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Resumo

O Modelo Padrão é notavelmente bem sucedido na descrição das interações de partı́culas elementares.

No entanto, a observação experimental de oscilações de neutrinos impõe a necessidade de estender o

modelo de alguma forma, para acomodar massas e mistura de neutrinos.

Nesta tese, consideramos uma extensão em particular, restrita por uma simetria A4, com um neutrino

de direita num singleto de A4 e três dubletos de Higgs num tripleto de A4. As massas dos neutrinos

surgem devido a um mecanismo de seesaw, e o sector de neutrinos resultante é estudado a baixas

energias, através de um processo numérico que gera pontos aleatoriamente no espaço de parâmetros

do potencial escalar de Higgs, de modo a aplicar as equações do grupo de renormalização. A análise

é repetida com a inclusão de um termo no potencial de Higgs que quebra A4 suavemente.

Verificamos que os valores experimentais para as diferenças de massas quadradas e ângulos de

mistura dos neutrinos só são reproduzidos no caso de quebra suave de A4.

Keywords: Modelo Padrão, Massas e mistura de neutrinos, Simetria A4, Mecanismo de see-

saw
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Abstract

The Standard Model is remarkably successful at describing the interactions of elementary particles.

However, the experimental observation of neutrino oscillation imposes the necessity of extending the

model in some way to accommodate for neutrino masses and mixing.

In this thesis, we consider a particular extension, constrained by an A4 symmetry, with one right-

handed neutrino in an A4 singlet and three Higgs doublets in an A4 triplet. Neutrino masses arise due

to a seesaw mechanism, and the resulting neutrino sector is studied at low energy, through a numerical

process which generates points randomly in the parameter space of the Higgs scalar potential in order

to apply renormalization group equations. The analysis is repeated with the inclusion of a term in the

Higgs potential which breaks A4 softly.

We find that experimental measurements of neutrino mass-squared differences and mixing angles

are only reproduced in the case of soft breaking of A4.

Keywords: Standard Model, Neutrino masses and mixing, A4 symmetry, Seesaw mechanism
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Chapter 1

Introduction

Particle physics is remarkably well described by the Standard Model (SM), which relates elementary

matter particles, both quarks and leptons, with three of the four fundamental forces: the strong, the weak

and the electromagnetic forces. The SM is a gauge quantum field theory, with the first step towards its

construction being given by Glashow [1], who discovered, in 1961, a way to combine the electromagnetic

and weak interactions into a single electroweak model ruled by an SU(2)×U(1) symmetry. Quarks and

their interactions with the strong force were described by an SU(3) symmetry in what is called the

Eightfold Way, formulated in 1964 [2, 3] and later absorbed as a component of the SM, so that its

formulation came to be based on an SU(3)×SU(2)×U(1) symmetry. In 1967, the SM was defined in

its current form [4, 5] with the incorporation of the Higgs mechanism [6, 7, 8], which introduces a new

field, the Higgs field, that gives rise to the masses of all elementary particles through the mechanism of

spontaneous symmetry breaking (SSB).

Several experimental observations were made, which were overwhelmingly in agreement with the

predictions of the SM. Some examples are the discovery of neutral weak currents, caused by Z boson

exchange, in 1973 [9, 10, 11], the discovery of the W± [12, 13] and Z [14, 15] bosons themselves

in 1983, and the recent discovery of the Higgs boson, in 2012 [16, 17]. These and dozens of other

experimental observations contribute to the acknowledgment of the SM as a theory that is incredibly

successful in describing the interactions of elementary particles. However, there are some areas of

elementary particle physics which the SM cannot fully describe. One of these pertains to neutrinos.

1.1 A brief history of neutrinos

Neutrinos are very light electrically neutral leptons that exist in three generations, associated with the

three generations of charged leptons: electron, muon and tau neutrinos. The existence of neutrinos was

first postulated by Pauli in 1930, in order to explain the phenomenon of beta decay, in which a nucleus

N0 emits a proton p+, with the observable emission of an electron e−. If the interaction were indeed

given by

N0 → p+ + e− , (1.1)
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then it would be a two-body decay and the resulting particles would have a fixed energy. Instead,

the energy spectrum for the electron was found to be continuous [18]. Pauli’s proposed solution to this

problem was that a third undetected particle was being produced in the decay: a light, electrically neutral

particle which he named neutron. With the discovery of the neutron as we know it, which is a neutral

particle n0 of similar mass to the proton, this nomenclature was abandoned. It was Fermi who took

up the problem, naming the light particle neutrino and suggesting, in 1934 [19], that beta decay was a

three-body decay of the form

n0 → p+ + e− + νe , (1.2)

where νe is the electron anti-neutrino. Due to the form of the electron energy spectrums, it was deter-

mined that the neutrino should either be massless or have a very small mass. It is established in the SM

that neutrinos are massless.

Because neutrinos are electrically neutral leptons, they don’t interact through the electromagnetic or

strong forces, making direct detection difficult. It was only in 1956 that the existence of neutrinos was

confirmed, in the Cowan-Reines experiment [20]. Anti-neutrinos produced by beta decay reacted with

protons through

νe + p+ → n0 + e+ , (1.3)

and the resulting positron e+ quickly annihilated itself with an electron, producing detectable radiation,

while the neutron was captured by an an appropriate nucleus, also producing radiation. The coincidence

of both emissions was the unique signature of the electron anti-neutrino interaction. The two remaining

types of neutrino were detected later, the muon neutrino in 1962 [21] and the tau neutrino in 2000 [22].

In the late 1960s, the Homestake experiment was established to detect neutrinos emitted by nuclear

fusion in the Sun, which interacted with a large deposit of perchloroethylene through

νe +37 Cl→37 Ar + e− . (1.4)

The amount of Argon collected in the deposit would correspond to the amount of iteractions that had

ocurred, so that it would be possible to determine the amount of neutrinos that had interacted. The

results of the experiment were held in disbelief, as it was found that only one third of the predicted

interactions were taking place [23], in what was called the solar neutrino problem. It was widely admitted

that a mistake had been made, either in the theoretical prediction or in the experimental observations,

but both were scrutinized closely with no errors found. Later experiments for the detection of neutrinos

corroborated the results of the Homestake experiment.

Many ideas were suggested to explain the difference between theory and experiment, including the

hypothesis of neutrino oscillation. This phenomenon was first predicted by Pontecorvo in 1957 [24]. He

postulated that if neutrinos had a very small but nonzero mass, then it was possible that their mass

states, in which they had definite mass, did not correspond to their flavor states, in which they interacted

through the weak force, but rather to a quantum superposition of those states. Then neutrinos, which

were produced in definite flavor states, would propagate through space as a superposition of mass
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states, with each of the mass states acquiring a different quantum phase, which in turn would cause

the neutrinos to become a superposition of flavor states as well. When neutrinos reached detectors and

interacted, there was a possibility that each of the flavor states in the superposition would interact. In

this way, electron neutrinos produced in the Sun could travel to the Earth and there interact as muon

or tau neutrinos, due to neutrino oscillation. In the end, neutrino oscillation was confirmed by the SNO

experiment, which used heavy water as a neutrino detector, making it capable of detecting two reactions,

one which involved only electron neutrinos, and one which was sensitive to all three neutrino flavors. The

experimental results were that the flux of neutrinos from the Sun was in agreement with the theory, but

only one third of those neutrinos were interacting as electron neutrinos [25].

The confirmation of neutrino oscillation did solve the solar neutrino problem, but in doing so required

the existence of nonzero neutrino masses, which contradict the formulation of the SM. Thus, we find

that neutrino phenomenology is not fully described by the SM and it is necessary to alter it in a way that

accommodates for neutrino masses and oscillation. This is a rich topic of study in current times, with

many different extensions of the SM being suggested. This thesis will focus on one such model.

1.2 Objectives and outline

As stated above, the purpose of this thesis is to study an extension of the SM in which neutrino masses

arise. We specify the fields and constraints being added to the SM and study the resulting terms in the

Lagrangian of the theory. Based on these terms, we obtain expressions for the parameters of the neu-

trino sector related to neutrino mass and neutrino oscillation and compare them with the experimental

results available. Finally, we conclude as to the validity of the proposed model, depending on whether

we can determine conditions for which the model is in agreement with experimental data.

This thesis is organized as follows. In Chapter 2, we present an overview of the SM formulation,

focusing on the electroweak sector. We move on to Chapter 3, where we address the problem of

neutrino mass and some ways in which the SM can be extended to include massive neutrinos. In

Chapter 4, we introduce our model, with extensions in both the fermionic and scalar sectors and a new

imposed symmetry. We study the resulting neutrino masses at a very high energy scale and at the

scale of current experiments and conclude upon the validity of the model. In Chapter 5, we softly break

the imposed symmetry and study the effects on the neutrino masses and remaining parameters of the

neutrino sector, concluding upon the validity of the model in this case. Finally, in Chapter 6 we present

our conclusions and suggest further work to be done on the topic. Additional calculations related to the

minimization of the Higgs potential for our model are presented in Appendix A, at the end of the thesis.
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Chapter 2

The Standard Model of particle

physics

The SM is based on the gauge group SU(3)c×SU(2)L×U(1)Y . Here c stands for color, L for left-

handedness and Y for hypercharge. The matter content of the SM is [26]:

Fermions



Quarks qLα ≡

uLα
dLα

 ∼ (3, 2, 1/6) ,

uRα ∼ (3, 1, 2/3) , dRα ∼ (3, 1,−1/3) ,

Leptons `Lα ≡

νLα
lLα

 ∼ (1, 2,−1/2) ,

lRα ∼ (1, 1,−1) ,

Higgs φ ≡

φ+

φ0

 ∼ (1, 2, 1/2) ,

(2.1)

where the numbers in brackets indicate how the fields transform under the SM gauge group. The first

number describes how the field transforms under SU(3)c (1 for a singlet, 3 for a triplet) and the second

how it transforms under SU(2)L (1 for a singlet, 2 for a doublet). The third number is the hypercharge Y

of the field, given by

Y = Q− T3 , (2.2)

where Q is the electric charge and T3 is the third component of weak isospin. The fields uα and dα

correspond to up- and down-type quarks, and να and lα to neutrinos and charged leptons, respectively.

The index α runs through the three generations of fermions, while the subscripts L and R denote the

chirality of the field, which can be left-handed (LH) or right-handed (RH), respectively. Chirality is defined

by a field transformation law under application of the operator γ5 = iγ0γ1γ2γ3, where γµ are the Dirac
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matrices forming a Clifford Algebra. Namely,

γ5ψR = ψR , γ5ψL = −ψL . (2.3)

Any field can be decomposed into its RH and LH components, ψ = ψR + ψL = PRψ + PLψ, by the

application of the projection operators PR,L:

PR,L =
1± γ5

2
. (2.4)

We focus on the electroweak sector of the SM, corresponding to the group SU(2)L×U(1)Y . The

electroweak Lagrangian density (identified as the Lagrangian in the following) is

LSM =(Dµφ)†(Dµφ)− V (φ)− 1

4
W a
µνW

aµν − 1

4
BµνB

µν

+ i`Lα /D`Lα + iqLα /DqLα + ilRα /DlRα + iuRα /DuRα + idRα /DdRα

− (Yl
αβ`LαφlRβ + H.c.)− (Yu

αβqLαφ̃uRβ + H.c.)− (Yd
αβqLαφdRβ + H.c.) .

(2.5)

In this equation, the Feynman slash notation, /p = γµpµ, is used, as well as the definitions ψ ≡ ψ†γ0 and

φ̃ ≡ iτ2φ
∗. Yl, Yu and Yd are general 3× 3 complex Yukawa matrices and H.c. denotes the Hermitian

conjugate. Local gauge invariance requires replacing the ordinary derivative ∂µ by a covariant derivative

Dµ given by

Dµ ≡ ∂µ − igW a
µ

τa
2
− ig′BµY . (2.6)

Y stands for the generator of U(1)Y and τa (a = 1, 2, 3) are the Pauli matrices (generators of SU(2)L).

The vector fields Bµ and W a
µ (a = 1, 2, 3) are introduced to ensure local U(1)Y and SU(2)L gauge

invariance, respectively. The number of vector fields required to ensure local gauge invariance under

the action of a group is equal to the number of generators of that group. Thus, there are three Wµ fields

and one Bµ field. The corresponding invariant kinetic terms are constructed using the field strengths

Bµν ≡ ∂µBν − ∂νBµ , W a
µν ≡ ∂µW a

ν − ∂νW a
µ − gεabcW b

µW
c
ν . (2.7)

As for the potential associated to the scalar field φ, one has the most general V (φ), invariant under the

SU(2)L×U(1)Y gauge group:

V (φ) = µ2φ†φ+ λ(φ†φ)2 , (2.8)

where µ has dimensions of mass and λ is a dimensionless parameter. One can notice that there are no

mass terms in the Lagrangian of (2.5), as no such term would be invariant under the gauge group. This is

obvious for gauge fields. For fermions, a mass term would be of the form −mψψ = −m(ψLψR +ψRψL),

which would imply combining an SU(2)L doublet with an SU(2)L singlet, thus leading to a term that is not

invariant under SU(2)L. Focusing on the hypercharge of such a term, we have for the RH field Y = Q

and for the LH field Y = Q − T3. Thus, we obtain a hypercharge of T3 for ψLψR and −T3 for ψRψL,

concluding that the mass term is not invariant under U(1)Y . There seems to be a mass term for the
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scalar Higgs field in the potential of (2.8), but this is contingent on having µ2 > 0, which, as we will see,

is not interesting from the theoretical viewpoint.

This incongruence, given that elementary particles are known to be massive, is lifted by the Higgs

mechanism. After SSB in the electroweak sector, mass terms arise for bosons and fermions. The former

obtain mass from the Higgs kinetic term, the latter from the Yukawa terms, the last line in (2.5).

2.1 The Higgs mechanism

SSB occurs when the Lagrangian of a theory respects a certain symmetry but the vacuum state (or

lowest energy state) does not. In the case of the SM, the vacuum is identified as the configuration of

the field φ which minimizes (2.8). For µ2 > 0, the minimization condition is |φ| = 0, while for µ2 < 0, it

is |φ|2 ≡ |vSM|2 = −µ2/2λ. Thus, in this case, the fields possess a nonzero value in the vacuum. If a

charged field has a nonzero vacuum expectation value (VEV), then the vacuum has an electric charge,

which cannot occur as electric charge is a conserved quantity of the SM. Since only neutral fields can

acquire a nonzero value in the vacuum, we have

〈φ〉 =

〈φ+〉

〈φ0〉

 =

 0

vSM

 . (2.9)

In general, the minimization condition sets vSM = eiθ
√
−µ2

2λ . Choosing a particular VEV corresponds

to fixing a value for θ. We fix θ = 0, thus realizing electroweak symmetry breaking (EWSB). The Higgs

field can be parametrized as oscillations around the vacuum state as

φ(x) = exp

(
i
ξa(x)τa√

2vSM

) 0

vSM + H(x)√
2

 . (2.10)

Here, H(x) and ξ(x) are real fields with zero VEV, so that (2.9) is valid. Before SSB, it is possible to

apply a gauge transformation to φ, leaving the Lagrangian invariant. By choosing the unitary gauge, we

can absorb the exponential and obtain

φ(x) =

 0

vSM + H(x)√
2

 . (2.11)

After EWSB, H(x) will correspond to the physical Higgs boson field. Replacing (2.11) in the La-

grangian of (2.5), the VEV vSM gives rise to new terms. Starting with the scalar and gauge sectors, we

obtain

Dµφ =

 0

∂µH√
2

− ig
2

W 1
µ − iW 2

µ

−W 3
µ

 (vSM +H/
√

2)− ig
′

2

 0

Bµ

 (vSM +H/
√

2) , (2.12)

V (φ) =
λ

4
H4 +

√
2λvSMH

3 − µ2H2 + const. . (2.13)
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Defining the field combinations

W+
µ = (W−µ )† =

1√
2

(W 1
µ − iW 2

µ) ,

Aµ = sin θWW
3
µ + cos θWBµ ,

Zµ = cos θWW
3
µ − sin θWBµ ,

(2.14)

where θW is the so-called weak mixing angle, one obtains the following bilinear terms in the scalar and

gauge fields:

(Dµφ)†(Dµφ)− V (φ) =
1

2
(−2µ2)H2 +

g2v2
SM

2
Wµ−W+

µ +
1

2

g2v2
SM

2 cos2 θW
ZµZµ + . . . . (2.15)

Thus, upon EWSB, the Higgs (H) and gauge (W±, Z) bosons obtain masses

mH =
√
−2µ2 = 2vSM

√
λ , mW =

gvSM√
2

, mZ =
gvSM√

2 cos θW
=

mW

cos θW
. (2.16)

The remaining field Aµ is massless, and is identified as being the photon.

2.2 Lepton electroweak currents

Before analyzing how EWSB grants mass to fermions, we study the lepton-gauge boson interaction

terms in (2.5):

LlGauge =i`Lα

(
−ig /W a τa

2
+ ig′ /B

1

2

)
`Lα + ilRα

(
0 + ig′ /B

)
lRα

=
1

2
`Lα

(gsW − g′cW ) /A+ (gcW + g′sW )/Z
√

2g /W
+

√
2g /W

− −(gsW + g′cW ) /A− (gcW − g′sW )/Z

 `Lα

− g′lRα(cW /A− sW /Z)lRα .

(2.17)

We have used the fields of (2.14), together with the simplified notation sW ≡ sin θW and cW ≡ cos θW .

The diagonal interaction terms, combining particles with the same electric charge, correspond to the

neutral-current (NC) Lagrangian LNC, while the off-diagonal ones describe charged currents (CC) LCC.

Namely,

L`NC =
1

2
νLα

[
(gsW − g′cW ) /A+ (gcW + g′sW )/Z

]
νLα (2.18)

− 1

2
lLα

[
(gsW + g′cW ) /A+ (gcW − g′sW )/Z

]
lLα − g′lRα

(
cW /A− sW /Z

)
lRα ,

L`CC =
g√
2

(
νLα /W

+
lLα + lLα /W

−
νLα

)
. (2.19)
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By requiring that neutrinos do not couple with the photon, the condition (gsW − g′cW ) = 0 is obtained,

yielding tan θW = g′/g. Therefore,

L`Z =
g

cW

(
1

2
νLαγ

µνLα −
1

2
(c2W − s2

W )lLαγ
µlLα + s2

W lRαγ
µlRα

)
Zµ . (2.20)

L`A =− 1

2
2g′cW lLα /AlLα − g′cW lRα /AlRα (2.21)

=− g′cW (lLα /AlLα + lRα /AlRα) = −g′cW lγµlAµ ,

The Lagrangians LNC and LCC describe the interactions between leptons and the physical gauge bosons.

2.3 Fermion masses

After EWSB, the Yukawa terms in the Lagrangian read

− LYuk. =

(
vSM +

H√
2

)(
Yl
αβlLαlRβ + Yu

αβuLαuRβ + Yd
αβdLαdRβ + H.c.

)
. (2.22)

Considering only the bilinear terms in the fermion fields, and defining the mass matrices for the ψ fields

Mψ = vSMY
ψ, we obtain

− LYuk. = (Ml
αβlLαlRβ + Mu

αβuLαuRβ + Md
αβdLαdRβ + H.c.) + . . . , (2.23)

where the missing terms describe fermion-Higgs interactions. In general, the fermion mass terms formed

in this way are not diagonal, meaning that they mix different generations. In order to bring these fields to

the physical basis, where the mass matrices are diagonal, we must perform a “rotation” in flavor space.

The bi-diagonalization of the matrices M is performed by unitary matrices V l,u,dL,R :

V l
†

L MlV lR = diag(me,mµ,mτ ) ≡ Dl ,

V u
†

L MuV uR = diag(mu,mc,mt) ≡ Du ,

V d
†

L MdV dR = diag(md,ms,mb) ≡ Dd .

(2.24)

From the relations above, we conclude that we can change to a basis where the fermion fields are mass

eigenstates by performing the rotations

lL → V lLlL , lR → V lRlR ,

uL → V uL uL , uR → V uRuR ,

dL → V dLdL , dR → V dRdR .

(2.25)

These transformations operate differently on the two components of the SU(2)L doublet qLα. Consider-

ing the quark-gauge interaction terms, which are analogous to those of (2.17), we see that the NC term

9



is unaffected by this rotation, while the CC term becomes

LqCC =
g√
2
uLV

u†
L γµV dLdLW

+
µ + H.c. . (2.26)

This defines the quark mixing matrix, or Cabibbo-Kobayashi-Maskawa (CKM) matrix [27, 28], VCKM ≡

V u†L V dL . An interpretation of the presence of the quark mixing matrix in the CC interaction is that massive

up-type quarks do not interact with the massive down-type quarks of their generation individually, but

rather with combinations of down-type quarks defined by the rotation VCKMdL.

As VCKM is a unitary matrix of dimension n × n, where n is the number of generations, it can be

described by n2 parameters, of which n(n − 1)/2 are moduli that correspond to mixing angles. The

remaining parameters are n(n + 1)/2 complex phases. Not all of these phases are physical since the

Lagrangian, aside from the CC terms, is invariant under the transformations

uL,Rα → eiϕ
u
αuL,Rα , dL,Rα → eiϕ

d
αdL,Rα. (2.27)

Thus, by applying such rephasings to quarks, we expect to remove up to 2n phases from the mixing

matrix. However, these transformations would correspond to a global rotation of all quarks followed by

a rephasing with 2n − 1 distinct phases. Therefore, only 2n − 1 phases in VCKM are unphysical. For

the case of n = 3, there are three mixing angles θ12, θ13, θ23, and one phase δ. The mixing matrix is

commonly parametrized [29] as

VCKM =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 , (2.28)

where sij ≡ sin θij and cij ≡ cos θij .

In the case of leptons, due to the absence of RH neutrino fields in the SM, there is no term in LSM
leading to a Dirac neutrino mass term upon EWSB. Thus, neutrinos are massless in the SM. This

means that performing a rotation of the neutrino fields such as the ones in (2.25) will not affect the

diagonalization of any mass matrix. Then we can define the transformation

νL → V lLνL , (2.29)

which ensures that both the NC and the CC terms remain unchanged by the diagonalization of the

charged-lepton mass matrix. Consequently, no lepton mixing matrix arises.
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Chapter 3

Neutrino masses and mixing

As shown in the previous chapter, neutrinos are massless in the SM due to the absence of RH neutrino

fields. This is motivated by the experimental observation that neutrinos produced in weak interactions

are always LH [30]. However, experimental results of neutrino oscillation have revealed that neutrinos

have mass, with three distinct mass-squared differences, indicating that at least two massive neutrinos

exist [31]. Thus, extensions of the SM must be considered in order to account for neutrino masses.

3.1 Effective neutrino masses and lepton mixing

Neutrino mass terms can be accounted for in the SM by adding sterile RH neutrinos νR, which are

SU(2)L singlets with null hypercharge, meaning that they do not interact with the gauge fields. Upon

this addition, Yukawa terms like those of (2.5) can be constructed, leading to neutrino mass matrices

of the form Mν = vSMY
ν . Although neutrino masses have not been determined experimentally, an

upper limit of 2 eV has been determined from tritium decay experiments [32]. This is several orders of

magnitude below the mass of the lightest charged fermion, the electron. Thus, the Yukawa terms for

neutrinos would have to be much smaller than those of the remaining leptons in order to generate these

small neutrino masses. There is a mass difference of a few orders of magnitude between the lightest

and heaviest of charged fermions, but the difference between the electron and neutrino masses is even

larger. This seems to suggest a distinct mechanism for neutrino mass generation, one which could

account for such a deviation from the pattern followed by the charged fermions. One way to justify such

a distinct mass for neutrinos would be to introduce a neutrino Majorana mass term [33].

Since neutrinos are neutral fermions, they can be defined as their own antiparticles,

ν = νC , (3.1)

where the antiparticle of a fermion ψ is defined as ψC ≡ CψT . C is the charge conjugation matrix, which

obeys Cγµ
T

C−1 = −γµ. The property (3.1) characterizes a Majorana particle. No charged fermion can

be a Majorana particle, as particles and antiparticles have opposite charge. Given γ5 ≡ iγ0γ1γ2γ3, we
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can conclude

γ5(ψL)C = (ψL)C , (3.2)

which determines that the antiparticle of a LH field is a RH field. This leads to a new mass term for the

LH neutrinos of the SM, called the Majorana mass term, defined as

− 1

2
mνLν

C
L + H.c. . (3.3)

There are some complications involving this mass term in the SM. The first is that such a term will break

any U(1) symmetry under which νL is charged, due to the fact that neutrino fields can no longer be

rephased at will. Since ν = νC , the rephasing must be the same for ν and for νC , which is inconsistent

with the definition of νC as an antiparticle. In the SM, the broken symmetry is lepton number L, and the

Majorana mass term generates transitions ∆L = 2.

The second complication is more severe: LH neutrinos are part of an SU(2)L doublet. As such, there

must be additional fields in the mass term in order to form an invariant of the gauge group. Given the

field content of the SM, there is no way to form such an invariant that is also renormalizable. Waiving

the requirement of renormalization, the lowest dimensional term which induces Majorana mass terms

under EWSB is the five-dimensional Weinberg operator [34],

LWein. = cαβ
1

Λ

(
`CLαφ̃

∗
)(

φ̃†`Lβ

)
+ H.c. , (3.4)

where the cαβ are complex coefficients. The presence of a non-renormalizable term such as the Wein-

berg operator in the effective Lagrangian suggests that the SM is not a complete theory, but rather one

valid at low energies. We would expect that the exact theory manifests itself only at energies of the order

of a high-energy scale Λ, considered in (3.4) as an energy cutoff. Upon EWSB, the Weinberg operator

becomes

LWein. =
v2

SM

Λ

(
cαβνCLανLβ + H.c.

)
+ LHνint. , (3.5)

where LHνint. contains neutrino-Higgs interaction terms. Thus, comparison with (3.3) yields the Majorana

mass matrix

Mν
αβ = −

2v2
SM

Λ
cαβ . (3.6)

The presence of a neutrino mass matrix, as in the case of quarks, will lead to mixing between lepton gen-

erations in electroweak currents upon diagonalization. Because the Majorana mass matrix is symmetric,

it can be diagonalized by a single unitary transformation, V νL . As such, in addition to the charged-lepton

transformations of (2.25), we define

νLα → (V νL )αiνLi , (3.7)

where the fields νi have definite masses mi. The CC term of (2.19) becomes, under this transformation,

L`CC =
g√
2

[
νLiγ

µ(V ν
†

L V lL)iαlLαW
+
µ + H.c.

]
. (3.8)
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Parameter
Best fit ±1σ (3σ range)

Normal Inverted
∆m2

21

10−5eV2 7.50+0.19
−0.17 (7.03→ 8.09)

∆m2
3`

10−3eV2 +2.524+0.039
−0.040 (+2.407→ +2.643) −2.514+0.038

−0.041 (−2.635→ −2.399)

sin2 θ12 0.306+0.012
−0.012 (0.271→ 0.345)

sin2 θ23 0.441+0.027
−0.021 (0.385→ 0.635) 0.587+0.020

−0.024 (0.393→ 0.640)

sin2 θ13
100 2.166+0.075

−0.075 (1.934→ 2.392) 2.179+0.076
−0.076 (1.953→ 2.408)

δ/◦ 261+51
−59 (0→ 360) 277+40

−46 (145→ 391)

Table 3.1: Best-fit values and 3σ allowed ranges of the three-neutrino oscillation parameters in the NO
and IO cases, obtained from a global fit of current neutrino oscillation data [31]. Note that ∆m2

3` ≡
∆m2

31 > 0 (∆m2
3` ≡ ∆m2

32 < 0) for NO (IO).

The lepton mixing matrix, known as the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [35, 36], is

thus defined by

UPMNS ≡ V l
†

L V
ν
L . (3.9)

As aforementioned, the neutrino fields cannot be rephased due to their Majorana nature. This means

that, whereas we could remove up to 2n − 1 phases from the CKM matrix, in this case only n phases

can be removed. For n = 3 generations, the PMNS matrix is then parametrized by three mixing angles

and three phases. Namely [32],

UPMNS =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13



e−iα1/2 0 0

0 e−iα2/2 0

0 0 1

 , (3.10)

where sij ≡ sin θij and cij ≡ cos θij . θij are the lepton mixing angles, δ is a Dirac-type phase and α1,2

are Majorana phases, arising due to the Majorana character of neutrinos. We conclude that the low-

energy neutrino sector of the (effective) SM Lagrangian contains nine parameters: three mixing angles,

three phases and three neutrino masses.

Neutrinos are produced and detected in definite flavor states, but they evolve in time according to

the values of their masses. Since neutrino flavor states are superpositions of mass eigenstates with

distinct masses, neutrinos may oscillate between different flavors. A determination of the oscillation

probability, such as that in [33], concludes that it is not dependent on the neutrino masses mi, but rather

on the mass-squared differences ∆m2
ij = m2

i −m2
j . As the sign of ∆m2

31 is indeterminate (while ∆m2
21 is

positive), there are two possible orderings of neutrino masses, normal ordering (NO) or inverted ordering

(IO), corresponding to

NO: m1 < m2 < m3 , IO: m3 < m1 < m2 . (3.11)

Current global fits to all presently available oscillation data by Esteban et al. [31] are summarized in

Table 3.1. Other analyses are those of Capozzi et al. [37], and Forero et al. [38].
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Figure 3.1: Tree-level interactions mediated by new heavy particles, in type I and III seesaw mechanisms
(left) and type II seesaw mechanisms (center), which give rise to the Weinberg operator of (3.4) at low
energies (right). Notice that K ∝ c/Λ [see (3.4)].

3.2 The seesaw mechanism

If the SM is an effective theory, then the complete theory which describes particle physics must have

additional degrees of freedom, described by fields that are decoupled at low energy. As such, these

fields must have large masses, comparable to the scale Λ in (3.4). Extensions of the SM using the

seesaw mechanism consider a tree-level interaction between lepton and Higgs fields mediated by new

heavy particles. At low energy, this interaction reduces to a four-point vertex of the form ``φφ, such

as that of (3.4). Upon EWSB, this term will generate neutrino Majorana masses. For the seesaw

mechanism to be possible, the extra fields ψ can be added in two ways. Type I [39, 40, 41, 42, 43] and III

[44] seesaw mechanisms consider fields with interaction terms ψφ` (left diagram in Figure 3.1), while the

type II [45, 46, 47, 48, 48] seesaw mechanism considers fields with ψ`` and ψφφ terms (center diagram

in Figure 3.1).

Focusing on the ψφ` interaction terms, the condition of gauge invariance, given the representation

assignments of φ and `L, imposes that ψ must have null hypercharge and must transform as either an

SU(2)L singlet (type I seesaw) or triplet (type III seesaw). We reach the latter conclusion by obtaining

the Kronecker product of SU(2) representations 2 ⊗ 2 = 1 ⊕ 3 and observing that 3 ⊗ 3 contains the

trivial representation. The fields ψ must be fermionic due to angular momentum conservation.

We consider the type I seesaw mechanism in particular. In this case, the fields ψ are singlets of zero

hypercharge. Thus, nR sterile RH neutrinos νRi are added to the SM. Using these fields, we can form

a neutrino Yukawa term which gives rise to Dirac masses upon EWSB. We can also define a Majorana

mass term for the RH neutrinos. The Lagrangian for this extended theory will therefore be

LI = LSM +
i

2

[
νRγ

µ∂µνR − νRγµ
←−
∂µνR

]
−
[
Yν
αi`

0
Lαφ̃νRi +

1

2
(MR)ijνCRiνRj + H.c.

]
, (3.12)

where the first term in brackets is the kinetic term for right-handed neutrinos, `0L denotes the left-handed

lepton fields in the weak basis, as opposed to the mass basis, and MR is the Majorana mass matrix.

Because the Majorana mass term is a singlet of SU(2)L with zero hypercharge, and thus invariant under

the action of the gauge symmetries of the theory, the value of MR is not protected by these gauge
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symmetries and is free to be arbitrarily large. After EWSB, the neutrino terms in (3.12) are

LνI =
g

2cW
ν0
Lγ

µZµν
0
L +

g√
2

[
l0Lαγ

µW−µ ν
0
Lα + H.c.

]
+

[
i

2
ν0
Lγ

µ∂µν
0
L +

i

2
νRγ

µ∂µνR − (mD)αiν0
LανRi −

1

2
(MR)ijνCRiνRj + H.c.

]
=

g

2cW
n0
Lγ

µZµd
ν
NCn

0
L +

[
g√
2
l0Lγ

µW−µ dCCn
0
L +

i

2
n0
Lγ

µ∂µn
0
L −

1

2
n0
LM(n0

L)C + H.c.
]
.

(3.13)

In the last equation we can find, in order of appearance, the NC and CC terms, the kinetic terms and the

mass terms. mD is the 3 × nR Dirac mass matrix and MR is the nR × nR Majorana mass matrix. We

use the definitions

n0
L ≡

ν0
L

νCR

 , M =

 0 mD

mT
D MR

 ,

dνNC =

13×3 0

0 0

 , dCC =
(
13×3 0

)
.

(3.14)

Since the mass matrixM is symmetric, it can be diagonalized through a unitary transformation

U†MU∗ = dnL , dnL =

dν 0

0 dM

 , (3.15)

with dν ≡ diag(m1,m2,m3) and dM ≡ diag(M1, . . . ,MnR), which will correspond to the masses of the

three light components and the nR heavy components, respectively, in the limit MR � mD. The mass

eigenstates are defined as

n0
L = UnL ≡

V S

R T

νlL
νhL

 , (3.16)

where the matrix U has been written in block form. Using this form of U and (3.15), we obtain the

system of equations

U†M = dnLU
T ⇔



R†mT
D = dνV

T

T†mT
D = dMST

S†mD + T†MR = dMTT

V†mD + R†MR = dνR
T

, (3.17)

which, for MR �mD, allows us to determine

R ' −(M∗R)−1m†DV +O
(
v3

SM

M3

)
⇒ dνV

T ' −V†mDM
−1
R mT

D . (3.18)

From the unitarity of U, we obtain V†V = 1−R†R. Therefore, we arrive at

dν ' −V†mDM
−1
R mT

DV
∗ +O

(
v4

SM

M3

)
. (3.19)
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The Lagrangian with only the light fields is given by

Llight
ν =

g

2cW
νlLγ

µZµV
†VνlL +

g√
2

[
l0Lγ

µW−µ VνlL + H.c.
]

+

[
i

2
νlLγ

µ∂µνlL −
1

2
νlL
(
−V†mDM

−1
R mT

DV
∗) νClL + H.c.

]
.

(3.20)

Up to O
(
v2

SM/M
2
)
, the matrix V is unitary and thus we can rotate the light mass eigenstates νlL by V−1

without adding flavor-changing neutral currents or off-diagonal elements in the kinetic term. We obtain,

in this basis, the light-neutrino mass matrix

mν ' −mDM
−1
R mT

D . (3.21)

The same procedure can be followed in the heavy neutrino sector, with Lagrangian

Lheavy
ν =

g

2cW
νhLS

†SγµZµνhL +
g√
2

[
l0Lγ

µW−µ SνhL + H.c.
]

+

[
i

2
νhLγ

µ∂µνhL −
1

2
νhLdMν

C
hL + H.c.

]
.

(3.22)

Using (3.17), we determine

dM ' T†
[
MR + (M∗R)−1m†DmD + mT

Dm
∗
D(M∗R)−1

]
T∗ , (3.23)

and, given S†S = 1−T†T, we parametrize the perturbations to the unitarity of T as

T '
(
1− 1

2
(M∗R)−1m†DmDM

−1
R

)
Kh +O

(
v4

SM

M4

)
, (3.24)

where Kh is a unitary matrix. The transformation ν0
hL = KhνhL ensures that the kinetic term has no

off-diagonal elements. In the end, we obtain the heavy-neutrino effective mass matrix

Meff 'MR +
1

2

[
(M∗R)−1m†DmD + mT

Dm
∗
D(M∗R)−1

]
. (3.25)

With three generations of RH neutrinos (nR = 3), the mass matrix mν has, in general, three distinct

nonzero eigenvalues. We can count the parameters of the neutrino sector in this SM extension, going

to the basis where MR is diagonal. Since mD is a 3 × 3 complex matrix, it has eighteen parameters,

of which three can be removed by rephasing. There are also three heavy Majorana masses, for a

total of eighteen parameters. Given that, at low energies, the neutrino sector is described by only nine

parameters, we conclude that the full theory cannot be reconstructed using only low-energy neutrino

data. In the case nR = 2, it is also possible to obtain three distinct mass-squared differences, although

one of the neutrinos is massless. The number of parameters is reduced to eleven, still larger than the

seven parameters at low energies (two neutrino masses, three mixing angles and two complex phases).

With a single RH neutrino, the seesaw mechanism is no longer viable, as the effective neutrino mass

matrix has two zero eigenvalues.
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Figure 3.2: Tree-level interaction mediated by new heavy particles, in the type I seesaw mechanism, for
a model with multiple Higgs doublets φi with i = 1, 2, . . . , nH .

3.3 Type I seesaw with more than one Higgs doublet

So far, the discussion of SM extensions has been focused on expanding the fermion sector of the SM.

However, extensions of the scalar sector, in which additional Higgs doublets are considered, are also

viable. In a theory with nH Higgs doublets, the scalar potential takes the general form [49]

V (φ) = quadratic terms + λijkl

(
φ†iφj

)(
φ†kφl

)
, (3.26)

where the λijkl are dimensionless couplings which satisfy λijkl = λklij = λ∗jilk. The indices i, j, k, l run

over the nH doublets. The lepton Yukawa Lagrangian becomes

− L`Yuk. = (Y li )αβ`LαφilRβ + H.c. , (3.27)

giving mass to the charged leptons upon SSB. The five-dimensional Weinberg operator is generalized

to n2
H operators Oij , which take the form

Oij =
(
`CLαaκ

ij
αβ`Lβc

)
(εabφib)(ε

cdφjd) , (3.28)

where the indices a, b, c, d are SU(2)L indices that distinguish between the two components of SU(2)L

doublets, and ε is the antisymmetric tensor with ε12 = 1. The κij are flavor coupling matrices with

dimension−1 which satisfy κij = κji
T

. We consider the implementation of the type I seesaw mechanism

with nH Higgs doublets and determine the form of κij in this case.

With nH Higgs doublets φi, the interactions represented in the left diagram of Figure 3.1 take the form

presented in Figure 3.2. The changes with respect to the nH = 1 case are reflected in the Lagrangian

of the extended theory, which varies from (3.12) in the Yukawa term. Namely,

LI = LSM +
i

2

[
νRγ

µ∂µνR − νRγµ
←−
∂µνR

]
−
[
(Yν

αi)a `
0
Lαφ̃aνRi +

1

2
(MR)ijνCRiνRj + H.c.

]
, (3.29)

where a = 1, 2, . . . , nH . Recalling the calculations of the previous section, we obtain the light-neutrino
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mass matrix mν given by (3.21), applying the redefinition

mD = vSMY
ν → vaY

ν
a , (3.30)

where 〈φ0
a〉 = va is the VEV of the neutral component of the Higgs doublet φa. Thus, the effective

neutrino mass matrix in the case of nH Higgs doublets is

mν ' −
nH∑
a,b=1

vavbY
ν
aM

−1
R YνT

b . (3.31)

Comparing this expression with the generalized mass operators Oij of (3.28), we determine

κab = Yν
aM

−1
R YνT

b . (3.32)

To conclude, in the case of nH > 1 there is more than one effective neutrino mass operator contributing

to mν . In the next chapter we will focus on the phenomenology of a specific model with nH = 3, nR = 1

and an imposed A4 discrete symmetry.
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Chapter 4

Single right-handed neutrino A4 model

In the previous chapter, we discussed extensions of the SM which can account for neutrino mass gener-

ation. When implemented, these extensions will, in general, lead to a significant increase in the number

of free parameters. In order to reduce this excessive freedom and obtain a more predictive model, the

typical prescription is to introduce new symmetries which the theory must obey, enforcing relations be-

tween parameters. Recently, discrete flavor symmetries have been the focus of interest in the literature

[50]. Our model considers one such symmetry, given by the A4 group, which is a popular choice within

discrete symmetries.

The popularity of the A4 group is not arbitrary. As will be shown in Section 4.1, all fields under A4

must be assigned to either a singlet or a triplet. Given that there are three generations of fermions in the

SM, this is the ideal set of representations for an extension of the SM that adds particles in sets of three.

The most common option is to add three RH neutrinos in a triplet, thus enlarging the fermionic sector and

obtaining the results mentioned in Section 3.2, namely three nonzero neutrino masses. In our model,

we consider instead the minimal fermionic extension, consisting of a single RH neutrino, and enlarge

the scalar sector in order to have three Higgs doublets. It has been shown in the previous chapter that

adding a single RH neutrino to the SM cannot lead to three distinct neutrino mass-squared differences

through the type I seesaw mechanism. However, when simultaneously expanding the scalar sector, the

conclusions regarding the single RH neutrino scenario may not apply. Thus, in this chapter, we explore

an A4 model with one RH neutrino assigned to an A4 singlet and three Higgs doublets transforming as

a triplet of the same group.

4.1 The A4 group

A4 is a subgroup of the group of permutations of four elements S4 which contains the even permutations.

It has twelve elements partitioned into four conjugacy classes:

C1 = {e} , C3 = {(123), (142), (134), (243)} ,

C2 = {(12)(34), (13)(24), (14)(23)} , C4 = {(132), (124), (143), (234)} .
(4.1)

19



χ1 χ2 χ3 χ4

1 1 1 1 1

1′ 1 1 ω ω2

1′′ 1 1 ω2 ω

3 3 −1 0 0

Table 4.1: Character table for the group A4. We take ω = exp(i2π/3).

The number of irreducible representations (irreps) of the group is equal to the number of conjugacy

classes [51]. Of these, the 1D irreps will be those of the group A4/[A4,A4]. Since the commutator

[A4,A4] is isomorphic to the Klein group K = Z2 × Z2, of order 4, we have #A4/[A4,A4] = 12/4 = 3

and therefore there are three 1D irreps of A4. We determine that the final irrep has dimension 3 by the

relation ∑
µ

n2
µ = nG , (4.2)

where the sum is over all inequivalent irreps, nµ is the dimension of the irrep µ and nG is the order of the

group. The character table for the group can be constructed from the known 1D irreps of Z3 (the only

group of order 3) and the relations of orthogonality and orthonormality

∑
µ

ni
nG

(χµi )∗χµj = δij ,
∑
i

ni
nG

(χµi )∗χνi = δµν , (4.3)

where ni is the number of elements in a class and χµi ≡ Tr [Uµ(g)] is the character of an element g ∈ Ci
in the irrep µ. We obtain the character table given in Table 4.1.

Any element in the group can be obtained from the two generators, s ≡ (12)(34) and t ≡ (123). For

example, (134) = ts. Thus, the definition of Uµ(s) and Uµ(t) defines a basis for a representation µ. A

group representation R can be decomposed as a direct sum of irreducible representations of the group,

UR(g) =
⊕
µ

aµU
µ(g) , (4.4)

where aµ is the multiplicity of the irrep µ, which can be determined using

aµ = (χ̃µ)† · χ̃R , χ̃Ri =

√
ni
nG

χRi . (4.5)

We can apply this equation to the Kronecker product of irreps and obtain its direct sum decomposition,

taking into account χµ×νi = χµi × χνi . The results are

1⊗ 1 = 1′ ⊗ 1′′ = 1 ,

1⊗ 1′ = 1′′ ⊗ 1′′ = 1′ ,

1⊗ 1′′ = 1′ ⊗ 1′ = 1′′ ,

1⊗ 3 = 1′ ⊗ 3 = 1′′ ⊗ 3 = 3 ,

3⊗ 3 = 1⊕ 1′ ⊕ 1′′ ⊕ 3⊕ 3 .

(4.6)
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The exact form of the invariants obtained by the tensor product of two A4 triplets will depend on the

choice of basis for the 3D irrep. For the Ma-Rajasekaran basis, the product (a1, a2, a3)⊗ (b1, b2, b3) leads

to the invariants [52]

a1b1 + a2b2 + a3b3 ∼ 1 ,

a1b1 + ω2a2b2 + ωa3b3 ∼ 1′ ,

a1b1 + ωa2b2 + ω2a3b3 ∼ 1′′ ,


a2b3

a3b1

a1b2

 ∼ 31 ,


a3b2

a1b3

a2b1

 ∼ 32 . (4.7)

The 1 components of the tensor product 3⊗ 3⊗ 3, which will be used further ahead, are given by

a1

a2

a3

⊗

b1

b2

b3

⊗

c1

c2

c3



1

= (a2b3c1 + a3b1c2 + a1b2c3)⊕ (a3b2c1 + a1b3c2 + a2b1c3) . (4.8)

4.2 A4 scalar potential

As discussed in Section 3.3, when nH increases, the scalar potential takes a more complex form, with a

larger number of free parameters. In the case of three Higgs doublets placed in a triplet representation

of A4, i.e., Φ = (φ1, φ2, φ3) ∼ 3, the A4-invariant potential is given by [53]

V (Φ) =m2
∑
i

φ†iφi +
1

2
λ1

(∑
i

φ†iφi

)2

+ λ2

(
φ†1φ1 + ω2φ†2φ2 + ωφ†3φ3

)(
φ†1φ1 + ωφ†2φ2 + ω2φ†3φ3

)
+ λ3

[(
φ†2φ3

)(
φ†3φ2

)
+
(
φ†3φ1

)(
φ†1φ3

)
+
(
φ†1φ2

)(
φ†2φ1

)]
+

{
1

2
λ′4

[(
φ†2φ3

)2

+
(
φ†3φ1

)2

+
(
φ†1φ2

)2
]

+ H.c.
}
.

(4.9)

The parameters m, λ1, λ2, λ3 are real. The parameter λ′4 is complex and its phase can be made evident

by the redefinition λ′4 = λ4e
iα, where λ4 and α are real. This potential is determined to have global

minima for four distinct VEV configurations, valid in different regions of the parameter space. These are

[54]

h1 = v(1, 0, 0) , h2 = v(1, 1, 1) ,

h3 = v(±1, η, η∗) , h4 = v(1, eiα4 , 0) ,
(4.10)

where η = exp(iπ/3) and v, α4 ∈ <. The parameter v can be related to vSM, defined in Section 2.1. Take,

for example, the boson masses given in (2.16). From the expressions for these masses in a model with

three Higgs doublets, which must return the known values of mW and mZ , we obtain the condition

|v1|2 + |v2|2 + |v3|2 = v2
SM , (4.11)

which fixes the normalization v. In order to determine the dimensionless couplings λijkl, V (Φ) can be

defined in the form of (3.26). The results will be presented in Section 4.6 (Table 4.2).

The neutrino mass matrix can be determined using (3.31), as the addition of a heavy RH neutrino
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implements a type I seesaw mechanism. In this case, the Majorana mass matrix reduces to the Majorana

mass of the single RH neutrino, MR. The 3 × 1 Dirac mass matrix mD is obtained, after SSB, from a

Yukawa term such as the one in (3.29),

− Y νiα `Lαφ̃iνR + H.c.. SSB−−→mD = viY
νi . (4.12)

The product of fields must be performed according to the representation assignment of each field and

the multiplication rules of A4, given by (4.7), so that we guarantee the invariance of the Yukawa term

under A4.

Before studying the neutrino mass matrix, a related issue must first be tackled. With the represen-

tation assignments of the RH neutrino and of the Higgs doublets fixed by the model, it is necessary to

determine the assignments for the LH lepton doublets `L, so that the field product of (4.12) can be deter-

mined. This can be done by studying the charged-lepton mass matrix, which also yields the assignments

of the RH charged leptons lR [55].

4.3 Charged-lepton masses

The charged-lepton mass matrix can be obtained through SSB from the Yukawa term given in (3.27),

with the condition that the field product must be invariant under A4. We wish to find the representation

assignments for `L and lR which lead to three distinct nonzero eigenvalues of the charged-lepton mass

matrix, corresponding to the well-known values of me, mµ and mτ .

There are four possibilities for assignments, determined by whether the three `L and lR are assigned

to a triplet or to three singlets. The case where both are assigned to singlets is immediately discarded,

as it can be seen from (4.6) that 1,1′,1′′⊗ 3⊗ 1,1′,1′′ = 3 regardless of which singlet representation is

used, and the Higgs doublets are assigned to a triplet of A4. Thus, it is not possible in this case to obtain

a charged-lepton Yukawa term that is invariant under A4. This leaves three possibilities.

4.3.1 `L triplet, lR triplet

In this case, the field product `LΦlR is of the form 3 ⊗ 3 ⊗ 3. The 1 components of this tensor product

are given by (4.8). Thus, the Yukawa term takes the form

−y1(µLφ3eR + τLφ1µR + eLφ2τR)− y2(τLφ2eR + eLφ3µR + µLφ1τR) + H.c.

SSB−−→ −(eL µL τL)


0 y2v3 y1v2

y1v3 0 y2v1

y2v2 y1v1 0



eR

µR

τR

+ H.c. ,
(4.13)

where we consider the general VEV (v1, v2, v3). The charged-lepton masses are the square roots of the

eigenvalues of the matrix MlMl† , with characteristic polynomial
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λ3 − λ2
(
y2

1 + y2
2

) (
|v1|2 + |v2|2 + |v3|2

)
+ λ

[
y2

1y
2
2

(
|v1|4 + |v2|4 + |v3|4

)
+
(
y4

1 + y4
2

) (
|v1v2|2 + |v2v3|2 + |v1v3|2

)]
−
(
y3

1 + y3
2

)2 |v1v2v3|2 .
(4.14)

We replace the general VEVs vi with those given by the configurations hi defined in (4.10). For the

vacuum configurations h1 and h4, one of the eigenvalues is clearly zero. For h2 and h3, we obtain

me
1 = me

2 = v
√
y2

1 + y2
2 − y1y2 , me

3 = v |y1 + y2| . (4.15)

All eigenvalues are nonzero in this case, but two are degenerate. Thus, this possibility must be discarded

since charged leptons are highly nondegenerate in mass, contradicting observation.

4.3.2 `L singlets, lR triplet

This possibility contains several cases, due to the existence of three singlet irreps of A4, to which each

of the `L doublets can be assigned. It can be concluded easily that, due to the form of the invariants of

(4.7), if at least two of the `L doublets are assigned the same singlet representation then the resulting

mass matrix will have linearly dependent lines and thus be singular. Then, we can reduce the cases

to (eL, µL, τL) ∼ (1,1′,1′′) and permutations, which all yield the same eigenvalues. Given that ψ is

assigned the complementary representation of ψ, so that ψψ ∼ 1, this assignment corresponds to

(eL, µL, τL) ∼ (1,1′′,1′), given the tensor products of (4.6). Thus, we obtain the Yukawa term

− yeeL (Φ lR)1 − yµµL (Φ lR)1′ − yττL (Φ lR)1′′ + H.c. , (4.16)

where the bold subscript indicates which field combination is chosen from the decomposition of the field

product in parentheses. Expanding the tensor products, we obtain after SSB

−
(
eL µL τL

)
yev1 yev2 yev3

yµv1 ω2yµv2 ωyµv3

yτv1 ωyτv2 ω2yτv3



eR

µR

τR

+ H.c. . (4.17)

The matrix MlMl† has characteristic polynomial

λ3 − λ2
(
y2
e + y2

µ + y2
τ

) (
|v1|2 + |v2|2 + |v3|2

)
+3λ

(
y2
ey

2
µ + y2

µy
2
τ + y2

ey
2
τ

) (
|v1v2|2 + |v2v3|2 + |v1v3|2

)
− 27y2

ey
2
µy

2
τ |v1v2v3|2 .

(4.18)

One of the eigenvalues is zero for the VEVs h1 and h4 of (4.10). For h2 and h3, the matrix has three

distinct nonzero eigenvalues, giving the charged-lepton masses

me
1 =
√

3yev , m
e
2 =
√

3yµv , m
e
3 =
√

3yτv . (4.19)

Thus, this possibility leads to a valid charged-lepton mass matrix.
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4.3.3 `L triplet, lR singlets

This possibility also contains several cases, this time due to the freedom in assigning the singlets to lR.

As in the previous analysis, only permutations of (eR, µR, τR) ∼ (1,1′,1′′) lead to a matrix with nonzero

determinant for the general VEV (v1, v2, v3). From this assignment, we obtain the Yukawa term

−ye
(
`LΦ

)
1
eR − yµ

(
`LΦ

)
1′′
µR − yτ

(
`LΦ

)
1′
τR + H.c.

SSB−−→ −
(
eL µL τL

)
yev1 yµv1 yτv1

yev2 ωyµv2 ω2yτv2

yev3 ω2yµv3 ωyτv3



eR

µR

τR

+ H.c. .
(4.20)

The characteristic equation for MlMl† is identical to (4.18). Thus, this possibility also leads to a valid

charged-lepton mass matrix.

4.4 Neutrino masses

The previous analysis suggests two valid options for the representation assignments of `L and lR. The

neutrino Yukawa term (4.12) imposes that the product of fields `LΦ̃ contain a singlet 1 term and so `L

cannot be assigned to a singlet representation, as Φ is assigned to a triplet. This eliminates one of the

possible assignments and we consider from this point on `L ∼ 3 and (eR, µR, τR) ∼ (1,1′,1′′).

In order to obtain the neutrino mass matrix given by (3.31), it is first necessary to determine the form

of the Dirac neutrino mass matrix mD under A4. This can be done using the Yukawa term (4.12). Noting

that Φ̃† ∼ Φ ∼ 3, we compute the field product and obtain

−yννR
(

Φ̃†`L

)
1

+ H.c. = −yννR
(

˜
φ†1eL +

˜
φ†2µL +

˜
φ†3τL

)
+ H.c.

SSB−−−→ −yννR (v1νeL + v2νµL + v3ντL) + H.c. ,
(4.21)

for a general VEV (v1, v2, v3). Thus,

mD ≡ viYνi = yν


v1

v2

v3

 , (4.22)

and the neutrino mass matrix is given by

mν = −vivjYνiYνjTM−1
R = − y2

ν

MR


v2

1 v1v2 v1v3

v1v2 v2
2 v2v3

v1v3 v2v3 v2
3

 . (4.23)

It is clear that this matrix is singular. In fact, only one of its eigenvalues is nonzero,

mν
1 = mν

2 = 0 , mν
3 = − y2

ν

MR

(
v2

1 + v2
2 + v2

3

)
. (4.24)
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We conclude that the mass matrix of (4.23) does not reproduce the experimental results presented in

Table 3.1, as it does not lead to three distinct nonzero mass-squared differences.

4.5 Renormalization group equations

We have concluded that, although we have increased the number of Higgs doublets to three, the im-

plementation of the type I seesaw mechanism with one RH neutrino does not lead to a neutrino mass

matrix compatible with the most recent neutrino data. However, it is important to note that the mass ma-

trix in (4.23) is given at the seesaw scale MR, the large energy scale at which the seesaw mechanism

operates. In comparison, experimental measurements of neutrino phenomena are performed at a much

lower energy scale.

The neutrino masses at the seesaw scale, given by the eigenvalues of the mass matrix of (4.23), do

not coincide with the neutrino masses at the energy scale of current experiments. Rather, these masses

are related through the renormalization group equations (RGE), a set of first-order differential equations

which determine the evolution of the couplings of a model with energy scale. In order to determine the

evolution of the neutrino masses, we must study the RGE of the flavor coupling matrices κij introduced

in Section 3.3. Recalling that

mν = −vivjκij ⇒ κij = M−1
R YνiYνjT , (4.25)

we see that neutrino masses will take different values at different energy scales according to the RGE

for κij , given by [49]

16π2 dκ
ij

dt
=− 3g2κij + 4

nH∑
k,l=1

λkiljκ
kl +

nH∑
k=1

[
Tkiκ

kj + Tkjκ
ik
]

+ κijP + PTκij

+ 2

nH∑
k=1

{
κkjY l

†

i Y
l
k −

[
κik + κki

]
Y l
†

j Y
l
k + Y l

T

k Y l
∗

j κik − Y l
T

k Y l
∗

i

[
κkj + κjk

]}
,

(4.26)

where λijkl are the couplings of the scalar potential, related to the parameters λi (i = 1, 2, 3, 4) of (4.9),

t = logµ, µ is the energy scale and

Tij ≡ Tr
(
Y li Y

l†

j

)
, P ≡ 1

2

nH∑
k=1

Y l
†

k Y
l
k . (4.27)

Y li are the charged-lepton Yukawa matrices. In order to solve (4.26), it is necessary to simultaneously

solve the RGE for all couplings occurring in the equation. Thus, we also need the RGE for λijkl, Y li ,

and g, as well as additional couplings which may arise in these equations. For a simpler analysis, we

consider a leading-log approximation to the RGE of (4.26), with the assumption that the terms on the

right-hand side of the equation are constant. Under this approximation, κij evolves according to

κij(µ) = κij(MR) +
dκij

dt

∣∣∣∣
t=logMR

log(µ/MR) , (4.28)
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where

κij(MR) =
y2
ν

MR


δi1δj1 δi1δj2 δi1δj3

δi2δj1 δi2δj2 δi2δj3

δi3δj1 δi3δj2 δi3δj3

 , (4.29)

and δij is the Kronecker delta. The mass matrix at the energy scale of current experiments (which we

take to be mZ) is simply

mν(mZ) = −vivjκij(mZ) , (4.30)

from which we conclude that all effective operators κij contribute, in principle, to neutrino masses and

mixing.

4.5.1 Truncated RGE

Let us begin by considering a truncated form of (4.26), taking only the first two terms on the right-

hand side. These should be the most important, as all remaning terms contain the charged-lepton

Yukawa matrices, of smaller order of magnitude. This means that we are interested in those cases with

yl ∼ ml
v � g, λijkl ∼ 1.

The calculation of the mass matrix must be performed for each of the two VEVs that lead to a valid

charged-lepton mass matrix, i.e., h2 = v(1, 1, 1) and h3 = v(±1, η, η∗). For h2, we obtain the mass matrix

mν = −v
2y2
ν

MR


x y y

y x y

y y x

 , (4.31)

where

x = 1 +
{
−3g2 + 4 [λaaaa + 2 Re (λabab)]

} log(mZ/MR)

16π2
, (4.32)

y = 1 +
[
−3g2 + 4 (λaabb + λabba)

] log(mZ/MR)

16π2
, (4.33)

being the λ parameters given in Table 4.2. The eigenvalues of (4.31) are

mν
1 = mν

2 = −v
2y2
ν

MR
(x− y) , mν

3 = −v
2y2
ν

MR
(x+ 2y) . (4.34)

There are two degenerate eigenvalues, thus we do not obtain three nondegenerate nonzero mass-

squared differences. For the remaining VEV configuration, h3, we obtain the mass matrix

mν = −v
2y2
ν

MR


x′ ±ηy ±η∗y

±ηy ωx′ y

±η∗y y ω∗x′

 , (4.35)

with

x′ = 1 +
{
−3g2 + 4 [λaaaa + 2 Re (ωλabab)]

} log(mZ/MR)

16π2
. (4.36)
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Given that this matrix is complex, we must determine the eigenvalues of mνm
†
ν , which takes the form

mνm
†
ν =

v4y4
ν

M2
R


x′2 + 2y2 ±η∗

(
2x′y + y2

)
±η
(
2x′y + y2

)
±η
(
2x′y + y2

)
x′2 + 2y2 ω

(
2x′y + y2

)
±η∗

(
2x′y + y2

)
ω∗
(
2x′y + y2

)
x′2 + 2y2

 . (4.37)

The eigenvalues are

mν
1 = mν

2 =
v2y2

ν

MR
|x′ − y| , mν

3 =
v2y2

ν

MR
|x′ + 2y| . (4.38)

There are two degenerate eigenvalues in this case as well. Having exhausted the possibilities, we

conclude that it is not possible to obtain three distinct nonzero neutrino mass-squared differences by

applying a leading-log approximation to the truncated form of the RGE (4.26). We verify that, in this

case, the degenerate eigenvalues of the mass matrix are no longer zero. We move on to an application

of the entire RGE, in the hope that this final step will lift the degeneracy and result in three distinct

neutrino masses.

4.5.2 Full RGE

The full RGE includes the remaining terms of (4.26), containing the charged-lepton Yukawa matrices.

These matrices should lead to smaller corrective terms to the larger terms previously considered. As a

result, it is a reasonable approximation to consider ye, yµ → 0 and obtain the correction as a function

of yτ , the larger of the charged-lepton Yukawa constants. Under this condition, we obtain the Yukawa

matrices

Y l1 ≈


0 0 yτ

0 0 0

0 0 0

 , Y l2 ≈


0 0 0

0 0 ω2yτ

0 0 0

 , Y l3 ≈


0 0 0

0 0 0

0 0 ωyτ

 . (4.39)

Using (4.27), we determine

P =
3

2


0 0 0

0 0 0

0 0 y2
τ

 , Tij = y2
τδij . (4.40)

We use the results above to obtain the matrices Aij such that (4.26) can be rewritten as

16π2 dκ
ij

dt
= −3g2κij + 4

nH∑
k,l=1

λkiljκ
kl +

y2
ν

MR
Aij . (4.41)

In this way, we can add the corrective term

− vivj
y2
ν

16π2MR
Aij log(mZ/MR) , (4.42)

to (4.31) and (4.35) to obtain the neutrino mass matrices. In the above equations, the matrices Aij are

given by
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Aij = y2
τ


2δi1δj1 2δi1δj2

7
2δi1δj3 − 2δi3δj1

2δi2δj1 2δi2δj2
7
2δi2δj3 − 2δi3δj2

7
2δi3δj1 − 2δi1δj3

7
2δi3δj2 − 2δi2δj3 δi3δj3

 . (4.43)

In the end, for the VEV h2, we obtain

mν = −v
2y2
ν

MR


x+ 2δc y + 2δc y + 3

2δc

y + 2δc x+ 2δc y + 3
2δc

y + 3
2δc y + 3

2δc x+ δc

 , δc =
y2
τ

16π2
log(mZ/MR) , (4.44)

with eigenvalues

mν
1 ' −

v2y2
ν

MR
(x− y) ,

mν
2 ' −

v2y2
ν

2MR

(
y + 2x+ 5δc −

√
3
√

3y2 + 10yδc + 9δ2
c

)
,

mν
3 ' −

v2y2
ν

2MR

(
y + 2x+ 5δc +

√
3
√

3y2 + 10yδc + 9δ2
c

)
.

(4.45)

We conclude that the inclusion of the correctional term δc, arising from the Yukawa terms in the RGE of

κij , lifts the degeneracy among the eigenvalues. In this case, we obtain three distinct eigenvalues which

can be used to compute the neutrino mass-squared differences. Before moving on, we determine the

corrected mass matrix for the VEV h3, which reads

mν = −v
2y2
ν

MR


x′ + 2δc ±η(y + 2δc) ±η∗(y + 3/2δc)

±η(y + 2δc) ω(x′ + 2δc) y + 3/2δc

±η∗(y + 3/2δc) y + 3/2δc ω∗(x′ + δc)

 . (4.46)

Computing mνm
†
ν and determining its eigenvalues, we find

mν
1 '

v2y2
ν

MR
|x′ − y| ,

mν
2 '

v2y2
ν

2MR

∣∣∣y + 2x′ + 5δc −
√

3
√

3y2 + 10yδc + 9δ2
c

∣∣∣ ,
mν

3 '
v2y2

ν

2MR

∣∣∣y + 2x′ + 5δc +
√

3
√

3y2 + 10yδc + 9δ2
c

∣∣∣ .
(4.47)

We have thus determined the neutrino mass matrices at the energy scale of current experiments for

each of the two valid Higgs VEV configurations, concluding in both cases that they have three nonde-

generate eigenvalues, corresponding to three distinct neutrino masses. We now move on to test these

results by comparing them with the experimental data available, as presented in Table 3.1. This must be

done with some care, as the values x, x′, y and δc can take are not entirely free. In fact, δc is constant

once the seesaw scale Λ = MR is fixed. The remaining three parameters are functions of the couplings

λijkl, which are related to the parameters of the scalar potential, and are restricted to the region of the

parameter space where each VEV is valid. In order to take these restrictions into account, we study the

28



problem numerically, by generating points in the parameter space, in the regions of validity of each VEV.

For those points we determine the corresponding neutrino masses.

4.6 Numerical analysis

In order to test the results of the model, we must compare the neutrino masses obtained after application

of the RGE with the experimental data available. Since there are no experimental values for neutrino

masses, we use mass-squared differences. Actually, we take into account the ratio

R =
∆m2

21

|∆m2
3`|

, (4.48)

using the values in Table 3.1. By comparing this ratio, we test the parameters of the model contained in

x, x′, y without concerning ourselves with the normalization provided by yν ,MR.

In order to perform this test, we wrote a C++ program which, for each of the valid VEVs h2 and h3,

generates with each iteration a point randomly in the region of the parameter space where the VEV is

valid. It then uses the couplings λijkl associated with that point to determine the right-hand side of (4.26),

considering the full Yukawa terms and the seesaw scale MR = 1014 GeV. The program calculates mν

and mνm
†
ν , then obtains the eigenvalues of the Hermitian mass matrix, corresponding to the squared

neutrino masses. Finally, it identifies the type of ordering, which can be normal or inverted, as defined

in (3.11), and obtains the ratio R.

The regions of validity of the VEVs are presented in [54], which uses a scalar potential with a different

parametrization from the one used in this thesis, related to the parametrization of (4.9) through

m2 = −M0√
3
, λ1 =

2

3
Λ0 , λ2 =

Λ3

3
, λ3 =

Λ1 + Λ2

2
, λ′4 =

Λ1 − Λ2

2
− iΛ4

2
. (4.49)

The regions of validity for the two VEVs are [54]

h2 = v(1, 1, 1)→



Λ2
4 < 12Λ2

1

Λ2
4 < 2(Λ3 + |Λ1|)(Λ2 + |Λ1|)

Λ1 < 0

Λ0 > |Λ1| > −Λ2,−Λ3

, h3 = v(±1, η, η∗)→



Λ2 < 0

|Λ2| > |Λ1|

Λ3 > Λ1

4Λ0 + Λ1 > 3|Λ2|

.

(4.50)

Rather than convert these conditions to the parameters λi, we use the parameters Λi in the program.

Having established the conversion between parametrizations, we can determine the couplings λijkl from

the parameters Λi, as indicated in Table 4.2.

Upon running the program, we verify that the ratio R is never obtained for either of the VEVs h2 and

h3, despite the large number of iterations considered. In fact, the ratio is found to be R ∼ 10−12, much

lower than the experimental value (≈ 0.03) and, given the limited precision of the program used, com-

patible with R = 0. This result is not surprising, as it has been shown [55] that it is not possible to obtain
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λijkl f(λi) f(Λi)

λaaaa (i = j = k = l) λ1/2 + λ2 Λ0/3 + Λ3/3

λaabb (i = j 6= k = l) λ1/2− λ2/2 Λ0/3− Λ3/6

λabba (i = l 6= j = k) λ3/2 Λ1/4 + Λ2/4

λabab (i = k 6= j = l) λ′4/2 Λ1/4− Λ2/4− iΛ4/2

λabab (i = k 6= j = l) λ′∗4 /2 Λ1/4− Λ2/4 + iΛ4/2

otherwise 0

Table 4.2: Correspondence between the couplings λijkl, the parameters λi of the scalar potential of
(4.9) and the parameters Λi of the scalar potential of [54]. λabab corresponds to the cases where b =
a+ 1(mod 3) and λabab to the cases where b = a− 1(mod 3).

three nondegenerate neutrino masses in a model with A4 symmetry, three scalar doublets in a triplet,

and three lepton families. This might come into apparent conflict with the seemingly nondegenerate

eigenvalues of (4.45), but if we perform an expansion in powers of δc, we obtain

− 2MR

v2y2
ν

mν
2,3 = 2x+ (y ± 3y) + (5δc ± 5δc) +O

(
δ2
c

)
. (4.51)

Thus, the degeneracy between the approximate eigenvalues mν
1 and mν

2 can only be lifted by terms in

O
(
δ2
c

)
, where x, x′, y ∼ 1 and δc ∼ 10−5. It is quite possible that this small correction is only present

in the approximate eigenvalues, having arisen from the approximations themselves, and that the exact

solution of the RGE remains degenerate, in agreement with the conclusions of [55]. Thus, we conclude

that the effect of the corrections originated from the charged-lepton Yukawa matrices does not cause a

splitting of eigenvalues capable of reproducing experimental data.

The results above lead to the conclusion that the model as was formulated is incapable of reproducing

the available experimental results and, by extension, is not valid. The model’s apparent resistance to a

split in the two degenerate neutrino masses would suggest that this degeneracy is protected by the A4

symmetry, which is only broken at low energies. The running of the couplings is performed on a model

which is invariant under A4, causing the effect of the RGE on the degeneracy of the neutrino masses

to be negligible. It is then clear that, if we were able to break the A4 symmetry in some way above

the seesaw scale, we would obtain a much greater range of values available to R, as the degeneracy

between neutrino masses would no longer be protected during the running of the couplings. This can

be achieved by adding a term which is not invariant under A4 to the model Lagrangian, causing the A4

symmetry to be (softly) broken. The soft breaking of the A4 symmetry of the model is the topic of the

next chapter, which focuses on mechanisms that give rise to soft breaking terms, and their effects on

the neutrino parameters at low energies.
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Chapter 5

Softly-broken single right-handed

neutrino A4 model

Given that the model presented in the previous chapter failed to reproduce neutrino data, we now intro-

duce a slight alteration. We consider the effect of adding a new Lagrangian term which breaks the A4

symmetry softly. This can in principle be done either in the fermion or scalar sectors. By breaking the

A4 symmetry above the seesaw scale MR, the degeneracy between neutrino masses will no longer be

protected as RGEs are applied, causing the neutrino mass-squared differences at the low energy scale

mZ to take on a larger range of values. This should lead to valid results for the ratio R, upon which we

move on to study the remaining parameters of the low-energy neutrino sector, namely the mixing angles

θij of the PMNS matrix defined in (3.10).

In the present model, a fermionic A4-symmetry breaking term can be introduced in the heavy neutrino

masses

− 1

2
MRνRν

C
R + H.c. , (5.1)

or in the Yukawa term (4.12). The field product of (5.1) is of the form 1⊗ 1 = 1, thus there is no way to

obtain from (5.1) a term that is not invariant under A4. The field product of (4.12), on the other hand, is

of the form 3 ⊗ 3 ⊗ 1 = 1 ⊕ 1′ ⊕ 1′′ ⊕ 3 ⊕ 3. Thus, it is possible to define a Yukawa term that breaks

A4, by selecting the singlet components 1′ or 1′′. However, given that the Yukawa term is of dimension

4, a term of this form leads to hard symmetry breaking rather than soft breaking and is, therefore, not

an option. This leaves us with the possibility of soft breaking in the scalar sector, which will occupy the

remainder of the chapter.

5.1 A simple soft breaking scheme in the scalar sector

We consider the addition of an A4-breaking term in the scalar potential. The alteration of V (Φ) changes

the conditions of minimization of the potential, so that the VEV configurations which lead to a global

minimum should be altered in relation to (4.10). The structure of the valid VEVs h2 and h3 satisfies
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|v1| = |v2| = |v3|. Thus, even a small correction which results in the breaking of this pattern could lead

to richer results in the neutrino mass spectrum at low energies.

Following the procedure described in [56], we introduce three scalar singlet fields assigned to a triplet

of A4, Ψ ∼ 3. Under the assumption that

〈Ψ〉 � v , (5.2)

we can establish that the potential for Ψ decouples from V (Φ). Thus, V (Ψ) has the structure of (4.9) and

its VEVs are those of (4.10). Let us consider 〈Ψ〉 ∼ (1, 0, 0). When Ψ acquires a VEV, only the singlet

components of the field product (Ψ†Ψ) are nonzero, as can be concluded from the invariants in (4.7).

After SSB in V (Ψ), the surviving interaction terms between the scalar fields Φ and Ψ are

λa(Ψ†Ψ)1′′(Φ
†Φ)1′ + H.c. SSB−−→M2

S

[
(Φ†Φ)1′ + H.c.

]
,

λb(Ψ
†Ψ)1(Φ†Φ)1

SSB−−→M2
µ(Φ†Φ)1 .

(5.3)

The second interaction term simply redefines m2 in (4.9), while the first term becomes an A4-breaking

term in the scalar potential V (Φ). Thus, the soft-breaking potential VSB(Φ) obtained by adding Ψ is

VSB(Φ) = V (Φ) +M2
S

(
2φ†1φ1 − φ†2φ2 − φ†3φ3

)
. (5.4)

Under this potential, the Higgs obtains a VEV configuration of the form

〈Φ〉 ≡ h5 = v(1 + 2ε, 1− ε, 1− ε) , (5.5)

where ε ∼ M2
S/v

2. The new parameter ε provides a correction to the form of the VEV h2 = v(1, 1, 1)

such that we obtain |v1| 6= |v2|, |v3|. Therefore, we must study the model considering this new VEV. The

first step is to obtain the new charged-lepton mass matrix and its eigenvalues, necessary to determine

the form of the charged-lepton Yukawa matrices Yl and the Yukawa constants yl.

5.1.1 Charged-lepton masses

We recall the charged-lepton mass matrix Ml obtained in Section 4.3.3, to which corresponds the Her-

mitian matrix

Hl = MlMl† =


|v1|2(y2

e + y2
µ + y2

τ ) v1v
∗
2(y2

e + ω2y2
µ + ωy2

τ ) v1v
∗
3(y2

e + ωy2
µ + ω2y2

τ )

v∗1v2(y2
e + ωy2

µ + ω2y2
τ ) |v2|2(y2

e + y2
µ + y2

τ ) v2v
∗
3(y2

e + ω2y2
µ + ωy2

τ )

v∗1v3(y2
e + ω2y2

µ + ωy2
τ ) v∗2v3(y2

e + ωy2
µ + ω2y2

τ ) |v3|2(y2
e + y2

µ + y2
τ )

 . (5.6)

For the VEVs of the A4-symmetric potential, the eigenvalues of Hl can be determined analytically. For

the new VEV h5, this is no longer the case. We resort to determining the eigenvalues using perturbation

theory, under the assumption that the Yukawa constants ye, yµ, yτ are small enough for the results to

converge. We consider as the unperturbed matrix H0 the one obtained from Hl by setting ye → 0. The
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perturbation will consequently be given by HP = Hl −H0, such that

H0 =


|v1|2(y2

µ + y2
τ ) v1v

∗
2(ω2y2

µ + ωy2
τ ) v1v

∗
3(ωy2

µ + ω2y2
τ )

v∗1v2(ωy2
µ + ω2y2

τ ) |v2|2(y2
µ + y2

τ ) v2v
∗
3(ω2y2

µ + ωy2
τ )

v∗1v3(ω2y2
µ + ωy2

τ ) v∗2v3(ωy2
µ + ω2y2

τ ) |v3|2(y2
µ + y2

τ )

 , HP = y2
e


|v1|2 v1v

∗
2 v1v

∗
3

v∗1v2 |v2|2 v2v
∗
3

v∗1v3 v∗2v3 |v3|2

 .

(5.7)

We determine the eigenvalues and eigenvectors of H0 analytically and, using first-order perturbation

theory, we obtain the eigenvalues of Hl, from which we extract the ones of Ml. Namely,

(me
1)

2 ' 3v2y2
e

(1 + ε− 2ε2)2

1 + ε(2 + 3ε)
,

(me
2)

2 ' 3v2y2
µ

1 + ε3(3ε− 4)

1 + 2ε2
+O(y2

e) +O(y4
µ) ,

(me
3)

2 ' 3v2y2
µ

ε2(2 + ε)2

1 + 2ε2
+ 3v2y2

τ (1 + 2ε2) +O(y2
e) +O(y4

µ) ,

(5.8)

where the identification me
1,2,3 ≡ me,µ,τ can be used to compute the Yukawa constants ye, yµ and yτ ,

which in turn allow us to determine the charged-lepton Yukawa matrices, present in the κij RGE. We

obtain

y2
e '

m2
e

3v2

1 + ε(2 + 3ε)

(1 + ε− 2ε2)2
,

y2
µ '

m2
µ

3v2

1 + 2ε2

1 + ε3(3ε− 4)
,

y2
τ ' −

m2
µ

3v2

ε2(2 + ε)2

(1 + 2ε2)(ε− 1)2[1 + ε(2 + 3ε)]
+
m2
τ

3v2

1

1 + 2ε2
,

(5.9)

showing that the Yukawa couplings maintain the relation y2
l ∼

m2
l

3v2 found in (4.19) for the VEVs h2 and

h3 of (4.10), corrected by a function of ε in the case of the VEV h5. Thus, our initial assumption that yl

are small enough to allow the application of perturbation theory is validated.

5.1.2 Lepton mixing

In order to study the results for the new VEV h5 (obtained by adding a soft-breaking term in the effective

Higgs scalar potential), we can use the computer code described in Section 4.6, with some changes. In

addition to changing the VEV, we must also use the results of Section 5.1.1 to define the new charged-

lepton Yukawa matrices. The parameter ε is generated randomly, such that |ε| < 3. We run the program

and obtain the results presented in Figure 5.1, for the NO case. For inverted ordering, R is always

outside the allowed range.

We conclude that the soft breaking of A4 in the scalar sector introduced a large enough split between

the degenerate neutrino masses, so that we obtain values of R within the 3σ and 1σ allowed intervals

given in Table 3.1. This happens for a wide range of values for ε. There is a lack of points around ε = 0,

where the VEV configuration h5 coincides with h2, and around ε = 1, where h5 = h1, so the result is

expected in both cases. There is a large region around ε = −2 where there are no valid results for R,

33



Figure 5.1: Values obtained for R, ε after RGE running of κij and using h5 for 〈Φ〉, for the NO case. The
solid (dashed) horizontal lines enclose the 3σ (1σ) allowed interval for R.

since h5 → (−1, 1, 1), a configuration for which |v1| = |v2| = |v3|.

Having obtained valid results for R, we continue the analysis of the model by studying the PMNS

matrix. As described in Section 3.1, the PMNS matrix U is obtained from the unitary transformations

that diagonalize the lepton mass matrices, through (3.9). Once U is obtained, the mixing angles can

be recovered following the procedure outlined in Appendix A of [57]. The mixing matrix obtained by our

code is of the form

U = diag(eiδe , eiδµ , eiδτ ) · V · diag(e−iα1/2, e−iα2/2, 1) ,

V =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 ,
(5.10)

where δe, δµ, δτ are unphysical phases which can be removed by rephasing the charged-lepton fields

and α1, α2 are Majorana-type phases. The parameters of the matrix U are given by

θ12 =

arctan
(
|U12|
|U11|

)
if U11 6= 0

π
2 else

, θ23 =

arctan
(
|U23|
|U33|

)
if U33 6= 0

π
2 else

, θ13 = arcsin (|U13|) ,

δ = −arg

 U∗iiUijUjiU
∗
jj

c12c213c23s13
+ c12c23s13

s12s23

 , where i, j ∈ {1, 2, 3} and i 6= j ,

δe = arg
(
eiδU13

)
, δµ = arg (U23) , δτ = arg (U33) ,

α1 = 2 arg
(
eiδeU∗11

)
, α2 = 2 arg

(
eiδeU∗12

)
.

(5.11)
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From these relations, we can extract the mixing angles θ12, θ13, θ23, as well as the complex phases δ

and α1, α2. We run the program and obtain the values of s2
ij for all cases where the ratio R is within

the 3σ allowed range. The results are presented in Figure 5.2. One can see that, although ε has a

wide range of values which lead to a valid R, the results for the mixing angles are restricted to specific

regions of the parameter space, which do not intersect those singled out by the experimental results.

The conclusion is that no cases are found where both R and all three mixing angles are within the 3σ

allowed range. Thus, we must discard h5 as a valid VEV.

5.2 Alternative VEVs of the softly-broken A4 potential

In the previous section, we have concluded that the VEV configuration h5 does not lead to satisfactory

results. However, this is not the end of the analysis related with soft breaking of the A4 symmetry in the

scalar sector, as the Higgs scalar potential VSB(Φ) of (5.4) must have other minima, which could lead to

different results for the mixing angles θij . Thus, the next step is to minimize VSB(Φ) in order to determine

all VEV configurations of this potential, so that we can obtain for each of them the parameters of the

low-energy neutrino sector. But first, we will investigate whether the general VEV patterns

h6 = v(1, ε1, ε2) , (5.12)

and

h7 = v(1, ε1e
iθ1 , ε2e

iθ2) , (5.13)

lead to viable results . This general analysis should give us an idea about whether it is worth it to find

VEV configurations of the forms of h6 and h7. Once again, we must study the charged-lepton mass

matrix. Applying perturbation theory as was done in Section 5.1.1, and considering the VEVs h6 and h7

rather than h5, we find that the complex phases θ1, θ2 cancel out of the eigenvalues and the results are

identical for both VEVs,

(me
1)

2 ' 9v2y2
e

ε2
1ε

2
2

ε2
1 + ε2

2 + ε2
1ε

2
2

,

(me
2)

2 ' 3v2y2
µ

ε2
1 + ε2

2 + ε2
1ε

2
2

1 + ε2
1 + ε2

2

+O(y2
e) +O(y4

µ) ,

(me
3)

2 ' v2y2
τ (1 + ε2

1 + ε2
2) + v2y2

µ

1− ε2
1 − ε2

2 − ε2
1ε

2
2 + ε4

1 + ε4
2

1 + ε2
1 + ε2

2

+O(y2
e) +O(y4

µ) ,

(5.14)

so that

y2
e '

m2
e

3v2

ε2
1 + ε2

2 + ε2
1ε

2
2

3ε2
1ε

2
2

,

y2
µ '

m2
µ

3v2

1 + ε2
1 + ε2

2

ε2
1 + ε2

2 + ε2
1ε

2
2

,

y2
τ ' −

m2
µ

3v2

1− ε2
1 − ε2

2 − ε2
1ε

2
2 + ε4

1 + ε4
2

(1 + ε2
1 + ε2

2)(ε2
1 + ε2

2 + ε2
1ε

2
2)

+
m2
τ

3v2

3

1 + ε2
1 + ε2

2

.

(5.15)
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Figure 5.2: Values obtained for s2
ij after RGE running of κij and using h5 for 〈Φ〉. The axis corresponding

to s2
13 is in logarithmic scale. The solid (dashed) black lines enclose the 3σ (1σ) allowed interval for each

variable. In all cases R is within the 3σ experimental range.
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Replacing these results in the program, we run it again. When scanning (ε1, ε2, θ1, θ2), we consider

|ε1,2| < 3 and θ1,2 ∈ [−π, π]. The values obtained for s2
ij under the condition that R is within the 3σ

allowed range are presented in Figures 5.3 and 5.4 for h6 and h7, respectively.

From Figure 5.3 we conclude that the regions are larger for the general real VEV configuration h6

than those of Figure 5.2. One can also observe that, when θ12 agrees with the data, θ13 is too large.

Therefore, we are still not able to find a region of the parameter space where all three mixing angles are

within experimental bounds. Thus, no real VEV of the type h6 can reproduce current experimental data

for the three mixing angles and the ratio R.

For the general complex VEV h7, the R condition spans the full θij parameter space nearly homoge-

neously. For this reason, in Figure 5.4, we have singled out the results which agree with experimental

observations for s2
12, s2

23, making it clear that, in some of these cases, s2
13 is also within experimental

bounds. Thus, a complex VEV can lead to valid results for θij and R, so that we are interested in the

VEV configurations of the softly-broken potential VSB(Φ) with complex components. Details about the

minimization of VSB(Φ) are given in Appendix A.

Considering the general VEV configuration h7 given in (5.13), it is clear that, if either of the param-

eters ε1,2 = 0, the charged-lepton mass matrix of (5.6) is singular, with at least one zero eigenvalue.

Thus, this possibility is discarded, and of the VEVs determined in Appendix A, those of interest are the

ones with θ1,2, ε1,2 6= 0, corresponding to

h8 = v
(
1,±εeiθ,±εe−iθ

)
, ε2 =

sin (α+ 2θ)

sin (α− 4θ)
,

h9 = v
(
1,±ε1e

iθ1 ,±ε2e
iθ2
)

, ε2
1 =

sin (α− 2θ2)

sin (α− 2θ1 + 2θ2)
, ε2

2 =
sin (α+ 2θ1)

sin (α− 2θ1 + 2θ2)
,

(5.16)

with α = arg(λ′4) [see (4.9)], θ ∈ [−π, π], and θ1,2 ∈ [−π, π]. Notice that h9 is under the additional

condition

λ4 =
(3λ2 − λ3) cos (α+ θ1 − θ2)

cos (2α− θ1 + θ2)
, (5.17)

implying fine-tuning among the parameters of the scalar potential. We have now inserted the above

conditions in our code. The results for the mixing are presented in Figures 5.5 and 5.6 for h8 and h9, re-

spectively. When compared to the general case presented in Figure 5.4, one can observe the presence

of correlations within the angular distributions, rather than the more homogeneous patterns obtained for

h7. These correlations are more pronounced for h8, where θ2 = −θ1 and λ4 is free, suggesting that the

parameters of the VEV configuration affect the angular results more directly than the parameters of the

scalar potential. For both VEV configurations, we obtain cases where all three mixing angles, as well as

R, are within the 3σ allowed range.

5.3 Scalar mass matrices

As was mentioned in the previous section, we have not been considering the regions of validity of each

of the VEV configurations under analysis. Instead, the program sweeps the entire parameter space of
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Figure 5.3: Values obtained for s2
ij after RGE running of κij and using h6 for 〈Φ〉. The axis corresponding

to s2
13 is in logarithmic scale. The solid (dashed) black lines enclose the 3σ (1σ) allowed interval for each

variable. In all cases R is within the 3σ experimental range.
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Figure 5.4: Values obtained for s2
ij after RGE running of κij and using h7 for 〈Φ〉. The axis corresponding

to s2
13 is in logarithmic scale. The solid (dashed) black lines enclose the 3σ (1σ) allowed interval for each

variable. In all cases R is within the 3σ experimental range.
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Figure 5.5: Values obtained for s2
ij after RGE running of κij and using h8 for 〈Φ〉. The axis corresponding

to s2
13 is in logarithmic scale. The solid (dashed) black lines enclose the 3σ (1σ) allowed interval for each

variable. In all cases R, s2
12 s

2
23 are within the 3σ experimental range.
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Figure 5.6: Values obtained for s2
ij after RGE running of κij and using h9 for 〈Φ〉. The axis corresponding

to s2
13 is in logarithmic scale. The solid (dashed) black lines enclose the 3σ (1σ) allowed interval for each

variable. In all cases R, s2
12, s

2
23 are within the 3σ experimental range.
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the scalar Higgs potential, considering only |λi| < 1 (i = 1, 2, 3, 4). It is however necessary to test the

stability of VSB(Φ) by studying the scalar mass spectrum.

The mass matrices for the neutral and charged scalars, Mn and Mc, respectively, are obtained from

the scalar potential VSB(Φ) by

(Mn)ij =
1

2

∂2VSB(Φ)

∂χ0
i ∂χ

0
j

∣∣∣∣∣
〈Φ〉

, χ0
i = (φ0

1R, φ
0
2R, φ

0
3R, φ

0
1I, φ

0
2I, φ

0
3I) ,

(Mc)ij =
1

2

∂2VSB(Φ)

∂χ+
i ∂χ

+
j

∣∣∣∣∣
〈Φ〉

, χ+
i = (φ+

1R, φ
+
2R, φ

+
3R, φ

+
1I, φ

+
2I, φ

+
3I) ,

(5.18)

where χ0
i refers to the real and imaginary neutral fields of each of the three Higgs doublets, and χ+

i to

the real and imaginary charged fields. Note that 〈χ+
i 〉 = 0. Thus, an extreme of the potential, identified

through the minimization procedure discussed in Appendix A, is a true minimum, rather than a maximum

or saddle point, when all eigenvalues of the mass matrices are nonnegative. We can set a test for the

validity of the VEV configurations in our program by studying the sign of the eigenvalues of Mn and Mc.

With the determination of the scalar mass matrices, we can obtain the masses of the scalars of our

model, given that the eigenvalues of the matrices are the squared scalar masses. This introduces an

additional constraint, related to the Higgs boson. It is known that the LHC has detected a neutral boson

[32] of mass

mH0 = 125± 0.24 GeV , (5.19)

which corresponds to the Higgs boson of the SM. As our model has an extended scalar sector, the

number of massive neutral bosons is increased from one to five, so that it is expected that the lightest

neutral boson of the model should have a mass compatible with mH0 . This additional constraint must be

taken into account when determining the validity of the model.

We have obtained the scalar mass matrices through (5.18) but, due to their large dimension, as each

is a 6 × 6 matrix, we are not capable of determining the eigenvalues analytically. Instead, we input the

mass matrices into our numerical code, which performs their diagonalization in order to determine the

eigenvalues numerically, for each point generated in the parameter space of VSB(Φ). Given the large

dimension of this space, which the program samples randomly, it should not be a trivial task to find

points within the experimental 3σ allowed range for all mixing parameters where all eigenvalues of the

scalar mass matrices are nonnegative. Thus, we alter the code so that it performs a fit of the model to

the available experimental data, corresponding to the three lepton mixing angles, the ratio R of (4.48)

and the Higgs mass mH0 , under the constraint of real scalar masses, using as initial conditions points

generated randomly in the parameter space of VSB(Φ). After this change, we run the program for the

case corresponding to the VEV h8. We find that the χ2 of the fits never falls below ∼ 100, indicating

some difficulty with finding a point in the parameter space which can simultaneously lead to valid results

for the neutrino parameters and for the observed Higgs mass. In order to explore this issue, we perform

fits removing some of the constraints. In Figure 5.7 (5.8) are the results obtained without the constraint

on the Higgs mass (the lepton mixing angles θij). In both of these cases, we obtain several points where
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Figure 5.7: Values obtained for mH0 as a function of χ2 (scattered points) using h8. All neutrino param-
eters are within the experimental 3σ allowed range. The full black lines enclose the 1σ allowed interval
for mH0 .

all constrained parameters are within their 3σ allowed range, with a corresponding χ2 ∼ 1 or smaller.

From the results obtained, we can conclude that our model is capable of delivering either valid mix-

ing angles or a valid Higgs boson mass, but not both. Rather, the region of the parameter space

corresponding to a valid VEV configuration and to lepton mixing data within the experimental 3σ allowed

range corresponds to a lightest neutral scalar which is too light, as its mass is never larger than 60 GeV

(see Figure 5.7). Using the VEV h9, for the case of fine tuning [see (5.17)], we obtain similar results

and once more the Higgs mass mH0 is not reproduced in the cases where the mixing angle constraints

are in effect. This indicates that, with the VEV configurations available for VSB(Φ), we are not able to

reproduce all experimental results. However, as this is due to the fact that we can obtain valid results

for each observable individually, but not all observables simultaneously, the issue seems to lie with the

incompatibility of the region of validity of each observable. Thus, given a different potential with a differ-

ent VEV configuration, these regions of validity would change, and it is possible that they could overlap

in some way. In particular, the soft-breaking term considered in Section 5.1 is not unique, since it was

obtained for 〈Ψ〉 ∼ (1, 0, 0). By choosing a different 〈Ψ〉, from those given in (4.10), we obtain a different

soft-breaking term.

As an example, let us take 〈Ψ〉 ∼ (1, 1, 0), obtained from h4 = v(1, eiα4 , 0) by setting α4 = 0. With

such a VEV, both singlet and triplet interactions of (Φ†Φ) and (Ψ†Ψ) survive upon SSB of Ψ. Thus, two

distinct terms are added to the potential V (Φ), in such a way that

VSB,4(Φ) = V (Φ) +M2
4

(
φ†1φ1 + φ†2φ2 − 2φ†3φ3

)
+M2

α

(
φ†2φ1 + H.c.

)
. (5.20)
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Figure 5.8: Values obtained for s2
ij after RGE running of κij and using h8 for 〈Φ〉. The axis corresponding

to s2
13 is in logarithmic scale. The solid (dashed) black lines enclose the 3σ (1σ) allowed interval for each

variable. In all cases R, mH0 are within the 3σ experimental range.
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Following a procedure similar to the one outlined in Appendix A, we obtain the minimization equations for

VSB,4(Φ). Focusing on the general case v(1, ε1e
iθ1 , ε2e

iθ2), with ε1,2 6= 0, we use three of the equations to

obtain expressions for m2, M2
4 , and M2

α, and replace them in the remaining equations, which are solved

simultaneously by the conditions

ε2
1 =

sin(α− 2θ2)

sin(α− 2θ1 + 2θ2)
,

ε2
2 =

cos(α− θ1) sin(α− 2θ2) sin(θ1 − 2θ2) [(3λ2 − λ3) cos θ1 + λ4 sin(α+ θ1) cot θ1]

λ4 cosα sin(α− 2θ2) sin(θ1 − 2θ2) sin(α− 2θ1 + 2θ2) cot θ1
,

(5.21)

leaving θ1,2 free. For his new VEV configuration we compute the scalar mass matrices obtained from the

potential VSB,4(Φ), and change the program accordingly. We find results quite similar to those obtained

with h8, where the points with valid lepton mixing parameters are associated with a too light Higgs. This

leads to the conclusion that this VEV configuration, as well, cannot reproduce data and the right value

for the Higgs.
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Chapter 6

Conclusions

In this thesis, we investigated a key topic of study in modern particle physics: the existence of neutrino

masses, which are unaccounted for in the current model for the description of elementary particles, the

SM. We began by introducing in Chapter 2 the SM in its current formulation. Then, we presented in

the following chapter some extensions of the SM which, by including additional degrees of freedom,

give rise to neutrino masses. We then moved on to a description and study of the model introduced

in this thesis, in Chapter 4. We extended the SM with a single RH neutrino and three Higgs doublets

instead of one, and applied an additional constraint by imposing invariance under the discrete group A4.

The A4-symmetric scalar potential and the resulting VEV configurations were presented in Section 4.2.

Using these, we determined the neutrino mass matrix at the very large energy scale MR of operation

of the seesaw mechanism that gives rise to neutrino masses, given by (4.23). Afterwards, the RGE of

the flavor coupling matrices κij were used to obtain the masses at the energy scale of current experi-

ments. After a numerical analysis of the RGE using a leading-log approximation, described in Section

4.6, we concluded that the model could not reproduce experimental results for neutrino mass-squared

differences, as it was not possible to lift the degeneracy between neutrino masses, obtaining for the ratio

R, defined in (4.48), a value smaller than experimental prediction by around ten orders of magnitude

and, given the limited precision of the method used, compatible with zero. These results suggest that

the observed degeneracy is protected by the imposed A4 symmetry, which is not broken at the MR scale

but rather at the scale of EWSB where the neutrinos obtain mass, so that the effects of the RGE are

constrained by the effect of this symmetry. Thus, if it were possible to break the A4 symmetry at the MR

scale, it was expected that the neutrino mass-squared differences would take on a much wider range of

values.

Given these conclusions, we considered in Chapter 5 an alteration to our model, consisting of an

additional term in the Lagrangian which is not invariant under A4, so that the symmetry is softly broken.

We concluded that the soft-breaking must be performed in the scalar sector, by the addition of an A4

triplet of scalar singlet fields Ψ which would interact with the Higgs fields, as described in Section 5.1.

This gives rise to a distinct scalar potential VSB(Φ) upon SSB, given by (5.4), with a different set of VEV

configurations to the A4-symmetric potential, as explored in Appendix A. The new neutrino mass matrix
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was obtained and the RGE running resulted in a wide range of results, presented in Figure 5.1, including

several cases in which the mass-squared difference ratio R is within experimental bounds.

We moved on to the study of the neutrino mixing angles, which are also restricted by experimental

observations. For the VEV configuration we had been considering, the results were not in agreement

with experimental observations, as presented in Figure 5.2, and we reached the eventual conclusion that

no valid results can be obtained using a real VEV, as illustrated in Figure 5.3, obtained using a general

real VEV configuration h6, defined in (5.12). On the other hand, using a general complex VEV config-

uration h7, defined in (5.13), it was possible to find cases in agreement with experimental results, as

shown in Figure 5.4. In fact, it can be seen that, even allowing full freedom to all parameters of h6 (apart

from the normalization v, of course), the resulting distribution for the mixing angles, under the condition

that R is within the experimental 3σ allowed range, is restricted to specific areas of the parameter space,

which do not contain the region where all mixing angles are compatible with experimental results. In the

case of h7, this is not verified, and the experimental 3σ allowed ranges for the mixing angles are well

populated. Thus, we concluded that complex phases in the Higgs VEV are essential for the reproduction

of experimental results of the lepton mixing angles, and continued our analysis using the complex VEVs

h8,9 given by (??) and (??) respectively. We found valid results for both configurations, as presented in

Figures 5.5 and 5.6, where we can observe, especially for h8, that the data points which are in agree-

ment with experimental observations for s2
12, s

2
23 are distributed in a specific pattern in the plots including

s2
13, suggesting the existence of relations between the mixing angles.

We were left with the requirement of verifying the validity of the VEV configurations used, using the

scalar mass matrices defined in (5.18). Under the condition that all eigenvalues of these matrices must

be nonnegative, we fitted the model to the constraints given by experimental observations of the lepton

mixing angles θij , the ratio R, and the scalar boson mass mH0 . It was determined that it is not possible

to obtain cases where all constraints are simultaneously satisfied but, by removing different constraints

in turn, all can be satisfied individually, as it is clear in Figures 5.8 and 5.7. Thus, if one could find a

case where the conditions for satisfying all constraints overlap, the model would provide valid results.

To pursue this idea, we considered a different scalar potential, obtained by taking an alternative VEV

configuration for the scalar triplet Ψ. This generated a different VEV configuration for Φ and different

scalar mass matrices. However, this alternative led to similar results, with a scalar mass spectrum that

is too light.

6.1 Future work and achievements

Based on the results obtained, the logical conclusion is that the model analyzed in this thesis is not

capable of reproducing both neutrino and Higgs results. However, some possibilities of alteration of

our model remain, due to the different avenues of A4 soft breaking which are yet to be explored. The

soft breaking is performed with the scalar singlet fields Φ, under the assumption that 〈Φ〉 ∼ (1, 0, 0),

initially, and that 〈Φ〉 ∼ (1, 1, 0), in a subsequent analysis, leaving unexplored the cases where Φ takes

one of the remaining VEV configurations of (4.10). As mentioned in Section 5.3, each of the four VEV
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configurations hi leads to a distinct potential VSB,i(φ), according to

h2 → VSB,2(φ) = V (φ) +M2
2

(
φ†2φ3 + φ†3φ1 + φ†1φ2 + H.c.

)
,

h3 → VSB,3(φ) = V (φ) +M2
3

[
ω
(
φ†2φ3 − φ†3φ1 − φ†1φ2

)
+ H.c.

]
,

h4 → VSB,4(φ) = V (φ) +M2
4

(
φ†1φ1 + φ†2φ2 − 2φ†3φ3

)
+M2

α

(
eiα4φ†2φ1 + H.c.

)
,

(6.1)

with VSB,1 ≡ VSB as defined in (5.4). Each of the these scalar potentials will have distinct VEV configu-

rations with their own regions of validity, along with distinct scalar mass matrices, altering the results of

the model. Hopefully, among the possibilities (6.1), one (or more) will lead to valid results for the model.

Thus, it is necessary to fully explore all these possibilities before making final conclusions on the validity

of the model.

With this thesis, we have considered a popular discrete symmetry based on the A4 group, and ex-

plored a less typical avenue by focusing on enlarging the scalar sector rather than the fermionic one.

This led to the study of a previously unconsidered model, which was found to be compatible with neutrino

data but hard to reconcile with Higgs mass results. Still, there are unexplored possibilities to consider,

leaving open a window for further work on the subject. The focus on the A4 group was motivated by its

ideal set of representations, as aforementioned. However, there are other discrete groups with appropri-

ate representations, such as the group S4, which could also be considered as an imposed symmetry for

a single right-handed neutrino model. As A4 is a subgroup of S4, the results obtained should be similar,

but perhaps different enough to provide valid results, so that this is another venue to be considered.

Finally, some additional issues could be further explored with a more in-depth analysis in a framework

compatible with both neutrino and Higgs results. For instance, the study of the quark sector will have rich

phenomenology in the case where the three Higgs doublets of the theory couple to quarks. In a more

advanced phase, these results, along with the scalar mass spectrum, could be used to further validate

the model and provide experimental evidence of new physics.
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[55] R. G. Felipe, H. Serôdio, J. P. Silva, Phys. Rev. D 88, 015015 (2013).

[56] J. Heeck, et al., Nucl. Phys. B 896, 281 (2015).

[57] S. Antusch, J. Kersten, M. Lindner, M. Ratz, Nucl. Phys. B 674, 401 (2003).

53



54



Appendix A

Minimization of the softly-broken

Higgs potential

We recall that the charged field of each Higgs doublet must have a zero VEV and thus define

〈φa〉 =

〈φ+
a 〉

〈φ0
a〉

 =
1√
2

 0

〈φ0
aR〉+ i 〈φ0

aI〉

 , (A.1)

where φa, a = 1, 2, 3, are the three Higgs doublets. We further define

〈φ0
aR〉 =

va cos θa√
2

, 〈φ0
aI〉 =

va sin θa√
2

,

v1 = v , v2 = vε1 , v3 = vε2 , θ1 = 0 ,

(A.2)

so that we obtain the most general complex VEV configuration, v/2(1, ε1e
iθ1 , ε2e

iθ2). We define VSB(Φ)

according to (5.4) and obtain the minimization equations, given by

dVSB(Φ)

dφ0
aR

∣∣∣∣
〈φa〉

= 0 ,
dVSB(Φ)

dφ0
aI

∣∣∣∣
〈φa〉

= 0 , (A.3)

which lead to

v3

4
√

2

{
4m2 + 8M2

S

v2
+
(
1 + ε2

1 + ε2
2

)
λ1 + 2λ2 −

(
ε2

1 + ε2
2

)
(λ2 − λ3)

+λ4

[
ε2

1 cos (α+ 2θ1) + ε2
2 cos (α− 2θ2)

]}
= 0 ,

(A.4a)

v3ε1

4
√

2

{[
4m2 − 4M2

S

v2
+
(
1 + ε2

1 + ε2
2

)
λ1 −

(
1− 2ε2

1 + ε2
2

)
λ2 + λ3 + ε2

2λ3

]
cos θ1

+λ4

[
cos (α+ θ1) + ε2

2 cos (α− θ1 + 2θ2)
]}

= 0 ,

(A.4b)

v3ε2

4
√

2

{[
4m2 − 4M2

S

v2
+
(
1 + ε2

1 + ε2
2

)
λ1 −

(
1 + ε2

1 − 2ε2
2

)
λ2 + λ3 + ε2

1λ3

]
cos θ2

+λ4

[
cos (α− θ2) + ε2

1 cos (α− 2θ1 + θ2)
]}

= 0 ,

(A.4c)
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v3

4
√

2
λ4

[
ε2

1 sin (α+ 2θ1)− ε2
2 sin (α− 2θ2)

]
= 0 , (A.4d)

v3ε1

4
√

2

{[
4m2 − 4M2

S

v2
+
(
1 + ε2

1 + ε2
2

)
λ1 −

(
1− 2ε2

1 + ε2
2

)
λ2 + λ3 + ε2

2λ3

]
sin θ1

+λ4

[
− sin (α+ θ1) + ε2

2 sin (α− θ1 + 2θ2)
]}

= 0 ,

(A.4e)

v3ε2

4
√

2

{[
4m2 − 4M2

S

v2
+
(
1 + ε2

1 + ε2
2

)
λ1 −

(
1 + ε2

1 − 2ε2
2

)
λ2 + λ3 + ε2

1λ3

]
sin θ2

+λ4

[
sin (α− θ2)− ε2

1 sin (α− 2θ1 + θ2)
]}

= 0 .

(A.4f)

The minimization equations can be solved considering (ε1 = 0, ε2 = 0), (ε1 6= 0, ε2 = 0) or (ε1 6= 0, ε2 6=

0).

A.1 ε1 = 0, ε2 = 0

In this case, the VEV configuration takes the form v/2(1, 0, 0), analogous to h1. All but one of the

minimization equations are automatically satisfied, while the remaining equation, (A.4a), takes the form

v
4m2 + 8M2

S + v2 (λ1 + 2λ2)

4
√

2
= 0 , (A.5)

determining

v2 = −4
m2 + 2M2

S

λ1 + 2λ2
. (A.6)

A.2 ε1 6= 0, ε2 = 0

In this case, the VEV configuration is given by v/2(1, ε1e
iθ1 , 0). Equations (A.4c) and (A.4f) are automat-

ically satisfied, leaving

v3

4
√

2

[
4m2 + 8M2

S

v2
+
(
1 + ε2

1

)
λ1 + 2λ2 − ε2

1 (λ2 − λ3) + λ4ε
2
1 cos (α+ 2θ1)

]
= 0 , (A.7a)

v3ε1

4
√

2

{[
4m2 − 4M2

S

v2
+
(
1 + ε2

1

)
λ1 −

(
1− 2ε2

1

)
λ2 + λ3

]
cos θ1 + λ4 cos (α+ θ1)

}
= 0 , (A.7b)

v3

4
√

2
λ4ε

2
1 sin (α+ 2θ1) = 0 , (A.7c)

v3ε1

4
√

2

{[
4m2 − 4M2

S

v2
+
(
1 + ε2

1

)
λ1 −

(
1− 2ε2

1

)
λ2 + λ3

]
sin θ1 − λ4 sin (α+ θ1)

}
= 0 . (A.7d)

From (A.7c), we determine that

θ1 =
nπ − α

2
≡ θα , n ∈ Z. (A.8)
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Replacing θ1 in (A.7), we obtain, for even n,

v3

4
√

2

[
4m2 + 8M2

S

v2
+
(
1 + ε2

1

)
λ1 + 2λ2 − ε2

1 (λ2 − λ3 − λ4)

]
= 0 ,

v3ε1

4
√

2

[
4m2 − 4M2

S

v2
+
(
1 + ε2

1

)
λ1 −

(
1− 2ε2

1

)
λ2 + λ3 + λ4

]
cos (α/2) = 0 ,

v3ε1

4
√

2

[
4m2 − 4M2

S

v2
+
(
1 + ε2

1

)
λ1 −

(
1− 2ε2

1

)
λ2 + λ3 + λ4

]
sin (α/2) = 0 .

(A.9)

The solution to these equations is of the form

ε2
1 = 1− 12M2

S

v2 (−3λ2 + λ3 + λ4)
≡ 1−∆+ ,

v2 = 4

[
− m2

2λ1 + λ2 + λ3 + λ4
− M2

S (3λ1 + 3λ2 + λ3 + λ4)

(3λ2 − λ3 − λ4) (2λ1 + λ2 + λ3 + λ4)

]
.

(A.10)

For odd n, we obtain the equations

v3

4
√

2

[
4m2 + 8M2

S

v2
+
(
1 + ε2

1

)
λ1 + 2λ2 − ε2

1 (λ2 − λ3 + λ4)

]
= 0 ,

v3ε1

4
√

2

[
4m2 − 4M2

S

v2
+
(
1 + ε2

1

)
λ1 −

(
1− 2ε2

1

)
λ2 + λ3 − λ4

]
sin (α/2) = 0 ,

v3ε1

4
√

2

[
4m2 − 4M2

S

v2
+
(
1 + ε2

1

)
λ1 −

(
1− 2ε2

1

)
λ2 + λ3 − λ4

]
cos (α/2) = 0 .

(A.11)

which, when solved, give

ε2
1 = 1− 12M2

S

v2 (−3λ2 + λ3 − λ4)
≡ 1−∆− ,

v2 = 4

[
− m2

2λ1 + λ2 + λ3 − λ4
− M2

S (3λ1 + 3λ2 + λ3 − λ4)

(3λ2 − λ3 + λ4) (2λ1 + λ2 + λ3 − λ4)

]
.

(A.12)

Thus, we obtain a VEV configuration of the form v/2(1,±
√

1−∆±e
iθα , 0), analogous to h4. This

includes the case θ1 = 0, for α = nπ.

A.3 ε1 6= 0, ε2 6= 0

Considering a general complex VEV configuration, we begin by using (A.4a) and (A.4c) to obtain ex-

pressions for m2 and M2
S , so that they can be replaced in the remaining equations, obtaining

v3ε1

4
√

2

{[(
ε2

1 − ε2
2

)
(3λ2 − λ3)− ε2

1λ4 cos (α− 2θ1 + θ2) sec θ2

]
cos θ1

+λ4

[
ε2

2 cos (α− θ1 + 2θ2)− sec θ2 sinα sin (θ1 + θ2)
]}

= 0 ,

(A.13a)

v3

4
√

2
λ4

[
ε2

1 sin (α+ 2θ1)− ε2
2 sin (α− 2θ2)

]
= 0 , (A.13b)
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v3ε1

8
√

2

{(
ε2

1 − ε2
2

)
[2 sin θ1 (3λ2 − λ3)− λ4 sec θ2 sin (α− θ1 + θ2)]− 4λ4 cosα sin θ1

+λ4 sec θ2

[
−2 cos (θ1 − θ2) sinα+ ε2

1 sin (α− 3θ1 + θ2) + ε2
2 sin (α− θ1 + 3θ2)

]}
= 0 ,

(A.13c)

v3ε2

4
√

2
λ4

[
sin (α− 2θ2)− ε2

1 sin (α− 2θ1 + 2θ2)
]

sec θ2 = 0 . (A.13d)

We solve (A.13b) and (A.13d) for ε1,2 and obtain

ε2
1 =

sin (α− 2θ2)

sin (α− 2θ1 + 2θ2)
, ε2

2 =
sin (α+ 2θ1)

sin (α− 2θ1 + 2θ2)
. (A.14)

Replacing these results in (A.13), we are left with two equations,

v3 cos θ1

√
sin (α− 2θ2) sin (θ1 + θ2)

2
√

2 sin (α− 2θ1 + 2θ2)
3/2

[(−3λ2 + λ3) cos (α+ θ1 − θ2) + λ4 cos (2α− θ1 + θ2)] = 0 ,

v3 sin θ1

√
sin (α− 2θ2) sin (θ1 + θ2)

2
√

2 sin (α− 2θ1 + 2θ2)
3/2

[(−3λ2 + λ3) cos (α+ θ1 − θ2) + λ4 cos (2α− θ1 + θ2)] = 0 .

(A.15)

We find all possible values of θ1,2 which satisfy these equations. Not considering the possibility of fine

tuning of the parameters of the scalar potential, we find two solutions, given by

θ2 = nπ − θ1 , n ∈ Z , (A.16a)

θ2 =
mπ − α

2
, m ∈ Z . (A.16b)

We replace θ2 in (A.14). For (A.16b), we obtain ε1 = 0 and thus discard the possibility. This leaves us

with (A.16a), which leads to

ε2
1 = ε2

2 =
sin (α+ 2θ1)

sin (α− 4θ1)
≡ ε2 . (A.17)

Thus, we obtain a VEV configuration of the form v/2
(
1,±εeiθ1 ,±εe−iθ1

)
. The expressions for v and θ1

can be determined from those of m2 and M2
S , obtained from (A.4a) and (A.4c). However, we were not

capable of inverting such complex trigonometric equations and thus we tentatively leave θ1 free. As for

v, we obtain

v2 =
−12m2

3λ1 + 2λ3 + csc (α− 4θ1) {2λ4 sin (2α− 2θ1) + 2 [3λ1 + 2λ3 + λ4 cos (α+ 2θ1)] sin (α+ 2θ1)}
.

(A.18)

It is also possible to consider the case of fine tuning, in which we solve (A.15) for λ4 and obtain

λ4 =
(3λ2 − λ3) cos (α+ θ1 − θ2)

cos (2α− θ1 + θ2)
. (A.19)

This leaves both θ1,2 free, as the issue of the prior analysis remains, and introduces instead a restriction

on the parameter space of the scalar potential. It is possible to determine v, but we obtain an unwieldy

function of θ1,2 and the parameters of VSB(Φ), which we skip for brevity.

Before moving on, we consider the cases where one or more complex phases are zero. Following

a similar procedure to the one outlined above, we reach the conclusion that there are no solutions for
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only one complex phase. When both phases are set to zero, there is a solution for α = 0. Under these

conditions, the equations (A.4) are given by

v3

4
√

2

[
4m2 + 8M2

S

v2
+
(
1 + ε2

1 + ε2
2

)
λ1 + 2λ2 −

(
ε2

1 + ε2
2

)
(λ2 − λ3 − λ4)

]
= 0 , (A.20a)

v3ε1

4
√

2

[
4m2 − 4M2

S

v2
+
(
1 + ε2

1 + ε2
2

)
λ1 − λ2 + 2ε2

1λ2 + λ3 + λ4 + ε2
2 (−λ2 + λ3 + λ4)

]
= 0 , (A.20b)

v3ε2

4
√

2

[
4m2 − 4M2

S

v2
+
(
1 + ε2

1 + ε2
2

)
λ1 − λ2 + 2ε2

2λ2 + λ3 + λ4 + ε2
1 (−λ2 + λ3 + λ4)

]
= 0 . (A.20c)

We use (A.20a) to remove m2 from the remaining equations and obtain

vε1

4
√

2

[
−12M2

S + v2
(
−1 + ε2

1

)
(3λ2 − λ3 − λ4)

]
= 0 ,

vε2

4
√

2

[
−12M2

S + v2
(
−1 + ε2

2

)
(3λ2 − λ3 − λ4)

]
= 0 .

(A.21)

The solutions with nonzero ε1,2 to the equations above are of the form

ε2
1 = ε2

2 = 1−∆+ , v2 = 4

(
− m2

3λ1 + 2λ3 + 2λ4
+

2M2
S

−3λ2 + λ3 + λ4

)
. (A.22)

Thus, we obtain a VEV configuration of the form v/2
(
1,±

√
1−∆+,±

√
1−∆+

)
. This is the solution

used in [56] with a different parametrization.
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