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In this article, we have investigated collisional Penrose process (CPP) using spinning particles in a Kerr 
spacetime. Recent studies have shown that the collision between two spinning particles can produce a 
significantly high energy in the center of mass frame. Here, we explicitly compute the energy extraction 
and efficiency as measured by an observer at infinity. We consider the colliding particles as well as the
escaping particles may contain spins. It has been shown that the energy extraction is larger than the 
non-spinning case and also their possibility to escape to infinity is wider than the geodesics.

© 2018 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

In the late sixties, Penrose and Floyd demonstrated a way to ex-
tract the rotational energy from a black hole [1]. This is related to 
the existence of negative energy in the ergoregion of a Kerr black 
hole [2]. Recent studies have shown that Penrose process worked 
out in a collisional framework may result in sufficiently large en-
ergy extraction and produce energized particles [3]. But these high 
energy particles seldom can escape to infinity [4]. This is because, 
most of them either get absorbed by the black hole or trapped in-
side the ergoregion [5]. In recent years, several works have been 
carried out to model an extraction process from a black hole 
which gives rise to observable ejecta of high energy particles [6–8]. 
Schnittman has shown that the extraction efficiency may increase 
with a slight change in collisional mechanism [9]. This idea has 
been extended by Berti et al. considering the colliding particles are 
confined in the vicinity of the black hole rather than arriving from 
infinity [10]. But it has been argued that even if these type of col-
lisions may produce energetic particles, their origination has to be 
scrutinized carefully [11–13]. Patil and Joshi have shown the prob-
lem can be readdressed with Kerr superspinors, where the escap-
ing ratio of the produced particles is larger than the extremal Kerr 
black hole [14,15]. In the present article, we consider the collision 
between two spinning particles and compute the energy release in 
this process. Unlike non-spinning particles, they deviate from the 
geodesic motion due to the spin-curvature coupling and described 
by the Mathisson–Papapetrou equations. Obviously this will lead 
us towards a more involved and practical situation. In reality, the 
astrophysical bodies are extended objects and likely to have in-
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ternal moments. So, working with spinning particles rather than 
geodesics sounds more relevant from astrophysical point of view.

One can expect to have striking departure from the geodesic 
motion whenever the spin magnitude is close to unity, S/M ≈
O(1) [16], here M is the mass of the black hole. Recently Armaza 
et al. has proposed that the collision between two spinning parti-
cles in the Schwarzschild black hole can produce large energy in 
the center of mass frame [17]. This idea has been used exclusively 
in refs. [18,19] and suggested similar situation may arise in case 
of a rotating black hole. These studies have shown the existence 
of a divergence radius at, rc = M(S/M)2/3 where the energy in the 
center of mass frame diverges and the theory reaches a breakdown 
point. It is, in fact, related to the violation of timelike characteristic 
of the particle while a similar work to avoid superluminal motion 
can be found in [20]. In this article we carefully extend the gen-
eral mechanism used to formulate the energy extraction with the 
geodesics and study the effect of spin. We chiefly concentrate on 
two particular cases: firstly, the collision of two spinning particles 
produce two massless photons which follow the geodesic motion 
and secondly, the produced particles in the collision are massive 
and contain spins. The later is the most general case. Finally we 
use this mechanism for trapped spinning particles in the ergore-
gion and compute the energy extraction in the process. Similar to 
the geodesics, these particles can produce higher energy ejecta, ob-
servable at infinity. In each case, we assume all the particles are 
confined on the equatorial plane.

The rest of the paper is organized as follows. In section 2 we 
introduce the evolution equations for a spinning particle and con-
centrate on some important features of its trajectory. Section 3 is 
devoted to set up the basic equations for a collisional theory and 
compute the energy extraction in the process. We discuss two spe-
cific scenarios, firstly when the emerging particles are massless 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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geodesics and secondly, when they are massive spinning parti-
cles. A detail discussion on the efficiency of each process is carried 
out for different spin parameters. In section 4, we allow bound 
spinning particles to collide and compute the energy extraction in 
these processes. Finally we conclude the article with a brief re-
mark.

2. Orbits of a spinning particle

In general relativity, very often one neglect the complexity of 
a test body by approximating it as a single pole particle. But to 
address a more realistic astrophysical event, we may need to con-
sider the structure of the test particle as well. This may include a 
complicated internal structure with multiple moments. Mathisson 
first described this problem and computed equation of motion of a 
spinning pole-dipole test particle in a linearized gravitational field 
[21]. These equations have been extensively used as well as modi-
fied by several authors. Full general relativistic equation of motion 
of a pole-dipole particle was carried out first by Papapetrou [22]. 
Later Dixon modified these equations for extended bodies in a co-
variant formalism [23].

The Mathisson–Papapetrou equations for a spinning particle is 
given by:

Ṗ a = −1

2
Ra

bcdU
b Scd,

˙Sab = P aUb − P bUa, (1)

where P a defines the four momentum, Sab is the spin tensor and 
Ua is the four velocity. It should be noted that the above equa-
tions are not sufficient to determine the complete trajectory of a 
spinning particle and additional supplementary conditions are es-
sential. For a vanishing mass dipole moment (Si0 = 0) in the rest 
frame of the object [24], we may employ Tulczyjew–Dixon ‘Spin 
Supplementary Condition (S.S.C)’ [23,25],

Sab Pb = 0. (2)

It is easy to see that physically, the S.S.C conserves the dynamical 
mass of the spinning body (μ) [26], and we may now define a 
normalized momentum Va as,

Va = P a/μ; VaVa = −1. (3)

This is important to note that under the supplementary condition 
given by Eq. (2), the four velocity, Ua , in general, is not normalized. 
But to remain a timelike particle, it has to follow,

UaUa < 0. (4)

For a simplicity, we normalize the four velocity with the condi-
tion [27],

UaVa = −1. (5)

From Eqs. (1)–(5), one can establish a relation between four-
velocity and the four-momentum,

Vb − Ub = 1

2μ2
Raef gUe S f g Sab. (6)

For the single pole particle, the underlying symmetries of the Kerr 
spacetime leads to conserved quantities such as energy and an-
gular momentum. Similarly, for spinning particles, with a given 
killing vector field Ka , the conserved quantity is given as [28,29]

C = Ka Pa − 1
SabKa;b. (7)
2

It should be reminded carefully that for a spinning particle, neither 
energy (−Kt Pt) nor angular momentum (Kφ Pφ ) is conserved. In-
stead, the conserved quantities are merely a spin dependent devi-
ation from them. So throughout the text, the conserved quantities 
are defined as, E = −Ct and J z = Cφ , while the energy is denoted 
as E∞ .

Saijo et al. has successfully derived the equation of motion of a 
spinning particle on the equatorial plane of a Kerr black hole [27]. 
These are given by,

(�s�sU r)2 = P 2
s − �

(
�2

s

r2
+ { J z − (a + S)E}2

)
,

(�s�sU t) = a

(
1 + 3S2

r�s

)
{ J z − (a + S)E} + r2 + a2

�
P s ,

(�s�sUφ) =
(

1 + 3S2

r�s

)
{ J z − (a + S)E} + a

�
, (8)

where ‘a’ and ‘M ’ are angular momentum and mass parameter of 
the black hole respectively, and P s , �s and �s are given as,

P s = E

(
r2 + a2 + aS + aS M

r

)
−

(
a + M S

r

)
J z,

�s = r2
(

1 − M S2/r3
)

; � = r2 + a2 − 2Mr,

�s = 1 − 3M S2r

�3
s

{ J z − (a + S)E}2 (9)

The quantity ‘S ’ is defined as the z-component of the spin. We are 
considering a simplest case when the spin is perpendicular to the 
orbital plane. When S > 0, the spin is parallel to the black hole 
spin, and antiparallel for S < 0. Using Eqs. (8), (9), one can rewrite 
the timelike condition in Eq. (4) as,

W (S, E, J z) = r5
(

1 − M S2

r3

)4

− 3M S2
(

2 + M S2

r3

)
{ J z − (a + S)E}2 > 0. (10)

The above equation is important to determine the closest interac-
tion of the spinning particle with the black hole and valid for every 
discussion throughout the text. We can express W (r, S, E, J z) in 
terms of energy, E∞ = −Pt of the particle:

W (S, E∞, J z) = r5
(

1 − M S2

r3

)4

−
(

3M S2(
r3 + aM S2

)2

)
×

·
(

2 + M S2

r3

){
J z − (a + S)E∞}2

(
r3 − M S2

)2
.

(11)

It can be seen that for J z = (a + S)E , W (S, E, J z) is always posi-
tive and the additional constraint is trivially satisfied. Furthermore, 
for this condition E behaves as the energy of the particle and the 
orbital angular momentum (Pφ ) become aE . In this case the spin-
ning particle behaves as a geodesic and the acceleration become 
zero.

3. Collisional Penrose process

Let us consider two spinning particles with four momentum 
Pμ

1 and Pμ
2 respectively, collide in the ergoregion of a maximally 

rotating Kerr black hole and produce two more particles with mo-
mentum Pμ and Pμ respectively. To extract energy, it is necessary 
3 4
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Fig. 1. Collisional Penrose process when the ejected particles are null geodesics.
that one of these ejected particles carry negative energy while its 
counterpart can have more energy than the total initial energies. 
Considering the collisional process is solely confined within the 
equatorial plane, we may assume the sum of initial spins is re-
main unaltered after collision. That is,

S1 + S2 = S3 + S4 . (12)

The above equation can be regarded as a supplementary condi-
tion which is useful to solve the equations consistently. Though 
it is a simple and unbiased relation, it is not unique and one of 
many possibilities. One may substitute it with more complicated 
and physically appealing conditions. According to Eq. (12) the fi-
nal particles may or may not contain spin, it depends on the sum 
of initial spins. For simplicity, we further consider S3 = S4. Such 
choice is helpful to express our equations analytically, for example 
if we choose S3 = −S4 the equations get more complicated. Nev-
ertheless, in principle one can assume such choice and numerically 
compute the energy efficiency. We plan to come up with a better 
approach to scan all such possibilities of energy extraction in a fu-
ture work. In the case of collision between two spinning particles, 
neither axial angular momentum nor energy is conserved in gen-
eral. But we still can consider the sum of each component of four 
momentum remain conserved throughout the process.

P t
1 + P t

2 = P t
3 + P t

4,

εr
1 P r

1 + εr
2 P r

2 = εr
3 P r

3 + εr
4 P r

4,

Pφ
1 + Pφ

2 = Pφ
3 + Pφ

4 , (13)

where εr
i = ±1, and i runs from 1 to 4. For a radially ingoing par-

ticle εr
i = −1 and εr

i = 1 for outgoing trajectories. Expression for 
momentum can be derived from Eqs. (7)–(8),

Pr = �sUr,

Pt = − 1

�s

(
E

{
r2 + aM S

r

}
− J z M S

r

)
,

Pφ = 1

�s

(
J z

{
r2 − aM S

r

}
− E S

{
r2 − a2M

r

})
. (14)

It is easy to find that in the S → 0 limit, the Pt and Pφ has usual 
meaning of energy and angular momentum respectively.
3.1. Production of light-like particles

In this section, we shall consider two equal and oppositely 
aligned massive spinning particles, P1 and P2, collide in the er-
goregion and produce two spinless photons P3 and P4. One of 
these photons say P4, carries negative energy and crosses the hori-
zon, while the other photon P3 contains more energy than the 
sum of initial energies. Let us assume P1 is turned back at the 
event horizon and collide with the in-falling particle P2. It should 
be noted that both P1 and P2 has to follow Eq. (4). Now we may 
employ Eqs. (8)–(13) and easily compute energy, E3 for P3 [30],

E3 = E2
T �1 − J 2

T �2 − 4arET J T − �2(P r
T )2

4rα(b3 − a) − 2b3 J T r2 + 2ET (r4 + a2r2) + C1 P r
T

(15)

With P r
T is the total radial momentum before the collision and b3

is the impact parameter of the third particle, b3 = J3/E3. Note J3

is the conserved momentum of the third particle P3 and simply 
written as, J3 = (Cφ)P3 . It can be seen that E3 depends on initial 
parameters such as, ET = −(P1)t − (P2)t and J T = (P1)φ + (P2)φ , 
and also b3. We define �’s, C1 and α as,

�1 = r4 + r2a2 + 2a2r,

�2 = r2 − 2r,

α = ( J T − aET ),

C1 = 2r2
√

2(b3 − a)2r + (a2 − b2
3)r

2 + r4. (16)

Here we calculate the energy as measured by an observer rest 
at infinity, that is E∞

3 = E3, as we assume the photon follows 
a geodesic trajectory. We may choose our initial parameter such 
as, 

(
E∞

1 , E∞
2 , J1, J2,m1,m2

) = (1,1,2M,0.2M,1,1) and the black 
hole is consider to be maximally Kerr (a = M).

In Fig. 1(a), we have plotted maximum energy efficiency (ηmax), 
when the null geodesics are initially outgoing (εr

i = 1). Maximum 
efficiency is defined as,

ηmax = E∞(max)
3 /(E∞

1 + E∞
2 ) ,

where E3 has been maximized w.r.t. the parameter b3. They could 
escape to infinity with large energies. The nature of the graph re-
main same for initially ingoing particles (εr = −1), see Fig. 1(b). 
i
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Fig. 2. The energy extraction with spinning particles for a black hole with, a = 0.997M .

Fig. 3. Collisional Penrose process when ejected particles are massive spinning particles. The initial parameters are chosen as, (E∞
1 , E∞

2 , J1, J2,m1,m2
) = (1,1,2M,1M,1,1)

and also we assume, S3 = S4 = S .
Even if the energy extraction is slightly larger in this case, most of 
photons are absorbed by the black hole. It can be seen from both 
the figures, that the energy extraction increases with the increase 
of S1 and S2. As the initial spin parameters for the colliding par-
ticles increases, the radial momentum in the center of mass frame 
become less negative and ejected particle are boosted up with 
more energy. Interestingly, none of the spin parameters reaches 
a divergence radius at r = rc = M(S/M)2/3 and the theory is well 
consistent throughout the considered region.

A similar approach can be done for black holes in the near ex-
tremal regime but well inside the Throne limit a � 0.998M [31], see 
Fig. 2. From an astrophysical standpoint, this is relevant as black 
holes are unlikely to be extremal or maximally rotating and consis-
tently obey a < M . In this case, the maximum efficiency decreases 
with an approximate factor of 10 while the nature remain same as 
the previous cases.
3.2. Production of non geodesic massive particles

In this section we are considering the ejected particles are mas-
sive and contain spins. From our previous discussion we conclude 
that the four velocity has to follow Eq. (4) to retain its timelike 
character. It can be seen from Fig. 3(b) that, no energy extraction 
occurs when emerging particle has a nonzero spin and colliding 
point is close to the event horizon. The maximized energy of the 
escaping particle would depend on initial spins as well as the final 
spin. Similar to ingoing null geodesics, most of the ingoing mas-
sive non geodesics will eventually cross the horizon and absorbed 
by the black hole. The particles which can have some astrophys-
ical interest and be observed at infinity, are the initially outgoing 
particles, see Fig. 3(a). Unlike the geodesic case, the difference of 
energy extraction for initially ingoing and initially outgoing trajec-
tories is very small. The outgoing particles are very useful to have 
an observable ejecta in a collisional Penrose process. In addition, 
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Fig. 4. Collision with the trapped Particles, with S1 = 0.01M and S2 = −0.01M . All 
the particles are initially outgoing and can be observed at infinity.

there will be a spin-spin interaction between the ejected particle 
and the black hole. For parallel spins, the force is repulsive and it 
is attractive for antiparallel arrangement. So as the emerging par-
ticle has a spin parallel to the black hole, it gets repel back and 
boosted with energy. At the same time, the energy of the escaping 
particle would decrease if S3 < 0.

4. Collision with trapped particles

In the case of a collision between two trapped particles, the 
energy extraction can be arbitrarily large, see Fig. 4. This idea was 
first coined in [9] and explicitly used in [10]. The trapped parti-
cles required in the process, can be produced in the ergoregion as 
a consequence of previous scattering events [32]. The basic struc-
ture of this process remain same, as one of the outgoing particle 
with positive radial momentum collide with an ingoing particle 
and result in two other particles. We consider the emerging parti-
cles after the collision are photons and essentially they follow null 
geodesics. These photons are initially outgoing and hence, can es-
cape to infinity. This could be astrophysically relevant as we can 
observe an ejecta of high energy light-like particles.

5. Conclusion

In this article we carried out an investigation of collisional 
Penrose process in a maximally rotating Kerr black hole, while 
colliding particles as well as the produced particles may contain 
spins. We closely follow ref. [27] for the equations of motion of 
a spinning particle on the equatorial plane of a Kerr black hole. 
The study of the Penrose process with spinning particles in the 
inclined orbits would have been a intriguing problem in a theo-
retical point of view. Though from our previous knowledge, it is 
expected that energy extraction is maximum when the collision 
takes place on the equatorial plane, this is due to the symmetry of 
the spacetime [33]. Here we mainly discuss three events with an 
assumption on the spin of these particles. Firstly, we consider two 
equal and oppositely aligned spinning particles collide and pro-
duce two non-spinning photons. The energy release is extremely 
high as compared to the geodesics. In the second case, we con-
sider the produced particles are massive and endowed with spins. 
Depending on their spin, they may or may not reach close to the 
black hole and energy release is minimal. In the final case, we let 
trapped spinning particle to collide and produce massless photons. 
This produce enormous energy release in the process.
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