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Abstract: In this work, we elaborate further on a (3+1)-dimensional cosmological Running-

Vacuum-type-Model (RVM) of inflation based on string-inspired Chern-Simons(CS) gravity,

involving axions coupled to gravitational-CS(gCS) anomalous terms. Inflation in such

models is caused by primordial-gravitational-waves(GW)-induced condensation of the gCS

terms, which leads to a linear-axion potential. We demonstrate that this inflationary phase

may be metastable, due to the existence of imaginary parts of the gCS condensate. These are

quantum effects, proportional to commutators of GW perturbations, hence vanishing in the

classical theory. Their existence is quantum-ordering-scheme dependent. We argue in favor

of a physical importance of such imaginary parts, which we compute to second order in the

GW (tensor) perturbations in the framework of a gauge-fixed effective Lagrangian, within

a (mean field) weak-quantum-gravity-path-integral approach. We thus provide estimates

of the inflation lifetime. On matching our results with the inflationary phenomenology,

we fix the quantum-ordering ambiguities, and obtain an order-of-magnitude constraint

on the String-Mass-Scale-to-Planck-Mass ratio, consistent with previous estimates by the

authors in the framework of a dynamical-system approach to linear-axion RVM inflation.

Finally, we examine the role of periodic modulations in the axion potential induced by

non-perturbative effects on the slow-roll inflationary parameters, and find compatibility

with the cosmological data.

Keywords: cosmology; running vacuum models; strings; chern-simons gravity; inflation;

gravitational waves; condensates

1. Introduction

In a series of previous works [1–7], a rather novel approach to string-inspired cos-

mology, the so-called Stringy Running Vacuum Model (StRVM), has been developed. The

StRVM embeds, in a non-trivial way, the Running-Vacuum-Model (RVM) approach to

modern cosmology [8–12] into string theory [13,14]. The RVM is a phenomenologically

consistent and innovative cosmological framework, with important predictions on observ-

able deviations from ΛCDM [7,15–18], especially in the modern era, where it may also

provide alleviations of the cosmological tensions [19,20], features which are fully shared by

(variants of) the StRVM [7]. Moreover, the RVM approach describes a smooth evolution of

the Universe from the inflationary to the modern eras, explaining also the thermodynamic

properties of the Universe [21–23].
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In the StRVM there are highly non-trivial and diverse rôles played by the antisymmet-

ric tensor field of the massless multiplet of the underlying string model [13,14,24–26], from

driving inflation to the generation of matter-antimatter asymmetry in this Universe, during

the early postinflationary epochs.1 An important feature, which by the way is shared be-

tween the StRVM and the works in Refs. [29–31] on string-dilaton cosmologies, is the linear

time dependence of the (3+1)-dimensional dual of the antisymmetric-tensor field strength

after string compactification. This dual field is a pseudoscalar, and is commonly known

as a KR, or gravitational, or string-model-independent, axion, b(x), to be distinguished

from the string-compactification-induced axions, a(i)(x), i = 1, . . . N (axion species), which

depend on the specific string model [26,32]. In [29–31], such linearly dependent KR axions

characterize static Einstein Universes with positive constant curvature (perfect-fluid de

Sitter solutions). Although our approach and situation in this article will be different from

that discussed in [29–31], nonetheless in our previous works [1–4] we have demonstrated,

as already mentioned, the importance of such a linear dependence in cosmic time of the KR

axion for the evolution of the string-inspired Universe in a Friedman-Lemaitre-Robertson-

Walker (FLRW) expanding-Universe spacetime background, specifically the existence of an

inflationary phase, as well as the post-inflationary dominance of matter over antimatter in

the Cosmos, via the scenario advocated in [33–36].

As regards the former property, inflation in this model is induced [1–6] by the conden-

sation of primordial Gravitational-Wave (GW) tensor perturbations, which in turn lead to a

non trivial condensate of the anomalous gravitational Chern-Simons (gCS) terms. As for

the generation of matter-antimatter asymmetry in the (early) post-inflationary epoch of

this Universe, as discussed in [1–6], the presence of a constant ḃ (where the dot denotes

cosmic time derivative) during inflation, implies that the cosmic KR axion background

remains undiluted at the end of inflation. At that epoch, chiral fermionic matter is gener-

ated through the decay of the metastable (as we shall show here) vacuum. Such fermions

are characterized by their own gravitational and chiral anomalies in the gauge sector. In

the scenario of [1,3,4], the fermion-induced chiral anomalies cancel the primordial ones,

the latter assumed to exist in the early-eras of the compactified string Universe due to

the Green-Schwarz mechanism [37], introduced for anomaly cancellation in (the higher-

dimensional) string theories [13,14,24,25]. This cancellation implies that during the early

radiation era, that succeeds inflation, the KR background axion field b scales with the

scale factor of the universe as a−3 ∼ T3, where T is the Universe temperature. Under

such scaling, it is possible to show, then, that in theories with right-handed neutrinos one

can have the generation of a Lepton asymmetry (Leptogenesis) according to the mech-

anism of [34,35], which for the short time scales of the process resembles the situation

advocated in [33], for a Leptogenesis induced by an approximately constant ḃ background.

This Leptogenesis can then be communicated to the baryon sector [36] via, say, Baryon-

minus-Lepton-number preserving sphaleron processes [38–42] in the standard model sector

(Baryogenesis [43–46]), thus leading to an explanation of the observable matter-antimatter

asymmetry in the Universe [1], in the framework of this string-inspired CS gravity model.

The presence of anomalous gCS terms is therefore an important feature of our ap-

proach, which has not been considered in [29–31]. Such terms couple to the KR axion, as a

consequence of a Bianchi identity of a modified field strength of the antisymmetric tensor

field of the massless gravitational string multiplet [26,32]. The presence of the pertinent

modifications is dictated by the appropriate Green-Schwarz counterterms that are added to

the effective action in order to potentially cancel gauge and gravitational anomalies [37] in

string theory [13,14,24,25]. In the approach of [1–5], (3+1)-dimensional gravitational anoma-

lies are assumed not to be canceling. Moreover, only fields from the massless gravitational

string multiplet are assumed to appear as external lines in the pertinent Feynman graphs
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of the effective theory that describes the primordial Universe. Supergravity is assumed

to have been broken dynamically in this scenario at the pre-inflationary epoch, with the

partners having obtained masses of order of the reduced Planck mass MPl = 2.4× 1018 GeV

and thus decoupled during the inflationary epoch of interest to us here [3,4]. Therefore,

for our purposes, we deal with effective low-energy gravitational theories emerging from

string theory, after compactification to (3+1)-dimensions, involving graviton, dilaton and

antisymmetric tensor fields, which are at most quadratic in derivatives, or, equivalently,

O(α′) effective actions, where α′ = M−2
s is the Regge slope of the string, and Ms the string

mass scale. The latter is treated as a phenomenological parameter in our approach, which

is in general different from the four-dimensional reduced Planck scale κ−1 = MPl, where

κ =
√

8π G denotes the (3+1)-dimensional gravitational constant, with G Newton’s con-

stant. For our purposes, following [1,2], we shall assume that the dilaton field is constant,

which can be self-consistently arranged in string theory by an appropriate choice of the

dilaton potential (possibly generated by string loops). Under this assumption, the O(α′)
effective action we shall be dealing with is a Chern-Simons gravitational theory of the form

discussed in [47,48].2

In the presence of a sufficient amount of chiral primordial gravitational waves (GW),

the gravitational CS terms condense, leading to an effective potential which is linear in the

KR axion, thus driving inflation, as in the so-called axion-monodromy situation encountered

in strings [51]. However, there is an important difference between conventional-string

axion-monodromy scenarios for inflation, and our condensate-induced inflation. In our

case, the CS condensate depends [1,3,4,6] on the fourth power of the Hubble parameter HI

during inflation, which varies very mildly with the cosmic time. This has, as a consequence,

the non-linear dependence of the vacuum energy density on H4
I , which dominates and

leads to a running-vacuum-model (RVM) type of inflation [9,10,21–23]. In fact, the RVM

form of the pressure and energy densities of the corresponding cosmic fluid, that is their

dependence on even powers of the Hubble parameter, of which terms of order H2 and H4

are the dominant ones, persist during the post-inflationary period as well, until the current

epoch [1]. It is for this reason that the abovedescribed cosmological model is termed Stringy

Running Vacuum Model (StRVM) [1,3,4].3

Phenomenology requires that the slow-roll parameters of this inflationary model fall

into the range of values inferred from the plethora of the currently available cosmological

data [52,53]. A linear axion alone cannot yield optimal fits to the data, as we shall discuss

in this article. Nonetheless, one may have periodic modulations of the axion potentials in

string theory due, e.g., to non-perturbative instanton effects of appropriate gauge groups,

that exist during the RVM inflation. Such modulations do yield consistent results with

the data, provided one fixes appropriately the (target-space) energy scales of the instan-

tons, which in our approach are treated as phenomenological, string-model independent

parameters. In addition to target-space gauge-group instantons in string theories, there

are also world-sheet instantons which couple to the compactification axions [32,51], but

not to the KR action. These world-sheet instantons also contribute appropriate periodic

modulations in the multiaxion potential, which contribute to the slow-roll inflationary

parameters. In the current work we shall treat all such modulations as being characterized

by phenomenological scales. We stress, however, that in principle one should start from a

consistent microscopic string theory model and study in detail the world-sheet or target-

space gauge instanton effects. This is a highly non-trivial task, and at present, as far as we

know, the situation is incomplete. For our purposes, therefore, we shall follow the afore-

mentioned bottom-up approach, by means of which we shall determine the energy scales

of the non-perturbatively-induced modulations of the axion potential phenomenologically,

by requiring that they yield agreement with the cosmological (inflationary) data [52–54].
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Another important novel aspect of the model, which we shall discuss here, concerns

the microscopic origin of the imaginary parts of the primordial-GW-induced CS condensate.

As we shall demonstrate, the latter are associated with quantum effects of the effective

Hamiltonian of the GW, that is, they vanish classically. Specifically, we shall show that

the pertinent imaginary parts are proportional to quantum commutators of chiral GW

creation and annihilation operators. Hence, it appears that it is the quantum aspects of

the chiral GW that lead to an effective violation of unitarity, and the metastability of the

condensate-induced inflationary vacuum.

It is important to stress that the presence of imaginary parts in the gravitational CS

condensate appears to be quantum-operator-ordering dependent. Par contrast, the real

part of the condensate is independent of such orderings. In a symmetric ordering, such

parts vanish. However, we argue in the current article, that choosing ordering schemes in

which they are present has physical significance, in that such schemes imply instabilities

of the inflationary vacuum and a finite life-time, as indicated in the classical dynamical-

system approach [6]. Matching the resulting finite life-time with the phenomenologically

acceptable 50–60 e-foldings [52,54], will lead, as we shall see, in adopting a specific ordering

scheme, and also a constraint on the magnitude of the string scale Ms as compared to MPl,

in agreement with the findings of the classical analysis of [6].

Before concluding the introduction with the outline of the article, we feel placing

our work in perspective of the more general effective framework of Chern-Simons gravity

and its applications [47,48], in the presence of contorted geometries [55,56]. As is well

known, in the context of string theories [13,14,24,25], the field strength of the antisymmetric

tensor spin-one field of the string gravitational multiplet, Hµνρ, plays the rôle of a totally

antisymmetric torsion in the low energy effective field theory, up to and including fourth-

order derivative terms [26,49,50]. Although in our present work the torsion interpretation

will not play a rôle, nonetheless for completeness we shall make some comments in this

direction, which will hopefully constitute future research avenues in this context.

First, of all, as discussed in some detail in [57], where we refer the interested reader,

the KR axion in string theory, which is dual in (3+1)-dimensions to the antisymemtric-

tensor field-strength three form, Hµνρ, can be thought of as completely analogous to the

Barbero-Immirzi parameter [58,59] of loop quantum gravity [60–62], when the latter is

promoted to a (pseudoscalar) field [63–66], in analogy to the case of the instanton angle in

Quantum Chromodynamics (QCD) [67]. According to [57], the string effective action of the

StRVM, in the presence of CS gravitational anomalous terms, is linked to the so-called Nieh-

Yan invariant [68–72], which is a topological torsional invariant, in contrast to the Holst

term [73]
∫

d4x εµνρσ R̂µνρσ(Γ) (Γ denotes the generalised torsionful Christoffel connection),

which alone is not a topological invariant quantity in the presence of torsion [74,75]. The

Nieh-Yan term is defined as

SNieh−Yan ∝

∫
d4x

(
εµνρσ Tλ

µρ Tλνσ − εµνρσ R̂µνρσ(Γ)
)
=
∫

d4x ∂µ

(
εµνρσ Tνρσ

)
, (1)

where Tµ
νρ is the torsion tensor, which in the context of the Einstein-Cartan theory is a

non-propagating field, since the corresponding action contains non-derivative terms of the

torsion tensor. Thus, the Nieh-Yan term is indeed a total derivative even in the presence

of torsion and replaces [74,75] the Holst term [73]. In our string-theory case, the torsion,

as already mentioned, has a single totally antisymmetric component, proportional to the

antisymemtric-tensor field strength Tµνρ ∝ Hµνρ. The BI can be considered as a constant

coefficient β of the torsional invariant term (1).

The promotion of the BI parameter to a field would naively be equivalent to consider-

ing adding to the effective gravitational action in the presence of torsion a term (1) but with
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a coordinate-dependent coefficient β(x), which is viewed as a field variable, integrated

over in the path-integral (with a measure Dβ(x)):

SBI−field
Nieh−Yan =

∫
d4x β(x)

(
εµνρσ Tλ

µρ Tλνσ − εµνρσ R̂µνρσ(Γ)
)

=
∫

d4x β(x) ∂µ

(
εµνρσ Tνρσ

)
∝

∫
d4x β(x) ∂µ

(
εµνρσ Hνρσ

)
, (2)

where in the last equality the proportionality factor takes into account numerical coefficients

that appear in the precise relation between the torsion and the KR field strength [57]. As

discussed in previous works [1,26,57], path-integrating over (the non-propagating field) H
in the low-energy string-inspired effective action, would produce a dynamical propagating

field β(x), with canonically normalised kinetic terms, which would lead [57]to the result

of [63–65].

However, the above procedure would imply a Bianchi identity constraint εµνρσ ∂µ

Hνρσ = 0, which does not take into account the Green-Schwarz (GS) counterterms re-

quired in string theory for cancellation of gauge and gravitational anomalies in the extra-

dimensional target spacetime of strings [37]. The GS counterterms lead to appropriate

modifications in the definition of Hµνρ, by appropriate gravitational and (non-Abelian)

gauge CS three forms [26], the gauge terms pertaining to the appropriate gauge groups

that characterise the underlying string theory model. The modified Hµνρ obeys a Bianchi-

identity constraint [1], which, when implemented in the path integral via a pseudoscalar

Lagrange multiplier field [1,26,32,57], leads to the emergence of a dynamical KR axion

field, b(x), dual to the modified field strength Hµνρ, which is analogous to the BI field.

Thus, in the string case, the promotion of the BI parameter accompanying the Nieh-Yan

invariant (1) to a dynamical pseudoscalar field cannot be done solely via (2), as in [63–66],

but by adding instead to the low-energy, string-inspired, effective gravitational field-theory

action an appropriate combination of topological invariants, the Nieh-Yan invariant and

the gravitational (without torsion) Chern-Simons term, with the BI field appearing as its

coefficient [57]:

SBI−field
Nieh−Yan + SGrav. Chern Simons =

∫
d4x b(x)

(
εµνρσ ∂µ Hνρσ − α′

32 κ

√
−g Rµνρσ R̃µνρσ

)
, (3)

where (̃...) denotes the dual Riemann tensor, defined in the next Section 2 (cf. (8)), κ is

the gravitational constant in (3+1)-dimensions, and α′ the Regge slope of the string. The

pseudoscalar (axion-like) field b(x) is the so-called string-model independent axion [32].

The reader should notice that the fields b(x) (3) and BI β(x) (2) share the standard axionic

shift symmetry, that is, the corresponding action terms are invariant under the shift of the

fields by constants.

Another aspect of the CS theories is the coupling of the axion fields b(x) (or, in

general the axions arising from string compactification a(x)) to mixed anomalies, that is

gravitational but also gauge CS terms, the latter being of the form

∝

∫
d4x

√
−g (b(x) or a(x)) Fµν F̃µν , (4)

where the dual of the gauge field strength is defined in (6), in Section 2 below.

In our current paper, such gauge anomalous terms shall not be considered, the reason

being that we are interested in the inflationary epoch of the StRVM, which is not charac-

terised by gauge fields. As discussed in [1,3] in the StRVM, the latter are generated at the

end of the inflationary period, as a result of the decay of the unstable running vacuum. In

the primordial eras one could at most have non-perturbative instanton-type configurations

of appropriate non-Abelian gauge fields, which are integrated out in a path integral to yield
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periodic modulation terms in the axion potentials, as we shall discuss in Section 5.1. The

latter can contribute positively to the correct phenomenology of the inflationary slow-roll

parameters, leading to agreement with the data [52,53], but lead to no further physical

effects. Par contrast, in the post-inflationary period, such chiral gauge anomalies can play

a crucial rôle in several respects [1–4]. For instance, during the QCD epoch, color-group

instanton effects can lead, via chiral anomalies that survive the post-inflationary eras of

the StRVM, to non-perturbative generated masses of the KR (or other) axions, which can

thus play the rôle of dark matter with mass of the order of the QCD axion [2]. In general, in

string models, instantons of the appropriate non-Abelian gauge groups can lead to massive

compactification axions, which can play the rôle of even ultralight DM [76]. In addition,

Abelian electromagnetic U(1) chiral-anomaly terms (4) coupled to axions can exist at late

epochs of the post-inflationary StRVM Universe [1], and can lead to interesting effects, via

axion-photon couplings. At such epochs, the effects of the KR field torsion could also be

significant in leading to the generation of cosmic magnetic fields from galactic dynamo

instabilities in the Universe, in similar spirit to what happens [77–80] in generic torsional

Einstein-Cartan theories [81]. Moreover, on the related front of the BI parameter of the loop

quantum gravity [60–62], which, as we conjectured above [57], appears to be linked to the

StRVM, one should make the important reamark that the BI parameter may be constrained

via photon-axion conversions and axion mixing in the presence of (generic) torsion, since

such phenomena are found to depend on the BI parameter [82]. In our case, there are

additional constraints on the magnitude of the KR axion background (which plays the rôle

of the BI field, as discussed above) at late eras of the Universe evolution, which arise from

the characteristic cosmic evolution of the KR field and its rôle in Leptogenesis [1,33–35,83].

All these avenues of research are interesting ones to pursue, and we hope to come back to

such issues in future publications.

The structure of this article is the following: in the next Section 2, we shall review

briefly the emergence of a linear axion potential in the context of our string-inspired

effective theory, as a result of the (real part of the) gCS condensate induced by chiral pri-

mordial GW. In the subsequent Section 3, as part of the original material of this work,

we shall demonstrate-by means of formal path integral methods- the rôle of the presence

of N sources of GW as a multiplicative factor in front of the real part of the CS conden-

sate induced by the GW due to a single source. This has been conjectured in [5], using

hand-waving arguments, but here we shall prove it rather rigorously, within the assump-

tions made in our perturbative (weak) quantum gravity approach. In Section 4, we shall

demonstrate in detail the presence of imaginary parts of the gCS condensate, in generic

quantum-ordering schemes, and show that such parts are linked to quantum commutators

of the pertinent chiral GW. These imaginary parts of the effective gravitational action lead

to a finite lifetime of the inflationary period. The latter is independent of the number of

sources of GW, N, as it is determined by the imaginary parts of the GW Hamiltonian due

to a single source. We shall then estimate the magnitude of these imaginary parts, and thus

the life time of the inflationary vacuum. Compatibility with the inflationary phenomenol-

ogy [52–54] will then constrain the ratio of the energy scales Ms/MPl in this string-inspired

cosmological model. Section 5 deals with the derivation of the slow-roll parameters of a

variant of the StRVM, in which periodic modulations in the axion potential are included,

which are induced by non-perturbative stringy instanton effects. The inclusion of such

modulations yields better fits of the StRVM to the cosmological inflationary data. We shall

first consider in Section 5.1 target-space-gauge-group-instanton-induced periodic modula-

tions of the KR axion potential, which can lead to the correct slow-parameter inflationary

phenomenology, upon appropriate fixing of the relevant energy scales. In Section 5.2,

we shall discuss briefly the rôle of world-sheet instantons that characterize other axions
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that arise from string compactification, which are in general present together with the KR

axion in string theories (the KR axion does not couple to world-sheet instantons). Finally,

conclusions and outlook will be given in Section 6. Some conjectures on the microscopic

origin of the observed acceleration of the Universe in the current-era, within the context of

GW condensation, are also given briefly at the end of the section. Technical aspects of our

approach are discussed in several Appendices. Appendix A deals for completeness with a

technical discussion concerning the necessary conditions for obtaining a consistent varia-

tional principle of the CS gravity, by means of the addition of appropriate boundary terms.

This discussion also justifies our use of the GW as proper solutions of the gravitational

equations. In Appendix B we construct the perturbed CS action to second order in GW

perturbations around an arbitrary spacetime background, which will give the full graviton

propagator to this order. It is then shown that, in the context of a FLRW background,

the latter is equivalent to the propagation of two independent scalar modes. Our study

contains a careful inclusion of the boundary terms.

2. Linear Axion Potential from Gravitational-Anomaly Condensates:
A Brief Review

The CS gravitational theory [26,47,48] introduces a linear coupling of the (pseudo)scalar

field b, with the so-called mixed anomaly term, that is a specific linear combination of the

gauge CS term FF̃ and the gCS term, RCS (throughout this article Greek indices denote

(3+1)-dimensional spacetime indices):4

S =
∫

d4x
√
−g
[

R
2κ2

− 1

2
(∂µb)(∂µb)− A b

(
RCS + FµνF̃µν

)
+ . . .

]
, (5)

where A is a coupling constant, to be discussed further below. The . . . denote the “kinetic”

terms of the gauge fields, which will not be important for our discussion until Section 5.

The quantity Fµν is a (non-Abelian, in general) gauge field strength, with

F̃µν =
1

2
εµναβ Fαβ (6)

its dual, where εµναβ =
√
−g(x) ϵ̂µναβ is the covariant Levi-Civita tensor, and ϵ̂µνρσ denotes

the Minkoswki space-time Levi-Civita totally antisymmetric symbol, with the convention

ϵ̂0123 = 1, etc.

The gCS term RCS in (5) is given by:

RCS =
1

2
Rµ

νρσR̃ν ρσ
µ , (7)

with the symbol (̃. . . ) denoting the dual of the Riemann tensor, defined as

R̃αβγδ =
1

2
R ρσ

αβ ερσγδ , (8)

to be contrasted with the Hodge-dual

⋆Rαβγδ =
1

2
R ρσ

αβ ϵ̂ρσγδ , (9)

which uses the Minkowskian Levi-Civita symbol ϵ̂µνρσ. In what follows we shall alterna-

tively make use of both duals, exploring the identity

√
−g Rµνρσ R̃µνρσ = Rµνρσ

⋆Rµνρσ . (10)
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The mixed anomaly RCS + FF̃ is a total derivative [84,85]. Consequently, the theory (5)

is shift symmetric, i.e., invariant under global transformations of the pseudoscalar field

b → b + constant . (11)

The gauge anomaly term Fµν F̃µν is topological, that is independent of variations of the

metric tensor, so it does not contribute to the gravitational (Einstein) equations of motion.

Par contrast, the gCS term b RCS is characterized by a non trivial variation with respect to

the metric tensor, namely the Cotton tensor Cµν [47]:

Cµν = −1

2
∇α
[
(∇βb)R̃αµβν + (∇βb)R̃ανβµ

]
. (12)

Variation of the action with respect to the metric and the axion field5 yields the following

equations of motion [26,47]

Gµν = κ2T(b)
µν + 4κ2 ACµν , (13)

□ b = A RCS , (14)

where T(b)
µν is the stress energy-momentum tensor associated with the kinetic term of a

matter field,

T(b)
µν = ∇µb∇νb − 1

2
gµν(∇b)2 . (15)

The property of the Cotton tensor [47] C ;µ
µν = − 1

4 (∂νb) RCS, where ; denotes gravi-

tational covariant derivative (with respect to a torsion-free connection), implies that the

naive covariant conservation of the axion-matter stress tensor fails,

T(b) ;µ
µν = A(∂νb) RCS . (16)

This implies the non conservation of the naive axion stress tensor, which is physically

interpreted as indicating a non trivial exchange of energy between the axion matter and the

gravitational field. The RCS term is CP violating,6 and, as such, it vanishes for spherically

symmetric or isotropic and homogeneous spacetime backgrounds. This is the case when a

Friedman-Lemaitre-Robertson-Walker (FLRW) spacetime background is considered, which

means that in such a case the modified Lagrangian is equivalent to the Einstein—Hilbert

of General Relativity. Consequently, in that case, the scalar field is minimally coupled to

gravity and the cosmological evolution is governed by a stiff equation of state wb
stiff = +1.

However, when chiral GW are produced, through non-spherically symmetric coa-

lescence of primordial black holes or collisions of domain walls, the gCS term becomes

non-trivial because different helicities of the tensorial perturbations propagate in a dif-

ferent way [86–89]. This difference to the wave equations for the left and right-handed

polarizations arises because of the presence of the Cotton tensor (12) in the gravitational

Equation (13), leading to gravitational-wave birefringence of cosmological origin.

In [6] the GW were treated quantum-field theoretically (in a weak-gravity setting) by

applying the process of second quantization [89], i.e., by promoting the perturbations to

operators through the definition of the corresponding creation and annihilation operators.

In this sense, the gCS term becomes also an operator, R̂CS, which we calculate up to

second order in the tensorial perturbations. The gCS operator backreacts onto the effective

Lagrangian through its vacuum expectation value (vev), ⟨RCS⟩ ≡ ⟨0|R̂CS|0⟩, where |0⟩
denotes the appropriate gravitational ground state of the system, and the symbol (̂...) is

used to denote quantum operators. If ⟨RCS⟩ acquires a constant value, thus having the form
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of a (translationally invariant) gravitational condensate, then in this case a linear potential

for the KR axion arises,

Vlin
eff = A ⟨RCS⟩b , (17)

which breaks the shift symmetry (11) of the effective gravitational theory (5). We argued

in [6], by making use of a dynamical-system approach, that the linear-axion potential

(17) leads to inflation. A linear-axion potential also characterizes axion monodromy in

conventional string/brane theory [51], but in our case its origin its entirely different, given

that it arises as a result of the formation of the GW-induced condensate of the gravitational

anomaly term.

We now come to the string-inspired CS theories [26], which we shall restrict our

attention upon for the remainder of this article. In particular, we shall concentrate on the

stringy running vacuum model (StRVM) of cosmology [1,3,4], which, as already mentioned,

is based on the assumption that in the primordial Universe only fields from the massless

bosonic gravitational multiplet of the string appear as external fields. In such models, the

gauge fields F, together with other matter excitations, are assumed absent, and generated

only at the end of the inflationary period, due to the decay of the metastable ground state

(vacuum) of the StRVM [1,3]. The action in this model, which we shall restrict ourselves on

in the next couple of sections, is described by (5) upon setting F = 0, that is:

S =
∫

d4x
√
−g
[

R
2κ2

− 1

2
(∂µb)(∂µb)− A b RCS

]
. (18)

In this class of models the coupling A is determined by string theory considera-

tions [26], and is given by

A =

√
2

3

α′

48κ
=

√
2

3

MPl

48 M2
s

. (19)

Since the StRVM (5) is viewed as a low-energy string effective gravitational theory,

it is natural to consider that the UV cutoff µ of the momenta of the pertinent low-energy

excitations, including the (quantum) graviton modes, is provided by the string mass

scale [5],

µ ≈ Ms ≤ MPl , (20)

so that the transplanckian conjecture is satisfied [90,91].

The detailed analysis of [6] has then demonstrated that the GW-induced gCS conden-

sate is a complex quantity. Its real part (to leading order in the assumed small quantity

|κ2 ḃ| ≪ 1) has been estimated to be:

Re⟨RCS⟩I = − A
π2

ḃI

MPl

(
HI

MPl

)3

µ4
< 0 . (21)

Notably, the negative sign in front of the quantity on the right-hand side of the above

equality guarantees a positive sign for the effective cosmological constant. The quantity

HI is the Hubble rate at inflation, whose upper bound has been imposed by the Planck

Collaboration data [52] to have the order of magnitude

HI ≲ 2.5 × 10−5MPl . (22)
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We next recall [5,6] that for the actual value of the condensate in the inflationary

epoch, we have to multiply the result (21) with the number NI of all kinds of sources of

gravitational waves during inflation, thus obtaining as a final result:

Re⟨RCS⟩total
I = −NI

A κ4 µ4

π2
ḃI H3

I . (23)

A detailed proof of this feature, within the path-integral approach of weak quantum

gravity, will be given in the next Section 3.

In the analysis of [6] an estimate of the order of magnitude of ḃ, which remains approx-

imately constant during the entire inflation era, has also been obtained as a consequence of

the imposition of appropriate initial conditions in the dynamical-system approach:

ḃI ∼ 10−1HI MPl , (24)

confirming in this way the assumptions made in [1,3–5], including the assumption on the

smallness of |κ2ḃ| that lead to (21).

We stress at this stage that the approximate constancy of the rate of change of the

KR axion background in our StRVM approach is due to the presence of a gCS condensate

⟨RCS⟩ = const. ̸= 0. Indeed, if we recall that the gCS-Hirzebruch term in (5) is a total

derivative [26,85]

RCS = J µ
;µ , (25)

where ; denotes covariant derivative in the curved background, and make the following

plausible approximation in our homogeneous and isotropic FLRW inflationary cosmology

with an (approximately) constant Hubble parameter H: [1,3]

⟨RCS⟩ = ⟨J µ
;µ⟩ ≃ ∂0⟨J 0⟩+ 3 H ⟨J 0⟩ , (26)

then, from the equations of motion for the b-field stemming from the action (5), we obtain

(ignoring the gauge terms, as in the model of [1,3])

□b = A⟨RCS⟩ ⇒
for FLRW background : b̈ + 3 H ḃ = A ⟨RCS⟩ = constant ̸= 0 , (27)

where □ denotes the covariant D’Alembertian. For H = constant, and ⟨RCS⟩ = constant,

one obtains from (27) that

ḃ = constant . (28)

Equivalently, on using (26), we may also write the b equation as:

1√−g
∂0

(√
−g [ḃ − A ⟨J 0⟩]

)
= 0 , (29)

which also accepts as a solution a constant ḃ axion background:7

ḃ = A ⟨J 0⟩ = constant ̸= 0 . (30)

Thus, Equation (24), which in [6] has been obtained as a consistent condition in the

dynamical-system approach to linear-axion inflation, constitutes, in view of (27), (28), (29),

a highly non-trivial consistency check of the StRVM approach to inflation via primordial-

gravitational-wave-induced CS condensates, which in this way is mapped into a dynamical
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evolution of a single-(axion) field system with a linear potential. The reader should therefore

notice the appearance of linear in time KR axion backgrounds in this StRVM system, as

happened in the string-inspired cosmological models of [29–31], but here the origin of this

dependence is different.

Moreover, in view of (23), (24), the gCS condensate is of O(H4
I ), which, as already men-

tioned in the introductory section of the article, makes the corresponding energy density

having a form that is encountered in the RVM approach to cosmology [7,9–11,15–19,21–23],

that is being a function of even powers of the Hubble parameter, as dictated by the under-

lying general covariance of the formalism.

In the context of the dynamical-system approach to inflation, the analysis of [6] also

provides a restriction on the magnitude of the string scale Ms, compared to MPl:

Ms ∼ 10−1MPl < MPl , (31)

which is consistent with the transplanckian censorship hypothesis [4,90,91].

From (19), (20), (22), (24), and (31), we therefore obtain for (23):

Re⟨RCS⟩total
I ≃ −NI

√
2

3

1

480 π2

( Ms

MPl

)2
H4

I ≳ −6.7 × 10−25 NI M4
Pl . (32)

Finally, an estimate of the number of sources of GW during the inflationary epoch, NI ,

in terms of the corresponding number NS during the stiff-axion era, which, in the StRVM

Cosmology, precedes the inflationary era [1,3,4], is also provided as [6]

NI

NS
∼ 7 · 1016 , (33)

which lies in the range given in [5], stemming from the assumption of the constancy of

the CS condensate during inflation, which thus avoids exponential dilution [1,3]. For our

purposes we may take without loss of generality that NS = O(1).

We proceed in the next section to a detailed discussion on the emergence of the

enhancement (32) of the value of the real part of the gCS condensate by the number of

GW sources, following a path integral approach in the framework of (gauge fixed) weak

quantum gravity of GW perturbations.

3. Effective (Mean-Field) Theory from “Re-Classicalization” and the
Effect of the Number of GW Sources

We now turn our attention to the path integral formulation which, as we shall see, can

indeed lead to a better physical insight on the StRVM approach to Cosmology, albeit there

are still several formal questions that remain unanswered, especially the ones related to the

still wide-open issue of gauge invariance in quantum gravity [94–96].

The full path integral of the StRVM theory reads,

Z =
∫

Db Dg eiS[b,g] (34)

where S[b, g] is given by (18). This, of course, is a formal expression, since both the

measure and the action of quantum gravity are still not known. However, since in our

case we are dealing with an effective low-energy gravitational theory obtained from

strings [13,14,24,25,49,50], the above quantum theory is valid only at its semiclassical
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approximation. In general, when assuming the semiclassical approximation, the partition

function becomes a functional of the background fields,

Z = eiW[g,b] (35)

where W[g, b] denotes the effective action of the background fields, which obeys:

−i
δ lnZ

δb
=

δW[g, b]
δb

= 0 , −i
δ lnZ
δgµν

=
δW[g, b]

δgµν
= 0 , (36)

at appropriate saddle points of the path integral.

Upon ignoring any perturbation of the fields, the functional W[g, b] can be easily

identified with the effective action, W[g, b] = S(0)[g, b], where S(0)[g, b] is the action in the

background spacetime without perturbations. However, upon considering variations of

the metric about the stationary points (36), as we did previously in the form of GW [6],

we obtain

S[b, g + h] = S(0)[b, g] + S(2)[b, g, h] + . . . , (37)

where S(0)[b, g] is the unperturbed background action (18), and S(2)[b, g, h] denotes the

action up to second order in the metric variations, hµν, with the latter treated as weak

quantum variables (fluctuations). This order in the expansion about the stationary point

suffices for the purposes of this work. Then, the path integral has to be of the following form:

Z = eiS(0) [b,g]
∫

Dh eiS(2) [b,g,h] = eiS(0) [b,g]Zh[b, g] (38)

where b and g act as background fields, while S(2)[b, g, h] is the action up to second order

in the metric perturbations and Zh denotes the path integral of the GW perturbations,

Zh[b, g] =
∫

Dh eiS(2) [b,g,h] . (39)

From now on we focus on the FLRW spacetime background, in the presence of chiral

GW perturbations. In such a case, h is an abbreviation for the two independent modes,

hL and hR of the GW (cf. Section 4). These perturbations correspond to a GW induced by

some source. In this case, S(2)[b, g, h] denotes the action of the GW, which has the form,

S(2)[b, g, h] ≡ S(2)[b, g, h]
∣∣∣

A=0
−
∫

d4x A bOh . (40)

In the above expression, S(2)[b, g, h]
∣∣∣

A=0
denotes the terms of the gravitational action

(5), perturbed to second order, in the absence of gCS and chiral gauge anomalies, which

is derived in Appendix B (cf. Equation (A80)). The quantity Oh = Rµνρσ
∗Rµνρσ, with

Rµνρσ
∗Rνµρσ expressed up to second order in the (weak) GW perturbations, and we used

(10), (9). Then, the path integral reads,

Z = eiS(0) [b,g]
∫

Dh e
iS(2) [b,g,h]

∣∣∣
A=0

−iA
∫

d4x bOh
, (41)

implying that the effective action, upon assuming metric perturbations, W[b, g], differs

from S(0)[b, g]. In order to find W[b, g], we take the functional derivative (assuming that

the variations with respect to the background fields commute with the measure of the GW

path-integration)
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0 = −i
δ lnZ

δb
=

δS(0)[b, g]
δb

+
1

Z
∫

Dh
( δS(2)[b, g, h]

∣∣∣
A=0

δb
− A Oh

)
e

iS(2) [b,g,h]

∣∣∣
A=0

−iA
∫

d4x Oh b

=
δS(0)[b, g]

δb
+
〈 δS(2)[b, g, h]

∣∣∣
A=0

δb

〉
− A⟨Oh⟩ (42)

where

⟨Oh⟩ =
1

Z
∫

Dh Oh e
iS(2) [b,g,h]

∣∣∣
A=0

−Ai
∫

d4x Oh b
, (43)

is the vev of the composite operator, Oh, which contains the metric perturbations. Such a

vev could depend only on the background metric and in the case of FLRW background

only on even powers of the Hubble parameter, H, as implied by diffeomorphism invariance

of the theory [9].

We now proceed to incorporate a number of GW sources N > 1 in the path integral.

This is introduced by treating the GW coming from various sources as “an ideal gas of non-

interacting GW perturbations”—in the sense that the partition function of the N sources of

GW is constructed as a product of N partition functions of the individual GW:

Z = eiS(0) [b,g]
∫ N

∏
i=1

Dhi e
i ∑i S(2) [b,g,hi ]

∣∣∣
A=0

−i ∑i
∫

d4x A Ohi
b

= eiS(0) [b,g]



∫

Dh e
iS(2) [b,g,h]

∣∣∣
A=0

−Ai
∫

d4xOhb



N

. (44)

This explains, within the path integral formulation, the linear superposition of GW

effects assumed in [5].

Then, following the same procedure as in the single GW case above, we have,

0 = −i
δ lnZ

δb
=

δS(0)

δb
+N

〈 δS(2)[b, g, h]
∣∣∣

A=0

δb

〉
− AN ⟨Oh⟩ , (45)

where by the symbol ⟨. . . ⟩ we have defined the following vev of a composite operator

B[. . . , hi] (for every GW perturbation hi)

⟨B[. . . , hi]⟩ =
∫
Dhi B[. . . , hi] e

i ∑i S(2) [b,g,hi ]

∣∣∣
A=0

−Ai ∑i
∫

d4xOhi
b

∫
Dhi eiS(2) [b,g,hi ]−Ai

∫
d4xOhi

b
, (46)

which obviously depends only on the background fields, and as such we denote it simply

as ⟨B[. . . , h]⟩ or ⟨Bh⟩, i.e., we omit the index referring to each GW perturbation, and instead

we use a generic h. Therefore, Equation (45) reads,

0 = −i
δ lnZ

δb
=

δS(0)[b, g]
δb

+N
〈 δS(2)[b, g, h]

∣∣∣
A=0

δb

〉
− AN⟨Oh⟩ . (47)

Introducing the notion of the proper number density n of GW sources in the spacetime

background corresponding to the metric gµν:

n = N/
√
−g , (48)
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and using the identity (10), we define the following quantity,

⟨Rµνρσ
∗Rµνρσ⟩n ≡ n⟨Rµνρσ

∗Rµνρσ⟩ , (49)

We next make the assumption on the approximate constancy of the gCS condensate

during inflation (which is confirmed by explicit calculations in our case [1,3–6])

⟨Rµνρσ
∗Rµνρσ⟩n = constant . (50)

As we have already shown in previous works [5], the introduction of the sources is

crucial in order to satisfy (50) but also not to dilute the condensate during inflation [1,5],

while respecting (20). Assuming that these conditions are valid (i.e., assuming a sufficiently

large number of sources), indeed an effective linear potential for the axion is introduced.

In this interpretation, such a linear potential comes from a “re-classicalization” process of

the quantum perturbations around the classical background. The term “re-classicalization”

is used here to stress that, upon its formation, the condensate ⟨Rµνρσ
∗Rµνρσ⟩ acts as a

“classical” source for the axion, affecting in this way its already classical background, and

producing an effective linear potential for the (pseudo-) scalar field.

The reader should then observe that any variation of the condensate with respect to

the background fields vanishes. As a consequence, a linear potential for the axion arises

leading to inflation, as discussed in detail in [6]. We recall from our previous analysis

in that work that the number of GW sources is not constant throughout the evolution of

the primordial universe, but it necessarily increases abruptly as we pass from the stiff

to the RVM inflationary epoch (33). This is an essential behavior to guarantee the onset

of inflation in our approach. The nature of the GW sources depends on the underlying

microscopic model. There are various mechanisms for GW production during the pre-

inflationary era, ranging from non-spherically-symmetric merging of primordial black

holes to annihilation/non-spherically-symmetric collapse of domain walls [3].

Using (50) we now apply a mean-field Hartree-Fock (HF) approximation [97–99] for

the evaluation of the source path integral (44). According to the HF treatment, the gCS

term is split into a condensate term and quantum fluctuations about it (denoted by the

symbol : · · · :) [1,3]:

∫
d4x N Ohb =

∫
d4x
√
−g ⟨Rµνρσ

∗Rµνρσ⟩n b+ :
∫

d4x N Oh b : , (51)

where we used the identity (10), and the definition (49), with the property (50) in mind. On

account of (51), the corresponding variational equations with respect to the b-axion and

graviton fields, obtained from (44), read:

b − axion equation : 0 =
δS(0)

δb
− A ⟨Rµνρσ

∗Rµνρσ⟩n +N
〈 δS

(2)[b,g,h]

∣∣∣
A=0

δb

〉
− AN ⟨: Oh :⟩ ,

graviton equation : 0 =
δS(0)

δgµν
+

A
2

gµν⟨Rµνρσ
∗Rµνρσ⟩n b

+N
〈 δS(2)[b, g, h]

∣∣∣
A=0

δgµν

〉
−N A

〈 δ

δgµν

∫
d4x : Oh b :

〉
. (52)

The normal-ordered (: · · · :) terms of the composite operators bring in new UV divergencies,

which in general may lead to background-dependent terms in both equations (52). Such

terms can be arranged to vanish by an appropriate choice of counterterms. This lies at the

heart of our mean-field HF treatment, which entails ignoring quantum fluctuations about
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the gCS condensate. Moreover, from our analysis in Appendix B (cf. Equation (A79)), we

observe that in the Traceless-Transverse (TT) gauge of GW (A85), the third term on the

right-hand-side of the b-axion Equation (52) vanishes, in a self consistent way to second

order in the graviton perturbation, in which the corrections S (2) are gauge invariant, as

discussed in Appendix B.

On account of (50), it is evident that an (approximate) linear-axion contribution to the

effective stress tensor arises during the inflationary period (cf. Equation (23)), which is

equivalent to an approximate positive-cosmological-constant (de-Sitter type) contribution,

since, for the duration of inflation, the b field remains of the same order of magnitude, as

explained in [1,3–6].

At this stage we would like to make some brief but important remarks regarding the

limitations of our results. The above analysis was somewhat formal and did not deal with

the important issue of gauge invariance of the quantum gravitational path integral. The

estimates (23) of the gravitational CS condensate in our approach [1,6] have been performed

in a specific gauge (TT gauge (A85) of GW) within the framework of weak quantum gravity.

Unfortunately, due to the lack of knowledge of the full theory of quantum gravity, we

cannot demonstrate gauge invariance of our condensate at a full non-perturbative level.

Such a task would require the application of methods as in [94–96,100], which, in the

current state of affairs of our model, lies well beyond the scope of the current article. Our

aim here was to provide evidence for the existence of a complex non-zero condensate of the

gravitational CS anomaly term in the effective action (5) during inflation, and estimate the

life time of the associated unstable vacuum. Hopefully, when a fully UV completion of the

model is at hand, which in our case implies a specific string model of phenomenological

relevance to particle physics, our estimates will not change much quantitatively.

The reader should then notice that in this HF form, the equations (52) include the

(classical) background parts, associated with the respective variations of the S(0) part of the

effective action (not involving GW corrections), plus non-trivial averages of the quadratic

GW corrections, such as the third term on the right-hand-side of the graviton equation

in (52), which expresses the quantum average of the contribution of the second order

GW perturbations to the GW stress-energy tensor. The latter is not gauge invariant. From

dimensional considerations, we expect such terms to yield corrections to the Ricci and scalar-

curvature parts of the Einstein tensor, plus a potential vacuum-energy-like contribution.

If we restrict ourselves to terms of second-order in derivatives, for consistency with our

discussion so far, such vacuum energy contributions in a FLRW background are expected to

be of order O(H2), where H is the Hubble parameter. Such terms would be subdominant

at early eras of the Universe, like the RVM inflation we are interested in here, as compared

to the O(H4) terms coming from the gCS condensate A
2 gµν ⟨Rµνρσ

∗Rµνρσ⟩N appearing in

the graviton Equation (52). However, their presence would complete the description of the

energy density of the vacuum in this StRVM approach, which would thus be in agreement

with the considerations of [1,3]. In this work we shall not proceed further to evaluate

such terms, which will be the subject of a forthcoming publication. We may conjecture

though that, if the above terms are indeed of order H2, then one might encounter similar

contributions to the vacuum energy density in modern eras, from appropriately condensing

sources of GW in the current epoch, in analogy to the inflationary era. Such terms, of order

O(H2
0) (where H0 denotes today’s value of the Hubble parameter), would thus provide a

contribution to today’s dark energy, according to generic RVM features [7,9–11], which the

StRVM would share.

In the next section we shall evaluate the imaginary parts of the gCS condensate,

thereby proving the metastability of the inflationary vacuum, and provide an estimate of
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the associated duration of inflation. On comparing with cosmological data [52–54], then,

we shall constrain the string scale Ms of the StRVM.

4. Quantum-Ordering Ambiguities and Metastability of the
gCS-Condensate-Induced Inflation

In order to estimate the gravitational anomaly condensate, we use canonical quan-

tization techniques. Applying such methods for GWs in an FLRW background, we are

also able to investigate the quantum effects that show up regarding the behavior of the

composite operator of the Hirzebruch signature,

̂R ∗
µνρσRµνρσ . (53)

As we shall show, this operator may contain imaginary parts, which are absent in

the classical theory. In our approach these imaginary parts play an important rôle in

inducing metastability of the inflationary quantum vacuum, and thus a finite duration of

inflation in the StRVM. Such a metastability is in agreement with the swampland criteria of

de-Sitter-like inflation in string theory [101–106].8

The method of quantizing GWs followed in this work lies on the fact that the tensorial

metric perturbations have two degrees of freedom. Then, one can show that their evolution

is equivalent with that of two independent scalar modes (see Appendix B for a detailed

analysis in the case of a background with a minimally coupled scalar field). In this way, the

gauge-fixing issues encountered in the quantization of gauge theories, such as the theory of

the graviton field, can be bypassed by identifying the two scalar modes and quantize them

independently using appropriate mode expansions [107]. The case of the 4D Chern-Simons

gravity is similar. The graviton in this theory also contains two degrees of freedom [47],

and the quantization procedure, as we shall demonstrate below, can be applied in a similar

fashion [87–89,108]. The main difference occurs because of the derivative couplings arising

due to the Chern-Simons interaction and especially due to the presence of the Levi-Civita

tensor. Due to the latter, such derivative couplings contain odd powers of spatial deriva-

tives, thereby inducing a dependence on the direction of propagation, which explains the

parity-violating nature of RCS, but also a form of derivatives with respect to the conformal

time, implying ordering ambiguities upon quantization. As we shall discuss below, this

implies the presence of (quantum-operator-ordering dependent) imaginary parts.

For a spatially-flat FLRW spacetime,

ds2 = −dt2 + α2(t)δijdxidxj (54)

where α(t) denotes the scale factor, the tensor perturbations (GWs) have the following form:

ds2 = −dt2 + α2(t)(δij + hij)dxidxj , i, j = 1, 2, 3 . (55)

We can express hij in the linear polarization basis [109], expressed as:

hij = h+ϵ
(+)
ij + h×ϵ

(×)
ij , (56)

where the polarization tensors are defined through:

ϵ
(+)
ij = [e1 (⃗k)]i[e1 (⃗k)]j − [e2 (⃗k)]i[e2 (⃗k)]j , (57)

ϵ
(×)
ij = [e1 (⃗k)]i[e2 (⃗k)]j + [e1 (⃗k)]j[e2 (⃗k)]i , (58)
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where (e1 (⃗k), e2 (⃗k), e3 (⃗k)), with e3 (⃗k) = k⃗/|⃗k|, form a right-handed orthogonal triad of

unit vectors. In the presence of the gCS coupling, it proves more appropriate to expand the

perturbation (56) with respect to the helicity basis tensors ϵL,R
ij , as [89],

hij(t, x⃗) = hL ϵ
(L)
ij + hR ϵ

(R)
ij = ∑

λ=L,R
hλ(t, x⃗)ϵ(λ)ij , (59)

where ϵL,R
ij are defined as follows:

[
ϵ
(R)
ij

]
=

1√
2

([
ϵ
(+)
ij

]
+ i
[
ϵ
(×)
ij

])
=
[
ϵ
(L)
ij

]†
. (60)

The polarization tensors obey the following normalization:

ϵ
∗(λ)
ij ϵ

ij
(λ′) = 2δλλ′ . (61)

where λ = L, R denotes Left and Right polarization. We can then obtain the following

property:

k jϵ
ijke(λ

′)
kq = l⃗kl(λ′)i|⃗k|e(λ

′) i
q (62)

with lR = +1, lL = −1, while also [87],

l⃗k =

{
+1 θ < π/2

−1 θ > π/2
, (63)

where θ denotes the polar angle of the arbitrary vector k⃗. Moreover, by construction, the

following relations hold:

e(L,R)
ij (⃗k) = e(L,R)

ij (−⃗k) (64)

e(L)
ij (⃗k) e(L) ij (⃗k) = e(R)

ij (⃗k) e(R) ij (⃗k) = 0 (65)

e(L)
ij (⃗k)e(R) ij (⃗k) = 2 . (66)

Expanding the gravitational perturbations in Fourier space and helicity basis, we obtain:

hij(η, x⃗) =
1

(2π)2/3

∫
d3k ∑

λ=L,R
e(λ)ij (⃗k)h

λ,⃗k(η)e
i⃗k·⃗x . (67)

We may now show in an analytical way the derivation of the Chern-Simons part of

the action, starting from the relative interaction term:

Sint
CS = −1

2

∫
d4x A b R ∗

µνρσRνµρσ . (68)

Up to second order in hij, R ∗
µνρσRνµρσ is expressed as [89]:

R ∗
µνρσRνµρσ = 2ϵ̂ijk

(
∂lh

′m
j ∂m∂ih

l
k − ∂lh

′
jm∂l∂ih

m
k + h′′jl∂ih

′l
k

)
, (69)

where the prime denotes differentiation with respect to the conformal time η. Keeping only

the antisymmetric part with respect to the indices i and j, performing partial differentiations

and using the cyclic permutation symmetry of ε̂ijk, we obtain,
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R ∗
µνρσRνµρσ = ∂η

[
ε̂ijk
(

∂lh
m
j ∂m∂ih

l
k − ∂lhjm∂l∂ih

m
k + h′jl∂ih

′l
k

)]

+ ∂i

[
ε̂ijk
(

∂lh
′m
k ∂lhjm − ∂lh

m
j ∂mh′lk − h′jlh

′′l
k

)]
, (70)

that is, a total divergence, R ∗
µνρσRνµρσ = ∂µ Jµ, with Jµ =

√−gJ µ and J µ the covariant

current in (25). Thus, combining with the part of the Einstein-Hilbert action given in (A87)

(cf. Appendix B), we obtain,

SGW =
1

8κ2

∫
d4x

[
α2(η)

(
h′ijh

′ ij − ∂khij∂
khij
)

+ 4 A κ2 b′ ε̂ijk
(

∂lh
m
j ∂m∂ih

l
k − ∂lhjm∂l∂ih

m
k + h′jl∂ih

′l
k

)]
+ SB , (71)

where SB denotes boundary terms,

SB = S(1)
B + S(2)

B (72)

S(1)
B = A

∫
d4x ∂η

[
b ε̂ijk

(
∂lh

m
j ∂m∂ih

l
k − ∂lhjm∂l∂ih

m
k + h′jl∂ih

′l
k

)]
(73)

S(2)
B = A

∫
d4x ∂i

[
b ε̂ijk

(
∂lh

′m
k ∂lhjm − ∂lh

m
j ∂mh′lk − h′jlh

′′l
k

)]
. (74)

Substituting (67) into (71), we obtain the classical action of GW in Fourier space,

SGW =
1

4κ2 ∑
λ=L,R

∫
dη
∫

d3⃗k z2
λ,⃗k

(η)
(
|h′

λ,⃗k
|2 − k2|h

λ,⃗k|
2
)

(75)

where,

z2
λ,⃗k

(η) = α2(η)
(
1 − lλ l⃗kLCS(η)

)
(76)

with

LCS(η) = kξ , ξ =
4Ab′κ2

α2
, [ξ] = M−1 . (77)

The above considerations are classical. Canonical quantization of GW perturbations

in our context has been discussed in detail in [6], following and extending the analysis

in [88,89]. Basically, by representing the tensor perturbation hij in (67) as:

hij(η, x⃗) = κ ∑
λ=L,R

∫ d3k
(2π)3/2

ei⃗k·⃗x ψ
λ,⃗k(η)

a(η)
√

1 − ℓλ ℓ⃗k k ξ
ϵλ

ij , ξ =
4 A b′(η) κ2

a(η)2
, (78)

where a(η) is the scale factor of the expanding inflationary Universe, the quantization of

hij is achieved by considering the Fourier transforms of the “scalar” field operators [6,89]

ϕ̂(η, x⃗) ≡ ψL(η, x⃗) =
∫ d3k

(2π)3/2
ei⃗k·⃗x ̂̃ϕ⃗k(η) ,

ϕ̂⋆(η, x⃗) ≡ ψR(η, x⃗) =
∫ d3k

(2π)3/2
ei⃗k·⃗x ̂̃ϕ⋆

−⃗k
(η) ,

̂̃ϕ⃗k(η) = ṽ⃗kα̂−
k⃗
+ v∗−⃗k

b̂+−⃗k
,

̂̃ϕ
∗
−⃗k(η) = v⃗k b̂−

k⃗
+ ṽ∗−⃗k

α̂+−⃗k
, (79)
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where we have introduced two sets of creation and annihilation operators, α±
k⃗

and b±
k⃗

, for

which (α−
k⃗
)† = α+

k⃗
and (b−

k⃗
)† = b+

k⃗
, obeying the commutation relations:

[
α̂−

k⃗
, α̂+

k⃗′

]
=
[
b̂−

k⃗
, b̂+

k⃗′

]
= δ(3) (⃗k − k⃗′) . (80)

At this point we turn our attention to the quantization issues of the anomaly term

(69). In the helicity basis (59), and choosing, without loss of generality, the z − axis as the

direction of GW propagation, the CS term has the following structure [6,88,89]:

R ∗
µνρσRνµρσ = 4i

(
∂2

zhL∂zh′R + h′′L∂zh′R − ∂2
zhR∂zh′L − h′′R∂zh′L

)
. (81)

The above expression makes clear our earlier assertion that the gCS anomaly term is

non-trivial only in the presence of chiral (i.e., left-right asymmetric) GW perturbations.9

At this stage we make some important remarks regarding the canonical quantization

of the gCS theory, and in particular the anomaly term (81). The issue is the known ordering

ambiguities that occur in a quantum theory when we replace the classical quantities, such

as hL(R)(x) in the above equation, by quantum operators.10

In general, we may present various orderings of quantum operators, ϕ̂i, as:

OwP

(
ΠN

i=1ϕ̂i

)
= ∑

P

wP

(
ϕ̂i1 . . . ϕ̂iN

)
P

, ∑
P

wP = 1 , (82)

where wP denote the weights of the various permutations P of the operators appearing on

the right-hand-side of (82).

Using the Fourier decomposition for each mode separately, we can arrive at the

following relation for the operator form of (81), upon applying a given quantum-ordering

scheme (82):

̂R ∗
µνρσRνµρσ = 4

∫ d3⃗kd3k⃗′

(2π3)
ei(⃗k+k⃗′)·⃗x

[
k2k′lk⃗′

(
OwP1

(
ĥL,⃗k ĥ′

R,k⃗′

)
− OwP2

(
ĥR,⃗k ĥ′

L,k⃗′

))

− k′lk⃗′
(

OwP3

(
ĥ′′

L,⃗k
ĥ′

R,k⃗′

)
− OwP4

(
ĥ′′

R,⃗k
ĥ′

L,k⃗′

))]
, (83)

where, for the sake of generality, we assumed different ordering schemes (provided by the

different weights wPi , i = 1, . . . , 4) for each product of operators appearing in (83), with the

weights satisfying
2

∑
Pi=1

wPi = 1 , ∀ i = 1, . . . , 4 .

The hermitian conjugate operator of (83) is then given by:

̂(R ∗
µνρσ Rνµρσ)

†
= 4

∫ d3⃗kd3 k⃗′

(2π3)
ei(⃗k+k⃗′)·⃗x

[
k2k′lk⃗′

(
OwP1

(
ĥ′

R,k⃗′
ĥL,⃗k

)
− OwP2

(
ĥ′

L,k⃗′
ĥR,⃗k

))

− k′lk⃗′
(

OwP3

(
ĥ′

R,k⃗′
ĥ′′

L,⃗k

)
− OwP4

(
ĥ′

L,k⃗′
ĥ′′

R,⃗k

))]
, (84)

and a potential non-hermiticity would imply that:11

̂R ∗
µνρσRνµρσ − ̂(R ∗

µνρσRνµρσ)
†
= −2 i ImR̂CS ̸= 0 . (85)

It is straightforward to see, for instance, that in the case of the symmetric ordering for

the product of two operators, in which all the weights are wP = 1
2 , i.e.,:

OwP=
1
2

(
ϕ̂1 ϕ̂2

)
=

1

2

(
ϕ̂1 ϕ̂2 + ϕ̂2 ϕ̂1

)
, (86)
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the imaginary parts of the gCS operator vanish:

ImRCS

∣∣∣
symm. ordering wPi

= 1
2

= 0 . (87)

This scheme may be considered as providing a well-defined quantum operator in the

sense discussed in passing in ref. [89], where the imaginary parts of the naively defined

composite gCS operator RCS have been ignored. On the other hand, for any other ordering

scheme the imaginary parts will depend on (be proportional to) the weights wPi , and, thus,

be scheme dependent.

Nonetheless, the reader can see easily that the real part of the gCS condensate ReR̂CS

is quantum-operator-ordering-scheme independent, that is, the value of this quantity is indepen-

dent of the wPi , i = 1, . . . , 4,

d
dwPi

ReRCS =
1

2

d
dwPi

(
̂R ∗

µνρσRνµρσ + ̂(R ∗
µνρσRνµρσ)

†)
= 0 , ∀ i = 1, . . . , 4. (88)

Taking into account that each ordering defines a fundamental quantum theory, this

implies that the classical theory corresponds to (infinitely many in our case) quantum

theories. There is no contradiction here. The classical limit is not fundamental, in contrast

to the quantum version of it. In our case, we are only dealing with effective low-energy

theories obtained from an UV completion of string theory, which is a candidate theory

for quantum gravity. The latter still eludes us. Once this issue is resolved, then the UV

completion will correspond to a specific quantum ordering of the various operators entering

the quantum theory.

At this juncture, we make the important remark that, in the way constructed, the

GW action (75) can be free from such ordering ambiguities, even if the R̂CS operator is

not, since the relevant parts can be absorbed in a boundary term (74). Nonetheless, this

characterizes only the case of a homogeneous and isotropic (pseudo-)scalar, which appears

in the cosmological StRVM. In any other case, there will be ordering ambiguities also in the

GW action, an issue that will be treated in a future work.

In an effort to potentially identify a “physical” quantum ordering in our case, we

next remark that, in the presence of the imaginary parts of the condensate, the Minkowski-

signature space-time GW path-integral partition function, ⟨0|0⟩, which expresses the ampli-

tude of the probability that the StRVM system remains in the initial (inflationary in our case)

ground state, acquires a damping factor, which thus determines the lifetime of inflation. In

the HF approximation, for instance, we obtain formally:12

⟨0|0⟩HF
Minkowski−signature ∼ exp

(
− b ⟨RCS⟩

∫

dS
d4x
√
−g
)[

. . .
]

, (89)

where b denotes the axion background value, about which we consider GW perturbations

in the path integral,
∫

dS d4x
√−g denotes the (approximately de Sitter) four volume during

inflation, and the terms
[

. . .
]

denote the GW-perturbation path-integral in the absence of

gCS anomalous terms. The life time would be formally estimated by setting the dumping

exponent in (89) to one.

However, to give meaning to the path-integral one needs to analytically continue

to a Euclidean four-dimensional spacetime. In such a case, the imaginary parts of the

gCS appear as phases in the integrand of the respective path integral. If we represent the

Euclidean version of the left-hand side in terms of the vacuum energy as

⟨0|0⟩E = exp
(
− V(E) E

)
, (90)
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with V(E) the Euclidean (E ) four volume, then from a fundamental theorem of the complex

calculus we note that the presence of a phase in the path integral can only make it smaller

than in the case in which the phase is absent, provided that the measure of the path-

integration is positive definite:

∣∣∣
∫

Dz | f (z)| eiα(z)
∣∣∣ ≤

∫
Dz | f (z)| , z ∈ C . (91)

From (90), (91), we then conclude that the imaginary parts of the gCS condensate

result in a higher vacuum energy than in the case where the condensate is absent.13

Naively, this would prompt one to conclude that, in our case, the symmetric order-

ing (86) is the one with physical meaning, as in the latter scheme the gCS is free from

imaginary parts (87), and thus the vacuum energy would be minimized as compared to all

other quantum orderings. Moreover, in the absence of imaginary parts of the operator (83),

one would find it natural to identify the classical (h̄ → 0) limit of this hermitian operator

with a real function, as RCS is (cf. (7)). This would in turn imply that, in the context of our

effective low-energy gCS theory, the inflationary phase would be eternal, unless one has

mechanisms of particle production during inflation (conventional or otherwise) in order

to induce a graceful exit from it. It has been recently discussed [125], however, that such

particle-pair production mechanisms might be associated with the existence of imaginary

parts of the gravitational effective action. This would prompt us to consider ordering

schemes other than the symmetric one, which are characterized by such complex effective

actions in our CS gravity case.

Hence, adopting the symmetric ordering might not be a physically correct procedure

in our case. As already mentioned, from the point of view that the quantum theory is the

fundamental one, we cannot exclude the possibility that in our stringy-quantum-gravity

case of the StRVM, non hermitian Hamiltonians, implied by the other quantum ordering

schemes, as described above, play a physical rôle in the scenario of GW-induced condensate

inflation advocated here and in [1,3,5]. Under this interpretation, the StRVM vacuum is

destabilized by quantum effects. This implies that the running vacuum will decay so that

the gravitational anomaly will be eradicated. This is the rôle of the chiral matter fermions,

generated at the end of the RVM inflation as a result of the metastable vacuum decay in

the scenario of [1,3], which generate their own gravitational anomalies that cancel the

primordial ones. Lacking a well-established framework of quantum gravity, such a scenario

cannot be excluded based solely on hermiticity arguments.

At this stage, we cannot resist in referring the reader briefly to the field of the so-

called PT-symmetric approach to quantum mechanics and field theory [126,127] according

to which, under such a condition, or, more generally the invariance of a system under

some antilinear symmetry that can include PT [128], non-hermitian Hamiltonians may be

characterized by real eigenvalues and play a physical rôle. In the context of the StRVM, for

instance, such PT-symmetric approach may provide novel scenarios for the acceleration

of the Universe [129]. In our context here, of course, we do not examine in detail such PT

symmetric scenarios, viewing the presence of imaginary parts in the effective action as

signifying an open-ness of the system. In the string theory context of interest to us here,

for example, these imaginary parts may be linked to the existence of infinite towers of

the massive string states (with masses that are integer multiples of the string mass scale

Ms) that become important when the energy of the graviton modes approach the cutoff

Ms [130]. The full string theory, with all its states taken into account, should of course

be unitary. The non-unitarity (in the sense of the existence of non-hermitian actions) is a

feature of the effective theory, truncated to the local degrees of freedom only, with energies

below Ms.
14
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A highly non-trivial question is the definition of the inner product of states in such non-

hermitian gravitational theories. At present, in the context of our stringy quantum gravity,

this is far from being understood. The environment of the infinite towers of massive string

states, which opens up the system, makes the situation non-local from a low-energy point

of view. Nonetheless, one may attempt to define such inner products by staying within

the non-Hermitian effective local CS gravitational field theory, which depends, however,

explicitly on the UV cutoff (the string mass scale Ms). An inspiration towards such a

definition in our StRVM, might be the work of [133], which attempts to define an inner

product of gravitational states on the four-dimensional quantum gravity in the simplified

case in which the Ashtekar connection is diagonal. In this case, the constraints of quantum

gravity are solved by the so-called Chern-Simons-Kodama (CSK) state [134]. The latter

lead to de-Sitter space (hence, inflation) as an allowed configuration in the semi-classical

limit. The analysis of [133] has as starting point the four-dimensional Holst Action, which

extends the Einstein-Cartan general relativity by the Holst topological term [73]. As we

have remarked, however, in the introduction of this article, this term is not topological (not

a total derivative) in the presence of torsion, as is the case of our StRVM (which contains a

totally antisymmetric component of the Hµνρ torsion, as we discussed above). In such a

case, the Holst term needs to be replaced by the Nieh-Yan invariant, and in our anomalous

CS theory by the combination of the Nieh-Yan invariant plus the gCS term (3). This is the

first complication in defining an appropriate inner product among gravitational states. The

second, and most important, one arises because of the presence of the imaginary parts of the

gCS condensate itself, as we stated above. In such case, unlike the situation in [133], reality

conditions on the effective action cannot be imposed, but one may attempt to formulate

the theory as a PT symmetric one, which generalises the Hermitian theories, as mentioned

above. This lies beyond the scope of the current work, however. We hope to be able to

address this important issue in a future work.

The detailed estimation of the lifetime of the inflationary StRVM vacuum therefore is

a complicated and in general microscopic-string-theory dependent issue, given that unless

the string-embedded grand unified gravitational field theory is specified, the dominant

decay channel of the RVM model cannot be computed in detail. Nonetheless, within our

low-energy approximation, studied in [1,3,4,6] and here, we can still provide a hopefully

reliable analysis that could allow for an estimate of the appropriate string scale required

to match the model predictions with the current astro-cosmological phenomenology of

inflation [52–54].

To this end, the reader should notice that the classical inflationary model of [6], in

which inflation is induced by the linear-axion potential, is also characterized by a finite

lifetime, which under appropriate initial conditions can be of the phenomenological order

O(50 − 60) e-foldings, requiring in our StRVM a string scale Ms = O(10−1)MPl. If we

insist, therefore, on matching these classical results of the dynamical-system approach of [6]

with those obtained in the context of a (non-hermitian) quantum-gravity framework, where

the presence of imaginary parts in the gCS condensate will be interpreted as destabilization

of the pertinent quantum vacuum, then we may seek quantum-ordering schemes in which

such an agreement is achieved.

The simplest of such schemes, i.e., the one in which the quantization of the composite

operators (83) (and (84)) is obtained by a simple replacement of the quantities hL(R) by

the respective operators, ĥL(R), in the order they appear classically, i.e., we set formally

the operation OwPi
= 1 in the relevant expressions, (83), (84). As we shall demonstrate

below, this case is the one required to match the results with the approach of [6], in a

non-trivial way.
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In that case, we obtain for the imaginary parts (85):

̂R ∗
µνρσRνµρσ − ̂(R ∗

µνρσRνµρσ)
†
= 4

∫ d3⃗kd3k⃗′

(2π3)
ei(⃗k+k⃗′)·⃗x

{
k2k′lk⃗′

([
ĥL,⃗k, ĥ′

R,k⃗′

]
+
[

ĥ′
L,k⃗′

, ĥR,⃗k

])}

− 4
∫ d3⃗kd3k⃗′

(2π3)
ei(⃗k+k⃗′)·⃗x

{
k′lk⃗′

([
ĥ′′

L,⃗k
, ĥ′

R,k⃗′

]
+
[

ĥ′
L,k⃗′

, ĥ′′
R,⃗k

])}
.

(92)

Upon taking vevs with respect to GW metric perturbations in the inflationary (Bunch-

Davies-type) vacuum |0⟩, which, in the path-integral approach, is interpreted as the integral

over GW perturbations (43) of the appropriate composite operator, the shift symmetry (11)

breaks down due to the formation of the gCS condensate. The presence of non-hermiticity,

as implied by (92), leads to metastability of the quantum inflationary vacuum, with a life

time which is given by the inverse of the imaginary part of the gCS condensate, as a

rough estimate.

On cutting-off the momentum integrals in the UV at µ (20), and using (79) and (80),

we obtain from (92)) [130]:

2Im⟨R̂CS⟩ = Im⟨ ̂Rµνρσ R̃νµρσ⟩ = 16Aḃµ7

7M4
Pl π2


1 +

(
HI

µ

)2

21

10
− 6

(
Aµḃ
M2

Pl

)2



 , (93)

where µ ≃ Ms (cf. (20)). Hence, in view of (22), and (31), the second term inside the square

brackets on the right-hand side of the above equation is subdominant, and will not play a

rôle in our estimates of the inflationary vacuum lifetime.

This can be achieved by examining the Hamiltonian of GW from a single source alone.

To put it in other words, the imaginary parts of the condensate back-react on the effective

Lagrangian of GW, and thus on the corresponding Hamiltonian H, which in this way also

acquires an imaginary part. The latter is estimated as [130]:

Im(H) =
∫

d3x
√
−g

1

2
A b Im

(
⟨RµνρσR̃νµρσ⟩

)
≈ V(3)

dS
8bA2ḃµ7

7M4
Pl π2

(94)

where ≈ implies that we keep only leading order contributions in the small quantity κ2ḃ,

and V(3)
dS denotes the de Sitter 3-volume of the inflationary spacetime.

Some important remarks are due at this point. The reader should notice that the

imaginary parts of the gCS condensate depend on the UV cutoff µ in the context of the

low-energy theory. This in turn implies the open and dissipative nature of the system of

graviton modes with momenta below µ, which in the UV complete (full string) theory

interact with the “environment” of the infinite towers of the massive string states, with

energies above the cutoff Ms. In this sense, our graviton system is somewhat analogous to

the representation of a decaying particle system as an open quantum system, where the

states of the decay products play the rôle of the relevant “environment” [131,132,135].

The dissipative nature of our open-system, due to the introduction of a cut-off µ in

our effective description, provides us with a naively defined estimate of the lifetime τ of

the inflation vacuum (in natural units, where h̄ = 1):

τ ∼ (ImH)−1 , (95)

which is the Euclidean version of what one would obtain formally by setting the dumping

exponent of the Mikowski expression (89) equal to unity. However, this is the proper formal

treatment within our approach to estimate the duration of inflation.
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We next note that the (Euclidean) four volume V(3)
dS TE of the (inflationary) de-Siter

spacetime, with radius Λ, is given by [136]

V(3)
dS TE =

24π2

M2
PlΛ

, Λ = 3H2
I , (96)

with TE corresponding to the Euclidean time, defining the appropriate duration of inflation,

which phenomenologically is of order [52–54]

TE ∼ (50 − 60)H−1
I , (97)

where the numerical coefficient on the right-hand side of the above relation is the number

of e-foldings [137]. Substituting (97) to Equation (94), we obtain:

Im(H) =
64bA2ḃκ6µ7

7HI
· 1

HI TE . (98)

The order of magnitude of the quantities entering (98) can be taken from [6], by

leaving the string-scale Ms = µ as a free parameter. Then, we can easily obtain that the

(naively defined) lifetime τ of the RVM inflationary vacuum of the StRVM is determined

by evaluating the quantity:

HIτ ∼ 7H2
I M6

Pl

64bA2ḃM7
s

(
HI TE

)
∼ 10−2

(
MPl

Ms

)3

· (HI TE) . (99)

From our previous discussion, this is the decay rate of the unstable RVM “vacuum”,

whose energy is higher than that of the case without the gCS condensate. For such a decay

rate to be consistent with the duration of inflation (97), the following upper limit for the

string-effective-theory UV cut-off µ = Ms (cf. (20)) has to be satisfied:

Ms

MPl
≲ 0.215 . (100)

This is quite consistent with the findings of the linear-axion-potential dynamical-

system analysis of [6], which concentrated on the real part of the CS condensate. The

above discussion leads to the conclusion that the rôle of KR axions (or other string-

compactification-induced axions, which also couple to the gravitational CS term) in in-

ducing RVM inflation is instrumental, since, in their absence, the CS term, being a total

derivative, would not contribute to the dynamics and the pertinent condensate would be

trivially vanishing.

5. Periodic Modulations of the Axion Potential and Slow-Roll
Inflationary Parameters

In the context of the StRVM, the dynamics of the primordial Universe is described

by (5), without any gauge fields, that is F = 0 (cf. (18)). In this case, as discussed above

and in [6], inflation is driven alone by the linear axion potential (17). The (small) slow-roll

parameters for inflation due to a single (pseudo)scalar field ϕ with potential V(ϕ) are given

approximately by (the prime denotes derivative with respect to ϕ) [54,138]:
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ϵ1 =
M2

Pl

2

(V′

V

)2
,

ϵ2 = 2M2
Pl

(V′

V

)2
− 2M2

Pl

V′′

V
≡ 4ϵ1 − 2η ,

ϵ2 ϵ3 ≃ 2M4
Pl

[V′′′ V′

V2
− 3

V′′

V

(V′

V

)2
+ 2
(V′

V

)4]
, etc. , (101)

The scalar spectral index is approximately given by (we ignore subdominant higher-

order terms proportional to ϵ1ϵ2, ϵ2ϵ3 that appear in the expression for ns [54,138]):

ns ≃ 1 − 2ϵ1 − ϵ2 , (102)

while the ratio r of tensor to the scalar perturbations is:

r ≃ 16 ϵ1 . (103)

Planck-collaboration constraints on inflation [52], after taking into account lensing and

Baryon-acoustic-oscillation (BAO) measurements, indicate that:

ns = 0.9649 ± 0.0042 (68% C.L., Planck TT, TE, EE + lowE + lensing) ,

ns = 0.9665 ± 0.0038 (68% C.L., Planck TT, TE, EE + lowE + lensing + BAO) (104)

respectively. For the tensor-to-scalar ratio, on the other, the combined measurements yield

the upper bound (at pivotal scale k⋆ = 0.002):15

r002 < 0.11 (95% C.L., Planck TT, TE, EE + lowEB + lensing) ,

r002 < 0.056 (95% C.L., Planck TT, TE, EE + lowE + lensing + BK15) . (105)

In general, for a few important extensions of the ΛCDM, the bounds on r, and also

constraints of r versus ns are given in [52], where we refer the interested reader for fur-

ther details. For our purposes here, we mention that the combined Planck and BK data

yield the following bounds for the slow-roll ϵi, i = 1, 2 parameters (101), using Planck

TT,TE,EE+lowE+lensing (+BK15) data [52]:

ϵ1 < 0.0097 (0.0044) (95% C.L.) ,

ϵ2 = 0.032+0.009
−0.008 (0.035 ± 0.008) (68% C.L.) ,

ϵ3 = 0.19+0.55
−0.53 (0.12+0.36

−0.42) (95% C.L.) . (106)

In the StRVM the b-axion potential is strictly linear [6], which implies

η = 0 , ϵ1 =
1

4
ϵ2 =

1

4
ϵ3 = 0.5M2

Pl b(t)−2 . (107)

During inflation, the axion b of the StRVM varies linearly with the cosmic time (cf.

(24)) [1,3–6]

b(t) = b(0) + c1 t , c1 ≃ O(10−1) MPl HI , (108)

where HI is the (approximately constant) Hubble rate during inflation, which is bounded

by Planck-collaboration data [52,53] according to (22). The constant b(0) is the value of the



Universe 2025, 11, 15 26 of 54

axion field at the onset of the RVM inflation, and it turns out to be negative. The analysis

of [6] leads to the lower bound for the magnitude of this quantity (in order of magnitude):

|b(0)|
MPl

≳ O(10) , b(0) < 0 . (109)

This implies that in order of magnitude the axion remains approximately constant

during the entire duration of inflation, which lasts for [137] H−1
I Ne, with Ne = O(50 − 60)

the number of e-foldings of the Universe, according to the cosmological data [52,54].

Thus, it is reasonable to estimate the order of magnitude of the (small) slow-roll

parameters ϵi, i = 1, 2, . . . , (101), by replacing b by b(0) in the corresponding expressions

(102), (103) and (107). This leads to

ϵ1 ≲ 0.005 , ϵ2 = ϵ3 ≲ 0.02 , r ≲ 0.08 , ns ≃ 1 − 6ϵ1 ≳ 0.97 . (110)

As can be therefore seen from the above discussion, the phenomenology of the StRVM,

with a gCS condensate-driven inflation [1,3,6], whose dynamics is described by the action

(18), containing only fields from the massless bosonic ground state of the superstring,

and a gCS-condensate-induced linear axion potential (17), is largely consistent with the

inflationary data (106). However, although the rest of the slow-roll parameters lie within

the data-preferred allowed regions, the scalar spectral index lies on the boundary of such

regions. We therefore need to improve the model so as to achieve better agreement with

the data as far as (the central value of) ns is concerned.

To this end, we shall consider the possibility of including periodic modulations on the

axion potentials, which can be generated through non-perturbative effects. The hope is

that by introducing η ̸= 0 through such modulations, one can reduce the scalar spectral

index ns accordingly, thus providing better match with the data. The issue is to justify

microscopically the appropriate non-perturbative effects. As we shall see, in the context

of string theory this implies that we may modify the StRVM cosmology by considering,

in addition to the KR (string-model independent) axion b, also string-model-dependent

axions a, arising from compactification, along the lines of [139,140].

5.1. Target-Space Gauge Group Instantons and the KR Axion Potential

Let us first start by discussing what non-perturbative effects we may consider in the

context of the initial StRVM (18), with a gCS-condensate-induced linear axion potential

(17). The first thing that comes to mind are target-space instantons, associated with the

non-Abelian gauge group that characterizes the four-dimensional effective action, after

string compactification. In the initial StRVM, these gauge sector had been assumed not to

characterize the dynamics of the primordial Universe. However, given that such gauge

fields also characterize the massless string ground state of appropriate gauge supergravity

low-energy theories obtained from phenomenologically realistic string models, we may take

these gauge sectors into account, especially from the point of view of their non perturbative

(instanton) contributions. Indeed, the spirit of [1] will be maintained if we integrate out such

non-perturbative configurations, assuming that gauge fields with trivial instanton numbers

do not exist as external lines in the field theory that describes the primordial Universe.

According to standard theory [85], the following quantity

1

16π2

∫
d4x
√
−g Fµν F̃µν = n , n ∈ Z , (111)

is an integer n (Pontryagin index), whose value defines the various topological sectors

defined by the (non-Abelian) gauge-group instantons. This implies that in the presence of
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instanton backgrounds the global shift symmetry (11) breaks down, and is replaced instead

by periodicity of the axion backgrounds

16 π2 A b(x) → 16 π2 A b(x) + 2π . (112)

Integrating out the instantons, leads to periodic modulations of the b axion potential,

which now assumes the form16

Vperiodic
eff (b) = Λ4

1 cos
(

16π2 A b(x)
)
≡ Λ4

1 cos
( b(x)

fb

)
, (113)

where Λ1 is the scale of the gauge-group instantons, and fb is the axion coupling. In the

StRVM, fb is given by (cf. (19)):

fb = 0.37
M2

s

MPl
. (114)

The scale Λ1 depends on the particular gauge model considered. For our purposes here

it is treated as a phenomenological parameter of our low-energy string-inspired effective

theory. The important feature is that the scale Λ1 is suppressed by the exponential of the

(Euclidean) one-instanton action, Sinst, which is known to be bounded from below by (see,

for instance [141–143]):

Sinst ≳
8π2

g2
YM

|n| , (115)

where gYM is the Non-Abelian gauge group (Yang-Mills) coupling, and, as already men-

tioned, n labels the respective topological instanton sector. The equality is achieved only

for (anti)self-dual gauge-field strengths F = ±F̃, where the plus (minus) sign corresponds

to n > (<) 0.

In the context of our string-inspired theory, it is natural to assume therefore the

following form of Λ1:

Λ1 = ξ Ms exp
(
− Sinst

)
≲ ξ Ms exp

(
− 8π2

g2
YM

|n|
)
≪ Ms , (116)

where ξ > 0 is a numerical factor, that can in principle be calculated within a specific gauge

theory. For our purposes we assume ξ = O(1).

Thus, the inclusion of instantons in the (3+1)-dimensional non-Abelian gauge sector

of the model leads to the following effective potential for the KR axion b field of the StRVM

in the inflationary epoch, where the gCS condensate ⟨RCS⟩total
I ((23)), in the presence of a

number of GW sources, has been formed:

Veff(b) = b(x)Λ3
cond + Λ4

1 cos
( b

fb

)
, Λ3

cond ≡ A ⟨RCS⟩total
I . (117)

We remark that the inflation is still driven by the linear potential given the smallness of

the scale Λ1 ≪ Λcond, due to its exponential suppression by the large (Euclidean) instanton

action (116).17 Nonetheless there are small but significant modifications of the slow-roll

parameters due to the non-perturbative effects. Indeed, for the axion potential (117), we

obtain from (101) for the slow-roll inflationary parameters (as per our previous discussion,

in the evaluation of these parameters we make the approximation that during inflation the

order of magnitude of b(x) is well-approximated by b ≃ b(0)):18



Universe 2025, 11, 15 28 of 54

ϵ1 ≃ M2
Pl

2

[ Λ3
cond − Λ4

1
fb

sin
(

b
fb

)

b(0)Λ3
cond + Λ4

1 cos
(

b(0)
fb

)
]2

≃ M2
Pl

2 b2(0)

[
1 +

2 Λ4
1 sin

(
b(0)

fb

)

fb|Λ3
cond|

−
2 Λ4

1 cos
(

b(0)
fb

)

|b(0)Λ3
cond|

+ . . .
]
≃ M2

Pl

2 b2(0)

(since Λ1 ≪ Λcond, fb , MPl, Ms (cf. (116))) ,

ϵ2 ≃ 2
M2

Pl

b2(0)
+ 2M2

Pl

Λ4
1

f 2
b

cos
(

b(0)
fb

)

|b(0)Λ3
cond|

≃ 2
M2

Pl

b2(0)
+ 2

M2
Pl

f 2
b

Λ4
1

|b(0)Λ3
cond|

, (118)

where in the last equality of the second line we have made the order of magnitude assump-

tion that cos
(

b(0)
fb

)
= O(1). The reader should also recall that Λ3

cond < 0, b(0)Λ3
cond > 0,

which is indicated by the presence of absolute values in the respective terms in the ex-

pressions for ϵ1,2 in (118). This means that the presence of the non-perturbatively-induced

periodic modulations in the b-axion potential (117) leads to an increase in the value of ϵ2,

as compared to the case of the purely linear-axion potential (17), and, therefore, to smaller

values of the spectral index ns, in view of (102).

Saturating, for concreteness, the bound (109), and using (23), (33) and (114) (with

NS = O(1)) and (116) (taking n = 1 for naturalness), we obtain from (118):

ϵ1 ≃ 0.005 , ϵ2 ≃ 0.02 + 14.6
( Ms

MPl

)−4 Λ4
1

|b(0)Λ3
cond|

≃ 0.02 + 1.9 × 107
(Λ1

Ms

)4

≃ 0.02 + 1.9 ξ4 × 107 e−4Sinst ≲ 0.02 + 1.9 ξ4 × 107 e
− 32π2

g2
YM . (119)

To reduce the value of ns, as compared to the bound (110), at the third-significant-

figure level, so as to get better consistency with the central value of ns as measured by

Planck collaboration [52], we should require that the non-perturbative contributions to the

ϵ2 are of order O(10−3), that is, we impose:

∆nnon−perturb.
s = −1.9 ξ4 × 107 e−4Sinst = −O(10−3) , (120)

which can be achieved provided the gauge-sector (Euclidean) instanton action has the order

of magnitude (assuming for concreteness ξ = O(1)):

Sinst ∼ 5.9 , (121)

which would satisfy the bound (115) if 5.9 ≳ 8π2/g2
YM, corresponding to a fine structure

constant αYM of the underlying Yang-Mills gauge theory (renormalized at the energy scale

of the instantons)

αYM ≡ g2
YM

4π
≳

2π

5.9
∼ 1.06, (122)

which is a natural value for a strongly coupled gauge theory. We note that with ξ = O(1),

and the restriction on the string scale (31), the energy scale of the gauge instantons (116) is

set to Λ1 ∼ 9 × 10−4 MPl, that is in the GUT scale, and just above (by less than two orders

of magnitude) the inflationary scale HI bound (22) set by Planck measurements [52]. These

are energy scales characterizing the (end of the) stiff era in the StRVM. Due to the assumed

dilute gas approximation one should not expect dramatic changes in the transition from the

stiff to the RVM inflationary epoch in the current variant of the StRVM with axion potential

(113), although this needs to be checked by repeating the dynamical system analysis of [6]

for this potential. There is margin in these considerations when the precise value of ξ
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is taken into account. For instance, in the presence of ξ ̸= 1, the one-instanton action

becomes Sinst ≃ 5.9 − lnξ. If we require that the energy scale of instantons be equal to that

of inflation HI , so that instantons arise at the onset of inflation, then this implies ξ ∼ 10−2,

which then yields Sinst ∼ 10.5, leading to an αYM ∼ 0.6.

Hence, upon considering models with gauge sectors that have instantons satisfying

(121), (122), one may get quite good agreement of the slow-roll inflationary parameters

of this variant of StRVM with Planck data.19 The reader should also bear in mind that

another crucial feature for consistency with the inflationary phenomenology is the sign of

the periodic modulation potential (113). As already mentioned in footnote 25, the chosen +

sign guarantees the absence of mass generation for the axion b field, but also implies that

the slow-roll parameter ϵ2, (101), increases its value relative to the case of the exactly-linear-

axion potential. This in turn implies the relative reduction of the scalar spectral index ns,

(102), which in this way can match the Planck data [52,53]. The exactly opposite situation

(that is, relative reduction of ϵ2 and increase of ns) would characterize the choice of the −
sign in the periodic modulation potential, which, in addition to being phenomenologically

problematic, would also be responsible for the undesirable feature of mass generation for

the b axion during the inflationary epoch.

5.2. World-Sheet Instantons and Axions from String Compactification

In realistic string theories, one faces a multiaxion situation, given that, apart from the

string-model independent axion b, one also has axions arising from compactification [32].

The latter are known to be characterized by additional non-perturbative effects, called

world-sheet instantons, which can wrap around compactified cycles. These instantons

exhibit a much richer structure than the gauge instantons discussed above in the case of

the KR b field, which notably does not couple to world-sheet instantons. The world-sheet-

instanton structure is particularly rich in intersecting D-brane compactifications [144–146],

which our StRVM can be consistently embedded to.

The corresponding axion potentials contain now multiaxion configurations, which are

characterized by both linear axion and periodic contributions due to world-sheet instantons.

For instance, in the simplified case, where only one compactification axion a(x) is dominant,

the effective axion potential of both, the KR axion b(x) and the compactification axion a(x),
is of the form [51,139,140]

V(a, b) = Λ3
4
(
±1 + f−1

a ξ̃1 a(x)
)

cos( fa
−1a(x)) +

1

fa

(
fb Λcond

3 + Λ4
2

)
a(x) + Veff(b) , (123)

where Veff(b) is given by (117), and the parameters ξ̃1, fa, and the world-sheet-instanton-

induced scales Λ2, Λ3 are all determined from the underlying microscopic string theory

model. The ± sign inside the parenthesis of the first term in the right-hand side of (123)

indicates whether a mass for the compactification axion a is generated (−) or not (+). This

could affect the phenomenology of the post-inflationary epoch, in the sense that in the

massive-axion-a case one may encounter an early matter-dominated era interpolating be-

tween the RVM inflation and the radiation epoch, which could lead to distinctive signatures

in the profiles of GW during radiation. The parameter fa is the compactification-axion cou-

pling determined from the specific string compactification of the underlying microscopic

string model under consideration. Both axions b and a couple to the gCS anomaly terms (cf.

(5)), which leads to the linear axion terms in the effective potential (123). The coefficient

Λ3
cond is defined in (117) and is proportional to the real part of the gCS condensate (32).

The scale Λ2 is associated with specific compactification effects. Indeed, in the type

IIB string model of [51], involving D5-branes, wrapped around a two cycle Σ(2) of size
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ℓ
√

α′ = ℓ M−1
s , when compactification (dimensionless) axions B(x) are turned on, the

corresponding B(x) potential assumes the generic form

VB
D5 ∼ ϵ

gs (2π)5

√
ℓ4 + B(x)2 M4

s , (124)

where gs is the string scale, and ϵ is a parameter, which depends on the warp factor of

the underlying string/brane models under consideration [51]. In simplified scenarios

of compactification, where the compact six-dimensional manifold is characterized by

a single size of the compactification radii, L
√

α′, such that the compactified volume is

V (6) ∼ (L
√

α′)6, the axions B(x) are related to a canonically normalized axion a(x), of

mass-dimension +1, as [51]:

a(x)2 ∼ L2

3g2
s (2π)7

B(x)2 M2
s ∼ 1

6 L4
B(x)2M2

Pl , (125)

where we took into account that in type IIB string models, we restrict ourselves for con-

creteness here, α′M2
Pl ∼ 2V (6)

(2π)7 g2
s
. For large compactification axions B ≫ ℓ2, as required

by the consistency of the inflationary axion monodromy scenario of [51] with the cosmo-

logical data [52], one obtains from (124) a linear axion-a potential term of the form (123),

corresponding to a scale

Λ4
2

fa
∼ ϵ

L

√
3

(2π)3
M3

s . (126)

For the specific type IIB brane-compactification models of [51], the dimensionless

parameter ξ̃ has been assumed relatively small, so that the structures a cos(a/ fa) in (123)

do not to affect significantly the slow-roll inflation driven by the linear potential.

In our work, we can extend the considerations beyond the type IIB compactifica-

tion models of [51], and treat the effective potential (123) as phenomenological, with the

constraint though that the following hierarchy of scales is valid [140]:

( fb

fa
+

Λ4
2

fa Λ3
cond

)1/3
Λcond < Λ3 < Λ1 ≪ Λcond , (127)

where we remind the reader that the scale Λ1 denotes the target-space gauge instanton

scale that induces periodic modulations of the KR potential (cf. (117)). Such a hierarchy

ensures that the dominant effects in the axion potential come from the anomaly condensate,

so that the spirit of the StRVM examined above, as regards the induced RVM inflation and

its slow-roll parameters, is maintained.

We reserve a detailed analysis of the effects of more general multiaxion configurations

with potentials of the form (123), in which one deviates from the scale hierarchy (127), on

the inflationary era for a future publication. For example, we may consider multiaxion

StRVM models in which there are no target-space gauge instantons, but only world-sheet

instantons pertaining to compactification axions. In such a case, one may set Λ1 = 0

and remove this scale from (127), keeping only the gCS and the world-sheet instanton

scales Λ2, Λ3, in order to examine their hierarchies so that the phenomenologically correct

slow-roll inflationary parameters are obtained.

Before closing the section we remark, for completeness, that the existence of periodic

modulations in the effective multiaxion potentials leads [139,140] to an enhancement of

the densities of rotating primordial black holes (PBH) produced during inflation. In the

context of the StRVM, such an enhancement of PBH production can be very significant,



Universe 2025, 11, 15 31 of 54

since it can affect the duration of the reheating phase after RVM inflation [140]. Indeed, as

already mentioned, under some circumstances and for some regions of the parameter space

of the models, there is the possibility of existence of an intermediate matter-dominated

phase between the RVM inflation and radiation eras [147]. This can enhance significantly

the populations of PBHs, and, as a consequence, the profiles of the GWs produced from

the coalescence of such black holes. This would lead in turn to observable in principle

modifications of the spectrum of the GWs during the early radiation era. In fact, as ar-

gued in [140], by looking at the details of such GW profiles via future interferometers,

one can in principle distinguish the effects of the StRVM from generic string-inspired

axion-monodromy inflationary models with linear axion potentials, such as those discussed

in [51,139]. Furthermore, the existence of early-matter-dominated eras, preceding radiation,

in the StRVM might lead to additional constraints of the model, associated with the require-

ment of avoiding the overproduction of PBHs [148]. In view of the above discussion in

this section, we should also consider the target-space gauge-instanton contributions to the

periodic modulations of the potential (117) and examine their effects on the aforementioned

features. This is left for future work.

6. Conclusions and Outlook

In this work, we have elaborated further in the properties of the so-called Stringy

Running-Vacuum-Model (StRVM) of Cosmology. The fundamental fields of this approach

belong to the massless gravitational multiplet of the underlying string theory, namely the

graviton, dilaton (which in our approach is assumed constant), and the (3+1)-dimensional

dual of the antisymmetric-tensor field strength, which is a pseudoscalar field, the so called

KR axion. The model entails a linear-in-cosmic time KR axion background, which makes

a (remote) connection of this approach with the works of [29–31] in stringy cosmologies,

involving such configurations of stringy axions. The linear nature of the KR axion of

the StRVM is linked to the formation of a condensate of the gravitational Chern-Simons

(gCS) term in the effective action. The latter is induced by chiral primordial GW, which

are produced by a sufficiently large number of sources. The condensate leads to a linear

KR-axion (monodromy) potential, driving an RVM-type inflationary period.

Specifically, within a weak (perturbative) quantum gravity path-integral approach

of the chiral GW tensor perturbations about the expanding-universe spacetime FLRW

background, we have shown first, rather rigorously, that the real part of the gCS condensate

becomes proportional to the number of GW sources. We have proceeded, next, in evaluating

the non-trivial imaginary parts of the gCS condensate. Although in the symmetric quantum-

operator ordering such parts vanish, nonetheless in the current article we have argued

in favor of their physical significance, and therefore have evaluated them in a specific

ordering scheme we adopted here, in order to match our current findings with those

of the classical dynamical-system analysis of [6]. The latter also indicates a finite-life

time of the linear-axion-potential-induced inflation, which in our weak quantum-gravity

approach is linked to the non-trivial imaginary parts of the gCS condensate. The presence

of imaginary parts indicates metastability of the inflationary vacuum, which therefore

implies that the StRVM de-Sitter phase survives swampland criteria, consistently with the

embedding of the model into the frameworks of microscopic string theories. A careful

and detailed treatment of the spacetime boundary terms of the CS gravity model has also

been given, with the aim of ensuring that the imaginary parts of the gCS condensate are

not canceled by boundary terms. We have demonstrated that these imaginary parts are

quantum effects, being proportional to appropriate commutators of chiral tensor operators.

We have also calculated the magnitude of the vacuum expectation value (with respect to the

appropriate Bunch-Davies vacuum) of these commutators, and provided an estimate of the
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life time of the inflationary era. On requiring agreement of our results with the inflationary

phenomenology, we restricted the string scale in this StRVM framework to be of order

of one tenth of the four-dimensional (reduced) Planck mass. This result is in agreement

with the previous analysis by the authors using a dynamical-system approach to the gCS-

condensate-induced StRVM inflation, which is essentially a linear-axion (monodromy)

inflation. Notably, the real part of the gCS condensate, turns out to be independent of the

quantum-operator-ordering scheme.

An important feature of the StRVM, which we did not discuss here, but we only men-

tion it for completeness, is that the model is characterized by unconventional Leptogenesis

(and subsequent Baryogenesis) during the early radiation era [1], which is induced by the

linear-in-cosmic-time background of the KR axion. Indeed, such a background remains

undiluted during the RVM inflationary phase of the model, and is responsible for inducing

the aforementioned generation of Lepton asymmetry during the post-inflationary early

radiation era in models involving massive right-handed neutrinos (RHN), which can be

accommodated within the underlying string theories. In the presence of the KR axion back-

ground there is an asymmetric rate between the decays of the RHN into standard-model

particles and antiparticles, which leads to a lepton asymmetry, according to the mechanism

advocated in Refs. [33–36]. Such a mechanism lies in the context of the Lorentz- and CPT-

Violating Standard Model Extension (SME) [149], in an axial (constant) background field

Bµ, which the RHN Lagrangian in the (approximately) linear-in-cosmic-time KR-axion

background resembles. As discussed in detail in [1], after leptogenesis, the cosmic rate

of the axion background ḃ ≡ B0(T) continues to drop with the temperature T of the Uni-

verse, as the latter cools down. In this framework, the current-era value of B0(TCMB), with

TCMB = 2.7 K today’s value of the Cosmic-Microwave-Background (CMB) temperature,

lies comfortably below the current upper bounds of the respective parameters of Lorentz-

and CPT Violation in the SME framework [150].

There are several important issues that remain open in our approach. The first,

and most important, is a precise calculation of the gCS condensate in a gauge invariant

way, within a proper (non-perturbative) and gauge invariant framework of Quantum

Gravity, which is still lacking. What we have done in this and previous related works

is to demonstrate the presence of non-trivial complex condensates of gCS terms in the

context of StRVM, which have been computed only within weak GW perturbations, in a

particular gauge-fixed Lagrangian. The gauge invariance of the gCS condensate has not

been demonstrated, as this relies on the existence of the still elusive UV complete theory

of quantum gravity. Although in the case of StRVM such an UV completion is provided

by the underlying microscopic string theory, the latter contains infinite towers of stringy

massive states, whose handling is still in its infancy. The dependence of the gCS on the UV

cutoff of the low-energy effective theory obtained from strings (that is, the string scale) is a

manifestation of ignoring these massive towers, which makes the low-energy theory an

open system. It has been conjectured [130] that the imaginary parts of the condensate, we

found in our approximate, weak-quantum-graviton treatment, do indicate the open nature

of the low-energy gravitational field theory, and therefore one hopes that the metastable

nature of the StRVM inflation will survive a proper and complete string-theory treatment.

Another open issue, of less fundamental nature though, concerns the precise rôle of

compactification axions, which coexist in string theories with the string-model-independent

KR axions. Non-perturbative stringy effects, either due to target-space gauge instantons,

associated with the KR axions, or world-sheet instantons, pertinent to the compactification

axions, generate periodic modulations of the respective effective potential for the axions,

whose scales need to be estimated precisely in phenomenologically realistic string mod-

els. This task is far from being complete, and in fact it is not easy, due to the complexity
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and plethora of the available string models. In the current work we have adopted a phe-

nomenological approach, by means of which we estimated the pertinent non-perturbative

energy scales of the instanton-induced (multi)axion potential modulations by requiring

agreement with the inflationary phenomenology. For concreteness, we have done this in

simplified situations where only one of compactification axions was dominant. In realistic

string theories, there may be more than a single compactification axion that are dominant,

which will complicate the situation, especially from the point of view of quantifying the

enhancement of the production of primordial black holes during the inflationary era in this

framework, and the associated modifications of the profiles of GW at the early radiation

era. Related issues, such as the potential existence of intermediate matter eras in prolonged

reheating situations of the StRVM after inflation, still remain wide open, whose study is an

urgent one, given that there are in principle observable consequences of such a situation

in future GW interferometers [140,148]. In fact, in this respect we mention recent works,

related to potential experimental/observational signatures of string, or string-ispired, theo-

ries [151–153], in e.g., data from the NANOgrav-facility [154,155] and beyond, which can

be adopted to test StRVM as well.

Last, but not least in the catalogue of future research directions, is the potential rôle of

StRVM in providing an alleviation of the current cosmological tensions (Hubble and growth-

of-structure tensions) [20], and more general, observable deviations from ΛCDM in modern

eras, where an accelerated expansion of our Universe occurs, according to observations. It

must be noted that the modern era of the StRVM is still not understood fully, especially

as far as the microscopic origin of the current-era observed acceleration of the Universe is

concerned [53]. As remarked in [1], given that ordinary matter has been largely depleted

today from the energy budget of the Universe, in favor of Dark energy, it is possible that GW

perturbations resurface and dominate the current Universe (provided there is a sufficient

number of appropriate sources available in the late Universe). This may lead again to the

reappearance of a GW-induced condensate of the gCS (which had been canceled at the

end of the RVM inflation, as we have discussed above, by the then generated chiral matter

fermions). As discussed previously, in such a case, it is possible that the vacuum energy

density contains a term of O(H2), which in our case would emerge from the average term

N
〈

δS(2)[b, g, h]
∣∣∣

A=0
/δgµν

〉
in the graviton Euler Lagrange Equation (52) corresponding

to the present epoch, in which H = H0. If this turns out to be true, then a metastable

vacuum energy of approximately de-Sitter type would also characterize the current era, in

analogy to the RVM inflationary vacuum discussed in this work. Such a situation would

share features with the generic RVM approach to cosmology, which predicts observable,

in principle, deviations from the ΛCDM paradigm due to the dominant H2
0 terms in the

vacuum energy density of the present epoch [7,9,10,15–18,156,157]. This remains to be seen,

and constitutes the subject of a forthcoming work.
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Appendix A. Well Defined Variational Principle in Gravitational
Chern—Simons Theory

In this Appendix, we elaborate further on the variational principle of the Gravitational

Chern-Simons theory under the assumption of Dirichlet boundary conditions. Specifically,

in what follows we present analytically the bulk and boundary contributions in this theory,

and the necessary introduction of specific boundary terms to the action in order to have a

well defined variational principle. Although the final results may be familiar to General

Relativists, we include details here for the benefit of the average reader, as some of the

intermediate steps are non trivial.

The Chern-Simons Gravitational theory is given by the following action:

S =
∫

M
d4x[LEH + Lmatter + Lint] (A1)

where

LEH =
√
−g

R
2κ2

(A2)

Lmatter = −
√
−g
(

1

2
(∂µb)(∂µb) + V(b)

)
(A3)

Lint = −
√
−gA b RCS (A4)

with κ = M−1
Pl is the inverse of the reduced Planck mass and RCS is the Chern-Simons

topological term, defined in (7). Assuming the variation of the metric and the matter field

in the following way (weak-field approximation),20

gµν → gµν + hµν (A5)

b → b + δb (A6)

we find the following first-order terms of the Lagrangians.21

δL(1)
EH =

√
−g
[
− 1

2κ2

(
Rαβ −

1

2
gαβR

)
hαβ

]
+
√
−g
[

1

2κ2
∇β

(
∇αhαβ −∇βhα

α

)]
(A7)

δL(1)
matter =

√
−g
[
□b − V′(b)

]
δb +

√
−g

1

2

[
∇αb∇βb − gαβ

(
1

2
∇µb∇µb + V(b)

)]
hαβ

−
√
−g∇µ(δb∇µb) (A8)

δL(1)
int =

√
−g(−ARCS)δb +

√
−g
[
−A b Rα

µνρ
(

R̃βµνρ − R̃νρβµ

)]
hαβ

+
√
−g
[
−A b ϵβµρσ Rαν

ρσ∇ν∇µhαβ
]

(A9)

https://indico.cern.ch/event/1360299/
https://indico.cern.ch/event/1360299/
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We can easily check from the above expressions that the first-order variation with

respect to the matter field yield the equation of motion for the matter field in the bulk,

□ b = V′(b) + ARCS (A10)

while giving rise also to a surface-boundary contribution to the action, which by virtue of

Gauss’ theorem reads,

δSmatter/boundary = −
∫

∂M
dSµδb ∇µb (A11)

with ∂M denoting the boundary of the spacetime manifold M. Such a term trivially

vanishes under the assumption of Dirichlet boundary conditions on ∂M,

δb|∂M = 0 (A12)

In Equation (A7) the first term gives the Einstein-Hilbert Lagrangian contribution

to the equations of motion, through the Einstein tensor, Gµν = Rαβ − 1
2 gαβR, as well as a

boundary contribution,

δSEH/boundary =
1

2κ2

∫

∂M
dSµ

(
∇αhαµ −∇µh

)
(A13)

where we use the notation (A63), h ≡ hα
α, for the trace of the metric perturbation. Such a

boundary contribution is non-vanishing under Dirichlet boundary conditions22,

hµν|∂M = 0, γρσ∂ρhµν|∂M = 0, γρ1σ1 γρ2σ2 . . . γρnσn ∂ρ1
∂ρ2 . . . ∂ρn hµν|∂M = 0, ∀ n ∈ N . (A14)

The conditions (A14) imply that the metric perturbation has to be constant and vanish-

ing on the boundary ∂M. On the other hand, the normal components of the derivatives of

the metric perturbations are in principle non-vanishing, thus contributing non-trivially to

(A13). In order to cancel the boundary contribution of (A13), the Gibbons-Hawking-York

(GHY) term is introduced [160],

SGHY =
1

κ2

∫

∂M
ϵ d3y

√
|γ|K . (A15)

where K = gαβKαβ, with Kαβ the extrinsic curvature,

Kαβ = γ
ρ
αγλ

β∇ρnλ (A16)

and we have defined the induced metric on the spacelike or timelike boundary, ∂M, as:

γαβ = gαβ − ϵnαnβ (A17)

with nα the normal on ∂M, satisfying the normalization condition nαnα = ϵ = ±1. In order

to invert (A16), so as to express ∇αnβ in terms of Kαβ, we make a decomposition of ∇αnβ

into parallel and normal parts to the boundary ∂M,23 from which we obtain,

∇αnβ = Kαβ + ϵnαγ
ρ
β∇n⃗nρ , (A19)

in which we see that the component induced by the normal vector has only tangential

contribution, a fact that is implied by ∇µ(nαnα) = 0. Furthermore, the extrinsic curvature

is the tangential derivative of the normal vector,

γα
σ∇αnβ = Kσβ (A20)
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The GHY term is necessary in order to cancel the variation of the boundary contri-

bution (A13), leading in this way to a well defined variational principle, in the sense that

the field equations are indeed stationary points of the action, δS = 0. We mention at

this point that such boundary terms do not affect the equations of motion in the bulk.

However, they have a crucial impact, since they give the only non-zero contribution to the

on-shell action and in this sense, they yield a non-trivial partition function, from which we

extract the physical/thermodynamic properties of the system, as in the case of black hole

thermodynamics [160]. In what follows we derive explicitly the variation of GHY term,

under the imposition of Dirichlet boundary conditions (A14). This will lay the groundwork

for the analysis of the gCS interaction term.

To this end, we first observe that, upon variation of (A15) with respect to the metric,

gµν, we obtain:

δSGHY =
1

κ2

∫

∂M
ϵ d3y δ

(√
|γ|K

)
(A21)

The calculations are simplified considerably by noting that the variation of the determinant

of the induced metric to any order n in the variation, δn
(√

|γ|
)

, is proportional to the

perturbation, hµν, and, since it is an overall multiplicative factor to the expression, we

can ignore it from the start, under the imposition of Dirichlet boundary conditions (A14).

This implies:

δnSGHY ≃ 1

κ2

∫

∂M
ϵ d3y

√
|γ| δnK , ∀n ∈ N (A22)

where, form now on, we follow the notation of [161], using the symbol “ ≃′′ to denote

equality under the application of the Dirichlet boundary conditions (A14). The term that is

important in the above variation is the one of the extrinsic curvature scalar, δK, given by:

δK = −hαβKαβ + gαβδKαβ (A23)

where, δgαβ ≡ −hαβ. From the definition of the extrinsic curvature (A16), we obtain,

δKαβ = hµ
ν

(
γν

αγ
ρ
µγλ

β + γ
ρ
αγλ

µγν
β

)
∇ρnλ + γ

ρ
αγλ

β δ
(
∇ρnλ

)

= hµ
ν

(
γν

αγ
ρ
µγλ

β + γ
ρ
αγλ

µγν
β

)
∇ρnλ + γ

ρ
αγλ

β

(
∇ρδnλ − nνδΓν

ρλ

)

≃ γ
ρ
αγλ

β

(
∇ρδnλ − nνδΓν

ρλ

)
(A24)

and then,

δK ≃ γρλ
(
∇ρδnλ − nνδΓν

ρλ

)
. (A25)

The variation of the normal vector is given by [162]:

δnα =
ϵ

2
nαnλnνhλν ≡ ϵ

2
nαhn⃗⃗n , , (A26)

with the notation (A18). Thus,

∇ρδnλ =
ϵ

2
∇ρ(nλhn⃗⃗n) ≃

ϵ

2
nλ∇ρhn⃗⃗n , (A27)

and then,

γρλ∇ρδnλ ≃ 0 . (A28)

From the variation of the affine connection,

δΓν
ρλ =

1

2

(
∇ρhν

λ +∇λhν
ρ −∇νhρλ

)
(A29)



Universe 2025, 11, 15 37 of 54

one can easily see that

γρλδΓν
ρλ ≃ −1

2
γρλ∇νhρλ , (A30)

where we neglected terms that yield tangential derivatives on the boundary. Hence, we

obtain,

δK ≃ 1

2
nνγρλ∇νhρλ =

1

2

(
nνgρλ − ϵnνnρnλ

)
∇νhρλ ≃ −1

2
nν
(
∇ρhρν −∇νh

)
, (A31)

which we arrived at by first expanding γρλ = gρλ − ϵnρnλ, and then replacing ϵnνnρ =

δ
ρ
ν − γ

ρ
ν. Thus, we finally conclude that:

δSGHY ≃ − 1

2κ2

∫

∂M
dSµ

(
∇αhαµ −∇µh

)
(A32)

which gives us back the term that exactly cancels the variation of the Einstein-Hilbert

boundary term (A13).

Next we turn our attention to Equation (A9), that is the contribution of the gCS term.

As we have already mentioned, the contribution to the matter-field equation of motion

is straightforwardly obtained. We focus on the gravitational equations of motion. Our

aim is to obtain the remaining boundary contribution, in order to see, following [160],

which boundary term is required for the CS part of the action to cancel any boundary

contribution, again aiming at establishing a well-defined variational principle under the

Dirichlet boundary conditions [161].

To this end, we first observe that Equation (A9) can be equivalently written as:

δL(1)
int =

√
−g(−ARCS)δb +

√
−g
{
−AbRα

µνρ
(

R̃βµνρ − R̃νρβµ

)
− 2A∇µ

[
∇ν
(

bR̃ανβµ

)]}
hαβ

+
√
−g
[
∇ν
(
−2AbR̃ανβµ∇µhαβ

)
+ 2A∇µ

[
∇ν
(

bR̃ανβµ

)
hαβ
]]

.
(A33)

The terms in the curly brackets contribute to the gravitational equations of motion in

the bulk, while the terms in square brackets are the boundary contributions. We concentrate

on the bulk-part first. Expanding the covariant derivatives, we obtain:

√
−g{. . . }hαβ =

√
−g
{
− AbRα

µνρ
(

R̃βµνρ − R̃νρβµ

)

− 2A
(
∇µ(∇νb)R̃ανβµ +∇µb∇νR̃ανβµ + b∇µ∇νR̃ανβµ

)}
hαβ (A34)

where we omitted the term ∇νb∇µR̃ανβµ = 0, due to the second Bianchi identity (see for

example [163]).

We next focus on the last term in the curly brackets of (A34), in order to show that it

cancels out the first one. Again, due to the second Bianchi identity, we have:

−2Abhαβ∇µ∇νR̃ανβµ =− 2A b hαβ

[
∇µ,∇ν

]
R̃ανβµ

=− 2A b hαβ

(
Rα

λµνR̃λνβµ − RλµR̃αλβµ + Rβ
λµνR̃ανλµ + RλνR̃ανβλ

)

=− 2A b hαβ
(

Rα
λµνR̃λνβµ + Rβ

λµνR̃ανλµ

)
(A35)

where in the first line we used the fact that ∇ν∇µR̃ανβµ = 0, and in passing from the second

to the third line we used the symmetry of the Ricci tensor, Rµν = Rνµ. Using the fact that

the perturbation is symmetric, hαβ = hβα, we obtain,

−2Abhαβ∇µ∇νR̃ανβµ = −2A b hαβRα
λµν
(

R̃λνβµ + R̃βνλµ

)

= −2A b hαβRα
µνρ
(

R̃βρµν + R̃µρβν

)
, (A36)
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where the last equality has been obtained by an appropriate re-arrangement of the

dummy indices,

Now using the anti-symmetry of the Riemann tensor on its last two indices, we obtain,

−2A b hαβ∇µ∇νR̃ανβµ = −2A b hαβRα
µνρ
(

R̃βρµν − R̃µνβρ

)
. (A37)

We then observe that the term inside the parenthesis on the right-hand side of (A37) is

anti-symmetric under the interchange of µ ↔ ν, which means that only the anti-symmetric

part of the Riemann tensor in these respective indices contributes to the contraction. Thus,

we have:

−2A b hαβ∇µ∇νR̃ανβµ = −A b hαβ(Rα
µνρ − Rα

νµρ)
(

R̃βρµν − R̃µνβρ

)
. (A38)

Using the first Bianchi identity, then, the term inside the first parenthesis on the

right-hand side of (A38) can be written as,

Rα
µνρ − Rα

νµρ = −Rα
ρµν − Rα

νρµ − Rα
νµρ = −Rα

ρµν, (A39)

implying that (A38) can be expressed in the form:

−2A b hαβ∇µ∇νR̃ανβµ = A b hαβRα
ρµν
(

R̃βρµν − R̃µνβρ

)
. (A40)

We can easily see that such a term cancels the other contribution in (A34), which is

proportional to b. What remains is

√
−g{. . . }hαβ =

√
−g
{
−2A

[
∇µ(∇νb)R̃ανβµ +∇µb∇νR̃ανβµ

]}
hαβ . (A41)

Given that covariant derivatives commute when acting on scalar quantities, and taking

into account the contraction with the metric perturbation, which is symmetric in its indices,

we finally obtain,

√
−g{. . . }hαβ =

√
−g
{
−A∇ν

[
(∇µb)

(
R̃ανβµ + R̃βναµ

)]}
hαβ =

√
−g
(

2ACαβhαβ
)

, (A42)

where Cαβ is the Cotton tensor [47], defined as:

Cαβ = −1

2
∇ν
[
(∇µb)

(
R̃ανβµ + R̃βναµ

)]
. (A43)

Hence, combining with (A7) and (A8), we arrive at the gravitational field equations of

the CS gravity [47],

Gµν = κ2T(b)
µν + 4Aκ2Cµν , (A44)

where

T(b)
µν = ∇αb∇βb − gαβ

(
1

2
∇µb∇µb + V(b)

)
, (A45)

is the energy-momentum tensor of the b-axion field.

We proceed next by considering the boundary contribution coming from the gCS

interaction. From (A33), in the second line, we see that the second term of the boundary

contribution trivially vanishes upon assuming Dirichlet boundary conditions (A14). As

such, the only non-trivial contribution comes from the first term, given by,

δS(1)
int/boundary = 2A

∫

∂M
dSν b R̃ανµβ∇µhαβ . (A46)
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We shall now proceed in the same way as we did for the boundary contribution in the

Einstein-Hilbert action. The analogous term in order to cancel the boundary contribution

for the CS-coupling interaction given by (A46) is given by [161]:

SB
CS = −8A

∫
d3y
√
|γ| b CS(K) , (A47)

where

CS(K) = 1

2
nαεαβγδKρ

β∇γKδρ . (A48)

Denoting with Latin indices the tangential components, the above quantity is

written as,

CS(K) =
1

2
εijkKl

iDjKkl , (A49)

where Dj is the covariant derivative on the boundary ∂M compatible with the in-

duced metric, γij, where εijk = nαεαβγδ. Using the antisymmetry of εijk and the Gauss-

Codazzi equation,

Rl⃗njk = DjKkl −DkKjl , (A50)

Equation (A49) is written as,

CS(K) =
1

4
εijkKl

i Rl⃗njk , (A51)

or, in covariant form as,

CS(K) =
1

4
nαnλεαβγδKρβRρ

λγδ =
1

2
nαnλKρβR̃ρλαβ . (A52)

The variation of (A47) receives non-trivial contributions only from the variation of

(A48), since the variation of the induced metric trivially vanishes under the imposition of

Dirichlet boundary conditions (A14),

δSB
CS ≃ −8A

∫
d3y
√
|γ| b δ CS(K) . (A53)

The variation of (A52) reads,

δCS(K) ≃ 1

2
nαnλ

(
R̃ρλαβδKρβ + Kβ

ρ δR̃ρ
λαβ

)
, (A54)

in which we omitted the variations of the normal vectors due to (A26). In order to determine

the first term, we use δKρβ ≃ gαρgβλδKαλ, as well as (A24), (A27) and (A29). We find,

δKρβ ≃ 1

2
γρµγβσ∇n⃗hµσ . (A55)

For the variation of the dual of the Riemann tensor we obtain,

δR̃ρ
λαβ ≃ ε

µν
αβ∇µδΓ

ρ
λν (A56)

in which we used the variation of the Riemann tensor,

δRρ
λαβ = ∇µδΓ

ρ
λν −∇νδΓ

ρ
λµ . (A57)

Then, according to (A29), we obtain,

δR̃ρ
λαβ ≃ 1

2
ε

µν
αβ

(
∇µ∇λhρ

ν +∇µ∇νhρ
λ −∇µ∇ρhλν

)
. (A58)
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Substitution of the above to (A54), yields,

δCS(K) ≃ 1

4
nαnλ

[
R̃ρλαβγρµγβσ∇n⃗hµσ + Kβ

ρ ε
µν

αβ

(
∇µ∇λhρ

ν +∇µ∇νhρ
λ −∇µ∇ρhλν

)]

≃ 1

4
nαR̃µλασnλnδ∇δhµσ +

1

4
nαnλKβ

ρ ε
µν

αβ∇µ∇λhρ
ν

≃ ϵ

4
nαR̃µλασ∇λhµσ +

ϵ

4
Kβρ εµνλβ∇µ∇λhρ

ν

≃ ϵ

4
nαR̃µλασ∇λhµσ .

(A59)

In passing from the first to the second and then the third line in the above equation we

used the decomposition of the induced metric (A17) and the fact the Rn⃗⃗nµν = Rµν⃗n⃗n = 0,

due to the anti-symmetry of the Riemann tensor, and we have ignored the double tangential

derivatives of the metric perturbations, as these terms vanish upon using the Dirichlet

boundary conditions (A14). The last line of (A59) is obtained as a result of the total anti-

symmetry of the Levi-Civita tensor, since only the commutator of the covariant derivatives

contributes, which is proportional to the metric perturbation, and as such, vanishes due to

the Dirichlet Boundary conditions (A14). The final result is then given by,

δSB
CS = −2A

∫
ϵ d3y

√
|γ| nα b R̃µλασ∇λhµσ , (A60)

which exactly cancels (A46).

Summarizing, the complete gravitational action, with a finite boundary ∂M, reads:

S =
∫

M
d4x
√
−g
[

R
2κ2

− 1

2
∂µb ∂µb + V(b)− A b RCS

]

+
1

κ2

∫

∂M
d3y
√
|γ|
(

ϵ K − 8 A κ2 b CS(K)
)

, (A61)

with CS(K) given by (A48). The action (A61) admits now a well defined variational

principle under the assumption of Dirichlet boundary conditions [161].

Appendix B. Graviton Propagation at Second Order in Perturbations and
Two Scalar Modes in FLRW Spacetime

In this Appendix, we expand the Lagrangian corresponding to the action (A61) to

second order in the metric perturbations, hµν, with the aim of obtaining the graviton

Lagrangian, and the associated propagator. First we shall deal with a general background,

and then we shall apply our findings to the specific case of a FLRW background, where we

shall show that the formalism becomes equivalent to the propagation of two scalar modes.

To this end, we first consider the Einstein Hilbert term (A2) expanded to second order

in hµν,

δL(2)
EH =

1

2κ2

√
−g
[

1

4

(
1

2
h2 − hαβhαβ

)
R +

(
hγ

α hαβ − 1

2
h hβγ

)
Rβγ − 1

4
∇βh∇βh − 1

2
h∇γ∇γh

+ hαβ∇α∇βh +∇βh∇γhγ
β +

1

2
h∇γ∇βhβγ − hαβ∇β∇γhγ

α −∇αhαβ∇γhγ
β

−hαβ∇γ∇βhγ
α + hαβ∇γ∇γhαβ −

1

2
∇βhαγ∇γhαβ +

3

4
∇γhαβ∇γhαβ

]
,

(A62)

where

h = hµ
µ = hµν gµν (A63)

is the trace of the graviton perturbation with respect to the background metric.
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Next, we perform partial integrations in the terms that contain second order deriva-

tives of the perturbation. Such terms can be cast in the following form

δL(2)
EH,b =

1

2κ2
∇β

[
−1

2
h∇βh + hαβ∇αh +

1

2
h∇αhαβ − hαβ∇γhγ

α − hαγ∇γhβ
α + hαγ∇βhαγ

]
≃ 0 (A64)

which vanishes upon the imposition of the Dirichlet boundary conditions (A14), since every

contribution turns out to be proportional to the perturbation, hµν.

In this approach, therefore, one has to check whether there is any non-trivial boundary

contribution from the GHY term (A15) at second order in the graviton perturbation, hµν.

We first consider the second order variation of GHY term with respect to the metric tensor,

gµν, and then impose the Dirichlet boundary conditions (A14). To proceed, we remind the

reader that, any variation, and consequently the second order variation, of the determinant

of the induced metric, γµν, will vanish upon considering Dirichlet boundary conditions,

yielding for the second variation of the GHY term (A15) the following form:

δ2SGHY ≃ 1

κ2

∫
d3y
√
|γ| ϵ δ2K (A65)

The task is to define the second variation of the extrinsic curvature scalar, i.e., vary

(A25). Then, we can determine if there is any non-trivial boundary contribution to second

order in the perturbation hµν. Note also that δhµν = 0, and δhµν = δ(gαµgβµhαβ) ≃ 0 (under

the use of Dirichlet boundary conditions (A14)). Then, using (A23), (A24), we obtain:

δ2K ≃ gαβδ2Kαβ ≃ γ
ρ
αγλ

β

[
δ
(
∇ρδnλ

)
− nνδ2Γν

ρλ

]
. (A66)

For the first term on the right-hand side we have,

δ
(
∇ρδnλ

)
= ∇ρδ2nλ − δΓσ

αβδnσ ≃ ∇ρδ2nλ . (A67)

where we used the fact that the variation of the normal vector δnσ ∼ hµν. In view of (A26),

one can easily obtain that:

δ2nλ = δ
( ϵ

2
nλnαnνhλν

)
=

3ϵ

4
nλhn⃗⃗nhn⃗⃗n . (A68)

Then, we have,

∇ρδ2nλ ≃ 0 , (A69)

and we see that the first term on the right-hand side of (A66) vanishes,

δ
(
∇αδnβ

)
≃ 0 . (A70)

For the remaining term, by using the variation of the Christoffel symbol (A29), we

easily obtain,

δ2Γν
ρλ ≃ 0 . (A71)

Collecting all the results, we therefore find that (A65) trivially vanishes,

δ2SGHY ≃ 0 , (A72)

implying that there is no boundary contribution to the action of the metric perturbations

under Dirichlet boundary conditions (A14). Thus, we are left only with a bulk contribution

coming from the remaining terms of (A62), which reads,
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δL(2)
EH =

1

2κ2

√
−g
[

1

4

(
1

2
h2 − hαβhαβ

)
R +

(
hγ

α hαβ − 1

2
h hβγ

)
Rβγ

+
1

4
∇βh∇βh − 1

2
∇βh∇αhαβ +

1

2
∇βhαγ∇γhαβ − 1

4
∇γhαβ∇γhαβ

]
,

(A73)

up to boundary terms, which, as shown above (cf. (A64)), vanish under Dirichlet boundary

conditions (A14).

The presence of the Ricci tensor and the scalar curvature in (A73) indicates that

the above Lagrangian can be further simplified through the equations of motion of the

background. For example, for vacuum propagation, i.e., Rµν = 0, the above Lagrangian

reduces to

δL(2)
EH,vacuum =

1

2κ2

√
−g
[

1

4
∇βh∇βh − 1

2
∇βh∇αhαβ +

1

2
∇βhαγ∇γhαβ − 1

4
∇γhαβ∇γhαβ

]
. (A74)

In order to take into account the equations of motion of the background properly, it

is convenient to express the Lagrangian (A73) in terms of the Einstein tensor, Gµν. To this

end, first we write,

1

2
∇βhαγ∇γhαβ = −1

2
Rα

λβγhγ
α hλβ − 1

2
Rλγhγ

α hαλ +
1

2
∇γhαγ∇βhαβ, (A75)

up to irrelevant boundary terms, which vanish due to Dirichlet boundary conditions (A14).

The curvature terms appeared through the commutator of the covariant derivatives acting

on the metric perturbation, [∇β,∇γ]hαβ. Secondly, we replace Rβγ = Gβγ + 1
2 gβγR, to get,

1

8
h2R − 1

2
h hβγRβγ = −1

8
h2 R − 1

2
h hβγGβγ. (A76)

Combining all of the above, we obtain,

δL(2)
EH =

1

4κ2

√
−gGµνhµ

α hαν − 1

4κ2

√
−g h hαβGαβ

+
1

2κ2

√
−g
[
− 1

8
h2 R − 1

2
Rα

λβγhγ
α hλβ +

1

2
∇γhαγ∇βhαβ +

1

4
∇βh∇βh

− 1

2
∇βh∇αhαβ − 1

4
∇γhαβ∇γhαβ

]
. (A77)

Now we consider the contribution coming from the matter Lagrangian (A3), from

which we get,

δL(2)
matter =

√
−g
[1

4
h hαβ∇αb∇βb +

1

4

(
hµ

α hαν − 1

2
hhµν

)
gµν

(
V(b) +

1

2
∇αb∇αb

)

− 1

2
hαβhβ

µ∇αb∇µb
]
. (A78)

and, when combined with (A73), yields the result of [158].24 In the same spirit as previously,

we have to express the right-hand side of (A78) in terms of the matter energy-momentum

tensor (A45) of the b field. This will help us in identifying the background equations of

motion and the remaining couplings of the metric perturbations with the matter b field. By

doing that, we obtain,
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δL(2)
matter = −1

4

√
−g T(b)

µν hµ
α hαν +

1

4

√
−gh hαβ T(b)

αβ +
√
−g
[1

8
h2
(

V(b)− 1

2
∇µb∇µb

)

− 1

4
hµ

α hαν∇νb∇µb
]
. (A79)

Thus, it is easy to see that the background equations of motion appear when combining

(A77) and (A79), while the remaining part gives the Lagrangian when the background

equations of motion are taken into account. Combining these two results, we obtain the

action of the metric perturbations in the presence of the matter field,

S(2)[b, g, h]
∣∣∣

A=0
=

1

2κ2

∫
d4x
√
−g
[
− 1

8
h2 R − 1

2
Rα

λβγhγ
α hλβ +

1

2
∇γhαγ∇βhαβ

+
1

4
∇βh∇βh − 1

2
∇βh∇αhαβ − 1

4
∇γhαβ∇γhαβ

+
κ2

4
h2

(
V(b)− 1

2
∇µb∇µb

)
− κ2

2
hµ

α hαν∇νb∇µb
]

, (A80)

where the subscript A = 0 denotes the absence of the CS coupling. Diffeomorphism

invariance of the theory implies the gauge transformation for the metric perturbations,

hαβ → hαβ −∇αξβ −∇βξα . (A81)

Due to this symmetry, we can always choose a gauge in which the redefined field,

h̃µν = hµν −
1

2
gµνh , (A82)

satisfies the traversability condition, ∇µ h̃µν = 0, i.e.,

∇µhµν =
1

2
∇νh . (A83)

However, there is a residual freedom in choosing the gauge, provided by the ξ vectors

satisfying,

□ξν + Rλνξλ = 0 , (A84)

which, when imposed, leaves the two independent degrees of freedom of the graviton.

With (A84) there are four independent conditions that can be further applied in order to

fix the gauge and identify the two independent degrees of freedom. Such a choice is the

traceless condition, h = 0, together with the vanishing of the temporal components of the

metric perturbation, h0ν = 0 25. In the case of a minimally coupled scalar field background

the Tracelless-Transverse (TT) conditions

h = 0, ∇µhµν = 0 , (A85)

can in general be imposed for the graviton [164]. When such a gauge is imposed, the only

dependence on the (pseudo-) scalar field, b, comes from the last term in (A80). However,

the last condition of h0ν = 0 together with a homogeneous (pseudo-) scalar field, i.e.,

b = b(t), as is the case in the FLRW background, eliminates such a direct dependence on

b(t). Hence, when the two remaining independent modes of the graviton are taken into

account, Equation (A80) reduces to:

S(2)[b, g, h]
∣∣∣

A=0
= S(2)[g, h]

∣∣∣
A=0

=
1

2κ2

∫
d4x
√
−g
[
−1

4
∇γhαβ∇γhαβ − 1

2
Rα

λβγhγ
α hλβ

]
, (A86)
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which is valid for FLRW background with a homogeneous (pseudo-) scalar field, b = b(t).
According to Equation (55), for the tensorial perturbations of the FLRW spacetime, (A86)

takes the following form,

S(2)[b, g, h]
∣∣∣

A=0
=

1

4κ2

∫
d4x α2(η)

(
1

2
h′ijh

′ ij − 1

2
∂khij∂

khij
)

. (A87)

Expanding hij to the linear polarization basis (56), in order to express (A86) with

respect to the two independent degrees of freedom, we obtain,

(
1

2
h′ijh

′ ij − 1

2
∂khij∂

khij
)
= ∑

λ=+,×
h′λ(x)h′λ(x)− ∂khλ(x)∂khλ(x) . (A88)

Thus, performing [165] the redefinition

hλ(x) = Ψλ(x)/a(η) (A89)

we obtain,

S(2)[b, g, h]
∣∣∣

A=0
=

1

4κ2 ∑
λ=+,×

∫
d4x

[
Ψ′

λ(x)Ψ′
λ(x)− ∂kΨλ(x)∂kΨλ(x)− α′′

α
Ψλ(x)Ψλ(x)

]
, (A90)

up to an irrelevant boundary term, which vanishes upon assuming Dirichlet boundary

conditions (A14). The above action (A90) is equivalent to that of two independent scalar

fields, Ψλ, λ = +,×, in a flat background, with a time-dependent quadratic potential,

encoding the effect of the FLRW curved background. The introduction of the gCS cou-

pling introduces derivative couplings between the cross (×) and plus (+) polarizations.

The modes decouple when transformed to the helicity basis, and the formalism is again

equivalent to that of two independent scalar modes, albeit with an anisotropic frequency

in the time-dependent quadratic potential, signifying the parity-violating nature of the

interaction of the homogeneous axionic field with RCS.

We may now turn our focus on the term that contains the interaction with the RCS

(A4). Since we are interested in the case of the FLRW background, and the derivation

of the action for the GW is shown in detail in the main text, we will focus here only on

the boundary terms that arose in the derivation, for which, we aim to prove that they are

vanishing, under the assumption of Dirichlet boundary conditions (A14). The latter is more

convenient to be dealt with in a covariant form, in contrast to the formalism of Fourier

expansions obtained in the main text, and this is the goal of the following considerations.

In the Einstein-Hilbert Lagrangian, combined with the GHY term, in order to have a well

defined first order variational principle, we showed explicitly that there is no boundary

contribution at second order. In the case of the axion coupling with the RCS, we showed

that, by adding an appropriate boundary term, given in (A47) and (A48), we can indeed

have a well defined variational problem in first order. We have to examine, though, what

happens when we move to the second order of the perturbation, hµν, and see if in that

case, there is a non-trivial behavior regarding the boundary terms. By non-trivial behavior

we are actually referring to the possible existence of terms that survive after imposing the

Dirichlet boundary conditions (A14), i.e., normal derivatives of the metric perturbation.

For the variation of the boundary term of the gCS interaction given by (A47), (A48) and

(A52), we obtain:

δ2SB
CS ≃ −8A

∫
d3y
√
|γ| b δ2CS(K) . (A91)
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The second variation of CS(K) can be expanded in the following way:

δ2CS(K) ≃ 1

2
nαnλ

{
2δ
(

R̃ρλαβ

)
δKρβ + δ2

(
Kβ

ρ

)
R̃ρ

λαβ + Kβ
ρ δ2
(

R̃ρ
λαβ

)}
(A92)

where we used (A54). Let us examine first the term δ2Kρ
β on the right-hand side of (A92);

Taking into account that the first variation of Kβρ is given by (A24), we obtain:

δ2Kρ
β ≃ gαρδ2Kαβ ≃ γρσγλ

β δ2(∇σnλ) ≃ 0 , (A93)

where we used (A26), (A70) and (A71). For the second variation of the dual-Riemann

tensor and the last term of (A92), we have that:

δ2
(

R̃ρ
λαβ

)
≃ ε

µν
αβ δ

(
∇µδΓ

ρ
λν

)
(A94)

We can write the term on the right-hand side of (A94) as:

δ
(
∇µδΓ

ρ
λν

)
= ∇µδ2Γ

ρ
λν + δΓ

ρ
µσδΓσ

λν − δΓσ
µλδΓ

ρ
σν − δΓσ

µνδΓ
ρ
λσ (A95)

The second variation of the action term (A91) will thus contain terms of the form:

δ2SB
CS ∋

∫
d3y
√
|γ| b nαnλKβ

ρ δ2
(

R̃ρ
λαβ

)
≃
∫

d3y
√
|γ| b nαnλKβ

ρ ε
µν

αβ δ
(
∇µδΓ

ρ
λν

)

=
∫

d3y
√
|γ| b nαnλKβ

ρ ε
µν

αβ

[
∇µδ2Γ

ρ
λν + δΓ

ρ
µσδΓσ

λν − δΓσ
µλδΓ

ρ
σν − δΓσ

µνδΓ
ρ
λσ

]

=
∫

d3y
√
|γ| b nαnλKβ

ρ ε
µν

αβ

[
∇µδ2Γ

ρ
λν + 2δΓ

ρ
µσδΓσ

λν

]
(A96)

where, we replaced (A95) in the above integrated quantity and simplified the expression,

using the total antisymmetric nature of εµναβ and the symmetry of Γσ
µν under the exchange

µ ↔ ν. Using the variation of the Christoffel symbols (A29), the second term on the

right-hand side of (A96) can be written as,

2 nαnλKβ
ρ ε

µν
αβδΓ

ρ
µσδΓσ

λν ≃ 1

2
nαnλKβ

ρ ε
µν

αβ∇σhρ
µ(∇λhσ

ν −∇σhνλ)

≃ 1

2
Kβ

ρ ε
µν

αβnαnλnγnδ∇γhρ
µ(∇λhδν −∇δhνλ) ≃ 0 ,

(A97)

in which we omitted tangential derivatives of the metric perturbation. The last line vanishes,

since the term inside the parenthesis on the left-hand side of the last equation is anti-

symmetric under the interchange λ ↔ δ and is contracted with the symmetric tensor nλnδ.

On expanding the second variation of the Christoffel symbol, we obtain for the first term

on the right-hand side (last equality) of (A96):

δ2Γ
ρ
λν =− hρσ

2
(∇λhδν +∇νhδλ −∇δhλν)

+
1

2
gρδ(−δΓσ

λδhσν − δΓσ
λνhδσ − δΓσ

νδhσλ − δΓσ
νλhδσ − δΓσ

δλhσν − δΓσ
δνhλσ) .

(A98)

As such, when nαε
µν

αβδΓ
ρ
µσ∇µ acts on δ2Γ

ρ
λν only terms proportional to the metric

perturbation and terms proportional to the tangential derivative appear, implying in this

way that these terms are also vanishing under Dirichlet boundary conditions (A14). By

replacing this remaining term inside the integral, only the tangential derivative of the
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perturbation appears, i.e., nαε
µν

αβ∇µhρσ which is vanishing under Dirichlet conditions, thus

leading to: ∫
d3y
√
|γ| b nαnλKβ

ρ δ2
(

R̃ρ
λαβ

)
≃ 0 . (A99)

We are thus left only with the first term of the right-hand side of (A92), which yields:

δ2SB
CS ∋

∫
d3y
√
|γ| b nαnλδ

(
Kβ

ρ

)
δ
(

R̃ρ
λαβ

)

≃ 1

2

∫
d3y
√
|γ| b nαnλε

µν
αβ γ

β
γγδ

ρ ∇n⃗hγ
δ ∇µδΓ

ρ
λν

=
1

2

∫
d3y
√
|γ| b nαnλε

µν
αβ γ

β
γγδ

ρ ∇n⃗hγ
δ

(
∇µ∇λhρ

ν +∇µ∇νhρ
λ −∇µ∇ρhλν

)

≃ 1

2

∫
d3y
√
|γ| b nαnλε

µν
αβ γ

β
γγδ

ρ ∇n⃗hγ
δ ∇µ∇λhρ

ν

≃ 1

2

∫
d3y
√
|γ| b εµναβ γβγγδ

ρ ∇n⃗hγ
δ ∇µ∇αhρ

ν

≃ 0 ,

(A100)

where, in the second and third line, we substituted the expression for the respective vari-

ations, using (A24), (A56) and (A29). In the fourth line we ignored second tangential

derivatives of the perturbation since they vanish under Dirichlet conditions, and in the

final line we used the decomposition (A17) of nαnλ = ϵgαλ − ϵγαλ, and from the con-

traction of ∇µ∇αhρ
ν with εµναβ only the antisymmetric part survives, i.e., the commutator[

∇µ,∇α

]
hρ

ν ∼ hρ
ν, which vanishes under Dirichlet boundary conditions (A14). With all

these in mind, the result for the second variation of the boundary contribution for the

CS-part of the action (A4) vanishes,

δ2SB
CS ≃ 0 . (A101)

The above results, when restricted to the TT gauge (A85) within the framework of an

expanding-Universe FLRW background in the presence of chiral GW perturbations, have

been used in Section 3, in order to develop our mean-field HF approach to the study of

the dynamics underlying the gCS condensate. In this gauge, the quadratic action (A80)

becomes independent of the b-axion field, which has important consequences on the form of

the dynamical equations (52), as discussed in the main text. This completes our discussion.

Notes

1 The StRVM is based on massless fields of the closed sector of the underlying microscopic string theories [13,14], which is

characterized by an Abelian gauge invariance of the spin-1 antisymmetric tensor (Kalb-Ramond (KR)) field Bµν(x) = −Bνµ(x) →
Bµν(x) + ∂[µθν](x) (with [ , ] denoting antisymmetry in the respective spacetime indices). Hence, the corresponding gravitational

action of the StRVM depends only on the field strength Hµνρ of Bµν. In the framework of brane models [24,25,27], on the other

hand, this symmetry might be broken, in which case there are other types of gravitational theories that depend explicitly on the

B-field as well, which may also acquire a mass. Such models lead to more general cosmologies, with a rich and quite interesting

structure, complementary in several aspects to that of StRVM, which have only recently started to be exploited [28].
2 In the absence of a non-trivial dilaton configuration, the Gauss-Bonnet quadratic curvature term of the Bosonic sector of the O(α′)

string-inspired gravitational effective theory [49,50] is a total derivative in (3+1)-dimensions, and plays no rôle in our approach.
3 It should be mentioned that RVM-type cosmologies arise quite naturally in quantum field theories, after integrating out

massive matter modes in the path-integral, and appropriately subtracting the corresponding Ultra-Violet (UV) divergent vacuum

contributions [15–18]. In such situations, the corresponding vacuum energy densities contain H2 and H6 (and higher order) terms,

in contrast to our StRVM, where the highest power of the vacuum energy density is H4 [1,3,5,6]. Nonetheless the metastable

nature of the RVM vacuum energy is manifest in both approaches.
4 Our conventions and definitions used throughout this work are: signature of metric (−,+,+,+), Riemann Curvature tensor

Rλ
µνσ = ∂ν Γλ

µσ + Γ
ρ
µσ Γλ

ρν − (ν ↔ σ), Ricci tensor Rµν = Rλ
µλν, and Ricci scalar Rµνgµν. We also work in units h̄ = c = 1.
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5 For a rather detailed discussion on the well-definiteness of the variational principle in CS gravity we refer the reader to

Appendix A.
6 The reader should note that, if the field b is a scalar, then the coupled axion-mixed-anomaly interaction term in the action (5)

violates CP. Par contrast, the latter symmetry is preserved in the case of a pseudoscalar b field, which will be the focus of our

interest here.
7 We cannot resist the temptation of noting at this point that in the action (5), the shift symmetry (11) implies that the corresponding

Noether current is given by Jµ
N = ∂µb − AJ µ, which is thus covariantly conserved on account of the b field Euler-Lagrange field

Equation (27). The presence of a gCS RCS condensate, though, breaks this shift symmetry. Thus, although this implies a constant

rate ḃ (30), nonetheless one does not encounter the case of Refs. [92,93] in which the exact shift symmetry of the Horndeski-like

scalar field, φ, which exhibits a linear time dependence, leads to a primary hair for the corresponding stationary black hole

solution, provided by the φ̇ constant rate.
8 It is worthy of mentioning at this stage that the complex nature of the composite Hirzebruch operator (53) has been noted in

passing in [89], but the authors attributed this behavior to the naive definition of the operator, implying that one should consider

the hermitian conjugate so as to eliminate the imaginary parts. Par contrast, in our approach, as we shall discuss below, we

attribute a non-trivial physical significance to the complex nature of (53), associated with the metastable nature of the quantum

StRVM vacuum.
9 We remark for completion at this point that, in generic torsional Einstein-Cartan [81] or teleparallel theories [110–112] (including

those with Nieh-Yan invariants [113]), there is a plethora of works addressing the observation of cosmological effects of torsion,

e.g., on dark matter, via chiral GW [114,115], some of which might be detectable at current or future interferometers [116]. Our

considerations in this work are different from those works, as they pertain to the effects of chiral GW on torsion-free CS anomaly

condensates that lead to inflation. In this latter respect, as remarked in [6], the StRVM inflationary phenomenology is similar

to the one proposed in [86,87,117] on inflationary birefringence induced by the gCS terms. Nonetheless, in view of the torsion

interpretation of the antisymmetric tensor field strength Hµνρ, that characterises the underlying microscopic string theory, some

of the methods of detection of the torsional effects mentioned in those references on Einstein-Cartan torsion [81] might also be

applicable to our StRVM case. This will not be a topic discussed further here, but we may come back to it in the future.
10 We remark at this point that there exist similar examples of such quantum-ordering ambiguities in the framework of the Wheeler-

de-Witt equation for the wave-function of the Universe [118–120]. For concreteness, we mention below two of them. One deals

with a path-integral approach, in which these ambiguities can be related [121] to the choice of path-integral measure, and can be

fixed, for instance, by requiring invariance under field redefinitions of the three (spatial components of the) metric and the lapse

function. The other [122] studies the influence of the quantum ordering on the (non)existence of an initial singularity and the dark

energy in the Universe, pointing to different scenarios of physical interest, according to the way of fixing the ambiguities. In our

four-spacetime dimensional CS gravity case, a way of fixing the pertinent ordering ambiguities will be suggested below, based

on the necessity of having a finite duration of the inflationary era, as suggested in the classical limit by the dynamical-system

approach to the linear-axion inflation [6].
11 The situation may be thought of as being somewhat analogous to that encountered in the Dirac Lagrangian for spin-1/2 fermions,

which are also non-classical objects. The naively defined Lagrangian density LF = ψ
(

i γµ ∂µ − m
)

ψ is non-hermitian, with

the imaginary parts being associated with the total divergence of the corresponding Noether current: LF −L†
F = i∂µ

(
ψ γµ ψ

)
.

One can maintain hermiticity upon defining a particular ordering by replacing ∂µ by the operator 1
2

↔
∂µ, with

↔
∂µ defined as:

A
↔
∂µ B ≡ A ∂µB − (∂µ A) B . In our case, the operator on the left-hand side of (85) is proportional to the four-divergence of the

gCS topological current, and the symmetric ordering (86) may be thought of as corresponding to the specific ordering that renders

the operators in (83) and (84) hermitian.
12 Notice that our arguments below on estimating the life time of the inflationary vacuum are based on the study of the path-integral

partition function of GW perturbations Z in the case of a single source of GW. This suffices, because, as we discussed above,

the case of N sources can be studied by simply raising the partition function of a single source Z to the N-th power, (44),

ZN sources = ZN . Hence all the necessary information is encoded in a single-source GW path integral.
13 The situation is somewhat analogous to the celebrated Vafa-Witten theorem on the impossibility of the spontaneous breaking of

Parity in vector-like theories [123,124], which is based on similar energetics arguments. Nonetheless, in our case, the presence of

imaginary parts of the gCS condensate is not interpreted as implying that the formation of the condensate is not possible, but

rather that, once it is formed via GW, quantum effects destabilize it, thereby causing the RVM-inflationary vacuum to decay, with

a life time determined by these imaginary parts.
14 Representing the decaying vacuum of the StRVM as an open system is a concept familiar from the theory of decaying particles

with a finite width, which are represented as open quantum mechanical Lindblad systems [131,132]. There, the environment,

which the unstable particle interacts with, is provided by enlarging the original Hilbert space by states representing the decay

products. In the StRVM, as we have mentioned, the environment consists of the entire spectrum of the massive string states.
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15 This bound depends somewhat on the underlying cosmological model; the bounds on r in (105) refer to some important extensions

of ΛCDM, as considered by Planck collaboration [52].
16 Notice that with the + sign choice of the cosine term in the potential, there is no mass term generated for the axion b during the

inflationary phase. In StRVM such masses could be generated at post-inflationary eras, e.g., during the QCD epoch, as a result of

the anomalous coupling of the b field to the Pontryagin term involving the gluon-field strengths [2].
17 The pertinent equations of motion are therefore affected only very mildly by the presence of the shift-symmetry breaking periodic

modulations of the axion potential, and thus the main qualitative features of the StRVM inflation, discussed previously in the

literature [1,3,5,6], and reviewed here, including the non-dilution of the KR field at the end of inflation, remain intact. A detailed,

quantitative, discussion on the rôle of the potential (117) within the dynamical system approach, in the spirit of [6], will be

presented in a future publication.
18 We stress once again that in our model, the cosmic time dependence of the axion field b is suppressed during the entire duration

of inflation, due to the order of magnitude of the initial value |b(0)| (109). Otherwise, the parameters ϵi, i = 1, 2, . . . , would

exhibit appreciable oscillatory behavior with time.
19 Note that the condition (120) is self consistent with the approximations made in the computation of ϵi, i = 1, 2, . . . , in (118),

specifically the order of magnitude of ϵ1, to which instanton corrections are subleading, of O(10−6).
20 Here hµν is dimensionless, and the perturbative expansion is in powers of the weak field hµν. This is to be contrasted with a

coupling-constant(κ) expansion in which one considers gµν → gµν + κ h̃µν, where h̃µν has dimensions of mass.
21 To derive this and the following expressions, we used the “xpert” package of Mathematica. Our results are checked, and found

consistent, with classic analyses in the relevant literature [158,159] .
22 Notice that covariant derivatives are reduced to partial derivatives upon the application of Dirichlet boundary conditions.
23 Suppose that Tµ is a vector. Then, we can decompose,

Tµ = γ
µ
ρ Tρ + ϵnµnρTρ = Tµ

∥ + Tµ
⊥

where the first term denotes the parallel, while the second one the normal, component of the vector on the boundary ∂M. Such a

decomposition is generalized to higher-rank tensorial quantities. For example, if we have a second rank contravariant tensor Tαβ

we obtain:

Tµν = nµnνT n⃗⃗n + ϵnµγν
ρTn⃗ρ + ϵnνγ

µ
ρ Tρ⃗n + γ

µ
ρ γν

σTρσ

and so on, where we introduced the notation [161],

Tn⃗ = nµTµ , (A18)

that is, when the symbol n⃗ is in the place of an index in a tensorial quantity, then that index is contracted with the normal vector.

We can easily see that, when an index of a tensor is contracted with the normal vector, only its normal component survives,

for example,

nµTµν = ϵnνT n⃗⃗n + γν
ρTn⃗ρ .

24 The reader’s attention is called to the different conventions between our work and that of [158], especially the definition of the

Ricci tensor.
25 In order to clarify that the conditions h = 0 and h0ν = 0 consist of 4 independent conditions, observe that these two conditions

are linearly dependent. When this dependence is taken into account there are 4 independent conditions, which read; gijhij = 0

and h0i = 0, ∀i = 1, 2, 3.
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