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Resumo

O Modelo Padrao é notavelmente bem sucedido na descrigao das interagoes de particulas elementares.
No entanto, a observagao experimental de oscilagdes de neutrinos impde a necessidade de estender o
modelo de alguma forma, para acomodar massas e mistura de neutrinos.

Nesta tese, consideramos uma extensao em particular, restrita por uma simetria A, com um neutrino
de direita num singleto de A, e trés dubletos de Higgs num tripleto de A;. As massas dos neutrinos
surgem devido a um mecanismo de seesaw, e 0 sector de neutrinos resultante € estudado a baixas
energias, através de um processo numérico que gera pontos aleatoriamente no espaco de parametros
do potencial escalar de Higgs, de modo a aplicar as equagoes do grupo de renormalizagdo. A analise
€ repetida com a inclusao de um termo no potencial de Higgs que quebra A, suavemente.

Verificamos que os valores experimentais para as diferencas de massas quadradas e angulos de

mistura dos neutrinos s6 sao reproduzidos no caso de quebra suave de A,.

Keywords: Modelo Padrao, Massas e mistura de neutrinos, Simetria A,, Mecanismo de see-

saw
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Abstract

The Standard Model is remarkably successful at describing the interactions of elementary particles.
However, the experimental observation of neutrino oscillation imposes the necessity of extending the
model in some way to accommodate for neutrino masses and mixing.

In this thesis, we consider a particular extension, constrained by an A, symmetry, with one right-
handed neutrino in an A, singlet and three Higgs doublets in an A, triplet. Neutrino masses arise due
to a seesaw mechanism, and the resulting neutrino sector is studied at low energy, through a numerical
process which generates points randomly in the parameter space of the Higgs scalar potential in order
to apply renormalization group equations. The analysis is repeated with the inclusion of a term in the
Higgs potential which breaks A, softly.

We find that experimental measurements of neutrino mass-squared differences and mixing angles

are only reproduced in the case of soft breaking of A,.

Keywords: Standard Model, Neutrino masses and mixing, A, symmetry, Seesaw mechanism
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Chapter 1

Introduction

Particle physics is remarkably well described by the Standard Model (SM), which relates elementary
matter particles, both quarks and leptons, with three of the four fundamental forces: the strong, the weak
and the electromagnetic forces. The SM is a gauge quantum field theory, with the first step towards its
construction being given by Glashow [1], who discovered, in 1961, a way to combine the electromagnetic
and weak interactions into a single electroweak model ruled by an SU(2)xU(1) symmetry. Quarks and
their interactions with the strong force were described by an SU(3) symmetry in what is called the
Eightfold Way, formulated in 1964 [2, 3] and later absorbed as a component of the SM, so that its
formulation came to be based on an SU(3)xSU(2)xU(1) symmetry. In 1967, the SM was defined in
its current form [4, 5] with the incorporation of the Higgs mechanism [6, 7, 8], which introduces a new
field, the Higgs field, that gives rise to the masses of all elementary particles through the mechanism of
spontaneous symmetry breaking (SSB).

Several experimental observations were made, which were overwhelmingly in agreement with the
predictions of the SM. Some examples are the discovery of neutral weak currents, caused by Z boson
exchange, in 1973 [9, 10, 11], the discovery of the W* [12, 13] and Z [14, 15] bosons themselves
in 1983, and the recent discovery of the Higgs boson, in 2012 [16, 17]. These and dozens of other
experimental observations contribute to the acknowledgment of the SM as a theory that is incredibly
successful in describing the interactions of elementary particles. However, there are some areas of

elementary particle physics which the SM cannot fully describe. One of these pertains to neutrinos.

1.1 A brief history of neutrinos

Neutrinos are very light electrically neutral leptons that exist in three generations, associated with the
three generations of charged leptons: electron, muon and tau neutrinos. The existence of neutrinos was
first postulated by Pauli in 1930, in order to explain the phenomenon of beta decay, in which a nucleus
N° emits a proton p*, with the observable emission of an electron e~. If the interaction were indeed
given by

N = pt e, (1.1)



then it would be a two-body decay and the resulting particles would have a fixed energy. Instead,
the energy spectrum for the electron was found to be continuous [18]. Pauli’s proposed solution to this
problem was that a third undetected particle was being produced in the decay: a light, electrically neutral
particle which he named neutron. With the discovery of the neutron as we know it, which is a neutral
particle n° of similar mass to the proton, this nomenclature was abandoned. It was Fermi who took
up the problem, naming the light particle neutrino and suggesting, in 1934 [19], that beta decay was a
three-body decay of the form

n’ = pt+e +77, (1.2)

where 77 is the electron anti-neutrino. Due to the form of the electron energy spectrums, it was deter-
mined that the neutrino should either be massless or have a very small mass. It is established in the SM

that neutrinos are massless.

Because neutrinos are electrically neutral leptons, they don't interact through the electromagnetic or
strong forces, making direct detection difficult. It was only in 1956 that the existence of neutrinos was
confirmed, in the Cowan-Reines experiment [20]. Anti-neutrinos produced by beta decay reacted with
protons through

To+pt = n’+et, (1.3)

and the resulting positron e™ quickly annihilated itself with an electron, producing detectable radiation,
while the neutron was captured by an an appropriate nucleus, also producing radiation. The coincidence
of both emissions was the unique signature of the electron anti-neutrino interaction. The two remaining

types of neutrino were detected later, the muon neutrino in 1962 [21] and the tau neutrino in 2000 [22].

In the late 1960s, the Homestake experiment was established to detect neutrinos emitted by nuclear

fusion in the Sun, which interacted with a large deposit of perchloroethylene through
ve +37Cl =37 Ar+ e . (1.4)

The amount of Argon collected in the deposit would correspond to the amount of iteractions that had
ocurred, so that it would be possible to determine the amount of neutrinos that had interacted. The
results of the experiment were held in disbelief, as it was found that only one third of the predicted
interactions were taking place [23], in what was called the solar neutrino problem. It was widely admitted
that a mistake had been made, either in the theoretical prediction or in the experimental observations,
but both were scrutinized closely with no errors found. Later experiments for the detection of neutrinos

corroborated the results of the Homestake experiment.

Many ideas were suggested to explain the difference between theory and experiment, including the
hypothesis of neutrino oscillation. This phenomenon was first predicted by Pontecorvo in 1957 [24]. He
postulated that if neutrinos had a very small but nonzero mass, then it was possible that their mass
states, in which they had definite mass, did not correspond to their flavor states, in which they interacted
through the weak force, but rather to a quantum superposition of those states. Then neutrinos, which

were produced in definite flavor states, would propagate through space as a superposition of mass



states, with each of the mass states acquiring a different quantum phase, which in turn would cause
the neutrinos to become a superposition of flavor states as well. When neutrinos reached detectors and
interacted, there was a possibility that each of the flavor states in the superposition would interact. In
this way, electron neutrinos produced in the Sun could travel to the Earth and there interact as muon
or tau neutrinos, due to neutrino oscillation. In the end, neutrino oscillation was confirmed by the SNO
experiment, which used heavy water as a neutrino detector, making it capable of detecting two reactions,
one which involved only electron neutrinos, and one which was sensitive to all three neutrino flavors. The
experimental results were that the flux of neutrinos from the Sun was in agreement with the theory, but
only one third of those neutrinos were interacting as electron neutrinos [25].

The confirmation of neutrino oscillation did solve the solar neutrino problem, but in doing so required
the existence of nonzero neutrino masses, which contradict the formulation of the SM. Thus, we find
that neutrino phenomenology is not fully described by the SM and it is necessary to alter it in a way that
accommodates for neutrino masses and oscillation. This is a rich topic of study in current times, with

many different extensions of the SM being suggested. This thesis will focus on one such model.

1.2 Objectives and outline

As stated above, the purpose of this thesis is to study an extension of the SM in which neutrino masses
arise. We specify the fields and constraints being added to the SM and study the resulting terms in the
Lagrangian of the theory. Based on these terms, we obtain expressions for the parameters of the neu-
trino sector related to neutrino mass and neutrino oscillation and compare them with the experimental
results available. Finally, we conclude as to the validity of the proposed model, depending on whether
we can determine conditions for which the model is in agreement with experimental data.

This thesis is organized as follows. In Chapter 2, we present an overview of the SM formulation,
focusing on the electroweak sector. We move on to Chapter 3, where we address the problem of
neutrino mass and some ways in which the SM can be extended to include massive neutrinos. In
Chapter 4, we introduce our model, with extensions in both the fermionic and scalar sectors and a new
imposed symmetry. We study the resulting neutrino masses at a very high energy scale and at the
scale of current experiments and conclude upon the validity of the model. In Chapter 5, we softly break
the imposed symmetry and study the effects on the neutrino masses and remaining parameters of the
neutrino sector, concluding upon the validity of the model in this case. Finally, in Chapter 6 we present
our conclusions and suggest further work to be done on the topic. Additional calculations related to the

minimization of the Higgs potential for our model are presented in Appendix A, at the end of the thesis.






Chapter 2

The Standard Model of particle
physics

The SM is based on the gauge group SU(3).xSU(2);,xU(1)y. Here ¢ stands for color, L for left-
handedness and Y for hypercharge. The matter content of the SM is [26]:

ug,
Quarks QLo = 1~ @321/,

dLa

URa ™~ (37 1,2/3) ) dRra ~ (35 17_1/3)7

Fermions
Ve
Leptons /(;, = | ~a,2,-1/2), (2.1)
lLOz
lRa ~ (17 1, —1),

Higgs ¢ = ~(1,2,1/2),
(Z)O

where the numbers in brackets indicate how the fields transform under the SM gauge group. The first
number describes how the field transforms under SU(3). (1 for a singlet, 3 for a triplet) and the second
how it transforms under SU(2), (1 for a singlet, 2 for a doublet). The third number is the hypercharge Y’
of the field, given by

Y=0Q-1T3, (2.2)

where @ is the electric charge and T3 is the third component of weak isospin. The fields u, and d,
correspond to up- and down-type quarks, and v, and [, to neutrinos and charged leptons, respectively.
The index a runs through the three generations of fermions, while the subscripts L and R denote the
chirality of the field, which can be left-handed (LH) or right-handed (RH), respectively. Chirality is defined

by a field transformation law under application of the operator v° = i7°y1~2+3, where v are the Dirac



matrices forming a Clifford Algebra. Namely,

YYr=vr , YUL=—vL. (2.3)
Any field can be decomposed into its RH and LH components, ¢ = ¥ + ¢ = Pry + Pri, by the

application of the projection operators Pr .

144+°
5

Pr1 = (2.4)

We focus on the electroweak sector of the SM, corresponding to the group SU(2). xU(1)y. The

electroweak Lagrangian density (identified as the Lagrangian in the following) is

1 1
Low =(D"9)!(Dyg) = V(¢) = Wi, W™ — 2B, B
+ilpaPlia + iGLa Pqra + ilRaDlra + TR Dtra + idraDdpa (2:5)

— (Y. 5lradlrs +H.e) — (YisGiadurs + He.) — (Y& ,5qraddrs + H.C.).

In this equation, the Feynman slash notation, y = v*p,,, is used, as well as the definitions ¥ =40 and
6 =im¢*. YL, Y* and Y are general 3 x 3 complex Yukawa matrices and H.c. denotes the Hermitian
conjugate. Local gauge invariance requires replacing the ordinary derivative 0,, by a covariant derivative
D,, given by

D, =0, - igWﬁ% —ig'B,Y . (2.6)

Y stands for the generator of U(1)y and 7% (a = 1,2, 3) are the Pauli matrices (generators of SU(2).,).
The vector fields B, and W7 (a = 1,2,3) are introduced to ensure local U(1)y and SU(2). gauge
invariance, respectively. The number of vector fields required to ensure local gauge invariance under
the action of a group is equal to the number of generators of that group. Thus, there are three W, fields
and one B,, field. The corresponding invariant kinetic terms are constructed using the field strengths

B =0,B, —9,B, , Wi, =0,W—0,W;— ge"™WiWy. (2.7)

wr =

As for the potential associated to the scalar field ¢, one has the most general V(¢), invariant under the
SU(2)r xU(1)y gauge group:
V(9) = 1*0T¢ + MoT9)?, (2.8)

where 1 has dimensions of mass and ) is a dimensionless parameter. One can notice that there are no
mass terms in the Lagrangian of (2.5), as no such term would be invariant under the gauge group. This is
obvious for gauge fields. For fermions, a mass term would be of the form —myn) = —m(Yrvr + VrYL),
which would imply combining an SU(2), doublet with an SU(2), singlet, thus leading to a term that is not
invariant under SU(2) . Focusing on the hypercharge of such a term, we have for the RH field Y = Q
and for the LH field Y = @ — T3. Thus, we obtain a hypercharge of T3 for v;1r and —T3 for ¢riy,

concluding that the mass term is not invariant under U(1)y. There seems to be a mass term for the



scalar Higgs field in the potential of (2.8), but this is contingent on having 12 > 0, which, as we will see,

is not interesting from the theoretical viewpoint.

This incongruence, given that elementary particles are known to be massive, is lifted by the Higgs
mechanism. After SSB in the electroweak sector, mass terms arise for bosons and fermions. The former

obtain mass from the Higgs kinetic term, the latter from the Yukawa terms, the last line in (2.5).

2.1 The Higgs mechanism

SSB occurs when the Lagrangian of a theory respects a certain symmetry but the vacuum state (or
lowest energy state) does not. In the case of the SM, the vacuum is identified as the configuration of
the field ¢ which minimizes (2.8). For u? > 0, the minimization condition is |¢| = 0, while for u? < 0, it
is [¢|? = |vsm|? = —p?/2). Thus, in this case, the fields possess a nonzero value in the vacuum. If a
charged field has a nonzero vacuum expectation value (VEV), then the vacuum has an electric charge,
which cannot occur as electric charge is a conserved quantity of the SM. Since only neutral fields can

acquire a nonzero value in the vacuum, we have

N
(9) = A I . (2.9)
<¢0> Usm

In general, the minimization condition sets vgy = e’ —%. Choosing a particular VEV corresponds
to fixing a value for 8. We fix 8 = 0, thus realizing electroweak symmetry breaking (EWSB). The Higgs

field can be parametrized as oscillations around the vacuum state as

B ,5“(:1:)7‘“ 0

V2

Here, H(xz) and £(x) are real fields with zero VEV, so that (2.9) is valid. Before SSB, it is possible to
apply a gauge transformation to ¢, leaving the Lagrangian invariant. By choosing the unitary gauge, we

can absorb the exponential and obtain

0
= . 2.11
o(z) (USM + H\};)) ( )

After EWSB, H(x) will correspond to the physical Higgs boson field. Replacing (2.11) in the La-

grangian of (2.5), the VEV wvgy gives rise to new terms. Starting with the scalar and gauge sectors, we

D,¢= aOH -2 Wi~ i (Usm+H/\[2)—igfl ! (vsm + H/V?2) (2.12)
\#/i 2 7WS 2 BH

obtain

V(g) = %H‘* + V2 \vgmH? — 2 H? + const. . (2.13)



Defining the field combinations

1
V2

A, =sin GWW;3 +cos 0w By,

Wh=W) =—W, —iW}),

(2.14)

Z, = cos Oy W, —sin by By, ,

where 0y, is the so-called weak mixing angle, one obtains the following bilinear terms in the scalar and

gauge fields:

Do) (D) — V(6) = L(—optym? + L8y L9y (2.15)
(D) (Dy¢) = T\ 2 # 7 22cos? Oy g '

Thus, upon EWSB, the Higgs (H) and gauge (W, Z) bosons obtain masses

mg =/ —2u% = 2vsuVA , m — JUsu , Mg = gism___ _mw_ 2.16
" K M W V2 7 V2 cos Oy cos Oy ( )

The remaining field A, is massless, and is identified as being the photon.

2.2 Lepton electroweak currents

Before analyzing how EWSB grants mass to fermions, we study the lepton-gauge boson interaction

terms in (2.5):

— . T 1 — .
‘Cé}auge :ZEL(I (—l!]Wa2 + ZQIBQ) éLoz + ZZRQ (O + Zg/B) lRa

_;r ((gsW — g ew) A+ (gew + g'sw)Z V2gW Z) 0. (217)
)

— 3t La _
V2gW —(gsw + g'ew) A — (gew — g'sw
— ' lga(cw A — swZ)lga -
We have used the fields of (2.14), together with the simplified notation sy, = sin 6y, and ¢y = cos Oy

The diagonal interaction terms, combining particles with the same electric charge, correspond to the

neutral-current (NC) Lagrangian Lyc, while the off-diagonal ones describe charged currents (CC) Lgc.

Namely,
1
Lyc =5VLa [(gsw — g'ew) A+ (gew + g'sw)Z] via (2.18)
1— —
- §lLa [(gsw +g'ew) A+ (gew — g'sw)Z] lea — §'lra (cwh — sw i) lga
Lec :% (mW%a +EW_VLQ) : (2.19)



By requiring that neutrinos do not couple with the photon, the condition (gsyw — ¢’cw) = 0 is obtained,
yielding tan 6y, = ¢'/g. Therefore,

1 1 — —
ey =2 (QVLQW“VLQ - 5(031/ — %) Lo Lo + S%A/ZRw“lRa> Zy - (2.20)
cw

1 I -
[,ﬁ = — §2g/CWlLaAlLoc - g/CWlRaAZRa (221)

=—gew(lpadlra + lradlra) = —g' cewly"lA,,

The Lagrangians Lnc and L¢c describe the interactions between leptons and the physical gauge bosons.

2.3 Fermion masses

After EWSB, the Yukawa terms in the Lagrangian read

H N o N
— Lyuk. = (USM + \/§> (Y(ll@lLalRB + Ygﬁumum + YiﬁdLadRB + H.C.) . (2.22)

Considering only the bilinear terms in the fermion fields, and defining the mass matrices for the v fields
MY = vgnY?¥, we obtain

— Ly, = Ml glralrs + Mégtuzaurs + Ml sdradrs + He) + ..., (2.23)

where the missing terms describe fermion-Higgs interactions. In general, the fermion mass terms formed
in this way are not diagonal, meaning that they mix different generations. In order to bring these fields to
the physical basis, where the mass matrices are diagonal, we must perform a “rotation” in flavor space.

The bi-diagonalization of the matrices M is performed by unitary matrices VLl’fj?ﬁd:

V'M'V}, = diag(m.,m,,m,) = D',
Vi MUV = diag(m., me,me) = D", (2.24)

VLdTMdVISf = diag(maq, ms, my) = D?.

From the relations above, we conclude that we can change to a basis where the fermion fields are mass

eigenstates by performing the rotations

lp, — Vél]; s ZR — lele,
uy — VE/LUL , UR — VﬁuR, (225)

dp, — Vidy, , dg — Vidg.

These transformations operate differently on the two components of the SU(2), doublet ¢..,. Consider-

ing the quark-gauge interaction terms, which are analogous to those of (2.17), we see that the NC term



is unaffected by this rotation, while the CC term becomes

J z%@vnggw; +H.c.. (2.26)
This defines the quark mixing matrix, or Cabibbo-Kobayashi-Maskawa (CKM) matrix [27, 28], Vokm =
VL“TVLd. An interpretation of the presence of the quark mixing matrix in the CC interaction is that massive
up-type quarks do not interact with the massive down-type quarks of their generation individually, but
rather with combinations of down-type quarks defined by the rotation Vexmdr .
As Viokm is a unitary matrix of dimension n x n, where n is the number of generations, it can be
described by n? parameters, of which n(n — 1)/2 are moduli that correspond to mixing angles. The
remaining parameters are n(n + 1)/2 complex phases. Not all of these phases are physical since the

Lagrangian, aside from the CC terms, is invariant under the transformations
UL Ra = €95UL Ra AL Ra — ¢'%h dr, Ra- (2.27)

Thus, by applying such rephasings to quarks, we expect to remove up to 2n phases from the mixing
matrix. However, these transformations would correspond to a global rotation of all quarks followed by
a rephasing with 2n — 1 distinct phases. Therefore, only 2n — 1 phases in Vgku are unphysical. For
the case of n = 3, there are three mixing angles 6,2, 013, 623, and one phase §. The mixing matrix is

commonly parametrized [29] as

0

C12C13 512€13 S13€
_ i6 i6
Vokm = | —s12¢23 — c12523513€"°  C12C23 — S12523513€" Sa3C13 | > (2.28)
5 5
512523 — C12C23513€" —C12523 — 512C23513€"°  C23C13

where s;; = sinf;; and ¢;; = cos ;.

In the case of leptons, due to the absence of RH neutrino fields in the SM, there is no term in Lsy,
leading to a Dirac neutrino mass term upon EWSB. Thus, neutrinos are massless in the SM. This
means that performing a rotation of the neutrino fields such as the ones in (2.25) will not affect the

diagonalization of any mass matrix. Then we can define the transformation
v = Vive, (2.29)

which ensures that both the NC and the CC terms remain unchanged by the diagonalization of the

charged-lepton mass matrix. Consequently, no lepton mixing matrix arises.

10



Chapter 3

Neutrino masses and mixing

As shown in the previous chapter, neutrinos are massless in the SM due to the absence of RH neutrino
fields. This is motivated by the experimental observation that neutrinos produced in weak interactions
are always LH [30]. However, experimental results of neutrino oscillation have revealed that neutrinos
have mass, with three distinct mass-squared differences, indicating that at least two massive neutrinos

exist [31]. Thus, extensions of the SM must be considered in order to account for neutrino masses.

3.1 Effective neutrino masses and lepton mixing

Neutrino mass terms can be accounted for in the SM by adding sterile RH neutrinos vg, which are
SU(2)r singlets with null hypercharge, meaning that they do not interact with the gauge fields. Upon
this addition, Yukawa terms like those of (2.5) can be constructed, leading to neutrino mass matrices
of the form M"” = wvguY". Although neutrino masses have not been determined experimentally, an
upper limit of 2 eV has been determined from tritium decay experiments [32]. This is several orders of
magnitude below the mass of the lightest charged fermion, the electron. Thus, the Yukawa terms for
neutrinos would have to be much smaller than those of the remaining leptons in order to generate these
small neutrino masses. There is a mass difference of a few orders of magnitude between the lightest
and heaviest of charged fermions, but the difference between the electron and neutrino masses is even
larger. This seems to suggest a distinct mechanism for neutrino mass generation, one which could
account for such a deviation from the pattern followed by the charged fermions. One way to justify such
a distinct mass for neutrinos would be to introduce a neutrino Majorana mass term [33].

Since neutrinos are neutral fermions, they can be defined as their own antiparticles,
v=v" (3.1)

where the antiparticle of a fermion v is defined as ¢ = C@T. C'is the charge conjugation matrix, which
obeys CWT C~! = —4#. The property (3.1) characterizes a Majorana particle. No charged fermion can

be a Majorana particle, as particles and antiparticles have opposite charge. Given +° = i7%y1v2~3, we
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can conclude

V(o) = (¥r)?, (3.2)

which determines that the antiparticle of a LH field is a RH field. This leads to a new mass term for the

LH neutrinos of the SM, called the Majorana mass term, defined as
1 ¢
— 5MVLVL +H.c.. (3.3)

There are some complications involving this mass term in the SM. The first is that such a term will break
any U(1) symmetry under which vy is charged, due to the fact that neutrino fields can no longer be
rephased at will. Since v = v“, the rephasing must be the same for v and for v, which is inconsistent
with the definition of ¢ as an antiparticle. In the SM, the broken symmetry is lepton number L, and the

Majorana mass term generates transitions AL = 2.

The second complication is more severe: LH neutrinos are part of an SU(2);, doublet. As such, there
must be additional fields in the mass term in order to form an invariant of the gauge group. Given the
field content of the SM, there is no way to form such an invariant that is also renormalizable. Waiving
the requirement of renormalization, the lowest dimensional term which induces Majorana mass terms

under EWSB is the five-dimensional Weinberg operator [34],

Lwein. = cag% (@&) (Ww) Y Hc., (3.4)

where the ¢, are complex coefficients. The presence of a non-renormalizable term such as the Wein-
berg operator in the effective Lagrangian suggests that the SM is not a complete theory, but rather one
valid at low energies. We would expect that the exact theory manifests itself only at energies of the order
of a high-energy scale A, considered in (3.4) as an energy cutoff. Upon EWSB, the Weinberg operator

becomes

02

Luein. = =M (caprfvs +He.) + L, (3.5)

where Li’r{tf’ contains neutrino-Higgs interaction terms. Thus, comparison with (3.3) yields the Majorana

mass matrix

202
o= =My, (3.6)

The presence of a neutrino mass matrix, as in the case of quarks, will lead to mixing between lepton gen-
erations in electroweak currents upon diagonalization. Because the Majorana mass matrix is symmetric,
it can be diagonalized by a single unitary transformation, V. As such, in addition to the charged-lepton
transformations of (2.25), we define

via = (V) aiVLi s (3.7)

where the fields v; have definite masses m,;. The CC term of (2.19) becomes, under this transformation,

9 [ ot
Lhs = 7 72 (VE ViialaW +He (3.8)
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Best fit 10 (30 range)

Parameter
Normal Inverted
Am, 7.507919 (7.03 - 8.00)
l(fj;‘g\f,z +2.524T05%9 (12,407 — +2.643)  —2.51470-0%% (—2.635 — —2.399)
sin’ 6, 0.30670:512 (0.271 — 0.345)
sin? B3 0.44173527 (0.385 — 0.635) 0.58770:529 (0.393 — 0.640)
sin 013 2.16670-072 (1.934 — 2.392) 2.17975:976 (1.953 — 2.408)
5/° 261155 (0 — 360) 277192 (145 — 391)

Table 3.1: Best-fit values and 30 allowed ranges of the three-neutrino oscillation parameters in the NO
and 10 cases, obtained from a global fit of current neutrino oscillation data [31]. Note that AmZ, =
Am3, > 0 (Am32, = Am3, < 0) for NO (IO).

The lepton mixing matrix, known as the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [35, 36], is
thus defined by
Upnns = Vi VY. (3.9)

As aforementioned, the neutrino fields cannot be rephased due to their Majorana nature. This means
that, whereas we could remove up to 2n — 1 phases from the CKM matrix, in this case only n phases
can be removed. For n = 3 generations, the PMNS matrix is then parametrized by three mixing angles

and three phases. Namely [32],

c12€13 512€13 5137 e~ian/2 0 0

UpMNs = | —s12c23 — C12523813€™°  C1aca3 — S12803513€0  sa3ci3 0 e~t2/2 0|, (3.10)

1)

, 5
8125923 — €12C23513€" —C12823 — 512C23513€"°  C23C13 0 0 1

where s;; = sin6,;; and c;; = cos 0;;. 0;; are the lepton mixing angles, ¢ is a Dirac-type phase and a; »
are Majorana phases, arising due to the Majorana character of neutrinos. We conclude that the low-
energy neutrino sector of the (effective) SM Lagrangian contains nine parameters: three mixing angles,
three phases and three neutrino masses.

Neutrinos are produced and detected in definite flavor states, but they evolve in time according to
the values of their masses. Since neutrino flavor states are superpositions of mass eigenstates with
distinct masses, neutrinos may oscillate between different flavors. A determination of the oscillation
probability, such as that in [33], concludes that it is not dependent on the neutrino masses m;, but rather
on the mass-squared differences Am7; = m7 —m?. As the sign of Amj3, is indeterminate (while Am3, is
positive), there are two possible orderings of neutrino masses, normal ordering (NO) or inverted ordering
(10), corresponding to

NO:m; <mo <msg , IO0:mg<mi <msy. (3.11)

Current global fits to all presently available oscillation data by Esteban et al. [31] are summarized in

Table 3.1. Other analyses are those of Capozzi et al. [37], and Forero et al. [38].
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Figure 3.1: Tree-level interactions mediated by new heavy particles, in type | and lll seesaw mechanisms
(left) and type Il seesaw mechanisms (center), which give rise to the Weinberg operator of (3.4) at low
energies (right). Notice that K « ¢/A [see (3.4)].

3.2 The seesaw mechanism

If the SM is an effective theory, then the complete theory which describes particle physics must have
additional degrees of freedom, described by fields that are decoupled at low energy. As such, these
fields must have large masses, comparable to the scale A in (3.4). Extensions of the SM using the
seesaw mechanism consider a tree-level interaction between lepton and Higgs fields mediated by new
heavy particles. At low energy, this interaction reduces to a four-point vertex of the form ¢(¢¢, such
as that of (3.4). Upon EWSB, this term will generate neutrino Majorana masses. For the seesaw
mechanism to be possible, the extra fields ¢ can be added in two ways. Type | [39, 40, 41, 42, 43] and llI
[44] seesaw mechanisms consider fields with interaction terms ¥ ¢¢ (left diagram in Figure 3.1), while the
type 11 [45, 46, 47, 48, 48] seesaw mechanism considers fields with ¢¢ and y¢¢ terms (center diagram
in Figure 3.1).

Focusing on the ¢ ¢¢ interaction terms, the condition of gauge invariance, given the representation
assignments of ¢ and ¢, imposes that ¢» must have null hypercharge and must transform as either an
SU(2) singlet (type | seesaw) or triplet (type Il seesaw). We reach the latter conclusion by obtaining
the Kronecker product of SU(2) representations 2 ® 2 = 1 ® 3 and observing that 3 ® 3 contains the

trivial representation. The fields ) must be fermionic due to angular momentum conservation.

We consider the type | seesaw mechanism in particular. In this case, the fields v are singlets of zero
hypercharge. Thus, ny sterile RH neutrinos vr; are added to the SM. Using these fields, we can form
a neutrino Yukawa term which gives rise to Dirac masses upon EWSB. We can also define a Majorana
mass term for the RH neutrinos. The Lagrangian for this extended theory will therefore be

L= Lou + - [Ty 0,0m — 7y, Y0 G+ (M) vvp +H 3.12

| = Lsm + 3 VRY " OuVR — VRY MVR} - wil Lo PVRi + 5( R)ijV5;Vr; +H.C.| | (3.12)

where the first term in brackets is the kinetic term for right-handed neutrinos, ¢% denotes the left-handed
lepton fields in the weak basis, as opposed to the mass basis, and My is the Majorana mass matrix.
Because the Majorana mass term is a singlet of SU(2) . with zero hypercharge, and thus invariant under

the action of the gauge symmetries of the theory, the value of Mp is not protected by these gauge
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symmetries and is free to be arbitrarily large. After EWSB, the neutrino terms in (3.12) are

v 9 o 0 9 [70 -0
L ZTCW v Zuvi, + NG {Z%oﬂ”wu via +H.C.
1— T — 1 —
+ iygfyﬂauyg + QVR’)/”ﬁuyR — (mD)Oﬂ‘V(I)MVRi — 5( R)ijygiVRj + HC:l (313)
:Lniov“’Z dicn) + ilv'y“W_dccn% + E-no Y0,m% — 1TTOJ\/l(n%)C +Hc.| .
2cw L K \/§ L H 9 'L H 9L

In the last equation we can find, in order of appearance, the NC and CC terms, the kinetic terms and the
mass terms. mp is the 3 x nr Dirac mass matrix and My, is the ng x ngp Majorana mass matrix. We

use the definitions

I/O 0 mpy
TL% = L 5 M= )
vs mL, M
i b (3.14)
y 13553 O
NC — , dec = (13><3 0) :
0 0
Since the mass matrix M is symmetric, it can be diagonalized through a unitary transformation
d ©O0
U'MU*=d,, , d,, = , (3.15)
0 dy
with d, = diag(m1,ms2, m3) and d; = diag(My, ..., M, ), which will correspond to the masses of the

three light components and the nr heavy components, respectively, in the limit Mz > mp. The mass

eigenstates are defined as

VvV S v
n = Uny = S (3.16)
R T VnhL

where the matrix U has been written in block form. Using this form of U and (3.15), we obtain the
system of equations

Rimf =d,vT

T'mL = d,ST

UmM=d, U" = , (3.17)
STIIID + TtMR = d]MTT

VTIIID + RTMR = dDRT

which, for M > mp, allows us to determine

3

R~—(Mj) 'mhvV+0 (1‘;\%) =d, VI~ - VimpM;'m}. (3.18)

From the unitarity of U, we obtain VIV = 1 — RR. Therefore, we arrive at

4
d, ~ - VimpM;'miv* + 0 (?\%) ) (3.19)
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The Lagrangian with only the light fields is given by

,Clli,ght :%I/ZL’Y“Z#VTVWL + % {E’YMW;VI/ZL + HC}
. 3.20

1 m 1__ t -1 T~7*),,C ( )
+ 51/“;’)/ aMVlL — =L (—V mDMR mpV ) v, + H.c.| .

[\)

Upto O (véM/MQ), the matrix V is unitary and thus we can rotate the light mass eigenstates v;;, by V!
without adding flavor-changing neutral currents or off-diagonal elements in the kinetic term. We obtain,

in this basis, the light-neutrino mass matrix

m, ~ —mpMy'm}. (3.21)

The same procedure can be followed in the heavy neutrino sector, with Lagrangian

e = I 5r8T8 Z,u + 2

5o v 187, Svns + Hee

; 1 (3.22)
+ [2m7”3uth — §mdMny + H.C.} .
Using (3.17), we determine
dy ~ T [MR + (M%) "'mbmp + m%mE(M*R)_l} T, (3.23)
and, given SS = 1 — TTT, we parametrize the perturbations to the unitarity of T as
1 *\—1_ T —1 véM

where K, is a unitary matrix. The transformation v, = Ky, ensures that the kinetic term has no

off-diagonal elements. In the end, we obtain the heavy-neutrino effective mass matrix

]‘ * O\ — * * 0\ —
Mest ~ Mp + 5 | (Mp) ™ mpbmp + mpmp, (M)~ | (3.25)

With three generations of RH neutrinos (ngz = 3), the mass matrix m, has, in general, three distinct
nonzero eigenvalues. We can count the parameters of the neutrino sector in this SM extension, going
to the basis where Mp, is diagonal. Since mp is a 3 x 3 complex matrix, it has eighteen parameters,
of which three can be removed by rephasing. There are also three heavy Majorana masses, for a
total of eighteen parameters. Given that, at low energies, the neutrino sector is described by only nine
parameters, we conclude that the full theory cannot be reconstructed using only low-energy neutrino
data. In the case nr = 2, it is also possible to obtain three distinct mass-squared differences, although
one of the neutrinos is massless. The number of parameters is reduced to eleven, still larger than the
seven parameters at low energies (two neutrino masses, three mixing angles and two complex phases).
With a single RH neutrino, the seesaw mechanism is no longer viable, as the effective neutrino mass

matrix has two zero eigenvalues.
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Figure 3.2: Tree-level interaction mediated by new heavy particles, in the type | seesaw mechanism, for
a model with multiple Higgs doublets ¢; withi =1,2,... . ng.

3.3 Type | seesaw with more than one Higgs doublet

So far, the discussion of SM extensions has been focused on expanding the fermion sector of the SM.
However, extensions of the scalar sector, in which additional Higgs doublets are considered, are also

viable. In a theory with ny Higgs doublets, the scalar potential takes the general form [49]

V(¢) = quadratic terms + A (ququ) (gzquSl) , (3.26)

where the \;;, are dimensionless couplings which satisfy Aijxi = Agiij = AJ;,. The indices i, j, &, run

over the ny doublets. The lepton Yukawa Lagrangian becomes
— Lk = (Yaslradilrs + H.e., (3.27)

giving mass to the charged leptons upon SSB. The five-dimensional Weinberg operator is generalized

to n%, operators O;;, which take the form
015 = (1 ardatose) (€ 6u) (e 50) (3.28)

where the indices a, b, ¢, d are SU(2),, indices that distinguish between the two components of SU(2),,
doublets, and ¢ is the antisymmetric tensor with €2 = 1. The % are flavor coupling matrices with
dimension —1 which satisfy £ = x7%" . We consider the implementation of the type | seesaw mechanism

with nz Higgs doublets and determine the form of % in this case.

With ng Higgs doublets ¢;, the interactions represented in the left diagram of Figure 3.1 take the form
presented in Figure 3.2. The changes with respect to the ny = 1 case are reflected in the Lagrangian

of the extended theory, which varies from (3.12) in the Yukawa term. Namely,
— L p— H e ug vy g0 - 1 el
L= Lsy+ 3 [VR’Y OuVR — VRY #VR} — (Y8, 0 o @avri + §(M3)ijuRiuRj +H.c.|, (3.29)
where a = 1,2,...,ng. Recalling the calculations of the previous section, we obtain the light-neutrino
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mass matrix m, given by (3.21), applying the redefinition
mp =uvsmY"” = v, Y, , (3.30)

where (¢0) = v, is the VEV of the neutral component of the Higgs doublet ¢,. Thus, the effective

neutrino mass matrix in the case of ny Higgs doublets is

ny
m, ~ — Z vavngM;LlYZT . (3.31)

a,b=1

Comparing this expression with the generalized mass operators O;; of (3.28), we determine
K% = Y'MEYY (3.32)

To conclude, in the case of ny > 1 there is more than one effective neutrino mass operator contributing
to m,. In the next chapter we will focus on the phenomenology of a specific model with ngy = 3, ng =1

and an imposed A, discrete symmetry.
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Chapter 4

Single right-handed neutrino A, model

In the previous chapter, we discussed extensions of the SM which can account for neutrino mass gener-
ation. When implemented, these extensions will, in general, lead to a significant increase in the number
of free parameters. In order to reduce this excessive freedom and obtain a more predictive model, the
typical prescription is to introduce new symmetries which the theory must obey, enforcing relations be-
tween parameters. Recently, discrete flavor symmetries have been the focus of interest in the literature
[50]. Our model considers one such symmetry, given by the A, group, which is a popular choice within
discrete symmetries.

The popularity of the A, group is not arbitrary. As will be shown in Section 4.1, all fields under A,
must be assigned to either a singlet or a triplet. Given that there are three generations of fermions in the
SM, this is the ideal set of representations for an extension of the SM that adds particles in sets of three.
The most common option is to add three RH neutrinos in a triplet, thus enlarging the fermionic sector and
obtaining the results mentioned in Section 3.2, namely three nonzero neutrino masses. In our model,
we consider instead the minimal fermionic extension, consisting of a single RH neutrino, and enlarge
the scalar sector in order to have three Higgs doublets. It has been shown in the previous chapter that
adding a single RH neutrino to the SM cannot lead to three distinct neutrino mass-squared differences
through the type | seesaw mechanism. However, when simultaneously expanding the scalar sector, the
conclusions regarding the single RH neutrino scenario may not apply. Thus, in this chapter, we explore
an A, model with one RH neutrino assigned to an A, singlet and three Higgs doublets transforming as

a triplet of the same group.

4.1 The A, group

A, is a subgroup of the group of permutations of four elements S, which contains the even permutations.

It has twelve elements partitioned into four conjugacy classes:

Cy = {e}, Cs = {(123), (142), (134), (243)},
Co = {(12)(34), (13)(24), (14)(23)}, Cy = {(132),(124),(143),(234)} .

(4.1)
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X1 X2 X3 X4
101 1 1 1
1 |1 1 w w?
1”7 | 1 1 w? w
3 /3 -1 0 0

Table 4.1: Character table for the group As. We take w = exp(i27/3).

The number of irreducible representations (irreps) of the group is equal to the number of conjugacy
classes [51]. Of these, the 1D irreps will be those of the group A,/[A4,A4]. Since the commutator
[A4, A4] is isomorphic to the Klein group K = Zy X Zo, of order 4, we have #A,/[A4,Ay] = 12/4 = 3
and therefore there are three 1D irreps of A,. We determine that the final irrep has dimension 3 by the

relation

Zni =ng, (4.2)
“w

where the sum is over all inequivalent irreps, n,, is the dimension of the irrep 1 and n is the order of the
group. The character table for the group can be constructed from the known 1D irreps of Z3 (the only

group of order 3) and the relations of orthogonality and orthonormality

ng * i g * .U L
Z@(X?) X?:‘S]’Z%(Xf) Xy = oM, (4.3)
o i

where n; is the number of elements in a class and x!" = Tr [U*(g)] is the character of an element g € C;
in the irrep . We obtain the character table given in Table 4.1.

Any element in the group can be obtained from the two generators, s = (12)(34) and t = (123). For
example, (134) = ts. Thus, the definition of U#(s) and U*(t) defines a basis for a representation x. A

group representation R can be decomposed as a direct sum of irreducible representations of the group,
U (g) = P a,U"(9), (4.4)
I

where q,, is the multiplicity of the irrep u, which can be determined using

f <R

~ - n;
a, =X, W= —xE. (4.5)

We can apply this equation to the Kronecker product of irreps and obtain its direct sum decomposition,

taking into account y**”

K2

= x! x x¥. The results are

1pl=1"x1" =1,

1®1/:1//®1//:1/,

1®1//:1/®1/:1//’ (46)
193=1%3=1"23=3,

33=1¢1¢1"9393.

20



The exact form of the invariants obtained by the tensor product of two A, triplets will depend on the
choice of basis for the 3D irrep. For the Ma-Rajasekaran basis, the product (a1, as, as) ® (b1, b2, b3) leads

to the invariants [52]

a1by + asbs + azbs ~ 1, asbs asbo
a161 + w2a2b2 + wagbg ~ 1/, a3b1 ~ 31 ; a1b3 ~ 32 . (47)
a1b1 + wagbg + w2a3b3 ~ 1// s a1b2 CLle

The 1 components of the tensor product 3 ® 3 ® 3, which will be used further ahead, are given by

a1 bl C1
as [ b2 (29 Co = (agbgcl —+ agblcg —+ a1b203) () ((IngCl -+ a1b302 + agblcg) . (48)
as bs cs

4.2 A, scalar potential

As discussed in Section 3.3, when ny increases, the scalar potential takes a more complex form, with a
larger number of free parameters. In the case of three Higgs doublets placed in a triplet representation
of Ay, i.e., ® = (¢1, P2, p3) ~ 3, the Ay-invariant potential is given by [53]

2
V(@) =m® Y oloi+ 5 (Z 0! @) + 2o (0101 + w?los + wlos) (6161 +wolos +w?els )
+ 2 [(@0s) (002 ) + (o101) (o10s) + (6102) (oler)]

{50 (o) + (ohen) "+ (olen) | + e}

(4.9)

The parameters m, A1, A2, A3 are real. The parameter )} is complex and its phase can be made evident
by the redefinition \}, = X\;e®, where \, and « are real. This potential is determined to have global
minima for four distinct VEV configurations, valid in different regions of the parameter space. These are
[54]

hy = v(1,0,0), he =v(1,1,1),

. (4.10)
hs =v(£l,m,7%),  ha=v(1,€%,0),

where n = exp(in/3) and v, ay € R. The parameter v can be related to vgy, defined in Section 2.1. Take,
for example, the boson masses given in (2.16). From the expressions for these masses in a model with

three Higgs doublets, which must return the known values of my, and mz, we obtain the condition
[v1]? + |v2)? + |v3|* = v3u, (4.11)

which fixes the normalization v. In order to determine the dimensionless couplings ;. V(®) can be
defined in the form of (3.26). The results will be presented in Section 4.6 (Table 4.2).

The neutrino mass matrix can be determined using (3.31), as the addition of a heavy RH neutrino
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implements a type | seesaw mechanism. In this case, the Majorana mass matrix reduces to the Majorana
mass of the single RH neutrino, Mg. The 3 x 1 Dirac mass matrix mp, is obtained, after SSB, from a

Yukawa term such as the one in (3.29),

Y T adivr + He. 222 mp = 0, YV (4.12)
The product of fields must be performed according to the representation assignment of each field and
the multiplication rules of A4, given by (4.7), so that we guarantee the invariance of the Yukawa term
under A,.

Before studying the neutrino mass matrix, a related issue must first be tackled. With the represen-
tation assignments of the RH neutrino and of the Higgs doublets fixed by the model, it is necessary to
determine the assignments for the LH lepton doublets /1, so that the field product of (4.12) can be deter-
mined. This can be done by studying the charged-lepton mass matrix, which also yields the assignments
of the RH charged leptons iz [55].

4.3 Charged-lepton masses

The charged-lepton mass matrix can be obtained through SSB from the Yukawa term given in (3.27),
with the condition that the field product must be invariant under A,. We wish to find the representation
assignments for ¢;, and [r which lead to three distinct nonzero eigenvalues of the charged-lepton mass
matrix, corresponding to the well-known values of m., m, and m..

There are four possibilities for assignments, determined by whether the three ¢;, and [ are assigned
to a triplet or to three singlets. The case where both are assigned to singlets is immediately discarded,
as it can be seen from (4.6) that 1,1’,1”" ® 3® 1,1’,1” = 3 regardless of which singlet representation is
used, and the Higgs doublets are assigned to a triplet of A,. Thus, it is not possible in this case to obtain

a charged-lepton Yukawa term that is invariant under A,. This leaves three possibilities.

4.3.1 [/, triplet, [ triplet

In this case, the field product ¢, ®ly is of the form 3 ® 3 ® 3. The 1 components of this tensor product

are given by (4.8). Thus, the Yukawa term takes the form

—y1(AL¢ser + TR + €LP2TR) — Y2(TLP2eR + ELP3ir + AL P17R) + H.C.

0 Ya2v3  Y1V2 €R (4.13)
SSB - .
» —(er Hr ) Y13 0 Y201 ur | + H.c.,

Y22 Y11 0 TR

where we consider the general VEV (v, v9,v3). The charged-lepton masses are the square roots of the

eigenvalues of the matrix M'M!", with characteristic polynomial
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A =22 (i +3) (lor|* + Jval® + [vs?) + A iy (Jor|* + [v2]* + |us|*) @14

+ (y +43) (Jorval? + [oavs|? + [10s|2)] — (43 +43)* Jorvavs 2.
We replace the general VEVs v; with those given by the configurations h; defined in (4.10). For the

vacuum configurations hy and h4, one of the eigenvalues is clearly zero. For hy and hs, we obtain

mi =mj =v\/yf +y3 —y1y2 , ms =0y +y|. (4.15)

All eigenvalues are nonzero in this case, but two are degenerate. Thus, this possibility must be discarded

since charged leptons are highly nondegenerate in mass, contradicting observation.

4.3.2 [/ singlets, [ triplet

This possibility contains several cases, due to the existence of three singlet irreps of A4, to which each
of the ¢;, doublets can be assigned. It can be concluded easily that, due to the form of the invariants of
(4.7), if at least two of the ¢, doublets are assigned the same singlet representation then the resulting
mass matrix will have linearly dependent lines and thus be singular. Then, we can reduce the cases
to (er,pr, ) ~ (1,1’,1”) and permutations, which all yield the same eigenvalues. Given that ) is
assigned the complementary representation of 1, so that 1)y ~ 1, this assignment corresponds to

(er,or,7) ~ (1,1”7,1’), given the tensor products of (4.6). Thus, we obtain the Yukawa term

— Ye€L ((I) lR)l - yuﬁ ((I) ZR)l/ — Y7L ((I) lR)ll/ + H.c. ) (416)

where the bold subscript indicates which field combination is chosen from the decomposition of the field

product in parentheses. Expanding the tensor products, we obtain after SSB

Yel1 Ye V2 YeU3 €R
- (ﬁ oL ﬁ) YuV1 w2y,ﬂ/2 Wy, U3 pr | + H.c.. (417)
Yrv1  WYrv2 WzyTUS TR

The matrix M!M!' has characteristic polynomial

)\3_)\2 §+ 2+ 72_ 2_|_ 2+ 2
(W2 + v +y7) (| + o2 + |vs]?) @18)

3N (V2yp + ypys + viy?) (lvrval® + [ogs]? + [v1vs|?) — 27y2y Y2 [orvavs|? .

One of the eigenvalues is zero for the VEVs h; and hy4 of (4.10). For hy and hs, the matrix has three

distinct nonzero eigenvalues, giving the charged-lepton masses
m{ = V3yev | mg = \/gy#v , m§ = V3y.v. (4.19)

Thus, this possibility leads to a valid charged-lepton mass matrix.
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4.3.3 /, triplet, [ singlets

This possibility also contains several cases, this time due to the freedom in assigning the singlets to /y.
As in the previous analysis, only permutations of (eg, ur,7r) ~ (1,1’,1”) lead to a matrix with nonzero

determinant for the general VEV (v, vy, v3). From this assignment, we obtain the Yukawa term

—Ye (E‘I))l erR — Yu (E@) 1 BB — Yr (E‘I))l, Tr + H.C.

YeU1 Yul Yr1 €R (4 20)
SsB S ) H :
— —\eL prL TL) | YeV2 wyuv2 W Yrv2 pr | +H.C..

2
YeV3 W7YLU3 WwyYr vz TR

The characteristic equation for M!M!" is identical to (4.18). Thus, this possibility also leads to a valid

charged-lepton mass matrix.

4.4 Neutrino masses

The previous analysis suggests two valid options for the representation assignments of ¢, and [g. The
neutrino Yukawa term (4.12) imposes that the product of fields 7, ® contain a singlet 1 term and so /;,
cannot be assigned to a singlet representation, as ® is assigned to a triplet. This eliminates one of the
possible assignments and we consider from this point on ¢;, ~ 3 and (eg, ur, 7r) ~ (1,1’,1").

In order to obtain the neutrino mass matrix given by (3.31), it is first necessary to determine the form
of the Dirac neutrino mass matrix mp under A,. This can be done using the Yukawa term (4.12). Noting

that ®f ~ & ~ 3, we compute the field product and obtain

~WYR <<I;T€L>1 +H.C. = -y 7Rk (¢I€L + G + ¢;§TL) +H.c.

(4.21)
558, — Y VR (V1Ver, + Vav,L + vsv-1) + H.C.,
for a general VEV (vy,v9, v3). Thus,
U1
mp=v, Y =y, | vy |, (4.22)
V3
and the neutrino mass matrix is given by
’U% V1V V1V3
2
; ST
m, = —v;v; Y 'Y" ]\/[R1 S vive VS vau3 | - (4.23)
Mg
V1V3 VU3 U%
It is clear that this matrix is singular. In fact, only one of its eigenvalues is nonzero,
y2
my =my =0, mg:—MVR (v} + 03 +v3) . (4.24)
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We conclude that the mass matrix of (4.23) does not reproduce the experimental results presented in

Table 3.1, as it does not lead to three distinct nonzero mass-squared differences.

4.5 Renormalization group equations

We have concluded that, although we have increased the number of Higgs doublets to three, the im-
plementation of the type | seesaw mechanism with one RH neutrino does not lead to a neutrino mass
matrix compatible with the most recent neutrino data. However, it is important to note that the mass ma-
trix in (4.23) is given at the seesaw scale Mg, the large energy scale at which the seesaw mechanism
operates. In comparison, experimental measurements of neutrino phenomena are performed at a much
lower energy scale.

The neutrino masses at the seesaw scale, given by the eigenvalues of the mass matrix of (4.23), do
not coincide with the neutrino masses at the energy scale of current experiments. Rather, these masses
are related through the renormalization group equations (RGE), a set of first-order differential equations
which determine the evolution of the couplings of a model with energy scale. In order to determine the
evolution of the neutrino masses, we must study the RGE of the flavor coupling matrices % introduced

in Section 3.3. Recalling that
m, = —vvjr = kY = ]Vfle”iY”jT , (4.25)

we see that neutrino masses will take different values at different energy scales according to the RGE

for k%7, given by [49]

dkid B nH nyg ) ) B B
1671'2L =—3¢%k" 4+ 4 Aeii kM + Tik™ + Typi™] + k9P + PTRY
j j

dt k=1 k=1 (4.26)
nH . T . . + T * . T * . . .
+22 {ﬁkgyil Ykl _ [sz _’_Kkz] le Ykl _’_Ykl le ik —Ykl Yil [Kk] _‘_ﬁgk}} ,
k=1

where )\, are the couplings of the scalar potential, related to the parameters \; (i = 1,2, 3,4) of (4.9),

t = log u, 1 is the energy scale and

Ty =T (YY) P=

N =

Sy (4.27)
k=1

Y} are the charged-lepton Yukawa matrices. In order to solve (4.26), it is necessary to simultaneously
solve the RGE for all couplings occurring in the equation. Thus, we also need the RGE for \;jx, Y},
and g, as well as additional couplings which may arise in these equations. For a simpler analysis, we
consider a leading-log approximation to the RGE of (4.26), with the assumption that the terms on the
right-hand side of the equation are constant. Under this approximation, x*/ evolves according to

dr'
dt

k() = KV (MR) + log(n/Mg) , (4.28)

t=log M r
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where
51‘161'1 §i15j2 57:15]‘3
1%l Yy
K" (Mg) = M7R 0i26j1  0i2052  0;2053 | > (4.29)
0i3051 03052  0430;3
and ¢;; is the Kronecker delta. The mass matrix at the energy scale of current experiments (which we
take to be my) is simply

m, (mz) = —vvjs" (mz), (4.30)

from which we conclude that all effective operators % contribute, in principle, to neutrino masses and

mixing.

4.5.1 Truncated RGE

Let us begin by considering a truncated form of (4.26), taking only the first two terms on the right-
hand side. These should be the most important, as all remaning terms contain the charged-lepton
Yukawa matrices, of smaller order of magnitude. This means that we are interested in those cases with
Y~ ot <L gy Nigrr ~ 1.

The calculation of the mass matrix must be performed for each of the two VEVs that lead to a valid

charged-lepton mass matrix, i.e., ho = v(1,1,1) and hs = v(x1,n,7*). For he, we obtain the mass matrix

9 o r Yy y
V7Y
m, = — MR y Ty ; (431)
y vy r
where
1 M
2 =14 {-3¢% + 4 Naaaa + 2Re Napas)] Og(%ﬂép) , (4.32)
log(mz /M
y=1+ [_392 +4 (Aaabb + Aabba)] g(16+/2R) ) (433)
being the A parameters given in Table 4.2. The eigenvalues of (4.31) are
1}2y2 U2y2
V=m§=——(x— y=—-——r 2y) . 4.34
my my MR (Jf y) , M3 MR (fI)‘" y) ( 3 )

There are two degenerate eigenvalues, thus we do not obtain three nondegenerate nonzero mass-

squared differences. For the remaining VEV configuration, k3, we obtain the mass matrix

! + +n*
5 o z ny my

— _U yV 12 4
m, M +tny  wx y , (4.35)

in*y y w*x/
with

log(mz/Mg) ) (4.36)

xl =1 —+ {*392 + 4 [/\aaaa + 2 Re (W)\abab)]} 167'('2
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Given that this matrix is complex, we must determine the eigenvalues of m, mJ,, which takes the form

z'? + 2y +n* (22'y +y?) 0 (22'y + y?)

i
m,m] = Miy; +n (22'y + y?) 2 + 2y? w22y +y?) | - (4.37)
R
+n* (Qx’y + y2) w* (Qx’y + y2) x'? 4 212
The eigenvalues are
v VY vy _ V%
mY =mh = T |z —y| , m§ = W |z’ + 2y| . (4.38)

There are two degenerate eigenvalues in this case as well. Having exhausted the possibilities, we
conclude that it is not possible to obtain three distinct nonzero neutrino mass-squared differences by
applying a leading-log approximation to the truncated form of the RGE (4.26). We verify that, in this
case, the degenerate eigenvalues of the mass matrix are no longer zero. We move on to an application
of the entire RGE, in the hope that this final step will lift the degeneracy and result in three distinct

neutrino masses.

4.5.2 Full RGE

The full RGE includes the remaining terms of (4.26), containing the charged-lepton Yukawa matrices.
These matrices should lead to smaller corrective terms to the larger terms previously considered. As a
result, it is a reasonable approximation to consider y.,y,, — 0 and obtain the correction as a function

of y,, the larger of the charged-lepton Yukawa constants. Under this condition, we obtain the Yukawa

matrices
0 0 y, 00 O 00 O
Yi~lo o of ,.YW~=|0 0 w2 | .Y9=[0 0 o |. (4.39)
0 0 0 00 0 0 0 wyr
Using (4.27), we determine
0 0 0
3
P=§ 00 0], Tij=y28;. (4.40)
0 0 y?

We use the results above to obtain the matrices A% such that (4.26) can be rewritten as

k" _ i S yy i
16m2 —— o —3¢°KkY + 4 Z Akilj i KP4 AJ (4.41)
k,l=1
In this way, we can add the corrective term
Y A% log(mz/MER), (4.42)

Vi T6m2 My

to (4.31) and (4.35) to obtain the neutrino mass matrices. In the above equations, the matrices A% are

given by
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251‘15]‘1 267;16]‘2 %51‘153‘3 - 251‘353'1
A = y72_ 257226]‘1 25i25j2 %5,’,25]‘3 - 25135]'2 . (443)
16:36j1 — 201103 £0i302 — 20,2053 0i36;3

In the end, for the VEV K5, we obtain

T+ 20, y—+20. y—l—%ée

v2y? y2
- _ v 3 = T 1 .
m, M y+26. x+25. y+36.| 5 Oc T6m2 og(mz/Mg), (4.44)
y+35. y+36. z+6.
with eigenvalues
v2y2
ml Z—MR (x_y)?
22
my o — LYy (y + 20+ 50, — V3392 + 100, + 953) : (4.45)
2Mp
V22
my ~ —ﬁ (y + 22 + 50. + V3/3y% + 10y0.. + 962) .
R

We conclude that the inclusion of the correctional term ¢, arising from the Yukawa terms in the RGE of
k%, lifts the degeneracy among the eigenvalues. In this case, we obtain three distinct eigenvalues which
can be used to compute the neutrino mass-squared differences. Before moving on, we determine the

corrected mass matrix for the VEV ks, which reads

' + 20, 0y +26.) +n*(y + 3/20c)
+n(y + 24.) w(a’ + 26.) y + 3/20, . (4.46)
+n*(y+3/26.) y+3/26. w* (2’ + b.)

2,2
vy,

m, = My

Computing m, m}, and determining its eigenvalues, we find

my ~ x -
1 MR Yyl
v VY :
my  oa ‘y + 22" 4 56. — V/31/3y2 + 10yd. + 962| , (4.47)
R
v 'U2y5 !/ 2 2
n%::QM%‘y+2w-+5&—FV§v@y + 10y, + 962] .

We have thus determined the neutrino mass matrices at the energy scale of current experiments for
each of the two valid Higgs VEV configurations, concluding in both cases that they have three nonde-
generate eigenvalues, corresponding to three distinct neutrino masses. We now move on to test these
results by comparing them with the experimental data available, as presented in Table 3.1. This must be
done with some care, as the values z,z’,y and . can take are not entirely free. In fact, . is constant
once the seesaw scale A = My, is fixed. The remaining three parameters are functions of the couplings
Aijk1, Which are related to the parameters of the scalar potential, and are restricted to the region of the

parameter space where each VEV is valid. In order to take these restrictions into account, we study the
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problem numerically, by generating points in the parameter space, in the regions of validity of each VEV.

For those points we determine the corresponding neutrino masses.

4.6 Numerical analysis

In order to test the results of the model, we must compare the neutrino masses obtained after application
of the RGE with the experimental data available. Since there are no experimental values for neutrino
masses, we use mass-squared differences. Actually, we take into account the ratio

R Am%l
- b
|Am§z|

(4.48)

using the values in Table 3.1. By comparing this ratio, we test the parameters of the model contained in
x, 2,y without concerning ourselves with the normalization provided by y,,, Mg.

In order to perform this test, we wrote a C++ program which, for each of the valid VEVs hy and hg,
generates with each iteration a point randomly in the region of the parameter space where the VEV is
valid. It then uses the couplings \;;; associated with that point to determine the right-hand side of (4.26),
considering the full Yukawa terms and the seesaw scale My = 10'* GeV. The program calculates m,,
and m, m], then obtains the eigenvalues of the Hermitian mass matrix, corresponding to the squared
neutrino masses. Finally, it identifies the type of ordering, which can be normal or inverted, as defined
in (3.11), and obtains the ratio R.

The regions of validity of the VEVs are presented in [54], which uses a scalar potential with a different

parametrization from the one used in this thesis, related to the parametrization of (4.9) through

M, 2 A A+ A A —A A
2 0 3 1 2 / 1 2 .434
=—— =-A == = = R — 4.4
m \/g ) A1 3 0 > )\2 3 ) )\3 92 ) )‘4 2 1 9 ( 9)
The regions of validity for the two VEVs are [54]

Ai < IQA% Ay <O

A2 < 2(Az + |A1]) (A + |A As| > |A

SRR S e L
A1 <0 A3 >A1
Ay > ‘Al‘ > —Ag, —Aj3 4Ag+ Ay > 3|A2|

(4.50)

Rather than convert these conditions to the parameters \;, we use the parameters A; in the program.

Having established the conversion between parametrizations, we can determine the couplings A;;x; from
the parameters A;, as indicated in Table 4.2.

Upon running the program, we verify that the ratio R is never obtained for either of the VEVs hs and

hs, despite the large number of iterations considered. In fact, the ratio is found to be R ~ 10~'2, much

lower than the experimental value (= 0.03) and, given the limited precision of the program used, com-

patible with R = 0. This result is not surprising, as it has been shown [55] that it is not possible to obtain
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Aijki f(\) f(A)
Aaaaa (=7 =k=1) | A/2+ X Ao/3+ A3/3
Xaavp (=3 #k=1) | A\/2—)X2/2 Ao/3 —A3/6
Aabba (i =1 # j = k) A3/2 Ay/4+ Ay /4
Aabab (1 =k # j =) /2 Ar/4— Ao /4 —iNy/2
Aabab (i =k #j =1) i/2 Ai/4— Az /4 +iMg/2
otherwise 0

Table 4.2: Correspondence between the couplings A;;x;, the parameters A; of the scalar potential of
(4.9) and the parameters A; of the scalar potential of [54]. .45 COrresponds to the cases where b =
a + 1(mod 3) and Aypqp to the cases where b = a — 1(mod 3).

three nondegenerate neutrino masses in a model with A, symmetry, three scalar doublets in a triplet,
and three lepton families. This might come into apparent conflict with the seemingly nondegenerate

eigenvalues of (4.45), but if we perform an expansion in powers of J., we obtain

- %mgs =2z + (y £ 3y) + (56, £56.) + O (82) . (4.51)
Thus, the degeneracy between the approximate eigenvalues my and m% can only be lifted by terms in
@) (6?) where z,2',y ~ 1 and 6. ~ 107°. It is quite possible that this small correction is only present
in the approximate eigenvalues, having arisen from the approximations themselves, and that the exact
solution of the RGE remains degenerate, in agreement with the conclusions of [55]. Thus, we conclude
that the effect of the corrections originated from the charged-lepton Yukawa matrices does not cause a
splitting of eigenvalues capable of reproducing experimental data.

The results above lead to the conclusion that the model as was formulated is incapable of reproducing
the available experimental results and, by extension, is not valid. The model’s apparent resistance to a
split in the two degenerate neutrino masses would suggest that this degeneracy is protected by the A4
symmetry, which is only broken at low energies. The running of the couplings is performed on a model
which is invariant under A4, causing the effect of the RGE on the degeneracy of the neutrino masses
to be negligible. It is then clear that, if we were able to break the A, symmetry in some way above
the seesaw scale, we would obtain a much greater range of values available to R, as the degeneracy
between neutrino masses would no longer be protected during the running of the couplings. This can
be achieved by adding a term which is not invariant under A, to the model Lagrangian, causing the A,
symmetry to be (softly) broken. The soft breaking of the A, symmetry of the model is the topic of the
next chapter, which focuses on mechanisms that give rise to soft breaking terms, and their effects on

the neutrino parameters at low energies.
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Chapter 5

Softly-broken single right-handed

neutrino A; model

Given that the model presented in the previous chapter failed to reproduce neutrino data, we now intro-
duce a slight alteration. We consider the effect of adding a new Lagrangian term which breaks the A,
symmetry softly. This can in principle be done either in the fermion or scalar sectors. By breaking the
A, symmetry above the seesaw scale Mg, the degeneracy between neutrino masses will no longer be
protected as RGEs are applied, causing the neutrino mass-squared differences at the low energy scale
mz to take on a larger range of values. This should lead to valid results for the ratio R, upon which we
move on to study the remaining parameters of the low-energy neutrino sector, namely the mixing angles
6;; of the PMNS matrix defined in (3.10).
In the present model, a fermionic A,-symmetry breaking term can be introduced in the heavy neutrino
masses
— %MRﬁug +H.c., (5.1)

or in the Yukawa term (4.12). The field product of (5.1) is of the form 1 ® 1 = 1, thus there is no way to
obtain from (5.1) a term that is not invariant under A,. The field product of (4.12), on the other hand, is
oftheform3®3®1 =191 o 1" 3 & 3. Thus, it is possible to define a Yukawa term that breaks
A4, by selecting the singlet components 1’ or 1”. However, given that the Yukawa term is of dimension
4, a term of this form leads to hard symmetry breaking rather than soft breaking and is, therefore, not
an option. This leaves us with the possibility of soft breaking in the scalar sector, which will occupy the

remainder of the chapter.

5.1 A simple soft breaking scheme in the scalar sector

We consider the addition of an As-breaking term in the scalar potential. The alteration of V(@) changes
the conditions of minimization of the potential, so that the VEV configurations which lead to a global

minimum should be altered in relation to (4.10). The structure of the valid VEVs hy, and hj3 satisfies
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|vi| = |v2] = |us|. Thus, even a small correction which results in the breaking of this pattern could lead

to richer results in the neutrino mass spectrum at low energies.

Following the procedure described in [56], we introduce three scalar singlet fields assigned to a triplet
of A4, ¥ ~ 3. Under the assumption that
(T) > v, (5.2)

we can establish that the potential for ¥ decouples from V' (®). Thus, V(%) has the structure of (4.9) and
its VEVs are those of (4.10). Let us consider (¥) ~ (1,0,0). When ¥ acquires a VEV, only the singlet
components of the field product (U1W) are nonzero, as can be concluded from the invariants in (4.7).

After SSB in V(¥), the surviving interaction terms between the scalar fields ® and ¥ are

Aa(TT0) 1 (@1®)y, + Hoe. =285 M2 [(®T0)y + Hel ,

1 t SSB 25t (53)
A (UT0)1 (@T0); == M (P'®); .
The second interaction term simply redefines m? in (4.9), while the first term becomes an A,-breaking

term in the scalar potential V(®). Thus, the soft-breaking potential Vsg(®) obtained by adding ¥ is
Vea(®) = V(@) + ME (2661 — 0162 — sles) - (5.4)
Under this potential, the Higgs obtains a VEV configuration of the form
(®)=hs =v(l+2,1—¢,1—¢), (5.5)

where ¢ ~ M2/v?. The new parameter ¢ provides a correction to the form of the VEV hy = v(1,1,1)
such that we obtain |v1| # |vs], |vs]. Therefore, we must study the model considering this new VEV. The
first step is to obtain the new charged-lepton mass matrix and its eigenvalues, necessary to determine

the form of the charged-lepton Yukawa matrices Y' and the Yukawa constants ;.

5.1.1 Charged-lepton masses

We recall the charged-lepton mass matrix M! obtained in Section 4.3.3, to which corresponds the Her-

mitian matrix

i 2(y2 + v +v2)  nos(yl + Wyl +wy?) vy (Y2 4wyl + w?y?)
l Inglt % *
H = MM = | vfoa(y? +wy), +w?y2) |l (W2 +yp +v2)  wavs(y? +w?yl +wy?) | - (5.6)
vius(y2 + Wyl +wy?)  vsvs(yZ +wyl +w?y2)  uslP(y2 +yk +2)

For the VEVs of the A,-symmetric potential, the eigenvalues of H! can be determined analytically. For
the new VEV hs, this is no longer the case. We resort to determining the eigenvalues using perturbation
theory, under the assumption that the Yukawa constants y.,y,, y- are small enough for the results to

converge. We consider as the unperturbed matrix H, the one obtained from H' by setting y. — 0. The
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perturbation will consequently be given by Hp = H' — H, such that

l?(vp +y2)  onvs(WPyn +wy?)  ovi(wy, +w?y?) lo1]? vy vivj
* * p— 2 * *
Ho = | viva(wyp +w?y2)  |welP(vh +y2)  vevs(Wiyp +wy?) | - He=we [ vive |ua® vpvj
vivs(W?yn +wy?)  vsvs(wyn +w?yl) vyl +y2) vivy wvivz  |usl?
(5.7)

We determine the eigenvalues and eigenvectors of Hy analytically and, using first-order perturbation

theory, we obtain the eigenvalues of H', from which we extract the ones of M!. Namely,

e\2 a2 o (146 —2%)?
(ml) ~ 3v Ye 1+E(2+3€) )
1+&3(3¢ —4)
25 Te \we 3 2 4 58
H 1+2€2 +O(ye)+o(yp,)7 ( )

2 2
2 a2 26 (2+¢)
(m3)” = 30"y, — 5

(m§)* ~ 30’y
+ 302 (1 +2e%) + O(y2) + O(y;h)

where the identification mg , ; = me . - can be used to compute the Yukawa constants y., y,, and y-,
which in turn allow us to determine the charged-lepton Yukawa matrices, present in the % RGE. We

obtain

2~m31+5(2+35)

Ye = 3p2 (14¢e—2e2)2’

o mi 1427

T 3021433 —4)°

2 m?, e2(2 + )2 m2 1

T3 (1129 (c 1Pl 122 +39)] 301122

showing that the Yukawa couplings maintain the relation y? ~ % found in (4.19) for the VEVs h, and
hs of (4.10), corrected by a function of ¢ in the case of the VEV hs. Thus, our initial assumption that y;

are small enough to allow the application of perturbation theory is validated.

5.1.2 Lepton mixing

In order to study the results for the new VEV h; (obtained by adding a soft-breaking term in the effective
Higgs scalar potential), we can use the computer code described in Section 4.6, with some changes. In
addition to changing the VEV, we must also use the results of Section 5.1.1 to define the new charged-
lepton Yukawa matrices. The parameter ¢ is generated randomly, such that || < 3. We run the program
and obtain the results presented in Figure 5.1, for the NO case. For inverted ordering, R is always
outside the allowed range.

We conclude that the soft breaking of A4 in the scalar sector introduced a large enough split between
the degenerate neutrino masses, so that we obtain values of R within the 30 and 1o allowed intervals
given in Table 3.1. This happens for a wide range of values for . There is a lack of points around ¢ = 0,
where the VEV configuration hs coincides with ko, and around ¢ = 1, where hs = hy, S0 the result is

expected in both cases. There is a large region around ¢ = —2 where there are no valid results for R,
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Figure 5.1: Values obtained for R, ¢ after RGE running of x% and using ks for (®), for the NO case. The
solid (dashed) horizontal lines enclose the 30 (10) allowed interval for R.

since h; — (—1,1,1), a configuration for which |vi| = |ve| = |vs].

Having obtained valid results for R, we continue the analysis of the model by studying the PMNS
matrix. As described in Section 3.1, the PMNS matrix U is obtained from the unitary transformations
that diagonalize the lepton mass matrices, through (3.9). Once U is obtained, the mixing angles can
be recovered following the procedure outlined in Appendix A of [57]. The mixing matrix obtained by our

code is of the form

U = diag(e’, e, ') . V - diag(e"*1/2 e712/2 1),

—id

C12C S19C S13€
12€13 12€13 13 (5.10)
_ 1) 1)
V = | —s12c23 — c12523513€" C12C23 — S12523513¢€" s23c13 | >
5 s
512823 — C12€23513€" —C12823 — S12C23513€"°  C23C13

where 4., d,, d. are unphysical phases which can be removed by rephasing the charged-lepton fields

and a1, as are Majorana-type phases. The parameters of the matrix U are given by

arctan(‘U”l) if U1 20 arctan(‘U%‘) if Usz £ 0
12 = 1l ! , O23 = Vs ; b1z = arcsin ([Uss]) ,

s s
3 else 3 else
ULU;;U; U,
01202J Czjssljsj + €12€23513 . ; ; 5 11
§=—ar 13 , wherei,je{1,2,3}andi +# j, (5.11)
512523 J J

6. =arg (eUss) , o, =arg(Us3) , 0, =arg (Us3) ,

ar =2arg (e”Uy,) , as=2arg (e“U},) .
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From these relations, we can extract the mixing angles 6,5, 613, 623, as well as the complex phases ¢
and oy, as. We run the program and obtain the values of sfj for all cases where the ratio R is within
the 30 allowed range. The results are presented in Figure 5.2. One can see that, although ¢ has a
wide range of values which lead to a valid R, the results for the mixing angles are restricted to specific
regions of the parameter space, which do not intersect those singled out by the experimental results.
The conclusion is that no cases are found where both R and all three mixing angles are within the 3¢

allowed range. Thus, we must discard h5 as a valid VEV.

5.2 Alternative VEVs of the softly-broken A, potential

In the previous section, we have concluded that the VEV configuration k5 does not lead to satisfactory
results. However, this is not the end of the analysis related with soft breaking of the A, symmetry in the
scalar sector, as the Higgs scalar potential Vsg(®) of (5.4) must have other minima, which could lead to
different results for the mixing angles 6;,. Thus, the next step is to minimize Vgg(®) in order to determine
all VEV configurations of this potential, so that we can obtain for each of them the parameters of the

low-energy neutrino sector. But first, we will investigate whether the general VEV patterns
hg :U(1,€1,62), (512)

and
hy = v(1,e1€" £0€12) (5.13)

lead to viable results . This general analysis should give us an idea about whether it is worth it to find
VEV configurations of the forms of hg and h;. Once again, we must study the charged-lepton mass
matrix. Applying perturbation theory as was done in Section 5.1.1, and considering the VEVs hg and hy;
rather than hs5, we find that the complex phases 6., 6> cancel out of the eigenvalues and the results are
identical for both VEVs,

2.2
2 g1¢€
(m§)” =~ 9%y 55—,
€1 t &3 + €163
0 €3+ €3 + e2e2

2 2
ms)” ~ 3v
(m3) B ol4e2+¢e3

+0(y2) + Oly,) , (5.14)

1—e? —e2—e2c2+ef+e

(m§)? ~ v2y2(1 + &3 + €3) + v2y? +0(y2) +O0(yh).,

1462 +¢€3
so that
o _ mZ el +es+etel
Ye = 32 3e2e32 ’
2 2, .2
o My 14¢e7+¢3 515
Yn=522 2 22" (5.15)
3v° €] + €5 + €1€5
2 mi1—e}—c} el +et+ey  m2 3

T 32 (14 2t ed) (3 Fedteed) 32l 4el el
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Figure 5.2: Values obtained for sgj after RGE running of % and using h; for (®). The axis corresponding
to s?, is in logarithmic scale. The solid (dashed) black lines enclose the 30 (1) allowed interval for each
variable. In all cases R is within the 30 experimental range.

36



Replacing these results in the program, we run it again. When scanning (e1, €2, 61, 62), we consider
le12] < 3 and 6,2 € [—m, «w]. The values obtained for sfj under the condition that R is within the 3o
allowed range are presented in Figures 5.3 and 5.4 for hg and hy, respectively.

From Figure 5.3 we conclude that the regions are larger for the general real VEV configuration hg
than those of Figure 5.2. One can also observe that, when 6,5 agrees with the data, 6,3 is too large.
Therefore, we are still not able to find a region of the parameter space where all three mixing angles are
within experimental bounds. Thus, no real VEV of the type hg can reproduce current experimental data
for the three mixing angles and the ratio R.

For the general complex VEV hy, the R condition spans the full §;; parameter space nearly homoge-
neously. For this reason, in Figure 5.4, we have singled out the results which agree with experimental
observations for s%,, s2,, making it clear that, in some of these cases, s, is also within experimental
bounds. Thus, a complex VEV can lead to valid results for 6;; and R, so that we are interested in the
VEV configurations of the softly-broken potential Vsg(®) with complex components. Details about the
minimization of Vsg(®) are given in Appendix A.

Considering the general VEV configuration h; given in (5.13), it is clear that, if either of the param-
eters €12 = 0, the charged-lepton mass matrix of (5.6) is singular, with at least one zero eigenvalue.
Thus, this possibility is discarded, and of the VEVs determined in Appendix A, those of interest are the

ones with 6; 2,12 # 0, corresponding to

hs =v (1, +ee'?, :I:Ee"e) , 2= w ,
sin (o — 40)
hg = (1,i51€i01,i€2€i92) , 5% _ Sin (& 2 , Eg _ S (& 1

sin (o — 261 + 263) sin (o — 261 + 2603)

with o = arg(\)) [see (4.9)], 0 € [—m, 7], and 612 € [—m,«]. Notice that hg is under the additional

condition
(3A2 — A3g) cos (a+ 61 — 6)

A= cos (2a — 01 + 02)

, (5.17)

implying fine-tuning among the parameters of the scalar potential. We have now inserted the above
conditions in our code. The results for the mixing are presented in Figures 5.5 and 5.6 for hg and hg, re-
spectively. When compared to the general case presented in Figure 5.4, one can observe the presence
of correlations within the angular distributions, rather than the more homogeneous patterns obtained for
h7. These correlations are more pronounced for hg, where 8, = —0; and )\, is free, suggesting that the
parameters of the VEV configuration affect the angular results more directly than the parameters of the
scalar potential. For both VEV configurations, we obtain cases where all three mixing angles, as well as

R, are within the 30 allowed range.

5.3 Scalar mass matrices

As was mentioned in the previous section, we have not been considering the regions of validity of each

of the VEV configurations under analysis. Instead, the program sweeps the entire parameter space of
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Figure 5.3: Values obtained for s; after RGE running of «*/ and using h; for (®). The axis corresponding
to s?, is in logarithmic scale. The solid (dashed) black lines enclose the 30 (1) allowed interval for each
variable. In all cases R is within the 30 experimental range.
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the scalar Higgs potential, considering only |\;| < 1 (: = 1,2,3,4). It is however necessary to test the

stability of Vsg(®) by studying the scalar mass spectrum.

The mass matrices for the neutral and charged scalars, M,, and M., respectively, are obtained from
the scalar potential Vsg(®) by

(M) _ 1 9*Vep(®)

0 __ 0 0 0 0 0 0
Jig = 5 W . s Xi = (1R, P2r> B3R, P11> Pa1s Pal) 5
® (5.18)

T T E e P
» Xi = (91R: Pors Pars O1s P D31 »
(®)

1 0?Vp(®)

Welii =3 oxtont
i J

where \? refers to the real and imaginary neutral fields of each of the three Higgs doublets, and x;" to
the real and imaginary charged fields. Note that (x;") = 0. Thus, an extreme of the potential, identified
through the minimization procedure discussed in Appendix A, is a true minimum, rather than a maximum
or saddle point, when all eigenvalues of the mass matrices are nonnegative. We can set a test for the

validity of the VEV configurations in our program by studying the sign of the eigenvalues of M,, and M..

With the determination of the scalar mass matrices, we can obtain the masses of the scalars of our
model, given that the eigenvalues of the matrices are the squared scalar masses. This introduces an
additional constraint, related to the Higgs boson. It is known that the LHC has detected a neutral boson
[32] of mass

mypo = 125 £ 0.24 GeV (5.19)

which corresponds to the Higgs boson of the SM. As our model has an extended scalar sector, the
number of massive neutral bosons is increased from one to five, so that it is expected that the lightest
neutral boson of the model should have a mass compatible with m0. This additional constraint must be

taken into account when determining the validity of the model.

We have obtained the scalar mass matrices through (5.18) but, due to their large dimension, as each
is a 6 x 6 matrix, we are not capable of determining the eigenvalues analytically. Instead, we input the
mass matrices into our numerical code, which performs their diagonalization in order to determine the
eigenvalues numerically, for each point generated in the parameter space of Vsg(®). Given the large
dimension of this space, which the program samples randomly, it should not be a trivial task to find
points within the experimental 30 allowed range for all mixing parameters where all eigenvalues of the
scalar mass matrices are nonnegative. Thus, we alter the code so that it performs a fit of the model to
the available experimental data, corresponding to the three lepton mixing angles, the ratio R of (4.48)
and the Higgs mass mo, under the constraint of real scalar masses, using as initial conditions points
generated randomly in the parameter space of Vsg(®). After this change, we run the program for the
case corresponding to the VEV hg. We find that the y? of the fits never falls below ~ 100, indicating
some difficulty with finding a point in the parameter space which can simultaneously lead to valid results
for the neutrino parameters and for the observed Higgs mass. In order to explore this issue, we perform
fits removing some of the constraints. In Figure 5.7 (5.8) are the results obtained without the constraint

on the Higgs mass (the lepton mixing angles 6;;). In both of these cases, we obtain several points where

42



120

100

80

60

40

20

et ot .
O S Y N U vl S RO E B SR BT SR IS £ 2
10™ 10" 10" 10® 10° 10" 107 12

Figure 5.7: Values obtained for mo as a function of x? (scattered points) using hg. All neutrino param-
eters are within the experimental 3o allowed range. The full black lines enclose the 1o allowed interval
for mypo.

all constrained parameters are within their 30 allowed range, with a corresponding x? ~ 1 or smaller.

From the results obtained, we can conclude that our model is capable of delivering either valid mix-
ing angles or a valid Higgs boson mass, but not both. Rather, the region of the parameter space
corresponding to a valid VEV configuration and to lepton mixing data within the experimental 3¢ allowed
range corresponds to a lightest neutral scalar which is too light, as its mass is never larger than 60 GeV
(see Figure 5.7). Using the VEV hg, for the case of fine tuning [see (5.17)], we obtain similar results
and once more the Higgs mass myo is not reproduced in the cases where the mixing angle constraints
are in effect. This indicates that, with the VEV configurations available for Vsg(®), we are not able to
reproduce all experimental results. However, as this is due to the fact that we can obtain valid results
for each observable individually, but not all observables simultaneously, the issue seems to lie with the
incompatibility of the region of validity of each observable. Thus, given a different potential with a differ-
ent VEV configuration, these regions of validity would change, and it is possible that they could overlap
in some way. In particular, the soft-breaking term considered in Section 5.1 is not unique, since it was
obtained for (¥) ~ (1,0, 0). By choosing a different (¥), from those given in (4.10), we obtain a different
soft-breaking term.

As an example, let us take (¥) ~ (1,1,0), obtained from hy; = v(1,e'*4,0) by setting oy = 0. With
such a VEV, both singlet and triplet interactions of (®7®) and (¥W¥) survive upon SSB of ¥. Thus, two

distinct terms are added to the potential V(®), in such a way that

Veg.a(®) = V(@) + M3 (6161 + ¢lon — 2616s) + M2 (6ho1 +He.) . (5.20)
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Following a procedure similar to the one outlined in Appendix A, we obtain the minimization equations for
Vsg,4(®). Focusing on the general case (1, g1, e0e%%2), with €1 5 # 0, we use three of the equations to
obtain expressions for m?, M7, and M2, and replace them in the remaining equations, which are solved
simultaneously by the conditions
2 sin(a — 263)
L sin(a — 201 +26,)

2 cos(a — 61) sin(a — 2605) sin(fy — 262) [(3\a — A3) cos €y + Ay sin(a + 67) cot 04 ]
2= Ag cos asin(a — 2605) sin(6y — 263) sin(a — 26071 + 202) cot 64

(5.21)

3

leaving 6, - free. For his new VEV configuration we compute the scalar mass matrices obtained from the
potential Vsg 4(®), and change the program accordingly. We find results quite similar to those obtained
with hg, where the points with valid lepton mixing parameters are associated with a too light Higgs. This
leads to the conclusion that this VEV configuration, as well, cannot reproduce data and the right value

for the Higgs.
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Chapter 6

Conclusions

In this thesis, we investigated a key topic of study in modern particle physics: the existence of neutrino
masses, which are unaccounted for in the current model for the description of elementary particles, the
SM. We began by introducing in Chapter 2 the SM in its current formulation. Then, we presented in
the following chapter some extensions of the SM which, by including additional degrees of freedom,
give rise to neutrino masses. We then moved on to a description and study of the model introduced
in this thesis, in Chapter 4. We extended the SM with a single RH neutrino and three Higgs doublets
instead of one, and applied an additional constraint by imposing invariance under the discrete group A;.
The A -symmetric scalar potential and the resulting VEV configurations were presented in Section 4.2.
Using these, we determined the neutrino mass matrix at the very large energy scale My of operation
of the seesaw mechanism that gives rise to neutrino masses, given by (4.23). Afterwards, the RGE of
the flavor coupling matrices % were used to obtain the masses at the energy scale of current experi-
ments. After a numerical analysis of the RGE using a leading-log approximation, described in Section
4.6, we concluded that the model could not reproduce experimental results for neutrino mass-squared
differences, as it was not possible to lift the degeneracy between neutrino masses, obtaining for the ratio
R, defined in (4.48), a value smaller than experimental prediction by around ten orders of magnitude
and, given the limited precision of the method used, compatible with zero. These results suggest that
the observed degeneracy is protected by the imposed A, symmetry, which is not broken at the My scale
but rather at the scale of EWSB where the neutrinos obtain mass, so that the effects of the RGE are
constrained by the effect of this symmetry. Thus, if it were possible to break the A, symmetry at the Mg
scale, it was expected that the neutrino mass-squared differences would take on a much wider range of

values.

Given these conclusions, we considered in Chapter 5 an alteration to our model, consisting of an
additional term in the Lagrangian which is not invariant under A4, so that the symmetry is softly broken.
We concluded that the soft-breaking must be performed in the scalar sector, by the addition of an A,
triplet of scalar singlet fields ¥ which would interact with the Higgs fields, as described in Section 5.1.
This gives rise to a distinct scalar potential Vsg(®) upon SSB, given by (5.4), with a different set of VEV

configurations to the A,-symmetric potential, as explored in Appendix A. The new neutrino mass matrix
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was obtained and the RGE running resulted in a wide range of results, presented in Figure 5.1, including
several cases in which the mass-squared difference ratio R is within experimental bounds.

We moved on to the study of the neutrino mixing angles, which are also restricted by experimental
observations. For the VEV configuration we had been considering, the results were not in agreement
with experimental observations, as presented in Figure 5.2, and we reached the eventual conclusion that
no valid results can be obtained using a real VEV, as illustrated in Figure 5.3, obtained using a general
real VEV configuration hg, defined in (5.12). On the other hand, using a general complex VEV config-
uration hr, defined in (5.13), it was possible to find cases in agreement with experimental results, as
shown in Figure 5.4. In fact, it can be seen that, even allowing full freedom to all parameters of h¢ (apart
from the normalization v, of course), the resulting distribution for the mixing angles, under the condition
that R is within the experimental 3o allowed range, is restricted to specific areas of the parameter space,
which do not contain the region where all mixing angles are compatible with experimental results. In the
case of hr, this is not verified, and the experimental 3¢ allowed ranges for the mixing angles are well
populated. Thus, we concluded that complex phases in the Higgs VEV are essential for the reproduction
of experimental results of the lepton mixing angles, and continued our analysis using the complex VEVs
hs.9 given by (??) and (??) respectively. We found valid results for both configurations, as presented in
Figures 5.5 and 5.6, where we can observe, especially for hg, that the data points which are in agree-
ment with experimental observations for s2,, s3, are distributed in a specific pattern in the plots including
525, suggesting the existence of relations between the mixing angles.

We were left with the requirement of verifying the validity of the VEV configurations used, using the
scalar mass matrices defined in (5.18). Under the condition that all eigenvalues of these matrices must
be nonnegative, we fitted the model to the constraints given by experimental observations of the lepton
mixing angles 6;;, the ratio R, and the scalar boson mass myo. It was determined that it is not possible
to obtain cases where all constraints are simultaneously satisfied but, by removing different constraints
in turn, all can be satisfied individually, as it is clear in Figures 5.8 and 5.7. Thus, if one could find a
case where the conditions for satisfying all constraints overlap, the model would provide valid results.
To pursue this idea, we considered a different scalar potential, obtained by taking an alternative VEV
configuration for the scalar triplet ¥. This generated a different VEV configuration for & and different
scalar mass matrices. However, this alternative led to similar results, with a scalar mass spectrum that

is too light.

6.1 Future work and achievements

Based on the results obtained, the logical conclusion is that the model analyzed in this thesis is not
capable of reproducing both neutrino and Higgs results. However, some possibilities of alteration of
our model remain, due to the different avenues of A4 soft breaking which are yet to be explored. The
soft breaking is performed with the scalar singlet fields ®, under the assumption that (®) ~ (1,0,0),
initially, and that (®) ~ (1,1,0), in a subsequent analysis, leaving unexplored the cases where ® takes
one of the remaining VEV configurations of (4.10). As mentioned in Section 5.3, each of the four VEV
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configurations h; leads to a distinct potential Vsg ;(¢), according to

ha = Ves2(9) = V(9) + M3 (0465 + élor + ol + He.)
hs = Vag.a(0) = V() + M3 |w (8o — o101 — l62) + He, (6.1)

hy — Vea(¢) = V(¢) + M; (¢I¢1 - 2¢§¢3) + M? <6ia4¢£¢1 + H.C.) ,

with Veg 1 = Vg as defined in (5.4). Each of the these scalar potentials will have distinct VEV configu-
rations with their own regions of validity, along with distinct scalar mass matrices, altering the results of
the model. Hopefully, among the possibilities (6.1), one (or more) will lead to valid results for the model.
Thus, it is necessary to fully explore all these possibilities before making final conclusions on the validity
of the model.

With this thesis, we have considered a popular discrete symmetry based on the A, group, and ex-
plored a less typical avenue by focusing on enlarging the scalar sector rather than the fermionic one.
This led to the study of a previously unconsidered model, which was found to be compatible with neutrino
data but hard to reconcile with Higgs mass results. Still, there are unexplored possibilities to consider,
leaving open a window for further work on the subject. The focus on the A, group was motivated by its
ideal set of representations, as aforementioned. However, there are other discrete groups with appropri-
ate representations, such as the group S, which could also be considered as an imposed symmetry for
a single right-handed neutrino model. As A, is a subgroup of Sy, the results obtained should be similar,
but perhaps different enough to provide valid results, so that this is another venue to be considered.

Finally, some additional issues could be further explored with a more in-depth analysis in a framework
compatible with both neutrino and Higgs results. For instance, the study of the quark sector will have rich
phenomenology in the case where the three Higgs doublets of the theory couple to quarks. In a more
advanced phase, these results, along with the scalar mass spectrum, could be used to further validate

the model and provide experimental evidence of new physics.
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Appendix A

Minimization of the softly-broken

Higgs potential

We recall that the charged field of each Higgs doublet must have a zero VEV and thus define

(60) = (d)) _ 1 0
T\ ] V2 @ ity )

where ¢,, a = 1,2, 3, are the three Higgs doublets. We further define

Vg4 COS 0, Vg SIn 0,
(doR) = , (o) =

V2 V2

V1 =0V, Vg =VE| , V3 =vEy , 01 =0,

(A.2)

so that we obtain the most general complex VEV configuration, v/2(1,£1e%1, e5¢%2). We define Vgg(®)

according to (5.4) and obtain the minimization equations, given by

dVsg(®) _0 dVsg(®)

~0
0 0 )
dPar 1ig.) Ao ()

which lead to

v3 [ 4m? + 8M?3
{ S+ (1+ef+e3) A +2x — (] +€3) (A2 — A3)

442

v2

+A4 [e] cos (o + 201) + €5 cos (a — 265)] } =0,

v3eq { [4m? — 4M2
v

12 2 +(1+€%+€§) A1 — (1—25%4-53) Ao + A3+ €2X3| cos b,

+Ay [cos (o + 01) + €3 cos (o — 01 +2605)] } =0,

v3eq { [4m? — 4M3

™o 5 +(14+ef+e3) M — (L+ef —2e3) Ao+ A3 + €3 A3| cosba

v

4+ [cos (a—63) + 5% cos (o — 26 + 92)]} =0,

AA

(A.4a)

(A.4b)

(A.4c)



3
41}—\/5)\4 (€2 sin (@ + 261) — €2 sin (o — 265)] =0, (A.4d)

8 4m? — AM?2
viey {[ m s+(1+s§+s§)A1—(1—25§+53)A2+A3+53A3] sin 0,

42 v? (A.de)
+ Ay [—sin (o + 61) + e5sin (o — 01 +265)] } =0,
v { [4m2 — 4Mg +(1+ef+es) M — (T+ef—2e3) Ao+ A3 + 5%,} sin 6y
1 2 - 1 2 1
42 v? (A.4f)

+X4 [sin (@ = 05) — ¥ sin (o = 201 + 62)] } = 0.

The minimization equations can be solved considering (1 = 0,62 = 0), (1 # 0,62 = 0) or (e1 # 0,62 #
0).

A1 8120,8220

In this case, the VEV configuration takes the form v/2(1,0,0), analogous to h;. All but one of the

minimization equations are automatically satisfied, while the remaining equation, (A.4a), takes the form

v4m2 + 8M§ + ’U2 ()\1 + 2)\2)

=0, A5
Wi (A.5)
determining s g2
+
2 = —47’”’]] S . A'
v A+ 2 (A.6)

A.2 &1 750,8220

In this case, the VEV configuration is given by v/2(1,e,¢%, 0). Equations (A.4c) and (A.4f) are automat-

ically satisfied, leaving

v3 [4m? + 8M3
4\/5 [ 02 S + (1 + E%) )\1 + 2)\2 — E% ()\2 — )\3) + )\46% (¢0)] (Oé + 291):| = 0, (A7a)
’11351 4m2 —4M§, 2 2
Vi 2 —I—(l—i—el) A — (1—251) Ao+ Az| costy + Agcos(a+61) p =0, (A.7b)
v3 9 .
47\/5>\4€1 S1n (Oé + 291) = O, (A7C)

viey { {Alm2 —4M32
42

From (A.7c), we determine that

2 + (1 + 5:{) Al — (1 — 25%) Ao + /\3] sin#; — Ay sin (o + 01)} =0. (A.7d)

01:’”;0‘;0& , nez. (A.8)

A2



Replacing 6, in (A.7), we obtain, for even n,

02

v3 [4m2 + 8M?3
42

—|—(1+€1)/\1+2)\2—€1(/\2—)\3—)\4):| =V,

viey [4m? —4M

4{1[ 2 S+(1+s§)A1—(1—26%)A2+A3+A4}cos(a/g):o,
v3ey [4m? — 4M?2 .

4\; { = £+ (T+ed) M — (1—269) )\2+/\3+)\4] sin (a/2) =

The solution to these equations is of the form

12M3

=1 — AL,

f1 2 (“8ha + Mg+ A1) +
W2 — 4 |:_ m?2 _ MS (B +3X2 + A3+ A\y) :|
201 + Ao+ A3+ Mg (3)\2 — A3 — )\4) (2)\1 + Ao+ A3 + /\4)

For odd n, we obtain the equations

3 [4m? + 8M?2
v [m S+(1—&-51))\14—2)\2—51(/\2_)‘3'*')‘4)}: '

42 v?
v3ey [4m? —4M .
4\[ [ > S+<1+5%)A1—(1—25%))\2—1—/\3—)\4] sin (a/2) =0,
v3er [4m? — 4M3
4\; [ — S+ (T+ed)h—(1—28) Ao+ As —)\4} cos (a/2) = 0.

which, when solved, give
2o 12M§ —1_A
Lo w2 (=30 A3 —Ny) o
1)24|: m2 _ Mg (3>\1+3/\2+>\37>\4) :|
20+ X+ A3 — A (B2 — A3+ A1) (2A1 + Ao+ A3 — \g)

(A.10)

(A.11)

(A.12)

Thus, we obtain a VEV configuration of the form v/2(1,4+/1 — Aie?~,0), analogous to hy. This

includes the case 6; = 0, for a = n.

A3 & #0690 %0

Considering a general complex VEV configuration, we begin by using (A.4a) and (A.4c) to obtain ex-

pressions for m? and M2, so that they can be replaced in the remaining equations, obtaining

3
% {[(e3 — €3) (3Aa — A3) — €1 Ay cos (o — 26 + 0) sec 0] cos b,

+A4 [€5 cos (o — 01 + 202) — sec Oy sinasin (6 + 62)] } =0,

F)\;; €7 sin (o + 26;) — &3 sin (v — 265)] =0,

A3

(A.13a)

(A.13b)



3
ven {(6% — 53) [2sin 6 (BAa — A3) — AgsecHasin (o — 01 + 02)] — 44 cos asin 64
8v2 (A.13c)

+Agsecty [—2cos (0 — 02)sina + €7 sin (a — 301 + 62) + £ sin (o — 01 + 362)] } =0,

0352

m)\;; [sin (o — 262) — €7 sin (a0 — 261 + 265)] secfa = 0. (A.13d)
We solve (A.13b) and (A.13d) for 1 » and obtain
9 sin (o — 263) 9 sin (a + 264)
— — . AA

17 Sin (o — 201 +205) ° 27 §in (o — 201 + 265) (A-14)

Replacing these results in (A.13), we are left with two equations,

3 cos B /i —265) sin (6, + 6
V™ COS U114/ 81N (Oé 2) Sln(31/2+ 2) [(_3)\2 + )\3) cos (Oé + 91 _ 62) + A4 cOS (2a _ 91 + 92)] =0,

2\/§sin(a—291 + 265) (A15)

v3 sin 01 /sin (a — 2603) sin (61 + 02)
—3Xa + Ag)cos(a+ 01 —02) + Agcos (2a — 01 +02)] =0.
2v/2sin (o — 20, + 202)/” (73t Aaeos{at fu = o) Aucos (2= 00 )

We find all possible values of #; , which satisfy these equations. Not considering the possibility of fine

tuning of the parameters of the scalar potential, we find two solutions, given by

Oy =nm—0,, ne’, (A.16a)

mm —«

2

0o = , meL. (A.16D)

We replace 65 in (A.14). For (A.16b), we obtain ¢; = 0 and thus discard the possibility. This leaves us
with (A.16a), which leads to

5 o sin(a+26y) 9

1

- =t = (A17)

e
Thus, we obtain a VEV configuration of the form v/2 (1, £ee?®, £ee~1). The expressions for v and 6,
can be determined from those of m? and M2, obtained from (A.4a) and (A.4c). However, we were not

capable of inverting such complex trigonometric equations and thus we tentatively leave 6, free. As for

v, we obtain
o2 —12m?
© 31+ 2M3 +csc (o — 4607) {24 sin (2a — 261) + 2 [3A\1 + 2)3 + Ay cos (o + 261 )] sin (a + 2601)}
(A.18)
It is also possible to consider the case of fine tuning, in which we solve (A.15) for A\, and obtain
Ay = (3)\2—>\3)COS(04+91—02). (A19)

cos (2a — 01 + 02)

This leaves both 6, » free, as the issue of the prior analysis remains, and introduces instead a restriction
on the parameter space of the scalar potential. It is possible to determine v, but we obtain an unwieldy

function of 8, 5 and the parameters of Vgg(®), which we skip for brevity.

Before moving on, we consider the cases where one or more complex phases are zero. Following

a similar procedure to the one outlined above, we reach the conclusion that there are no solutions for

A4



only one complex phase. When both phases are set to zero, there is a solution for « = 0. Under these

conditions, the equations (A.4) are given by

+ (1 + E% + Eg) AL+ 2Xg — (8% + E%) ()\2 — A3 — )\4):| =0, (A20a)

v® [4m? + 8M32
02

42

U3€1 |:4m2 — 4M§v
42
v3eq [4m2 —4M3
42

We use (A.20a) to remove m? from the remaining equations and obtain

— +(1+ef+ed) M —do+2eho+ A3+ A +e5(— o+ A3+ A4)] =0, (A.20b)

+(14+ef+ed) M — Ao +230 + A3+ A +ef(—da+ A3+ Ag)| =0.  (A.20c)
U2

:—\8/15 [—12MZ +v* (=1+¢7) BA2a — A3 — Ag)] =0,
(A.21)
;% [-12M§ + 0% (=1 +£3) (3X2 — As = Ay)] = 0.

The solutions with nonzero ¢; 5 to the equations above are of the form

(A.22)

m? n 2M§
3A1 +2X3 + 20y —3X2 + A3+ Mg '

2=2=1-A,, v24<

Thus, we obtain a VEV configuration of the form v/2 (1, +,/1 — Ay, +,/1 — A}). This is the solution

used in [56] with a different parametrization.

A5
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