ] and so LiftQ(p)

is well-defined.

The following definition is formally identical to Definition 2.26 of [GHK15a].

Definition 3.17. Assume that κρ,ϕ ∈ J for at least one one-dimensional cone ρ of Σ. We

say that a quantum scattering diagram D̂ for the data (B,Σ), P , J and ϕ is consistent if

for every ideal I of P of radical J and for all p ∈ B0(Z), the following holds. Let Q ∈ B0 be

chosen so that the line joining the origin and Q has irrational slope, and Q′ ∈ B0 similarly.

Then

• If Q and Q′ are contained in a common two-dimensional cone σ of Σ, then we have

LiftQ′(p) = θ̂γ,D̂I
(LiftQ(p))

in Rh̵σ,I , for every γ path in the interior of σ connecting Q and Q′, and intersecting

transversely the rays of D̂.

• If Q− is contained in a two-dimensional cone σ− of Σ, and Q+ is contained in a two-

dimensional cone σ+ of Σ, such that σ+ and σ− intersect along a one-dimensional

cone ρ of Σ, and furthermore Q− and Q+ are contained in connected components of

B − SuppI(D̂) whose closures contain ρ, then LiftQ+(p) ∈ R
h̵
σ+,I

and LiftQ−(p) ∈ R
h̵
σ−,I

are both images under ψ̂ρ,+ and ψ̂ρ,− respectively of a single element Liftρ(p) ∈ R
h̵
ρ,I .
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The following construction is formally identical to Construction 2.27 of [GHK15a]. Suppose

that D has r ⩾ 3 irreducible components, and that D̂ is a consistent quantum scattering

diagram for the data (B,Σ), P , J and ϕ. Assume that κρ,ϕ ∈ J for all one-dimensional

cones ρ of Σ. Let I be an ideal of P of radical J . We construct below an element

ϑ̂p ∈ Γ(X○I,D,O
h̵
X○
I,D
)

for each p ∈ B(Z) = B0(Z) ∪ {0}.

We first define ϑ̂0 ∶= 1. Let p ∈ B0(Z). Recall that X○I,D is defined by gluing together schemes

Uρ,I , indexed by ρ rays of Σ, and that Oh̵X○
I,D

is defined by gluing together sheaves Oh̵Uρ,I on

Uρ,I , such that Γ(Uρ,I ,O
h̵
X○
I,D
) = Rh̵ρ,I . So, to define ϑ̂p, it is enough to define elements of

Rh̵ρ,I compatible with the gluing functions. But, by definition, the consistency of D̂ gives us

such elements Liftρ(p) ∈ R
h̵
ρ,I .

The quantum theta functions ϑ̂p ∈ Γ(X○I,D,O
h̵
X○
I,D
) reduce in the classical limit to the theta

functions ϑp ∈ Γ(X○I,D,OX○I,D) defined in [GHK15a].

3.2.7 Deformation quantization of the mirror family

Suppose D has r ⩾ 3 irreducible components, and let ϕ be a P gp
R -valued convex Σ-piecewise

linear function on B such that κρ,ϕ ∈ J for all one-dimensional cones ρ of Σ. Let D̂ be a

consistent quantum scattering diagram for the data (B,Σ), P , J and ϕ. Let I be an ideal

of P of radical J .

Denote

XI,D ∶= Spec Γ(X○I,D,OX○I,D)

the affinization of X○I,D and j∶X○I,D → XI,D the affinization morphism. It is proved in

[GHK15a], Theorem 2.28, that j is an open immersion, that j∗OX○
I,D
= OXI,D , and that XI

is flat over RI . More precisely, the RI -algebra

AI ∶= Γ(X○I,D,OX○I,D) = Γ(XI,D,OXI,D)

is free as RI -module and the set of theta functions ϑp, p ∈ B(Z) is a RI -module basis of AI .

Theorem 3.18. Suppose D has r ⩾ 3 irreducible components, and let ϕ be a P gp
R -valued

convex Σ-piecewise linear function on B such that κρ,ϕ ∈ J for all one-dimensional cones ρ

of Σ. Let D̂ be a consistent quantum scattering diagram for the data (B,Σ), P , J and ϕ.

Let I be an ideal of P of radical J . Then

• The sheaf Oh̵XI,D ∶= j∗O
h̵
X○
I,D

of Rh̵I -algebras is a deformation quantization of XI,D over

RI in the sense of Definition 3.4.

• The Rh̵I -algebra

Ah̵I ∶= Γ(X○I,D,O
h̵
X○
I,D
) = Γ(XI,D,O

h̵
XI,D
)

is a deformation quantization of XI,D over RI in the sense of Definition 3.5.
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• The Rh̵I -algebra Ah̵I is free as Rh̵I -module.

• The set of quantum theta functions

{ϑh̵p ∣p ∈ B(Z)}

is a Rh̵I -module basis for Ah̵I .

Proof. We follow the structure of the proof of Theorem 2.28 of [GHK15a].

We first prove the result for I = J . As r ⩾ 3 and κρ,ϕ ∈ J for all one-dimensional cones ρ of

Σ, the only broken line contributing to LiftQ(p), for every Q in B0 and p ∈ B0(Z), is the

straight line of endpoint Q and direction p, and this provides a non-zero contribution only

if Q and p lie in the same two-dimensional cone of Σ. Combined with Lemma 3.14, this

implies that the map

⊕
p∈B(Z)

Rh̵J ϑ̂p → Ah̵J ∶= Γ(X○J,D,O
h̵
X○
J,D
) = Rh̵J[Σ]

is given by

ϑ̂p ↦ ẑp

and so is an isomorphism.

We now treat the case of a general ideal I of P of radical J . By construction, Oh̵X○
I,D

is a

deformation quantization of X○I,D over RI . In particular, Oh̵X○
I,D

is a sheaf in flat Rh̵I -algebras.

As used in [GHK15a], the fibers of XJ,D → Spec RJ satisfy Serre’s condition S2 by [Ale02].

We have Oh̵XJ,D ≃ OXJ,D⊗̂kh̵ as kh̵-module and so it follows that j∗j
∗Oh̵XJ,D = O

h̵
XJ,D

. The

existence of quantum theta functions ϑ̂p guarantees that the natural map

O
h̵
XI,D

∶= j∗O
h̵
XI,D

→ j∗j
∗
O
h̵
XJ,D

= O
h̵
XJ,D

is surjective. So the result follows from the following Lemma, analogue of Lemma 2.29 of

[GHK15a].

Lemma 3.19. Let X0/S0 be a flat family of surfaces such whose fibers satisfy Serre’s con-

dition S2. Let j∶X○0 ⊂ X0 be the inclusion of an open subset such that the complement has

finite fiber. Let S0 ⊂ S be an infinitesimal thickening of S0, and X/S a flat deformation of

X0/S0, inducing a flat deformation X○/S of X○0/S0. Let Oh̵X0
be a deformation quantiza-

tion of X0/S0 such that Oh̵X0
≃ OX0⊗̂kh̵ as OS0⊗̂kh̵-module, and so j∗j

∗Oh̵X0
= Oh̵X0

by the

relative S2 condition satisfied by X0/S0. Let Oh̵X○ be a deformation quantization of X○/S,

restricting to j∗Oh̵X0
over X○0 . If the natural map

O
h̵
X ∶= j∗O

h̵
X○ → j∗j

∗
O
h̵
X0
= O

h̵
X0

is surjective, then Oh̵X is a deformation quantization of X/S.

Proof. We have to prove that Oh̵X is flat over OS⊗̂kh̵.
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Let I ⊂ OS be the nilpotent ideal defining S0 ⊂ S. Let Xn, X○n, Sn be the nth order

infinitesimal thickening of X0, X○0 , S0 in S, i.e. OXn = OX/I
n+1, OX○n = OX○/I

n+1 and

OSn = OS/I
n+1.

We define Oh̵Xn ∶= j∗O
h̵
X○n

. We show by induction on n that Oh̵Xn is flat over OSn⊗̂kh̵.

For n = 0, we have j∗O
h̵
X○0
= j∗j

∗Oh̵X0
= Oh̵X0

, which is flat over OS0⊗̂kh̵ by assumption.

Assume that the induction hypothesis is true for n − 1. Since Oh̵X○n is flat over OSn⊗̂kh̵, we

have an exact sequence

0→ In/In+1
⊗O

h̵
X○0
→O

h̵
X○n
→O

h̵
X○n−1

→ 0 .

Applying j∗, we get an exact sequence

0→ j∗(I
n
/I
n+1
⊗ j∗Oh̵X0

) → O
h̵
Xn →O

h̵
Xn−1 .

We have j∗(I
n/In+1 ⊗ j∗Oh̵X0

) = In/In+1 ⊗Oh̵X0
.

By assumption, the natural map Oh̵X → j∗j
∗Oh̵X0

= Oh̵X0
is surjective. By the induction

hypothesis, we have Oh̵Xn−1/I = O
h̵
X0

. As I is nilpotent, it follows that the map Oh̵Xn →O
h̵
Xn−1

is surjective. So we have an exact sequence

0→ In/In+1
⊗O

h̵
X0
→O

h̵
Xn →O

h̵
Xn−1 → 0 ,

implying that Oh̵Xn is flat over OSn⊗̂kh̵.

3.2.8 The algebra structure

This Section is a q-deformed version of Section 2.4 of [GHK15a].

We saw in the previous Section that the Rh̵I -algebra

Ah̵I ∶= Γ(X○I,D,O
h̵
X○
I,D
)

is free asRh̵I -module, admitting a basis of quantum theta functions ϑ̂p, p ∈ B(Z). Theorem 3.20

below gives a combinatorial expression for the structure constants of the algebra Ah̵I in the

basis of quantum theta functions.

If γ is a quantum broken line of endpoint Q in a cone τ of Σ, we can write the monomial

Mono(γ) attached to the segment ending at Q as

Mono(γ) = c(γ)ẑϕτ (s(γ))

with c(γ) ∈ kh̵[Pϕτ ] and s(γ) ∈ Λτ .

Theorem 3.20. Let p ∈ B(Z) and let z ∈ B −SuppI(D̂
can) be very close to p. For every p1,
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p2 ∈ B(Z), the structure constants Cpp1,p2
∈ Rh̵I in the product expansion

ϑ̂p1 ϑ̂p2 = ∑
p∈B(Z)

Cpp1,p2
ϑ̂p

are given by

Cpp1,p2
= ∑
γ1,γ2

c(γ1)c(γ2)q
1
2 ⟨s(γ1),s(γ2)⟩ ,

where the sum is over all broken lines γ1 and γ2, of asymptotic charges p1 and p2, satisfying

s(γ1) + s(γ2) = p, and both ending at the point z ∈ B0.

Proof. Let τ be the smallest cone of Σ containing p. Working in the algebra kh̵[Pϕτ ]/I, we

have

Liftz(p1)Liftz(p2) = ∑
p∈B(Z)

Cpp1,p2
Liftz(p) .

By definition, we have

Liftz(p1) = ∑
γ1

c(γ1)ẑ
ϕτ (s(γ1)) ,

and

Liftz(p2) = ∑
γ2

c(γ2)ẑ
ϕτ (s(γ2)) .

As p and z belongs to the cone τ , the only quantum broken line of charge p ending at z is

the straight line z +R⩾0 equipped with the monomial ẑϕτ (p), and so we have

Liftz(p) = ẑ
ϕτ (p) .

The result then follows from the multiplication rule

ẑϕτ (s(γ1))ẑϕτ (s(γ2)) = q
1
2 ⟨s(γ1),s(γ2)⟩ẑϕτ (p) .

Remark: In the formula given by the previous theorem, the non-commutativity of the

product of the quantum theta functions comes from the twist by the power of q,

q
1
2 ⟨s(γ1),s(γ2)⟩ ,

which is obviously not symmetric in γ1 and γ2 as ⟨−,−⟩ is skew-symmetric.

Taking the classical limit h̵→ 0, we get an explicit formula for the Poisson bracket of classical

theta functions, which could have been written and proved in [GHK15a].

Corollary 3.21. Let p ∈ B(Z) and let z ∈ B − SuppI(D
can) be very close to p. For every

p1, p2 ∈ B(Z), the Poisson bracket of the classical theta functions ϑp1 and ϑp2 is given by

{ϑp1 , ϑp2} = ∑
p∈B(Z)

P pp1,p2
ϑp ,
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where

P pp1,p2
∶= ∑
γ1,γ2

⟨s(γ1), s(γ2)⟩c(γ1)c(γ2) ,

where the sum is over all broken lines γ1 and γ2 pf asymptotic charges p1 and p2, satisfying

s(γ1) + s(γ2) = p, and both ending at the point z ∈ B0.

3.3 The canonical quantum scattering diagram

In this Section, we construct a quantum deformation of the canonical scattering diagram

constructed in Section 3 of [GHK15a] and we prove its consistency. In Section 3.3.1, we give

the definition of a family of higher genus log Gromov-Witten invariants of a Looijenga pair.

In Section 3.3.2, we use these invariants to construct the quantum canonical scattering

diagram of a Looijenga pair and we state its consistency, Theorem 3.26. The proof of

Theorem 3.26 takes Sections 3.3.4, 3.3.5, 3.3.6, 3.3.7, and 3.3.8, and follows the general

structure of the proof given in the classical case by [GHK15a], the use of [GPS10] being

replaced by the use of Theorem 2.6.

3.3.1 Log Gromov-Witten invariants

We fix (Y,D) a Looijenga pair, (B,Σ) its tropicalization, P a toric monoid and η∶NE(Y ) →

P a morphism of monoids. Let ϕ be the unique8 (up to addition of a linear function) P gp
R -

valued multivalued convex Σ-piecewise linear function on B such that κρ,ϕ = η([Dρ]) for

every ρ one-dimensional cone of Σ, where [Dρ] ∈ NE(Y ) is the class of the divisor Dρ dual

to ρ.

Let d ⊂ B be a ray with endpoint the origin and with rational slope. Let τd ∈ Σ be the

smallest cone containing d and let md ∈ Λτd be the primitive generator of d pointing away

from the origin.

Let us first assume that τ = σ is a two-dimensional cone of Σ. The ray d is then contained in

the interior of σ. Let ρ+ and ρ− be the two rays of Σ bounding σ. Let mρ± ∈ Λσ be primitive

generators of ρ± pointing away from the origin. As σ is isomorphic as integral affine manifold

to the standard positive quadrant (R⩾0)2 of R2, there exists a unique decomposition

md = n+mρ+ + n−mρ−

with n+ and n− positive integers. Let NE(Y )d be the set of classes β ∈ NE(Y ) such that

there exists a positive integer `β such that

β.Dρ+ = `βn+ ,

β.Dρ− = `βn− ,

and

β.Dρ = 0 ,

8See Lemma 1.13 of [GHK15a].
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for every one-dimensional cone ρ of Σ distinct of ρ+ and ρ−.

If τ = ρ is a one-dimensional cone of Σ, we define NE(Y )d as being the set of classes

β ∈ NE(Y ) such that there exists a positive integer `β such that

β.Dρ = `β ,

and

β.Dρ′ = 0 ,

for every one-dimensional cone ρ′ of Σ distinct of ρ.

The upshot of the preceding discussion is that, for any ray d with endpoint the origin and

of rational slope, we have defined a subset NE(Y )d of NE(Y ).

We equip Y with the divisorial log structure defined by the normal crossing divisor D. The

resulting log scheme is log smooth. As reviewed in Section 3.1.2, integral points p ∈ B(Z) of

the tropicalization naturally define tangency conditions for stable log maps to Y .

For every β ∈ NE(Y )d, let Mg(Y /D,β) be the moduli space of genus g stable log maps

to (Y,D), of class β, and satisfying the tangency condition `βmd ∈ B(Z). By the work of

Gross, Siebert [GS13] and Abramovich, Chen [Che14b], [AC14], Mg(Y /D,β) is a proper

Deligne-Mumford stack of virtual dimension g and it admits a virtual fundamental class

[Mg(Y /D,β)]
virt
∈ Ag(Mg(Y /D,β),Q) .

If π∶ C →Mg(Y /D,β) is the universal curve, of relative dualizing sheaf ωπ, then the Hodge

bundle

E ∶= π∗ωπ

is a rank g vector bundle over Mg(Y /D,β). Its Chern classes are classically called the

lambda classes,

λj ∶= cj(E) ,

for j = 0, . . . , g. We define genus g log Gromov-Witten invariants of (Y,D) by

N
Y /D
g,β ∶= ∫

[Mg(Y /D,β)]virt
(−1)gλg ∈ Q .

3.3.2 Definition

Using the higher genus log Gromov-Witten invariants defined in the previous Section, we

can define a natural deformation of the canonical scattering diagram defined in Section 3.1

of [GHK15a].

Definition 3.22. We define D̂can as being the set of pairs (d, Ĥd), where d is a ray of ratio-

nal slope in B with endpoint the origin, and, denoting τd the smallest cone of Σ containing
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d, and md ∈ Λτd the primitive generator of d pointing away from the origin, Ĥd is given by

Ĥd ∶= (
i

h̵
) ∑
β∈NE(Y )d

⎛

⎝
∑
g⩾0

N
Y /D
g,β h̵2g⎞

⎠
ẑη(β)−ϕτd(`βmd) ∈ kh̵[̂Pϕτd ] .

The following Lemma is almost formally identical to Lemma 3.5 of [GHK15a].

Lemma 3.23. Let J be a radical ideal of P . Suppose that the map η∶NE(Y ) → P satisfies

the following conditions

• If d is contained in the interior of a two-dimensional cone of Σ, then η(β) ∈ J for

every β ∈ NE(Y )d such that Ng,β ≠ 0 for some g.

• If d is a ray ρ of Σ and κρ,ϕ ∉ J , then η(β) ∈ J for every β ∈ NE(Y )d such that

Ng,β ≠ 0 for some g.

• For any ideal I in P of radical J , there are only finitely may classes β ∈ NE(Y ) such

that Ng,β ≠ 0 for some g and such that η(β) ∉ I.

Then D̂can is a quantum scattering diagram for the data (B,Σ), P , J , and ϕ. Furthermore,

the quantum scattering diagram D̂can has only outgoing rays.

Proof. The assumptions guarantee the finiteness requirements in the definition of a quantum

scattering diagram, see Section 3.2.2. The ray (d, Ĥd) is outgoing because

r(η(β) −ϕτd(`βmd)) = −`βmd ∈ Z<0md .

Lemma 3.24. The canonical quantum scattering diagram D̂can is invariant under flat de-

formation of (Y,D).

Proof. This follows from deformation invariance of the log Gromov-Witten invariants N
Y /D
g,β .

Lemma 3.25. The classical limit of the canonical quantum scattering diagram D̂can is the

canonical scattering diagram defined in Section 3.1 of [GHK15a].

Proof. It follows from the cycle argument used in the proofs of Proposition 1.10 and 2.12,

and from the log birational invariance of log Gromov-Witten invariants [AW13], that the

relative genus zero Gromov-Witten invariants of non-compact surfaces used in [GHK15a]

coincide with the genus zero log Gromov-Witten invariants N
Y /D
0,β .

3.3.3 Consistency

The following result states that the quantum scattering diagram Dcan, defined in Section 3.3.2,

is consistent in the sense of Section 3.2.6.
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Theorem 3.26. Suppose that

• For any class β ∈ NE(Y ) such that Ng,β ≠ 0 for some g, we have η(β) ∈ J .

• For any ideal I of P of radical J , there are only finitely many classes β ∈ NE(Y ) such

that Ng,β ≠ 0 for some g and η(β) ∉ I.

• η([Dρ]) ∈ J for at least one boundary component Dρ ⊂D.

Then the canonical quantum scattering diagram D̂can is consistent.

Let us review the various steps taken by [GHK15a] to prove the consistency of the canonical

scattering diagram in the classical case.

• Step I. We can replace (Y,D) by a corner blow-up of (Y,D).

• Step II. Changing the monoid P .

• Step III. Reduction to the Gross-Siebert locus.

• Step IV. Pushing the singularities at infinity.

• Step V. D̄ satisfies the required compatibility condition.

Step I, see Proposition 3.10 of [GHK15a], is easy in the classical case. The quantum case is

similar: the scattering diagram changes only in a trivial way under corner blow-up and we

will not say more.

Step II, see Proposition 3.12 of [GHK15a], is more subtle and involves some regrouping of

monomials in the comparison of the broken lines for two different monoids. Exactly the

same regrouping operation deals with the quantum case too.

Step III in [GHK15a] requires an understanding of genus zero multicover contributions of

exceptional divisors of a toric model. We explain below, Section 3.3.4, how the quantum

analogue is obtained from the knowledge of higher genus multicover contributions.

Step IV in [GHK15a] is the reduction of the consistency of Dcan to the consistency of a

scattering diagram ν(Dcan) on an integral affine manifold without singularities. We explain

in Sections 3.3.5, 3.3.7, 3.3.8, how the consistency of the quantum scattering diagram D̂can

can be reduced to the consistency of a quantum scattering diagram ν(D̂can) on an integral

affine manifold without singularities.

Step V in [GHK15a] is the proof of consistency of ν(Dcan) and ultimately relies on the main

result of [GPS10]. We explain in Section 3.3.6 how its q-analogue, i.e. the consistency of

ν(D̂can), ultimately relies on Theorem 2.6.

3.3.4 Reduction to the Gross-Siebert locus.

We start recalling some notations from Chapter 2.
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Let m = (m1, . . . ,mn) be an n-tuple of primitive non-zero vectors of M = Z2. The fan in R2

with rays −R⩾0m1, . . . ,−R⩾0mn defines a toric surface Ȳm. Denote ∂Ȳm the anticanonical

toric divisor of Ȳm, and let Dm1 , . . . ,Dmn be the irreducible components of ∂Ȳm dual to the

rays −R⩾0m1, . . . ,−R⩾0mn.

For every j = 1, . . . , n, we blow-up a point xj in general position on the toric divisor Dmj .

Remark that it is possible to have R⩾0mj = R⩾0mj′ , and so Dmj =Dmj′ , for j ≠ j′, and that

in this case we blow-up several distinct points on the same toric divisor. We denote Ym the

resulting projective surface and π∶Ym → Ȳm the blow-up morphism. Let Ej ∶= π
−1(xj) be

the exceptional divisor over xj . We denote ∂Ym the strict transform of ∂Ȳm.

Using Steps I and II and the deformation invariance property of D̂can, we can make the

following assumptions (see Assumptions 3.13 of [GHK15a]):

• There exists m = (m1, . . . ,mn) a n-tuple of primitive non-zero vectors of M = Z2 such

that (Y,D) = (Ym, ∂Ym).

• The map η∶NE(Y ) → P is an inclusion and P × = {0}.

• There is an ample divisor H on Y such that there is a face of P whose intersection

with NE(Y ) is the face NE(Y )∩(p∗H)⊥ generated by the classes [Ej] of exceptional

divisors. Let G be the prime monomial ideal of R generated by the complement of

this face.

• J = P − {0}.

Following Definition 3.14 of [GHK15a], we call Gross-Siebert locus the open torus orbit T gs

of the toric face Spec k[P ]/G of Spec k[P ].

Proposition 3.27. For each ray ρ of Σ,with primitive generator mρ ∈ Λρ pointing away

from the origin, the Hamiltonian Ĥρ attached to ρ in the scattering diagram D̂can satisfies

Ĥρ = i ∑
j,Dmj =Dρ

∑
`⩾1

1

`

(−1)`−1

2 sin ( `h̵
2
)
ẑ`η([Ej])−`ϕρ(mρ) mod G.

Proof. The only contributions to Ĥρ mod G come from the multiple covers of the excep-

tional divisors Ej . The result then follows from Lemma 2.20.

Proposition 3.28. The canonical quantum scattering diagram D̂can is a scattering diagram

for the data (B,Σ), P , G and ϕ. Concretely, for every ideal I of P of radical G, there are

only finitely many rays such (d, Ĥd) such that Ĥd ≠ 0 mod I.

Proof. This follows from the argument given in the proof of Corollary 3.16 in [GHK15a]. It

is a geometric argument about curve classes and the genus of the curves plays no role.

Corollary 3.29. If D̂can is consistent as a quantum scattering diagram for the data (B,Σ),

P , G and ϕ, then D̂can is consistent as a quantum scattering diagram for the data (B,Σ),

P , J and ϕ.

186



Following Remark 3.18 of [GHK15a], we denote E ⊂ P gp the sublattice generated by the

face P /G. We have naturally T gs = Spec k[E] ⊂ Spec k[P ]. Denote mP+E = (P +E) /E.

The following Lemma is formally identical to Lemma 3.19 of [GHK15a].

Lemma 3.30. If D̂can, viewed as a quantum scattering diagram for the data (B,Σ), P +E,

ϕ and mP+E, is consistent, then D̂can, viewed as a quantum scattering diagram for the data

(B,Σ), P , ϕ and G, is consistent.

Proof. Identical to the proof of Lemma 3.19 of [GHK15a].

It follows that we can replace P by P + E, and so from now on, we assume that P ∗ = E

and G = P /E. Concretely, this means that it is enough to check the consistency of D̂can by

working in rings in which the monomials ẑη([Ej]−ϕρ(mρ) are invertible.

3.3.5 Pushing the singularities at infinity

We first recall the notations introduced at the beginning of Step IV of [GHK15a].

We denote M = Z2 the lattice of cocharacters of the torus acting on the toric surface

(Ȳ , ∂Ȳm). Let (B̄, Σ̄) be the tropicalization of (Ȳm, ∂Ȳm). The affine manifold B̄ has no

singularity at the origin and so is naturally isomorphic to MR = R2. The cone decomposition

Σ̄ of MR = R2 is simply the fan of Ȳ . Let ϕ̄ be the single-valued P gp
R -valued on B̄ such that

κρ̄,ϕ̄ = π
∗
[D̄ρ̄] ,

for every ρ̄ one-dimensional cone of Σ̄ and where D̄ρ̄ is the toric divisor dual to ρ̄. Since ϕ̄ is

single-valued and B̄ has no singularities, the sheaf P̄ , as defined in Section 3.1.2 is constant

with fiber P gp ⊕M .

There is a canonical piecewise linear map ν∶B → B̄ which restricts to an integral affine

isomorphism ν∣σ ∶σ → σ̄ from each two-dimensional cone σ of Σ to the corresponding two-

dimensional cone σ̄ of Σ̄. This map naturally identifies B(Z) with B̄(Z). Restricted to each

two-dimensional cone σ of Σ, the derivative ν∗ of ν induces a identification ΛB,σ ≃ ΛB̄,σ̄, an

isomorphism of monoids

ν̃σ ∶Pϕσ → Pϕ̄σ̄

p +ϕσ(m) ↦ p + ϕ̄σ̄(ν∗(m)) ,

for p ∈ P and m ∈ Λσ, and so an identification of algebras of kh̵[Pϕσ ] and kh̵[Pϕ̄σ̄ ].

If ρ is a one-dimensional cone of Σ, then ν∗ is only defined on the tangent space to ρ (not

on the full Λρ because ν is only piecewise linear) and so give an identification

ν̃ρ∶ {p +ϕρ(m)∣ m tangent to ρ, p ∈ P} → {p + ϕ̄ρ̄(m)∣ m tangent to ρ̄, p ∈ P}

p +ϕρ(m) ↦ p + ϕ̄ρ̄(ν∗(m)) .

We define below a quantum scattering diagram ν(D̂can) for the data (B̄, Σ̄), P , ϕ̄ and G.
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• For every ray (d, Ĥd) of D̂can contained in the interior of a two-dimensional cone of Σ,

the quantum scattering diagram ν(D̂can) contains the ray

(ν(d), ν̃τσ(Ĥd)) ,

which is outgoing.

• For every ray (ρ, Ĥρ), with ρ a one-dimensional cone of Σ, and so by Proposition 3.27,

Ĥρ = Ĝρ + i ∑
j,Dmj =Dρ

∑
`⩾1

1

`

(−1)`−1

2 sin ( `h̵
2
)
ẑ`[Ej]−`ϕρ(mρ) ,

with Ĝρ = 0 mod G, the quantum scattering diagram ν(D̂can) contains two rays:

(ρ̄, ν̃τd(Ĝρ)) ,

which is outgoing, and

⎛
⎜
⎝
ρ̄, i ∑

j,Dmj =Dρ

∑
`⩾1

1

`

(−1)`−1

2 sin ( `h̵
2
)
ẑ`ϕ̄(mρ)−`[Ej]

⎞
⎟
⎠
,

which is ingoing.

Remark: In going from D̂can to ν(D̂can), we invert ẑ`[Ej]−`ϕ̄ρ̄(mρ), which becomes ẑ`ϕ̄ρ̄(mρ)−`[Ej].

This makes sense because we are assuming P ∗ = E.

3.3.6 Consistency of ν(D̂can)

Let D̂m be the quantum scattering diagram for the data (B̄, Σ̄), P , ϕ and G, having, for

each ρ̄ one-dimensional cone of Σ̄, a ray (ρ̄, Ĥρ̄) where

Ĥρ̄ ∶= i ∑
j,Dmj =Dρ

∑
`⩾1

1

`

(−1)`−1

2 sin ( `h̵
2
)
ẑ`ϕ̄(mρ)−`[Ej] .

Writing `ϕ̄(mρ) − `[Ej] = (`mρ, ϕ(`mρ) − `[Ej]), it is clear that Ĥρ̄ ∈ kh̵[̂Pϕ], where the

monoid

Pϕ = {(m, ϕ̄(m) + p)∣m ∈M,p ∈ P}

is independent of ρ.

For such quantum scattering diagram D̂, with all Hamiltonians valued in the same ring, it

makes sense to define an automorphism θ̂γ,D̂ of this ring, as in Section 3.2.4, but for γ an

arbitrary path in B̄0 transverse to the rays of the diagram. By [KS06], Theorem 6, there

exists another scattering diagram S(D̂) containing D̂, such that S(D̂) − D̂ consists only of

outgoing rays and θ̂γ,S(D̂) is the identity for γ a loop in B̄0 going around the origin. We can

assume that there is at most one ray of S(D̂) − D̂ in each possible outgoing direction.
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The scattering diagram S(D̂m) was the main object of study of Chapter 29.

For every m ∈M − {0}, let Pm be the subset of p = (p1, . . . , pn) ∈ Nn such that ∑
n
i=1 pimi is

positively collinear with m:
n

∑
i=1

pimi = `pm

for some `p ∈ N. Given p ∈ Pm, we defined in Section 2.2.2 a curve class βp ∈ A1(Ym,Z).

Recall that if d ⊂ B̄ is a ray with endpoint the origin and with rational slope, we denote

md ∈M the primitive generator of d pointing away from the origin.

The following Proposition expresses S(D̂m) in terms of the log Gromov-Witten invariants

N
Ym/∂Ym

g,β defined in Section 3.3.1 and entering in the definition of D̂can.

Proposition 3.31. The Hamiltonian Ĥd attached to an outgoing ray d of S(D̂m) − D̂m is

given by

Ĥd = (
i

h̵
) ∑
p∈Pmd

⎛

⎝
∑
g⩾0

N
Ym/∂Ym

g,βp
h̵2g⎞

⎠
ẑ(−`βmd,βp−ϕ̄(`βmd)) ,

where (−`βmd, βp − ϕ̄(`βmd)) ∈ Pϕ̄.

Proof. This is Theorem 2.6.

Proposition 3.32. We have S(D̂m) = ν(D̂
can).

Proof. We compare the explicit description of S(D̂m) given by Proposition 3.31 with the

explicit description of S(D̂m) obtained from its definition in Section 3.3.5 and from the

definition of D̂can in Section 3.3.2.

The ingoing rays obviously coincide.

Let d be an outgoing ray. The corresponding Hamiltonian in ν(D̂can) involves the log

Gromov-Witten invariants N
Ym/∂Ym

g,β , for

β ∈ NE(Y )d ∩G,

whereas the corresponding Hamiltonian in S(D̂m) involves the log Gromov-Witten invariants

N
Ym/∂Ym

g,βp
for p ∈ Pmd

. The only thing to show is that N
Ym/∂Ym

g,β = 0 if β ∈ NE(Y )d ∩G is not

of the form βp for some p ∈ Pmd
.

Recall that we have the blow-up morphism π∶Ym → Ȳm. Let β ∈ NE(Y )d ∩ G. We can

uniquely write β = π∗π∗β − ∑
n
j=1 pjEj for some pj ∈ Z, j = 1, . . . , n. If pj ⩾ 0 for every

j = 1, . . . , n, then p = (p1, . . . , pn) ∈ Nn and β = βp.

Assume that there exists 1 ⩽ j ⩽ n such that pj < 0. Then β.Ej = pj < 0 and so every stable

log map f ∶C → Ym of class β has a component dominating Ej . If d ≠ −R⩾0mj , then we

can do an analogue of the cycle argument of Proposition 1.10 and Lemma 2.12. Knowing

the asymptotic behavior of the tropical map to the tropicalization B of Ym, imposed by

9Comparing the conventions of the present Chapter and of Chapter 2, the notions of outgoing and
ingoing rays are exchanged. This implies that a global sign must be included in comparing Hamiltonians of
the present Chapter and those of Chapter 2.
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the tangency condition `βmd, and using repetitively the balancing condition, we get that C

needs to contain a cycle of components mapping surjectively to ∂Ym. Vanishing properties

of the lambda class given by Lemma 1.7 then imply that N
Ym/∂Ym

g,β = 0. If d = −R⩾0mj for

some j, then the same argument implies the vanishing of N
Ym/∂Ym

g,β , except if β is a multiple

of some Ej , which is not the case by the assumption β ∈ G.

The following Proposition is the quantum version of Theorem 3.30 of [GHK15a].

Proposition 3.33. Let I be an ideal of P of radical G. If Q and Q′ are two points in

general position in MR − Supp(S(D̂m))I , and γ is a path connecting Q and Q′ for which

θ̂γ,S(D̂m)I
is defined, then

LiftQ′(p) = θ̂γ,S(D̂m)I
(LiftQ(p))

as elements of kh̵[Pϕ̄]/I.

Proof. The key input is that, by construction, θ̂γ,S(D̂m)
is the identity for γ a loop in B̄0 going

around the origin. Proofs of the classical statement can be found in [CPS10], Section 5.4

of [Gro11] and Section 3.2 of the first arxiv version of [GHK15a]. Putting hats everywhere,

the same argument proves the quantum version, without extra complication.

3.3.7 Comparing D̂can and ν(D̂can)

In order to obtain the consistency of D̂can from some properties of ν(D̂can), we need to

compare the rings Rh̵σ,I , R
h̵
ρ,I coming from (B,Σ), ϕ, and the corresponding rings R̄h̵σ,I , R̄

h̵
ρ,I

coming from (B̄, Σ̄), ϕ̄. Such comparison is done in the following Lemma.

Lemma 3.34. There are isomorphisms pρ∶R
h̵
ρ,I → R̄h̵ρ̄,I and pσ ∶R

h̵
σ,I → R̄h̵σ̄,I , intertwining

• the maps ψ̂ρ,−∶R
h̵
ρ,I → Rh̵σ−,I and ψ̂ρ̄,−∶ R̄

h̵
ρ̄,I → R̄h̵σ̄−,I ,

• the maps ψ̂ρ,+∶R
h̵
ρ,I → Rh̵σ+,I and ψ̂ρ̄,+∶ R̄

h̵
ρ̄,I → R̄h̵σ̄+,I ,

• the automorphisms θ̂γ,D̂can ∶ R
h̵
σ,I → Rh̵σ,I and θ̂γ̄,ν(D̂can)

∶ Rh̵σ̄,I → Rh̵σ̄,I , where γ is a path

in σ for which θ̂γ,Dcan is defined and γ̄ = ν ○ γ.

Proof. It is a quantum version of Lemma 3.27 of [GHK15a]. The isomorphism pσ simply

comes from the isomorphism of monoids ν̃σ ∶Pϕσ → Pϕ̄σ̄ .

Recall from Section 3.2.1 that the rings Rh̵ρ,I and R̄h̵ρ̄,I are generated by variables X+, X−,

X and X̄+,X̄−, X̄ respectively and we define pρ as the morphism of Rh̵I -algebras such that

pρ(X+) = X̄+, pρ(X−) = X̄−, pρ(X) = X̄. We have to check that pρ is compatible with the

relations defining Rh̵ρ,I and R̄h̵ρ̄,I .
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We have f̂ρin = 1. Using Proposition 3.27 and Lemma 3.13, we can write

f̂ρout(X) = ĝρ(X) ∏
j,Dmj =Dρ

(1 + q−
1
2 ẑEjX−1

) ,

for some ĝρ(X) = 1 mod G. Using the definition of ν(D̂can) given in Section 3.3.5, and

Lemma 3.13, we have

f̂ρ̄in(X̄) = ∏
j,Dmj =Dρ

(1 + q−
1
2 ẑ−Ej X̄) ,

and

f̂ρ̄out(X̄) = ĝρ(X̄) .

We need to check that

pρ (q
1
2D

2
ρ ẑDρ f̂ρin(X)f̂ρout(q−1X)X−D

2
ρ) = q

1
2D

2
ρ̄ ẑDρ̄ f̂ρ̄in(X̄)f̂ρ̄out(q−1X̄)X̄−D

2
ρ̄ .

We have D2
ρ =D

2
ρ − lρ and Dρ =Dρ −∑j,Dmj =Dρ

Ej and so the desired identity follows from

(1 + q−
1
2 ẑEj(q−1X)−1

) = (1 + q
1
2 ẑEjX−1

) = q
1
2 ẑEjX−1

(1 + q−
1
2 ẑ−EjX) .

Similarly, the relation

pρ(q
− 1

2D
2
ρ ẑDρ f̂ρout(X)f̂ρin(qX)X−D

2
ρ) = q−

1
2D

2
ρ̄ ẑDρ̄ f̂ρ̄out(X)f̂ρ̄in(qX)X−D

2
ρ̄

follows from

(1 + q−
1
2 ẑEjX−1

) = q−
1
2 ẑEjX−1

(1 + q
1
2 ẑ−EjX) = q−

1
2 ẑEjX−1

(1 + q−
1
2 ẑ−Ej(qX)) .

Lemma 3.35. The piecewise linear map ν∶B → B̄ induces a bijection between broken lines

of D̂can and broken lines of ν(D̂can).

Proof. It is a quantum version of Lemma 3.27 of [GHK15a].

It is enough to compare bending and attached monomials of broken lines near a one-

dimensional cone ρ of Σ. Indeed, away from such ρ, ν is linear and so the claim is obvious.

Let ρ be a one-dimensional cone of Σ. Let σ+ and σ− be the two-dimensional cones of

Σ bounding ρ, and let ρ+, ρ− be the other boundary one-dimensional cones of σ+ and σ−

respectively, such that ρ−, ρ and ρ+ are in anticlockwise order. Let mρ be the primitive

generator of ρ pointing away from the origin. We continue to use the notations introduced

in the proof of Lemma 3.34.

Let γ be a quantum broken line in B0, passing from σ− to σ+ across ρ. Let cẑs, s ∈ Pϕσ− ,

be the monomial attached to the domain of linearity of γ preceding the crossing with ρ.

Without loss of generality, we can assume s = ϕσ−(mρ−). Indeed, the pairing ⟨−,−⟩ is trivial

on P , r(s) is a linear combination of mρ and mρ− , and ẑϕσ−(mρ) transforms trivially across
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ρ.

By the Definition 3.15 of a quantum broken line, we have to show that

pσ+ (ẑ
ϕσ−(mρ−)f̂ρout(q−1X)) = ẑϕ̄σ−(mρ̄−)f̂ρ̄out(q−1X̄)f̂ρ̄in(X̄) .

From the relations

ẑϕρ(mρ+)ẑϕρ(mρ−) = q
1
2D

2
ρ ẑDρX−D

2
ρ

in k[Pϕρ],

ẑϕ̄ρ̄(mρ̄+)ẑϕ̄ρ̄(mρ̄−) = q
1
2D

2
ρ̄ ẑDρ̄X̄−D

2
ρ̄

in k[Pϕ̄ρ̄], and using D2
ρ =D

2
ρ̄ − lρ and Dρ =Dρ̄ −∑j,Dmj =Dρ

Ej , we get

pσ+(ẑ
ϕρ(mρ−)) = ẑϕ̄ρ̄(mρ̄−) ∏

j,Dmj =Dρ

(q−
1
2 X̄ẑ−Ej) .

The result follows from the identity

q−
1
2 X̄ẑ−Ej(1 + q−

1
2 ẑEj(q−1X̄)−1

) = 1 + q−
1
2 ẑ−EjX .

Lemma 3.36. Let σ be a two-dimensional cone of Σ. For every Q ∈ σ and for every

p ∈ B0(Z), we have

pσ(LiftQ(p)) = Liftν(Q)(ν(p)) .

Proof. It is a direct consequence of Lemma 3.35.

3.3.8 End of the proof of Theorem 3.26

This Section is parallel to the proof of Theorem 3.30 of [GHK15a]. We have to show that

D̂can satisfies the two conditions entering the Definition 3.17 of consistency of a quantum

scattering diagram.

• Let Q and Q′ be generic points in B0 contained in a common two-dimensional cone σ

of Σ, and let γ be a path in the interior of σ connecting Q and Q′, and intersecting

transversely the rays of D̂. We have to show that

LiftQ′(p) = θ̂γ,D̂can(LiftQ(p)) .

By Lemma 3.34 and Lemma 3.36, it is enough to show that

Liftν(Q′)(ν(p)) = θ̂ν(γ),ν(D̂can)
(Liftν(Q)(ν(p))) ,

which follows from the combination of Proposition 3.32 and Proposition 3.33.

• Let Q− and Q+ be two generic points in B0, contained respectively in two-dimensional

cones σ− and σ+ of Σ, such that σ+ and σ− intersect along a one-dimensional cone ρ
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of Σ. Assuming further that Q− and Q+ are contained in connected components of

B − SuppI(D̂) whose closures contain ρ, we have to show that LiftQ+(p) ∈ R
h̵
σ+,I

and

LiftQ−(p) ∈ R
h̵
σ−,I

are both images under ψ̂ρ,+ and ψ̂ρ,− respectively of a single element

Liftρ(p) ∈ R
h̵
ρ,I . By Lemma 3.34 and Lemma 3.36, it is enough to prove the corre-

sponding statement after application of ν. This result follows from the combination

of the Remark at the end of Section 3.2.4 and of the second point of Lemma 3.16.

3.4 Extension over boundary strata

3.4.1 Torus equivariance

Recall from Section 3.1.5 that TD ∶= Grm is the torus whose character group χ(TD) has a

basis eDj indexed by the irreducible components Dj of D, 1 ⩽ j ⩽ r. The map

β ↦
r

∑
j=1

(β.Dj)eDj

induces an action of TD on SI = Spec RI .

Following Section 5 of [GHK15a], we consider

w∶B → χ(TD) ⊗R ,

the unique piecewise linear map such that w(0) = 0 and w(mρj) = eDj for all 1 ⩽ j ⩽ r, where

mρj is the primitive generator of the ray ρj .

According to Theorem 5.2 of [GHK15a], for every I monomial ideal of R such that XI,Dcan →

Spec RI is defined, the TD-action on Spec RI has a natural lift to XI,Dcan , such that the

decomposition

H0
(XI,Dcan ,OXI,Dcan ) = AI = ⊕

p∈B(Z)
RIϑp

as RI -module is a weight decomposition, TD acting on ϑp with weight w(p).

We extend the action of TD on RI by k-algebra automorphisms to an action of TD on Rh̵I
by kh̵-automorphism by assigning weight zero to h̵.

Proposition 3.37. The TD-action on AI by k-algebra automorphisms, equivariant for the

structure of RI-algebra, lifts to a TD-action on Ah̵I by kh̵-automorphisms, equivariant for

the structure of Rh̵I -algebra. Furthermore, the decomposition

Ah̵I = ⊕
p∈B(Z)

Rh̵I ϑ̂p

as Rh̵I -module is a weight decomposition, TD acting on ϑ̂p with weight w(p).

Proof. It is a quantum deformation of the proof of Theorem 5.2 of [GHK15a]. As Ah̵I =

Γ(X○I,Dcan ,Oh̵X○
I,Dcan

), it is enough to define the TD-action on Oh̵X○
I,Dcan

.
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Remark that for every ray d of D̂can, the monomials appearing in Ĥd and so in f̂d have weight

zero. Indeed they are of the form ẑβ−ϕτd(`βmd) with β ∈ NE(Y )d, which by definition means

that β.Dj = `β(md,Dj) for all 1 ⩽ j ⩽ r. In other words, the scattering automorphisms have

weight zero.

Let ρ be a one-dimensional cone of Σ. Let σ+ and σ− be the two-dimensional cones of

Σ bounding ρ, and let ρ+, ρ− be the other boundary one-dimensional cones of σ+ and σ−

respectively, such that ρ−, ρ and ρ+ are in anticlockwise order. From the explicit description

of Rh̵ρ,I by generator and relations given in Section 3.2.1, and recalling that ϕ is such that

κρ,ϕ = [Dρ], we define an action of TD on Rh̵ρ,I , equivariant for the structure of equivariant

Rh̵I -algebra by acting on X with the character eDρ , on X+ with the character eDρ+ , and on

X− with the character eDρ− . The fact that f̂ρin and f̂ρout have weight zero implies that the

relations defining Rh̵ρ,I are equivariant and so this TD-action is indeed well-defined on Rh̵ρ,I .

As the scattering automorphisms have weight zero, these TD-actions on the various Rh̵ρ,I
glue to define a TD-action on Oh̵X○

I,Dcan
.

The check that ϑ̂p is an eigenfunction of the TD-action with weight w(p) is now formally

identical to the corresponding classical check given in the proof of Theorem 5.2 of [GHK15a].

As the scattering automorphisms have weight zero, the weights of the monomials on the

various domains of linearity of a broken line are identical and so it is enough to consider

the unbounded domain of linearity. In this case, the monomial is ẑϕτp(p), which has weight

w(p).

3.4.2 End of the proof of Theorem 3.7

We fix (Y,D) a Looijenga pair. Let σP ⊂ A1(Y,R) be a strictly convex polyhedral cone

containing NE(Y )R. Let P ∶= σP ∩A1(Y,Z) be the associated monoid and let R ∶= k[P ] be

the corresponding k-algebra. For J = mR the maximal ideal monomial of R, the assumptions

of Theorem 3.26 are satisfied and so the canonical quantum scattering diagram D̂can is

consistent.

If (Y,D) admits a toric model, then D has r ⩾ 3 irreducible components, and so we can

apply Theorem 3.18. Combined with Proposition 3.37, this proves Theorem 3.7 in this case.

In general, it is proven in Section 6.2 of [GHK15a] that

H0
(XI ,OXI ) = AI ∶= ⊕

p∈B(Z)
RIθp ,

with the RI -algebra structure determined by the classical version of the product formula

given in Theorem 3.20. So Theorem 3.7 follows from the following Proposition 3.38.

Proposition 3.38. For every monomial ideal I of R of radical mR, the multiplication rule

of Theorem 3.20 defines a structure of Rh̵I -algebra on the Rh̵I -module

Ah̵I ∶= ⊕
p∈B(Z)

Rh̵I ϑ̂p .
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Proof. If (Y,D) admits a toric model, then D has r ⩾ 3 components and so the result follows

from Theorem 3.20.

In general, there is a corner blow-up (Y ′,D′) of (Y,D) admitting a toric model. The result

for (Y ′,D′) implies the result for (Y,D) as in Section 6.2 of [GHK15a].

3.4.3 Quantization of V1 and V2

By Poposition 3.38, for every monomial ideal I of R of radical mR, we have a structure of

Rh̵I -algebra on

Ah̵I = ⊕
p∈B(Z)

Rh̵I ϑ̂p .

In this Section, we describe explicitly this algebra for I = mR.

In the classical limit h̵ = 0, we get a commutative RI -algebra which, by [GHK15a] is the

algebra of functions on the variety Vr, where r is the number of irreducible components of

D, and

• If r ⩾ 3, Vr is the r-cycle of coordinates planes in the affine space Ar, Vr = A2
x1,x2

∪

A2
x2,x3

∪ ⋅ ⋅ ⋅ ∪A2
xr,x1

⊂ Arx1,...,xr .

• If r = 2, V2 is a union of two affine planes10,

V2 = Spec k[x, y, z]/(xyz − z2
) ,

affine cone over the union of the two rational curves z = 0 and xy − z = 0, intersecting

in two points, embedded in the weighted projective plane P1,1,2.

• If r = 1, V1 = Spec k[x, y, z]/(xyz − x2 − z3), affine cone over a nodal curve embedded

in the weighted projective plane P(3,1,2)x,y,z .

When r ⩾ 3, the explicit description of Ah̵mR follows from the combination of Section 3.2.5

and the beginning of the proof of Theorem 3.18: we have

ϑ̂m ⋅ ϑ̂m′ =

⎧⎪⎪
⎨
⎪⎪⎩

q
1
2 ⟨m,m

′
⟩ϑ̂m+m′ if m and m′ lie in a common cone of Σ

0 otherwise.

In particular, denoting v1, . . . , vr the primitive generators of the one-dimensional cones

ρ1, . . . , ρr of Σ, Ah̵mR is generated as kh̵-algebra by ϑ̂v1 , . . . , ϑ̂vr .

For r = 2 and r = 1, computing Ah̵mR is slightly more subtle and the answer is given below in

Propositions 3.39 and 3.40.

Both V1 and V2 are hypersurfaces in A3
x,y,z. Evey hypersurface F (x, y, z) = 0 in A3

x,y,z has

10In [GHK15a], the description V2 = Spec k[u, v,w]/(w2
−u2v2

) is given. It is equivalent to our description

via the change of variables x =
√

2u, y =
√

2v, z = w + uv .
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a natural Poisson structure defined by

{x, y} =
∂F

∂z
,{y, z} =

∂F

∂x
,{z, x} =

∂F

∂y
,

see [EG10] for example.

For V2 and F (x, y, z) = z2 − xyz, we get

{x, y} = 2z − xy ,{y, z} = −yz ,{z, x} = −zx .

It follows from {y, z} = −yz and {z, x} = −zx that this bracket coincides with the one coming

from the standard symplectic form on the two natural copies of (Gm)2 contained in V1.

For V1 and F (x, y, z) = z3 + x2 − xyz, we get

{x, y} = 3z2
− xy ,{y, z} = 2x − yz ,{z, x} = −zx .

It follows from {x, z} = xz that the above Poisson structure is indeed the one induced by

the standard symplectic form on the natural copy of (Gm)2 contained in V2.

We first explain how to recover the above Poisson brackets from the formula given by

Corollary 3.21 in terms of classical broken lines. We then use the formula of Theorem 3.20

in terms of quantum broken lines to compute the q-commutators deforming these Poisson

brackets.

For V2, the tropicalization B contains two two-dimensional cones σ1, and σ2, and two one-

dimensional cones ρ1 and ρ2. Let v1 and v2 in B(Z) be the primitive generators of ρ1 and ρ2.

Cutting B along ρ1, we can identify B as the upper half-plane in R2 with an identification

of the two boundary horizontal rays. Denote w = (1,0), w′ = (−1,0), v2 = (0,1). We have

x = ϑv1 = ϑw = ϑw′ , y = ϑv2 , z = ϑw+v2 . The broken lines description of the product gives

xy = ϑv1ϑv2 = ϑw+v2 + ϑw′+v2 ,

and

ϑw+v2ϑw′+v2 = 0 ,

so ϑw′+v2 = xy − z and (xy − z)z = 0, which is indeed the equation defining V2. We have

{x, y} = {ϑv1 , ϑv2} = ⟨(1,0), (0,1)⟩ϑw+v2 + ⟨(−1,0), (0,1)⟩ϑw′+v2 = ϑw+v2 − ϑw′+v2

Using ϑw′+v2 = xy − z, we get {x, y} = 2z − xy. We have

{y, z} = {ϑv2 , ϑw+v2} = ⟨(0,1), (1,1)⟩ϑw+2v2 = −ϑv2ϑw+v2 = −yz .

Finally, we have

{z, x} = ⟨(1,1), (1,0)⟩ϑ2w+v2 = −ϑwϑw+v2 = −zx .

Using the formula of Theorem 3.20, we compute the q-commutators deforming the above
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Poisson brackets. We have

x̂ŷ = ϑ̂v1 ϑ̂v2 = q
1
2 ϑ̂w+v2 + q

− 1
2 ϑ̂w′+v2 ,

so ϑ̂w′+v2 = q
1
2 x̂ŷ − qẑ2. On the other hand, we have

ŷx̂ = ϑ̂v2 ϑ̂v1 = q
− 1

2 ϑ̂w′+v2 + q
1
2 ϑ̂w′+v2 ,

q−
1
2 ŷx̂ = q−1ϑ̂w′+v2 + ϑ̂w′+v2 ,

and so

q
1
2 x̂ŷ − q−

1
2 ŷx̂ = (q − q−1

)ẑ2 .

We have

ŷẑ = ϑ̂v2 ϑ̂w+v2 = q
− 1

2 ϑ̂w+2v2 ,

and

ẑŷ = ϑ̂w+v2 ϑ̂v2 = q
1
2 ϑ̂w+2v2 ,

so

q
1
2 ŷẑ − q−

1
2 ẑŷ = 0 .

We have

ẑx̂ = ϑ̂w+v2 ϑ̂w = q
− 1

2 ϑ̂2w+v2

and

x̂ẑ = ϑ̂wϑ̂w+v2 = q
1
2 ϑ̂2w+v2 ,

so

q
1
2 ẑx̂ − q−

1
2 x̂ẑ = 0 .

Finally, we compute the q-deformation of the cubic relation F = 0:

x̂ŷẑ = ϑ̂wq
− 1

2 ϑ̂w+2v2 = q
1
2 ẑ2 .

In summary, we proved:

Proposition 3.39. The deformation quantization of V2 given by the product formula of

Theorem 3.20 is the associative kh̵-algebra generated by variables x̂, ŷ, ẑ and with relations

q
1
2 x̂ŷ − q−

1
2 ŷx̂ = (q − q−1

)ẑ ,

q
1
2 ŷẑ − q−

1
2 ẑŷ = 0 ,

q
1
2 ẑx̂ − q−

1
2 x̂ẑ = 0 ,

x̂ŷẑ = q
1
2 ẑ2 .

For V1, the tropicalization B contains one two-dimensional cone σ, and one one-dimensional

cone ρ. Let v in B(Z) be the primitive generator of ρ. Cutting B along ρ, we can identify

B as a quadrant in R2 with an identification of the two boundary rays. Denote w = (1,0)
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and w′ = (0,1). The description of the product of classical theta functions by broken lines

is given in Section 6.2 of [GHK15a]. We have x = ϑ2w+w′ , y = ϑv = ϑw = ϑw′ , z = ϑw+w′ . We

have

{x, y} = {ϑ2w+w′ , ϑv} = ⟨(2,1), (1,0)⟩ϑ3w+w′ + ⟨(2,1), (0,1)⟩ϑ2w+2w′

= −ϑ3w+w′ + 2ϑ2w+2w′ .

On the other hand, we have xy = ϑ3w+w′ +ϑ2w+2w′ and z2 = ϑ2w+2w′ , and so {x, y} = 3z2−xy.

We have

{y, z} = {ϑv, ϑw+w′} = ⟨(1,0), (1,1)⟩ϑ2w+w′ + ⟨(0,1), (1,1)⟩ϑw+2w′

= ϑ2w+w′ − ϑw+2w′ .

On the other hand, we have yz = ϑ2w+w′ + ϑw+2w′ and x = ϑ2w+w′ , and so {y, z} = 2x − yz.

We have

{z, x} = {ϑw+w′ , ϑ2w+w′} = ⟨(1,1), (2,1)⟩ϑ3w+2w′ = −ϑ3w+2w′ .

On the other hand, we have zx = ϑ3w+2w′ and so {z, x} = −zx.

Using the formula of Theorem 3.20, we compute the q-commutators deforming the above

Poisson brackets. We have

x̂ŷ = ϑ̂2w+w′ ϑ̂v = q
− 1

2 ϑ̂3w+w′ + qϑ̂2w+2w′ ,

so

ϑ̂3w+w′ = q
1
2 x̂ŷ − q

3
2 ẑ2 .

On the other hand, we have

ŷx̂ = ϑ̂vϑ̂2w+w′ = q
1
2 ϑ̂3w+w′ + q

−1ϑ̂2w+2w′ ,

q−
1
2 ŷx̂ = ϑ̂3w+w′ + q

− 3
2 ẑ2 ,

and so

q
1
2 x̂ŷ − q−

1
2 ŷx̂ = (q

3
2 − q−

3
2 )ẑ2 .

We have

ŷẑ = ϑ̂vϑ̂w+w′ = q
1
2 ϑ̂2w+w′ + q

− 1
2 ϑ̂w+2w′ ,

so

ϑ̂w+2w′ = q
1
2 ŷẑ − qx̂ .

On the other hand, we have

ẑŷ = ϑ̂w+w′ ϑ̂v = q
− 1

2 ϑ̂2w+w′ + q
1
2 ϑ̂w+2w′ ,

q−
1
2 ẑŷ = q−1x̂ + ϑ̂w+2w′ ,

and so

q
1
2 ŷẑ − q−

1
2 ẑŷ = (q − q−1

)x̂ .
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We have

ẑx̂ = ϑ̂w+w′ ϑ̂2w+w′ = q
− 1

2 ϑ̂3w+2w′

ϑ̂3w+2w′ = q
1
2 ẑx̂ .

On the other hand, we have

x̂ẑ = ϑ̂2w+w′ ϑ̂w+w′ = q
1
2 ϑ̂3w+2w′ ,

and so

q
1
2 ẑx̂ − q−

1
2 x̂ẑ = 0 .

Finally, we compute the q-deformation of the cubic relation F = 0:

x̂ŷẑ = ϑ̂2w+w′(q
1
2 ϑ̂2w+w′ + q

− 1
2 ϑ̂w+2w′) = q

1
2 ϑ̂2

2w+w′ + q
− 1

2 q
3
2 ϑ̂3w+3w′ ,

x̂ŷẑ = q
1
2 x̂2
+ qẑ3 .

In summary, we proved:

Proposition 3.40. The deformation quantization of V1 given by the product formula of

Theorem 3.20 is the associative kh̵-algebra generated by variables x̂, ŷ, ẑ and with relations

q
1
2 x̂ŷ − q−

1
2 ŷx̂ = (q

3
2 − q−

3
2 )ẑ2 ,

q
1
2 ŷẑ − q−

1
2 ẑŷ = (q − q−1

)x̂ ,

q
1
2 ẑx̂ − q−

1
2 x̂ẑ = 0 ,

x̂ŷẑ = q
1
2 x̂2
+ qẑ3 .

3.4.4 End of the proof of Theorem 3.8

In this Section, we finish the proof of Theorem 3.8, which is done by combination of

Proposition 3.41 and Proposition 3.42. We follow Section 6.1 of [GHK15a].

For every I monomial ideal of P , we define the free Rh̵I -module

Ah̵I = ⊕
p∈B(Z)

Rh̵I ϑ̂p .

According to Proposition 3.38, if I has radical mR, then there is a natural Rh̵I -algebra

structure on Ah̵I .

Let Γ ⊂ B(Z) be a finite collection of integral points such that the corresponding quantum

theta functions ϑ̂p generate the kh̵-algebra Ah̵mR . Using the notations of Section 3.4.3, we

can take Γ = {v1, . . . , vr} if r ⩾ 3, Γ = {v1, v2,w + v2} if r = 2, and Γ = {v,w +w′,2w +w′} if

r = 1.

Proposition 3.41. There exists a unique minimal radical monomial ideal J h̵min of P such

that, for every I monomial ideal of P of radical containing J h̵min,
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• There exists a Rh̵I -algebra structure on Ah̵I such that, for every k > 0, the natural

isomorphism of Rh̵I+mk -modules Ah̵I ⊗ R
h̵
I+mk = A

h̵
I+mk is an isomorphism of Rh̵I+mk -

algebras.

• The quantum theta functions ϑ̂p, p ∈ Γ, generate Ah̵I as an Rh̵I -algebra.

Proof. Follows as its classical version in Section 6.1 of [GHK15a].

As in Section 6.1 of [GHK15a], the first point of Proposition 3.41 is equivalent to the fact

that for every p1, p2 ∈ B(Z), at most finitely many terms ẑβϑ̂p with β ∉ I appear in the

expansion given by Theorem 3.20 for ϑ̂p1 ϑ̂p2 .

Proposition 3.42. Suppose that F ⊂ σP is a face such that F does not contain the class of

every component of D, then J h̵min ⊂ P − F . If (Y,D) is positive, then J h̵min = 0.

Proof. The proof is formally identical to the proof of its classical version, Proposition 6.6 of

[GHK15a]. The main input, the TD-equivariance, is given in our case by Proposition 3.37.

Remark: Let Jmin be the ideal defined by Proposition 6.5 of [GHK15a]. We obviously have

Jmin ⊂ J
h̵
min, as the vanishing of all genus Gromov-Witten invariants includes the vanishing

of genus zero Gromov-Witten invariants. If (Y,D) is positive then Jmin = J
h̵
min = 0. In

general, it is unclear if we always have Jmin = J
h̵
min or if there are examples with Jmin ≠ J

h̵
min.

Geometrically, it is the question to know if some vanishing of genus zero Gromov-Witten

invariants implies (or not) a vanishing of all higher genus Gromov-Witten invariants.

3.4.5 q-integrality: end of the proof of Theorem 3.9

The Rh̵I -algebra structure on

Ah̵I = ⊕
p∈B(Z)

Rh̵I ϑ̂p

is given by the product formula of Theorem 3.20,

ϑ̂p1 ϑ̂p2 = ∑
p∈B(Z)

Cpp1,p2
ϑ̂p .

A priori, we have Cpp1,p2
∈ Rh̵I = RI[[h̵]]. Theorem 3.9 follows from the following Proposition.

Proposition 3.43. For every p1, p2, p3 ∈ B(Z), we have

Cpp1,p2
∈ RqI = RI[q

± 1
2 ] ,

where q = eih̵. More precisely, Cpp1,p2
is the power series expansion around h̵ = 0 of a Laurent

polynomial in q
1
2 after the change of variables q = eih̵.
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Proof. Recall that, if γ is a quantum broken line of endpoint Q in a cone τ of Σ, we write

the monomial Mono(γ) attached to the segment ending at Q as

Mono(γ) = c(γ)ẑϕτ (s(γ))

with c(γ) ∈ kh̵[Pϕτ ] and s(γ) ∈ Λτ .

By definition, we have

Cpp1,p2
= ∑
γ1,γ2

c(γ1)c(γ2)q
1
2 ⟨s(γ1),s(γ2)⟩ ,

where the sum is over all broken lines γ1 and γ2, of asymptotic charges p1 and p2, satisfying

s(γ1) + s(γ2) = p, and both ending at the point z ∈ B0, an where z ∈ B − SuppI(D
can) very

close to p.

So it is enough to show that, for every γ quantum broken line of endpoint Q in a cone τ

of Σ, we have c(γ) ∈ kq[Pϕτ ]. We will show more generally that for every quantum broken

line γ of D̂can, and for every L domain of linearity of γ, the attached monomial mL = cLẑ
pL

satisfies cL ∈ kq.

It is obviously true if L is the unbounded domain of linearity of γ since then cL = 1. Given

the formula in Definition 3.15 specifying the change of monomials when the quantum broken

line bends, it is then enough to show that, for every ray (d, Ĥd) of D̂can, the corresponding

f̂d is in kq [̂Pϕτd ].

Given the argument used in Section 6.2 of [GHK15a], we can assume that (Y,D) admits a

toric model, and, using the deformation invariance of D̂can, see Lemma 3.24, we can assume

further that there exists m = (m1, . . . ,mn) such that (Y,D) = (Ym, ∂Ym), as in Section 3.3.4.

In Section 3.3.5, we introduced a quantum scattering diagram ν(D̂can). From the definition

of ν(D̂can) and the explicit formulas given in the proof of Lemma 3.34 comparing D̂can and

ν(D̂can), it is enough to prove the result for outgoing rays ν(D̂can).

By Proposition 3.32, we have ν(D̂can) = S(D̂m). So it remains to show that, for every

outgoing ray (d, Ĥd) of S(D̂m), the corresponding f̂d is in kq[P̂ϕ].

By Proposition 3.31, the Hamiltonian Ĥd attached to an outgoing ray d of S(D̂m) − D̂m is

given by

Ĥd = (
i

h̵
) ∑
p∈Pmd

⎛

⎝
∑
g⩾0

N
Ym/∂Ym

g,βp
h̵2g⎞

⎠
ẑβp−ϕ̄(`βmd) .

According to Theorem 2.30, for every p ∈ Pmd
, there exists

ΩYm
p (q

1
2 ) = ∑

j∈Z
ΩYm

p,j q
j
2 ∈ Z[q±

1
2 ] ,

such that

(
i

h̵
)
⎛

⎝
∑
g⩾0

NYm
g,p h̵

2g−1⎞

⎠
= −(−1)βp.∂Ym+1

∑
p=`p′

1

`

1

q
`
2 − q−

`
2

ΩYm

p′ (q
`
2 ) ,
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which can be rewritten

(
i

h̵
)
⎛

⎝
∑
g⩾0

NYm
g,p h̵

2g−1⎞

⎠
= ∑
j∈Z
∑
p=`p′

1

`

1

q
`
2 − q−

`
2

(−1)`βp′ .∂YmΩYm

p′,jq
j`
2 ,

Using Lemma 3.13, we get that

f̂d = ∏
p∈Pmd

∏
j∈Z
(1 + q

j−1
2 ẑβp−ϕ̄(`βmd))

ΩYmp,j ,

which concludes the proof.

3.5 Example: degree 5 del Pezzo surfaces

Let Y be a del Pezzo surface of degree 5, i.e. a blow-up of P2 in four points in general

position, and let D be an anticanonical cycle of five (−1)-curves on Y . The Looijenga pair

(Y,D) is studied in Example 1.9, Example 3.7 and Example 6.12 of [GHK15a]. Remark

that the interior U = Y −D has topological Euler characteristic e(U) = 2.

Let j be an index modulo 5. We denote Dj the components of D and ρj the corresponding

one-dimensional cones in the tropicalization (B,Σ) of (Y,D). Let vj be the primitive gen-

erator of ρj and Ej be the unique (−1)-curve in Y which is not contained in D and meets

Dj transversally in one point.

The only curve classes contributing to the canonical quantum scattering diagram D̂can are

multiples of some [Ej], and so D̂can consists of five rays (ρj , Ĥρj). By Lemma 2.20, we have

Ĥρj = i∑
`⩾1

1

`

(−1)`−1

2 sin ( `h̵
2
)
ẑ`η([Ej])−`ϕρj (vj) .

and so, by Lemma 3.13, the corresponding f̂ρj are given by

f̂ρj = 1 + q−
1
2 ẑEj−ϕρj (vj) .

Proposition 3.44. The k[NE(Y )]-algebra defined by the product formula of Theorem 3.20

is generated by the quantum theta functions ϑ̂j, satisfying the relations

ϑ̂vj−1 ϑ̂vj+1 = ẑ
[Dj](ẑ[Ej] + q

1
2 ϑ̂vj) ,

ϑ̂vj+1 ϑ̂vj−1 = ẑ
[Dj](ẑ[Ej] + q−

1
2 ϑ̂vj) .

Proof. The description of quantum broken lines is identical to the description of classical

broken lines given in Example 3.7 of [GHK15a].

The term ẑ[Dj]ẑ[Ej] is the coefficient of ϑ̂0 = 1. The final directions of the broken lines γ1

and γ2 satisfy s(γ1) + s(γ2) = 0, so ⟨s(γ1), s(γ2)⟩ = 0 and the quantum result is identical to

the classical one.

The term ẑ[Dj]ϑ̂vj corresponds to two straight broken lines for vj−1 and vj+1, with endpoint
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the point vj of ρj . The corresponding extra power of q in Theorem 3.20 is q±
1
2 ⟨vj−1,vj+1⟩ =

q±
1
2 .

Remark: Setting [Ej] = [Dj] = 0, we recover some well-known description of the A2

quantum X -cluster algebra, see formula (60) in Section 3.3 of [FG09a].

3.6 Higher genus mirror symmetry and string theory

3.6.1 From higher genus to quantization via Chern-Simons

In Section 2.9, we compared our enumerative interpretation of the q-refined 2-dimensional

Kontsevich-Soibelman scattering diagrams in terms of higher genus log Gromov-Witten

invariants of log Calabi-Yau surfaces with the physical derivation of the refined wall-crossing

formula from topological string given by Cecotti-Vafa [CV09].

A parallel discussion shows that the main result of the present Chapter, the connection

between higher genus log Gromov-Witten invariants of log Calabi-Yau surfaces and quanti-

zation of the mirror geometry, also fits naturally into this story.

Let (Y,D) be a Looijenga pair. The complement U ∶= Y −D is a non-compact holomorphic

symplectic surface admitting a real Lagrangian torus fibration. According to the SYZ picture

of mirror symmetry, the mirror of U should be obtained by taking the dual Lagrangian torus

fibration, corrected by counts of holomorphic discs in U with boundary on the torus fibers.

As in Section 2.9, we assume that U admits a hyperkähler metric, such that the original

complex structure of U is the compatible complex structure J , and such that the torus

fibration is I-holomorphic Lagrangian. Let X be the non-compact Calabi-Yau 3-fold, of

underlying real manifold U×C∗ and equipped with a complex structure twisted in a twistorial

way, i.e. such that the fiber over ζ ∈ C∗ is the complex variety (U,Jζ). Consider S1 ⊂ C∗

and L ∶= Σ × S1 ⊂ X. Again following Section 2.9, the log Gromov-Witten invariants with

insertion of a top lambda class Ng,β , introduced in Section 3.3, should be viewed as a

rigorous definition of the open Gromov-Witten invariants in the twistorial geometry X,

with boundary on a torus fiber L “near infinity”.

Always following Section 2.9, according to Witten [Wit95], in absence of non-constant world-

sheet instantons, the effective spacetime theory of the A-model on the A-brane L is Chern-

Simons theory of gauge group U(1). The non-constant worldsheet instantons deform this

result. The effective spacetime theory on the A-brane L is still a U(1)-gauge theory but

the Chern-Simons action is deformed by additional terms involving the worldsheet instan-

tons. The genus zero worldsheet instantons correct the classical action whereas higher genus

worldsheet instantons give higher quantum corrections.

We now arrive at the key point, i.e. the relation between the SYZ mirror construction

in terms of dual tori and the Chern-Simons story, whose quantization is supposed to be

naturally related to higher genus curves. As L = Σ × S1, we can adopt a Hamiltonian

description where S1 plays the role of the time direction. The key point is that the classical

phase space of U(1) Chern-Simons theory on L = Σ×S1 is the space of U(1) flat connections
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on Σ, i.e. it is exactly the dual torus of Σ used in the construction of the SYZ mirror. The

genus zero worldsheet instantons corrections to U(1) Chern-Simons theory then translate

into the genus zero worldsheet instantons corrections in the SYZ construction of the mirror.

The Poisson structure on the mirror comes from the natural Poisson structure on the classical

phase spaces of Chern-Simons theory. It is then natural to think that a quantization of

the mirror should be obtained from quantization of Chern-Simons theory. Quantization of

the torus of flat connections gives a quantum torus and higher genus worldsheet instantons

corrections to quantum Chern-Simons theory imply that these quantum tori should be glued

together in a non-trivial way. We recover the main construction of the present Chapter:

gluing quantum tori together using higher genus curve counts in the gluing functions. The

fact that we have been able to give a rigorous version of this construction should be viewed

as a highly non-trivial mathematical check of the above string-theoretic expectations.

3.6.2 Quantization and higher genus mirror symmetry

In the previous Section, we explained how to understand the connection between higher

genus log Gromov-Witten invariants and deformation quantization using Chern-Simons the-

ory as an intermediate step. In this explanation, a key role is played by the non-compact

Calabi-Yau 3-fold X, partial twistor family of U .

In the present Section, we adopt a slightly different point of view, and we also consider

a similar non-compact Calabi-Yau 3-fold on the mirror side: Y = V × C∗. It is natural

to expect that the mirror symmetry relation between U and V lifts to a mirror symmetry

relation between the Calabi-Yau 3-folds X and Y .

As explained in the previous Section, the higher genus log Gromov-Witten invariants that

we are considering should be viewed as part of an algebraic version of the open higher genus

A-model on X. Open higher genus A-model should be mirror to open higher genus B-model

on Y . We briefly explain below why the open higher genus B-model on Y = V × C∗ has

something to do with quantization of the holomorphic symplectic variety V .

String field theory of open higher genus B-model for a single B-brane wrapping Y is holo-

morphic Chern-Simons theory, of field a (0,1)-connection A and action

S(A) = ∫
Y

ΩY ∧A ∧ ∂̄A ,

where ΩY is the holomorphic volume form of V . We will be rather interested in a single

B-brane wrapping a curve C∗v ∶= {v} × C∗ ⊂ Y , where v is a point in V . The study of the

dimensional reduction of holomorphic Chern-Simons to describe a B-brane wrapping a curve

was first done by Aganagic and Vafa [AV00] (Section 4). Writing locally

ΩY = dx ∧ dp ∧
dz

z
,

where (x, p) are local holomorphic Darboux coordinates on V near v and z a linear coordinate

along C∗, the fields of the reduced theory on C∗v are functions (x(z, z̄), p(z, z̄)) and the action
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is

S(x, p) = ∫
C∗v

dz

z
∧ p ∧ ∂̄x .

A further dimensional reduction from the cylinder C∗v to a real line Rt leads to a theory of

a particle moving on V , of position (x(t), z(t)), of action

S(x, p) = ∫
Rt
p(t)dx(t) .

In particular, p(t) and x(t) are canonically conjugate variables and in the corresponding

quantum theory, obtained as dimensional reduction of the higher genus B-model, they should

become operator satisfying the canonical commutation relations [x, p] = h̵. We conclude

that the higher genus B-model of the B-branes C∗v should lead to a quantization of the

holomorphic symplectic surface V . The same relation between higher genus B-model and

quantization appears in [ADK+06] and follow-ups.

We conclude that Theorem 5 should be viewed as an example of higher genus mirror sym-

metry relation.
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2016.

[OV00] Hirosi Ooguri and Cumrun Vafa. Knot invariants and topological strings. Nu-

clear Phys. B, 577(3):419–438, 2000.

[Pan99] Rahul Pandharipande. Hodge integrals and degenerate contributions. Comm.

Math. Phys., 208(2):489–506, 1999.

[Par16] Brett Parker. Three dimensional tropical correspondence formula. arXiv

preprint arXiv:1608.02306, 2016.

[PP13] Rahul Pandharipande and Aaron Pixton. Descendent theory for stable pairs

on toric 3-folds. J. Math. Soc. Japan, 65(4):1337–1372, 2013.

[Rei10] Markus Reineke. Poisson automorphisms and quiver moduli. J. Inst. Math.

Jussieu, 9(3):653–667, 2010.

[Rei11] Markus Reineke. Cohomology of quiver moduli, functional equations, and

integrality of Donaldson-Thomas type invariants. Compos. Math., 147(3):943–

964, 2011.

[RSW12] Markus Reineke, Jacopo Stoppa, and Thorsten Weist. MPS degeneration for-

mula for quiver moduli and refined GW/Kronecker correspondence. Geom.

Topol., 16(4):2097–2134, 2012.

[RW13] Markus Reineke and Thorsten Weist. Refined GW/Kronecker correspondence.

Math. Ann., 355(1):17–56, 2013.

212



[Soi09] Yan Soibelman. On non-commutative analytic spaces over non-Archimedean

fields. In Homological mirror symmetry, volume 757 of Lecture Notes in Phys.,

pages 221–247. Springer, Berlin, 2009.

[Sym03] Margaret Symington. Four dimensions from two in symplectic topology. In

Topology and geometry of manifolds (Athens, GA, 2001), volume 71 of Proc.

Sympos. Pure Math., pages 153–208. Amer. Math. Soc., Providence, RI, 2003.

[SYZ96] Andrew Strominger, Shing-Tung Yau, and Eric Zaslow. Mirror symmetry is

T -duality. Nuclear Phys. B, 479(1-2):243–259, 1996.

[Tod12] Yukinobu Toda. Stability conditions and curve counting invariants on Calabi-

Yau 3-folds. Kyoto J. Math., 52(1):1–50, 2012.

[vGGR17] Michel van Garrel, Tom Graber, and Helge Ruddat. Local Gromov-Witten

Invariants are Log Invariants. arXiv preprint arXiv:1712.05210, 2017.

[Wel05] Jean-Yves Welschinger. Invariants of real symplectic 4-manifolds and lower

bounds in real enumerative geometry. Invent. Math., 162(1):195–234, 2005.

[Wit95] Edward Witten. Chern-Simons gauge theory as a string theory. In The Floer

memorial volume, volume 133 of Progr. Math., pages 637–678. Birkhäuser,
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