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Abstract

The field of enumerative geometry has seen an explosion of activity over recent decades, primarily due
to emerging connections with other areas, such as representation theory, integrability, and mathematical
physics. This thesis showcases new results and conjectures for four different enumerative problems motivated

by the aforementioned connections.

First, I prove that a certain enumeration of lattice points in the Deligne-Mumford compactification of
the moduli space of curves is governed by local topological recursion. Local topological recursion is a
relatively recent generalisation of the topological recursion of Chekhov, Eynard and Orantin, however its
benefits remain unclear. This result resolves a question of Do and Norbury, and serves as one of the first
demonstrations of local topological recursion governing a natural combinatorial problem.

Second, this thesis contains proofs of three key results for double Hurwitz numbers: I prove that double
Hurwitz numbers satisfy a polynomiality structure, that they are governed by topological recursion, and
finally, that they can be expressed in terms of intersection numbers on moduli spaces of curves. These
results subsume analogous results that have previously appeared in the literature for the simpler settings of
single and orbifold Hurwitz numbers. Further, the techniques used to prove these results can be adapted for
a variety of other enumerative problems, with the relative Gromov—Witten invariants of the sphere providing
a likely fruitful example.

Third, I derive a sequence of Virasoro operators that annihilate the partition function for fully simple maps.
This is achieved by combining a known relation between the enumerations of ordinary and fully simple
maps with techniques from the semi-infinite wedge formalism. The thesis describes preliminary findings
stemming from this result, including work towards a Tutte-like recursion for fully simple maps, and a direct
relation between the enumerations of ordinary and fully simple disks.

Finally, I use topological recursion to motivate the definition and study of a new generalisation of the
Narayana polynomials that can be considered a deformation of monotone Hurwitz numbers. This family of
so-called topological Narayana polynomials continues to satisfy certain recursive and symmetry properties
possessed by their original counterparts. I prove these and posit explicit conjectures pertaining to the real-
rootedness and interlacing of this new family of polynomials. Thus it appears that one can “topologise”
sequences of polynomials via topological recursion while preserving key properties, a new phenomenon
that prompts further study.

The novel results for these four enumerative problems have standalone merit, yet they share underlying,
unifying themes. The work on the lattice point enumeration, double Hurwitz numbers, and topological
Narayana polynomials all prove some form of topological recursion. For double Hurwitz numbers and the
enumeration of fully simple maps, the semi-infinite wedge formalism is a vital tool. And, as is typical for
such problems in enumerative geometry, these results form part of a rich tapestry of ongoing work that

connects various areas of mathematics.
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Preface

This thesis is split into two distinct halves: Part I describes background material while Part II presents novel
research.

In Part I, Chapter 1 introduces the semi-infinite wedge space, providing foundational knowledge on as-
pects of the semi-infinite wedge formalism that are required for some results in Part II. Chapter 2 defines
the topological recursion of Chekhov, Eynard and Orantin, fixing key notations for the remainder of the
thesis. Chapters 3 and 4 provide gentle introductions to maps and Hurwitz numbers respectively. Chapter 3
also defines the combinatorial object that is associated to the enumeration discussed in Chapter 5 and
describes the sense in which this combinatorial object enumerates lattice points in the moduli space of
curves. Chapter 4 also presents a proof of the previously known polynomiality of single Hurwitz numbers
via the semi-infinite wedge.

Chapter 5 signifies the start of Part II and describes joint work with Anupam Chaudhuri and Norman Do
proving that the enumeration of lattice points in the Deligne-Mumford compactification of the moduli space
of curves is governed by local topological recursion. The results described in this chapter can also be found
in the arxiv preprint [24] and answers a long-standing question asked by Do and Norbury in their original

work on this lattice point enumeration.

Chapter 6 contains joint work with Gaétan Borot, Norman Do, Maksim Karev and Danilo Lewanski which
appears in [8]. This chapter proves that double Hurwitz numbers satisfy a polynomiality structure, are
governed by topological recursion, and can be expressed via intersection theory on the moduli spaces of
curves. These results resolve a conjecture of Do and Karev.

Chapter 7 deduces a sequence of Virasoro operators that annihilate the partition function for fully simple
maps. This chapter, motivated originally by the now-proven conjecture of Borot and Garcia-Failde that
fully simple maps are governed by topological recursion, also presents work towards deriving a Tutte-like
recursion for fully simple maps, and deducing an explicit relation between ordinary and fully simple maps.

Finally, Chapter 8 uses topological recursion to motivate the definition of a new enumeration called topolo-
gical Narayana polynomials. This chapter contains proofs that the enumeration is governed by topological
recursion, along with two other recursions, and that it satisfies a particular symmetry property. Further, it
states two conjectures that topological Narayana polynomials are real-rooted and that they interlace.
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Chapter 1

Semi-infinite wedge

1.1 Introduction

The semi-infinite wedge, sometimes referred to as the infinite wedge space or the fermionic Fock space, ori-
ginally emerged from the study of infinite-dimensional Lie algebras [73] and has applications to enumerative
geometry [40, 92], integrable systems [29, 83, 100], random partitions [90], and modular forms [5].

Use of the semi-infinite wedge is instrumental for deducing results for double Hurwitz numbers and fully
simple maps. In Chapter 6 on double Hurwitz numbers, the semi-infinite wedge formalism was used to
prove a polynomiality structure theorem. This result acted as a catalyst for proving topological recursion
for double Hurwitz numbers, from which an ELSV-like formula was obtained. In other words, all substantial
results for double Hurwitz numbers in this thesis were proved as a consequence of the semi-infinite wedge
analysis. In Chapter 7 on fully simple maps, the semi-infinite wedge provides a particularly nice setting for
deriving a set of Virasoro operators that annihilate the partition function for the enumeration.

The purpose of this chapter is to provide foundational knowledge on aspects of the semi-infinite wedge
formalism that are required for Chapters 6 and 7. Previous work of Okounkov [90] is used as the main
reference for definitions and notations, while the survey paper of Rios-Zertuche [96] contains a number of
useful results that are cited here.

The structure of this chapter is as follows. Section 1.2 provides the key definitions and notations (Sec-
tion 1.2.1) as well as common diagrammatic representations for vectors in the semi-infinite wedge (Sec-
tion 1.2.2). Section 1.3 defines the operators that will be used throughout this thesis, namely, fermionic
and bosonic operators; the £-operators appearing in the work of Okounkov and Pandharipande [92]; vertex
operators; and JF-operators. Section 1.4 contains results required in later chapters: Section 1.4.1 describes
the Murnaghan—Nakayama rule via operators acting on the semi-infinite wedge, and Section 1.4.2 details
the so-called boson-fermion correspondence.

1.2 Preliminaries
1.2.1 Definitions and notations
Let V be a C-vector space with basis {s | s € Z + 1}.

Definition 1.2.1. The semi-infinite wedge space, denoted A3V, is a C-vector space with a preferred basis
containing vectors
vg = ﬂ A 572 A ERE ,

where S = {s; > s5 > ---} C Z+ 3 is such that the sets
Sy =58\ (Zgo—3), S_=(Zgo—3)\S (1.1)

are finite.

We equip the semi-infinite wedge space with an inner product (-, -), for which the basis {vg} is orthonormal.
That is, define
(vs,vr) = ds,1.

3



4 1. Semi-infinite wedge

Example 1.2.2. An example of a basis element in the semi-infinite wedge is

AN WANWAN

[po1~
[ro1eo
‘ |

nles

9 11 13 15
AN=SA-FA-BA-FA---.

[ror=

The condition (1.1) that the sets S; and S_ are finite implies that there are only finitely many positive

half-integers present and only finitely many negative half-integers missing. In this example, there are only
7 31 1 5 7

three positive half-integers present, 3, 5, 5, and three negative half-integers missing, -2 -2

T2 T2 T2

A particular basis vector that arises naturally in many calculations is the vacuum vector, denoted vy and given
by

vy 1= A A A A AN 1.2)

|
‘w\w
|
[N
|
wlo

|

b
|

ol

Section 1.2.2 explains the way in which vy corresponds to the empty partition, and hence gives context for
the notation.

Finally, define the vacuum expectation of an operator O on A%V to be

<O> = <OU@,U@>. (1.3)

1.2.2 Diagrammatics

Basis vectors in the semi-infinite wedge are represented via two common diagram types; the first is a Young
diagram and the second is a Maya diagram. Here both are considered, using the basis vector from Ex-
ample 1.2.2 as an example. In the subsequent sections of this chapter, the Young diagram representation is
used exclusively. Maya diagrams are defined here for completeness.

In the Young diagram presentation of the semi-infinite wedge the basis vectors are represented as continuous
piecewise linear functions with gradient =1 defined up to an additive constant in the following way. For a
given basis vector vg, s € S corresponds to a gradient of —1 (a down-si¢p) in the interval [s — %7 5+ %],
whereas s ¢ S corresponds to a gradient of +1 (an up-st¢p) in the same interval. The fact that the sets S
and S_ (defined in equation (1.1) above) are finite dictates that this piecewise linear function has positive
gradient for sufficiently positive x-values and negative gradient for sufficiently negative x-values. By drawing
the “V-shape” created by these two lines of positive and negative gradients, one encloses a union of squares,
each of area 2, creating a Young diagram. The Young diagram corresponding to Example 1.2.2 above can
be seen in Figure 1.1.

T T T T T

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Figure 1.1: Young diagram of vg in the semi-infinite wedge corresponding to the partition A = (4,3, 3,2)
and charge c = 0.
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From the Young diagram of a basis vector one can associate a pair (A, ¢). The partition A corresponds to the
Young diagram, where the rows appear along lines of gradient +1, and c is an integer that corresponds to
the z-value of the vertex of the V-shape and is called the charge. The Young diagram associated to Figure 1.1
produces the partition A = (4, 3, 3,2) (rather than its transpose (4,4, 3,1)) and the charge ¢ = 0.

Charge zero basis elements span a subspace of the semi-infinite wedge, referred to as the charge zero subspace
and denoted A? V. Further, it is often useful to describe a basis vector by the partition corresponding to
its Young diagram, using the notation vy. This is done primarily when vy € Ao% V or if the charge is clear
from context. For example, vs in Figure 1.1 can instead be written as v(4 3 3 2).

The vacuum vector defined in equation (1.2) is the element of the semi-infinite wedge corresponding to the
empty partition in the charge zero subspace; see Figure 1.2.

Figure 1.2: The vacuum vector, vg.

Alternatively, Maya diagrams are given by the placements of black or white beads at each position in Z + %;
a black bead is used if s € S and a white bead is used if s ¢ S. The Maya diagram corresponding
to Example 1.2.2 is shown in Figure 1.3.

Figure 1.3: Maya diagram corresponding to the vector v(4 3 3 2)-

1.3 Operators

1.3.1 Fermionic operators

Definition 1.3.1. For k € Z + 1, define the fermionic operator ¢,: A=V — ATV by
Yrvg =k Avg.

Define 1} to be the adjoint operator of 1y; that is, define ¢} to be the operator that satisfies (pu,v) =
(u, piv) for all u,v € AZV.

Using the usual skew-symmetry of the wedge product, a A b = —b A a, which in turn implies a A a = 0, the
actions of 1, and 1} on basis vectors can be expressed as

+ k¢S tog ey, fkES,
s = VSU{k} 1 ¢ s = VS\{k} 1
0, ifkes, 0, ifk¢S.
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In both cases, the sign is given by (—1)H{s€SIs>k},

For example consider the element in the charge zero subspace given by the Young diagram (3, 2); that is,

v(3,2) = 5 N5 LA —% A —% A ---. Applying the fermionic operator 5, with k = 2, 5 L respectively gives

Uajavag =3AFAFA AT =~ (§ABAEASA-EA )
Vipven =5AFAEASA-FA == (3A(8A)AZEA-FA-) =0

On the other hand, applying the adjoint fermionic operators 5 5 and ¥ , to v(3,2) respectively yields
Y3 =0 and ¢ L0390 =—(ZA=2A-ZA---).
3/2Y(3,2) : 1/29(3,2) g N—3/N—3

Hence, one thinks of v as adding & to S if missing (up to sign) and returning zero otherwise, while 9}
removes k from S if present (up to sign) and returns zero otherwise. Figure 1.4 shows the action of 93/, on
v(3,2) in the Young diagram representation. We can see that 1)3/5 has shifted the charge of v(3 ) by +1; this
is true in general, 1)}, increases the charge by 1 while its adjoint v} decreases the charge by 1.

N %

-4 -3 -2 -1 -4 -3 -2 -1

Figure 1.4: Young diagram of v(3 o) and t3/5v(3 2), showing the action of 1.

The fermionic operators satisfy canonical anti-commutation relations.
Proposition 1.3.2. The fermionic operators satisfy the anti-commutation relations
[Vi, V7 |+ = Y] + b = 65 (1.4)
[hi, 5]+ = [¥7, %]+ = 0. (1.5)
Proof The anti-commutation relation [¢;,%;]+ = 0 follows immediately from the skew-symmetry of the
wedge product, while the relation [/, 7]+ = 0 follows from the first by taking adjoints.

For (1.4), if i # j, then the operator ;7] + 171; acting on vs will only contribute if i € S but j ¢ S. In
this case, both terms ;¢); and ¢;¢); acting on vg will yield the same result, up to sign, where the signs are
necessarily opposite to each other. Hence, if i # j, (d’iw; + 7,[1;1/)1-)1)5 = 0 for all basis vectors vg € AT V.
If ¢« = j, then either ¢,5 € S, in which case ¥ ¢;vs = 0 and ¥;9pJvs = vg, or i,j ¢ S, in which case
ViYivg = vs and Y9 vs = 0. Hence, wiw; + w;wi = 0;j, as required. |

Also, define the normally ordered product of fermionic operators as follows.
Definition 1.3.3. The normally ordered product of fermionic operators is defined to be

Lt = {wiw;’ lfj >0, (1.6)

The normal ordering is introduced to cater for the possibility of non-convergent infinite sums; consider for

example, the expression Zkez+l Yryy. The operator 1)) acts on a basis vector vy and returns vy if
2
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there is a down-step at k in the corresponding Young diagram, and 0 otherwise. Since the number of down-
steps in any Young diagram is infinite, the action of ), ezt l Yy is not well-defined. On the other hand,
> kezt 1 Yry ¢ is a well-defined diagonal operator, for which the eigenvalue associated to v, is equal to
the number of down-steps at positive k¥ minus the number of up-steps at negative k in the corresponding
Young diagram. That is, it precisely enumerates the difference in the sizes of the sets S, and S_ defined
in (1.1), and hence, it detects the charge of a basis vector.

1.3.2 Bosonic operators
Definition 1.3.4. For n € Z \ {0}, define the bosonic operator a,,: A=V — ATV by

an =Y tp_ntf:. (1.7)

kezZ+1
The adjoint ¢, is given by

= (Y e ) = X o= Y et =an

kez+3 keZ+% keZ+3
Observe that the bosonic operators preserve charge, so they can be considered as operators on the charge
=)
zero subspace Ay V.
Consider the action of «_; on some v, in the charge zero subspace:
atva= Y Gradiva
kezZ+1

In the Young diagram representation, cw_; corresponds to detecting all down-up sequences, and converting
them to up-down sequences. In other words, a_;v) is the linear combination of basis vectors obtained by
adding one box to the Young diagram for X in every possible way. (In general, each term in this sum picks
up a sign based on the height of the ribbon, but in the case of a._; the sign is always positive.)

_./\
v

k k+1 k k+1
D U U D
Figure 1.5: The local action of a_;.
For example, consider v(3,1,1) in Figure 1.6: there are three down-up sequences in the Young diagram, hence

there are three possible locations where a box can be added (or if you like, three possible locations where a
box can land when dropped in from above; think Tetris). Thus

a_1Y2,1,1) = V3,1,1) T V221 T Ve1,1,1)-

One can extend this idea to all aty; to do this, the notion of an n-ribbon is required.

A skew shape, denoted A \ p, is a pair of partitions (A, ) with A = (A1,..., Ayn)) and g = (@1, .-, free))
such that £(p) < ¢(A\) and p; < A; for all i € {1,2,...,0(n)}. A skew Young diagram of shape A\ p is
obtained by removing a Young diagram of shape ;. from the Young diagram of shape A. A Young diagram
is connected if, for any two cells, a path via adjacent cells can be drawn between them. An n-ribbon is a
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T T T T T T T T T T T

-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 1.6: Here we see v( 1 1) and the three possible locations for an added box in pink.
A=(5,4,4,2) p=1(2,21) A

L] o (L] L) L

Figure 1.7 Young diagrams of shape (5,4,4,2),  Figure 1.8: Three 5ribbons of heights 0, 1, and 2,
(2,2,1) and (5,4,4,2)/(2,2,1). from left-to-right.

connected skew Young diagram comprising n boxes that does not contain any 2 x 2 blocks. The height of a
ribbon is one fewer than the number of rows it occupies.

The operator ac_,, for n > 0 acts on basis vectors v, by adding an n-ribbon to A in all possible ways, with
each term picking up a sign depending on the parity of the height of the ribbon. Conversely, o, removes
n-ribbons in all possible ways, again with each term picking up the appropriate sign depending on the height
of the ribbon removed.

For example, a_3v(4,3,1) adds a 3-ribbon to A = (4,3, 1) in all possible ways (with sign), while a3 v(4 3 1)
removes a 3-ribbon in all possible ways. That is,

Q-3U(4,3,1) = V(7,3,1) — V(5,5,1) ~ VU(4,3,2,2) T V(4,3,1,1,1,1)

A3 V(4,3,1) = —V(2,2,1)-

T T T T T T T T T T T

-5 -4-3-2-10 1 2 3 4 5 -5 -4-3-2-10 1 2 3 4 5

Figure 1.9: Left: v(4 3 1) with an added 3-ribbon, becoming v(4 3 2 2). Right: v(4 3 1) with a 3-ribbon removed,
making v(2 2 1).

In contrast to the fermionic operators and their anti-commutation relations, the bosonic operators obey
canonical commutation relations.

Proposition 1.3.5. The bosonic operators cv, satisfy the commutation relation

[ama O‘n} =m 5m,—n- (1.8)

This can be proven by using the definition of the bosonic operators in terms of fermionic operators (1.7),
then applying the anti-commutation relations of the latter. A cute alternative proof proceeds as follows.
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Proof of Proposition 1.3.5. One can prove that [a,,, ay] = 0 for m+n # 0 directly via the fermionic definition
of ay,; this is left as a straightforward though tedious exercise for the enthusiastic reader.

To prove that [, @_,,] = m, begin with the case of m = 1. For any vy € A%V with some fixed charge c,
[Oél, Oz_l] Uy = V1 X_1U) — X_1(X1VU).

The term ;v vy corresponds to adding then removing a box from A, while av_; ;v removes then adds a
box to A. If the boxes are being added and removed from different locations the order doesn’t matter, hence,
in those cases the commutator [, @—1] doesn’t contribute. Thus, any contribution to aya_jv) — a_jaiv)
arises from the difference between the number of ways to add then remove the same box versus the number of
ways to remove then add the same box. This, in turn, is equal to the number of valleys (down-up sequences)
minus the number of mountains (up-down sequences). The inherent V-shape underlying the Young diagram
corresponding to a basis vector implies that the number of valleys will always be one greater than the number
of mountains. Thus conclude that [a;,a_;] = 1.

To prove the commutation relation for general m > 0, upgrade the argument above in the following way.
The commutation [y, &) vy corresponds to adding then removing an m-ribbon versus removing then
adding an m-ribbon. Adding an m-ribbon to v, arises from changing a down-step to an up-step at some
position k, and doing the opposite (changing an up-step to a down-step) m places away at position £ + m.

Take v and label each up- or down-step, in order from left-to-right, with a “colour” from 1,2, ..., m. That
is, from left-to-right, the colour labellings read 1,2,...,m,1,2,..., and so on. For each i € {1,2,...,m},
define vy(;) to be the basis vector corresponding to the sequence of up- and down-steps labelled with the

colour <.

Adding or removing an m-ribbon to vy corresponds to adding or removing a single box to vy« for some
i €{1,2,...,m}. Hence, the difference between the number of ways to add then remove an m-ribbon from
vy versus removing then adding an m-ribbon to vy is equal to the number of ways to add then remove a box
minus the number of ways to remove then add a box to some v,¢). As argued above, [a1,@_1] = 1, hence

[ama a—m] =m.

For m < 0, [am, @—m] = —[@—m, @] = m. This concludes the proof. [ ]

’(,0

<+ T T T T T Y T T T T T T

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Figure 1.10: The basis element vy for A = (4, 3,2,2) with every third step labelled with the same colour.
Adding a 3-ribbon corresponds to adding a box to one of vy1), Vy2) Or vy@).

1.3.3 &-operators

First, define ¢(2) := e*/2 — e/,
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Definition 1.3.6. For n € Z, define the operator £,(z): ATV — ATV by

n On
Eue) = Y 5y 4

kez+i ()

The constant term, J, o/s(2), is a regularisation term that adjusts for the normal ordering of : 131} :. One
can also consider these operators without the regularisation term, denoted &, and defined to be

Ealz) = Y 2 i

kez+i
The E-operator satisfies the following commutation relation, the statement of which can be found in the

work of Okounkov and Pandharipande [92].

Proposition 1.3.7. Forall a,b € Z, the E-operator satisfies the following commutation relation:

[Ea(2), Ep(w)] = c(aw — bz) Egrp(z + w). (1.9)

The E-operator specialises to the bosonic operator in the case of z = 0; that is, for n € Z \ {0},

&n(0) = ap.

The E-operator also has a nice expression in terms of the bosonic operators. That is,

1 1 112) - G(ip2
5n(z):@25 Z w:aip-%:-

1 a 7’1 .. ZZ
£>0 i1+ tie=n
i, €Z\{0}
This expression can be proven using the bosonfermion correspondence; see Lemma 1.4.8 in Section 1.4.2.
The normal ordering of bosonic operators denotes that we write bosonic operators with positive subscripts
to the right and those with negative subscripts to the left; that is, we remove boxes first before adding boxes.
Explicitly, applying the normal ordering to the expression above gives

V4 . s .

1 1 s(jr2) S(ik2)
“O-m a2 57| 2 =7
£,5>0 it tje=q k=1 it ia=qtn k=1

430 =1 in>1

1.3.4 Other operators
For n > 0, define the operator F,, : ATV 5 ATV by
k™ * n
Fo 1= Z 5 YRy - = [2"] Eo(2). (1.10)
keZ+3
Here the notation [2"] £y(z) denotes the coefficient of 2™ in the series expansion of the operator £y(z).

The operator F; is called the energy operator and it satisfies Fivy = |A vy. This is true because, for each
k € Z+ %, Fi counts down-steps with weight k for k > 0 and up-steps with weight —k for k& < 0. This in
turn returns the number of boxes in A\. One can use the operator F; to define the energy of an operator;
that is, one can say that an operator O on A= V has energy n € Z if

[0, F1] =nO.

The operators F,, all have energy zero, while «,, and &, both have energy n.

The operator F, plays a particularly vital role in the context of Hurwitz numbers, single and double,
appearing in the vacuum expectations of both enumerations. Its appearance functions by enumerating
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the number of simple branch points for both single and double Hurwitz numbers, and the reason for this
is as follows. The operator F5 is a diagonal operator with eigenvalue f(\) for eigenvector vy; that is,
]:2 U\ = fg()\) U, where
A
X(2,1,...,1)
dim\

Here, [C(21,....1)| is the size of the conjugacy class of transpositions, X?z 1) is the character of the irredu-

fa(A) = \0(2,1,...,1)\ (1.11)
cible representation corresponding to A evaluated on an element of C(5; . 1) (that is, any transposition);

,,,,,

As an aside, one can more generally define

Al X
A) = C £
R0 = (1) 16 s
where, if || < |A|, the character X;) is defined via the natural inclusion of symmetric groups S|, C S}y,
and if || > |A| the binomial vanishes. These operators arise in the general setting of enumerating Hurwitz
numbers with arbitrary ramification; see the work of Okounkov and Pandharipande [92].

An explicit expression for f()\) is given by

£

RN =353 [(i—i+3)’ - (—i+1)7]. (1.12)

i=1

Via this last equation, one can show that f>()) is equal to the sum of the contents of A\, which is defined as
follows. For a Young diagram corresponding to a partition A, the content of a box in column j and row ¢ is
j — 4. For example, consider the Young diagram given by A = (5,4, 4, 2, 2); Figure 1.11 shows the Young
diagram with filling given by its contents. In this case, the sum of the contents of A is —2, and one can verify
that fo(\) = —2.

0|1112]3|4
—-110|1]2
—2|-110 |1
—-3]-2

—4|-3

Figure 1.11: Young diagram with contents for the partition A = (5,4,4, 2, 2).

To see that (1.12) is indeed the sum of the contents, first note

1@@) 1€(A)
IOEEDS {(Aﬁwg)ﬂ (f¢+%)2] = 3D M(h—2i+1).
=1 =1

The second equality is using the difference of squares. Then, observe that the sum of the contents of row ¢
is equal to the number of boxes in the row, \;, multiplied by the average of the fillings; the contents of row

i are givenby 1 —4,2 —4,...,\; — i, hence the average of the contents of row i is (A; — 2i + 1). Sum over
all rows to conclude.

Definition 1.3.8. Define the vertex operators I'y (p) on the semi-infinite wedge space by

'L (7) = exp ( 3 ]Z:Zaim)

m=>1

where p1, ps, . .. are formal variables.
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The vertex operators satisfy the following commutation relation [73]:

P (AT (@) = exp ( 3 pmﬂjm)r_@ ) (113)

m2>=1

The vertex operators are related to the Schur symmetric polynomials in the following way. Begin with I"_,
write the exponential of the sum as a product of exponentials, then expand each exponential as a power
series to obtain

Km
r_(p) = exp( moz_m) H exp (—a_ ) - H l Z m’i:n]“ali%]
m21 m*

m2>1 m21 Lk,,>0

_— (1.14)
_ by Py - k1 ko
Y akiaky .
1k1 2k2 oo foy kol - -
k1 ,ko,... 20
Now rewrite this sum over ki, k2, ... as a sum over partitions u = (11, 2k2 . mFm). In this case,
- kv k
p’u:pllp22... HML:1k12k2
ki ko
|Aut p| = kqlko!--- Qg Oy, = Q2
Thus,
Py
-(p) = Z —twa pr T Oy = PR S I S IR (1.15)
LEP |Aut pl Hz(u1 Hi EP #(n)

using the common notation z(z) = [Aut z| [T p.

Now apply the vertex operator I'_ to the vacuum vector vy to obtain

— A=
P =3 et = 3 e S e = 3 (3 M o= o

HneP ’UJ) /JEP )\)—| | AEP MuepP AEP

Here, P is the set of all partitions (including the empty partition), the notation |;| denotes the sum of the
parts of ju: |p| = p11 +- -+ pg(p), the notation A = || denotes that A is an integer partition of |1, and s (p)
is the Schur symmetric polynomial indexed by A, written in terms of the power sum symmetric polynomials
D1, P2, - ... (It is generally to our benefit to secretly think of the formal variables p;, ps, . .. as the power sum
symmetric polynomials). The second equality is using the Murnaghan—-Nakayama rule; see Theorem 1.4.3
in the following section. The third equality is swapping the order of the summations and using the fact that
Xp. = 0 for X and y such that |A| # |u|. The final equality is using the change of basis between the power
sum symmetric polynomials and the Schur symmetric polynomials in the ring of symmetric functions [81].

1.4 Results

1.41 Murnaghan-Nakayama rule

The Murnaghan—-Nakayama rule provides a combinatorial identity for calculating irreducible characters of
symmetric groups; the original statement of the theorem can be found in [81]. The Murnaghan—-Nakayama
rule also has an alternate description in terms of operators acting on the semi-infinite wedge. This result
plays a fundamental role in the vacuum expectation derivation for Hurwitz numbers, both single and double,
but also appears in Chapter 7 on fully simple maps.

Before I can state the semi-infinite wedge version of the Murnaghan—Nakayama rule I will first state the
original theorem, and to do that I will first define a number of necessary objects.

First, recall that the filling of a Young diagram is a labelling of each box in the diagram with a positive
integer. A Young tableau is any filling of a Young diagram, while a semistandard Young tableau is a filling
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that is weakly increasing across each row and strictly increasing down each column. Although not used
here, for reference, a standard Young tableau is a semistandard Young tableau where the boxes are filled with
1,2,...,d, each occurring precisely once.

And finally, a ribbon tableau of shape \ and type ;v is a Young tableau that satisfies the following: the filling
is weakly increasing across each row and down each column; and the filling of the tableau is prescribed
by p. That is, the tableau has a pq-ribbon of 1s, a po-ribbon of 2s, and so on. Recall that an n-ribbon is a
connected skew Young diagram comprising n boxes that does not contain any 2 x 2 blocks, and the Aeight
of a ribbon is one fewer than the number of rows it occupies.

For example, a Young diagram, Young tableau, semistandard Young tableau and standard Young tableau
all of shape (4,3, 1,1) are shown in Figure 1.12, while all possible ribbon tableaux of shape (3,2) and type
(3,1,1) are given in Figure 1.13.

\ 5[2[4[4] 1[1]3]4] 1]3]4]5]
2156 21215 21819
] 1] 3] 6] L{ifr] [1]1]2] [1][1]3]
L] 19| 171 171 2(3 113 112
Figure 1.12: From left-to-right: a Young diagram, Young Figure 1.13: All ribbon tableaux of
tableau, semistandard Young tableau and standard Young shape (3,2) and type (3,1,1).

tableau.

Theorem 1.4.1 (Murnaghan—-Nakayama rule). The character evaluated on a permutation in the conjugacy class
corresponding to p in the unique irreducible representation of the symmetric group corresponding to A, Xﬁ: satisfies

= Y-,

T

Here, the summation is over is the set of ribbon tableaux T of shape \ and type 11, and h(T) is the sum of the heights
of the ribbons in T

For more on the representation theory of the symmetric group, see [97].

Eigf)l) Here A = (4, 3,2) determines the shape of

the Young diagram, while ;1 = (4, 3,1, 1) determines the type. There are seven possible tableaux of shape A

Example 1.4.2. Let us use Theorem 1.4.1 to calculate x

and type p, and these are given below.

Llafafa] [afafafa] [afafala] [afa]a[3] [1]1[a[4] [1]a]2]3] [1]1]2]4]
2[2]2 2[2][3 2[2[4 12]4 112]3 1]2]2 1/2]2
3[4 2[4 2[3 2[2 2[2 14 13

Let these be 77, . .., T% respectively. The heights of the ribbons in T are 1, 1, 0 and 0 for p1, 2, 3 and g4

respectively, hence h(T7) =1+ 14 0+ 0 = 2. Following the same process for the remaining six tableaux
(4,3.2) |

leads to the following calculation for X(431,1)"

XAs = (D4 (“D (D) + (1 4 (1) (<1 (-1
=1-1-14141-1-1=-1.

The Murnaghan-Nakayama rule given via operators acting on the semi-infinite wedge is the following.1

1 Actually, the following result is an immediate consequence of the Murnaghan-Nakayama rule given in Theorem 1.4.1, but is often
also simply referred to as the Murnaghan—Nakayama rule.



14 1. Semi-infinite wedge

Theorem 1.4.3 (Murnaghan-Nakayama rule via the semi-infinite wedge). Let (i1, .., un) be a tuple of
positive integers such that g + - - - + (1, = d. Then

A
Qg " Ay, Vp = E Xp U
Ad

Here, xf; is the character evaluated on a permutation in the conjugacy class corresponding to . in the unique irreducible
representation of the symmetric group corresponding to \.

Example 1.4.4. Let us use Theorem 1.4.3 to calculate Xg’i)l)' The theorem tells us that

2 A
Q201 Vp = Z X(2,1,1) Ur-
A4
Because o_,, commutes with any a_,,, it does not matter in which order we apply the a_,,,. Thus,

§ A _ 2 _ 2 2
X(2,1,1) U\ = O[_lot_Q'UQ) = oz_lv(Q) — a_lv(Ll)
A4

Q-1U(3) + a—10(2,1) — @=10(2,1) — ¥-19(1,1,1)

=) T U3,1) — V2,1,1) — V(1,1,1,1)-

Hence, XE:;PI) =1.

1.4.2 Boson-fermion correspondence

The bosonic operators are, by definition, written in terms of the fermionic operators. At heart, the boson-
fermion correspondence states that the reverse is true; that the fermionic operators can, in turn, be written
in terms of the bosonic operators. More precisely and more generally, the boson-fermion correspondence
describes a vector space isomorphism between the so-called bosonic and fermionic Fock spaces. To describe
this isomorphism and the description of fermions in terms of bosons, a number of new definitions and
notations will be introduced. The first half of this section will primarily follow Miwa, Jimbo and Date [83],
however it is important to note that some conventional choices differ between this thesis and [83].

Begin by defining the bosonic Fock space. For n a positive integer, define operators c,, o, acting on
polynomials f(Z) € Clzy,x2,...] by the following rules:

of

(@ )@) = 2uf (@), and (G )@ =3 (7). (1.16)
These operators satisfy the canonical commutation relations
[am,an] =0, [a),,ar] =0, and [am, )] =m0y m. (1.17)

Define B to be the algebra generated by the abstract symbols {a,, o },=1 2,... satisfying the relations (1.17);
B is called the Heisenberg algebra.

Define an algebra representation of the Heisenberg algebra 5 on the polynomial ring C[Z]; that is, define
p: B — End(C[Z]) by oy, — 2, and o — n%. The representation space C[Z] is called the bosonic Fock
space.

The operators «,, o}, have been suggestively labelled, and indeed, the commutation relations (1.17) coincide
with the commutation relations for the bosonic operators defined in Definition 1.3.4; thus, one obtains a
representation of the Heisenberg algebra 3 on the semi-infinite wedge space A % V via the bosonic operators
Q4 defined in Definition 1.3.4.

Define A?V to be the charge ¢ subspace of A= V. There is a natural isomorphism between the charge
¢ subspace, for each ¢ € Z, and the bosonic Fock space C[Z]. This isomorphism can be described for all
charges at once. To do this, define

Clw,w™ 521, 29,...] = @we Clxy, 22, .. ]
ez



1.4. Results 15

Let vy € A V denote the vacuum vector in the charge ¢ subspace; that is,

1 3 5

And finally, define &: ATV — C[wil- 7] by
Zw <v exp ( Z — oz_m)w>.
Theorem 1.4.5 (Miwa, Jimbo and Date [83, Theorem 5.1]). The correspondence
O: ATV = Clw,w™ 1, 29, .. ]
is an isomorphism of vector spaces. Moreover, we have

B(a0) ns2-®(v), ifn >0,
apv) = "
2_n,®(v), ifn<O.

Theorem 1.4.5 allows us to identify the fermionic and bosonic Fock spaces, which, in turn, means that
one ought to be able to represent the action of the fermionic operators in terms of operators acting on the
bosonic Fock space. This is the content of the following theorem, but first I state a number of definitions.

Define the fermionic operator generating functions by
Z wkz]“% and Z iz —k—3,
keZ+3 kez+i

Introduce operators 2 and R acting on the space Clw*!; Z] by

(Zcf)(wa f) = f(zw, f) and (Rf)(wv f) = wf(w, i)
Loosely, the operator 2% measures the charge while the operator R shifts the charge by +1. Define
,z) = Z 2" .
n>1

And finally define

U(z) = Rz exp (£(Z, 2)) exp (- £(d,271)) 1L.18)
U*(z) = R 279 exp (—€(#, 2)) exp (§(9,271)), '
where J denotes 5 5
(9:((%1,6@,...), and § :Z: o

Theorem 1.4.6 (Miwa, Jimbo and Date [83, Theorem 5.2]). The fermionic generating functions (z) and *(z)
are realised in the bosonic Fock space by (1.18). That is, for anyv € A2V we have

O((2)v) =U(2)(v)  and  P(P(2)v) = ¥'(2) (v).

Together, Theorems 1.4.5 and 1.4.6 imply that there’s a description of fermionic operators 1y, 1} in terms
of the bosonic operators «,, defined in Definition 1.3.4.> There is indeed such an expression; this is the
content of the following theorem, which can be found in the work of Kac [73].

First, define the charge C and translation R operators on the semi-infinite wedge space by
C= Z IR T and R(siAsgN---)=s1+1Asa+1A---.
kez+i

Note that the operator C' featured in the discussion immediately after Definition 1.3.3; it enumerates the
difference in the sizes of the sets S, and S_ and hence detects the charge of a basis element.

?Note that I often confuse the bosonic operators introduced in Definition 1.3.4 and those defined by (1.16), using the term “bosonic
operators” to mean either of the operators.
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Theorem 1.4.7 (Kac [73]). The fermionic operator generating functions 1 (z) and 1*(z) have the following expres-
sions in terms of the bosonic operators:

CRI_(HT4(-27")
1

OT_ (AT, 9

V(z) = R”

One can use Theorem 1.4.7 to prove the bosonic operator form of the £-operator that appeared in Sec-
tion 1.3.3; that is, to prove the following lemma. This bosonic expression of the £-operator is a necessary
component of the proof of the main Virasoro result for fully simple maps in Chapter 7.

Lemma 1.4.8. The E-operator introduced in Definition 1.3.6 can be described in terms of bosonic operators. That is,

ZE' 3 slaz)oslier) g (1.20)

’L PRy Z
é>0 i1t tig=n 1 £

Proof. Define Q,,(z) to be operator given on the right side of (1.20) above and rewrite to obtain

Z Z M:O{i"'ai :

4 ¢
F>O i1+ tig=n

1 1
4,520 Jit-+je=q k=1 i1+ +is=q+n k=1
q=20 Je21 ip21
1 £(N) 1 £(p)
:TZ Z H“Z > mng(#ﬂ)% :
q20 [ Akq pFg+n j=1
where z(p) = |Aut p| Hf(“l) ;. The second equality is using the normal ordering of bosonic operators,
while the third equality is rewriting the sum over tuples (i1,...,is) as a sum over partitions p € P, and
each tuple (i1,...,%5) arises s!/|Aut u| times; see (1.14) for this calculation in detail.

Sum the Q,,(z)-operators over all n to give

Iz o)

Ye0=5YY Y5 Il | 7 1L,
nez nGZq>O AFq pkg+n j=1
1 )
- 5 Sy e | | o T
Aep © =
= 5 TSk T (hs(h2))
1

= — F_({_e—kz/2}) F_({ekz/2}) F_,_({ekz/Q}) F+({—e_kz/2}),

Here, the notation I'({k z}) denotes I'(z, 2z, 3z, .. .). The third equality is using (1.15). The final equality is
using the fact that ¢(2) = €*/2 — e7#/2, hence T'y. ({€"*/2 — e7F2/2}) = T ({€F*/2}) T ({—e"#*/2}), along
with the fact that I'_-operators commute with each other. Using the commutation relation (1.13) on the

inner two vertex operators gives

kz

P (2 = exp (= 30 G T2 T ()

k>1
= (1—e) T ({e"?HT_({**/?}).

Here, the second equality is using the Taylor series expansion of log(1 — x); that is,

(1 - %) = exp(log(1 — €7)) = exp (- 3 GZ)

k>1
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Therefore,

3 0u) = L n (et m e T (Y T (e

nez C(Z)

= T ({—e BT ({2 T ({F2 T ({—e 22},

Use Theorem 1.4.7 to rewrite the product of vertex operators in terms of the fermionic operator generating

functions as follows:

Y Qulz) = =PI ({—e PN I ({2 T ({2 ) Ty ({—e /%))

nez
— /2 (602/2 Rz/J*(e_Z/Q)) (R—le—Cz/2 w(ez/Q))

— —€Z/2 602/2 Z ¢;+1€jz/2€_z/4 e—CZ/2 Z wieiz/262/4
JEZ+L i€Z+3
= Z e(“”j)z/wa;‘wi.

,j€L+5

The second equality is using Theorem 1.4.7. The third equality is using the conjugation of v; by R; that
is, Ry R™! = 1,41 [90]. The fourth equality is relabelling j — j — 1 and using the fact that, because ¢}
decreases the charge by 1, the charge operator C' commutes with 1} by 1;e® = e“+1lir.

Now split the sum over j into j positive and j negative and use the commutation relation for the fermionic
operators (1.4) along with the definition of the normally ordered product of fermions (1.6) to obtain

ZQn(Z):— Z e(i+j)2/2w;f¢i_|_ Z e(i+j)2/2wiw;f_ Z PUE

nez i,j€Z+% i,j€Z+% keZ+3
7<0 7>0 k>0
L 1
_ i+j)z/2 . *
- E eliti)z/ Lt +
s(2)

,jE€L+%

s b,
=2 | X R i 2

n€Z Lkez+1i

= &ul2).

ne”z

The third equality is using the fact that

z/2 1
Z ekz:€Z/2+63Z/2+---=ez/2(1+€Z+€2Z—|—-~-):_ e -
e —1 ¢(2)
kezZ+3
k>0

Equating operators with equal energy on both sides yields Q,,(z) = £,(z), as required. [ |
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Chapter 2

Topological recursion

2.1 Introduction

The topological recursion of Chekhov, Eynard and Orantin was borne out of the abstraction of loop equa-
tions from the theory of matrix models [25, 52]. Since its inception, it is has been proven or conjectured
to govern a widespread collection of problems in mathematics and physics, including: the enumeration of
ribbon graphs and hypermaps [34, 36, 41, 88]; simple, monotone, orbifold, spin, and double Hurwitz num-
bers [8, 14, 17, 31, 32, 33, 39, 49, 84]; intersection theory on moduli spaces of curves [52]; Weil-Petersson
volumes of moduli spaces of hyperbolic surfaces [55]; Gromov—Witten invariants of CP! [42, 89] and toric
Calabi-Yau threefolds [16, 51, 56]; coloured HOMFLY-PT polynomials of torus knots [38]; and the asymp-
totics of the coloured Jones polynomials of knots [9, 30].

Topological recursion persists as a theme throughout this thesis, playing a key role in results described
in Chapters 5, 6 and 8. The present chapter will serve the purpose of introducing the original Chekhov—
Eynard—Orantin topological recursion (hereafter referred to as CEO topological recursion) that will form
the basis of all topological recursion discussion throughout this thesis.

In Section 2.2.1, I define the necessary components of topological recursion: the input data, base cases,
and the recursion itself. Since topological recursion was first introduced, a number of variations and gen-
eralisations have been defined; Section 2.2.2 provides a brief description of some that have appeared in the
literature. Section 2.3 works through two hallmark examples from the history of topological recursion: the
Airy curve (Section 2.3.1), and the ribbon graph spectral curve (Section 2.3.2). Section 2.3 is aimed at the
topological recursion novice; while the seasoned topological recurser may be all-too-familiar with these ex-
amples, those readers looking for a gentle introduction to topological recursion may enjoy working through
this section for valuable hands-on experience.

2.2 Preliminaries

2.2.1 Definitions

At heart, topological recursion is just a recursion; it is a tool that can be used to inductively calculate numer-
ical information, and the values it produces are determined by the input chosen. The “miracle” of topological
recursion lies in the variety and breadth of the problems that it has been proven to govern. Depending on
the input data used, topological recursion may generate information from such diverse problems as map
enumeration, Gromov—Witten invariants of toric Calabi—Yau threefolds, and asymptotics of coloured Jones
polynomials of knots (conjecturally); these are just three examples of many. While in this section I provide
the full definition of the so-called Chekhov-Eynard—Orantin topological recursion, Section 2.3 is intended
to be more illustrative in terms of gaining an understanding of how to calculate with topological recursion.

Topological recursion takes as input a spectral curve and produces a family of meromorphic multidifferen-
tials wy ,, for all integers g > 0 and n > 1. I will refer to these multidifferentials wy ,, as correlation differentials.
More precisely, wg ,, is a meromorphic section of the line bundle m (T*C) @13 (T*C)®- - - @7, (T*C) over C",
where the Riemann surface C is part of the initial data and 7;: C" — C is projection onto the ith factor.
One can define topological recursion explicitly as follows.

19
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Input. A spectral curve (C,x,y,T) consists of a compact Riemann surface C, two meromorphic functions
z,y: C — CP!', and a Torelli marking 7" on C; that is, a choice of a symplectic basis of the first homology
group H;(C;Z). 1t is required that all zeros of dx are simple and disjoint from the zeros and poles of dy.
We refer to these zeros of dx as branch points.

Base cases. The base cases are wg 1(21) := y(21) dz(z1) and wg 2(#1, 22), where z1, 23 € C. Here, wg 2(21, 22)
is the unique bidifferential on C x C that satisfies the following: symmetric in its arguments; has double poles
along the diagonal z; = z2 and is holomorphic away from the diagonal; and is normalised on the A-cycles
of the Torelli marking. That is, it has the form

le dZQ
W0,2(2172'2) = m

?{ wo,2(21,22) = 0,
A;

+ [symmetric, holomorphic bidifferential]

and satisfies

fori=1,2,...,genus(C).

Recursion. For all (g,n) # (0,1), (0, 2), define the multidifferentials w ,, recursively by the equation

(o)

wgn(z1,25) = ZB_SEKQ(A,Z) [wg—1,n+1(2,0a(2)755) + Z Woy 111+1(25 21) Wy, 1 71+1(0a(2), Z5) | -
(073

g1+92=g
TUJ=S
2.1)
Here S ={2,3,...,n}, and for I = {iy,...,4x}, the shorthand notation Z; denotes z;,, ..., z;,. The outer

summation is over the zeros o of dz, while the o superscript on the inner summation denotes that we
exclude all terms containing wp 1. The constraint that the zeros of dz are simple implies that for each zero
a of dx there exists a unique meromorphic function z — 0,(z) such that z(o,(2)) = z(2) for all z in a
neighbourhood of « but ¢, (z) # z. Finally, for each branch point «, the kernel K, (z1, z) is defined by

fOZ w0,2(zla 1)

[y(2) = y(oa(2))] du(z)’

It turns out that the topological recursion is not sensitive to the choice of basepoint o nor the path of

Ky (z,2) =

integration on the spectral curve [52].
Observe that the equation given by (2.1) is indeed a recursion, on the negative Euler characteristic 29 —2-+n.

I make a number of conventional remarks. First, note that the sign convention used here differs to that
of Eynard and Orantin [52]; here I have omitted the negative signs in their definitions of w1 and K, (21, 2).
This is just convention; over time it has become increasingly popular in the literature to omit these signs.

Second, throughout this chapter, the Riemann surface C underlying the spectral curve will be taken to be
the Riemann sphere CP!, in which case the Torelli marking is trivial; and indeed there are no non-zero

holomorphic differentials on the Riemann sphere and this in turn forces wp 2 = % Hence, for this
chapter, the Torelli marking will be omitted from the spectral curve input data and wg 2 will be taken to be
the canonical bidifferential satisfying the conditions given above; that is, wg 2 = %.

Third, while wy ,, is technically defined to be an nth tensor product of forms, the tensor products will be
omitted for convenience. That is, dz; ® - - - ® dz,, will instead be written in the shorthand dz; --- dz,.

Topological recursion admits a number of striking features. It is remarkable that, despite the fact that
the recursion given in equation (2.1) is inherently asymmetrical with respect to z; versus 29, ..., z,, the
correlation differentials wy (21, .., 2,) are symmetric in their arguments [52]. Further, w, , possesses a
certain pole structure. Namely, that for 2g —2+n > 0 the correlation differential w, ,, satisfies the following:
for all branch points ¢, wg n(21,. .., 2n) + Wgn(0a(21), 22, ..., 2,) is holomorphic at z; = ¢; and that wg ,,
has a pole of order 6g — 4 + 2n at each of the branch points and no poles elsewhere [10, 46, 52]. Another
remarkable feature of topological recursion is that the resulting correlation differentials can be expressed
via intersection theory on moduli spaces of curves [46].
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Note that the definition I give here is somewhat classical, in the sense that the Riemann surface C given as
part of the spectral curve data is assumed to be compact. On the other hand, the main result of Chapter 5
proves that the enumeration of lattice points in M, ,, is governed by a more recent generalisation known
as local topological recursion, which notably does not require C to be compact. It is also worth noting that
the topological recursion for single and double Hurwitz numbers uses x that is not meromorphic due to the
appearance of the natural logarithm. However, one still has that dz(z) is meromorphic, and this weaker
assumption is all that is required to apply the topological recursion. See Section 2.2.2 below or Chapter 5
for a more thorough discourse on local topological recursion, and see Chapter 6 for the precise statement
of topological recursion in the case of double Hurwitz numbers.

2.2.2 Generalisations and variations

Since its introduction into the literature, topological recursion has been generalised, essentially, to encom-
pass a wider range of problems and hence widen the scope of its applicability. Here I give a brief descrip-
tion of three notable such generalisations: global topological recursion; local topological recursion; and the
Kontsevich-Soibelman formulation of topological recursion.

Global topological recursion. The definition of topological recursion given above—which aligns with the
original CEO topological recursion—imposes the condition that the zeros of dz are simple, however it has
been proven by Bouchard, Hutchinson, Loliencar, Meiers and Rupert [15] and Bouchard and Eynard [13]
that topological recursion can be naturally generalised to include spectral curves that do not satisfy this
condition. The work of Bouchard, Hutchinson, Loliencar, Meiers and Rupert [15] defined a generalisation
of topological recursion that included spectral curves with higher order branching. Bouchard and Eynard
[13] then proved that one can actually consider all branch points of a spectral curve as a branch point of
order d, where d is the degree of 2. They then used this to give a so-called “global topological recursion”,
which is defined globally, rather than locally around the branch points. This global topological recursion

then allows one to, for example, take the limit as two or more branch points approach each other.

Local topological recursion. It was observed that the definition of CEO topological recursion depends
only on local information around each of the branch points of the spectral curve; that is, the CEO topological
recursion does not use the information of the global underlying Riemann surface C of the spectral curve.
This led to the definition of “local topological recursion” [42] where, instead of including a compact Riemann
surface C as part of the spectral curve input data, one instead defines local neighbourhoods D; with canonical
coordinates around each of the NV branch points and the input data becomes the disjoint union D;U---UDy.
In this case, given that there is no compact Riemann surface underlying the spectral curve, and hence
no Torelli marking, it is necessary to include wy 2 as part of the spectral curve input data. See the work
of Dunin-Barkowski, Orantin, Shadrin and Spitz [42] for a detailed and precise definition of local topological

recursion.

Kontsevich—Soibelman topological recursion. The reformulation of topological recursion due to Kont-
sevich and Soibelman [76] takes a more algebraic approach. It treats the partition function as the central
object and defines the input data to be a guantum Airy structure, namely, a sequence of at-most quadratic
differential operators that form a subalgebra of the overarching space of formal differential operators acting
on some finite-dimensional C-vector space. This approach emphasizes the role of the Virasoro algebra, as
well as other W-algebras, and, by the nature of its definition, extends the existing topological recursion
framework to include a broader variety enumerative problems. More explicitly, quantum Airy structures
have underlying abstract Lie algebras associated to them. The abstract Lie algebras coming from CEO
topological recursion are formed by taking a copy of the Virasoro algebra for each branch point. Quantum
Airy structures also capture not only the local and global topological recursions, but their definition allows
for the input data to be even more general than this.
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2.3 Examples

2.31 Airy spectral curve
Input data. Define the Airy spectral curve to be (CP, z,7) with

1
x(z) = 3 22 and y(z) = 2. (2.2)
Here, wyq 2 is the canonical bilinear differential, wg 2(21, 22) = ((Zifl 62132.

It was proven by Eynard [47] that the correlation differentials resulting from applying topological recursion
to the Airy spectral curve (2.2) store ¢/-class intersection numbers on the moduli space of curves M ,,.
This is the content of the following theorem, which is a special case of Theorem 1.1 in the work of Eynard
[47]. (One can obtain Theorem 2.3.1 below from Theorem 1.1 in [47] by setting ty =0forallk > 1))

Theorem 2.3.1 (Eynard [47]). For (g,n) satisfying 29 — 2 +n > 0, the correlation differentials resulting from
applying topological recursion to the spectral curve (CP', x,v) defined in equation (2.2) satisfy

_ o 724t Dt d
Wo.n = 539731 > 11 Ty 22|
. 2

di+-+dp=39—3+ni=1

e -wgn] . (2.3)

g,m

Here, 1; € H?(M,.n, Q) is the first Chern class of the cotangent bundle to the ith marked point, and the integral
denotes taking the cup product S ---4pdn € H*(M, ,.; Q) and pairing it with the fundamental class [M, ] €
H, (M ;Q); see the book of Harris and Morrison [68] for a precise definition of such intersection numbers.

To apply topological recursion to this spectral curve, we first calculate: the branch points; that is, the points
z € CP! that satisfy dz(z) = 0; the involution o at each of the branch points; and the kernel K (21, 2).
Branch points. The branch points of the spectral curve are the points satisfying dz(z) = 0:

dz(z) =0 = 2dz=0 = z=0.

Involutions. The involution ¢ at the branch point z = 0 is the unique non-identity meromorphic function
such that z(c(z)) = z(2) for all z € CP" in a neighbourhood of z = 0. Here, the meromorphic function
o(z) = —z satisfies these conditions.

Recursion kernel. The recursion kernel can be taken to be

K(21,2) = Jo woalz1, -) - e B 1 dz
" [y(2) —y(o(2))] dz(2) [z~ (=2))] zdz 222(21 —2) dz~
Base cases: 2g — 2 +n = —1 and 2g — 2 + n = 0. The base cases wp,; and wy 2 are given by
dz; dz
wO71(Zl) = y(Zl) dl'(Zl) = Z% le, and wag(Zl, 22) = 1722
(21 — 22)

We are now well-prepared to calculate w, , for the first non-trivial case, when 2g — 2 + n = 1; namely,
(9,n) = (0,3) and (g,n) = (1,1).
The case 2g —2+n=1.

* (9,n) = (1,1)

M;f*z(fl) = Res %@“0’2(2’0( ))=Res o5 (211 ) dlz (,j zd((_zz)))2
:—E{Egéﬁdz: R SLL jidz
:—5e88i431(1+;+z;+ ;+Z§+--->dz

1

1
821
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This residue can be calculated by a computer (using, for example, SageMath); while the computer
will be the main tool for such calculations subsequently, the above calculation is simple enough that
one is able to do it by hand, and doing so can be illustrative.

* (9:n) =(0,3)
wo,3(21, 22, 23) K(z1,2)
20,3715 %2:%3) _ Reg oL )
G dndn S T dede [wo,2(2, 22) wo,2(0(2), 23) + wo,2(2, 23) wo,2(0(2), 22)]
— Res 1 dzdzy  d(—z)dzs dzdzz d(—2)dz
220 222(21 — 2) dzdzedes [ (2 — 22)2 (—2—23)2 (2 — 23)2 (—2 — 29)2
1
EEE:
The case 2g — 2+ n = 2.
* (gn)=(1,2)
K
1200 2) _ R P o 42,000, 22) a2 w10 (012) + 014 (2) alo(2), 2
— Res 1 1 Cdzd(—2)dzs  dzdz d(=2) dz d(—z)de
©2=0 222(2; — 2) dzdzo 22(—2)225 (2 —22)2 8(—2)*  82% (—z—22)2
513151
82728 8zizi 82022
* (9,n) =(0,4)
wo,4(21, 22, 23, 24)
le dZQ ng dZ4
K(z,2) -
= E{fg m ; [w0,2(2’7 21) w0,3(0(z)7 55\{i}) + WO,S(Z, ZS\{i}) w072(0(z), Zz)]

R 1,11
22222 \22 0 22 22 22

Extracting coefficients. One can use the correlation differentials w, ,, to calculate all intersection numbers
of ¢-classes on M, ,,. In this case, extracting coefficients from w, ,, when expanded in a power series about
z; = oo for i € {1,2,...,n} yields these intersection numbers. Specifically, use (2.3), extract a coefficient
by calculating a residue, then rearrange to obtain

dl' n 2d'+1
2d, + 1)1 2 Res won Hl o
i

Mg.n i

n
=1

Using this to calculate intersection numbers of v-classes leads to the following data.

* (g:n) = (1,1)
i — &, ifd=1,
M ' 0, otherwise.
* (g.n) =(0,3)
1, ifdy =dy=d3=0,
¢d1 dzwd3 —
Mo.3 v 0, otherwise.
d (gvn) = (1’2)
7, ifdi=dy =1,
[ ey = &, ifdi=2,dy=00rd; =0,dy =2,
Mi 2

,  otherwise.
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* (9,n) = (0,4)

e ded3wd4_{17 ifdy +do+ds+dg=1,
LY Y3ty =

Mo.a 0, otherwise.

These values can be (and have been) verified using the base cases fﬂo . 1=1and fﬂ1 ) P = 21—4, and the

string and dilaton equations [68].

2.3.2 Ribbon graph spectral curve
Input data. Define the ribbon graph spectral curve to be (CP', z, ) with

1
x(z) =2+ -, and y(z) = 2. (2.4)
z
Here, wyq 2 is the canonical bilinear differential, wg 2(z1, 22) = (Czlfl_czljiz.

It was proven by Eynard and Orantin [54] that the correlation differentials resulting from applying topological
recursion to the ribbon graph spectral curve (2.4) store the enumerations of ribbon graphs. This is the
content of the following theorem, which is a special case of Theorem 7.3 in the work of Eynard and Orantin
[64]. (One can obtain Theorem 2.3.2 below from Theorem 7.3 in [54], this time by setting ¢;, = 0 for all
E>1)

Theorem 2.3.2 (Eynard and Orantin [54]). For (g,n) # (0,2), the correlation differentials resulting from
applying topological recursion to the spectral curve (CP', x,y) defined in equation (2.4) satisfy

wom=d1-+dn Y Rem(pa,...pn) [[2" (2.5)
=1

1y pbn 21

Here, x; is a shorthand notation for x(z;), d; denotes applying the exterior derivative in the ith variable, and
Rgn (1, tin) is the weighted enumeration of ribbon graphs of type (g,m) where the degree of boundary face i
is f;. See Definition 3.2.10 for a precise definition of Ry .

dzy dzs

Giszaz (O obtain the generating

While the theorem excludes (g,n) = (0,2), one can “correct” wp o =
function for the (0, 2)-enumeration in the following way:

dzy dxs B -
(@1 — 22)? +didy Z Ro2 (g1, p2) oy My 12
' 2 H1,p221

wo,2 =
To apply topological recursion to this spectral curve, we first calculate: the branch points; that is, the points
z € CP' that satisfy dz(z) = 0; the involution o at each of the branch points; and the kernel K (21, 2).

Branch points. The branch points of the spectral curve are the points satisfying dz(z) = 0:
1
de(z) =0 = (1—;)dz:0 = =4l

Involutions. The involutions o4 at the branch points z = £1 are the unique non-identity meromorphic

functions such that z:(0+1(2)) = z(z) for all z € CP' in neighbourhoods of z = +1. Here, the meromorphic

function o(z) = 1 satisfies these conditions for both branch points; so 0(z) = 041(z) = 0_1(2) = L.

Recursion kernel. The recursion kernel can be taken to be

PR o T B = S W SO
VT @) e daz) T - (1-2)e (- & T2

z z

Base cases: 2g — 2 +n = —1 and 2g — 2 + n = 0. The base cases wg,; and wy 2 are given by

dz dz
oa(a) =yl data) = (- 2 da and wnala ) = .
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The case 2g —2+n = 1.

* (g,n) = (171)
w1 1 1 23 dzd(2)
w02 z,0( Reb
le zﬂ; o agi:l} (21 — 2) dz (1—22)2(z— %)2
2
(1)
* (gvn) = (0,3)
dz1 dzy dzs
z )
= Z 5 s dl d) [wo.2(2, 22) wo 2(0(2), 23) + wo.2(2, 23) wo 2(0(2), 22)]
Oée{:l:l} Z1 dzg dz3
S Res— & ! dzdzy, d()dzy  dadzs d(3)dz
= es
ac{z1} (21— 2) (1 = 22)2dzdeades | (2 —22)2 (2 —23)2 (2 —23)? (£ — 22)?
3 3 1
=\l g
2 g (M==)2 25 (L)
The case 2g — 2 +n = 2.
° (gan) - (1,2)
wi2(21, 22)
le d22

= > Ba dz1 dZ2 [wo,s(zaa(z)azz)+w0,2(2722)w1,1(0(z))+w1,1(2)w0,2(0(2)722)}
ac{+l1}

2

_ 5 Z 2z} B i " 32122
TR a)Pl-m)l 2\ (=)t 10-22) R =)= )

=1

+ 5 22: + Zi i 32122
32 (1+21) (1+22)2 P (1+Zl)4 4(1+Zz)2 32(1+Zl)4(1+22)4
Z1%22

TR R0 3
* (g:n) = (0,4)
wo,4(21, 22, 23, 24)
le dZQ ng dZ4
= D Res 21 dzj 1d7z3 dz Z“’O 2(2: i) wo,3(0(2): Zs\ (i) + wo,3(2 Zs\ 1)) WO’z(U(Z%Zi)]
ac{£1l} 1=2
3 3 3
K 1 Zj 3 1 Zj
4211 (1—2)2 ; (1—2;)2 4};[1 (14 2)? ; (1+ 2;)2
14 1
i=1 {i,5,k,0}={1,2,3,4}

Extracting coefficients. Again, one can use the correlation differentials w, ,, to calculate all enumerations
of ribbon graphs. In this case, extracting coefficients from w, , when expanded in a power series about
x; = oo for i € {1,2,...,n} yields the numbers Ry ,, (111, . . ., ftn). Specifically, use equation (2.5), extract a
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coeflicient by calculating a residue, then rearrange to obtain

n

s
T
Rgn(pb1,...,n) = Res --- Res Wg,nH L.
i=1

i
Tr1=00 Ty =00 —,LLi

Recall that the general theory of topological recursion asserts that the correlation differential wy ,, satisfies
the property that o, wgn(21,...,%n) + Wgn(0a(21),22,...,2,) is holomorphic at z; = «, and only has
poles at the branch points, each of degree 6g — 4 + 2n. One can use this known pole structure to deduce a
quasi-polynomiality structure for the ribbon graph enumeration, although we do not pursue this here. This
structure is analogous to the polynomiality for Hurwitz numbers.

Calculating the appropriate residues of w, ,, in the cases above gives the data in the following tables. Note
that Ry ., (@1, .., pn) = 01if || = p1 + - - - + pp is odd, hence values for these cases have been omitted.

Data.
n=1 n=2 n= n=4

(1) Roa(u) Rii(w) ()  Ropo(d) Ria(f) (f) Ro,3 (i) (f) Ro,4 (i)
(2) 1 0 (1,1) 1 0 (2,1,1) 1 (3,1,1,1) 2
(4) : 1 (3,1) 1 0 (4,1,1) 3 (2,2,1,1) 2
© 3 3 (22) 3 0 (321 2 (5,111 12
(8) z S (5,1) 2 1 (2,2,2) 1 (4,2,1,1) 9
(10) % §825 (4,2) }1 % (5,2,1) 6 (3,3,1,1) 8
(12) 11 385 (3,3) 3 3 (4,3,1) 6 (3,2,2,1) 6
(14) 429 858 (7,1) 5 10 (4,2,2) 3 (5,2,2,1) 24
16 715 15015 6,2 2 5 3.3.2 4 4.3,2.1 24
( ) 8 4 ( ’ ) 2 ( D ) ( y <y S )

(18) 2281 48620 (5,3) 3 4 (5,4,1) 18 (5,4,2,1) 90
(20) 419 138567 (4,4) g 5 (5,3,2) 12 (3,3,3,1) 24




Chapter 3

Maps, fully simple maps, and ribbon graphs

3.1 Introduction

Loosely speaking, maps are obtained by gluing together polygons to create a surface. Maps and their
combinatorics have been studied extensively since the pioneering work of Tutte [104]. The enumeration of
fully simple maps, meanwhile, was defined only recently by Borot and Garcia-Failde [11]: a map is said to
be fully simple if it satisfies further conditions restricting how boundary faces can interact with each other
and themselves. (The overarching subset of maps may henceforth be referred to as ordinary maps to avoid
confusion.)

Since the early studies of maps in the literature, a number of significant results have been proven. For
example, the enumeration of ordinary maps satisfies a recursion known as the Tutte recursion; this was
proven first in the case of planar maps by Tutte [105], then in higher genus by Walsh and Lehman [106].
And, the enumeration of maps is equivalent to a particular enumeration of triples of permutations, so maps
can therefore be studied via this so-called permutation model [79].

The enumeration of ordinary maps is also known to be governed by the 1-Hermitian matrix model [18, 79].
The partition function for ordinary maps with no boundary faces Z is given by

zM = /H exp (N Tr [V/(M)]) dM

where the integral is over the space Hy of N x N Hermitian matrices, V(z) = 3, -, t’“,fk is called the
potential, and dM is the Gaussian measure. For more on matrix models and maps, see [79] or [108].

The enumeration of ordinary maps was also a significant progenitor of topological recursion. It was the
first enumeration shown to be governed by topological recursion, and the theory of topological recursion
evolved from the abstraction of loop equations from the theory of matrix models in the particular context of
the specific matrix model that governs the enumeration of maps, the 1-Hermitian matrix model mentioned
above [25, 48, 52]. The enumeration of fully simple maps has also now been shown to be governed by
topological recursion [7, 19]. For more details on maps and topological recursion, see the introduction
in Chapter 7 on fully simple maps.

In this chapter, Section 3.2 synthesises relevant literature and provides a guided and thorough introduction
to maps, ordinary and fully simple, and their enumerations. Section 3.2.1 gives the formal definition of both
ordinary maps and fully simple maps as embeddings of graphs on surfaces satisfying certain conditions,
aided by a number of illustrative examples. Section 3.2.2 defines the permutation model for both ordinary
and fully simple maps, again illustrated with examples, and uses the permutation model to provide an
alternate perspective on the automorphisms of a map. Section 3.2.3 briefly introduces a third viewpoint on
maps as certain branched covers of CP'. Section 3.2.4 defines the enumerations of ordinary and fully simple
maps Mg ., (@1, ..., ftn) and FSg (11, - . ., ) respectively. Finally, Section 3.2.5 gives the well-known Tutte
recursion for ordinary maps.

The purpose of Section 3.3 is to complement the results in Chapter 5. In Chapter 5, I describe joint work
with Chaudhuri and Do which proves that a certain lattice point enumeration of the Deligne-Mumford
compactification of the moduli space of curves M, ,, is governed by local topological recursion. Section 3.3

27
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describes the correspondence between lattice points of M, ,, and a combinatorial object called a stable rib-
bon graph, establishing the connection with the enumeration defined in Chapter 5. Specifically, in Chapter 5,
I define the lattice point enumeration as a count of branched covers of CP* satisfying particular conditions;
in Section 3.3 I will define the combinatorial object that is associated to this count and I will describe the
sense in which this combinatorial object—the stable ribbon graph—enumerates lattice points in M, .

3.2 Maps and fully simple maps

3.21 Maps

One can informally think of a map as a way to glue polygons to form a surface. A formal definition of a
map that captures this intuition is as follows.

Definition 3.2.1 (Map). A map is a finite graph embedded in a compact oriented surface such that the
complement of the graph on the surface is a disjoint union of topological disks, called faces.

A halfedge, or oriented edge, is an edge with a choice of orientation. A half-edge is adjacent to the face on its
left and incident to the vertex to which it points. Choose n faces to be marked and label these 1,2,... n;
these are called boundary faces while other faces are internal faces. The number of half-edges adjacent to a
face is the degree of that face. If the underlying surface has genus g and n boundary faces, then the map is
said to be of type (g,n).

Two maps are isomorphic if there exists an orientation-preserving homeomorphism of the underlying surface
that maps all vertices, half-edges and faces of the first map bijectively to the second, preserving all incidences,

adjacencies and labelled boundary faces.

A ribbon graph is a map without internal faces.

Example 3.2.2. In Figure 3.1 the diagram (1) is not a map — one component of the graph’s complement
is not homeomorphic to a disk. Diagrams (2)-(5) display maps of type (1, 1), (0,2), (0,1), (0,1) and (2,2)
respectively. Although diagrams (3)-(5) are drawn on the plane, we consider them as graphs on the sphere
by compactifying the plane.

2
SN—— —
A\ .
1) (2) (3)
o /\
“ v
(6) ) (4)

Figure 3.1: Clockwise from top-left the diagrams depict: (1) a graph embedded on a surface that is not a
map; and (2-5) maps of type (1,1), (0,2), (0,1), (0,1) and (2, 2) respectively.
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Remark 3.2.3. Note that Definition 3.2.1 includes as a map the graph of a single vertex on the sphere,
sometimes referred to as a degenerate map. It will be convenient to indeed consider this as a map, although
it will need to be treated separately when discussing the permutation model below.

A sidebar on rooted maps. Instead of choosing n boundary faces, one can alternatively choose n half-edges
adjacent to distinct faces and dictate that these are boundary faces; in essence, each boundary face has a
distinguished adjacent half-edge. The corresponding objects are called rooted maps, defined below, and are
the objects defined and used in related literature such as the work of Borot, Charbonnier, Do and Garcia-
Failde [6] and Garcia-Failde [58]. The enumeration of rooted maps introduces a simple combinatorial factor
when compared to the unrooted analogue.

Definition 3.2.4 (Rooted map). A rooted map is a map along with a tuple of distinct half-edges, called roots
and depicted by arrows, such that no two are adjacent to the same face. The faces adjacent to the roots are
the boundary faces.

Two rooted maps are isomorphic if there exists an orientation-preserving isomorphism of the underlying

maps that preserves the tuple of roots.

Although this thesis will primarily discuss maps rather than rooted maps, it will be useful for both objects
to be defined for maximum versatility.

Figure 3.2: A rooted map, where the root is represented by an arrow.

Definition 3.2.1 allows for distinct boundary faces to intersect via edges or vertices, or for a boundary face
to intersect with itself. In Figure 3.1, (3) has two distinct boundary faces that intersect at a common vertex,
while (4) shows a map in which a boundary face intersects itself along an edge. Informally, a map is fully
simple if it does not exhibit these types of behaviour. This is captured in the following definition.

Definition 3.2.5 (Fully simple map). A half-edge of a map is a boundary edge if it is adjacent to a boundary
face. A map is fully simple if each vertex is incident to at most one boundary edge.

In instances of ambiguity, the class of all maps may be referred to as ordinary maps to distinguish from the
subclass of fully simple maps.

A sidebar on simple maps. There is also a notion of a simple map in which boundary faces are not allowed
to intersect themselves at vertices or along edges, but distinct boundary faces are allowed to intersect. A
simple map can include the behaviour seen in (3) in Figure 3.1, but not the behaviour seen in (4). The
notion of a simple map will not arise naturally in this thesis and their definition is merely included here for
completeness.

In Figure 3.1, (2), (5) and (6) are examples of fully simple maps, (3) is simple but not fully simple, and (4)
is not simple and hence not fully simple.

Thinking about fully simple maps informally as ordinary maps where the boundary faces are not self-adjacent
may lead one to the conclusion that the map depicted in Figure 3.3 is not fully simple. However, referring
to the definition of fully simple maps, Definition 3.2.5, we see that the two half-edges are boundary edges
and the two vertices are incident to precisely one boundary edge each. Thus, the unique map consisting of
one degree two boundary face and no internal faces is indeed fully simple.
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Figure 3.3: The slightly surprising fully simple map with one degree two boundary face and no internal
faces.

A map is connected if the underlying surface is connected and disconnected otherwise. Note that we define
the genus for a disconnected surface by taking the Euler characteristic to be additive over disjoint union.
In particular, this implies that the genus of a disconnected surface can be negative. Although we ultimately
strive to calculate enumerations for connected maps, for our analysis in Chapter 7 on fully simple maps it
will be necessary to first consider the possibly disconnected enumeration, and thus here I introduce both
the connected and possibly disconnected objects.

3.2.2 Permutation model

What additional information does one need to attach to a graph in order to define a map? Considering a
neighbourhood of a vertex in a map, we see that the embedding imposes a cyclic ordering of the half-edges
about the vertex, arising from the orientation of the underlying surface. For example, the two diagrams
shown in Figure 3.4 depict the same graph but two distinct maps—the left map has two faces of degrees 7
and 3, while the right map has two faces both of degree 5. This notion of the cyclic ordering of edges about
a vertex can be captured by a permutation of the half-edges, and this idea leads to the permutation model
for maps. Although I aim to give a complete and accessible definition of the permutation model for maps,
the interested reader may refer to work of Lando and Zvonkin [79] for an alternate introduction. One should
note that the conventions here differ to those used in this reference.

Figure 3.4: The two diagrams depict maps that are not isomorphic, yet their underlying graphs are iso-
morphic.

In the following, I will represent an edge as a two-way street, as in Figure 3.5. (Because I live in Australia)
I will opt for the convention where we “drive on the left side of the road”. More precisely, if you view edges
from the point of view of a vertex, then the half-edges incident to that vertex are on the right; see Figure 3.6
to observe this perspective.

We then define a permutation on the set of half-edges of a map that rotates each half-edge anticlockwise
about the vertex to which it is incident. This encodes the cyclic ordering of the half-edges about the vertices

of a map; the choice of anticlockwise rotation is consistent with the conventional orientation of a surface.

This information, however, is not yet sufficient to recover a map. Currently, the cyclic ordering of edges
about each vertex gives local information of how the half-edges are organised about each vertex, but no
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Figure 3.5: The two half-edges comprising a single edge viewed as a “two-way street” where convention
dictates that we drive on the left.

global information of how the half-edges are glued to form a map. To define a map, it suffices to further
define a permutation that prescribes how the half-edges are glued together to create edges. That is, define a
permutation that swaps every pair of half-edges belonging to the same underlying edge. The information of
this permutation (swapping half-edges) coupled with the previous (anticlockwise rotation of edges about a
vertex) recover a unique map. As we will see, it will be convenient to furthermore define a third permutation
that rotates half-edges anticlockwise about the face to which they are adjacent.

We can now introduce the permutation model for ordinary maps. The correspondence described will be
between triples of permutations and labelled maps. A labelled map is a map where the half-edges are labelled
with the integers 1,2, ..., d, where d is the number of half-edges.

The information of a labelled ordinary map is encoded in a triple of permutations (og, 01, 02) € Sy acting
on the set of labelled half-edges in the following way:

* 0y rotates half-edges anticlockwise about the vertices to which they are incident;
¢ o is a fixed point free involution that swaps half-edges belonging to the same underlying edge; and
* 0y rotates half-edges anticlockwise about the faces to which they are adjacent.

It follows that ogoi02 = id, where I use the convention of multiplying permutations from right to left.
Further, to choose the n boundary faces required in Definition 3.2.1 it suffices to choose a tuple B of n
distinct cycles of o9. See Figure 3.6 for a depiction of the actions of o, o1 and 0.

From now on, I will write (0¢, 01, 02, B); these will be the objects in bijection with labelled maps.

A

o1(e) || e = opo102(e)

0'0(6)

Figure 3.6: A local diagram of a vertex depicting the actions of 0, 01 and o> on a half-edge e. Edge labels
in pink show why one has ogo;02 = id.

From the way the permutation model was constructed, this automatically leads to the following bijection
between the set of labelled maps and the set of tuples (0, 01, 02, B). And further, there is a correspondence
between isomorphism classes of these objects, hence to state the equivalence fully we first need the notion
of an isomorphism of triples of permutations. An isomorphism between (og, 01,02, B) and (0, 0}, 0%, B') is
a permutation ¢ € S, that satisfies o) = ¢o;¢p~! for i € {0, 1,2} and sends B to B’.
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Proposition 3.2.6. There is a one-to-one correspondence between labelled ordinary maps (excluding the map consisting
of a single vertex on the sphere) and tuples (0o, 01,02, B), where 0y, 01,02 € Sq4, 01 is a fixed point free involution,
000102 = id, and B is a tuple of distinct cycles in 0.

Further, there is a one-to-one correspondence between isomorphism classes of ordinary maps (excluding the map consisting
of a single vertex on the sphere) and isomorphism classes of triples of permutations 0y, 01,09 € Sq such that oy is a
Sixed point free involution and oyo109 = id, along with a tuple B of distinct cycles in o9.

The subgroup generated by the triple, (0g, 01, 02) < Sg, acts transitively on {1,2,...,d} if and only if the
corresponding labelled ordinary map is connected.

I may refer to a tuple (0o, 01,02, B) as a combinatorial map in contrast to the object from Definition 3.2.1
which I may call a topological map.

The automorphism group of a labelled map depends only on the underlying map and not on any choice
of labelling. This allows us to define the automorphism of a (topological) map as an automorphism of
the associated combinatorial map. Thus, define an automorphism of a map to be an automorphism of a
corresponding tuple (0, 01,02, B); that is, a permutation ¢ € S, that satisfies 0; = ¢po;¢p~! fori € {0, 1,2}
and sends B to B.

Example 3.2.7. Figure 3.7 shows a labelled map, and the corresponding triple of permutations is
a0 = (1863)(2)(45)(7)
o1 = (15)(23)(46)(78)
o9 = (1234)(5678).
And one can verify that
o log = (15)(23)(46)(78) o (1368)(45) = (1234)(5678) = 0>,

or equivalently that oyoy02 = id.

Figure 3.7: One way to represent a labelled map.

As observed above, from the information of the tuple (0¢, 071, 02, B), one can construct the labelled topo-
logical map. However, if one were to write down all d! labellings of the same underlying topological map,
not all of these would be unique combinatorial maps. The orbit-stabiliser theorem tells us that the ratio
between the size of the isomorphism class of the tuple (o9, 01,02, B)—denoted |orb(og, 01, 02)|—and the
total number of labellings, d!, is precisely the number of automorphisms of the combinatorial map. That is,

d! = |Aut(og, 01,09)| - |orb(cq, 01, 02)].
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Example 3.2.8. Figure 3.8 shows all 4! labellings of the ordinary map with one degree four boundary
face and no internal faces. Each labelled map has a “partner” which is represented by the same tuple
(00,01, 02, B), signifying a non-trivial automorphism between them. By the orbit-stabiliser theorem

24 = d! = |Aut(og, 01, 09)| - |orb(og, 01,092)| = 2 - 12,

as expected. (“As expected” because we secretly knew that this map has two automorphisms, though usually
one might use the orbit-stabiliser theorem to calculate the number of automorphisms of a topological map.)

1 \\1 N1 \\1 \\1
AN 3N EAW A 3N 2\
N2 N2 N3 3 N4 N4
3N W 2\ AW AW EAW
N2 N2 N2 \ N2
4N 3N 4N I 3N I
AN N1 N3 N3 N4 N4
3N\ W N\ AN I N

Vi

V
o

N3 N3 N3 N3 N3
AW AW AN N\ ™\
N N1 N2 N2 N4
AW AN N\ AW AN
N4 N4 N4 N4 N N4
3N 2 3N TN :
N \\1 AW \\2 N3 N3
2 3 TN 3N 1 2

Figure 3.8: All possible relabellings of the ordinary map with one degree four boundary face and no internal
faces. The two maps drawn in pink are represented by the same tuple (0¢, 01,02, B), signifying a non-trivial
automorphism between them.

The following example demonstrates an isomorphism of combinatorial maps.

Example 3.2.9. Figure 3.9 shows three labellings of the same topological map. The leftmost two diagrams
represent the same labelled map (0, 01, 02, B), demonstrating a non-trivial automorphism ¢ € S, satisfying
¢poip~t = o; for i € {0,1,2} and ¢(B) = B. The outer two labellings depict isomorphic combinatorial
maps. The triples of permutations for the outer two maps are

oo = (18)(2710)(39)(4125)(611) ol = (19)(21210)(311)(468)(57)
o1 = (15)(28)(310)(49)(612)(711) o) = (112)(23)(49)(510)(611)(78)
oy =(1234)(5678)(9101112) ol = (14710)(25811)(36912)
B=(5678) B = (25811).

The isomorphism is given by ¢ = (139)(265)(41210)(7811), and one can again verify that ¢c;¢~* = o/
fori € {0,1,2} and ¢(B) = B'.

By considering the combinatorics of graph isomorphisms, one can reason that any labelling of this topo-
logical map has only two automorphisms, the identity and the one that corresponds to the automorphism
between the leftmost two diagrams in Figure 3.9. To see this, consider the half-edge labelled 5 in the leftmost
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map. It is incident to a 3-valent vertex, and adjacent to the boundary face. Hence this half-edge must either
stay where it is or be sent to the edge labelled 7, allowing us to deduce that the number of automorphisms
is at most two. Yet, Figure 3.9 shows that both of these choices give rise to valid automorphisms. So the
number of automorphisms is exactly two. Because an isomorphism between maps must preserve all adja-
cencies and incidences, the image of one half-edge determines the images of all half-edges, as long as the

maps are connected.

Figure 3.9: Three labellings of the same topological map. The two labellings on the left are the same labelled
map, while the outer labellings represent isomorphic maps.

The condition for an ordinary map to be fully simple in the permutation model can be given as follows. For
a combinatorial map (0g, 01, 02, B), let B be the union of half-edges in B. The map is fully simple if and
only if the elements of B lie in different o-orbits.

Finally, I will briefly describe the one-to-one correspondence by outlining how to obtain a triple of permuta-
tions from a map and vice versa. (The forward direction was loosely and intuitively described by way of
motivation at the start of this section, but I restate it here more precisely.) Begin with a map and label the
half-edges. There is no canonical way to do this, but recall that the correspondence is between isomorphism
classes of both maps and triples of permutations. Now one can write down the permutations oy, o1 and
o9: the cycles of o are given by the anticlockwise rotation of half-edges about a vertex; o, is a fixed point
free involution associating a pair of half-edges to an underlying edge; and the cycles of o5 are given by the
anticlockwise rotation of half-edges incident to a face. By the construction of the permutation model, it then

follows that ogoi02 = id and one can indeed check that o9 = o 105 1

Conversely, begin with a triple of permutations (0g, 01, 02) and construct a map as follows. Associate to
each cycle of o3 of length k a polygon of degree k, where the sides of the polygon are half-edges labelled
and oriented anticlockwise according to the cycle. Next glue half-edges together according to oy such that
the orientation of two half-edges being glued is always opposite. The result will be a surface where the
embedded graph is given by the edges and vertices of the polygons. The cyclic ordering of the vertices will

automatically be glued according to o9 = o5 ‘o !

3.2.3 Maps as branched covers of the sphere

In addition to the permutation model, maps are also in natural bijection with certain branched covers of
CP'. The bijection occurs in the following way. For an ordinary map of type (g, n) realised by permutations
(00,01,02) one can associate a branched cover f: (C;py,...,pn) — (CP';00) from a genus g compact

Riemann surface C with n marked points py, .. ., p, satisfying the following conditions.

e The degree of f is equal to the sum of the degrees of all faces of the corresponding map, and is
unramified over CP* \ {0, 1, c0}.

« The monodromy around 0, 1, and oo € CP! is given by 0y, 01, and o respectively.

For a tuple (py, ..., pn), the notation f: (C;p1,...,pn) — ((C]P’l; 00) denotes amap f: C — CP' that satisfies
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f(p;) =occforallie {1,2,...,n}.

Given a morphism satisfying the above conditions, one obtains the corresponding map by taking the preim-
age f~1([0,1]). The preimages of 0 € CP' are the vertices of the map; the preimages of 1 € CP' are the
midpoints of the edges; and the preimages of oo € CP' are the centres of the faces of the map. The faces
containing the marked points p, ..., p, correspond to the boundary faces labelled 1, ..., n respectively.

Conversely, for any triple of permutations (0, 01, 02) satisfying ogo102 = id the Riemann existence theorem
guarantees that there exists a unique holomorphic map f: C — CP' ramified only at 0, 1, and oo that realises
(00,01,02) as its monodromy representation. Here, C is a possibly disconnected compact Riemann surface.
A statement and proof of this theorem can be found in [22].

This point of view is particularly useful for the perspective used in Section 3.3.1 to identify so-called stable
ribbon graphs as lattice points in the Deligne-Mumford compactification of the moduli space of curves M, ,,.

3.2.4 Generating functions

The following generating functions for the enumerations of ordinary maps and fully simple maps will be
useful in Chapter 7.

Definition 3.2.10. Let p4,..., 1, be positive integers, and define Mg’n(uh ..., n) to be the weighted
enumeration of (isomorphism classes of) connected genus g ordinary maps with n boundary faces such that
the degree of boundary face 7 is ;. The weight of each map M is given by

s* (M) tfl(M)t.z(M)t 3(M)
|Aut M| ! 2 3

)

where f;(M) is the number of internal faces of degree i, e(M) denotes the number of edges of M, and
|Aut M | is the number of automorphisms of M. Define F'S{ ,, (111, - - ., /1) to be the analogous enumeration of
connected fully simple maps, and let M3 , (g1, . ., ptn) and FS] | (111, . . ., f1,,) be the analogous enumerations

for possibly disconnected maps and fully simple maps respectively.

Define R{ ,, (111, - - -, pin) to be the weighted enumeration of ribbon graphs with n faces such that the degree
of boundary face 7 is ;. The weight of each ribbon graph R is given by
sl /2
|Aut R|
Here, || = p11 + -+ + pin. Let Ry, (p11, ..., p1n) be the analogous enumeration for possibly disconnected
ribbon graphs.
Finally, let 1\7127", FAS;", Rgm and and M;m, FAS;,H, R;,n denote the corresponding generating functions for

the rooted connected and rooted disconnected enumerations respectively (see Definition 3.2.4).

The enumeration of ribbon graphs is indeed equal to the enumeration of ordinary maps with no internal
faces. That is, Ry » (41, - -, ftn) = Mgn (i1, ... 7u”)|ti:0.

The inclusion of the formal parameter s in the definitions of the generating functions is not necessary since
it can be recovered from the remaining parameters in the generating function. However, it can be useful to
make use of the operator %, which appears in the evolution equations for these enumerations and is utilised
in Chapter 7 on fully simple maps.

The generating functions M, ,, and FS, ,, are formal power series in the ¢-variables; that is,

Mg (s e s ), FSg o (1 oo i)y Mg (s o i), S 4 (s -5 pin) € Q[ E2, ]
M;,n(ﬂlv ce hu'n)v]-::sg,n(ﬂlv ce vﬂn)vmg,n(ﬂlv s 7#71)7FASg,n(/‘17 te mun) € Q[[t17t27 e ]]
For maps of type (g,n) with boundary face degrees given by p1, ..., /i, one can obtain the enumeration of
ordinary maps with prescribed internal face degrees from Mgm(ul, ..., lin) by extracting the appropriate
coefficient of -monomials.
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Finally, as alluded to in Section 3.2.1, the enumeration of maps and rooted maps are related by a combin-
atorial factor. In fact, the enumeration of rooted maps are obtained from the unrooted enumeration by
multiplying by the product of the boundary face degrees. That is, for y1, ..., u, positive integers,

M;,n(uh s a,un) =1 MHM;,H(Ml? o 7:“”)7

[ )
g,n*

there are y; choices for the root.

and similarly for FS} ,, and R} ,,. The reason for this is straightforward: for the boundary face labelled i,

Example 3.2.11. Consider connected ordinary maps on the sphere with one boundary face of degree
four that are quadrangulations; that is, all internal faces are of degree four. The corresponding generating
function is then given by setting ¢; = 0 for all ¢ # 4 which yields

1 9 27 189
Mg (4)], o= =8>+ ~tas* + 5 + —t1s® + 72040 - (3.1)
' i 2 4 2 2
Figure 3.10 shows (1) the only ordinary map with one boundary of degree four and no internal faces, as
well as (2) the set of ordinary maps with one boundary and one internal face, both of degree four. The sizes
of the automorphism groups for these maps are 2, 4, 1 and 1, respectively, and hence one can see that these

enumerations correspond to the first two terms in the generating function Mg , (4) above.
In Figure 3.10, only the second map from the left is fully simple. The corresponding generating function
for fully simple maps is

1 5 45 . 405
FSg1(4) = Zt484 + Etisﬁ + ?tjss + Ttism + e

The data for both the ordinary map and fully simple map generating functions have been calculated via
SageMath [98], the latter using the results from Chapter 7.

1) 2)

Figure 3.10: Ordinary maps with one boundary face and (1) zero internal faces or (2) one internal face, all
of degree four. The sizes of the automorphism groups for these maps are, from left to right, 2, 4, 1 and 1
respectively.

A sidebar on enumerating ordinary and fully simple maps. The data in Example 3.2.11 for ordinary maps has
been calculated via SageMath using the following relation to ribbon graphs:

—

t

o _ o - = v 1l
Mg,n(:ula---a,un) = ZRQW(M’V)WS 2. (3.2)
veP
Here, P is the set of all partitions, |v| = 11 + -+ + Vo) t,, is a shorthand notation for the monomial
ty, =+ tuy,,> and [Aut v| denotes the number of automorphisms of the partition v. Equation (3.2) can be

proven in a straightforward combinatorial manner by proving that the coefficient of ¢, on each side is equal.

In SageMath, the sum in (3.2) has been calculated up to partitions v of size 10 and Ry ,, has been calculated
using the Tutte recursion for ribbon graphs; see Proposition 3.2.12 in Section 3.2.5 and restrict to ribbon
graphs by setting ¢; = 0 for all positive integers i.
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3.2.5 Tutte recursion

Tutte first derived a combinatorial recursion for genus 0 rooted maps with one boundary in 1963 [105]. This
was then generalised to higher genus by Walsh and Lehman [106]. The idea behind the recursion for genus
0 rooted ordinary maps with one boundary face is as follows. Begin with an ordinary map on the sphere
and remove the rooted edge from the first marked face; that is, the marked face labelled 1. Let the degree
of this face be ;1. The edge removed separates two faces and either these two faces are the same or they are
different. In the former case, the result after removing the chosen edge (and cutting the surface into two
and patching each component with disks) is two genus 0 maps, each having one boundary face with lengths
o and B where a + 8 = p — 2. Alternatively, the edge removed separates two distinct faces in which case
the other face is an internal face of some degree, say j. Removing the chosen edge results in a new map
with boundary length it 4+ j — 2 and one fewer internal face of degree j. In either case the rooted edges
on new boundary faces are chosen canonically by the cyclic ordering of the edges at the vertices. That is,
after removing the rooted edge e, in the first case we choose the edges o (e) and opo1(e) to be the two new
rooted edges, and in the latter case we choose o(e).

This leads to the following recursion

1w 1) 1o 1o 1o .
EMO,I(M) = Z MG 1 (@)Mg 1 (8) + thMo,l(M +7—2),
a+B=p—2 t>1

valid for all ¢ > 0, and with the base case given by 1\7[871(0) = 1 (recall the so-called degenerate map
in Remark 3.2.3).

The generalisation of this bijection to all genus g involves a number of new options, however all cases
are again mutually exclusive and the combinatorial analysis follows through in a similar manner. For a
discussion of the combinatorics behind the generalised Tutte equation, see previous work of Eynard [45].

Proposition 3.2.12 (Tutte recursion). Let S = {2,3,...,n}. Forall (g,n) and p1 + - -+ + pin, > 0, connected
(rooted) ordinary maps satisfy the following recursion:

1w o

g Mg,n(p‘lv s MU’n)

n

= M (s — 2, fisgay) + M (1 + 5 — 2, f1s)
i=2 j>1

+ Z M;—l,’rb-‘rl(a?B?ﬁS) + Z M;,\IH—l(a?ﬁ[)Mgg,UH—l(ﬁa,JJ) .
atf=p1—2 g1+g2=g

IUJ={2,...,n}
Forl = {iy, ..., iy}, the shorthand notation ji denotes ji;,, . . ., i, . Along with the base case given by Mg ;(0) = 1,
this uniquely determines the value ofM;n(ﬁ) forall g, n and [i.

Note the 1/s factor on the left side, which arises from the fact that the s-parameter in the definition of
Mg (41, - - -, tn) keeps track of the number of edges. The Tutte recursion acts by removing an edge, hence
the number of edges after applying the Tutte recursion has been reduced by one.

3.3 Stable ribbon graphs

3.31 Counting lattice points in M, ,

The goal of this section is to describe the correspondence between certain branched covers, so-called
stable ribbon graphs and lattice points in the Deligne-Mumford compactification of the moduli space of
curves ﬂg,n. In some sense, this is a compactified version of a simpler correspondence between branched
covers, ribbon graphs and lattice points in the uncompactified moduli space of curves M, ,,. To motivate
and provide context for the former correspondence I will first describe the latter.
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But first I provide a brief definition of the moduli spaces M, , and M, ,,. Complete and precise definitions
of these spaces are quite subtle and ideally framed in the language of stacks; providing a complete and
precise definition here would take me too far afield of the scope of this thesis. For a full introduction to
moduli spaces of curves I refer the reader to the book of Harris and Morrison [68], while for more on stacks,
see The Stacks Project [71]. Define the moduli space

My, =< (Cip1,...,
o {( b1 Pn) g with n distinct points py,...,p,

C is a smooth algebraic curve of genus } /

where (C;p1,...,0n) ~ (D;q1,...,qn) if there exists an isomorphism from C to D that sends p; to ¢; for all
i€{1,2,...,n}.

The space M, , is not compact. While there are many ways to compactify this moduli space, the Deligne—
Mumford compactification will be relevant to the work described here. The Deligne—Mumford compactific-
ation broadens the definition of the space to allow stable algebraic curves. Hence, define the space

Mgyn = {(C;p17~--,pn)

C is a stable algebraic curve of genus g /
with n distinct smooth points py,...,p,

where (C;p1,...,0n) ~ (D;q1, ..., qn) if there exists an isomorphism from C to D that sends p; to ¢; for all
i €{1,2,...,n}. An algebraic curve is stable if it has at worst nodal singularities and a finite automorphism
group. All smooth algebraic curves are stable, hence M ,, C M, .

This describes the moduli spaces as sets, but they are actually endowed with a lot of geometric structure.
In particular, they can be considered as orbifolds, varieties, schemes or stacks. Furthermore, the orbifold
structure arises from curves with non-trivial automorphisms and means that we will consider the cohomology

with rational (as opposed to integer) coefficients.

As described in Section 3.2.3, maps are in one-to-one correspondence with certain branched covers of CP"'.
For the sake of completeness and clarity, I will briefly describe this correspondence explicitly in the context
of ribbon graphs. Recall from Definition 3.2.1 that a ribbon graph is a map with no internal faces. More
concretely, a ribbon graph of type (g,n) is a finite graph embedded on a compact oriented genus g surface
such that the complement of the graph on the surface is a disjoint union of n topological disks which are
labelled 1 to n.

In this section, we restrict our attention to ribbon graphs where the degree of every vertex is at least two,
motivated by the connection between ribbon graphs and moduli spaces of curves. For this reason, I give a
definition for the following enumeration, which is analogous to Ry ,, (11, . . ., ft) from Definition 3.2.10.

Definition 3.3.1. Let 1, ..., /1, be positive integers. Define Ny ,,(p1,. .., itn,) to be the weighted enumer-
ation of isomorphism classes of connected genus g ribbon graphs with n boundary components, where the
degree of every vertex is at least two and the degree of the boundary component labelled 7 is 1;. The weight

of each such ribbon graph R is
1

|Aut R|

For a ribbon graph of type (g, n) with boundary degrees given by (1, . .., fi,, One can associate a branched
cover f: (C;p1,...,pn) — (CP';00) from a compact genus g Riemann surface C with n marked points
Di,- .., Dn satisfying the following conditions.

o The degree of f is equal to the sum yi; + - - - 4 1, and is unramified over CP' \ {0, 1, 00}.

¢ The ramification profile of co € CP! is (41, -- -, tn), where pr € C has ramification index py, for
ke{1,2,...,n}.

o The ramification profile of 1 € CP* is (2,2,...,2) and each point in the preimage of 0 € CP' has
ramification index at least 2.
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The corresponding ribbon graph can be obtained by considering the preimage of the line segment between
0 € CP' and 1 € CP'; that is, by considering f~1([0,1]) C C. The labelling of the points py, ..., p, gives
rise to the labelling of the faces of the ribbon graph. Let Z, (11, ..., tn) C Mgy, be the set of genus g
Riemann surfaces C—or equivalently the set of genus g smooth complex algebraic curves—such that there
exists a morphism f: C — CP' with the properties described above. Note that if a smooth curve admits
such a morphism then that morphism is unique. Furthermore, the automorphisms of the curve and of
the morphism agree. See Remark 1.3 in [35]. Hence, the weighted enumeration of such curves equals the
enumeration of such morphisms.

The sense in which ribbon graphs enumerate lattice points in the uncompactified moduli space M, ,, is due
to a cell decomposition of the decorated moduli space of curves, proved independently by Harer [67] using
Strebel differentials, and by Penner [94] using hyperbolic geometry. Specifically, to each smooth genus g
curve with n marked points, each decorated by a positive real number, one can associate a metric ribbon
graph of type (g,n). A metric ribbon graph is a ribbon graph whose vertex degrees are at least three and which
has a positive real number associated to each edge. This association allows one to decompose the decorated
moduli space of curves into cells

My, x R} = |_|7>p,
I8

where the union is over ribbon graphs I' of type (g, n) whose vertex degrees are at least three, and the cell
Pr consists of all metric ribbon graphs whose underlying ribbon graph is I'. Fixing n positive real numbers
(b1,...,b,) € R, we obtain the following decomposition from the previous one

Mgn 2| |Pr(b, ... bn),
r
where the union is again over ribbon graphs I' of type (g,n) whose vertex degrees are at least three, and
Pr(bi,...,b,) is the set of metric ribbon graphs with boundary lengths given by by,...,b,. Here, the
boundary length of a face in a metric ribbon graph is equal to the sum of the positive real numbers associated
to the edges adjacent to that face.

Originally proposed by Norbury [87, 88], one can restrict consideration to metric ribbon graphs of type (g, n)
with vertex degrees at least three and where the edge lengths are positive integers. Further, these objects
are in fact equivalent to ribbon graphs with vertex degrees at least two. To see this correspondence one
can simply consider an edge in a metric ribbon graph with an associated integer k as a path of k£ edges in a
ribbon graph. Norbury interprets such ribbon graphs as lattice points in M, ,, and links their enumeration
with the geometry of the moduli space.

Kontsevich’s proof of Witten’s conjecture [75, 107] proceeds by calculating certain volumes of moduli spaces
of curves using the cell decomposition described above. Norbury’s lattice point count can be seen as a
discretisation of this volume calculation.

Therefore, Z, ., (11, ..., tn) C Mg, is in bijection with ribbon graphs with vertex degrees at least two and
can be thought of as capturing the “lattice points” in M, ,,. Further the automorphism group of the curve
agrees with the automorphism group of the ribbon graph. To enumerate the points in the set Z,,, one
should take into account the natural orbifold nature of M, ,, by counting C € Z; ({11, . ., ftn) With weight
equal to one over the size of the automorphism group of C. This enumeration is equal to the orbifold Euler
characteristic of Z ,, (1, ..., ity ). This leads to the following result due to Norbury [87, 88],

1
Ng,n(ﬂla"'vﬂn): Z mzx(zgyn(uh'"’ﬂn))’
CEZg n(1yemslbn)

where Ng ,, (1, ..., ftn,) is the enumeration of connected ribbon graphs of type (g,n) with boundary face
degrees given by pi1, ..., ltn, as defined in Definition 3.3.1.

Do and Norbury [35] generalised this notion to the Deligne-Mumford compactification of the moduli space
of curves M, ,,. The generalisation is reasonably natural from the viewpoint of ribbon graphs as branched
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covers and the set Z, ,,(u1,..., ). That is, instead of considering the set of smooth curves with an
associated morphism as described above, one can consider the set of stable curves with an associated
morphism satisfying certain conditions and respecting certain stability conditions, motivated by the notion
of a stable map in Gromov—Witten theory. This leads to the following definition.

Definition 3.3.2. Let p;,..., 1, be positive integers, and define égm,(m, ceoy i) C Mg,n to be the set
of genus g stable curves C € M, ,, with n marked points pi,...,p, such that there exists a morphism
f:(Cip1,. .. pn) — (CP'; 00) satisfying the following conditions.

« The degree of f is equal to the sum ji; + - - - + p,, and is unramified over CP* \ {0,1, cc}.

¢ The ramification profile of co € CP! is (41, -- -, tn), where pr € C has ramification index py, for
ke{1,2,...,n}.

+ The ramification profile of 1 € CP' is (2,2,...,2) and each point in the preimage of 0 € CP' has

ramification index at least 2 or is a node.

Unlike in the uncompactified case, the set Z ,, (i1, .. . , ttn) is no longer a finite set of points, and indeed also
contains components with positive dimension. For example, in the instance that a curve C € M, ,, contains
a ghost component—that is, an entire component that is being mapped to 0—then it could be that that ghost
component may be continuously deformed to other curves égm,(ul, ..+, i), leading to a positive dimension
component. However, as in the uncompactified enumeration, Do and Norbury define the enumeration of
the set zg,n(m, ..., i) via the orbifold Euler characteristic and argue that this enumeration is natural and
possesses interesting structure [35].

Definition 3.3.3. For positive integers (1, ..., fy,, define

Ng,n(ﬂlv S 7Mn) = X(gg,n(ﬂla e aMn))-

3.3.2 Combinatorial construction

Given that there is a correspondence between lattice points of M, ,, and ribbon graphs via the set of stable
curves satisfying certain conditions, Z, ,, (i1, . . ., itn), it is natural to define the corresponding combinatorial
object in the case of égﬂl(,ula .oy fbn) and ﬂg,n. In this section, I define the notion of a stable ribbon graph.
These objects were previously defined by Kontsevich [75] as well as Do and Norbury [35]; for a more thorough
introduction I refer the reader to these references. The exposition in this section is largely based on the
work of Do and Norbury [35, Section 2].

The idea is as follows. From a map f: (C;p1,...,pn) — (CP';00) satisfying the conditions of Defini-
tion 3.3.2 we would like to associate a combinatorial object—a stable ribbon graph—from which the stable
curve C € M, can be uniquely obtained. Morally, the stable ribbon graph captures the pre-image
f71([0,1]). If a component of C maps to CP' with positive degree, the inverse image of [0,1] on this
component will be a ribbon graph, where the nodes—that must map to 0—are distinguished vertices. If
a component, or a connected collection of components, of C maps to 0 € CP' with degree 0, then this
component is one of the so-called ghost components and becomes a distinguished vertex in the resulting
stable ribbon graph. To be able to recover this entire component from the resulting stable ribbon graph, we
require only its genus. Thus we store the genus of these ghost components via a genus function defined on
the vertices corresponding to ghost components.

The stable ribbon graph then becomes the information of the ribbon graphs associated to each component
of C that maps under f with positive degree; a set of distinguished vertices containing both the vertices that
correspond to the nodes (where two vertices will be identified) along with the vertices that correspond to
the ghost components; and a genus function defined on this set of distinguished vertices that records the

genus of the ghost components that was collapsed or 0 for a node. This leads to the following definition.

Definition 3.3.4. A stable ribbon graph is a possibly disconnected ribbon graph along with the following
extra information:
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* a subset S of distinguished vertices;
* an equivalence relation ~ on S; and

* a genus function h: S/~ — {0,1,2,...} where for any equivalence class Sy C S, if |Sy| = 1 then
h(SO) > 0.

An isomorphism between stable ribbon graphs is an isomorphism of the possibly disconnected ribbon graphs
that leaves .S invariant and preserves ~ and h.

Definition 3.3.4 has been previously introduced by Kontsevich [75] and separately by Do and Norbury [35].

As we do in the case of ribbon graphs, we would like to enumerate stable ribbon graphs according to their
genus and number of boundary components. The genus of a stable ribbon graph is defined to be the genus
of the underlying stable curve to which is is associated. The contributions to the genus come from the
genera of the original components, the genera of the ghost components (obtained via the genus function),

and any extra contributions arising from gluing components together to form “loops”.

To calculate the genus of the stable ribbon graph, we will use the notion of the dual graph of a stable ribbon
graph I'. Denote by 7ol the set of connected components of I'. The genus of a connected component I
of I' is determined by 2 — 2¢(I') = V(I \ S) — E(I') + F(I"), where the set of distinguished vertices has

been removed.

Define the dual graph of a stable ribbon graph I', denoted G(I'), to be the graph consisting of vertices
V = (5/~)Umngl, edges E = SU F(T") and incidence relations given by inclusion. Extend the definition of
the genus function & to h: V(G(T')) — {0,1,2,...} by defining h(v) for some v € V(G(T")) \ (S/~) to be
equal to the genus of the corresponding connected component in oI

Calculate the genus of a stable ribbon graph I' by

gD =bui(GI)+ D hlv),

veV(G())
where b1 (G(T")) is the first Betti number of G(T').

The term with the first Betti number counts the genus contributed by the “loops” described above, while
the terms in the sum corresponding to v € S/~ contribute the genera of the ghost components and terms
corresponding to the remaining vertices contribute the genera of the connected components in 7ol

Definition 3.3.5. For positive integers by, ..., b,, define R;f‘;‘tble(bl, ..., byn) to be the set of isomorphism
classes of genus g stable ribbon graphs, connected after identification of vertices by ~, with n boundary
components of lengths b, ...,b,, and where all valence 1 vertices are contained in S.

The following proposition states that the enumeration of Ngm(bl, ..., by) given in Definition 3.3.3 matches
the enumeration of stable ribbon graphs [35].

Proposition 3.3.6 (Do and Norbury [35]). For positive integers by, . .., by,

— 1 -
Ng,n(bla B bn) = Z m H X(Mh(v),n(v))7
)

TeRstable(by,....b, vES/~

where n(So) = |So| for an equivalence class So C S, and we define x(Mo2) = 1.

The proof of this proposition goes via the set Z, ,(bi,...,b,) in the following way. Given a morphism
f:C — CP' satisfying the conditions given in Definition 3.3.2, one can construct a stable ribbon graph
as follows. First, as described earlier in Section 3.3.1, construct a ribbon graph IV by IV = f~1([0,1]) \
{nodes, ghost components}, but note that in this case I" is possibly disconnected and may have leaves;
that is, edges that don’t end in a vertex. Define a stable ribbon graph I' to be the closure of I in the
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normalisation of C by adding vertices to the non-compact ends of I". Define the subset of distinguished
vertices by S = I'\ I and dictate that two vertices are in the same equivalence class of S if they coincide in
the non-ghost components of C. Define h: S/~ — {0, 1,2, ...} by dictating that the genus of an equivalence
class Sy C S is equal to the genus of the collapsed ghost component and zero if Sy corresponds to a node.

This process defines a map zg,n(bl, B RZE?Lble(bl, ..., bp). This map is not one-to-one and indeed,
each stable ribbon graph describes a component of Z ,, (b1, ..., b,); some of these components are points
and some are positive-dimensional. However, the weight of the orbifold Euler characteristic in Proposi-
tion 3.3.6 counts the stable ribbon graphs in precisely the necessary way such that the enumeration is equal
to Ng,n(bla ooy bp).



Chapter 4

Hurwitz numbers

4.1 Introduction

In the late nineteenth century, Hurwitz [69] studied enumerations of branched covers of the Riemann sphere
with prescribed ramification data. While interest in Hurwitz numbers lulled in the century that followed,
the last twenty-five years has seen a boom of activity in the Hurwitz theory literature. One major catalyst
for this boom is the rich mathematical structure discovered within single Hurwitz numbers, defined below.
In fact, single Hurwitz numbers have since been treated as an archetype for many similar problems and
generalisations in the enumerative geometry of curves.

This chapter reviews these major results for single Hurwitz numbers and provides a skeleton or prototype
for the generalisations of these results.

Definition 4.1.1. The single Hurwitz number Hg ({11, ..., (tn) is a weighted enumeration of isomorphism
classes of connected genus g branched covers of the Riemann sphere f: (C;p1,...,pn) — (CP*; 00) such
that

« the point p; € f~1(00) has ramification index y; for i € {1,2,...,n}; and
« all other branching is simple and occurs at m fixed points of CP'.

The weight of a cover is given by
o
m!|Aut f|’

where Aut f is the group of automorphisms of f. An automorphism of a branched cover f: (C;p1,...,pn) —
((CIP’l; 00) is an isomorphism ¢: C — C that preserves the marked points p1,...,p, and satisfies f o ¢ = f.

Recall, for a tuple (p1, ..., pn), the notation f: (C;p1,...,pn) — (C]P’l; o0) denotes a map f: C — CP! that
satisfies f(p;) = oo foralli € {1,2,...,n}.

The factor of 1/m! is a normalisation factor which has become increasingly commonplace in the definition
of single Hurwitz numbers in the recent literature, primarily to enable cleaner statements for subsequent
results (for example, polynomiality and the ELSV formula; see below).

The number of simple branch points is related to the genus of the Riemann surface C and the tuple 1, ..., ft,
via the Riemann-Hurwitz formula. Recall that the Riemann-Hurwitz formula for a given degree d non-
constant holomorphic map f: X — Y between Riemann surfaces is

X(X) =x(Y)d = (ks — 1),

rzeX

where k,; is the ramification index of f at x and x(X) = 2—2¢(X) relates the Euler characteristic of X to its
genus. In the case of single Hurwitz numbers we are considering a genus g branched cover of the Riemann
sphere with prescribed ramification profile (j1, . . ., f1,,) over oo and simple ramification elsewhere.! Letting

IRecall that ramification points live upstairs on C while branch points live downstairs on CP!. These definitions are infinitely elusive
and I personally find I have to re-recall them every time.

43
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m be the number of branch points with simple ramification, the formula reduces to

2-29=2d—) (mi—1)—m
=1
m=2d+2g—2— |u|+n,

where the notation |y denotes the sum of the parts: |u| = py + - - - + pp. Here, d is the degree of the map,
so d = |p], and in this case the Riemann—-Hurwitz formula yields

m=2g—2+n+ |yl

It was first observed and conjectured by Goulden, Jackson and Vainshtein [65] that single Hurwitz numbers
satisfy the following structural property.

Theorem 4.1.2 (Conjectured by Goulden, Jackson and Vainshtein [65], proven by Ekedahl, Lando, Shapiro
and Vainshtein [43]). For (g,n) satisfying 2g — 2 +n > 0, there exist symmetric polynomials Py, (p1, . .., pn) of
degree 3g — 3 + n such that

n

p
Hg,n(/’blw-'vﬂn): H Z_'
=1 M

Pyt s in)- (4.1)

A proof of this polynomiality structure was obtained by Ekedahl, Lando, Shapiro, and Vainshtein as a direct
corollary of the celebrated ELSV formula, which relates single Hurwitz numbers to intersection theory on
moduli spaces of curves [43]. Specifically, their result is the following.

Theorem 4.1.3 (Ekedahl, Lando, Shapiro and Vainshtein [43]). For (g, n) satisfying 2g —2+mn > 0, the single
Hurwitz number Hy , (1, - . ., [tn) satisfies

n Hi Vv

H i c(AY)
H,n(/'l‘lw-w//fn): ! _— -
’ i=1 ;! Mg,n Hi:1(1 — i)

(4.2)
Here, M, ,, is the Deligne-Mumford compactification of the moduli space of curves, c¢(A") is the total Chern
class of the dual Hodge bundle over ﬂgm, and ©); is the first Chern class of the cotangent line bundle to
the ith marked point. For a thorough introduction to the moduli space of curves M, ,, and its characteristic
classes, see the book of Harris and Morrison [68].

Further, Bouchard and Marifio [17] conjectured that single Hurwitz numbers are governed by topological
recursion. This conjecture was motivated by earlier work of Bouchard, Klemm, Marifio and Pasquetti [16]
on the remodelling conjecture, or BKMP conjecture, which states that Gromov—Witten invariants of toric
Calabi-Yau threefolds are governed by topological recursion. The conjecture for single Hurwitz numbers
arises as a particular limiting case of the BKMP conjecture. Specifically, the Bouchard—Mariiio conjecture
is as follows.

Theorem 4.1.4 (Conjectured by Bouchard and Marifio [17], proven by Eynard, Mulase and Safnuk [49]).
The correlation differentials resulting from applying topological recursion to the spectral curve (C*,x,y, wo 2) with

dz; dz
z(z) =Inz -z, y(2) = z, wo,2(21, 22) = ﬁ

satisfy
Wy (21, 2n) = Z Hgm(ul,...,,un)Hdexp(,uix(zi)).

Mooy pin 21 i=1

Note that for the topological recursion input data here, I have replaced the Torelli marking with wp 2,
utilising local topological recursion instead of CEO. However this is not strictly necessary. Although z(z) is
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not meromorphic on all of CP*, the form dz(2) is, and this is ultimately what is required to apply topological
recursion. Thus, one could still treat the single Hurwitz numbers spectral curve as compact.

Since these results were proven, there has been a wealth of subsequent work to prove analogous results—
polynomiality, topological recursion, and ELSV-type formulas—for generalisations and variations of Hur-
witz numbers. Such variations (as well as combinations thereof) include weakly and strictly monotone, or-
bifold, and spin; see the introduction of [8] for a more extensive list of such results and references. Chapter 6
provides proofs of analogous results for double Hurwitz numbers, which generalise single and orbifold

Hurwitz numbers.

The present chapter provides an introduction to Hurwitz numbers, using as a framework the specific enu-
meration of single Hurwitz numbers. In particular, I aim to present some well-known results and techniques
used in Hurwitz theory in the setting of single Hurwitz numbers. This is the content of Section 4.2, which
comprises:

* Section 4.2.1 gives the classical equivalent formulation of single Hurwitz numbers via enumerations
of sequences of transpositions in the symmetric group Sg;

¢ Section 4.2.2 gives the cut-and-join recursion for single Hurwitz numbers, both at the level of the
enumeration and at the level of the partition function;

e Section 4.2.3 writes single Hurwitz numbers as a vacuum expectation in the semi-infinite wedge; and

¢ Section 4.2.4 performs an analysis on the semi-infinite wedge vacuum expectation to prove the poly-

nomiality for single Hurwitz numbers.

Section 4.3 briefly introduces two prominent variations of Hurwitz numbers—monotone and spin—that
have been the subject of recent study.

4.2 Single Hurwitz numbers

4.2.1 Hurwitz numbers via permutations

One can use the notion of monodromy to give an equivalent formulation of single Hurwitz numbers as
an enumeration of sequences of transpositions in the symmetric group satisfying certain conditions. To

motivate this equivalence, consider the following.

Let pi1,...,u, be positive integers. Let f: (C;p1,...,pn) — ((C]P’l; 00) be a holomorphic map that has
ramification profile (p1, .. ., i) over oo, simple ramification at m fixed points, and is unramified elsewhere.
Let B C CP' be the set of branch points of f.

Consider loops v, aq, ..., 0, € T ((CIP’1 \ B,p), where 7 is a simple loop based at p that separates oo from
the other branch points, and each «; separates the ith simple branch point, as shown in Figure 4.1. And
now consider the concatenation v - a1 - - - auy,; the order has been chosen to match the orientation of the
underlying sphere. There exists a homotopy between v - oy - - - o, and a loop that does not separate any
branch points, or equivalently, the constant loop; that is, the identity in 71 (CP'\ B;p).

Recall the corresponding monodromy representation
p: m(CP'\ B;p) = Sy

defined by o — 0, where o,: f~1(p) — f~!(p) is an element of Sym(f~'(p)), and by labelling the d
preimages of p one can consider o, as an element in the symmetric group S; on d elements. Standard
results on monodromy assert that the cycle type of the permutation o, depends only on the ramification
profile of the branch point it encloses. Specifically in our setting, v has cycle type (11, ..., fn) and «; has
cycle type (2,1,...,1) for all i € {1,2,...,m}. And finally, given that the concatenation 7 - a1 - - - v, is
homotopic to the identity in the fundamental group, the composition o.,0,, - - - 04,, must equal the identity
permutation.



46 4. Hurwitz numbers

This correspondence between representations and covers is surjective due to the Riemann existence theorem;
that is, for a representation ¢: m (Y \ B) — Sy4, such that the image of 71 (Y \ B) acts transitively on
{1,2,...,d}, there is a connected Riemann surface X and a non-constant holomorphic map f: X — YV
that realises ¢ as its monodromy representation. Moreover, f and X are unique up to isomorphism. This
correspondence between representations and covers leads to the following theorem [22].

(@]

/A

S
G
€

Figure 4.1: Loops v, a1, aa, . . ., 04y O CP!.

Theorem 4.2.1. The single Hurwitz number Hy ,(f1, . . ., ftn) s equal to 1/(m! d!) multiplied by the number of
tuples (11, ..., Tm) of permutations in the symmetric group such that

o the cycles of 1 - - - Ty, ave labelled 1,2, ..., n such that cycle i has length p; fori € {1,2,...,n};
* 7; is a transposition for all i € {1,2,...,m}; and

o (T1,...,Tm) < Sq acts transitively on {1,2,...,d}.

Recall that d = |p|. The factor of 1/d! arises from the fact that the d sheets of the cover are not naturally
labelled, but one naturally labels them to produce the monodromy data. As mentioned in Section 4.1,
the factor 1/m! is primarily aesthetic, and gives rise to cleaner formulas for polynomiality and the ELSV
formula.

Example 4.2.2. Calculate Hy 2(2,1) using Theorem 4.2.1. Here, the number of simple branch points, and
hence the number of transpositions required, is m = 2g — 2 +n + || = 3. So to calculate Hy 2(2,1), one
enumerates the number of tuples (7, 72, 73) € Sg’ such that 7, 75, 73 are transpositions and 717273 has cycle
type (2,1). Below I list all possible calculations of 71 7973 for 71, 72, 73 transpositions in S3, where I multiply
permutations from right to left.

(12)(12)(12) = (12) (12)(12)(13) = (13) (12)(12)(23) = (23)
(12)(13)(12) = (23) (12)(13)(13) = (12) (12)(13)(23) = (13)
(12)(23)(12) = (13) (12)(23)(13) = (23) (12)(23)(23) = (12)
(13)(12)(12) = (13) (13)(12)(13) = (23) (13)(12)(23) = (12)
(13)(13)(12) = (12) (13)(13)(13) = (13) (13)(13)(23) = (23)
(13)(23)(12) = (23) (13)(23)(13) = (12) (13)(23)(23) = (13)
(23)(12)(12) = (23) (23)(12)(13) = (12) (23)(12)(23) = (13)
(23)(13)(12) = (13) (23)(13)(13) = (23) (23)(13)(23) = (12)
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The only tuples that do not contribute to Hp 2(2,1) are the three corresponding to the calculations above
highlighted in red text; these three triples of transpositions do not satisfy the transitivity condition. Note
that here the labelling of the cycles in 717273 does not affect the resulting Hurwitz number. Therefore,

Hop(3) =~ 24= g 24 =2

The transitivity condition in Theorem 4.2.1 ensures the connectedness of the domain Riemann surface of
the branched cover. Relaxing this condition leads to an analogous enumerative problem where the source
surface may not be connected. The enumeration of such branched covers are called disconnected Hurwitz
numbers and are denoted Hy ,,(pi1, . .., itn). The enumeration of the connected enumeration may henceforth
be denoted Hy ,(fi1,- .., itn) to distinguish it from the disconnected enumeration. It is always possible to
calculate the connected numbers from the disconnected enumeration, and vice versa, via inclusion-exclusion;

see Section 6.3.1 in Chapter 6 on double Hurwitz numbers for an explicit inclusion—exclusion formula.

Note that a disconnected surface can lead to negative genus. This stems from the fact that the Euler
characteristic is a topological invariant that is naturally additive under disjoint union, whereas the genus is
not. That is, x(X UY) = x(X) + x(Y"). For example, consider the genus of the disjoint union of two copies
of the Riemann sphere: X = CP' LI CP'. The Euler characteristic of the Riemann sphere is

x(CP') = 2 — 2¢(CP') = 2,
therefore
X(X) = x(CP') + x(CP') =2+2=4.
Using this to calculate the genus of X via x(X) =2 — 2¢g(X), one finds g(X) = —1.

4.2.2 The cut-and-join recursion

Single Hurwitz numbers (and actually, many variations of Hurwitz numbers) satisfy a recursion known as
the cut-and-join recursion. If one had a desire to calculate single Hurwitz numbers (by hand or by computer),
the cut-and-join recursion would be one of the more efficient ways from a not-so-small number of possible
ways to do so.

A sidebar on calculating single Hurwitz numbers. Ways to calculate single Hurwitz numbers include, in approx-
imate order from least to most computationally efficient: by hand(!); via permutations (Theorem 4.2.1);
using the character formula (Proposition 4.2.6); via the semi-infinite wedge (Proposition 4.2.7 or equa-
tion (4.7)); and by the cut-and-join (Proposition 4.2.3).

The cut-and-join recursion was first formulated in genus 0 by Goulden and Jackson [64], but has since been
generalised to all genus, again by Goulden and Jackson [63].

Proposition 4.2.3 (Cut-and-join recursion, Goulden and Jackson [63]). The single Hurwitz numbers satisfy the
equation

mHg (s pin) = D (i + 1) Hy oy (s gi gy 1 + 115)

i<j
1 ~ o — [e) - ¢} hrd
52 2 OB Hiwal(eBis) + D0 Hy s iin) Hy, (B i0) |- (43)
i=1 a+B=p; g1+g2=g
10J=8\{i}

Here S = {1,2,...,n}, and for I = {iy,... i} the shorthand notation [i; denotes p;,, ..., u;, . Further, the
recursion uniquely determines all Hurwitz numbers from the base case Hy1(1) = 1 corresponding to the unique
connected branched cover with no ramification, namely, the identity map CP' — CP').

This can be proven combinatorially via the permutation interpretation for single Hurwitz numbers, by
analysing the result of multiplying both sides of the equation 71 ... 7, = 0~ ! on the right by the transposition
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Tm. Alternatively, this can also be proven at the level of branched covers by considering what happens as
one of the simple branch points approaches infinity. In particular, note that both of these processes are
not sensitive to the ramification over 0 (or elsewhere), and hence variations of Hurwitz numbers (including
orbifold and double Hurwitz numbers) also satisfy essentially the same recursion, but necessarily with
different base cases.

The cut-and-join recursion can also be expressed at the level of the partition function as a differential
equation. First, define the partition function for single Hurwitz numbers as follows:

h2972+n

n' pﬂl'.'pun .

Z(p1,p2,---;h;8) =exp ZZ Z Hom(ul,...,un)32972+”+‘”‘
1

g20n21 p1,. pin =

Then we have the following reformulation of the cut-and-join recursion, obtained using the usual generating
function tricks Goulden and Jackson [63].

Proposition 4.2.4 (Cut-and-join recursion, Goulden and Jackson [63]). The partition function for single Hur-
witz numbers satisfies the following differential equation

o 1 52 0
9 Zpripas. . i his) = = i 4 (i 4 Dpipi—— | Z(p1spas. .. B S),
5520102 )= 3 ;1 Pt G (i + )pip; o (p1, 2 )

with initial condition Z(p1,p2,...;h;s)|,_g = exp(p1).

Obtaining the spectral curve from the cut-and-join recursion

As may be commonly known to those studying topological recursion, the spectral curve often directly stores
the (0, 1) data for an enumerative problem. Define the free energies

Fyn(@1,.omn) = > Hy o (i, pin) exp(mn) - - exp(pinn).

1 seespbn 21
Then, the Bouchard—Marifio conjecture, Theorem 4.1.4, gives
Wygn = dy---dy Fg,n($17 cee azn)a

where d; denotes applying the exterior derivative to the ith variable. In particular,

yde = w1 = dFy () = > He, (1) pexp(pa) da.

pn=>1

One can often solve the (0,1) part of the enumerative problem by taking the recursion in the case of (0, 1)
and expressing this as an equation in terms of 2 and y, leading to an expression for the spectral curve.
Let us see how this works in the case of single Hurwitz numbers. First, recall the spectral curve for single

Hurwitz numbers: z(z) = Inz — z, y(z) = z, or in unparametrised form, e* = ye V.
For (g,n) = (0,1), the cut-and-join recursion (4.3) reduces to
(o] 1 (o] (o)
(1 — 1)H0,1(H) D) Z af Ho,1(04) H0,1(5)~
a+B=p

Multiply both sides by exp(ux) and sum over all x> 1. This yields

S0 - DES s ep(ur) = 3 3 | S 08 H(0) e (9) | explua),

n=1 u>1 |atB=p

or in equivalent generating function form,

Lﬁc — 1} Foq(z) = % LiFo,l(x)r.
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One can either solve this differential equation, or in this case where the spectral curve is already known,
check that the spectral curve satisfies this differential equation. That is, check that 2(z) =lnz —z, y(z) = z
satisfies this differential equation where dF} ;(z) = y dz. To do this, first apply % to both sides,

d? d d d?

C Foi(z) — —For(a) = —Fpq(z) - —
dx? 0.1() dx 0.1(®) dz” dx?

From dFj 1 (z) = y dz, we obtain

d? d 1 d z
F = —y= =
dz? 0.1(2) dxy %fldzy 1—=2
Substituting both of these into the left side yields
d? d z z—2z(1-2) 22
F - —F - = =
dx? 0.1(z) dx 0.1(2) 1—z ~ 1—=z2 1—2’
while substituting them into the right side gives
d d2 22
Bl - . F —
g Foa(@) - o Foalr) = —,

as required.

4.2.3 Hurwitz numbers via the semi-infinite wedge

Single Hurwitz numbers can be packaged via the semi-infinite wedge as an appropriate vacuum expectation.
This section will follow standard procedure to prove this result.

Begin by deriving a character formula for single Hurwitz numbers. A general formula for enumerating
sequences of elements in specified conjugacy classes that multiply to give the identity in a finite group G is
originally attributable to Frobenius [79, Appendix A]. However, rather than providing the result and proof
in full generality, I will instead derive the character formula in the specific setting of symmetric groups.

To enumerate Hurwitz numbers in the context of permutations in the symmetric group (via monodromys;
see Section 4.2.1), we wish to count the number of tuples of permutations (o1, ..., o) such that o; has cycle
type A;, and the cycles of 01 - - - 0, = id. Let C) € ZC|[S,] be the conjugacy class considered as an element
of the centre of the symmetric group algebra corresponding to the partition A of d. That is,

Cy = Z o,
where the sum is over all 0 € S; such that o has cycle type \.? For example,
Cisy = (123) + (132) + (124) + (142) + (234) + (243) € ZC[S4).

The number of such tuples of permutations (o1, ...,0)) that satisfy these two conditions is equal to the
coefficient of C(1y = (1) in the product Cy, - -- C), € ZC[S4].* And indeed, one can calculate possibly dis-
connected Hurwitz numbers this way and recover the connected enumeration thereafter through inclusion-

exclusion.

Example 4.2.5. Calculate the single Hurwitz number H§,(3). The number of simple branch points is
m = 2g—2+n-+|p| = 2. Note that enumerating the number of tuples (71, . .., 7,,) of transpositions satisfying
the conditions given in Theorem 4.2.1 is equivalent to enumerating tuples (o, 71, ..., T, ) of permutations in

2Note that I may use a slight abuse of notation throughout this thesis, where C’ can refer to either the conjugacy class (as a set)
corresponding to A in the symmetric group, or the formal sum of all permutations with cycle type A in the group algebra. I would also
like to note that this abuse of notation is common(!) in the literature, in my experience often without explanation. It’s a wild world we
live in.

3Here C(1) is another slight abuse of notation, denoting C'(4; it is common in this thesis to write (1) in place of (1%).
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the symmetric group where o has cycle type p, 7; is a transposition for i € {1,2,...,m},and o7y - - - 7, = id,
and counting each tuple with weight |Aut pl.

Thus one can calculate g ;(3) using the following.

[CylCs)Cly1y = [C1))((123) + (132))((12) + (13) + (23))?
= 3[C]((123) + (132))((1) + (123) + (132))
=6[C)]((1) + (123) + (132)) = 6 [C(1)|(Cy + C(z)) =

Here I am multiplying permutations from right to left. And so we find that the single Hurwitz number is

|Aut pl s 6 1
= ora ColCe)Can = 551 = 5

Note that the connected and possibly disconnected enumerations coincide for n = 1.
Recall that I aim to obtain a character formula for single Hurwitz numbers. To do this, one can rewrite the
product C, ---C), as a product of orthogonal idempotents F,, ---E, using the fact that that both the

conjugacy classes {C, } and the orthogonal idempotents { £, } form a linear basis for the centre of the group
algebra.

First I set a number notations. Denote by X/ the character of the irreducible representation correspond-
ing to p evaluated on an element of C); dimp = X?l) is the dimension of the irreducible representation
corresponding to p, and p - d denotes that p is a partition of the integer d. For an introduction on the
representation theory of the symmetric group, see the book of Sagan [97].

Then following the steps outlined above yields

k Pi
X
[ClCh, -+~ = [Cn)] H |C>\izdim)\p~E’”]
i=1 v
_ XM X)\k
= Colion 1onl L T
XA XX dim p
=[O0l 10 22 e (Ml = Zx%]
Akd
X5, X5, [dimp
- 01O S [0

|C/\1 |C/\k| Z X)\l X)\k
(dim p)k—2"

The first and third equalities are using the change of basis relation between the two bases for the centre of
the group algebra; that is, Cy and the orthogonal idempotents E,, which are given by
dim p

X5
C,\ = ‘C)\‘ Z dll’l’)l\pEp and Ep = dl ZXK;\C)\,
A

respectively. The second equality is using the fundamental relation for orthogonal idempotents F,E, =
0p,ul,, while the fifth and final equality uses that X€1) = dim p. Thus, the number of tuples of permutations
(01,...,0k) such that o; has cycle type \;, and 01 - - 0, = (1) is equal to

|C>\1| |C>\k| Z X)q X>\k

(dim p)k—2"
In the case of single Hurwitz numbers, by Theorem 4.2.1, the single Hurwitz number Hy ,,(ft1, . .., tin) is
equal to % multiplied by the number of tuples of permutations (o, 71, ..., 7y) such that
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L] 0'7'1 ...Tm = (1);
* o has cycle type (u1, ..., p,) while 7; is a transposition for all ¢ € {1,...,m}; and
o (T1,...,Tm) < Sq acts transitively on {1,...,d}.

If one drops the transitivity condition (since our calculation via the group algebra above imposes no such
condition), then using the calculation above one can conclude that the possibly disconnected single Hurwitz
number can be calculated by a specific version of the character formula. The exact statement is given in the

proposition below, and has used that the size of the conjugacy class corresponding to . is

d!
C = - n .
Cl |Aut pof TT;y pi

Proposition 4.2.6. The disconnected single Hurwitz number Hj , (j11, - . ., 1) satisfies

1 “0(271 ,,,,, 1) X/()Q,l,...,l)}
H.n/’bw'wp“n = n . Xp' (4’4')
g, ( 1 ) m!d! Hi:1 i p (dlmp)'m,—l ©

The character formula calculates possibly disconnected Hurwitz numbers because, while all other conditions
given in Theorem 4.2.1 are satisfied, the character formula does not enforce that (7y,...,7,) < Sy acts
transitively on {1,2,...,d}.

We can now use the character formula of Proposition 4.2.6 to derive a vacuum expectation for single Hurwitz
numbers using the semi-infinite wedge. First, define the following generating function for disconnected single

Hurwitz numbers

=D Hy (1, ) s (4.5)
gEZL

Proposition 4.2.7. The generating function for disconnected single Hurwitz numbers h;(s) is equal to the following
vacuum expectation in the semi-infinite wedge.

he(s) = <exp (al) exp(sF2) ﬁ au;“> (4.6)

i=1 v

Here, the bosonic operators, a4, and the diagonal operator Fo are defined in Definition 1.3.4 and equation (1.10)
respectively.

Proof. Consider the action of the product of operators e®1/%es*2 [ & —..+ on the vacuum vector.

o (%) 7 TT i = s (2 ooy -

i Ak

( ) Z .7:2 Uy
=23 exp (21) a0

i= 1#1

I
g
3

=
@D
é

m=0 A |p|
_ Xp " )™~ of
=22 >
1" 1/11 m! sk k!
m20 A= |p| &M= k>0

The first equality is using the Murnaghan—-Nakayama rule, Theorem 1.4.3. The second and fourth equalities
are expanding exp(sF2) and exp(«;/s) as power series respectively. The third equality is using the fact that
F> is diagonal with eigenvalue f3(\) for the eigenvector vy, and f3(A) in turn is given by the sum of the
contents of A as a Young diagram. For a Young diagram corresponding to partition ), the content of a box
in column j and row ¢ is j — 4.
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Recall that we are calculating the inner product

<exp <%> exp(sF2) ﬁ a;“ >7

(3
1=

hence, only the summand in the sum over k with & = |A| will provide a non-zero contribution. In this case

n

(o (%) o) [[ ) = 3 5 i SO0 b

i=1 m>0 A-|p| + 1= 1 M k>0
/\ ™M f2(>\)m a|1)\‘
- Z Z e m! ST AL
m>0 A |p| L= ’

Xy 8™ f2(A)™ dim A
=2 2 17 772@! ST

m>0 Aju| 1= 1“’

The third equality uses that <a‘1A|v,\, vy) is equal to the number of standard Young tableaux of size A, and

that this in turn is equal to the dimension of the irreducible representation of the symmetric group labelled
by A. That is, (ozll)‘lw\, vg) = dim A. Now use that, as defined in equation (1.11),
1C2,1,....2) ‘X(z 1,...,2)

dim A '

fa(\) =

This allows us to rewrite the vacuum expectation

m

n 1Clan,..2) X2

<eXp (O; )eXp(SB)H a_,“> 2 2 rd Hz s (dim A)m—1 X s

=1 m=>0 )\Hp,|

- Z Hg 7n Mlv"'vﬂn)sm_m‘ = hl.?(s)v

m=0

as required. The first equality is using the character formula in Proposition 4.2.6 while the final equality is
using the definition of the generating function h;(s). |

Thus, single Hurwitz numbers can be packaged as a vacuum expectation in the semi-infinite wedge, and as
we will see in the subsequent section, the semi-infinite wedge provides a suitable environment for proving the
polynomiality structure of single Hurwitz numbers. To prove this polynomiality structure, we will rewrite
the vacuum expectation for single Hurwitz numbers using the £-operators defined in Definition 1.3.6. This
is what is being done in the next lemma.

Lemma 4.2.8. The generating function for disconnected single Hurwitz numbers h(s) is equal to the following
vacuum expectation in the semi-infinite wedge:

7:5 )

h;(s)zﬁ > H”Z 3 ]<5_k1<ms)---E_kn(uns)} (4.7)

=M g T =0 it

/2 —z/2

where S(z) = <2 = €——=2—— and £,(z) is as defined in Definition 1.3.6. Or, alternatively,

hii(s) = (Cpa,8) -+ Clpn, 5)),

where

r—k S)H—Fk
Clu, s) = i; Wg_k(us).

Proof. Begin with the vacuum expectation for the generating function h/'j(s) given in Proposition 4.2.7,

n

h(s) = <exp(a1/s) exp(sFa) H Ao >

i=1
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Observe that exp(—sF2) exp(—a1/s) fix the vacuum vector. This allows us to write

. 1 -
h5(s) = =m < H exp(ai/s) exp(sFa)a—,, exp(—sF2) exp(—al/s)>.
Hi:1 Mg N
One can compute the inner conjugation by observing that a_, = £_,,(0) and F» = [2%]&(z), and using

Hadamard’s lemma, given below as equation (4.8), coupled with the commutation relation (1.9) for the
E-operators, [E,(2),E(w)] = c(aw — bz)Euyp(z + w). Or, alternatively, observe that the operator Fs is
diagonal with eigenvalue f2()\) corresponding to the eigenvector vy. As mentioned previously, the function
f2(X) is equal to the sum of the contents of the Young diagram given by the partition A. In this case, for
any partition A,

68]:2 sFo

a_pe 2y = 678}02()\)68]:20[_“1})\ = e 52(N)esh2 ZU)\Jru
Atw
u s (Bl
- Zes(h(’w )_fQ()\))U)\+u = Z € u(k+2) Yty VA
Atw ket i
= E*M(MS)’
where the sum over A™* is over all Young diagrams that can be obtained from adding a p-ribbon to \.*
Hence,
. 1
h%(s) = l_[7’u<1_[exp a1/8) E_,, (pis) exp(— a1/5)>
i=1

Compute the outer conjugation using Hadamard’s lemma,

:B+Z%[A,[A,...,[A,B]--.H, (4.8)

k>1

where there are k£ commutators in the £th summand. Doing so gives

expl(an/5)E_u(ps) exp(—afs) = 3 U e ()

mls™
m=0
Therefore,
LJ 1 -
hi(s) = W< [T exp(ar/s) €, (ss) exp(~ai /5))
=15 7=
n g
= H 11 <H Z s ,SmL m+7m(ﬂ’i3)>
i=1Hi it

i=1m; >0

:H% > [H’“ ‘“ ]<€k1<ms>~-ekn<uns>>

i 1“1k+ +k,=0 Li=1
= (Cp1,8) -+ Clpn, 5))

The third equality above has relabelled m; — p; —k; for i € {1,2,...,n} and used the fact that the energies
of the £-operators must sum to zero for the vacuum expectation to provide a contribution. The fact that
k; < p; stems from m; > 0. |

4.2.4 Polynomiality of Hurwitz numbers

This section is dedicated to proving the polynomiality structure of single Hurwitz numbers that was in-
dicated at the start of this chapter. It may be interesting to note that the polynomiality of single Hurwitz

This latter proof that the conjugation of ar_,, by e°72 leads to the E-operator is somewhat more enlightening than the route via
Hadamard’s lemma; and in fact, it gives some sort of justification for the definition of the £-operator itself.
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numbers was not originally proved using this method, but was proven as a direct corollary of the ELSV
formula, Theorem 4.1.3. Of course in the setting of single Hurwitz numbers, where the ELSV formula was
proven using algebro-geometric methods and polynomiality is a direct consequence, it is not necessary to
resort to proving the polynomiality structure via the semi-infinite wedge. However, in analogous or gener-
alised settings, obtaining an ELSV-like formula for Hurwitz-type enumerations is a daydream, and hence it
is desirable to prove polynomiality another way.

So far, the primary way of doing such a task has been via the semi-infinite wedge; this has been done for
orbifold Hurwitz numbers [40], and double Hurwitz numbers (this is the content of Chapter 6). However, a
complete and accurate proof of the polynomiality of single Hurwitz numbers using the semi-infinite wedge
is lacking. For this reason, I lay out the method here; I do this not only for a sense of completeness, but as a
demonstrative tool. My approach is necessarily a specialisation of the results mentioned above for orbifold
Hurwitz numbers and double Hurwitz numbers.

One might question why polynomiality-like structures for these types of enumerations is so highly sought-
after. The most pertinent reason in recent times is that polynomiality, or a polynomiality-like structure, is
a necessary ingredient to prove that an enumeration is governed by topological recursion, which can then
lead to deeper geometric information on the original enumeration.

Theorem 4.1.2 (Conjectured by Goulden, Jackson and Vainshtein [65], proven by Ekedahl, Lando, Shapiro
and Vainshtein [43]). For 2g — 2 4+ n > 0, there exist symmetric polynomials P, ,,(j1, ..., ftn) such that

n i
o M
Hg,n(/”'lw-'vun): lH /~L"

Pg,n(/”'h s 7“71)

i=1

Proof. First, fix po, ..., u, to be positive integers. The aim of the proof is to consider the dependence of
h%(s) on pu, then to use the symmetry of H ,(y1, . .., pin) to deduce polynomiality in fia, . . . , fin.

The main steps of the proof are as follows.

1. Use the vacuum expectation from Lemma 4.2.8 to show that, aside from the combinatorial factor
present in (4.1), h%(s) is a rational function in y; with at most simple poles at iy = —j for all
je{l,2,...,u2+ -+ pun} and a double pole at p; = 0.

2. Study the residues of h3(s) at u1 = —jfor j € {1,2,...,u2 + - + pp} and j = 0 (Lemmas 4.2.9
and 4.2.10 respectively) to conclude that H{ , (u1, ..., it,) is indeed polynomial in p;.

3. Conclude the polynomiality structure of single Hurwitz numbers by invoking the symmetry of the
Hurwitz number in p1, ..., fy.

Begin with the vacuum expectation from Lemma 4.2.8,

no piki g ik
)= 3 |I1" (,f(_“;) ]<6_k1<u1s>...5_kn<uns>>,

. A
[Tizy i ki +k,=0 Li=1 i)t

and focus on the dependence on ;.

The fact that the leftmost £-operator acts on the covacuum dictates that k; < 0 for the vacuum expectation
to be non-zero. Further, from the proof of Lemma 4.2.8 we have that —k; = —u; +m; for m; a non-negative
integer, hence it follows that —k; > —pu; for all i € {2,...,n}. Therefore, using k; = —ko — --- — k,, gives
us the following bounds on k;:

—pe — o — pin < k1 < 0.
Relabelling —k; — k, one can write

Mot pin k—1
’ P TS ()t

(1 +Fk)!

he(s) = (Expns)Clpz, )+ Clpns5))

k=0

M1
= T (B11,9) iz 5) -+ Clpnss)), (+9)
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where
+ot _
H2 " k 13(u18)“1+k

B(p1,8) = 2 (1 + 1) (u1 + k)

Er(ps).

Observe that the combinatorial factor % is present, and that B(u1, s) is a finite linear combination of

E-operators whose coefficients are power series in s. Hence, for each fixed power of s, its coefficient in
B(p1, s) is a rational function in ;1 with, as stated above, at worst simple poles at negative integers, and a
double pole at zero.

Hence, to deduce the polynomiality of the connected single Hurwitz number Hy , (pi1,. .., in) in g, it
remains to prove that, after inclusion-exclusion has been applied to obtain the connected contribution and
the coefficient of s has been extracted, the resultant single Hurwitz number is no longer a rational function
in p; but a polynomial in p; (with the combinatorial coefficient). This can be shown by considering an
appropriate residue of (B(p1,$) C(p2,$) - C(pn, s)) at uy = —jfor j € {0,1,...,ua+ -+ pin}.

I will now prove two mini-lemmas concerning the poles. Lemmas 6.3.7 and 6.3.8 in Chapter 6 are the
analogous results pertaining to the residues in the more general setting of double Hurwitz numbers.

Lemma 4.2.9. Fix pio, ..., iy to be positive integers, and fix n > 2. Then forall j € {1,2,... o+ -+ + pn},

Res.<8(u1,s)ﬁ(3(m,s)>du1 F(j )<exp(a1/s)exp(s]-'2)a]exp( sFa)exp(—ai/s) HC (i, s >
i=2

H1==—] i

where F(j) = JJ—?
Proof. Given that h(s) has at most simple poles at 1 = —j for j € {1,2,..., 2 + - + pn}, one can
calculate the residue of (B(u1,s) [, C(ui, s)) at g = —j by multiplying by (u; + j) then taking the limit
11 — —j. That is,

n potFpn k—1 k n
: . py S(uis)t
R B(u1, C(ui,s) )duy = 1 & Cpis .
M:egj< (2 S)g (1,5) )i i (1 + ) 2 (u1+1)~--(u1+k)< k(u18)g )

This is non-zero only when j € {1,2,...,u2 + -+ + pun}. For any given summand, if j > k then that
summand will not contribute to the residue. For this reason, I can rewrite the above as

Res (B(ju,s) f[cw, $) Y

pot-tpn k1 . .
— 1 W S(le)ﬂl-i' 3y
i kz_] (u1+1) - (1 +1j “ (@ g+ 1) (ur + k) <5k(uls)i_H2(1(u“ )>
pottpn 1 (7j)k718(*j5)7j+k . n
S L TEDoD 1eien <5k<—gs)i1_12c(ui,s)>
_ (_j)j—l pote et iy (_j)—j+k8(_js)_j+k ' n |
"G ) = Togeh (e lew)

On the other hand, apply the techniques from the proof of Lemma 4.2.8 to rewrite

exp(a1/s) exp(sFa)a exp(—sFa) exp(—ai/s) = exp(aq/s)Ej(—js) exp(—ai/s)
= Z %gjﬂﬂ(_js)

m=0
J+k:$ js) —Jj+k

= Z it k;) Er(—Js).

k>j
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An upper bound on k, namely £ < p2 + -+ + pp, can be deduced when considering the overall vacuum
expectation (E,(—js) [[;—, C(ui, s)) by making the same observations as at the start of this proof. Defining

N ) (—5) _7
2 o et ey Rl [ T PR e VR

concludes the proof of the lemma. |

To state the next lemma, I require the notion of a connected correlator. Define the connected correlator of
a tuple of operators (Oq,...,0,), denoted (O ---O,)°, to be what one obtains from applying inclusion-
exclusion to the disconnected correlator. That is,

[M|
(0100 = 3 (=M = ) [(Bw), (4.10)
MH{1,...,n} i=1

where O]y[i = HjEJWi Oj.

Lemma 4.2.10. Fix po, . .., iy, to be positive integers, and fix n > 2. Then,

Res u1<3(u17 s) f[C(un 8)> dps = Eg§)u1<3(u17 5)>< ﬁc(ui, 8)> dpr,

p1=0

and hence, applying the inclusion-exclusion formula to obtain the connected contribution yields

Res u1<3(u1, ) z_1;[20(/% S)>Odu1 =0.

Proof A pole at p3 =0 of

b4y _ .
T T S (st

<B(m,8)i_ﬁ2(3(um)> = kz:o ESIENEY) <5k(M18);1_LIZC(Mz‘,S)>

can only occur in the summand corresponding to k = 0, for which the contribution of B(j1, s) is given by

iS(uls)“l&)(uls). Given that &y(uq, s) is acting on the covacuum, (& (p15)0) = m((’)), and since

1 1 uis  Tu3sd

s(p1s) - nis 24 5760 o

the k£ = 0 summand will contribute a double pole at zero, with zero residue. We can compute the coefficient
of the double pole by calculating the residue of 11 (B(p1, s) [T\ 5 C(1s, 5)) as follows.

n 1 n
. — _ M1 .
Res i (Bl 5) Z-ZHQC(M“ ) Yy = Res p1--5(ns) (€o(1urs) [T ¢, $)) dpn

=2

1 1 N
= Res u1 —8 f C(us,8))d
it 1 (h15) s(p18) < 1:1_12 (1 S)> a

= Egso H1 is(ms)‘“ <50(M18)>< H C (s, 8)> dpa

= Res (B, ) ) [T Cluis ) ) iy

11 =0
K1 i—9

(4.11)

The final equality is using

pot- A n Mk—ls(uls)ltl-l—k

(Bn.s)) = 3 SO (61 ) - iS(MS)m<go(ms)>.
k=0
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Consider the connected correlator (B(u1,s) [}, C(us,s))° by applying inclusion-exclusion to the discon-
nected correlator (using Equation (4.10)) then take the residue to obtain

Res u1<B(u18) gc(ui, s)>odu1

| M|
- _1)IMI | m 7
=Resp > (=D)MMNB(ms) Cliin, 9) [ [(C G ) dpu,
NC{2,...,n} i=1
ME{2,...,n}\N
where, for M; = {iy,...,ix}, C(fin;, S) is a convenient shorthand notation that denotes H§:1 C(ui;, ). Use
the result (4.11) above, which is true for any n > 2, to obtain
Eg%#1<3(#13)i_n20(m’8)> dpa
| M|
—Resu Y0 (-)MIMIBGn ) CGn9) [ (€, o) i
NC{2,....n} i=1

MH{2,...n}\N

Each term in this sum arises twice: once for N = {, which occurs with coefficient (—1)/™!|M|!, and | M|
times when N = M; for all i € {1,...,|M|} and each of these arise with coeficient (—1)IM|=1(|M| — 1)!.
Thus, all terms cancel whenever n > 2. |

It now remains to conclude that H_gm(ul, .++, lin) is polynomial in p;. To do this, I will combine the above
results, extract the appropriate coefficient of s from h3(s), and apply inclusion-exclusion. As with the case
of double Hurwitz numbers in Chapter 6, it will be necessary to consider the casesn =1,n =2,and n > 3
separately.

Case n = 1. When n = 1, the connected and disconnected enumerations coincide Hy (1) = Hg (1) =
Hg1(p). Also, the case (g,n) = (0,1) constitutes one of the so-called unstable terms, and is omitted from
the statement of polynomiality (along with (g, n) = (0, 2), which will be explicitly considered below) for the
obvious reason — it is not polynomial. And in fact it is known [69] that

prtor i

Hoalw) =12 = =y

I will show that
ooow | .
hﬂ(s):ﬁ E‘FZPM(N)SQQ i
g=1
where P, (u) is a polynomial in p for all ¢ > 1, which implies that Hy(u) = 41 and Hyq(p) =

pop
L“

ﬁT! 9.1 (1)-
By equation (4.7) from Lemma 4.2.8,

L pH Lo 1 L p# 1
hi(s) = — —=8S(us)*(Eg(us)) = — —=S(us)* = ——=8(us)*
u(s) v (k)" (Eo(ps)) o ( )g(us) s (ks)
1yt 2.2 44 n=1
ey N R
s p! 24 1920
w1 s (=1 @-DE=2) 5.
e 1= |
! [,ﬂs““ )24+( 1920 T 224 prst

Hence,
3 JTL MH—?’
H =[shu(s) =~ — =
0 1(/1‘) [S } M(S) ,[L' ‘uz (,U — 1)'7
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as required. For general genus when n = 1 we have 2g —2+n =2g — 1, so

_ 1 /U'# ‘u252 ﬂ434 pn—1
Hyq1(p) = [s*""hu(s) = [s¥]—— (1 + 51 + 1920 4. .

Letting cor, = [2%¥]S(2), I can write
I I
Hoa(i) = 20272 3" gy o eaa; = B Py (),
! _ !
ai+---+a;=g
where P, (1) is a polynomial in p for g > 1. This concludes the proof of polynomiality for the case n = 1.

Case n = 2. Begin with equation (4.9) specialised to n = 2,

M1 K2 p1t+k—1 s pi+k
hi(s) = ‘;11, (B, 9)Cluz,s)) = - 14 o ij“lj),) (E0(ms) i, 5)),
: k=0 1 :

and now consider the possible structure of the poles. I have already deduced that the only possible poles
in pg are at 0,—1,..., —u9, but Lemma 4.2.10 eliminates the possibility that the connected single Hurwitz
number has a pole at ;1 = 0. Considering the poles at negative integers, Lemma 4.2.9 gives

Res (B(u1,5) Clrua, ) dpn = F(j){ explan/s) exp(sF)ay exp(—sF2) exp(—ar/5)Clua, 5))

= FG){ explon/s) exp(sFo)o; 22 )

= F(§) 651 (4.12)

where the last equality is using the commutation relation [a;, _,,,] = p20; .., along with the facts that o
annihilates the vacuum, and exp(«1/s) and exp(sFz) both fix the vacuum.

Therefore, the only residue contributing to H, o(jt1, pt2) arises when p1; = —po. Look again at equation (4.7),
in the case of n = 2,

1 TS (s R k2R S (g s) e ke
ht Y e 57 S 5, S
i(s) Hipe, 5=, [ (1 — kp)! (12 — ko)! < key (1015) E_y (12 )>
1 | RS (us) i tr RS () 2k
N & s)E_ S) ).
p iz k—O[ (o + k)t (2 — k)! (E6ms) €4 (o))

Here, the second equality is using the fact that k = —k; = ks is bounded by 0 < k& < pg. The inclusion-
exclusion formula in Equation (4.10) in the case of n = 2 reads

(€ (21) E-r(22))° = (Er(21) E-k(22)) — (Ek(21)) (E-r(22))-

Thus, because (€;(z)) vanishes unless k& = 0, to pass to the connected generating function it suffices to
remove the k£ = 0 term from the summation. That is,

1 H2 ‘uul-‘rks(uls)ul—&-k’ MM_kS(/AQS)“?_k R
he(s) = 1 2 < e s -
) fia o2 kz::l (b1 + k)t (n2 — k)! < k(p8) E-rpz >>

A residue at y1y = —p2 can only occur when k = i, so to analyse the pole it is sufficient to consider only
the k = po term in the sum. That is, consider

1 lwitl-HLQ
i G S 1) s 9) - (29))°
— Lﬂg(ms)mwz (g1 + p2)pizs)
pa p2 (p + pr2)! S((p1 + p2)s)
1 MlltlJr/Lz

/‘%82 4 4 e /1'% 1 2.2 4. 4
R ZEE— 1+ +O/L 1+ 1z —+ W —I—O M —‘r-/L .
M1 12 (/Ll + /LQ)! < 24 ( 18 )> ( 24 ( ! 2) 5 (( ! 2) 5 ))
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The second equality is using the commutation relation for the £-operators given in equation (1.9) in Chapter 1,
[Ea(2), Ep(w)] = s(aw — bz)Eq4p(z +w), along with the fact that (Ey(z)) = ﬁ Observe that the coefficient
of sk for any k > 1 will necessarily include a factor of 11; + p2. Combine these facts to conclude that, for
g=1

py
Hgo(pa, p2) = ! P/ (1)

where P (1) is a polynomial in y;.

Although it isn’t central to this proof, I also deduce the unstable term, H&Q(ul,pg), for posterity. First,
extract the coefficient of s from h%(s). Using that £;(0) = a I have

[s°) S (p18)"HFS (nas) 2~ (Ex(prs) E-k(pzs))® = S(0) S (0)2"H g ap)® = k,

therefore ; T i
2 (L 1] L2 — K
H o, o) = [$0] h3(s) = —— 30 MLy
’ pr pro =4 (i + k)Y (p2 — k)

Next I calculate the residues for y; = —j where j € {1,2,..., ua2}. By (4.12), for j # uo,

Res Hg o (p1, p2) =0,
H1==J

while
1h*
Res (Blu,s)Clua,s) ) dpin = Fiz) = “2
H1=—H2 M2t
Hence, I can conclude that
H1 o M2 H1 o M2
o My 1 I 1
HG o (p, pig) = == =2 P(py) = =2

+ 1) — 9
prl pal p + p2 prl pal g+ p2

where P(y1) some polynomial in j;. The final equality is using the fact that H o(1, p2) is symmetric in
p1 and po to conclude that P(u1) = 0. The final expression aligns with the formula deduced by Goulden
and Jackson [64].

Casen > 3. Again, begin with equation (4.9),

M1
he(s) = ‘;11' <B(u1,s)C(u2,s) . -C(un,s)>. (4.13)

Lemma 4.2.10 gives that any poles of h5(s) at 1 = 0 are cancelled via the inclusion-exclusion process.
Use Lemma 4.2.9 to consider the residue at negative integers. That is,

n

Res, (B, [1€0s ) din = FG){ explens /o) explaF)o exp(=sF) exp(—ca /o) [] o))

H1==—] i

= F()( explan/s) explsFaa;= e - S,

Commute «; to the right. The bosonic commutation relation, [a;, «_,,] = jJ; ,, implies that the residue
vanishes except if j = uy, for some k € {2,3,...,n}. In this case, the residue becomes

. a_ . a_,, N
Gy F ) exp(an /) exp(sF) =22 oo @y oo ) = 63, F() [T Cou ).
iz
On the right side, the notation &, denotes that we exclude ,, from the product. This simple pole at
t1 = —p cancels via inclusion-exclusion with the simple pole arising from the term

(B )¢, ) { T €l )

1=
i£k



60 4. Hurwitz numbers

Indeed, by Lemma 4.2.9,
Res (B, 9)Clue. ) T €0m ) yis = ) { explen /5) exp(sF)e, ) (T 5))
=2

n
= f () < [T et 8)>-
iZk
Thus, for n > 3,
H1

o M
Hg,n(lula s 7/’[’”) = ﬁpg,n(ﬂl)

where P, ,(111) is a polynomial in /4.

Conclude the polynomiality structure for all y, ..., u, by invoking the symmetry of Hy ,(p1,. .., i,) in
M1, .., in; sSee Theorem 6.3.11 for a generalised version of this statement. |

Note that I do not prove the condition that Py ,,(ut1,. .., itn) is degree 3g — 3 + n.

4.2.5 Data

4.3 Generalisations and variations

As discussed in the introduction of this chapter, since the profound results regarding single Hurwitz num-
bers were discovered, many Hurwitz number generalisations and variations have been defined and similarly
studied. In particular, mathematicians have aimed to deduce a polynomiality structure, topological recur
sion, and an ELSV-like formula for many such problems. Some generalisations and variations that have
been prominent in the recent literature are double Hurwitz numbers, monotone Hurwitz numbers, and spin
Hurwitz numbers.

4.3.1 Monotone Hurwitz numbers

A particularly interesting variation of single Hurwitz numbers is given by the monotone single Hurwitz numbers.
Whereas single Hurwitz numbers can be described as the number of ways to factorise a permutation with a
given cycle type into transpositions, (weakly) monotone Hurwitz numbers impose an extra condition where
the factorisation by transpositions 7y - - - 7,,, is monotone; that is, if 7, = (a;,b;) is written conventionally
with a; < b;, then by < -+ < by,.

Definition 4.3.1. The weakly monotone Hurwitz number HS, (111, ..., pin) is equal to 1/d! multiplied by the
number of tuples (71, ..., 7, ) of permutations in the symmetric group Sy such that such that

o 7T = (1);

* the cycles of 71 - - - T,are labelled 1,2, ..., n such that cycle ¢ has length u; for i € {1,2,...,n};

o (T1,...,Tm) < Sq acts transitively on {1,2,...,d}; and

o if 1y = (G,Z' bz) with a; < b;, then by < -+ < by,.

The monotone Hurwitz numbers first appeared in the literature in a series of papers by Goulden, Guay-
Paquet and Novak, where monotone Hurwitz numbers featured as coefficients in the large N expansion
of the Harish—Chandra-Itzukson—Zuber (HCIZ) matrix integral [60, 61, 62]. Monotonicity is also natural
from the viewpoint of Jucys-Murphy elements in the symmetric group algebra C[S;] and the representation
theory of the symmetric group Sy [72, 85, 93].

Since their debut in the literature nearly a decade ago, monotone Hurwitz numbers have made recurring
cameos, in particular on two occasions relevant to this thesis. First, monotone Hurwitz numbers were
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proved by Do, Dyer and Mathews [31] to be governed by topological recursion applied to the spectral curve

(CP', z,y) with
z—1 dz; dzg

s y(z) = —%, W0,2(21722) = m

x(z) =

Second, Borot, Charbonnier, Do and Garcia-Failde [6] and Borot and Garcia-Failde [11] used monotone

22

Hurwitz numbers to prove a relation between ordinary maps and fully simple maps; this relation forms the

basis for the research presented in Chapter 7 on fully simple maps.

4.3.2 Spin Hurwitz numbers

One other variation of Hurwitz numbers that has attracted attention recently is the r-spin Hurwitz number.
The r-spin Hurwitz number enumerates ramified genus g covers of CP" with prescribed ramification over co
and all other ramification is given by (r + 1)-completed cycles.

First note that here I am referring to the spin Hurwitz numbers introduced by Shadrin, Spitz, and Zvonk-
ine [102], not the enumeration that was introduced by Eskin, Okounkov and Pandharipande [44] and has
also been referred to as “spin Hurwitz numbers” by Giacchetto, Kramer and Lewanski [59]. Second, I do not
define a completed cycle, to do so would take me too far afield of the scope of this chapter; for a description
of completed cycles, see previous work of Okounkov and Pandharipande [92].

Definition 4.3.2. The r-spin Hurwitz number H , (11, ..., in) is a weighted enumeration of isomorphism
classes of connected genus g branched covers of the Riemann sphere f: (C;p1,...,pn) — (CIP’l; 00) such
that

+ the point p; € f~!(co) has ramification index y; for i € {1,2,...,n}; and
« all other branching is given by (r 4 1)-completed cycles, and occurs at m fixed points of CP'.

The weight of a cover is given by
1

(ry™ |Aut f|’

where Aut f is the group of automorphisms of f.

By the Gromov-Witten/Hurwitz correspondence, r-spin Hurwitz numbers are relative Gromov—Witten in-
variants of CP* [92].
4.3.3 Deformed Hurwitz numbers

I finish off this chapter with a new variation of Hurwitz numbers, arising from joint work in progress with
Norman Do, which we call deformed Hurwitz numbers. First, fix d to be a positive integer.

The motivation for this enumeration was to create an analogue of an enumeration with arbitrary internal

faces as in the setting of maps and ribbon graphs.

Definition 4.3.3. The deformed Hurwitz number H  ,, (11, . . . , i) is a weighted enumeration of isomorphism
classes of connected genus g branched covers of the Riemann sphere f: (C;p1,...,pn) — (CP'; c0) such
that

« the point p; € f~!(co) has ramification index y; for i € {1,2,...,n};
¢ every other preimage of co has ramification order at most d; and
« all other branching is simple and occurs at m fixed points of CP'.

We say that the points pq,...,p, are the marked preimages of oo, while all other preimages of oo are
unmarked. The weight of a cover is given by

L ™ nn) | yralh)
|Aut f| m! d

where Aut f is the group of automorphisms of f, m is the number of simple branch points, and, for

)

i€{L,2,...,d}, r;(f) denotes the number of unmarked preimages of co with ramification order i.
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The deformed Hurwitz number H (i1, . ., it,) is a formal power series in the ring Q[[s; t1, . .., t4]].

One can ask whether this enumeration satisfies similar properties to those satisfied by many other Hurwitz
enumerations. That is, does it satisfy a polynomiality structure; is the enumeration governed by topological
recursion; can the enumeration expressed via intersection theory on moduli spaces of curves.
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Chapter 5

Local topological recursion governs the

enumeration of lattice points in M,

5.1 Introduction

In this chapter, I prove that a certain enumeration of lattice points in the Deligne-Mumford compactifica-
tion of the moduli space of curves is governed by local topological recursion. Local topological recursion,
first introduced by Dunin-Barkowski, Orantin, Shadrin and Spitz [42], is a generalisation of the topological
recursion of Chekhov, Eynard and Orantin (CEO) [25, 52]. In the last 15 years, CEO topological recursion
has been revealed to govern a vast array of problems and has thus garnered significant attention. Its con-
temporary generalisation, local topological recursion, has also sparked some interest but remains largely
uninvestigated and its benefits over CEO topological recursion are yet unclear. In this chapter, I provide
one of the first instances in which local topological recursion is related to a natural combinatorial problem,
and in particular, one which captures some of the geometry of the moduli space M, ,,.

The moduli space M, ,, has a rich structure and has been widely studied due to its ties to many areas of
mathematics and physics. It was shown by Norbury [88] that a certain enumeration of lattice points in the
uncompactified moduli space of curves M, ,, is governed by CEO topological recursion. Yet through its
aforementioned applications to other fields—algebraic and hyperbolic geometry and mathematical physics
are some examples—the Deligne-Mumford compactification proves to be the inherently more natural object
to study. In this case, one might ask whether an analogous count in M, , also obeys the recursion of
Chekhov, Eynard and Orantin. In fact, Do and Norbury [35] defined an analogous count of lattice points
in the compactified space M, ,, but were unable to prove that the enumeration satisfied CEO topological

recursion, stating:

“Tt would be interesting to know whether the compactified lattice point polynomials can be used to define
multidifferentials which also satisfy a topological recursion.”

However, it has not been investigated whether the lattice point enumeration in M, ,, is governed by local
topological recursion. Thus, the primary motivation of this chapter is to prove that the enumeration
Ngn(bi,...,b,) defined by Do and Norbury [35], when stored as coefficients in a multidifferential power
series, is governed by local topological recursion. The key result is the following theorem.

Theorem 5.1.1. For(g,n) satisfying2g—2-+n > 0, the correlation differentials resulting from applying topological
recursion to the spectral curve (C*, x,y,wo 2) with

1 dz; d dz; d
W) =st s, yE)=a wealmm)= T

(5.1)

z1 — 22)? 21 %2

satisfy

n

won(21, . 2m) = 3 Nga(br,...,by) [I0:]20 " das.

biyerosbn =0 i=1

Here, we use the notation [b] = b for b positive and [0] = 1.

65
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The spectral curve in Theorem 5.1.1 is local in the sense that the input data cannot be extended to the
compact Riemann surface CP! such that wo,2 satisfies the conditions necessary for CEO topological recur-

“«

sion. Dunin-Barkowski [37] writes “... local topological recursion (to the moment) lacks interesting applications or
profound meaning separate from what originates from ordinary (global) topological recursion.” Yet the key result of
this chapter demonstrates that local topological recursion governs a natural enumerative problem which is
not governed by CEO topological recursion. Moreover, this phenomenon has been discovered elsewhere,
such as in the work of Andersen, Borot, Charbonnier, Delecroix, Giacchetto, Lewanski and Wheeler [3], in
which they relate Masur—Veech volumes to local topological recursion using the Airy spectral curve with a

specific choice for wyq .

Relevant background for this chapter, specifically, the definition of the enumeration of Do and Norbury
Ng’n (b1,...,by), is given in Section 3.3.1 of Chapter 3 (in particular, see Definitions 3.3.2 and 3.3.3). This
background section describes the way in which N ,, (b1, . .., b,,) enumerates lattice points in the compactified
moduli space of curves M, . Further, it shows that N, (b1,...,b,) can be equivalently defined as a

weighted enumeration of stable ribbon graphs.

In this chapter, Section 5.2 presents the local topological recursion as well as relevant calculations specific
to the spectral curve (5.1) in Theorem 5.1.1. Section 5.3 then contains the proof of Theorem 5.1.1.

The work in this chapter is a product of collaboration with Anupam Chaudhuri and Norman Do [24].

5.2 Local topological recursion

5.21 Definitions and background

Recall from Chapter 2 that CEO topological recursion has as input a spectral curve (C, z,y,T) consisting of
a compact Riemann surface C, two meromorphic functions x and y defined on C, and a Torelli marking 7" on
C [25, 52]. The CEO topological recursion then recursively outputs correlation differentials w, ,, for g > 0
and n > 1. In particular, wy 2(21, 22) is defined implicitly by the fact that it has double poles without residue
along the diagonal z; = 23, is holomorphic away from the diagonal, and is normalised on the A-cycles of
the Torelli marking. The assumption that C is compact implies that wg 2(21, z2) is uniquely defined by the
spectral curve data.

In contrast to this, local topological recursion does not require a compact Riemann surface as part of the
initial data [42]. It was observed that CEO topological recursion only utilises local information around each
of the branch points (where dz vanishes) and hence one can instead define local neighbourhoods D; with
canonical coordinates around each of the N branch points and the underlying Riemann surface becomes
D, U Dy U---U Dy, without mention of a way to glue these neighbourhoods together to form a compact
Riemann surface. In this case, wg 2(21, 22) is no longer uniquely defined and must be included as part of
the initial data.

Here, I introduce a definition of local topological recursion which is specifically suitable for use in the context
of the lattice point enumeration; one can find a more general formulation in the work of Dunin-Barkowski,
Orantin, Shadrin and Spitz [42].

Define a local spectral curve (C,x,y,wp 2) to consist of a Riemann surface C, which may be non-compact
and disconnected; two meromorphic functions z,y: C — CP!'; and a bidifferential wo,2 which has a double
pole at z; = 2> and is holomorphic away from the diagonal. And, as in the definition of CEO topological
recursion, we require that the zeros of dx are simple. (Note that due to the work of Bouchard and Eynard
[13], we now know that this last condition is not strictly necessary, however I impose it here for simplicity.)

Define the base cases of the recursion to be wg 1(z) = —y(z) dz(z) and wp 2 where the latter is defined in
the initial data. And finally, define the recursion to be as in Chapter 2 for CEO topological recursion: for
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(g,n) satisfying 29 — 2 4+ n > 0, the correlation differentials w, ,, are defined recursively to be

o
wgn(21,2s) = ZE{ZGQSKa(Zl,Z) Wo—1,n+1(2,0a(2), Z5) + Z wg1,|1\+1(zaZl)wg2,|J|+1(0a(Z)aZJ) )

o 91+92=g

IuJ=s
(5.2)
where S = {2,3,...,n} and Z1 = (2;,,...,2;, ) for I = {i1,...,ir}. The outer summation is over all zeros
o of dz, while o over the inner summation denotes that we exclude all terms including wp ;. The involutions
0o and the kernel K, are defined as in the definition for CEO topological recursion. That is, for each
branch point o, o, is defined to be the non-trivial holomorphic involution defined in a neighbourhood of

z = « such that z(04(2)) = z(2), and K, is

foz w072(zl’ : )
[y(2) — y(oa(2)] dz(z)’

where o is any arbitrary point on the spectral curve.

Kq(z1,2) = —

5.2.2 The spectral curve for the lattice point enumeration

This section details calculations using the spectral curve (5.1) that will be necessary in the proof of The-
orem 5.1.1 in Section 5.3. Namely, I calculate the kernel appearing in the recursion, K(z1, z), as well as
the correlation differentials wp 3 and w; ; produced by topological recursion. Recall that the spectral curve
utilised in Theorem 5.1.1 is defined to be (C*, z, y,wo 2) with

1 dz; d dz; d
He)=st s, yE)=a wealmm)= T

z1 — 22)? 21 %2

First, calculate the recursion kernel, K (21, z). The branch points of the spectral curve are given by dz(z) = 0,
hence z = 1. The local involution ¢ is given by z — % at both branch points. Hence,

fOZ WO,Q(Zlv . )

[y(2) —y(o(2))] dz(2)
J; ot + 2t

[2 =2 (1= )dz

SN L
o (1=-22)2dz | S (2 —1)2 1 At

.z dz 1 log(2)
o (1-22)2d2 [zl — 7 z1 } ' (5:3)

K(z,z)=—

The third equality is using the fact that the topological recursion is not sensitive to the choice of base point
in the integration — any constants that arise from the integral in the recursion kernel do not contribute to
the residue calculations and as such do not affect the resultant multidifferentials produced by topological
recursion. For this reason, we can split the integral and choose separate (and convenient) base points for
each term.

Hence topological recursion gives the following expression for w, ,,, where S = {2,3,...,n}:

. -z dz 1 log(z .
wg’n(zl,ZS): Z E{es 1[ + g( )} wgfl,n+1(27%a'25')

21 — % Z1

o

+ Z w917|1\+1(2’ 31) w927|J|+1(%7 51) . (54)

9=9g1+9g2

I0J=5
I now calculate the first correlation differentials produced by the topological recursion; that is, w, , for
which 2g — 2 +n = 1, namely wy 3 and w; ;. These will be necessary for the proof of the main theorem



68 5. Lattice points in M, ,

in Section 5.3. Applying the topological recursion to calculate wq 3 yields
wo,3(21, 22, 23)
= Z Res K (21, 2) [wo,2(%, 22) wo,2(0(2), 23) + wo,2(2, 23) wo,2(0(2), 22)]

Z=

ac{£l}
P d 1 dzd dzd d(1)dz  d(1)d
S Res S z » d21[ N og(z)] l( 2dn | &2 Zz)( 1(2) 232+ (f) 23
ae{:l:l}z a(l—z z |z — 2 z1 (z — 29) 2 29 (I —2) 1
n dzd232 +dZng dl(%)dZQ er(%)sz
(Z - Z?’) ZZ3 (E - 22)2 2 ~2

le dZQ ng. (55)

Here, the last line was calculated by a computer.

Calculating wy ; I find

wi1(z1) = Z BeasK(zl, z)wo,2(z,0(2))

ac{xl}
3 d 1 1 dzd(L dzd(:
> Res 1_Z22dZ1[ - +Og(Z)]< 2(1)2+ Zl(Z)
ae{il}z a(l=22)2dz |21 —2 21 (z—2) 2z
23 { 1 1og(z)] < 1 1 >
= Z Res + + — |dzdz;
1 — 22)2 _ 2_1)2 2
i (1—22)2 |2z —2 21 (22-1) z
:i5z§f8z§+2182f78zf+5d21. (5.6)
12 21 (Zl — 1)4

Again the final equality here was calculated with a computer.

5.3 Proof of the main theorem

To prove Theorem 5.1.1 I adopt a general strategy that has previously been used to prove that an enumeration
satisfies topological recursion. This strategy has been used for lattice points in uncompactified moduli space
of curves [87] and various kinds of Hurwitz numbers, including simple [49], orbifold [14, 33], and monotone
Hurwitz numbers [31]. The overarching steps in this strategy are typically thus: begin with the combinatorial
recursion for the underlying enumerative problem and write it in terms of multidifferentials; use structural
properties of the enumeration to deduce equivalent properties for the multidifferentials, then use these to
acquire an asymmetric version of the equation obtained; use the fact that a rational differential form is equal
to the sum of its principal parts, then finally match the resulting expression with the topological recursion.

First, define the following formal multidifferentials.

Qn(z1,-szm) = Y Non(br,....bn) JJbs] 20" da (5.7)
b1,..0sb, 20 i=1
Theorem 5.1.1 is essentially the statement that the multidifferentials wg,,(21,...,2y) arising from apply-

ing the topological recursion to the spectral curve in equation (5.1) are equal to the multidifferentials
Qg n(#1,...,2,) defined above; that is,

Qg n(z1,-- 5 2n) =wWgn(z1,- -5 20),

for (g, n) satisfying 2g — 2 +n > 0.

Adapting the strategy given above as required in our case results in the following four steps.
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1. Use the known quasi-polynomiality of Ny ,, (b1, ..., b,) given by Theorem 5.3.1 to deduce analytic and
symmetry properties of Qg ,(21,...,2,) (Lemma 5.3.5).

2. Rewrite the combinatorial recursion of Theorem 5.3.1 in terms of the multidifferentials 0 ,, (21, ..., 2)
(Proposition 5.3.7).

3. Apply the operator F(z) — F(z) — 2 F(1) and use the symmetry properties of ), ,, to asymmetrise
the equation obtained in the preceding step (Proposition 5.3.8).

4. Use the fact that a rational multidifferential is equal to the sum of its principal parts, where the
principal part of a differential form {2(z1) at z; = « can be expressed as

dz
Res ! O(z).
z=a 21 — Z
Finally, compare the resulting recursion for € ,(21,...,2,) from the above process with the topo-
logical recursion for the correlation differentials wg,(21,...,2,) and use induction to prove that

Qg n = wyp for all (g,n) satisfying 2g — 2 +n > 0.

The above four steps are carried out in the following four subsections respectively.

5.3.1 Structure of the enumeration

First begin by recalling the following properties of Ny ,, (b1, ..., b,) proven by Do and Norbury [35].

Theorem 5.3.1 (Do and Norbury [35]).

1. Quasi-polynomiality. For (g, n) satisfying2g —2+mn > 0, Ny (b1, ..., b,) is a symmetric quasi-polynomial
inb3,...,b7 of degree 3g — 3 + n. We use the term quasi-polynomial to refer to a function on Z7. that is
polynomial on each fixed parity class. Observe that N, ,,(b1,...,b,) = 0 whenever by + - - - + by, is odd and
that quasi-polynomiality allows us to extend Ny ,, (b1, . . ., by,) to evaluation atb; = 0 foralli € {1,2,...,n}.

2. Combinatorial recursion. For (g,n) satisfying 29 — 2 + n > 2, the compactified lattice point count
Ny n(bi,. .., by) satisfies the following recursion:

(Zh) Ny, (bs) Z z [P)aNg,n—1(p, b\ i.57)
=1

1<J p+q=b;+b;
q even

stable
+ 3 Z Z [ o— 141 (D @, b\ (y) + Z N1 (2,01) Ny 141 (2,05) |
i pt+q+r=b; g1+g92=g9
Teven 10J=5\{i}

Here S = {1,2,...,n} and for an index set I = {i1,...,in}, let by = (biyy---,bi,). In the summations, p,
q and r vary over all non-negative integers, and we use the notation [p| = p for p positive and [0] = 1. The
word stable over the final summation denotes that we exclude all terms with NUJ and NO’Q.

3. Top degree coefficients. For non-negative integers oy +- - -+, = 3g — 3+n, the coefficient of b7 - - - b2n
in any non-zero polynomial underlying N, ,, (b1, ..., by,) is equal to the psi-class intersection number

! Q1L g0
259=6+2n0, 1. o, Jip "

g,n

4. Orbifold Euler characteristics. Let X, denote the orbifold Euler characteristic of M, . The quasi-
polynomial N, ,,(by, ..., by,) satisfies Ny ,(0,0,...,0) = Xg.n. Further, these orbifold Euler characteristics
Xg,n Satisfy the following recursion for 29 — 2+ n > 0, with the convention xo,1 = 0 and xo,2 = 1.

1 1 n
Xgmt+1 = (2—29 —n)xgn + 5 Xg—1n+2 + 5 Z <Z.>Xgl,i+1 Xgz2,j+1

g1+g92=g
i+j=n
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Next, define the following vector space, which captures the structure of the family of multidifferentials
Qg,n(zl, ey Zn).

Definition 5.3.2. Define the complex vector space of differential forms

V(z) = {Z (] Q(b) 2°~ 1 dz | Q(b) is a quasi-polynomial in b2} .

b=0
The quasi-polynomiality of N, ,(by,...,b,) given by Theorem 5.3.1 amounts to the fact that, for (g,n)
satisfying 2g — 2 +n > 0,
Qgn(21,...,2n) €EV(21) @V (22) @ @ V(2p).

For the purposes of proving Theorem 5.1.1, it will be useful to deduce some analytic and symmetry properties
for the forms Q(z) € V(z). I begin by deriving a vector space basis for V().

Lemma 5.3.3. The vector space V (2) has basis {5V (2),£39(2) | k = 0}, where

even d d 2k 22 5]@,0 odd d d * “ _
¢ (z)dz(zdz> bt amd G (Z)dz<zdz> -

Proof- First observe that a quasi-polynomial is a unique linear combination of monomials, acting on either
even or odd arguments. So the following is a basis for V(z), with k varying over all non-negative integers.

gzven(z) — Z [b] Cp2R -1, ](C)dd(z) _ Z [b] L2k 01 4,
bb>0 b>0
even b odd
d/ a\* . k.0 d/ a\* .
_dz<zdz> szz+7dz _dz(zdz) Zz dz
Deven Yo
d [ d\* 22 Sk.0 d/ d\* 2
dz (Zdz> 1—22 de z dz dz (zdz) 1-—22 dz

Example 5.3.4. It has been previously shown [35] that

1, b1 + by + b3 even,
0, by + bs + b3 odd,

12 (03 4+20), by even,

No,3(b1, b2, bs) = { 0 b odd
5 10 .

and Nl,l(bl) = {

We can calculate the corresponding differentials {2 3 and €2, ; in terms of the basis elements as follows.
First in the case of )y 3 we have

90’3(21, Z92, 2:3) = Z [bl] [bz] [bg] 211717123271211)371 le dZQ dZ3

b1,b2,b320
b1 +bo+bs=even

Thus € 3 is a linear combination of products of {§V°" and €399 satisfying a parity condition resulting from

the constraint that b; + bs + b3 is even. To satisfy this, either by, bo, bs are all even or exactly two are odd.
Hence

Qo,3(21, 22, 23) = £V (21) €57 (22) €57 (23) + €57 (21) €57 (22) €59 (23)

+ €59 (21) €57 (22) €51 (23) + €57 (21) €51 (22) €67 (23)

3
2z 1 22, 1\ 1423 1422
vz [T (22 + 1) + (2 + 1)
E Q-2 = (1-27) =) (1-25) (1—25)
N 229 1\ 1422 1422 223 1\ 1422 1422
(1-23)2 =) (1-21)2(1-25)2 \(1-23)% 23/ (1-2{)?(1-23)?

le dZQ ng .

ﬁzf—zi—i—l +ﬁzf+zi+1
. 21(2’7 — 1)2 el ZZ(Zz + 1)2
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This agrees with the calculation of wy 3 obtained in equation (5.5) by topological recursion.

Similarly, calculate €21 1(z1) as a linear combination of £V (z1) and £5¥°"(z1) in the following way.

le

1
Q1,1(21) = @( 17" (21) +20£57" (21))
1|4 d\? 22 d 22 1
= |—(z—) 2 420 ——_ +—||d
48 [dzl (Zld21> lfz% + dz; 1—2% + z1 A
1 820 +3228 +821 | 2021 +1) &
48 (1—22)1 (=222
1528 =820 + 182 — 82§ +5
12

z1(2f = 1)4

Again, this agrees with the calculation of w; ; obtained in equation (5.6) by topological recursion.

The next lemma asserts certain pole structure and symmetry properties for Q(z) € V(z) that will be
necessary for the proof of Theorem 5.1.1.

Lemma 5.3.5. For all Q)(z) € V(2),

1. Q(z) can have poles only at z = 1,z = —1 and z = 0, with at worst a simple pole occurring at z = 0; and

2 Qz)+Q(1/z) =0.

Proof. Tt is sufficient to prove these two statements for the basis elements ££*"(2), £2949(2), and the results

for general Q(z) € V(z) can then be deduced by linearity. The first statement is a direct consequence

of Lemma 5.3.3: the operators <= and L (zdd—z)zk do not introduce poles and therefore it follows that the

basis elements ££'°"(z), £299(2) can have poles only at z = 1,z = —1 and z = 0, with at worst a simple pole

at z = 0. For the second statement, first observe

1 d d

zd(1/2) ~ Cdz

2k 2
é-zven(z) -d [(Z(i,> 2 + §k,0 log(Z)]

1—22

Expressing £57°"(z) as

allows us to write

22

d
1—22 +

2k
+ k0 log(2) (—z d ) L)?Z + k0 log(l/z)]

2k
glecven(z) + flecven(]‘/z) =d [(Zci) & 1-— (1/Z)

2k 22
—d [(;) L G0 log(z) + 1og<1/z>>]

1—22

Similarly in the case of £294(2),

+d

2

2k
&(2) + 64(1/2) =d [(z;) %

Next I state a further and final lemma regarding the pole structure of the forms €(z). This lemma is
necessary for Theorem 5.1.1 to assimilate the logarithmic terms that arise from the extra term in wy ».

Lemma 5.3.6. For all (z) € V(z2),

Z Res (z) log(z) = Res Q(2). (5.8)
ae{21) Z=« z=0
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Proof. As in the proof of Lemma 5.3.5, it is only necessary to prove the statement for the basis elements
even (), €244 (%) for all k > 0, and the general result follows by linearity. First consider the case of ££V°(z),
and here I will deal with £k = 0 and k£ > 1 separately. Observe that the right side is zero for k£ > 1

d [ d\* 22
even — —
lz%:eg & (2) = Res (z> 12 dz =0.
In this case, the left side is

> Res e lops) = - X Res | [ atoets

ac{£l} ac{£l}

The first equality uses the fact that a function F'(z) meromorphic at z = « satisfies Res dF" = 0. It follows by
taking I = fg that Res f dg = — Res g df for any two functions f(z), g(z) that aré_r;eromorphic at z = a.
The last equality uses the fact that the sum of the residues of a meromorphic form equals zero: given that
the operators % and z % do not introduce any poles, the expression has the same poles as —1 + ﬁ,

which are 41 and —1, and both of which are being summed over.

When k = 0, the right side is

22

even d _ -d ]. 1 o
Res§ (2) = Res[dz sdz + — dz}—g_eg_dz( 1+1_Z2)dz+zdz]—1,

while the left side can be rewritten as

d
Z ggggven(z) log(z) = Z E{es dz 11— 2:2 ——dz+ - dZ:| log(2)

ac{£1} ace{+1l}
= Z Res 42 dz} log(z)
z=a dz 122
ac{+1}
2
=- Z }}:eas L — 2} dlog(z)
ac{tl}
- Z 552 1— 22 dz
ac{+1}

Here the second equality uses the fact that log(z)/z is holomorphic at z = 41, while the third equality
uses again that Res fdg = — Resgdf for any two functions f(z), g(z) that are meromorphic at z = o.
Since ;%7 has onily simple poles at z = 1 and z = —1, the residue at these points can be calculated by
multlplylng the expression by (z —1) and (z+ 1) and substituting z = 1 and z = —1 respectively. Therefore
the expression equates to

ev n Z(Z — 1)
> Restf(z)log(s) =~ > Res;—de=—""
a€{:|:1} ae{£1}

z(z+1)

1—22 =1

)

z=1 z=—1

as required. It remains to prove the statement for £299(z) with k& > 0. In this case note again that the right

side is zero:

Res£249(2) = Resi 4 2kid =0
2=0 °F 2=0 dz Zdz 1— 22 =
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Using a similar argument to the case of £;V°"(2) for k > 0, the left side is

> Resgp() s =~ Y Res| [ )] atoxe)

ae{+1} ae{+1}
a4\ 2"
=— Z Res | | z— : -dz=0
Z= dz 1— 22 z
ac{£1}
The first equality is using the fact that Res fdg = — Res gdf for any two functions f(z), g(z) that are

Z=x
meromorphic at z = ¢, and the last equality is using the fact that the residues of a meromorphic form sum

to zero. |

5.3.2 Combinatorial recursion

The aim of this section is to rewrite the combinatorial recursion of Theorem 5.3.1 in terms of natural
generating functions. First define the following generating functions, which will be used rather than the
multidifferentials Qg ,,(21, ..., 2,) defined at the start of the section. That is, define

Qg n(21,...,20)

Wg,n(zlv'-~7zn): = Z Ng,n(b17---7bn)

Lbi—1
dz1dzy --- dz, . *
b1,...,bn, 20 i

n

1

Proposition 5.3.7. For (g,n) satisfying 2g — 2 +n > 2, we have the following equation, where S = {1,2,...,n}
and Zr = (ziy, ..., zip,) for I = {ix, ..., ix}.

n 3
0 o2 =z o2 =
= eiWyn(z1, 25) = A Wanaa )|+ o | = g Wy not (Bsvs
iz:; aZZZ g, (21 ZS) ; (azl |:Zj (1 _ 212)2 g, I(ZS\{J}):l + 8zj |:Z7, (1 — ng)z g, 1(ZS\{ }):|
2 9., : 5 W, n— Z j R 2 W n— Z, 7
"0z 02, [z 5 e Ve E\a) = o -2 1(Zs\( })D
n 0 2’4 stable
+ Z B m [Wg—l,n+1(zi, 2iy Z5\{i}) + Z Wi 1141 (2i5 21) W, 7141 (24, ZJ)] (5.9)
=1 ‘ g1+92=9
TUJ=5\{i}

The term stable over the final summation denotes that we exclude all terms with Wy 1 or Wy o.

Proof. First recall from Theorem 5.3.1 the following combinatorial recursion for N ,, (b1, .. ., b,) where (g,n)
satisfies 2g —2+n > 2 and by,...,b, > 0.

(Z bl) 9" bS Z Z [p]qNgn 1(pabS\{7,]})

1<j p+q=b;+b;

q even
stable . B

+ = Z > Ng—to1 (0 00s\(y) + > Ny r01(p.b1) Ny, s141(g.05) | (5.10)

‘ p+q+7 b g1+92=g

10J=5\{3}

Define the operators
O = Z [ . ] H [bz] Zfi’_l and OJ = Z [ . } H [bz] Z?i_17
b1,yeesbpn =0 i=1 b0 oy

forall J C {1,2,...,n}.
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To obtain the result, apply the operator O to both sides of the combinatorial recursion. The left side becomes

> (Zb> g”bsﬁ[bilzfi*

b1,....bn 20

2 (gaaz- ) gl ﬁ i

b1,...,bn 20

n 9 B
= ; 872127 ng(zS).

Applying O to the (i, j)th summand in the first term on the right side yields

n
Z Z [ ]qNgn 1 p, bs\{lj} H bifl
=1

b1,...,bn, 20 p+q=b;+b;
q even

N b —1_bj—1
- Oi’j Z Z [p]qNgvn—l(pa bS’\{iJ’}) [bz] [bj] z?l 1Zj
bi,b; 20 p+q=bi+b;

q even
r+q .
—k—1 k—
*Ozg Z[qugn lpabS\{z,j} Z[p+q p+q Z]k !
P,q20
q even

0 _ 0 _
=0, [p ]qNgn 1(p, bS\{w}) {8 Zp+q Z; 1y a 1 ]p+q:|

p,q=0
q even

o 0 _ _
+ 0O, ; Z[qugn 1(p,b5\{”})a 6z (z“q ! ]1+zf+q 22]2-+---+z}z;-’+q 1). (D)

p,q20
q even

The third equality has exchanged the sum over b; and b; with the sum over p and ¢q. Considering the entire
term in the first line of the final equality above,

0 _ 0 _
O; ; [ ]qNgm 1(]),1)5\{1”}) |:8 Zf)+q2] Ly 7824 1Z§+(I:|
Zi j

p,q=0
q even

’Ja Tz Y a2 D I NG (0 bsy (i)

q=0 p=0
q even
-1
+ 0136 Z; Zj Z qZ Z Ny n-1(p, bS\{z,]})
q=0 p=0
q even

o2 2 . o |2 2 .
= [%(1 — 7y o (ZS\{j})} o [4(1 —yp Wan1 Gva) |- )

The final equality has used the following:

1 222
Z gzl =z Z ¢z =z 4 i (5.11)

— —.2)2
= = 0z; 1 — 22 (1 z7)

q even q éven

The sum in brackets in the second line of the final equality in the expression above (A) is a geometric series
with ratio z;/z; and p + ¢ terms, hence it is equal to

ptq p+q

2y RZj T Zi %

-1 -2 -1 i J L
zf+q zjl»+zf+q 2]2—|—-~~—|—Zilz?+q =
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Therefore,

— - 0 0 _ _ _
01‘7]‘ [p]qNg,n—l(p7 bs\{i)j})ii (Z%H_q 12]1 + Z%H_q 22]2 + -+ Zilzp+q 1)

aZi 8zj J
p,q>0
q even
9 0O Zp+q _ Zp+q
=0, [ ]qun 1(ps bS\{z]})aZ ('92 ?
p,q=0
q even
9 9 1 p+q p+q
:Oi’jﬁizi@iz’j — > [plaNgm- 1(p b gigy) (01025 — 2 219
p,q=0
q even
0 0 Z; 23 Zi 23
=2 — L W1 (Zevriny) — —— —L W, 1 (g .
0z; 0z; [zz —z (1—22)2 o Esva) zi—z; (L—23)2 9" Gav)|- )

The ith summand of the third term in (5.10) under the operator is

> Sl

stable n
Ng—1,n41(p, 4, b\ {3}) + Z Ny 11141 (0:01) Ny, 17141 (0,55 ] H P

b1,...,b5, 20 g1+g92=g i=1
ptqszzibi IuJ=5\{i}
stable
=0i Sl (Ny-rnea (0, 0sv) + D Ny (0,60 N, |J|+1(q,bj)] [bi] 2z
b; 20 g1+g2=g
p+rqe+v7;bi IuJ=5S\{i}
9 1 stable
~N g ~ Y r—1
= Oiaizzz Z i[p] [Q]r Ng—l,n-‘rl(pa q, bS\{i}) + Z Ngl’|[|+1(p, b[) g2, J|+1 (q, bj)] prat
' pgr>0 g1+92=g
T even T0J=8\{i}
o 2,4 stable
=5, — le—LnH(Zi,ZuZS\{i}) + Z W, 11141 (215 21) Wg2,|J|+1(Zi72J)]~ (%)
i (1 _Zi) g1+92=g
1LJ=5\{i}

p—1

In the final line, the sums over p, ¢ and factors of 2’ ~', 29" have been absorbed into the generating

functions W, ,,, while for the sum over 7 I have used the same idea as in equation (5.11). In other words,

3 3 4
z ool A o 1 oz
i 2 2y2°
2 = ! 20z 1—27 (1—27)?
T even

Combine the contributions from the expressions marked by (*) to obtain the desired result. n
5.3.3 Breaking the symmetry
Thus far we have acquired a symmetric expression for the combinatorial recursion of N, (b1,...,b,) in
terms of the generating functions W, ,,(z1, ..., 2, ); however, the topological recursion given in Section 5.2

is inherently asymmetric with the variable z; playing a special role. In this section, I apply the operator
1
2

F(z1, . 20) = F(21,. 0 20) — 5 F(+

z1’

29,y 2n), (5.12)

and use the properties of multidifferentials (z) € V(z) in Lemma 5.3.5 to break the symmetry in (5.9).
This yields an appropriate asymmetric recursion that is ultimately compared with the topological recursion.
By the second result of Lemma 5.3.5,

Qg,n(zla ) Zn) + Qg,n(l/zla B2y vy Z’rb) =0,

and at the level of generating functions this property becomes
1
Wyn(z1,...,2n) — o Wy, n( L 2o,...,20) =0. (5.13)
1

This motivates the definition of the operator (5.12).
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Proposition 5.3.8. For (g,n) satisfying 2g —2+n > 2, we have the following equation, where S = {2,3,...,n}
and Zr = (ziy, .-y 2zip,) for I = {i1, ... ik}

. W, n(p,Zs)d - 2 1 1 23 .
W(Ln(Zl,ZS)—E:egM = Z ( + + ) ( ! )2 Wq:n_l(zlaZS\{j})

“ S\nz (1—-z) (1-22)")(1-22
3
24 Zj .
W,
Za’z] |:<Z1_ZJ + 1—212j)(1—2]2,)2 9 1(25):|
23 stable
- m [Wg_l,nﬂ(ﬁ’zl’zs Z W, 11+1(21, 21) Wgz,|J|+1(Z1,Zf)] (5.14)
! q}j@z g

Proof Recall equation (5.9) of Proposition 5.3.7, but note that I have used the notation S’ = {1,2,...,n}
(while S = {2,3,...,n} as in the statement of the proposition),

) . o2 2 . o2 2 .
2 9 on) = 2, (azl ST e G| g[S e o)

i=1 " i<j

+288[ A (Gen) — Liz? W, (Zs )D

02 0z |z — 2 (1 —22)2 9" MY s (- z3)2 " PSS
n 9 2,’4 stable

+2871m le_1,n+1(zz‘,Zi,ZSf\{i}) + YW, |I|+1(ZL721)W92,J+1(Zia5J)]-
- l sy

The result can be obtained by applying the operator (5.12) to all terms. The left side becomes

) . 1 o 1 = 10 .-
92, Wan(21, %) = 2@21‘%’ (2 Zs) + ) {azl'zl gn(21,25) — Zom Zngm(zlaZS):l

=2

0 , 1,0 1 L ) . 1 .-
= 7ot Wan(126) + zl 5o 5 W5 %) + ; 527 [Wg,n(zh,Zs) - Z%Wg,n(zl,zs)}

0 -
= 28—Zl21Wg,n(zl,zS).

Here the final equality has used (5.13) to write Wg,n(;ll, Zg) in terms of Wy ,,(z1, Zs), and further, to deduce
that each summand in the sum over i is equal to zero.

For the first two lines on the right side the property (5.13) will ensure that the only terms to contribute will
be when ¢ = 1 and j € {2,3,...,n}. In this case, applying the operator (5.12) to the jth summand in the
first term yields

1
9 |2 21 1 0 |2 =
5 | =22 W o) | - e | 1o Wen— )
821 Zj (]_ — Z%)Z 9, 1(21 ZS\{J}):| Z% ai [Zj (1 — 71%)2 g, 1( S\{]})‘|
0 [2 23
R . S e ’—; ]
0z Lj (1—22)2"9 1(21, Zs\51)

Doing so for the second term gives

o2 zf . 1 9 23 >\ —
32y T Moo = Sy 2 = e8] =0
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The second line becomes
1
9 0 zj 23 2 9 0 z; B
T Won—1(21, 50\ | — ZaT 5 | T 5 Won—
021 0z; Ll—zj (1—23)2" 9 121 Z5\(53) 2010z | L -2 Ty2'' 9 1( »Z5\(5})

o Rl Gl
o 0 [ 2 22

J N
Do O —— Wy
021 3zj 21— % (]. — 232)2 9, 1(ZS)

2 0 0 L 23
+2— 17— z1 J Wy 1 (Zs)
21 97 0z ll—z](l—zjz)z g
:277 J i 1 W - R ‘
021 0z; [(lej+lzlzj) (1—-22)2"9 1(21, Zs\(5})

a1 4w (Zs)
- _1(Z
-z l—zz) (1—-23)2 0" 1S

Finally, and similarly to previously, after application of the operator (5.12) only terms corresponding to 7 = 1
in the third and final line will contribute. In this case, we have

4 stable
0 23 .
o7 (1= 2)2 Wy—1nt1(21, 21, Z5) + E L1 (215 21) W, 141 (21, 2)
! 1 g1+92=g
IuJj==s
9 % stable
zf o 1 -
22 9L (1 — L)Q Wg 1 ”+1(z ’ 71 E : 917|”+1 ZI) W!]2,|J|+1(Z7Z‘])
1% 22 g1+g2=g
IuJ=
P 24 stable
1 o
= 2—62 (= Wy_1ns1(21,21,2s) + § W 1141 (21, 21) Wy 17141 (21, Z1)
! 1 g1+92=g
IuJ=Ss

Collecting all contributions obtained thus far—and dividing throughout by 2—gives

d 2 2

"9
—_— l/‘/ n R > = E _— |/[/ n— R > .
021 e, (2, %) j=2 021 [Z’j (1- Z%)Q o 1z ZS\{J}):|

o 0 2j 21%j zi)’ .
W n— 9 J
" ; 0z 0z; [(Zl - Zj i 21z;) 1—23)2 % 1)

a_, 1 9 (Zs)
_ no1(Z
2w—z l—zz ) (1— 272)2 gn—11%8

9 24 stable
1 =
+ Tzlm Wg—l,n+1(21721,zs E 1L I[+1 thl) Wgz.,\JHl(ZhZJ) .
1 g1+92=g
IuJ=

Computing the differentiation

9 “j 217 _ 1 + A1
Ozj \z1—2; 1—2z2 (= —2z;)? (1= z2)?
using the fact that
0 1 0 21%j 0 Z21%j
_— = ]_ + — =,
82’]‘ 1-— 2125 8zj 1-— 2125 82?]' 1-— 2125
and grouping the first two terms on the right side allows me to write

5 5 - 8 2 z1 Z1 Zil)) 5
gt =3 (2 i ;) (g oot o

= (71— %) (1—21%) — 7
n 3
o 0 21 2124 Zj N
I + Wy
j; 0z 0z, l(zl —zj  l—2zz) (1-27)? gn-1(%5)
P 2’4 stable
t3 m [W9—1,"+1(Zlaz1725 Z LT+ Zlsz)WQ2,J+1(ZlaZJ)]-
! 1 g1+92=g

IuJ=s
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Integrate both sides with respect to z; and divide throughout by 2; to obtain

R 2 1 1 23
Wyn s Z, - = L Wyn— ) Z, j
an(21,75) + 2 2 |:(2'12j RN Z1Zj)2) (1-27)2 " e ZS\{]})]

L

- Z:: 872] l(zl —Zj * 1- lej> (1— Zz)zwgml(zs)}

Jj=2 J
23 stable
1 - > -
+ 1= Wo—1,n+1(21, 21, Zs) + Z ng,1|+1(217ZI)W92,J+1(31,ZJ)1,
1 g1+92=g
TuJj=
where c is constant with respect to z;. Recalling that W, ,,(z1, ..., 2,) has at worst a simple pole at z; =0

we can infer that the right side has no pole at z; = 0: the factors of 2} in the first and third lines on the
right side will cancel with any possible pole at z; = 0. Therefore,

¢=—Res Wy (p, Zs) dp,
s

and this concludes the proof. u

5.3.4 Proof of topological recursion

I am now equipped to prove the main result.

Proof of Theorem 5.1.1. 1 use induction to prove
Qgn(z1,.. 0 2n) = wWgn(21,- .5 2n)
for all (g, n) such that 29 — 2 +n > 0.

The base cases for the induction are given by (g, n) satisfying 2g — 2 + n = 1; that is, (g,n) = (0,3) and
(1,1). First, on the topological recursion side wg 3 and w; ; were calculated in equations (5.5) and (5.6) to
be

3 3
1 22—z +1 22+ 2;+1
wo,3(21, 22, 23) = 5 H 1) H P P dzy dzg dzs,
i=1 -1
and 1 528 — 820 + 1821 — 822 +5
wia(z1) =—= dz;.

12 21(22 —1)4
Comparing these expressions with g 3(21, 22, 23) and € 1(21) of Example 5.3.4 we have Q, , = wg , for
(g,m) satisfying 2g — 2 4+ n = 1. Now fix (g,n) and assume

Qg (21,0, 20) =Wgr (21,0, 2Zn)
for all (¢’,n’) such that 29 — 2+n > 29’ —2+n’ > 0.

Begin with the recursion proven in Proposition 5.3.8 and multiply both sides by dz; ---dz, to obtain a

recursion in terms of Qg ,,(z1, ..., 2,). This gives
S dz -
Qg,n(zla ZS) - Res Qg,n(p7 ZS)
z1 p=0
2 1 1 23
= + + ) Q ’n,l(zl,é's ; )dZ
; (lej (21— 2)?  (I—2125)?) (1=2{)? 7 Map T
- 1 Zj z ~
— — : | dz...dz,
=2 aZj |:(Zl —Zj + 1-— lej) (1 — ZJQ)Z 9 1<ZS) A1 5

Zf 1 stable

+

Qg1 nt1(z1, 21, Zs) + Z le,I|+1(2’1751)ng,|J|+1(2175J)]~ (6.15)

91+g2=g
IuJj=s

(1-27)%dzy
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Use the fact that a rational differential is equal to the sum of its principal parts, where the principal part of
a rational differential 2(z;) at z; = « can be written

d
Res ‘1

z=a 21 — Z

By Lemma 5.3.5, €2(21) is indeed a rational differential and has at worst a simple pole at z; = 0 and poles
at z; = £1. Therefore, given that the left side of (5.15) above has poles only at z; = £1, we can write

d

- <1 >
Qgn(21,25) — o 13_65 Qq.n(p, Zs)

Z R dz [Q (Z,Es)—(izReSqu(p,gs)]
z p=0 ~

@z —Z
aG{:tl}
1 23 1 1
= R _— d d Q o ’_’ ‘
G{Zﬂ:l} z_es 21— 2 (1 — 22)2 dz [Z z Zj( 2 + (Z — Zj)2 + (1 — sz)2) g, 1(Z ZS\{]})

stable
+ Qimir(z2,75) + Y Qg1,|f|+1(275})QgQ,|J|+1(Z,5J)1

g1+g92=9g

Tuj=s
= g Res ! _723 Ew (2,2;)Q (1,2 ) +wo2(2,2)Q (2,7 )
= e{il}z a21_2(1_22)2 dZ 0,2 j gn—1\%»<S\{j} 0,2 g,n—1 S\{s7}

stable
+ Qann(z L Z)+ > Qg1,|1|+1(z,51)ng,|J|+1(i75J)]

g1+g92=g
IuJj=s
o
1 23 dn
= E Res —_— w L Ze)+ E w 2, 21w L 201,
P a21—2(1—22)2 dZ g— 1n+1( 7za S gl,\I\+1( ) I) gg,\JH-l(Za J)
ac{£1}

g1+92=9
Iu

(5.16)

The second equality has substituted in the right side of equation (5.15) and used the fact that, since the
entire second line of the right side of (5.15) is analytic at z; = =1, it will not contribute. The third equality

has used the definition of wy 2,
dz dz; n dz dz;

(z—2)* zz

W(],Z(zv Zj) =

which implies that

2dzdz; n dz dz; n dzdz;

N (L s — .
w022 23) = w023 2) 2z (z—2)%  (1—225)?

The third equality is also using the fact that Q, ,,(21,...,2,) = —ng(%, 29,...,2yn) forall (g,n). To obtain
the final equality, I have absorbed the terms including wy > into the sum over g; + g2 = gand /U J = S and
used the inductive hypothesis. The symbol o over the sum indicates that we exclude all terms that involve

wo_yl.
Lemma 5.3.6 tells us that

dz d
Sl Res Qyn(p,Zs) = &1 Z Res Q (2, Z5) log(2).
Z1 p= 21 ae{21) z=a

Substitute the expression for €2, ,, given by equation (5.15) into the right side of the equation immediately

above and observe that the terms d
z
- RGS Qg n(p, ZS)
z p=0

and

n (9 1 Zj Z? -
Z 0z; o L—2z; ) (1— zz)QWg’nil(ZS) dedzz o dan
J
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are analytic at z = 1. Doing so, then following the same steps of manipulation as was done above to
derive (5.16), I obtain

le
= Res Qg ,, 1
o2 Res Qs %) log(2)

ae{£1}
log(z) 2°  dz | ( 2 1 1 ) o
= Z Res ——s Zdzdz- — + + Qgn—1(2, Zs\141)
z=a — z2)2 J ] — )2 _ )2 g,m »#S\{7}
ac{t1} 21 (1—22%)2 dz = zzj (2 —z) (1—zz;)
stable
+ Qg2 Z8) + D Qe (2 71) Qg a4 (2, 2)

g1+92=g
IuJ=S

log(z) —2% dz . - . .
= Z E{:eas > m@ Wg—l,n+1(37%azs)+ Z wgl,\f\-i-l(zaZf)wgz,\JH-l(%aZJ)'
1 4

(5.17)
Substituting (5.17) into (5.16) yields

1 lo 23 dz N
Qg n(ZhZS' Z Beg[ + g( ):| (1_ - wg717n+1(z7%725\{1})

212
21— 2 z z dz
ac{£l} ! ! )

o]
+ Z ng,1+1(2751)w92,J+1(l,21)1.

9=91+92
IuJj=s

The right side coincides with (5.4) and hence I deduce that, by induction, Q, ,, = wy, for all (g, n) satisfying
29 — 2+ n > 0, and this concludes the proof. |

5.4 Remarks
I conclude this chapter with a number of brief remarks.

The ribbon graph spectral curve and its stable analogue differ only in wg 2. While the preceding sections
prove that this difference does indeed capture the stable part of the enumeration, one might still seek an
explanation for why this works. Loosely speaking, gluing information, and hence nodal information, is stored
in wp 2. Hence wy 2 stores the information of N()’Q(bl, bs), and, by virtue of the geometric setup, nodes are
captured by evaluating at zero. Morally, one wants to incorporate nodes by defining N »(0,0) = 1. This
would then, by equation (5.7), introduce an additional term of dzi 922 0 wp . This term then propagates
via the topological recursion machinery to account for the stable contrlbutlons in all topologies. Of course,
in the uncompactified lattice point enumeration, there is no Ny 2(0,0) contribution.

The enumeration of ribbon graphs in general and the restricted enumeration in which vertices have degree
at least two are both captured by topological recursion on the same spectral curve (2.4). The former is
obtained by expanding the correlation differentials at ; = oo, while the latter is obtained by expanding at
z; = 0. This relation should extend to the stable case; that is, expanding the correlation differential obtained
from applying topological recursion to the spectral curve (5.1) at z; = oo yields an analogous enumeration
to Ng (b1, ..., by) in which the condition on the ramification order being at least 2 over 0 € CP! is removed.

One would expect that using our amended wy > for the well-studied ordinary map spectral curve (7.1) would
produce a naturally defined stable analogue of the ordinary map enumeration, which, to the best of my
knowledge, has not yet been written down.

Looking at the data in Section 5.5 it should be immediately clear that the coefficients of the quasi-polynomials
are non-negative. This suggests the following conjecture.
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Conjecture 5.4.1. The polynomials underlying the quasi-polynomial N ,, have non-negative coefficients.

This positivity conjecture is not immediate from the definition of the enumeration nor the perspective of
the combinatorial recursion of Theorem 5.3.1, nor topological recursion. A potential approach to prove
non-negativity is to derive a geometric interpretation for the coefficients. The general theory of topological
recursion should allow one to relate the enumeration of lattice points in ﬂg,n with intersection theory on
Mg,n, via the formula of Eynard [46], or the connection to cohomological field theories [42]. Work along
these lines for the uncompactified lattice point enumeration was carried out by Andersen, Chekhov, Norbury
and Penner [4]. It would be interesting to have an analogous result for the compactified case, which may

potentially shed light on the positivity conjecture.

5.5 Data

By the result of Do and Norbury [35] given in Theorem 5.3.1, Ny ,,(b1,...,b,) is a quasi-polynomial in
b?,...,b2 that is fixed on each parity class of (b,...,b,) and zero if b; + --- + b, is odd. Hence the
enumeration Ny ,,(b1, ..., b,) can be described by polynomials N(fcg(bl, ..., by) for k an even non-negative
integer where by, ..., by are odd and byy1, ..., b, are even.

The following data has been sourced from the literature [35] and shows these polynomials for low (g, n).

N (b, ... bn)

| — -

(b + 20)

b3 + b3 + b2 + b3 +8)

b? + b2 + b3 + b3 +2)

b? + b2 + b3 + b7 + 8)

757 (b1 + b3 + 2b7b3 + 36b7 + 36b3 + 192)

727 (b + b3 + 20303 + 36b7 + 36b3 + 84)

B LR A I T

35 b+ 5 0707 + 5 (0F +03) + 3 (b3 + b3 + b2) + 13

S IbE A I 022+ (b + b3+ b3 4 b3) 4+ b2+ I
W})SZb?Jr%Zb;‘berﬁb%bgngr%beJribeber%be+%
005 2 08+ =5 Do b3+ 557030308 + a5 Db+ g U bZbE+ F Db+ 5 bh + 1magb3 + ans

3 btli 133 béll 1087 b%—i— 247

1 8 L2l
1769472 bl + 40960 + 61440 + 34560 1440

357 b 4 o DUbI0Y + 5 Y bbb 4 § S b + 350 b7b% + 2207 4 34
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Chapter 6

Polynomiality, topological recursion, and an
ELSV-like formula for double Hurwitz

numbers

6.1 Introduction

Hurwitz numbers enumerate branched covers of the Riemann sphere with prescribed ramification data. First
studied by Hurwitz in the late nineteenth century [69], recent decades have seen a resurgence of interest in
Hurwitz numbers due to their connections to algebraic geometry and mathematical physics. The resulting
study into these connections has catalysed significant expansion of Hurwitz theory.

Single Hurwitz numbers provide a particular enumeration of branched covers of the Riemann sphere. The
structural results proven for single Hurwitz numbers—which were found to be quite surprising at the time—
have instigated the study of further Hurwitz numbers. A particular generalisation of these single Hurwitz
numbers, Double Hurwitz numbers have been shown to satisfy a wealth of structure, including piecewise
polynomiality and wall-crossing [21, 66, 101], and arise as coefficients in a 7-function for the Toda integrable
hierarchy [90]. The results given in this chapter, first presented in joint work with Borot, Do, Karev, and
Lewanski [8], are motivated by results proven for single Hurwitz numbers (described in Chapter 4), and

significantly generalise them.

This chapter provides results for polynomiality, topological recursion, and an ELSV-like formula for the enu-
meration of double Hurwitz numbers. These results now resolve the conjectures given by Do and Karev [32],
which originally posited that double Hurwitz numbers are governed by topological recursion, and, relatedly,
that they satisfy a polynomiality structure analogous to the polynomiality of single Hurwitz numbers.

Double Hurwitz numbers, defined below, are a generalisation of single Hurwitz numbers where the rami-
fication profiles of two points—chosen to be co and 0 by convention—is prescribed, rather than just one
point in the case of single Hurwitz numbers. In this case, the results given here for double Hurwitz numbers
subsume not only the results described above for single Hurwitz numbers, but also analogous results in the
literature, such as those pertaining to orbifold Hurwitz numbers [33, 40].

Before defining the double Hurwitz number, henceforth fix d to be a positive integer, s a complex parameter,
and let g1, ...,gq € C be a set of weights.

Definition 6.1.1. The double Hurwitz number DH, ,, (111, . . . , pb,) is the weighted enumeration of connected
genus ¢ branched covers f : (C;p1,...,pn) — (CP';00) such that

» the point p; € f~!(co) has ramification index yu; for i € {1,2,...,n};

« each preimage of 0 € CP! has ramification order at most d; and

¢ all other branch points have simple ramification and occur at m fixed points of CP'.
The weight of such a branched cover is

2g—2+1
s°9 +”.CI)\1"'Q/\@

ml JAu(f)]
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where the ramification profile over 0 € CP' is given by the partition A = (A,...,\;) and m = 29 —2+n+/¢
is the number of simple branch points, as determined by the Riemann-Hurwitz formula.

Double Hurwitz numbers have not previously been defined this way. Historically, double Hurwitz numbers
have been defined to depend on two partitions, the ramification profiles of both 0 and co. This approach,
however, defines them to depend on one partition, the ramification profile of co only, and we allow the
ramification profile of 0 to vary, introducing parameters to record this ramification.

The following theorems state that double Hurwitz numbers satisfy a polynomiality-like structure (which
we simply call polynomiality), are governed by topological recursion, and can be expressed as intersection
numbers on moduli spaces of curves.

Theorem 6.1.2 (Polynomiality). For 2g — 2 +n > 0, there exist C, n( Lyeesdn ) € Clq1,---,94,$), which

TN yeney M,
vanish for all but finitely many values of j1,...,jn € {1,...,d} and non-negative integers my, ..., my, such that
n
DHy o (p1, .y pon) = Z Cyn (,,{}:jjj;{,qn) H AL (s)
11,50 dn <d i=1

M yeneyMip 20

where
Z(A)+m

_j Z |At q/\1"'q/\14()\)'
AFp—j

Here, \ represents a partition with L(X\) parts and Aut(N) is the set of permutations of the tuple (N1, ..., Ny(x)) that

leave it invariant.

Theorem 6.1.3 (Topological recursion). Let Q(z) = q1z + - - + qaz?. The correlation differentials resulting
[from applying topological recursion to the spectral curve (C*,x,y, wo72) with

1 le d22
—Inz— . _ _Gx1dx
z(z) =Inz — Q(z), y(z) SQ(Z)’ wo,2(21, 22) (21— 29)2
satisfy
Won (21, s 2n) = Z DHgyn(/uLh...,un)Hd(exp(uix(zi)).
Biseeespin 21 i=1

The following ELSV-like formula involves certain tautological classes Qgﬂll ,,,,, an, € H* (Mg ni0; Q) indexed
by ai,...,a, € {0,1,...,d — 1}, which come from the moduli space of d-spin curves. This class is defined
in Section 6.4.1, but for a more thorough introduction see [26] or [80]. For an introduction to the moduli

spaces of curves and its characteristic classes, see the book of Harris and Morrison [68].

Theorem 6.1.4 (ELSV-like formula). For (g, n) satisfying2g—2+n > 0 and d > 2, the double Hurwitz number
DH,,(p1, ..., [tn) may be expressed in terms of the following intersection numbers over the moduli spaces of curves
mg,n_t,_g fb7'€ > 0.

m () /4
DHQ,H(/JM .. 7,“%) = (d/3)2972+n H M

L
. . i/ G i [d} ¢ 7
y Z (d/s)t d>=(wi/dtki/d) quu faaldmh/d Qi H Qd
>0 10 (sd)=Fi pove Tima (U= 00) ) L4 (pi + 1)
P1,---,pe 20

1<k, ke <d—1

Here, Q&p)k € C(qu,--.,qq) are defined by equation (6.21), di] Hd— k € H* (Mg n40; Q) is a Chiodo class, where

(=15 .oy —fiy), and —@i; € {0,1,. — 1} s the unique residue of —p; mod d.

—Qnisa shorthandfor 0=
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Note that this formula is explicit. One can calculate Qgp_)k € C(q1,---,qq) by (6.21) then use known double

Hurwitz numbers along with the above formula to calculate the Chiodo classes ng]fﬁ ar € H* (Mg nie;Q)

(or vice versa).

As mentioned above, these results generalise previously known results, specifically the analogous results for
single Hurwitz numbers [17, 43, 49] and orbifold Hurwitz numbers [33, 40]. These can be obtained from
the results given above by taking the specialisations ¢ = 1,¢; = 0for¢ > 1, and g, = 1,¢; = 0 for ¢ # k
respectively.

It is interesting to note that, while in the case of double Hurwitz numbers the structure theorem was proved
first and all other results followed, this is not always so. For single Hurwitz numbers, the famed ELSV
formula was originally used to prove the polynomiality as a direct consequence, and the polynomiality
then became an ingredient in the proof of topological recursion. However, no analogue of the ELSV for-
mula is known in the more general setting of double Hurwitz numbers; the approach in this chapter is to
prove the polynomiality structure first. To date, without access to an analogue of the ELSV formula, such
polynomiality results have exclusively been proven using the semi-infinite wedge formalism (another strong
advertisement for the power of the semi-infinite wedge).

The theorems above are obtained in the following logical order. First, using previous work of Do and
Karev [32], we reduce the proof of Theorem 6.1.3 (topological recursion) to Theorem 6.1.2 (polynomiality).
The proof of the polynomiality structure comprises the greatest proportion of the work in this chapter and
therein lies the main difficulty in proving these results. The method here goes via the semi-infinite wedge
space and is one that has successfully been used previously for other enumerative problems in Hurwitz
theory [40, 77]. In the case of double Hurwitz numbers this process is somewhat more intricate and involved,
but follows through nonetheless. The correlation differentials produced by topological recursion can be
expressed as intersection numbers on moduli spaces of “coloured” stable curves—where the components of
the curve are coloured by the branch points of the spectral curve—via a process outlined by Eynard [46].
For the double Hurwitz number spectral curve above, we do not follow this procedure, which appears to be
difficult and does not immediately lead to classes on M, ,, that are geometrically natural. For this reason, to
obtain an ELSV-like formula for double Hurwitz numbers, we have taken an alternate approach which hinges
on a variational result of Eynard and Orantin [52]. This approach’s starting point is the known analogue
of the ELSV formula for orbifold Hurwitz numbers due to Johnson, Pandharipande, and Tseng [70, 80].
Encoding the spectral curves for orbifold and double Hurwitz numbers within a one-parameter family of
spectral curves, we then use the variational result to flow from the Johnson-Pandharipande—Tseng formula
to a formula that expresses the double Hurwitz numbers as a linear combination of intersection numbers
on moduli spaces of curves.

In some sense, the ELSV-like formula obtained in Theorem 6.1.4 is not in an ideal form. For instance,
one would like an ELSV formula to directly imply the polynomiality structure as in the case of the ELSV
formula (4.2) for single Hurwitz numbers. This is not immediately obvious from the ELSV-like formula for
double Hurwitz numbers given in this chapter, and this is in part due to the fact that the formula involves
intersection numbers over ﬂgm_,_g for non-negative integers ¢. One would like to obtain an expression
involving the intersection theory of M, , alone, which could potentially be obtained via pushforward.
However, the pushforward of Chiodo classes by forgetting marked points is not sufficiently well understood
at present.

This chapter is structured as follows.

¢ Section 6.2 relies on previous work of Do and Karev [32] to reduce the proof of topological recursion
to the polynomiality structure. This is done by studying the vector space of rational functions which
satisfy the linear loop equations, and detailing the structure they exhibit; necessarily implying that the
double Hurwitz numbers must satisfy this structure in order to be governed by topological recursion.
In this section I also deal with the technical issue where the ramification points of z(z) may have
higher order branching.
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* Section 6.3 is devoted to the proof of polynomiality via a detailed analysis using the semi-infinite wedge

formalism.

¢ In Section 6.4 we derive the ELSV-like formula for double Hurwitz numbers by using the known ELSV
formula for orbifold Hurwitz numbers [70, 80] and a variational result of Eynard and Orantin [52].

This chapter contains joint work with Gaétan Borot, Norman Do, Maksim Karev, and Danilo Lewanski that
appears in [8].

6.2 Topological recursion

In this section, I follow the previous work of Do and Karev [32] to reduce the proof of Theorem 6.1.3 to the
polynomiality structure of Theorem 6.1.2. First, however, I deal with a technicality; that is, the definition of
topological recursion provided in Chapter 2 requires that the zeroes of dx are simple, which is not necessarily
the case for the spectral curve defined in Theorem 6.1.3.

6.2.1 Higher order zeroes

The topological recursion of Chekhov, Eynard and Orantin requires the assumption that the zeroes of
dz are simple, yet this is not necessarily the case for the spectral curve stated in Theorem 6.1.3, because
dzr = (% — Q’(z)) dz may have higher order zeroes. This section addresses this issue by appealing to a result
of Bouchard and Eynard [13]. Specifically, Bouchard and Eynard introduce a so-called global topological
recursion in which the recursion is defined globally, not locally around the ramification points, and hence
only depends on the degree of the branched cover, not the multiplicity of the ramification points. Thus, for a
spectral curve with non-simple ramification points, one can use the global topological recursion of Bouchard
and Eynard to calculate the corresponding correlation differentials. Bouchard and Eynard then prove that
the result of using the global topological recursion is equivalent to using CEO topological recursion then
taking the limit as two or more branch points approach each other. We can use their work in our setting
with the following lemma.

Lemma 6.2.1. If Theorem 6.1.3 holds in the case that 1 — z2Q)'(z) has simple roots, then it also holds in the case
that 1 — 2Q’(z) has roots of arbitrary order.

Proof- In the case that the zeroes of 1 — 2Q)'(z) are simple, the proof of Theorem 6.1.3 provided in the
subsequent section tells us that

)ﬁ exp(—pi(2i))

DHg,n(lu’la v nun) = Res - -- Resowg,n(zlv sy Rn
= i

2n=0 bl
We can then invoke the result of Bouchard and Eynard [13, Section 3.5]. Bouchard and Eynard prove that
wg,n is continuous in neighbourhoods of the ramification points, and therefore one can take the limit of the
right-side above as two branch points approach each other. They prove that obtaining the double Hurwitz
number in this way is equivalent to applying their so-called global topological recursion to the spectral
curve defined in Theorem 6.1.3, where this recursion does not require the assumption that the roots of dz

are simple. ]

Thus we now can, and will, proceed with the assumption that the spectral curve has simple branch points.

6.2.2 Structure of the enumeration

The correlation differentials wy ,, satisfy the so-called linear loop equations [10, 12], hence, we are motivated
to investigate the vector space spanned by such functions. To this end, introduce the following vector space.
Let A = {aq,...,aq} be the set of ramification points of the meromorphic function z(z); that is, the points
that satisfy dz(z) = 0.



6.2. Topological recursion 87

Definition 6.2.2. Let V' (z) be the C(qq, ..., qq, s)-vector space consisting of rational functions f(z) such
that

* f(z) has poles only at the ramification points ay,...,as; and
* f(2) + f(o(z)) is analytic at z = a; for all ¢ € {1,2,...,d}.

Here, o is the local involution that satisfies x(o(z)) = z(z), as defined in Section 2.2.

We now define a basis for the vector space V(z). For each j € {1,2,...,d}, let ¢’ ,(z) = 27 and define
@7, (2) inductively by
0 2 6
J APy j
Lemma 6.2.3. The family {¢J,(2)} forj € {1,2,...,d} and non-negative integers m provide a vector space basis
JorV(z).

Proof. For each ramification point a, define a local coordinate w,, to be such that # = w? + z(a), and hence
the local 1nvolut10n is given by w, — —w,. Observe that for each j, ¢’ 1(2) = 27 only has a pole at oo, while
oh(z) = - ZQ 7 does not hence oh(z) = - zQ =i € V(2). Given that the ¢/ () are defined iteratively
by applying 2, showmg that ¢J,(2) € V(2) for m > 0 and j € {1,2,...,d} reduces to showing that 2
preserves V(z).

Note that 8% = #Q,(Z)% introduces no new poles outside of {ay,...,aq}, and consider the action of a@
on a function in V(z) locally around a single ramification point a. In the local coordinate w,, the principal
part of any ¢(z) € V(2) is an odd polynomial in w1, and

9 1 9

O 2w, Ow,
preserves the parity of the power of any monomial in w,. Further, gz@[[ a)]] € Cw; 2 @ C[[w,,]]. Hence,

2V(z) CV(2),s0 ¢l (2) € V(z) forall j € {1,2,...,d} and non-negative integers m.

It remains to show that the ¢/, (2) span V/(z), and for this, it is useful to consider principal parts. Iterating
over possible m for each j means that there exists a ¢/, (z) with every possible odd pole order, and hence
the principal parts of ¢/, (z) form a basis for @, , w, 'C(q1, - - ., qa)[w,?]. The fact that the principal parts
of a meromorphic function determines the whole function up to a constant—given by Liouville’s theorem—
means that one can uniquely find ¢/ (z) from its principal part only. And therefore, {¢?,(z)} form a basis
for V(z). ]

Thus, given that the w, , satisfy the linear loop equations, it follows that they can be written as a lin-
ear combination of the basis elements ¢/ (z). Precisely, for (g,n) satisfying 2g — 2 + n > 0, there exist
Cym (,,{13”_33" ) € C(q1,---,4qd,s) which vanish for all but finitely many jq,...,75, € {1,2,...,d} and non-

negative integers my, ..., my, such that

wg,ﬂ(zla ) ZTL) = Z Cg,n (ml m,,) d¢ ( ) @ d(vbgnnﬂ(zn) (61)

1<g15-09nSd

Mi,...,Myp 20
The double Hurwitz numbers DH, ,, (1, . . ., itn,) are stored in the correlation differentials as coefficients of
X(z;) = exp(x(#;)) in the expansion of the correlation differentials at X = 0 (or equivalently z = 0). For
this reason, consider the expansion of the basis ¢/ (z) around X = 0. That is, write

=D AL (W)X ()", 6.2)
p>1
and note that the expansion of this series has no constant term because, by definition ¢(0) = 0, and

X (2) = zexp(—Q(z)) = z + O(z?). By definition

) = ()" = (x ),
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hence, observing that applications of X -2 2% to ¢J,(z) in (6.2) only introduces factors of 1 in the expansion
of ¢J () at X = 0, it is sufficient to consider (6.2) for m = —1. That is, consider

¢J S - ZA X“

pn=1

Compute the coefficients A’ | (1) by

j 2 J 2=t
AL () = Res -~ X (z)nH dX(z) = 0 X
= in:s A7 exp(pQ(2)) dz = %[z” T exp(uQ(z))
d o0k ki ik ; £ 4IAl
J - nrgz J —j QA
= ZL[zH 7}HZ 1' = L[zh] Z
H imin—o Mt H A=(1F1 d¥a) |Aut A
B N1
|Aut Al
Ap—j
The second equality uses the fact that Res f dg = —Resgdf for any two functions f(z) and g(z) that are

meromorphic at 2 = a. (Note: This trick will be used again throughout this chapter and shall henceforth
be referred to simply as integration by parts.) Also, because residues are coordinate-invariant this allows us
to write A’ | (11) as the residue over z = 0 rather than X = 0.

The upshot of this calculation is that, because A7, (1) is obtained from A7 | () by iteratively applying 6%’
we can deduce a formula for A7 (i) for all m > 0and j € {1,2,...,d}.

It will be useful to define a vector space which is the span of these coefficients. Note that here I use a slight
abuse of notation and write V(i) for the space spanned by the coefficients of the X = 0 expansions of
elements in V' (z).

Definition 6.2.4. Define the vector space V(1) to be the C(qi, ..., g4, s)-span of AJ, (u) defined by

= (N +m
i . qrp
A= 3 Teor
Abp—j

for j € {1,2,...,d} and non-negative integers m.

6.2.3 Equivalence between topological recursion and polynomiality

We are now equipped to prove the equivalence of the polynomiality result, Theorem 6.1.2, and topological
recursion, Theorem 6.1.3.

Theorem 6.2.5. Theorem 6.1.2 (polynomiality) and Theorem 6.1.3 (topological recursion) are equivalent.

Proof: The fact that the correlation differentials w, ,, satisfy the linear loop equations, and Lemma 6.2.3
giving a basis for the vector space of functions V'(z) that satisfy the linear loop equations, both imply the
following. For all (g, n) satisfying 2g —2+n > 0, there exist C, ,, (nj,:}::::ﬂ,";n) € C(¢q1,- -+ ,q4, ) which vanish
for all but finitely many j1,...,j, € {1,2,...,d} and non-negative integers my, ..., m,, such that

Won (21,0, 2n) = Z Cymn (nz&::]mﬂn) d {71“ (21)®---® d(bg”n" (2n).
1<,7‘17~~-7jn<d
mh...,mn}O

Further, ¢(z) written as an expansion in X (z) = exp(z(z)) around z = 0 is given by
L(N)+m

=Y WX =Y %xw.

pz=l p=l Abp—j
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Therefore, one can write

n

wom(21, v z) = > Con (i) T D2 Al () dX (20" @ -+ @ dX (20)7,
1<), njn<d i=1p;>1
mi,...,mn 20
and this gives us that Theorem 6.1.3 (topological recursion) implies Theorem 6.1.2 (polynomiality). The
converse was proved in previous work by Do and Karev [32, Theorem 26]. |

The converse statement follows a similar approach to the one taken in Chapter 5 to prove that the lattice
point enumeration is governed by topological recursion.

6.3 Polynomiality

The aim of this section is to prove Theorem 6.1.2. This is achieved by proving that DH, ,,(p1, ..., tin)
satisfies the polynomiality structure for y¢; when po, .. ., i, are fixed, then using the fact that double Hurwitz
numbers are symmetric in p1,..., i, to deduce the result. Specifically, I first aim to prove that for fixed
positive integers ps, ..., u, and for all (g,n) satisfying 2g — 2 + n > 0, the connected double Hurwitz
generating function H°(p41, ..., in; ) can be written

IeN)
o Yy P 3 P
H (/1,1,...,,[1%;8) = \Aué >\| P;,n(ul7~-~7ﬂn;®82g >t ’

r=1 [ AFpi—r g=0

where P! ({1, ..., ltn; ) is a polynomial in p; and .

g,n

The proof of Theorem 6.1.2 is divided into the following five parts.

1. Begin with a previously known vacuum expectation for double Hurwitz numbers (Theorem 6.3.2)
and rewrite it in a form that will be convenient for the proof of the polynomiality structure (Proposi-
tion 6.3.3).

2. Use the vacuum expectation derived in Proposition 6.3.3 for H®(u1, ..., tn; s) and consider the de-
pendence on p;. This yields an expression including a sum over partitions of size ;1 4 a for a positive
integer a. Use a “peeling lemma”, Lemma 6.3.4, to reduce this to a sum over partitions of size p; —r
for r € {1,2,...,d} (Lemma 6.3.6).

3. Use of Lemma 6.3.4 in step 2 results in a rational expression with distinct factors of the form ufjrk
for k a non-negative integer. Therefore, in the aim toward showing that DH, ,(p1,. .., tn) satisfies
a polynomiality structure, I prove two useful lemmas regarding the residue of H®(u1, ..., 1n;s) at
(1 = —a for all non-negative integers a (Lemmas 6.3.7 and 6.3.8).
4. Use the results in step 3 to deduce that
d fTAﬂM) LX)
k
Ho(ﬂ/lw'wun;s) :Z Z |Aué )\l S(leks)ZQ};,n(ula'-'au7z;q)8 )
r=1AFpu;—r k=1 k>0
where Q} ,, (11, - -, fin; ) is a polynomial in 4, and g, then extract the coefficient of §2972%" to yield

the desired structural result about the double Hurwitz numbers; that is, DH,,(u1, ..., ftn) € V(111)
(Theorem 6.3.10).

5. Use the symmetry of DH ,(pt1, .., ftn) in g1, ..., tn to conclude that DHg (11, ..., ptn) satisfies
the polynomiality structure for pi1, ..., iy, for all (g,n) satisfying 29 — 2+ n > 0 (Theorem 6.3.11).

These five steps are carried out in Sections 6.3.2 to 6.3.6 respectively. Section 6.3.1 below introduces some
preliminary notations, including the distinction between connected and disconnected double Hurwitz num-
bers, and the relation between these enumerations.



90 6. Double Hurwitz numbers

6.3.1 Preliminaries

Before proceeding with the proof of polynomiality, I first introduce some useful notions. First, define the
possibly disconnected double Hurwitz number, denoted DH , (i1, - - -, fin), to be as in Definition 6.1.1, but where

the source surface ¥ in the branched cover f: (3;p1,...,pn) — (CP'; 00) may be disconnected. Hereafter
for clarity, I will write DH_ (1, . . ., j1,) when referring to the connected double Hurwitz number. Next, for
positive integers p1, . . ., ttn, define the generating functions for connected and disconnected double Hurwitz
numbers to be
H (g1, .-y fin; S) ZDH (s -+ .y ) 8297270
g0
and
H® (111, pin3 ) = Y DHg (pa, . i) 879727,
9EZ

respectively. The genus of a disconnected surface is defined by its Euler characteristic which is naturally
additive under disjoint union; this results in a disconnected surface possibly having negative genus and thus
the sum over the genus above runs over all integers. (However, observe that for fixed p1, ..., i, the genus
is bounded and the genus cannot be arbitrarily large in magnitude.)

To relate disconnected double Hurwitz numbers to the connected counts consider the possible ways in which
the source surface can be disconnected. We are necessarily forced to have at least one of the preimages
f~Y(c0) = {p1,...,pn} in each component, which predicates that the number of components is limited to
at most n. Given that these preimages are labelled and the fact that the genus of the disconnected surface
is dictated by its Euler characteristic leads to the following sum over set partitions of {y1, ..., i, }. That is,

| M|

DHY (u1y. o spin) = Y > 11 PH;, s, s,

MH{1,...,n} g1+-+g|pm=9—1+|M| i=1

where if M; = {i1,...,4;}, then fin, = (piy, .-, ps;). At the level of the generating function, the sum over
the possible genera g1, ..., gy is taken care of by the parameter s and this gives the relation
|M]|

H*(fs) = ) [[H(Fwss). (6.3)

MF{1,...,n} i=1
This relation is invertible via the inclusion-exclusion formula, which is given by the following lemma.

Lemma 6.3.1. The generating function for connected double Hurwitz numbers can be written in terms of the discon-

nected enumeration via

[ M|
H (i, ospis) = 0 (DM (M) = DU H (s ).
MH{1,...n} i=1

Here, M is a set partition of {1,...,n} and if M; = {i1, ... ix} then fipr, = (Piyy - -+ 5 fiy,)-

Proof. Begin with the right side of the statement above and substitute using (6.3). This gives

| M|
Yo DM (M| = ) T (i )
MH{1,...,n} i=1
| M| [N
= > pMErm -0 Y TTHEGawgss)
MH{1,...,n} i=1 NF-M,; j=1

Consider the coefficient of each term on the right. An arbitrary term H°(fin,;s) - H(fin,y; s) can arise
from any partition { M, ..., My} where |M]| is within the range 1 < |M| < |N|. For each distinct |M],
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the coefficient of the term H°(fin,;s) - H(iin,y ;) is given by (—1)IMI=1(|M| — 1)! multiplied by the
number of times it can occur in this way, which is the number of ways one can group |N| objects into ||
groups—also known as Stirling numbers of the second kind—and this is given by the formula

M (— 1)1 i1

1 A
2T )

Therefore, summing over possible sizes ||, the coefficient of H°(fin, ;) - - H°(fin,,; 8) is given by

IN| i ML Cpymi=sging o NN -1 (—1)IMI=5 jIN]
>0 UMM = D gy = 2 30 MM D
|M|=1 Jj= J=1|M|=j
IN| IN|
_ _1)i+1INI-1 |M| -1
JZ::I( i 1§;J< i1 >
IN|
_ vt (1N
;( 17" ( i )
Cf1, i N =1,
o, if [N > 1.

The first equality has switched the two sums, while the third equality is true by the hockey-stick identity.
The fourth equality for | N| = 1 is clear by computation. For |N| > 1, consider

(xddm>m—1 (=)™ = (IG&>N|—1 XNf(_l)ijj(lz]w)

J=0

- (1)+1 V=1, (JJV|>

Jj=1

The expression (1 — 2)/V! has a root of order |N| at x = 1, and given that applications of d/dz reduce the
order of the root by 1 while applying 2 does not affect the root, it follows that (z d/dz)!V1=1(1 — z)/VI has
a simple root at x = 1. Substituting = 1 into the expression above yields

|N|
i=1 J
when |N| > 1, as claimed. Hence
|M]|
Yo MM - ) TH® (s 8) = HO(pa - s ),
MF{1,...,n} i=1
as required. u

Define the connected correlator of a tuple of operators (Oy,...,0,), denoted (O; ---O,)°, to be what one
obtains from applying inclusion-exclusion to the disconnected correlator. That is,

| M|
(O1--0,)° = Y ()M (M= 1) ][(Owm), (6.4)
MH{1,...,n} i=1

where O, = [, Oj-
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6.3.2 Double Hurwitz numbers via the semi-infinite wedge

Begin with the previously derived vacuum expectation for the double Hurwitz generating function given

below [91, 103].

Theorem 6.3.2. The generating function for disconnected double Hurwitz numbers satisfies the following equation.

H (41, .. . fin; §) = <exp (Z %’aj) exp(sF2) [ ] al;gi > (6.5)

j=1 i=1

Here oy, and Fo are operators defined in Definition 1.3.4 and equation (1.10) respectively.

The following theorem rewrites the above vacuum expectation in a way that will be convenient for the proof
of the polynomiality structure.

Proposition 6.3.3. The generating function for disconnected double Hurwitz numbers is given by the following
vacuum expectation in the semi-infinite wedge space:

H.(/il, ceey Bng S) = <C(,LL1, 8) C(:u% S) e C(/tn, 5)>a (6.6)
where
1 qw o
Clu,s)=—> | > Aui L H S(pAes) | E-i(us),
i€Z | AFp—i
and @ = G, @y Argny- The function S(z) = g(j) = M and operator £,(z) is defined in Defini-
tion 1.3.6.

Proof: Begin with the vacuum expectation (6.5) given in Theorem 6.3.2 and, observing that exp(—sF>) and

exp (— 200, %4 fix the vacuum vector, rewrite it as
i=1"js

H*(i7; s) = <H exp (Z —oz]) exp(sFa) a,, exp(—sFa)exp ( Z jiaj)>

Consider first the inner conjugation e*/2a_ e 572

E_,(0), Fo = [2%]€y(2), and using Hadamard’s lemma (6.7) coupled with the commutation relation for

. One can compute this conjugation by noting that a_,, =

the E-operators (1.9). Or, alternatively, observe that the operator F> is diagonal, with eigenvalue f(\)
corresponding to the eigenvector vy. The function fo()) returns the sum of the contents of the Young
diagram given by the partition )\, where the content of the box in column j and row ¢ is j — 4. In this case,
for any partition A,

65]:20[_“675}-2v>\ — 678f2()\) 68]:20[_’“‘1))\ — efsfz ()\)68.7:2 § ,U)\+“

Atu
o
- Z (O, = Z esu(k+2) PPkt T U
Atw kEZ+%
= E,M(,us),

where the sums over A™# are over all Young diagrams that can be obtained from adding a y-ribbon to \.

Compute subsequent conjugations by iteratively applying the Hadamard Lemma,

:B+Z%[A,[A,...,[A,B]m]}, (6.7)

k>1

where there are k¥ commutators in the summand. The first iteration gives
k
aqqq agqqq s(puds)rqy?
p (gt )E-nlnrexp (= S5 = 30 St 9)
ka>0

(n0)**S ()"
= 3 Lo Sldo)

E_pivdry (15).
kq>0
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Further iterations therefore result in

exp(i;ﬁaj) E_u(us) exp( Z—aj)

k k k k k i
Z uqr)*rS(us)k pg2)™ S (2us)" } : pqa)™S(dps) ™

_ (kqr) _ |( ) Z ( 2) - '( ) % E jtkyttdky (1)
k120 1' k220 > ka>0 .

()
G
> |2 e Ll HS 1AES) E iy ia (1)

A=(1%1,...,d*d)

Here A is a partition, hence the number of permutations that fix A is given by the multiplicities; that is,
|[Aut A| = kil Eo!- - - kg!. Letting —i = |A| — p yields the result. [ |

6.3.3 Dependence on /i

With the aim of proving that the double Hurwitz number DH  (ui1,. .., /1,) satisfies the polynomiality
structure, first consider the dependence of H®(u1, ..., fn;s) on pi. Now fix o, ..., fin. As detailed in the
outline at the start of this section, the dependence on y; yields an expression with a sum over partitions of
size j11 + a and it is desirable to reduce this to a sum over partitions of size ;1; — 7. For this, we require the
“peeling lemma”, Lemma 6.3.4. First, allowing a small abuse of notation, define A*(z) by

ik (z) = Pt
= |Aut A]”

where z is a formal variable and j € Z. Recalling the definition of A7 (1) in Definition 6.2.4, observe that

JAFT ()| _ = Ad(p) € V(p)

T=p
for j € {1,2,...,d}. Defining the expression fl“‘j(m) that distinguishes between 4 in the sum and /) in

the numerator will be useful in proving Lemma 6.3.4 and, later in the section, Lemma 6.3.9.

Lemma 6.3.4 (Peeling lemma). For a positive integer (v and any integer a,

G poL '™
ApS) = —— - A
2. Au t>\|HS”"S +azrq8(ws) > |Aut/\|H‘S“’“5
Ap+a r=1 A-p+a—r
Proof. 1 first aim to show
d

Arte(g) = L AP (7). 6.8

)= i oA ©8)

To do this, consider the coefficient of ¢, z*®*) of both sides. The left side gives

7yt D) 1
7z Dr
22" 3 Aut A [Aut o]’
AFp+a

where |v| = |\| = p + a. For the right side, note that the sum will be over all possible partitions A acquired
by removing one part of v, and this will result in a sum over distinct parts in v. Thus, if v = (1%, ..., d%),

@(u (TA‘T k
g u+ Z‘” 2 |Aut/\\ Z|u\|Autu\k\

r=1 AFpta—

where I have used that /(\) = £(v) — 1. Observing that

zd: k |Aut v| )
|Aut v\ k| ’
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we have
£(N) 1
e(u) D
@ ,u+az " Z |Aut )\| |[Aut v|’
r=1 AFp+a—r
proving equation (6.8). Letting = 1 and applying the rescaling g, — ¢, S(uks) yields the result. n

The following definition of admissible sequences is also required, to be utilised in Lemma 6.3.6.

Definition 6.3.5. Define P, to be the set of (possibly empty) sequences P = (pi,...,pyp)) that satisfy
1<p;<dforallie {1,2,...,4(P)}. Fix a positive integer r € {1,2,...,d}, and define Py, C Py to be
the set of all non-empty sequences P such that p,py > r. Denote by e(P) the sum of the terms of P; that
is, e(P) = p1 + - - - + pq. Further, define P4(e) C Py to be the set of all possible sequences where e = ¢(P)
is fixed.

Lemma 6.3.6. For fixed positive integers o, . .., lin, the double Hurwitz generating function H® (11, . .., fin; S)
can be written

a0 E(A) £(N)

d
Y= ;AWZT |Aut )\| ]-_-[ S(paAs) <BT(M1’S)C('U2’S) N ~C(un,s)>, (6.9)
where
o(P)
1 "1
B,-(/.n, 8) = — Dbiq 13(M1pi8) 577‘+€(P) (,UIS)-
K1 PeZP:T,d 11;[1 1 — 7“+E€(P 3

Proof. Begin with the vacuum expectation (6.6) for the double Hurwitz generating function as in Proposi-
tion 6.3.3,

H® (p11, - -5 pin; 8) = (C(pa, 8) Cpa, s) -+ Clpn, 8)),

where

Cus) =5 > | ¥ Bl gl H §(uhws) | E-ils).

H i€Z | AFp—i

Observe that, for the vacuum expectation to return a non-zero value, the energies of the £ operators must

sum to zero; that is, ¢; + 43 + --- + 4, = 0. Hence, iy = —ig — i3 — - - - — iy,. Further, given that £_;, (115)
is acting on the covacuum, i; has an upper bound ¢; < 0. Finally, for each j € {1,2,. ..,n}, the relation
—ij = —p; + |M| gives a bound —i; > —pu; for all i, and thus 41 > —ps — g — -+ — py,. Given that
2, 113, . . ., by, are fixed positive integers, this establishes a lower bound for ¢;. Hence,
potFpn (TA,U/E( n
° . _ = 1
H (/1/17"'7/’[/1’7,78)_M1 Z Z |Aut )\| HS Ml)\kS < /,1/18 H /,LJ, >
a=0 AFpi+a j=2
Apply Lemma 6.3.4 repeatedly to decrease 111 + a to py — r for some r € {1,2,...,d}. The first application
gives
1 ot tpn d 11 (j/\/-‘ L) )
— > o SGups) Y An ‘EAI HS 11 ARS).
K1 a=0 p1=1 K1 AFp1+a—p1

Apply Lemma 6.3.4 again, this time with the shift ¢ — @ — p; and leaving summands corresponding to
negative a — p; unchanged. Thus the second application will include terms of the form

1 TSN

J251 J25% axiq
— P19p, S(11P18) P2Gp, S(H1p28 S(p1Ag5).
p1 prta prt+a—pr S P24 S )/\ml+;p1 |Au t)\|H
Repeat this process until a — p; — pa — -+ — py(p) is negative for all terms in the summation. The set of

all possible sequences (p1,p2,...,pep)) that can be constructed thus for all possible a gives rise to the set
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‘Pa4,r in Definition 6.3.5 (and summing over this set Py, absorbs the sum over a). The condition that each
p; satisfies 1 < p; < d ensures that the peeling process will terminate after a finite number of iterations.
The condition pypy > r is implied by the stopping condition of the algorithm, which is given by the two

inequalities
a—py—p2—-—pypy—1 20,
a—p1—p2—- " —pp)—1+Pep) <0.
This concludes the proof of the lemma. |
6.3.4 Calculating the residue
Observe that in the expression for H® (1, .. ., ity,; §) in Lemma 6.3.6, the constraints on the set Py, dictate

that the operator B, (1, s) is a finite linear combination of £-operators whose coefficients are power series
in s. Further, for each fixed power of s, its coefficient is a rational function in y; (tensored with parameters
q1,--.,44). Therefore, speaking of the poles of B, (u1, s) is well-defined. First note that the factors in the

term
e(p)
M1
oP
i=1 M1 —T + Z ( )
contribute at most simple poles at negative integers. To ultimately show that DH , (p11, ..., jin) satisfies a
polynomiality structure, I consider the residue of H®(p1, ..., in; s) at u = —a for positive integers a; this is

the content of Lemma 6.3.7.

A pole at zero can only occur in the summand corresponding to the sequence P = (p; = r); in this case
the factor i in B,(p1, s) introduces a pole at zero, and further, as this term must involve an £-operator
with zero energy, evaluation of £(1115) on the covacuum makes it a second-order pole. However, it can be
shown that for n > 2, terms of this form correspond precisely to a disconnected contribution; this is shown
in Lemma 6.3.8.

Lemma 6.3.7. Fix uo, ..., 1y, to be positive integers and fix n > 2. Then, for all positive integers a and for
re{l,2,...,d},

n
Res < , , >d
(Res (B (1,5 l;[ (1> 8) )dm

= M,( <exp(§:a]q]>exps]:2)aaexp( ng)eXp( io& )ﬁ Clpy, s >7

= J? = J®
where
oP")
LP—1 Hz( 1 pqu/s(apz )
(P 0P
o2, TS (—a—r+ 200 p)
Proof. As observed at the start of this section, H®(u1, ..., tn; s) has at most simple poles at 1y = —a for

positive integers a. Hence, calculate the residue at —a by multiplying (B, (y11, s) [T;—5 C(1i, s)) by (11 + a)
then taking the limit 1y — —a. That is,

R < : , >d
#1:e§a Ml ]-:_-[ MJ m

L(P) n

. u1+a
= lim |—— E Pid S(p1pis) <€, (118) | I C(u s)>
11=—a 140 v4pi g r+e(P)\H1 79
el M pepy, S Z Sy j=2
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This is only non-zero when a = —r + py + pr41 + - - - + pg(p) for some k € {1,2,...,¢(P)}. Cancelling this

factor with (u1 + a), substituting in 41 = —a and noting that S is an even function gives
n k—1 Diq S(Gps)
Res (B [JCGy)dm= > (~a) ™7 [ =P gy, S(apes)
j=2 PEPqy., i=1 —a =T+ Zj:i pj

atr=5) p,
L(P)

i 18 i -
X H apq:+(§?’f“°) _<5_r+e(P) 1;[ (15,8 >

i=k+1

Rewrite the denominators of the fractions in the first product using the condition on g; that is, rewrite using
a = —1r+pg+ pry1 + -+ pepy- Split P = (p1,p2, ..., pep)y) into two sequences

P, = (pkaperrh cee 7PZ(P)) = (pllvp/27 e ’pZ(P’)) and P” = (pk,hpk,Q, e 7]91) = (plll,pg, e ,pZ(Pu))
so that P’ LI P” = P as sets. Observe that —r + e(P) = a + e(P"). Therefore,

H}%:efa <Br(u1, s) H C(py, s)>du1
j=2

L(P’
= Z (—a)Z(P,)fl Hl( 1 )p;qpls(apz )

oP oP
P'e€Py., Hi(:2 J—a—r+ Z]( i )p;
" pZ qp//S(apg’s) n
x Z a) P H ﬁ<€a+e(pu)(—as) H C(u;, s)>
P"€Py i=1 j=1Pj j=2

On the other hand, use the same technique as in Proposition 6.3.3 for a > 1 to calculate

e’} o o o - )Z )\)
545\ sF, —sF> _ a4\ _ a(—a
exp(;js )e Qg€ exp( ; s ) = a Aut )\| HS (aX;js)Eqrin|(—as)
o) L)
= S(aX;
-3 % By Hswyasi-as
iza \F—a+1i
Now apply Lemma 6.3.4 iteratively to reduce —a + ¢ to 0. The first application gives
o) )
S(aX;
> T i s

i>a A-—a+1

(—a)'™ 7

q
plqpl S(aps) Z A|A117t)\| HS(aAjS)S,;(fas).
Jj=1

Dzaplzl A—a+i—p;
Repeating the process yields a sum over (possibly empty) sequences P = (pi,p2,...,pyp)) such that
p1+p2+ -+ pgp)y = —a+ i for all possible i > a. We include the empty sequence to take into account
the term ¢ = a. As per Definition 6.3.5, all possible such sequences comprise the set P;(—a + ). Thus,
applying the process above iteratively gives

2){) )
S(a);
,Z |Aut /\| H ak;s)éi(—as)
iza \AF—a+i
E(P)— o o) L)
—a ar(—a)
= Z _ ; H Hpaqzr] (ap;s) AN HS(a/\js) Ei(—as)
PePy(—a+i) ate k=1 a+l*2] 1Pj j=1 A=0 ‘Aut >\| J=1
) piay,S(apss)
= > O] =& e (—as),
PEPd(—a-‘rz) Jj=1 Zb 1Po

where the last line has applied the relabelling (p1,p2, ..., pup)) = (Pecp), Pecp)—15 - - - > P2, P1)- [ |
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It remains to consider the double pole at zero, which is treated by the following lemma.

Lemma 6.3.8. Fix jio, ..., iy, to be positive integers and fix n > 2. Then for all r € {1,2,...,d},
n n
Eg%m< (p1, 5 H (1, s >du1 Res u1< (p1, 5 > < H2 (1, s >du1,
: j:

and hence, applying the inclusion-exclusion formula,
n
lfie%/n< (p1, 5 H (1, s > dpy = 0.
1=
Proof. As stated at the start of this section, a pole at zero can only occur in the summand corresponding to

P = (p1 =), and in this case this term in B, (p1, $) is

srq-S(p1rs)Eo(H18).

The factor of 447 ' in B, (111, s) makes it a second-order pole. Observe that the expression has no simple pole
at zero; given that S is an even function, the residue is indeed 0. Compute the double pole as

- srqrS(urs)
Egsou1< (11, g (15, >du1 Res j—— = <5 (1) ]

=

C(:U'jas)> dp
2

<.
Il

=.

= Eiso squS(ulrs)<€o(u15)>< C(u;, 5)> dpq (6.10)

j=2

- ey (09 { T 0.

where the second equality is using the fact that for any operator O, (£,(2)0) = s(2)"HO) = (£y(2))(O).
Apply the residue to the inclusion-exclusion formula (6.4),

Resy u1<l’5'7-(u17 s) jlj[zc(uj, S)>Odu1

| M|
=Resmn  » (=)MIMB. (11, 8)Cliin, 5)) [ [(Clins, 9))dpa,
n1=0 ’
NC{2,...,n} i=1
MF{2,...n}\N
where, for M; = {i1,...,ix}, C(fin;, S) is a convenient shorthand notation that denotes H?zl C(ui;,s). Use
the result (6.10), which is true for any n > 2, to obtain
n
Eg%u1< () [T Cugns > dp
Jj=2
| M|
= Res i > EOMIMNB, ()M Ciin, 9)) [ [(Clia, 9)) dpaa,
M0 NCimn) i=1

MH{2,...,n\N

Each term in this sum arises twice — either when N = (}, which occurs with coefficient (—1)I™/|M|! or if
N = M; for some i € {1,2,...,|M|}, and this occurs with a factor |[M| - (—1)MI=1(|M| — 1)!. Thus, each
term cancels whenever n > 2. |

6.3.5 Polynomiality in y;

Before giving the main result of this section, I first prove a lemma about extracting the coefficient of s from

1,2 S(uhs).
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Lemma 6.3.9. For all non-negative integers m,

() 1) 7 1t
2m QAM (VY
| | S(pA E A
]/\FM_T |A t >\| :u kS ~. \Aut A‘f( )7

[s

where f(\) is a symmetric function in X = (A1, ..., Ayn)). Further, for any symmetric function f()\),

2(N)

> fgfjt S/ eV

AFp—r

Proof. First, that extracting the coefficient of s from the product Hf;(:’\z S(pAgs) yields a symmetric function
of A is evident by expanding the functions S as power series in s. This can be shown through direct
computation; for example, in the case m = 2,

[s"1S (1 A18)S (p2A2s) - - - S(p1Xe(r) )

Y L LS G O G O (R C L U L
24 1920 24 1920

14 H%)\?(A)SZ n /fll)‘;zl(,\)s4 +
24 1920

£(N) )\4 L(N) /\2)\2

_ .4 ) v

it | 2 1o T 22 o
1=1 i,j=

It remains to show that

= 0N
> RE— ) e Vin).

|Aut Al
Ap—r

By linearity, it suffices to show the above statement in the case where g(\) is a product of power sum
symmetric polynomials p,, (A), Day(A); - .., Pa,, (A), where pa(A) = A§ + A + -+ + A%(r)> since the power
sum symmetric polynomials provide a basis for the ring of symmetric functions. To do this, define the
operator Q, to be

for a a positive integer. The action of Q, on A% (u) for j € {1,2,...,d} is

QAJ'():.Z ME(A Zk Z CIA,“ ),
affolk) = J — JAuCA =7 JTAut )\|

hence, applying a product of operators Q,, - -- Q,, yields

ay " am “0 /j/) =] Z \Aut )\|pa1( )"'pa,,m( )
AFp

It remains to show that the right side lives in the vector space V(). We first claim that

£(N) d £(N)
T Qr
E N=z> k > 6.11
Tauea Pa(}) PP 2L TAur A (6.11)

AFu Fu—j—k
which we can prove by considering the coefficient of 7, 2™ of both sides. On the left side
178

(v) % _ pa(v)
] Z‘|Aut PN = e
AFp—j




6.3. Polynomiality 99

with |v| = g — j. Similar to the argument in the proof of Lemma 6.3.4, the right side will be a sum over
partitions A\ acquired by removing one part of  which will result in a sum over distinct parts in v, and again
£(v) = £(X) — 1. Observing that

o Pa(v)

Z |Aut v \ k| |Aut v|’

dlstmct

the right side yields

d 2(N)
L(v) ke % _ pa(y)
] ; @ AWZ_; At Z |Aut z/\k:| [Aut v|

dlstmct
Substituting = u into equation (6.11), we therefore have
) £(X) 7y 11E)
DK AH
o A? = k®
Qa Ay (1) Z JAut AP “Z ax Z AUt A
Abp )\I—;Lf -
d=y £(N)+1 £()
NG arp
= k@ ko
DL D D VTS S ke D TAwid
k=1 Ap—j—k =d—j+1 AFp—ji—k

Hence, proving the second statement of the lemma has been reduced to showing that Q, preserves the
vector space V(p). The first term in the expression above is a linear combination of A; 1(x) where
j+ke{2,...,d}, hence

U

—J L(N)+1
Dp
k® V().
% D, Taaar €V
k=1 AFp—ji—k
To prove that the second term also lives in V (1), it suffices to show pAZ™ (1) € V(u) for i € {1,2,...,d}.
Proceed by induction on i. When 7 =1,

)
Dp
pAT () =n Y At A
Ap—d—1
From the proof Lemma 6.3.4, we have
Vs - qu)
6.12
|Aut )\| Z Z |Aut A’ (6.12)
Abpta = p+ta
for all integers a. Using @ = —1 and rearranging, we find

S0 1 (N +1
arp I CD\M N
= k
u»z_g_d Aut N~ dgq Z TAut /\| ~ dqa z‘; q’“%z_;_k [Aut A’
M 7

and hence AL (1) € V(11). Now assume pAS (1), ..., pATT™ (1) € V(1) and consider

)
pd+m _ arH
Ap—m—d
Using (6.12) with @ = —m and rearranging gives
" Z (TAM“)‘)
|[Aut Al
Fpu—m—d
- 7t il ey
w—m NG K D
= - k
dga 2. [Aut N dgg PILTEDY [Aut \
Ap—m d =1 ANp—m—k
- d—m = d—1 -
_p—m Z TR - L » Z PN+ u Z kq Z Ot
dqq [Aut | dagq F [Aut A dgq 4 |Aut A
Ap—m =1 Ap—m—k k=d—m+1 AFp—m—k



100 6. Double Hurwitz numbers

The first two terms live in V(1) because they are linear combinations of the basis elements A7 (1), while
the last term lives in V(1) by the induction hypothesis. Therefore A3 (1) € V(u) for i € {1,2,...,d},
and we can conclude that Q, A} (u) € V(p).

Given that the vector spaces V(z) and V(u) are isomorphic, the fact that Q, (acting on elements in V(2)
via the isomorphism) and % commute, and that % acts on A7 (p) by a shift m — m + 1, it follows that
Q, preserves the vector space V' (11), and this concludes the proof of the result. [ ]

We are now equipped to prove that DH| (1, ..., fi,) satisfies the polynomiality structure. Specifically, we
prove the following theorem.

Theorem 6.3.10. Fix o, . .., i, Lo be positive integers. Then, for all (g, n) satisfying2g—2+n > 0, the connected
double Hurwitz generating function H°(u1, . . ., fin; s) can be writien

d —L(N)
2 : 2 : grH 2 : _
HO(:U’la e 7“”73) = < |Au‘1 )\|> P;n(ﬂl,/lg, e ,/Ln;(j)82g 2+n7
r 920

r=1 \ Ap—

where Py, (11, fi2, - - -, fin; §) s @ polynomial in py and q.

Proof. It will be convenient to consider the cases n =1, n = 2 and n > 3 separately.

Case n = 1. In this case, I aim to prove that the generating function for double Hurwitz numbers can be

written as

HC (11 _ d JAHZ(A) rqr > pPr . 2g—1
(M’S)_Z Z |Aut )\| /1,28+Z g,1(N7(j)S )

r=1 \ Ap—r g=1
where P, is a polynomial in 4 and ¢ for all g > 1.

When n = 1, the connected and disconnected double Hurwitz numbers coincide, in which case, by Propos-
ition 6.3.3, we have

IV g
H® (1;5) = H (13 5) = Z( |At/\|HSN)\k3> ~i(ps))-
AFp—

€L

Only the summand corresponding to ¢ = 0 contributes non-trivially, and in this case (y(z)) = ﬁ Ap-

ply Lemma 6.3.4 once yields a sum over all sequences of the form P = (p; = r) which gives

1 '™ 1
H (p;8) = — S(puA S
(/’[/a S) ,LL Z Z |Aut )\| H (/'[/ ]CS) Tq (lu’rs) §(,uS)
r=1 \ AFpu—r =
. ) L)

o Zd: ( Z QAH 1(—[ ) 7¢;S(purs)

= — ol -
=5 |Aut Al 2 w2sS(ps)

Extracting the coefficient of s?9~! yields

DHO 29 1 d qAM[()\ S )\ Tq78(/.l/7“3)
Z:: D |Aut A ; H ks

o 55
ﬁ £(N)
Bt HS > b S(prs)
(s ) e S
i = ( _ |Aut )\| S(ps)
a,b even

The case g = 0 corresponds to choosing the constant from each S term and this gives P, (u; ) = %, as
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expected. When g > 0,

d o) L(X) S
qrft S( ) qr (prs)
Z Z | | (1Aks) [s"]
o2y =1 ( _|Aut M p o S(ps)

d ikuZ(A) Tqr
S 3 ( X B ) e,
a+b=2g r=1 AFp—r K

a,b even

where ¢;(r) is a degree b polynomial in r. Applying the second statement of Lemma 6.3.9 yields the desired
result, concluding the proof of the case n = 1.

Casen = 2. The expression given in Lemma 6.3.6 in the case of n = 2 is

L) £
H® (o1, pi2; s Z Z (ﬁgﬂé)\HS ulx\k5>< (#1,5)0(#2,5)>.

r=1 AFp;—

By Lemma 6.3.8 any poles at zero are cancelled when passing to the connected count via inclusion-exclusion.
Hence, it remains to treat the poles at negative integers; here Lemma 6.3.7 gives

Res (B, (1, )C(u2. ) Ydpu
H1=—a

= M, (a; s)< exp (i %) exp(sFz2)ag exp(—sFz) exp ( — i a;gj)C(,ug, s)>

j=1 j=1

= <exp(i%qj)exp (sF2)a Oé/;;2>

=1 J°

= M,(a;$) 0a,pu,-

The last line uses the commutation relation for the bosonic operators a.+,, (1.8), and the fact that the vacuum

expectation (ezi s +S}-2> contributes 1. This shows that the residue is only non-zero when p1 = —pus.
Consider the expression for double Hurwitz numbers as given by Proposition 6.3.3 and note that in the case
n = 2 the constraint on the energies is iy = —ia = a with a € {0,1,..., p2}. Thus,

H® (1, s 5)

1 L2 B LAy £ B £(22) L(N?)
Z Z gy Z a2y
( |[Aut AL H S( NlAks)) ( |Aut A2 H S(u2Xis) )

Hi f2 a=0 \ Alrpu;+a A2 po—
<5a(M15)5—a(u2S)>-

The inclusion-exclusion formula in the case of n = 2 is

(Eal21)€-a(22))° = (Eal21)E-a(22)) — (Ea(21)) (E-a(21)),

hence, because (£, (%)) vanishes unless ¢ = 0, one can pass to the connected generating function by exclud-
ing the @ = 0 term from the summand. In the aim of showing DHJ 5(y1, 12) € V(p11) for g > 0, one would
apply Lemma 6.3.4 to reduce the sum over A\! - ;i1 + a to one over 1 — r for some r = 1,2, ...,d. Recall
that applying Lemma 6.3.4 to an expression that is being summed over A F p; + a introduces a factor of

” £ . With this in mind, a pole at ;11 = —p2 can only arise when applylng Lemma 6.3.4 to an expression

including a sum over A - p; + pto (and this would yield a factor of

+u ). Observe that a sum of this form

corresponds to the a = 12 term in the sum over a. Hence, by the argument above that the residue is only
non-zero when 11, = — iy, it suffices to consider the a = j; summand in the sum — and in this case A? = ().
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That is, to consider the poles of H®(y1, p2; ), it suffices to consider only the following expression:

S é(/\

Z |q2ué )\‘ HS MlAkS < Nz(uls)é’_uz(uw)y

A +pe

o e )
_ ¥ Wl”ﬂsmk (s + p2)s)
N, (AUt A S((p1 + p2)s)

The expansion of the ratio of the S functions begins

S(ua(pn +p2)s) - (p3 —1) . ,
S((p1 + p2)s) 1+ 24 (11 + p2)?s” + O((p1 + p2)*s*),

and, extracting the coefficient of any positive power of s from this term would include a factor of (1 + ﬂz)k

for k even and k > 2, which annihilates any simple pole at ;11 = —p9. Therefore, it remains to study the
coefficient of 529 in the expression

TSN

. q

AFp1+p2

for g > 0. I achieve this by showing that the coefficient of s?9 for g > 0 can in fact be written as a linear

combination of terms of the form o

g .
> X T
-
b=1 Ntpi+p2—>b |Aut A ‘
That is, for g > 0, extracting the coefficient of s from f(7; s; ¢) reduces the sum over A b pq + pug — b for

b strictly positive. Hence, applying Lemma 6.3.4 to f(/i;s;q) after extracting a coefficient of s will only

J251
p1+p2—b
introduced. Combining this with the argument above that a pole can only arise at j1; = —p2 would conclude

introduce factors of the form for b strictly positive, and therefore, a pole at ;11 = —p2 cannot be

the proof in this case.

In the case g = 0, extracting the coefficient of s corresponds to choosing the constant from each S(p1\xs)

term. Hence,
o) £ 1N

0 q/\lh Azl
LA
7 > |Aut/\|HS ks) = Y [Aut A’

A1 4o Ay +po

. . ‘ 1
which, when applying Lemma 6.3.4, as described above, will pick up a factor of ——-, as expected.

To prove that [s29]f(fi; s7) can be written as a linear combination of terms of the appropriate form, first

rewrite
o)

s =) qw; 3] HS (mAes) = Y H qj Ml S(pgs)™,

A1+ AFpg4pg j=1
recalling that A = (1%1,2%2 . d*?). Now consider the product S(ujs)* . If S(m) = >, co,x?*, then

1 1
. 1 2,22 R 6,6.:6 )
S(pjs)* ( + oS THLUT t 15 ML+ 57608 pige + -

_ k] 1 2.2:2 4 4.4 1 k
1+< ) 24" TSI 990 242 2
1 (& 1
466 J
T (5760<1>+1920 24( ) ( )

k; . k;
=1+ < j)@ c]g] u%szf —l—,u‘lls‘lj‘l (04 cg ( +c

—1(kj
+M456]6( kj 1(1>+C40200 ( )

c k.l

Zuzz 2i 2 Z Cpkj!
- )
mol ma! -+ - mog;!

20 |p|=21

l\')

)

)+
o
2 (3))

3)
(5
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where p = (0™ 2m2 .. . 2{™2i) Extracting the coefficient of 529, for g > 0,

(2] (i 53 @) = Z qu S

d ’j ki o 2aj 94
=Y IRy mih
) ! mo! ma! -+ ma,. !
Abpitpe j=1 ki |p|=2a; 012 2a;
a1+---t+aqg=g L(p)=k;
d m 2
-y ¥ H % 0 (110)" 7 ()
. mo!lmy! - mag.!
Apitpe pbp? L pd J=1 2 2a;
j:1I|PJ|:2!]
Lp?)=k;
d - 2
- > HZ NI RS
- —J[ o
Abpytpe | =1y, ptp2,..pt J=1 m M2

4 177 =2¢

where p; is equal to p; but with all zero-parts removed; that is, p, is now a partition of 2a; with only even
parts.

The key step in the above working lies in the observation that extracting the coefficient of s*%/ from S ki for
eachj € {1,2,...,d} yields a factor of k;! which cancels with the same factor in the denominator, and allows
us to rewrite the sum over A = pq + pg with A = (151, 2F2 . dF) as a sum over \' = (17”(1],27"3, e dmg)
with X F py + po — b for all possible b.

The contribution for

d
b= ng(ﬁj)

is given by
d -
Z H Cpi (.Ulqj‘)k (Mlj)za]
51 72,00 =1 ' my ' méaj !
E i=1 ‘p | 2g
Hence,
i >\) ey
29 S(ur A
LD, |Aut>\| H HaAks)
Ay +pe
by d - .
B i By N (k)™= (p1 )2
B / J ) =53 J ’
b=1 N b p1+piz | Aut X'| st i=1 R Tyl - -y, !
E;'l=1 ‘pi‘=29
where the sum over b starts at 1 because ¢ > 0 and concludes with b = g because Z;l:l 7’| = 2g.
Applying Lemma 6.3.4 now will only introduce rational terms with denominators p; + p2 — b for b > 0;
hence this process cannot introduce a pole at 1 = —po. Therefore, we can conclude that, in the case n = 2,
a 0 N
Ho . — A 1
(ILL17ILL2’S) 7; <)\,|_# |Aut )\/ Z H17H27(f)5

where Py ,(u1, pi2;G) is a polynomial in i and ¢ for all g > 0. This concludes the case n = 2.

Casen > 3. Begin with the expression given in Lemma 6.3.6,

d o) L)
H (i1, pinis) = > > (fgﬁ; 3 stks))<Br<m7s>6<u27s>cw37s>---C<un,s>>.
k=1

r=1AFpu;—r
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As in the n = 2 case, Lemma 6.3.8 gives that any poles at zero are cancelled via the inclusion-exclusion
process. Use Lemma 6.3.7 to calculate the residue at negative integers. That is,

n
Res < , Clu;, >d
#1:6311 'ul g /.L] s

= M, (a; s)<exp (i %) exp(sFz2)ag exp(—sFz) exp ( — i %qj> H C(u;, s)>

j=1 j=1

= M,(a; s)<exp (Z ;g]) oxp(sF2) org 42 2ts L Bt >

H2  H3 1229

Commute «, to the right. The commutation relation [cv,, _,, ] = @ d, ,, implies that the residue vanishes
except possibly if a is equal to one of the fixed positive integers p, for some k € {2,3,...,n}. In this case,
the residue reads

oo

q; o R oy,
5a,pkMr(,Ufk§5)<eXp( ﬂ) eXp(S}_Q)i"'Oé—M k > :511,;% Nkv <HC Hi, S >
=1 Js M2 220
z;ék
This simple pole at py = —py, simplifies via the inclusion-exclusion formula against the simple pole arising

from the term

<BT(M17 (hr, s ><HC Hiy 8 >
iZh

Indeed, by Lemma 6.3.7,

#I]igsﬂk <BT('M1’ (1, 5 > <HC His 3 >du1
7

=

Cpirs) )

Js 2

— Mr(Mk?s)<eXp (i ]q]) exp(sF2) « 04,;/12> <

S,

I
ESIN)

/J/kv <HC iy S >
=27

Applying inclusion-exclusion and induction on n as in the case of the double pole at zero (see Lemma 6.3.8)

proves that for n > 3 the connected generating function H®(u1, ..., fin; $) can be written
d o) L(N)
HO(j1, -y fin 8) = Y ( > ‘q[iutl i L HS p1 \S) ) > Qs iz, T
r=1 \ A — h>0
Now apply Lemma 6.3.9 to conclude the result. n

6.3.6 Invoking symmetry

To conclude the proof of Theorem 6.1.2, it remains to use the symmetry of DH{ |, (1, - -, ftn) in i1, .- -, i
to show that DHJ , (p11,- -+, ptn) € V(1) @ V(p2) @ - @ V().

Theorem 6.3.11. Suppose that F(pi1,. .., py) is a symmetric function of positive integers yi1, . . ., on. If, for fixed
positive integers [ia, . . ., fin, we have F(py, ..., py) € V(u1), then

Fur, .- pin) €EV() @V (u2) @ - @ V(iy).

Proof. By assumption F(p1,...,4n) € V(p1), and considering the definition of V(1) as given in Defini-
tion 6.2.4, we can write F'(uq,. .., uy,) as

m—1

Fua,- s pin) = Y Ar(pn)br (2, 13, - - fin)
k=0
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where m — 1 is a finite integer. Here, we have taken an index set X to be the sensible relabelling of {j, m}
where j € {1,2,...,d} and m is a non-negative integer, and we write Ay (y1) = A7 (u1) for k € X. Prove
F(pi,. .., tn) € V(u2) by showing that by (g, 3, ..., pin) € V(usz) for all k € {0,1,...,m — 1}.

Begin by computing the values of F at y; € {1,...,m}, resulting in the following system of equations.

m—1

F(17M27"'7M1’L): Ak(l)bk(ﬂ%aﬂn)
k=0
m—1

F(27/~L27'~'7/~Ln): Ak(2)bk(/i2>»/14n)
k=0
m—1

F(m7M27--~7Mn): Ak(m)bk(,u?anun)
k=0

Now invoke the symmetry of F'(y1, ..., () in g1, ..., i, to write

Fpy, oo pin) = F(p2, -y fn, 1),

and find the following equivalent system of linear equations.

—

F(M2>"'a,u“n71> = Ak(/@)bk(MB,---aMml)
k=0
m—1

F(ﬂ27~~';ﬂ7172): Ak(,LLQ)bk(,LL37"'a,LLna2)
k=0
m—1

F(ﬂQv"'vﬂnvm): Ak(NQ)bk(MBM"a;u‘nam)
k=0

Equating the right hand sides of the two systems above gives

m—1 m—1
A (D)br(p2, - s pn) = A (p2)br(p3, - - s fn, 1)
k=0 k=0
m—1 m—1
Ak(Q)bk(MQa'-'7Mn) = Ak(/’@)bk(/’(‘i’)w-'vu’an)
k=0 k=0
m—1 m—1
Y An(m)br(pz, i) = Y Ar(uz)bi (s, - fn,m).
k=0 k=0

As outlined above, we ultimately wish to show that by (o, 3, . .., ttn) € V(pe) for all k € {0,1,...,m —1}.
Note that Ap(u2) € V(pe) for all k € {0,1,...,m — 1} by definition, and by (us3,. .., tn,c) is constant
with respect to 112. Hence, as the right hand sides of the equations above are linear combinations of terms
A (p2) b (s, . .. pin,¢) for k € {0,1,...,m — 1} and ¢ € {1,2,...,m}, it follows that both sides of the
equations above live in V' (u2). If the system of equations is solvable for by, . .., by, then it will follow that
each of these functions must live in the vector space V'(u2). Thus, it remains to show that the system of

linear equations above is solvable, or equivalently, that the matrix

Ao (1) Ai(1) Az (1) Am-1(1)
Ao(2) A1(2) A(2) o Ami(2)

Aom—1) Aym—1) Ag(m—1) - Ap_y(m—1)
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is invertible. But
L(N)+m

i AP
Ap(p) = Azn(:“) = m
AFp—j

are linearly independent if and only if the ¢/, (2) are linearly independent. To show this, first observe that for
je{1,2,...,d}, the ¢’ () = 27 are linearly independent, and for distinct m, ¢/, (z) = (8/8z)™ ¢’ ,(z)
have dlstlnct pole orders, hence any set of ¢/ (z) with distinct m are linearly independent. It remains
then to show that {¢} (2),...,¢% (2)} are hnearly 1ndependent for all m. If {¢ 1(2),...,¢% (2)} are
linearly independent, then it follows that {2 ¢} _1,...,2¢d 1} = {¢}(2),...,0% ()} are also linearly
independent. Since {¢!(2),...,¢%,(2)} are linearly 1ndependent it follows that {¢l (2),...,¢% (2)} are

for all non-negative integers m.

Therefore, by (p2, ti3, - .., fin) € V(o) for all k € {0,1,...,m — 1} and hence F(u1,... 1) € V(u2).
Iterating this argument for ps, . . ., fip, it follows that F'(pq,..., ) € V(1) ®- - ® V(in ), as required. W

6.4 An ELSV-ike formula for double Hurwitz numbers

This section works toward obtaining an ELSV-like formula for double Hurwitz numbers. This is done by
considering the spectral curve for double Hurwitz numbers within a 1-parameter deformation of the spectral
curve of a similar enumeration, orbifold Hurwitz numbers. One can then use a variational result of Eynard

and Orantin [52, Theorem 5.1] to relate the free energies of the enumeration.

First, we introduce orbifold Hurwitz numbers and recall the relevant results for this enumeration.

6.4.1 Orbifold Hurwitz numbers
The orbifold Hurwitz number H, g[]illl (41, .-+, pin) is the weighted enumeration of connected genus g branched
covers f: (Z;p1,02,---,Dn) — (C]P’l; o0) such that

+ the point p; € f~!(co) has ramification index y; for i € {1,2,...,n};

o the ramification profile of 0 € CP" is (d,d, ..., d); and

« all other branching is simple and occurs over prescribed points of CP'.
The weight of a branched cover is given by

1
m!|Aut f|’

where m = 2g — 2+ n + |u|/d is the number of simple branch points, as given by the Riemann—-Hurwitz
formula.

Note that orbifold Hurwitz numbers are a specialisation of double Hurwitz numbers, and their enumeration
can be obtained from Definition 6.1.1 by setting ¢4 = 1 and g3, = 0 for all £ # d.

Orbifold Hurwitz numbers have previously been expressed via intersection theory on moduli spaces of
curves in a number of ways, due to Johnson, Pandharipande and Tseng [70], and, separately by Lewanski,
Popolitov, Shadrin and Zvonkine [80]. A third formula, and the starting point for the work in this chapter,
can be obtained by either of the ELSV formulas found in these references by pushforward to ﬂg,n, which

gives
d)lwi/d] ol
H (i 1) = dPo—2n S/ T W/ / LS S (6.13)
o " H afdl S, T (= )
Here,
g
di]al ,,,,, an = g*Cg;gl,...,an = €x (Z(_l)k)\g> € H*( 9 7“@)
k=0

where Cg:5 - is the Chiodo class first defined and explicitly calculated by Chiodo [26].
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Given that orbifold Hurwitz numbers are a specialisation of double Hurwitz numbers for specific values
for the g-weights, Theorem 6.1.3 implies that orbifold Hurwitz numbers too are governed by topological
recursion. In fact, this was previously known in the literature, having been proven by Bouchard, Hernandez
Serrano, Liu and Mulase [14], and separately by Do, Leigh and Norbury [33]. For orbifold Hurwitz numbers,
we define the spectral curve S by

dz; dz
oz =tz =2t ) =2 wih(az) = TS
Also define X9 (2) = exp(z!¥(2)) = zexp(—z?). Denote by wg n(zl, ..., 2pn) the correlation differentials

produced by topological recursion applied to S!%. Define the free energies F[‘717]L(,z17 ..., zp) for orbifold

Fl (... 2 / / Wl

Theorem 6.4.1 (Bouchard, Hernandez Serrano, Liu and Mulase [14] and Do, Leigh and Norbury [33]). For
(g,m) # (0,2), we have the expansion

Hurwitz numbers

Fé‘fn(zl,...,zn): Z Hgﬂl(ul,...,un)HX[d](z )
TS ;

J

[d]

We can write Fy 7 in a basis of natural meromorphic functions. For a € {1,2,...,d} let gb[?d]_l(z) = Z7 and
for m > —1 iteratively define
d] .
() = oo B8 (2) = XU Dl (o) = =2 0 gl (o), (6.14)

Expanding in the variable X9 (z) and using Lagrange inversion to determine the coefficients of X% (z)*,

we can write

o (2) = Z Mx[d](z)kdﬂ‘,

&=l k!
k>0
hence
m+1 \k+m
() w0 [d] o (kd+7) [d) ( \kd+j
(o) = (X905 ) ol = 3 B g, .19

k>0

Now rewrite the ELSV formula for orbifold Hurwitz numbers in terms of the free energies by substitut-
ing equation (6.13) into Theorem 6.4.1. That is,

n

Fg[(’i]’b(zl”zn) = Z Hé?n(/’bl77ﬂn>HX[d](Zl)“l

[t oo 21 i=1

1i/d] [d] n
3 ld% e a T il D I ]H X ()

Pl Lpi/d)! MgnHz (1= %) i=1

M1y pbn 21

Using equation (6.15) then yields

Flll oy, o) = 297203 g Gdm) ( /M

1<j17---aj71<d
M yeneyMipy 20

g d j Hl/) ) H¢£—‘f],mi(zz‘), (6.16)
i=1

g,m

where d — j is a shorthand notation d — j = (d — j1,...,d — j,). Also note that, due to considerations of the
degree of relevant moduli spaces, the sum is only over tuples ji, ..., j, whose sum is a multiple of d, and
second, because of cohomological degree considerations the sum is only over my, ..., m, whose sum is at
most 3g — 3+ n. Equation (6.16) will be the starting point for the ELSV-like formula given in Theorem 6.1.4.
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6.4.2 Deformation to double Hurwitz numbers

Let Q(2) = ga_12%* ' + -~ + q12, and define a 1-parameter family of spectral curves S* by

le dZQ

P2 = Iz (@ 1), ¥ = (as+10() . whalenz) = ST

Denote by w; ,, the correlation differentials corresponding to applying topological recursion to the above
spectral curve S* and define the free energies F; , by

Zn 21
t _ t
Fg,n(zla"'vzn)*/ / Wyn-

0 0

Substituting ¢+ = 0 and g; = 1 into S* recovers the orbifold spectral curve S*=0 = Sl9, while t = 1 gives

the double Hurwitz spectral curve S'=! = S and Theorem 6.1.3 confirms that w, ,, = wi=! is a generating
function for double Hurwitz numbers DHy (41, - - -, fin)-
Let z = q;/dz, in which case

| - 0 =~
() =213 = Sas, 1) =sy(2), wla(er, ) =i, B)

The homogeneity property of topological recursion under rescaling gives the relation

wgvn(zl, ceeyZn) = 527297"%[77”(21, cees Zn),
hence
F (21, 2m) = s 297" Fl (2, 5,). (6.17)

The spectral curve S is smooth in ¢ in a neighbourhood U of [0, 1] provided that s is chosen small enough
relative to ¢i, ..., gq ensuring that the branch points of the deformed curve remain simple. In this case F g,n
is an analytic function of ¢ € U/ and we compute its value at ¢t = 1 via the Taylor series

t=1 1o,
Fg,n(zl, ceeyZp) = Fg,n (#1, .0y 2n) = Z E%Fg,n(zh ey Zn)

i>0

)
t=0

where the t-derivatives are computed while keeping z(2;) = 2'(2;) fixed. Now apply the result of Eynard
and Orantin [52, Theorem 5.1] to compute these derivatives with respect to ¢. First, find f(w) satisfying

(24(2))da'(2) — (' (2))dy'(2) = — Res who(z,) ).

In this case, choosing

satisfies the equation above. The result of Eynard and Orantin then implies

0
&wz,n(zla BERE) Z") == uf;{:eoso w;,n+1('zlv Ry w)f(w), (618)

where the derivative is taken for fixed x:(z;). Now apply the operator /0t iteratively but note that, because
w is a function of ¢, one must apply the product rule to the right side. That is, applying the derivative again

yields
0? 0
A3 Wan( ) = —f(w1) Res —wg,i1( ) = Res w4 )77 f (w1)
atgwg,n Zly.-ey”n) = w1 wlgio 6twg,n+1 21y ey Rn, W1 wlggowg,n+l 21y« ey 20, W1 ot w1
= wll%ggow;,n+2(zl7 LR ,Zn,wh’l,UQ)f(Uh)f(’LUQ) - wll{gio w;:n+1(zla HR azn7w1)§f(wl)-
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Applying this process ¢ times and dividing both sides by i! yields the following sum over tuples:

19 (-1
———wt (zl,...,zn)zz( y Res - Res wszre(zl,...,zn,wl,...,wg)

’L' atl g,n él Res Re
=1
1 oPt 1 ope
o Dlam W) o g/ (W) (619
Py ,Zm% o Diam W) g (W) (619)
1 p=i—t

Now, take equation (6.19) and compute the antiderivatives with respect to 2, ..., z,, on both sides. The left
side is |
zZ1 1 81 t ) 1 al

/ / Z' atl ‘7, Zla-..azn) t=0_ﬁ$ g,n(zlv'“,Zn) t=0.
Letting

100 = [t

the right side gives

n 2 L (<1) e ()
Res --- Reswn 2y 2 Wy ey Wy <~ J7
/o / ; oS e ' D DR | Sl

pll,-n,p/z?O j=1
Zj:1 pj=i—¢

Wy w1 Zn zZ1 i 1
/ /
/ / / / E Ewljggo wll%es wgnJrZ(zl,...,zn,wl,...,we)
0 0 0 0 : -
(=1

217):1 pj=i—L
‘ ¢ ®5) (w,
:Z Z — Res -- ResF,H_é(zl,...,zn,wl,...,wg)Hd<f7(w”)
[l wWp=00 w1 =00 ] (p] + 1)]
=1 p1,..., pe=>0 j=1
Zf’:l pj=i—L
i 2-2g—n—{ L
_ s - - w;)
- Z Z Yl wI}Ezo Reb Fg n+f(zl7 <y Zny W1, 7w€)Hd< (p] +1)|)7
=1 p1,..., pe=0 Jj=1
Zﬁ:l pj=i—t
1/d 1/d

where Z = ¢, "z and we define W = ¢, " w similarly. The second equality is using integration by parts, while

the fourth equality is applying (6.17). Thus, at this point we have

10
Fg,7L(217...72n) = ZE§F;7}(21, ,Zn)

t=0
i>0

st (4] TP (w))
- S Res - Res Fl (21,0 5B, 00) d(ij). (6.20)
@ZO — ph.%)O i we=o0  wi=oo 9t H (p; + 1)

Zﬁ:l pj=i—t

The free energies F[ ] n+¢ €an be written as a linear combination of the basis elements gi) -, (%), in which case

to calculate the expressmn above it suffices to compute
(» ._ [ (5 )
RY), = Res 614, () A(S(2)).
We can write f(P)(2) in the form

f7(z) =
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where Q;p) € C(¢1,.--,q4), and hence

d—1 d—1 ~(p)
® _ [, 1/d, 1\ 1 ® 1 1 Q" 1 1d, 1
Ryl = Res o, (a0 "w );Z;Qi ) = TR D o e du
d—1
]. 1 —i d ~
= > QP16 (2),
1=1

where [27%] f(z) denotes the coefficient of z~¢ in the series expansion of f(z) at z = co. By induction on m,
one can show that . J

4 5y = 2 Pim(ZY)
¢' (Z) - (1 _ dzd)2j+17 (621)
for some polynomial p; ,,, which has degree m if j € {1,2,...,d—1} or degree m — 1 if j = d. This implies
that Rgf’gl = 0 for m > 1. Now, calculate R;fg using (6.14) to obtain

—i7 4 [d] 7@ Zj
Rgpo) Z QW ¢[ Z Q[ 1 e
d
d
ZQ(p) i g
1 — dgqz?
Q(p) N
= d(d T d-j/d’ ifje{l,2,...,d—1}
dq
0’ ifj = d.

Substituting equation (6.16) into equation (6.20) we find

Coin d/s)* ks J A
Fyulen ooz = (s Y2 3 WD s e

£20 p1,...,pe 20 ' 1<j1,edn<d
1<k, ke<d
M ey M40 20

n-+¢

m; f(m) z)
</Mg,n+z Q[d]d J,d— k?Hw >H¢J1 m; H Res (bgcd]mnﬁ( i) ((ler(,lf)')

Using the expression for R,(f Zn/ calculated above gives

_ 29—2+n (d/s)* A i /d+ks /d—ms)
Fyn(21,- 0y 20) = (/)72 Y~ - 0 2 (sd) X i g2-(d=F)/d
d

£20 p1,...,pe 20 ’ 1<j1, . jn<d
1<ky . ke<d—1
mM,...,mMp 20

4 (pi)
0l P [d]
</Mg,n+z g;d—j,d— kH )Zl_[l Jl,m1 Epl+1
Double Hurwitz numbers are stored in the expansion of F ,(z1,...,2,) at X(z;) = 0. Using the series

expansion for ¢£:ﬂ’ml(zz) at X9 (z;) = 0 given in (6.15) and the fact that X(z) =4qy 1/dX[d]( ;) gives

_ O (pq/d) i/ 4
DHyp(pia, - - ) = (d/s)?972" | | =
o A
(d/s)t d=(ps/d+ki/d) quui/d—Z(d—ki)/d Q[ng ek 4 fff;@
X f
Z}ZO f' (5d)2k7 /Mg n+e Hz 1(1 - % ’L) i=1 (pi + 1)'
P1,---,pe 20

1<k, kesd—1

and this concludes the proof of Theorem 6.1.4.
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6.5 Remarks

Theorem 6.1.4 connects double Hurwitz numbers to intersection theory on moduli spaces of curves, however
I refer to this as an ELSV-like formula because it is not exactly what one would obtain by using the approach
of Eynard [46] or Dunin-Barkowski, Orantin, Shadrin and Spitz [42]. In particular, the double Hurwitz
number DH, (i1, .., i) is related to intersection numbers on ﬂg,nH for arbitrary ¢ > 0. Further, the
polynomiality structure of double Hurwitz numbers is not immediate from the ELSV-like formula.

It is possible to obtain a bona fide ELSV formula using, as stated above, the approach of Eynard [46]
or Dunin-Barkowski, Orantin, Shadrin and Spitz [42]. One might then wonder whether this matches what
one would obtain by pushing forward the ELSV-like formula of Theorem 6.1.4 to M, ,,. At present, the
behaviour of Chiodo classes under pushforward is not well-enough understood to carry this out.

The idea of using deformation of spectral curves to obtain ELSV-like formulas is largely unexplored but may
have applications to other settings. For example, from the viewpoint of considering double Hurwitz numbers
with simple branching as relative Gromov—Witten invariants with 7-insertions, it is natural to generalise to
arbitrary insertions. Utilising a new family of parameters by associating a w-weight to each 7-insertion, this
leads to the following conjecture.

Conjecture 6.5.1 (Topological recursion). Let Q(z) = g1z + -+ qqz% and W (z) = wyz + - - - + wyz*. The
correlation differentials resulting from applying topological recursion to the spectral curve (C*, x,y,wo 2) with

dz; d
p(z) =z - W(Q(), u(z)=Q(),  woalzrz)= ﬁ
satisfy
wg,n(zla ey Zn) = Z GWg,n(ﬂla N7 H d(exp(piz(z:)).
Hiyeeospbn=1 1=1

Here, the coefficient GWy (11, ..., pin) € Q(q1, ..., qa; w1, ..., wy) stores the genus g stationary Gromov—Witten
invariants of CP" relative to 0 and oo via

qv Wq

OWynlnsoopm) = D, (1Tar = Tau e TRor AT al

vd
ab2g—2+0(pu)+L(v)

One ought to be able to push through the techniques of this chapter to prove this conjecture. Further,
one could implement the approach of spectral curve variation to obtain an ELSV-like formula for these
Gromov—Witten invariants by deforming the known spectral curve of Dunin-Barkowski, Kramer, Popolitov
and Shadrin [39] for orbifold spin Hurwitz numbers.

6.6 Data

The following data was calculated in Maple [82] using the semi-infinite wedge vacuum expectation for double
Hurwitz numbers given in Proposition 6.3.3.

(1, ttn) DHgn(p,..., 1y evaluated at s =1

Q1

%Q% + %Q2

1.3 1

507 + 192 + 343

2qt +2qfq2 + 343 + quas +

54 + Taie + 5063 + 56705 + 0203 + 194 + 565

265 + 9¢% g5 + 9422 + @3 + 64305 + 6410245 + 102 + 30204 + gaqa + 0145 + L6

[\

S O O O O O (v
()

N N N N~
= W
O — D o —

=)
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(1, ptn) DHgn(p,..., 1y evaluated at s =1

+ g2

+2q192 + g3

+ 36302 + 363 + 30143 + 44
+4q7q2 + ¢3 + 30143 + qa

LQ 0[O WIN N
e Q9
ol V)

B4+ 2¢3 a2 + 80143 + 8a3qs + 4g2q3 + 49144 + g5
8¢} + 943 g2 + 60163 + B q7q3 + 3q203 + 4104 + G5

) 4} +4q1q2 + 33

) 2q} +10g7q2 + 4¢3 + 9q1q3 + 4qu

) 54+ 27¢3q2 + 24q143 + S qlas + 15¢2g3 + 161q4 + 5gs
) 447 +24¢7 g2 + 209165 + 2447 g3 + 12g2q3 + 16q14 + 55

o O O O S O O O O O |k«

)
)
)
)
) 32 5
)
1
1
1
1

ﬁfﬁ =+ i(p

3@+ 3qqe + a3

3¢t +2qiqe + 13 + 6q1gs + Sau

B+ B+ 2206 + Bdies + Laxqs + La1qs + 5gs

e e

H@ + F02

1+ 2qq2 + 3q3

2at+ S+ 363 + a1z +6qs

30+ 830+ B +9nas + Hau

S+ B¢ g + 48103 + 8¢ g3 + 1 qaq5 + 130104 + L5

Ta + 1 ale + 340103 + 2Paias + 24205 + Fraas + Fas

G T S W G g
A~ N N N/~
N — N — — —

=0+ 3 + 3qs
2R+ G+ e+ Y as+ Yu

3125 5 , 3125 3 625 2, 4375 2 1375 250 425
Ser i T 755 G192 T+ 5165 + T B + 55 23 + 5 Q1qa + 5505

) 7710(15 + ﬁfh

) %CI% + %m% + %qs

) 2+ B+ EG + B aas+ Fa
) B+ 2@+ 2d+2ae+ 2a

) U0+ U203y + 180801 q3 + D02 g2g5 + 38 gyg5 + T84, gy + 205
)

303 5+ 2727 1747 1561 1736 1375
4

)
)
)
)
1
1
1
2
1
2
2) Tiofﬁ + Ils‘h
)
)
)
1
1
1
2
1
2 Latqe + B qa3 + H5taias + 35t q20s + lqi1qa + 225

N NN NN NN DN DN

o~~~ o~ o~ o~
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Chapter 7

Virasoro constraints for fully simple maps

7.1 Introduction

Maps, which informally correspond to ways to glue polygons together to create surfaces, are a cornerstone in
the field of topological recursion. The enumeration of maps is the prototypical example of a problem that is
governed by topological recursion. Indeed, the theory of topological recursion evolved from the abstraction
of loop equations from the theory of matrix models, with one of the most fundamental examples given by
the 1-Hermitian matrix model. Specifically, the following theorem was developed in a series of works, most
notably by Chekhov, Eynard and Orantin [25, 48, 52].

Theorem 7.1.1 (Chekhov, Eynard and Orantin [25, 48, 52]). The correlation differentials resulting from applying
topological recursion to the spectral curve (CP', z,vy) with

d—1
z(z) =a+ ’y(z + %), and y(z) = — Z ujz’j (7.1)
j=1

satisfy
Wgn(Z1s..y2n) =di---dy Z Y P 7 T e
M1y pbn 21

Here, u; forj € {0,...,d — 1} are polynomials in o and y that satisfy

for Vi(z) =2 — 375, tiz*=t. The parameters o,y € Q|t1, ..., ta][[t]] are the unique solutions of ug = 0 and
that behave like o« = O(t) and v = /t(1 + O(t)).

For a formal definition of maps see Definition 3.2.1 in Chapter 3, and see Definition 3.2.10 in the same
chapter for the full definition of the enumeration Mg ,, (f1, . . ., fin ).

In the statement of Theorem 7.1.1 above, the parameter ¢ is typically used in the generating function of the
enumeration to track the number of vertices of a map, while the positive integer d is fixed at the outset; d is
used to provide an upper bound on the possible degree of an internal face. Topological recursion inherently
requires analyticity of the generating functions involved and hence the role of d is partly to allow objects
that could otherwise only be considered as formal power series to be viewed as analytic. In this chapter I
do not need to track the number of edges, and separately, I do not utilise any analytic arguments, hence
the parameter ¢ and the integer d are not required.

Relatively recently, the closely related enumeration of fully simple maps was defined by Borot and Garcia-
Failde [11]. As discussed in the background Chapter 3 on maps, the enumeration of fully simple maps is
a subset of the enumeration of ordinary maps; that is, a fully simple map is an ordinary map that satisfies
extra conditions. The definition of fully simple maps arose from the study of random matrix models and a
discussion of this viewpoint can be found in previous work of Borot and Garcia-Failde [11].

One of the remarkable features of the enumeration of fully simple maps is the conjecture posited by Borot
and Garcia-Failde [11] that the enumeration of fully simple maps is governed by topological recursion but

113



114 7. Fully simple maps

where the spectral curve for the fully simple enumeration is obtained by taking the rational spectral curve for
ordinary maps and switching the meromorphic functions z and y that comprise the spectral curve data. This
transformation of switching x and y is an example of a symplectic transformation, which is any transforma-
tion of « and y that preserves |dz A dy|. In the setting of topological recursion, symplectic transformations
are related to the somewhat mysterious property of symplectic invariance. Symplectic invariance, first pro-
posed by Eynard and Orantin [50, 53] and still an open question today, states that the free energies F|
are invariant under symplectic transformations of the spectral curve. For a definition of the quantities I}, o
and a discussion of symplectic transformations and symplectic invariance, see previous work of Eynard and
Orantin [50, 53].

The conjecture of Borot and Garcia-Failde [11] has since been proved simultaneously by Borot, Charbonnier
and Garcia-Failde [7] and Bychkov, Dunin-Barkowski, Kazarian and Shadrin [19]. The statement of the
theorem is the following.

Theorem 7.1.2 (Borot, Charbonnier and Garcia-Failde [7] and Bychkov, Dunin-Barkowski, Kazarian and

Shadrin [19]). The correlation differentials resulting from applying the topological recursion to the spectral curve
(CP', z,%) with

—Zujz_j, and y(z) = a+’y(z+ %) (7.2)

satisfy
Wgn (21,005 2n) =di---dp Z FSgn(p1, ..., pn) it - ahn.

Mooy pin =1

Here, u; for j € {0,...,d — 1} are polynomials in o and v that satisfy

d—1
Vi(y(2)) = Y u(z? = 27)
=0
for V'(y) =y — Xy tiy' ™" The parameters o,y € Qlt1, ..., ta][[t]] are the unique solutions of ug = 0 and
= % that be/zave like o = O(t) and v = Vt(1 + O(t)).

Again, for a formal definition of fully simple maps see Definition 3.2.1 in Chapter 3, and see Definition 3.2.10
in the same chapter for the full definition of the enumeration FS, ,, (11, .., ttn).

Beyond topological recursion, a relation between the enumerations of ordinary and fully simple maps via
monotone Hurwitz numbers was proven by Borot, Charbonnier, Do, and Garcia-Failde [6, 11]; see The-
orem 7.2.3 in Section 7.2.1. One can give an equivalent expression for monotone Hurwitz numbers as a
character formula, and hence as a vacuum expectation in the semi-infinite wedge; see Chapter 4 for a demon-
stration of this process in the case of single Hurwitz numbers. Separately, the semi-infinite wedge offers a
particularly nice setting for deriving differential operators that act on, and annihilate, partition functions.

The aim of this chapter is to deduce a sequence of Virasoro operators V,"" for n > —1 that annihilate the
partition function for fully simple maps Z". Use of the semi-infinite wedge is instrumental for deducing this
result. The steps taken to obtain this result are as follows.

1. Begin by deriving a vacuum expectation for the partition function of ribbon graphs (Lemma 7.3.2),
then use a combinatorial argument to pass to a vacuum expectation for the partition function for
ordinary maps (Proposition 7.3.3).

2. Use the relation between ordinary maps and fully simple maps, Theorem 7.2.3, along with the known
character formula for weakly monotone Hurwitz numbers (7.4) to deduce a vacuum expectation for
the partition function for fully simple maps (Theorem 7.3.4).

3. Use the known Virasoro constraints for ordinary maps to derive the Virasoro constraints for fully
simple maps as a conjugation of the Virasoro operators for ordinary maps (Theorem 7.4.8).
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The structure of this chapter is as follows. Section 7.2 contains useful preliminary definitions and results
regarding ordinary maps and fully simple maps (Section 7.2.1) as well as key results pertaining to operators in
the semi-infinite wedge (Section 7.2.2). Section 7.3 develops vacuum expectations for the partition functions
of ordinary maps (Section 7.3.1) and fully simple maps (Section 7.3.2). Section 7.4 derives the Virasoro
constraints of fully simple maps: Section 7.4.1 reproduces the known derivation of the Virasoro operators
for ordinary maps from the Tutte recursion; Section 7.4.2 outlines a number of useful preliminary conjugation
results that are needed in the following section; and Section 7.4.3 contains the main result of this chapter,
the derivation of the Virasoro constraints for the enumeration of fully simple maps.

Section 7.5 describes some work in progress towards further desirable results. Namely, Section 7.5.1 outlines
work towards a Tutte-like recursion for fully simple maps; Section 7.5.2 provides a relation between ordinary
and fully simple maps in the case of (¢g,n) = (0,1); and Section 7.5.3 details an enlightening calculation
that recovers the spectral curve for fully simple maps from the (0, 1)-Tutte-like recursion.

All work in this chapter is joint work with Norman Do.

7.2 Preliminaries

7.21 Maps and fully simple maps

Begin by defining particular generating functions for ordinary and fully simple maps that will be useful
throughout this chapter.

Definition 7.2.1. Let p1, ..., /1y, be positive integers, and define Map(u1, ..., u,) to be the weighted enu-
meration of (isomorphism classes of possibly disconnected) ordinary maps with n boundary faces such that
the degree of boundary face 7 is ;. The weight of each map M is given by

h29—2+n Se(M)

tfl(M)tfz(M)tJ%(M).__
|Aut M| ! 2 3

where g is the genus of the underlying surface, e(M) denotes the number of edges, f;(A) is the number of
internal faces of degree i, and |Aut M| is the number of automorphisms of M.

Define FSMap(p1, . . ., ttn) to be the analogous enumeration of fully simple maps.

Note that this definition packages possibly disconnected ordinary maps and fully simple maps, and indeed
throughout this chapter ordinary maps and fully simple maps will be possibly disconnected unless explicitly
stated otherwise.

The generating function Map(s1, . . ., itn) is equal to the sum of the enumerations M ,, (1, .. ., j1,,) ranging
over all genera; that is,
Map(p, ..., fn) = Z M, (s pin ) RP972E,
g€z

and similarly for FSMap and FS} ,,. Note that the sum over genus above ranges over all integers, positive
and negative. This is because Map enumerates disconnected objects and the genus of a disconnected surface
may be negative. This particular generating function Map(f1, . . . , i) is useful when packaging the ordinary
map enumerative data in the semi-infinite wedge. That is, the generating function Map(p, ..., i) can be
conveniently written as a vacuum expectation in the semi-infinite wedge. The analogous generating functions
were also employed in Chapters 4 and 6 to write single and double Hurwitz numbers via the semi-infinite

wedge.

Next, recall the relation between the enumerations of ordinary maps and fully simple maps via monotone
Hurwitz numbers, first proven by Borot and Garcia-Failde [11], and separately also proven by Borot, Char-
bonnier, Do and Garcia-Failde [6]. (Note that although monotone Hurwitz numbers are already defined
in Definition 4.3.1 (Section 4.3.1), the way that they are packaged here is sufficiently different that it will be
most convenient to simply include the necessary definition here.) A sequence of transpositions 7,..., 7
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in the symmetric group Sy is called strictly monotone if, when writing the transposition 7; = (a; b;) conven-
tionally with a; < b;, then b; < -+ < b,. Similarly, a sequence of transpositions 7, ..., 7 is called weakly
monotone if by < --- < b,,.

Definition 7.2.2. Let A\ and p be partitions of a positive integer d, and let k& be a non-negative integer.
The strictly monotone Hurwitz number H;>(\; ) is é multiplied by the number of tuples (px, 71, ..., Tk, )
of permutations in the symmetric group S, such that

* py and p, have cycle type A and p respectively;
® Ti,...,Tg is a strictly monotone sequence of transpositions; and
® PATL" Tk, pp = id.

The weakly monotone Hurwitz number H,f (A; ) is defined analogously where 71, . . ., 7 is a weakly monotone
sequence of transpositions.

Also define the following generating functions for these monotone Hurwitz numbers
H<(\p) =Y Hi(\wh*  and  HS(\jp) =Y Hy(\p)hP.
k>0 k>0

I also record the following character formulas for strictly and weakly monotone Hurwitz numbers [6], which
will be needed to write fully simple maps as a vacuum expectation in the semi-infinite wedge:

H(\i 1) = Z (X;)—X(u) DH@@ +e(O)h) (7.3)
<) — X5 X 1
10 =2 s U =z 74

Here, the notation x4 refers to the character of the symmetric group indexed by the partition p evaluated
on a permutation of cycle type ), the notation p |- d denotes that p is a partition of the integer d, and the
notation z(\) for a partition A denotes

(N
2N = [T [T (7.5)
=1 j>1

where m; () is the number of occurrences of the positive integer j in the partition .

Theorem 7.2.3 (Borot, Charbonnier, Do and Garcia-Failde [6] and Borot and Garcia-Failde [11]). For any
partitions \ and p,

AL AeMap(Ar, .., A) = 2(A) > HS(A\sp) p1 -+ - 1 FSMap(piy, - . i) (7.6)
BEIA]

pa e FSMap(u, - pin) = 2(1) Y HS (3 A)|,,_p A= AeMap(Ag, -, Ag). (7.7)
A

Here |p| = p1 + -+ - + pn. Note that this theorem as stated is superficially different to its presentation in
the work of Borot, Charbonnier, Do and Garcia-Failde [6]; this is because the generating functions I have
defined, Map and FSMap, enumerate unrooted disconnected ordinary maps and fully simple maps, while
the objects of study in this reference are their rooted counterparts. Defining Map and FSMap to be the
corresponding generating functions for rooted ordinary and fully simple maps respectively, one can easily

switch between these enumerations using the relation

Map(fi1, .- pin) = p1 -+ i Map(per, - - -5 fin),

and similarly for FSMap. As described in Section 3.2.4, this is because, to pass from the unrooted enu-
meration to the rooted enumeration one needs to choose a root (an edge on the boundary face) for each
boundary face and for the boundary face labelled ¢ there are j1; choices for the root.



7.2. Preliminaries 117

Further, the corresponding generating functions defined by Borot, Charbonnier, Do and Garcia-Failde [6] do
not include the s-parameter that I am utilising here (that tracks the number of edges). However, following
either of the combinatorial bijections described by the authors of this paper one observes that from an
ordinary map one obtains a fully simple map with the same number of edges, hence the above formula has
been (trivially) amended to include the s-parameter.

7.2.2 Semi-infinite wedge

Lemma 7.2.4. Let m be a positive integer. Then, the following is true:

( Pm >> ( = P ) >
QU €XP — = P €XP — Qg
m m
m>=1 m=1
Ay XD —Q_m, =m—— exp —Q_m, .
m Opm m
m=1 m=1

Proof. The second equation follows immediately by applying the differential operator m% to the expo-

nential.

To prove the first equation, use the following application of the Baker-Campbell-Hausdorff formula. If
[X,Y] is central, then

e XYe X =Y + 5[X,Y].

Take X = Bra_j and Y = aj. As [a_y,ap] = —Fk is indeed central, applying the formula yields

Pk Dk Dk
exp (?a,k)ak exp ( — ?a,;@) = + Z[a,k, ag)
= O — Pk

Pk Pk Pk
exp (?a—k>@k = Q) eXp (?Oé_k> — Pk €Xp (?Oé_k-).

Apply both sides to the vacuum vector. The left side vanishes and I obtain

v (21} = e (%))

Apply the operator

(o]
Pm
eXp Z a—771>
( m=1 m

m

to both sides to obtain the desired result. |

Finally, I also define a number of operators that will be needed throughout this chapter. First, define the

following operators on the semi-infinite wedge.

Definition 7.2.5. For all n € Z, define the two sequences of operators

1
M, = 5 Z Loy (7.8)
i+j+k=n
and
1
Kn =35 > reuage, (7.9)
i+j=n

where I adopt the convention that oy := 0. As defined in Definition 1.3.3 the colons surrounding these sets
of operators denotes that we use the normal ordering of the product.



118 7. Fully simple maps

Next recall the definition of the £-operator from Definition 1.3.6 in Chapter 1,

Enz) = 3 1) s s 00

’ )
kEZ+1 <(2)

where ¢(z) = €*/?2 — ¢7*/2. Also recall the fact that &,(0) = a,,. By Lemma 1.4.8 the E-operator can
alternatively be written in terms of the bosonic operators as

1 1 112) - S(1pz
5"<Z):@ZE Z w;ail...aie;,

! i1
020 iyt tig=n Lot

These &-operators satisfy the commutation relation, equation (1.9):

[€a(2), E(w)] = slaw — bz) Eqip(z + w).

To prove the main result of this chapter, it will be useful to observe that the operator /C,, is related to the
z-coefficient of the &£, (z) operator. That is, using (1.20) for the E-operator, I have that

aill"a’ig:

1 ) <(i1%)"'<(ie2):

[2)€n(2) = [z]% 2 2

>0 i1+-Fig=n

—1 1/ 2 1 S(i12) - -s(iez) _
S g IR

050 iidtig=n be
1 1 ¢(i12) -+ -<(ie2)
1 0 s i
+([Z]4g(zf))[Z]ZE Z Wy oy, 0y,
>0 14 Fie=n

1 571’0 677,,0
25 Z :ailaizz—24 :’Cn—24

i1+io=n

Here I'm using the following expansions:

1 1 z 723

< > 21 50 O
23 2° .
¢(2) =2+ 21 + 1920 +0(z").
Hence,
571, 0
= — .1
Kn=1[2]En(2) + 24 (7.10)

The following commutation relations, while not strictly necessary for the results in this chapter, are proven
here for the sake of interest.

Lemma 7.2.6. For all non-zero integers m and all integers n, we have the following commutation relations:

[M’m am} =-m ICnera (7.11)
and
- ntm, & =0,
K] = "o At (7.12)
0, otherwise.

Proof. Begin with equation (7.12). Use equation (7.10) and the fact that a,, = &,,(0): then we can utilise



7.2. Preliminaries 7719

the commutation relation for the £-operator (1.3.7). This gives

Ko tm] = [2)[En(2), Em(0)] + [2 ][5540 En(0)] = [Els(=m2)Ensm(2)
sl g el el

— Qi ey
le..le 1 £

Z}O . i1+ Fig=n+m

= ([zo]g(— ) Z i Z M Sy, ey,

1l - 1l
£>0 i1+-+ig=n+m

_Jmanim, ifn4+m #0,
0, otherwise.

The third equality is using the fact that §(—mz)ﬁ is even, while the fourth equality is using that, when

m+n =0,
1 ¢(i12) - - -<(iez)
1
DR ]
A : IREREY)
220 i1+--+1ig=0
This is because, given that ¢y + --- + 4, = 0 and 4,...,%, are non-zero, then £ must be even and thus

s(i12) - - - s(i¢z) must too be even in z. Hence conclude that [z1](i12) - - - ¢(ig2) = 0.

Equation (7.11) uses the fact that M,, = [22]€,,(z) — %an and a similar argument to the one above. W

Finally, define the following operator that will be central to the work in this chapter.

Definition 7.2.7. Define the operator

G=haMs+ Ky + ﬁag
(7.13)

h . .
D) ”2;1 (Qa—i—jojoy +a_ja_joiyji2) + ;a_io@“ + 50@ + 5702

A side bar on the G-operator. One might find it interesting to observe that the operator G can be written
succinctly as
h
g = 6 Z oGO0 0
itjrk=2
by defining the convention that iy = +. This might lead one to the definition of the operator
h 1
Gn = — Z OO = M + K +

6 - 2h
i+j+k=n

Qo

still using the same convention oy = % It is natural to wonder if there is there a context in which these
operators are useful.

I’m also going to define the following differential operators. First, define

h 0 02
My =~ |+ — 7 14
2 9 Z ((7/ +7J )pzpj 8 Ditj2 +1 jp’b+,]+2 aplapj ) (7 )
i,j=>1
and )
=>i sz+2 + 5P (7.15)
i1

And finally, define the operator

1
hAMs + K.
G = 2+ 2+2h

E <Z+j ppia +i3p )+EZP +p+1
— A 14 +i4+25 o +2 5 1
ij>1 Opi;- p 8 i>1 20"

(7.16)
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These three operators have been very suggestively labelled: they are the indeed each related to their calli-
graphic counterparts via Lemma 7.2.4. This can be seen by quick and straightforward calculation.

7.3 Partition functions via the semi-infinite wedge

7.3.1 Partition functions for ribbon graphs and maps

First define the partition function for ribbon graphs:

h2g72+n
Z%(p; —exp<22 Z Rj (uh...,un)n!ﬁu)- (7.17)

n=1g>20 p,...,

Recall that the definition of Ry ,, (1, . . ., ttn) includes the s-parameter which tracks the number of edges.

Begin with the so-called evolution equation for ribbon graphs (alternatively called the master equation) which
is a reformulation of the Tutte recursion at the level of the partition function [74], given in the following
theorem below.

Theorem 7.3.1. The partition function for ribbon graphs Z% satisfies the evolution equation

9 R
5.2 @ih)

1 -
—p2) ZE (5, h)

=GZR(pih) = (hM2 + K> + 57

h . . 0 82 0 1 .
= 5 Z (Z +J— 2)pszW + Z]pl+]+28 a —+ Z pl+2a + pl 2h ZR(p7 FL)

i,521

One can prove this differential equation, as done by Kazarian and Zograf [74], by proving that the Tutte
recursion for ribbon graphs (equation 12 in the same reference [74], or, originally proven by Walsh and
Lehman [106]) is equivalent to the Virasoro constraints for ribbon graphs [74, Theorem 3 (i)], then multiply-
ing the nth Virasoro operator L,, by p,+2 and summing over all n. The fact that the Virasoro operators
annihilate the partition function for ribbon graphs guarantees that the resulting evolution equation will as
well.

One can use the evolution equation along with Lemma 7.2.4 to derive a vacuum expectation for the ribbon
graph partition function; this is what is being done in the following lemma.

Lemma 7.3.2. The partition function for ribbon graphs is given by the following vacuum expectation in the semi-
infinite wedge:
ZR(pin) = < exp(sG) exp ( pma_m) > (7.18)
m>1 m
Here, the operator G is defined in Definition 7.2.7, while the bosonic operators, aviy,, are defined in Definition 1.3.4.

Proof. Begin with the vacuum expectation on the right side of (7.18) and apply the operator 3 . Define the
result to be Z7 (which I ultimately aim to show is equal to Z%*). Thus

Z" = aa<exp(sg) exp ( pmam> >
s m>1 m

exp(sG) G exp ( ZZ:am)>

m21

(o)
h 1 Pm
= eXp(Sg) 6 Z oo+ za i024i + 2O‘1 + exXp Z — Q_m
i+j+k=2 i>1 m>1 m

( 2
=G

h 0 0 o 1 1 o
= E i+ J = 2)pipj—— i E i A
2”->1(H_] )pp]apiﬂ_i +1 jp+J+28 7, -+ p+2a + p1+2h )
Z

?
)
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where the penultimate equality has applied Lemma 7.2.4. Hence, Z" satisfies %Z ! = GZ". Given that ZF
also satisfies %Z R = GZ%, uniqueness of solutions guarantees that, up to multiplicative constant (in s),
they are both equal to exp(sG) - 1.

The s° coefficient of Z is 1 by definition, therefore,

77 < exp(sG) exp ( 2 m>1 pﬁafm) >

Z™(pih) = e <eXp (Zm>1 p£’a7m>> = <exp(sg) exp (mz;l %ﬂa,m)>,

as required. |

Next, use the vacuum expectation for ribbon graphs to derive a vacuum expectation for the partition function
for ordinary maps. First, define the partition function for ordinary maps to be

h2g—2+n

ZM@;h):exp(ZZ > Mz,n(ul,...,un)mﬁu). (7.19)

n21g20p1,...,un>1

And again recall that the definition of Mg ,,(p1, . .., ttn) includes the s-parameter which tracks the number
of edges.

Proposition 7.3.3. The partition function for ordinary maps is given by the following vacuum expectation in the
semi-infinite wedge:

ZM (3 ) = <exp(sg) exp ( 3 ;”%am) exp (m% Z”am) >

m21

Here, the operator G is defined in Definition 7.2.7, while the bosonic operators, o.y,, are defined in Definition 1.3.4.

Proof. Let Map(()) be the enumeration of ordinary maps from Definition 7.2.1 but with no boundary faces.
Observe that

R(E.5\ _ yr(U t2 13 .
Map(0)) = 2% (L;h) = 2 (E’E’E""’h)'
To prove this, I will compare the two generating functions and show that they are equal. Intuitively, the
mechanism behind this equality is the fact that an ordinary map with no boundary faces can equivalently
be thought of as a ribbon graph, where one considers the internal faces of the ordinary map to be the
boundary faces of the ribbon graph. And, in this case, the above equality is also stating that the two
Z.

generating functions Map(0)) and Z7(%; 1) are enumerating these same objects in the same way.

Let M(p1, ..., ptn) be the set of (isomorphism classes of) possibly disconnected ordinary maps with n
boundary faces, where the degree of boundary face ¢ is ;. Then,

K292 Se(]w)

tfl(M) tfz(M)tf3(M) .
|Aut M| ! 2 3

)

Map(0) = >

MeM(D)

where g is the genus of the underlying surface, f;(M) is the number of internal faces of degree ¢, and |Aut M|
is the number of automorphisms of M. As reasoned above, this enumerates ribbon graphs, where the sum
is varying over all genus, number of (boundary) faces, and the degrees of faces. I can instead write this as
a sum over these variables instead. Doing this yields

th—Q

Map(@) = Z ZR;7,”(/J1, . “LLn)m tﬂl e tﬂn?

HEP geZ

where P is the set of all partitions, including the empty partition. Recall, from Definition 3.2.10 that
R (11, .., p1n) is the weighted enumeration of possibly disconnected ribbon graphs with n faces such that
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the degree of boundary face i is j;, and the weight of a ribbon graph R is ; A‘:!/R‘ It remains to observe

that for an ordinary map with no boundary faces M corresponding to a ribbon graph R,
|[Aut M| = |Aut R| - |Aut yl.

This is because, for an ordinary map with no boundary faces and n internal faces with degrees p1, ..., tp,
there are |[Aut u| unique ways to label the n faces 1,...,n to yield the corresponding ribbon graph with n
boundary faces. (Recall that internal faces are not labelled, while boundary faces are.)

And hence,

h2g—2

Map(0) =1+ ZZ Z R:n(ul,...,un)Ttm ety

n2l g€z py,...,un =1
h2g—2+n t

_1+ZZ Z Rgn(/’(‘17~-~, )T%tlgl

n2zl g€z py,...,pn =1

= 72" ().

In the first equality, the leading 1 outside the summations corresponds to the empty map, and the factor of
1/n! arises because the sum is over p1, ..., i, as a tuple rather than 4 € P as a partition and each tuple
arises n!/|Aut u| times. Next observe that

Map(p1, - - ., pn) = lH ﬁ_] Map(0).

This is a combinatorial statement which can be reasoned thus. From an ordinary map with no boundary
faces, one can obtain an ordinary map with n boundary faces by choosing n of the internal faces and
labelling them 1,2, ..., n. Thus, in the expression above, we can obtain the generating function for all maps
with n boundary faces such that the degree the boundary face labelled i has degree y; from the generating
function for ordinary maps with no boundary faces by converting n internal faces with degrees p1,..., sty
into boundary faces — this is being done by the product of differential operators [, % — and labelling
them accordingly, noting that the labelling is given by p1, ..., fn.

To prove this statement, it is required to prove that the resultant map obtained from this procedure carries
the precise weight with which it would appear in the generating function Map(u1, . . ., i, ). Or equivalently,
we are proving that the coefficients of the two power series are equal.

To do this, begin with a map M € M (()) with weight

H29—2 ge(M) (M) th(M)tjs(M) ..

|Aut M| ’

and call the resulting map after converting n internal faces to n boundary faces M; the weight of M in
Map(lu’la s nu‘n) is

p29 2 o (M) f1(M) tfz(ﬁ)tfs(ﬂ) .
=7 1 2 3
|Aut M|

Observe that this combinatorial procedure preserves the genus as well as the number of edges of the map,
hence ¢’ = g(M) = g(M) = g, and e(M) = e(M). Further, the operator []._, at increases the power of

I for each boundary face introduced. The number and degrees of the internal faces of M is precisely given

by the resulting -monomial after applying [, h— to t{l(M) tgz(M)tg;S(M) =

-, while the weight from
applying this differential operator combines with the number of automorphisms of M to give the number

of automorphisms of M. That is, if we write y1 = (1, ..., ji,) alternatively as u = (1%1,2%2 3% ) where
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k; is a non-negative integer for all ¢, then

[H ]tﬁ(M tfz(ﬂf)tfz(M) .
ot,

_ |98 9 O inan pan,faon
otk otk oiks oo

__ h)! 1)k f2(M)! (f2(M)—ks f3(M)! J3(M)—k
(f1(M) — k)1 (f2(M) — ko) 2 (f3(M) — ks)!

__AODY pan_ (M) pan_ SsODYpan
(M) =k)V (fa(M) = k)l (f3(M) — k3)!

It remains to observe that

(D F(0.Y (N (0.5 N 10
[Aut M| (f1(M) — k)l (f2(M) — ko)t (f5(M) — k)l JAut M|

This is because f;(M)!/(fi(M) — k;)! is precisely the number of ways to choose k; faces of degree i to

convert from internal faces to boundary faces where the ordering of the resulting boundary faces matters
because different labellings of these k; boundary faces gives rise to different ordinary maps M. Loosely,
if M has f;(M) internal faces of degree i then |[Aut M| will include a factor of f;(M)!, while M now has
(fi(M) — k;) internal faces of degree i and hence |Aut M| ought to include a factor of (f;(M) — k;)!.

Combining these observations, I can conclude

nees

as required.

W92 02 i geny R THOD2 e T T
/1M yF2(M) 100 (L2 f

Aut M| 2 B  JAw M|t P ’

Hi

Therefore,

Map(p1, ..., fn) = [Hhaf 1Map@ th ZB(t/h)

=1

T, 0 Pm
h g) —t-—m
|;;|:[1 6/“‘| <eXp ’ eXP(m)l ma >>
tm Oy, a_y,
= <exp(sg) exp (n%:l %a_m) Tf . T:> (7.20)

On the other hand, by the definition of the partition function for ordinary maps (7.19), we have

ZM@ER) =143 3 > %M;yn(ul,...,un)hQ-‘?*””ﬁu

n2l g€EZ pu,...,pn =1

=14y > %Map(ul,---,un)ﬁu

nzlpy,..,pn=1

=1+ Z Z %<exp(sg)exp ( Z %a_m) a1 ...M>ﬁ#

1
n>1 i seompin 21 m>1 H Hn

(o ) ()

m>1 m>1

The third equality is using (7.20) above, while the final equality is using the following:
LX)

exp( Ea m) H Z mfn{’;g ok, = Z ZIZ/\l R 2YTeY) H a_x,

A
m>1 m2=1 kp, >0 A=(1F1,2k2 ) Hmz)l )\m |*Allt )‘| m=1 (721)

=1+ Y %@...Mﬁu.

S PSR Hn
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The first equality includes in the sum the empty partition A = (), and this corresponds to the leading 1 in
the final line (denoting the identity operator). Further, in the final expression, the 1/n! arises because the
inner sum is over p1, ..., i, as a tuple (rather than a partition), and each tuple arises n!/|Aut A| times. W

7.3.2 Partition function for fully simple maps

Define the partition function for fully simple maps to be

. R h2972+n .
ZF (pa h) = exXp ( Z Z Z Fsg,n(.u“h e ,,Ltn) T p/t> . (722)

n21g20p1,...,un>1

Also, define a diagonal operator, denoted H, acting on the semi-infinite wedge by the following action on
basis elements:

1
Huy = H . (7.23)
Oex L+ c(@h

The product is over all boxes in the Young diagram corresponding to A while ¢((J) is the content of the
box. Recall that, when considering a Young diagram corresponding to a partition A, the content of a box

in column j and row % is j — .

Theorem 7.3.4. The partition function for fully simple maps Z¥ is given by the following vacuum expectation in
the semi-infinite wedge space:

tm m
ZE(pin) = <exp(sg) exp ( Z Mam)HeXp ( Z;nam) >
m2=1 m2>1

The bosonic operators oy, are defined in Definition 1.3.4 while the definition of H is given in equation (7.23) above.

Proof. First, for the ease of the reader, let me use the following shorthand notations: oy = a, - - - @, and
- t
T_(i/h) = e ( m o )
Em)=exp (3 M,
m2=1
where the latter uses the I'y notation of the vertex operator defined in Chapter 1.

Begin with the partition function for fully simple maps (7.22), rewrite it as a sum over partitions of dis-
connected fully simple maps, and apply the relation between maps and fully simple maps (Theorem 7.2.3),
specifically, apply equation (7.7) that writes the generating function for fully simple maps in terms of the
generating functions for ordinary maps and weakly monotone Hurwitz numbers. Doing so gives

ZEEM=1E YD YD i FSL ) B,

n>1 geZ p1,... pin =1

:1+Z Z %FSM&p(Hl,H-;Hn)ﬁu

nzlpy,.. pn>1

1
=y — -, FSM e bin) B
ZZ(M) fy- e g ap(fi; - - - fin) Py

pneP
:Z Z Hg(,uz;)\)|h’_)7h)\l"')\éMa‘p()\la'"a)‘f) 13:“'
REP | AF|p|
X5 X5 H 1 - .
I exp(sG)I'—(t/h)a—x)| Dy
HEP | A-|p| pH|p )= Dep bt C(D)h< >

Here, P denotes the set of all partitions, including the empty partition. The last equation has used the
character formula for weakly monotone Hurwitz numbers (7.4) as well as the vacuum expectation for
Map(Aq, ..., A¢) given in equation (7.20).
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Next use the Murnaghan—-Nakayama rule (Theorem 1.4.3):

axvp = Y XKvw,

vH|A|

as well as the orthogonality of characters, which in the context of symmetric groups is

5y = |S | 3 X = 5 |Z |Sd| XAXA'

0ESy Ad Ad

The second equality here rewrites the sum over permutations in S; as a sum over partitions of d and, to
each term, adds the weight of the number of elements in the conjugacy class corresponding to that partition.
That is, for each X I- d, the size of the conjugacy class corresponding to A is

d! _ 154l
Aut A IO N 200

|Cx| =

where z()) is defined in (7.5).

Applying these results to ZZ (55 h) yields

f@m=z:§:§:X”“IIH&mxwwg -0 3 xsu)|
neP M-I#IPHM Oep vE[A|
P v

— Z X,u H 1+ <exp(8g)l—‘,(t_’/h) Z ( Z i«?;\())\)wwv®> ﬁu

peEP pl—\/L [ PR 1T
i X4 - .

= Z Z m<exp(sg) F_(t/h)H Z 5p’l,vl,7v@> Dy

HEP | pH|pl VA

The last equality has also used the definition of /. Use the Murnaghan—Nakayama rule once more, and
rewrite the sum over partitions 1 as a sum over tuples to obtain

270 = Y (exptohenn (X ) Y 2, ),

pEP m>1 wHlpl
tm o
= Z <eXp Sg) exp ( Z EQ—WL)H Z Xﬁvpvv(0> Pu
m>1 pElpl
1 t, o o
=1+ <exp(sg)exp( i04_7,1)7'l¢"'¢>]5’
>y 3 e o ) g,

<exp (sG) exp ( Z —a_m)H exp ( %a—m)>a

m21 m21
as announced. The penultimate equality is using the fact that the inner sum is over pg,..., 4, as a tuple
and each tuple arises n!/|Aut p| times. The final equality is using (7.21). |

7.4 Virasoro constraints
7.4.1 Virasoro constraints for ordinary maps

My starting point for deriving the Virasoro constraints for fully simple maps is the Virasoro constraints for
ordinary maps (Theorem 7.4.2 below, first proven by Eynard [45]). Out of interest, I will also include a proof
of the derivation of the Virasoro constraints for ordinary maps, which are in turn derived from the Tutte
recursion (Theorem 7.4.1 below, also first proven by Eynard [45]). The fact that the Virasoro operators for

ordinary maps V' satisfy the commutation relation [V, V.!] = (n — m)V, M, 1leave as an exercise.
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Theorem 7.4.1 (Eynard [45, Equation (1.3.2)]). Forallg > 0,n > 1 and p1, . . ., jun, such that pr+- - -+piy, > 2,
connected ordinary maps satisfy the following recursion:

H1 o =
MG ) = Y (g = 2MG o (=20 s gy) )t (7 —2)MG (i +5 =2, fs)

Jj=2 j=1

+2(m =M (=2, s)+ Y G My (GG Es)+ D My (6 D) M, 1 G ) |-
itj=p1—2 glllj-gz=g

(7.24)
Here, S = {2,...,n} and the notation [i; denotes i, , ..., i, forI = {i1,... ix}.
Theorem 7.4.2 (Eynard [45, Proposition 2.6.2]). For all n > —1, the differential operator

0? 0 t 1 0
h 2n—— + 0, — — On 2
+ Z zyapzapJJr naanr , 1(p1+ h)+h 0= (n+ )8pn+2

=N

0
M — j hip; +t;
Va ;(Hn)( pi+ )8pz+n

annihilates the partition function for ribbon graphs; that is,
VM zZM (5 k) = 0.
Proposition 7.4.3 (Eynard [45, Proposition 2.6.2]). For alln > —1, the differential opemtor
0° 9 t 1 0
h 20—+ Gn, (1 + ) 5n 2
i Z Uc’)pz@ngr Wap, T Om P ) o St )8pn+2

=N

0
M= (i hpi +t;
Va ;(Hn)( pi+ )8p1+n

satisfy the commutation relation [V,M VnI{/I] (n—m)VM

n+m:*

I include a quick proof of Theorem 7.4.2.

Proof of Theorem 7.4.2. The Virasoro constraints are a reformulation of the Tutte recursion for ordinary maps.
To derive the former from the latter, we multiply each term in the Tutte recursion by

plLZ .. .pun h2q—2+n
(n—1)!

then sum over all possible values of n > 1, g > 0 and pso, ..., 1y, = 1. Denote by O the application of this

(%)

operator—that is, multiplying by (*) and summing over all po, ..., , > 1. Note that I am summing over
alln > 1 and p3 + --- + @y, > 1 but the recursion in Theorem 7.4.1 is only valid for w1 + -+ + pun > 2.
This can be fixed by manually adding a finite number of correction terms to the recursion for the base cases
i€ {(1),(2),(1,1)}. The correction terms in these three cases are t1, 1, and 1 respectively, therefore the
recursion becomes

M1 o -
MG ) = Y (g = 2MG o (g =20 s y) )t (7 —2)MG (i +5 =2, fs)
Jj=2

j=1

2 = 2M (1 — 2, i)+ > i MYy (g fis) + > Mgy r5a (i ir) Mgy 171410, /i)
it+j=p1—2 glllj-gzzg

+04,000,16,,,11 + 09,000,104, 2 + 04,001,20,,,10,5,1-

Now fix p1 and apply the operator O described above. The term on the left side becomes
D h2g72+n

Y T %Mg,n(m, R ]

n21g20 pa,...,pn21
29—2+n
Mo / p#ﬁplw p#n h
‘,n(:ula"-aun) n!
n>19g20 pf,...,un 21 ’

s p#l

w1 OF
= A
s 3p#1 (&)
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where F'(p;h) is the following generating function of connected objects, typically called the free energy:

S Y MG (g P

n21g20pf,...,un>1

h2g—2+n

Also, recall that exponentiating the connected enumeration yields the disconnected one. That is, ZM =
exp F.
Applying O to the first term on the right side yields

h29—2+n

D Zuﬁm—? Mg,y (i + pj — 2,ﬁ5\{j})p“2”&5,f1)!

n22g20 pa,...,un=1j=2

=220 > wlm i MGG Q,ﬁsw}>p“'”pﬂfﬁ'_'];§?

21 n>2 g0 e figensin 21

h2g—2+n

h29—2+(n—1)

Zz Z M;n 1(:“‘3””27_1)19“329?/;;1—2)'

=hY pilp+i-—2)

o~ ap#l‘i"‘ 2 n2=2g20pu),.. 7,“% 121
‘ oF
=B bl i =2 h
— Ppi+i—2

Similarly, the second term on the right becomes

h2g—2+n

SN Y St - MG - 2 i) P e

n=2g>0 pa,..., pn=13j21
or
=> ti(m+j—2) (D)

i>1 ap#ﬁﬁ 2
Applying the operator to the term 2(yy — 2)MJ |, (11 — 2, jis) gives
o & \Dus " P, h2972+n oOF
Z Z Z 2(#’1 - 2)Mg,n(ﬂl - 27,“5) = (nﬂ_ 1)' = 2(#1 - 2)8 ) (A)
n>2 g0 iz, i >1 : Pra =2
while the subsequent two terms become
’F F OF
nOY g ad hY Ggo @)
t+j=p1—2 PioD; itj=p1—2 Pi OD;j
respectively. And the final three terms corresponding to the base cases become
t 1
S0t 30wz P1du (&)
respectively. Collect all terms labelled A, relabel p1; — n 4 2 and multiply throughout by exp F'. Note that
OF 0 ozM
— F= F
oz P Oz gz P F) = oz’
in which case, we obtain
n+2 ozM ozM ozM
= hp; +t;)(n+1 + 2n
5 Opnt2 1221( b )( >3pn+i Opn
+h Y z"ﬂJr( +t—1)5 ZM 4 Ls, 0z
e j@piapj b1 7 n,—1 5 n,0

The first term on the second line is using the fact that

2

0 (0F 0? OF OF
expF) = expF|=——%—+ exp F.
i, )= gy, (3, 0 F) <8piapj s ap]> b
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Defining

, 0 H? 0 t1 1 0
VM .= i+n)(hp; +t;)—— +h ij +2n— 40y ( +>+ =5, n+2
;( )( P )api+n Z Japiapj 8pn —H\ h h 0 ( )6pn+2

for n > —1, it follows that VMZM 0. |

7.4.2 Conjugation results

I will now prove a key conjugation result that will be needed to derive the Virasoro constraints for fully
simple maps. For context, my overarching approach to deriving the Virasoro operator VnF for fully simple
is by conjugating the Virasoro operator for ordinary maps by the operator H. This will be more explicit in
the next section, but nevertheless, my intermediate goal is to derive conjugations of the operators «,, and
K, by H. First, I obtain a result writing these conjugations in terms of the fermionic operators 1, 1", then
use results stated by Kramer, Lewanski, and Shadrin [77] to translate the conjugated operators into bosonic

form.
First, begin with the following lemma.

Lemma 7.4.4. For all positive integers n,

HlagH= > H— Ur-n 5, (7.25)
kez+1 i=1 )

HCH= > (k+2 H— Vh—nthh : . (7.26)
kez+1 i=1 1+ 2)

and

> TIO+ e +i=3h) s rrntiy s, (7.27)
kez+3 =1

MK H= > (k=3 J[Q+k+i=3)h): brpntsy . (7.28)
kez+3 i=1

The bosonic operators vy, are defined in Definition 1.3.4 the operator KC,, is defined in Definition 7.2.5, equation (7.9),
while the fermionic operators 1;, )} are defined in Definition 1.3.1.

Proof. Begin with %', H (7.25), and first consider the case where n is a positive integer. Looking at the

action of this operator on a basis vector v) leads to the following argument:

1
HlanHoy = [[ ——=5H tonoa =[] Tt P sen(A\ D),
g L+ e@h aa 1+ (D =
1
— 1 R, = _ — v,
H1+c thgnA\A [T+ ec@no, = D sen(A\A-) [1 I
Oep pP=A— Oe\p

The sums over p = A_ are over all Young diagrams p that can be obtained from A by removing an n-ribbon,
and sgn(A\ A\_) is equal to the parity of the height of the n-ribbon that was removed less one (the usual sign
introduced by the action of the a-operators). Thus, for n positive, H ', H acts by removing all possible
n-ribbons and for each contribution, dividing by (1 + ¢(0J)%) for each box in the removed ribbon. Writing
this action in terms of the fermionic operators yields the desired expression (7.25).

For n negative this works analogously; that is, the operator acts by summing over all the ways to add an
n-ribbon and in each case multiplying by the product of (1 + ¢(0)k) for each box in the ribbon added.

For H~'IC,H, use (7.10) with n # 0,
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and consider

n

HCH = [JH ()0 = [IH T > F2) iy o M

keZ+3
=HT Y (k%) et He
keZ+:
Use the above reasoning for H~'a,H to conclude. |

The goal now is to write these conjugated operators in bosonic form. For this we use the following two

results that appear in Kramer, Lewanski, and Shadrin [77].

Lemma 7.4.5 (Kramer, Lewanski, and Shadrin [77, Lemma 3.4]). If the variables in a symmetric polynomial
are all offset by the same amount, they can be re-expressed as a linear combination of non-offset symmetric polynomials
as follows:

m

hm(lerA,...,xn+A)Z<

i=0
m .
<n +i1—m

me n - 1) B—i (21, ..., ) Al
i
(7.29)
em(r1+ A, ...,z +A) = E

=0

i >e’rn—i(x1,...,$n)Ai.

Here, h and e are the elementary and homogeneous symmetric polynomials respectively.

The elementary and homogeneous symmetric polynomials when evaluated at integers have nice descriptions
in terms of the first and second kind of Stirling numbers respectively. Recall that the (unsigned) Stirling
number of the first kind [}] is the number of permutations of {1,2,...,n} which have exactly k cycles, while
the Stirling number of the second kind {} is the number of set partitions of {1,2,...,n} into k parts. Then,
the elementary and symmetric polynomials evaluated at integers have the following descriptions:

en(1,2,. .. t—1) = LtJ
(7.30)

For a thorough discourse on symmetric functions, see the book of Macdonald [81]. The second result from
Kramer, Lewanski, and Shadrin [77] that I require is the following.

Lemma 7.4.6 (Kramer, Lewanski, and Shadrin [77, Lemma 3.6]). We have

m =[yj‘t]m3(y)‘je”/2, and {‘Z}=[yj‘t]i:3(y)teyt/2- (7.31)

z/2_ —z/2

Here, S(2) = s(2) = e ?

z z

I can now write the conjugated operators H~'a,, 7 and %K, H in terms of bosonic operators, or, more
precisely, in terms of the operator £.

Lemma 7.4.7. For all positive integers n,

n

H o H= Z M[ZM]S(z)—7L—1g_n(z)
m=0
n m a

KM= Y S L o)

m=0
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and

H = Z (ntm = DU g apntg, (2)

— (n —m)!

H U H = Z ”“(’;‘1__1731)(! o™ [zm]S(z)"’lggn(z).

m=0

Here, the bosonic operators oy, are defined in Definition 1.3.4 the operators KC,, and E,,(2) are defined in Defini-
tion 7.2.5 and Definition 1.3.6 respectively, and S(z) = g(z—z) = el

—e€
z

Proof. Begin with (7.27) from Lemma 7.4.4 for H~'a_,,H and rewrite it in terms of elementary symmetric
polynomials. Doing so gives

S S el bk ek Dt -

Apply the result of Lemma 7.4.5 for elementary symmetric polynomials, followed by the expression for
em(x1,...,2y) in terms of Stirling numbers of the first kind (7.30), then the result in Lemma 7.4.6. We

obtain
em(k+§,k+§,...,k+n_;):i(”ﬂ— )em Z )<k_%>i
P
:ﬁ}(””m)[m?*;ﬂ}(k—;)"
—i(n—ﬂ— > n_ni+ ST (k*%)

H o, H
_ ~ — n+i—m m—i n! —n—1_y(n+1)/2 _1 ‘ m . *
_kezz+1mz_()i_zl( i >[y ](”*m+i)!8(y) ‘ (k 2) M
"N (n4i—m)! i n! 1 u(n i 2 (k—1)em "
B 2202; ((n—m)!i!) g ](n—m—i-i)!s(y) Ly (D2 it (5= 8) A iy
ezl m=0i=
—~ o~ nlam m—i —n—1,y(n+1)/2 z(k—3) .
=D ID ) PRSP 21D ¢

kez+3 m=0 (n B m)
B " oplhm . -n—1
= X G IS )

as announced. The second equality is using the fact that e* =}, j—:, the third equality is merely simpli-
fying, and the fourth equality is using [2™]f(2)g(z) = 31" [z f(2) [z%]g(2).
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Beginning with (7.28) and following an identical calculation for H~1KX_,H yields

—m):

"ol n o n
M= 3 S EMISE T Y (ke g) ) v

kEZ+3
A me1 O
= 2 oy FTISE) o En(2);

m=0

as required. For H~'a,, H, we follow a very similar process as with #~'a_,, H. Expressing equation (7.25)
in terms of the homogeneous symmetric functions gives

H o H = Z H—) Ve,

kez+1 i=1

= Z th _%a %a---vk_n+%)(_h)m:wk—7L¢Z:
keZ+lm>O

= Z Zh (k+ik+23,. . ktn—3N": Vi,
kez+ém>0

where the last line has applied the relabelling £ — &k + n. Again, apply the result of Lemma 7.4.5 along
with equation (7.30), this time in the case of homogeneous symmetric functions. This gives

i(ernl)hm (0,1, n—1) (lﬁ—%)
e

(m+n—1)!
il(n—1)!

h(k+ 3, k+3,..k+n—13)

<

%

)

. 1
m—i n—1_y(n—1)/2 e
[y IS(y)" e (k + 2) :

.

Il
=)

K2

Reinserting this expression into H~'a,, and utilising the same tricks as in the case of H~'a_,,H above
yields

H o, H

_ 2 W IS (k4 ) R i

= Z Z W [ym—i]s(y)n—ley(n—l)/Q [Zi]ez (k-‘r%) (_h)m . wkaJrn :

N (n — 15! [Zm}s(z)n_lez(}“%) PRk

- S 278 ()" 6 2).

The result for 2 ~1/,,H is now immediate. [ |

7.4.3 Virasoro constraints for fully simple maps

I am now equipped to derive a sequence of Virasoro operators for fully simple maps. The overarching idea
to obtain said operators is by conjugating the Virasoro operators for ordinary maps by the operator . That
is, the Virasoro operators for fully simple maps will be obtained by conjugating V¥ by H. First, define

f0= 5 Y e IO T

£,s20 i1+ +is=q k=1 Jit+je=q+n k=1
q20 ip21 Je=1

(7.32)
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This operator is the counterpart to £,(z) via Lemma 7.2.4. Note that, while the differential counterparts to
calligraphic operators acting on the semi-infinite wedge are usually denoted by straight letters throughout
this chapter, I adopt an alternate notation here to forsake any possible ambiguity.

Theorem 7.4.8. The differential operators
"ol hm . . 1 E (i —n—i-14
=h Z o= [2™S(2)~ (2)+ )t > 7)'[2 1S(2) & ni(2)

n 2
m=0 i1 m=0 +

P> (Z = [zM]S<z>-i-léi<z>> (Z — [zmls<z>-j-1éj<z>>
m=0

i+j=n \m=0 J =
" onlEm LS =n=18 (1) _ 1 e (n+2)1A™ Jm1g( ) —n—38 B

+27;0 ol ISR T () SZO 2o PSR T () (739

forn > 1 and
m R i—1 i— I A™ o
VE =h ngo M[z””]ia(z) + ;ti 2 m[zm]S(z>—’5”(z)
+ 3 A - {3 GRS e) 7.3
m=0 ’ m=0 ’
i y m 2 m
VE = B8 (2) + % +Y ey (iZ!hm)' 7S (2) "1 é % % > 2R mS(2)E s (2)
i1 m=0 ’ :O

(7.35)

annihilate the partition function for fully simple maps and satisfy the Virasoro constraints; that is, VFZF = Ofor all
> —1, and [VE VE] = (n —m)V,E, . Here, £ is defined in equation (7.32), while S(z) = g(z) e

n+m:* z

Proof. The ultimate aim will be to derive the Virasoro operators for fully simple maps, V"', by a conjugation
for the Virasoro operators for ordinary maps, VnM , using the semi-infinite wedge as the medium. That is,
I will define VI := H~1VM¥ via the semi-infinite wedge and prove that the corresponding differential
operator V,', obtained by applying Lemma 7.2.4 to V', annihilates the partition function.

As an aside, it is possible to follow this process entirely without the semi-infinite wedge formalism, but in
the world of differential operators acting on the partition function for fully simple maps. The semi-infinite
wedge formalism simply provides a particularly nice language for deriving the conjugation H~1VM%.

Begin with the Virasoro operators for ordinary maps, which I restate here for convenience:

0? 0 ty 1 0
+h Z Zja 8 m+5n—1<p1+h>+ 6710 (n+2)apn+2

i+j=n

VM = Z(i+n)(hpi+t )8 9

i>1 Pitn

Use the fact that V.M ZM =0 for all n > —1 as well as Lemma 7.2.4 to write the following:

_ MM _ M tm Pm
0=HV"ZY =HV, <exp(sg) exp ( Z 5 0-m | exp 2 O

m2>1

= H< exp(sG) exp ( Z ;:nham) VM exp ( 1;:;04,”>>
m>=1

m>=1

- <eXp(5g) exp ( > %a_m>vf¥’7{ exp ( > ]j;"a—m>>

m>1 m>1

= <exp(sg) exp ( Z ’ftn”;ia_m> HB exXp ( Z{)r:za—nz) >7
m>1

m>1
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where B = H~1VM}{. Here, H is the differential operator that is the counterpart to H via Lemma 7.2.4.
Such a differential operator H exists because it can be written in terms of bosonic operators [2]. More
precisely, Alexandrov, Lewanski, and Shadrin [2] show that 7 can also be written as

s p2d
H = exp (l&)( dh) — .7-'1] 10gh> ,

< (=P
where ¢(2) = e*/2 — ¢=#/2 as usual, F; is the diagonal operator F; = [2]&(z) = Zkez-s-% k) o, and
&o(2) is the E-operator in energy zero without the usual correction term; that is,

50(2) = Z €Zk . wk’(/)z M.

keZ+3

Equation (1.20) writes £ in terms of bosonic operators, hence it is also possible to do so for & and Fy (the
latter because F; is the z-coefficient of & (z)).

Thus it follows that one can apply Lemma 7.2.4 to H and obtain a corresponding differential operator H.
(It is not problematic that such an H will inevitably be unwieldy, for the purposes of this chapter, it only
matters that such an operator exists.)

Thus, define V" := H~1VMH. It follows that

<exp(sg) exp ( 3 ;”%am) HVF exp < 3 i:l”am» —0

m2>=1 m2>=1

for all n > —1. This in turn yields that V,/"Z¥ = 0 where V,I" is the differential operator given by apply-
ing Lemma 7.2.4 to VI". That V,!" satisfies the Virasoro constraints is given immediately by the fact that V"
is defined to be the conjugation of an operator that satisfies the Virasoro constraints, and hence the same is
true of V,I'; this is easily verified as follows. Begin with the Virasoro constraints for ordinary maps,

(0= m)V = VALV = VIV v

n+m > 'm n

and apply H on the left and H ! on the right. This gives

(n —m)V,E

n+m

=(m-m)HVM H-'=pgyMyMg-1 _gyMyMpg-1

n+m

= (HVMHE Y)Y (HVYMHY) - (HVYHE Y)Y (HVMHEY) =VEVE -vEVE,

hence, (n — m)V,F,

L = [V,E, VI as required.

It remains to conjugate VM by H and hence derive expression for V!" and V,I" for all n > —1.

The operator ny obtained from applying Lemma 7.2.4 to VnM is given by the following expression in terms
of bosonic operators:

t 1 1
v = E (ho—j—poi +tia_i—y) +h E a_jo_j+20_pn +0p, 1 <CY1 + fi) + ﬁ(sn,O - S 0-n-2
i>1 i+j=n

using the convention that ag = 0. Note the slight abuse of notation: by Lemma 7.2.4, m% only corresponds
to a_,, for n positive, hence the term 2c_,, in ny is only present for n positive.

Using the fact that

1 1
K_,= 3 Z faiag = Za_n_iozi + 5 Z Q_;Q0_j,

i+j=—n i1 i+j=n

we can rewrite VM as

h t 1 1
Vr]:/[ = hIC_n + 5 ; a_j_j + ;tioz_i_n + 20£_n + 5n,—1 (Oél + Ft) + ﬁ‘sn,o — ;Ol_n_g.
i+j=n >



134 7. Fully simple maps

I will now conjugate VM by H. To do this, I consider the cases of n = —1, n = 0 and n > 1 separately.
First in the case of n = —1 I obtain

o1
VE = VMM = hH TG H 4 ) tH o H A H T i 5~ H e
122

=h Z M[ )+ Zt Z Zl_ll)'hw;[zm]s(z)_igli(z)

m=0 =22 m= 0
t 1 A
71 _ = _ [.m -2
+ mE>0 ]51(2’) + 7 s mgzo (1 — m)' [Z ]S(Z) 5_1(2’).

The second equality is using the fact that the operator % commutes with constants. In the case of n = 0 we
have

1 1
Ve =HTVYH = hH T KoH + > tH a M+ - gH’la,gH

i1

= hlzléo +Zt2 e R IR
’ 0

S
izl m= O

Here, the last equality is using the fact that Ky is diagonal and the operator H commutes with diagonal
operators (as well as constants), along with equation (7.10),

Ko =[2] & (2 )+i

The operator H commutes with diagonal operators because H itself is diagonal. Finally, for n > 1, we define
VE to be

vy =HTVH

- h - . - 1,
=hH 'K_,H+ 3 Y H aa HAY tH e HA2H o, H - H Yo, _oH

i+j=n i>1
n m n+1 i m ‘
=h ZO(:'_%, [e]8() " o SCEPM Zonjz)'h)' 7S () i(2)
ey (Z (ZZ'_% [zm]S(z)ilg_i(z)> (Z (jj'_h;)' [zm]S(z)jlg_j(2)>
i+j=n \m=0 : m=0 :
n m n+2 n |
#2 30 T IS e ) — | 3 P IS )

The third equality is using the fact that X 'a_ja_;H = (H 'a_;H)(H 'a_;H). Recall the bosonic
operator form of the £-operator:

LZ 3 sCnz)--cliez)
( / . : - Qg 7

Z PR Z
020 7 iidetig=n 1 ¢

£ .
1 S(jrz)
e Z > =
T () £ls! Tk
,520 Jit-+je=q k=1 i1+ tis=gt+n k=1
20 Je=1 i1

Here the second equality has implemented the normal ordering. Recalling the definition for the £-operator
given by equation (7.32), the statement of the theorem now follows. u
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7.5 Recursions for fully simple maps
7.5.1 A Tutte-like recursion for fully simple maps

One can use the Virasoro operators for fully simple maps to derive a Tutte-like recursion; this is done by
following the reverse process to what was done in the proof of Theorem 7.4.2 to derive the Tutte recursion for
ordinary maps. Explicitly, to derive a Tutte-like recursion for (connected) fully simple maps in full generality
for all (g,n), one applies 7rpn42Vy, to Z and extracts the coefficient of p,, - - - p,, i?~2T". The role of
dividing by Z* after applying V,, is a trick that ensures the resulting recursion is in terms of the connected
enumeration. To see this, define the free energy for fully simple maps, a generating function for the connected

enumeration,

.. 29—2+n
ETED 35 DD DI ST LU

n!
n2lg20p,...,un>1

Then observe
1 0 g 1 0 1 OF oF
ZF ox ZF ox eXPp ZF ox eXPp oz’

hence, the result on the right-most side is in terms of connected fully simple maps only.

In this section, I derive a Tutte-like recursion for fully simple maps for some special cases of low (g, n);
namely, (g,n) = (0,1), (0,2), and (1, 1).

Ideally one would like to be able to do this process in full generality. However, the Virasoro operator VI’

—n=1 and

for fully simple maps involves extracting coefficients from the S(z) and ¢(z) functions: [2%]S(z)
[2%] % [T5-; s(jrz). For low (g,n) this process is highly constrained (as we will see) but in full generality

this is not the case and the contributions of these terms become intractable.

The disk case: (g,n) = (0,1)

My first aim is to find a Tutte-like recursion for fully simple maps in the case of (g,n) = (0, 1). This is done
by applying = pn+2Vn to ZF" and extracting the coefficient of p,,42/i~*. In this case (and actually for all
n=1),

1

V2"

1 _
P2l ™) g s Va2 = (0]

and hence it follows that we would like to extract terms from %VnZ F that are constant in the p-variables.
This is equivalent to disregarding any terms of V,, that include an application of p, or applying Z%VTLZ F
then setting 7’ = 0.

This leads to the following Tutte-like recursion for fully simple maps in the disk case; that is, when (g,n) =
(0,1). This recursion has been used to reproduce the data calculated by Garcia-Failde [58, Section 2.2.2].

Proposition 7.5.1. The enumeration of fully simple maps in the disk case satisfies the following recursion for all

n > 1:
. 1 . .
214071(’[1) —+ 214071(’[7,) = ;Ao)l(n + 2) — Ztl Ao,l(n + Z), (736)
i>1
where
N NI m+1
onl(N) = Z (N o m)'(m+ 1)' Z H ]kFS&l(Jk)
m=0 ’ Tt time1=N k=1
N m+2
. N!(m+1) L qo /s
Aoa(N) =2 (N —m)l(m +2)! >, 1l aFssaGo-

0

3
I

Jit o tim42=N k=1
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Proof- First recall V,I" for convenience.

n n—+1i

=h Z %m' [z™]S(2)" "™ )+ Zt Z %ﬁml [zm]S(z)’"’i’lé_n_i(z)
o (= m)! i>1  m=0 (n+i—m)
+§ ) (Z ('_% =718 (2) ) ( 'hm) [zm]s<z>—j-1é_j(z>)
i+j=n \m=0 '
+2 <nmh:; TS () T E(z) - 1 m*nj 22)”;) 278 (2) " a(2) (7.87)

Let us begin with the first term on the third line. That is, let me consider extracting the coefficient of 1!
from the application of this term applied to Z%":

e 32 oy IS (12"

Let me also restate the definition of £_,, (2):

R 1 1
G025 X e N I e

0,520 77 Lirtetis=q k=1 Jite+je=q+n k=1
q=0 ip=1 Jr21

Recalling that because n = 1, after the application of the operator to Z" we are forced to extract the terms
that are constant in the p-variables. Therefore, we can consider only the terms in é’n(z) where s = 0. That

is,

Z7. (¥

= Z(ﬁ”m)! > S T E 1%%2% > HWZ

a+b=m Jit-t+je=n k=1
Jr=1

From here it follows that the contribution of this term is

n m—+1

Z (n — m;!l!(m +1)! Z H ijSS,l(jk)' (D)

m=0 Tt time1=n k=1

This is not a trivial statement, and one can reason this in the following way. We are extracting a negative
power of A from Zl—F(‘:‘n(z)Z F that is constant in the p-variables, and the only terms that carry a negative
power of A are (0, 1)-terms where 729~2*" = h~1. Hence, in the mth summand of the m-sum, we need to
apply at least m + 1 derivatives for the term to contribute:

1 m—+1 a 1 m—+1 m+1
]ﬁ 9 [hmlzp HFSkah A HF801Jk
k=1

k

[hfmfl

Thus, £ > m + 1. Yet it is also true that we can apply at most m + 1 derivatives. This is because of the
¢functions. The expansions of ¢ and 1/¢ begin
Lol 20069 amd o) =zt 400,

—_— === an =24+ —

) 2 24 % 24
hence each copy of ¢ in the inner product over k, Hi:l ¢(jkz), contributes at least one power of z, while
from the ﬁ in front of the /-sum we can collect either one negative power of z or odd positive powers of z.
From this latter half of the expression,

1 1 1
[ e 1}ZF ()Z@ Z H§sz z",

0 7 Lji+tie=q k=1
Je=1
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I am extracting the coefficient of 2% for 0 < b < m and this therefore forces m > b > ¢ — 1, or equivalently,
¢ < m+ 1. Recalling that I also had the constraint £ > m + 1, one can conclude that { = m+1, b = m and
a = 0. Applying these constraints to the original expression (*) results in the contribution given by A, as
announced.

Returning to the Virasoro operator for fully simple maps (7.37), one can use an identical argument for the
second terms on the first and third lines to deduce the following contributions respectively:

n—+1i ) m+1

2t (n+i n+lm+1) > 11 5xFS5 1 Gie), (D)

i1 m= 0 g1t A imyr=n+i k=1

n+2 m—+1

T Z n+2_n+2zm+1)| Z H ijSS,l(jk)' (A)

Jit A imi1=n+2 k=1

For the first term on the first line—the %fn(z) term—I apply a similar argument but also utilise the trick
that, as operators, [z%]Z = (a + 1)[2%*1]. This gives

m=0
. n! a —n—17,b —m—2 10 1 1 F
= ) Z [2*]S(z) [k }ﬁac(z) 7 Z HC jkz
m=0 a+b=m 220 Jit+-+je=n k=1
Jr=1
- n! 1 1 )
- =2 L )L [ S et |7
mzo (n=m)! 4 () 558 |+ Fhmn i Opi

m—+2

nt(m +1) S T FSL G- L)

— | |
(n—m)l(m+ 2)! AT b

m=0
The second equality is using the fact that, by similar arguments to the case above, { = m + 2.
It remains to treat the term in V,”" given by the product of £-operators:

5 Z <Z Z'hm)! [ZW]S(Z)‘i‘lfi(Z)> (Z (.ﬂ%[/”]s(z)‘j‘léj(z)) (7.38)
m=0

’L+]n mO

Apply this operator to the partition function for fully simple maps, divide by Z¥', and extract the coefficient
of h~!. Again utilise the fact that n = 1 to discard any term of the Ej—operator that multiplies by some p;
and deduce that the contribution is equal to

(RS Z(j’_hz), S0 s S )y Hukzl

i+j=n | m1=0

I jlpme 1 1
D G EISE) T S Y me zr.
(1 —mg)! 22) £o!
mo=0 €220 Jittie, =3 k=1

Note that in contrast to the preceding expression above I have utilised explicitly distinct indexing variables
m, and my and formal variables z; and 2 for clarity. Again, as previously, for the m;th summand of
the m;-sum and moth summand of the my-sum, the overall number of derivatives applied must be at least
mi + mgo + 2 to yield a term resulting in an overall factor of i~! (after being multiplied by A1 Tm2F1),
However, due to the fact that we are extracting the coefficient of z]"! from the first bracket and z35'* from
the second, the maximum number of derivatives that can be applied is m; + 1 + mo +1=mq +mo + 2.
Therefore {1 + f2 = mj 4+ mg + 2. Further, because of the series expansions for ) and ¢(z), it follows that
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my > ¢; —1 and mg > {3 — 1. Conclude that ¢; = m; + 1 for ¢ € {1,2}. This collapses the above expression
to

7 mi+1

1 7! 1 ; o
2 Z Z (i —mq)! (my + 1)! Z H 80,1 (k)

i+j=n [m1=0 i1 +---+Z‘,,L1+1:i k=1

J ma+1

IR e SEED DR | RS

Ma—=0 .] - m2) (m2 + 1) Jidtimg41=5 k=1

In fact, this expression is equal to the contribution from the %c‘jﬂ (z) term; that is,

7 mi+1

1 7! 1 . o ¢
9 Z Z (i —mq)! (my + 1)1 Z H irFSg 1 (i)

t+j=n | m1=0 i1+ timg +1=1 k=1

7 mo+1

.! 1 ; [e] .
2 (J —sz) I (ma +1)! > [T JFS5.aGie)

mo=0 J1 +"'+]‘7n2+1:j k=1

m+2

l
- Z - mj:nljr 2)! Y. TLaFsSaGr). (7.39)

Jit - timt+2=n k=1

This can be argued in the following way. What I’'m calling the %én(z) term—the first term on the first line
of (7.37)—stems from, in the setting of operators in the semi-infinite wedge, conjugating the KC_,, operator;
that is,

h ZO nn'_hm zm}su)‘"‘l%é-n(z) = hHTK M = ﬁH‘l(Za—n—iW% > ooy
= i>1 itj=n

In the setting of differential operators acting on a partition function the K_,, operator corresponds to

32
h i+n pl —|— = 1 —
2 s 2 oy,
On the other hand, the product term (7.38) stems from the conjugating the operator 3 Zl+j:n oa_;0_j,

which in turn also corresponds to 3 bS +i=n W p,5p; ap op; in terms of differential operators. In the case of n =1
and any genus, the term that corresponds to con]ugating hzi>1(i + n)piﬁﬂ is not going to contribute
because this term multiplies the resulting expression by p;; recall that in the case of n = 1 we extract terms
that are constant in the p-variables. It remains to observe that H is a diagonal operator and hence the
application of multiplying by p; is unchanged by the conjugation by H. Therefore, when n = 1,

2g—1 1 h i ﬂ TS 1E (s J Jram SMS()ILE (2 F
h ]ZFQWZ:n <mZ_O (zem)![ JS(z) " i )) <n§(jm)![ 18(2) 7€ ( )) Z
0

—&_n(2)ZF. (7.40)

1 < nlhmtt
— [p29—11_—_ m —n—1
P [2")S(2) 7"

zZF = (n—m)!

Collect all terms labelled with a triangle (A) to conclude. [ |

One might be able to prove the identity in equation (7.39) directly; via a combinatorial bijection or perhaps
using generating functions. At the time of writing, such a proof has eluded me.

The cylinder case: (g,n) = (0, 2)

Find a Tuttelike recursion for fully simple maps in the case of (g,n) = (0,2) by applying Z—lppn_‘_QVn
and extracting the coefficient of p,,,p,,h°. This is equivalent to applying '=V;, to Z¥ and extracting the
coefficient of puho.
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This leads to the following Tutte-like recursion for fully simple maps in the cylinder case; that is, when
(g,m) = (0,2). Again, this recursion has been used to reproduce the data calculated by Garcia-Failde [58].

Proposition 7.5.2. Fix 1 to be a positive integer. The enumeration of fully simple maps in the cylinder case satisfies
the following recursion for alln > 1:

~ o 1 )
Aog('ﬂ, ,LL) + AO,Q(na M) + 2‘4072 (n7 /’[’) = EAO,Q (n + 2a ,lt) - Z t; AO,Q(n +1, /.L), (741)
i>1
where
n 1 m . . '
posor =3 M S s
mZO JiteF+im=p+N k=1
Jek21
1 m—+1 m—+1
s o > adFSa(mda) I ijSS,lo'k)}
Cirtetimgr=N g=1 k=1
Jr=>1 k#q
N m—+1
; Nm+n[ 1 o
Aop(Nop) =) R N > 11 7:FS5 1 Gie)
m=0 Jittimpr=p+N k=1
Jr21
1 m—+2 m—+2
Ty > 2 ddFStatmia) [1 ijSg,l(jk)]
Jit+imy2=N g=1 =
Jrk>1 k#q
and

%

Ag2(N,p) = Z ( Z (z—zlnl)'ml' Z HikFSS,l(ik)>

i+j=N | \'m1=0 L ety =it k=1

2 ! 1 matl o
X ( Z (J _]mz) l'(mg + 1)! Z H JkFSOJ(]k)>

mo=0 Jit - tima+1=7 k=1

: 7! 1 mi+1 my+1
i F'S i i TS (i
+ ( ZFO (i —m1)! (my + 1)! ZMZZ, - g 3aFS0,2(1 3o) ,E iwFSE., (i)
" 1 mi+1= ¢

k#q

mo—+1

J | 1 | o
><< Z (] _JmZ) (mg + ]_) Z H ﬁfFSO,l(]k))

mo=0 Jittime+1=75 k=1

Proof. Begin with

1 n 'hm R
Pu) 7 Lm), 278 (2) " (2)ZF. ()
m= O ’

Again recall the definition of the é (z) operator:

zEPD Y
= z)
s(2) gv | Pi <Uk
£,5>0 i1+ Fis=q k=1 Jitt+je=q+n k=1
a>0 ip>1 Jr21

The p,, can either arise from an s = 1 term from the & n(%) operator, or from an application of a differential
operator applied to the partition function ad Z¥ . Therefore s = 0 or s = 1; T'll treat these separately. First
consider the case when s = 1. Then ¢ = and we have

n! mr—my 1 o 1 1¢(pz)
> ) () LS S e,
Ji+-- +j>£1 p+n k=1
Jk =z

F
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Using a similar argument as in the case of (g,n) = (0, 1), because we are ultimately exacting a coefficient of
R~ we must apply at least m derivatives to the partition function; hence ¢ > m. However, in the process

of extracting the coefficient of 2"

we obtain the constraint that m > ¢. This is because, minimally, one can
take the constant term from S(z) "1, and the leading terms from %, ¢(1z) and each of the ¢(jiz) terms.

Therefore, / = m and this leads to the following contribution:

Z lml Z ijFSS,1(jk)~

o ( it tim=ptn k=1
k21

When s = 0, the contribution becomes

1 - 1 1
S s g 3| 3 [t
£20 Jit- ;le =n k=1
Jk2

Using an analogous reasoning as just above, we have that £ > m and m > ¢ — 1; that is, m < £ < m + 1.
When ¢ = m the expression reduces to

n

n! m E—m 1 —n—1 1
2 (it Pe " T RS ) g(z)[ > Hwkz

m=0 Jittim=nk=1
Jr=1

F

This term cannot contribute. Because the functions ¢(z) and S(z)~ "1

are even in z while the function ( )
is odd, overall the expression is odd in z. The minimal power of z we can take is m — 1, thus there is no 2™

term. When ¢ = m + 1 the term is equal to

n m+1
1 1
D 2" h " S () —— [ > Il <tog—|2"
m=0 n_ m+1) z §(Z) Jittim+1=n k=1
Jez21
m—+1 m—+1

= Z Gl 2 daFShaleda) TTFSiaGe)

m=0 Jit+imy1=n q=1 =
jre=1 k#q

Therefore, the overall contribution of the term labelled (x) is

n

n! 1 .
Z m m! Z HJkFSo,1(Jk)
m=0 JitFim=ptn k=1
Jr=1
1 m+1 m+1
+ CES Z Z J3q¥S0,2(1: Jq) H ijSS,l(jk)] - (D)

T jitetime1=n g=1

k=1 kg
Next consider both the terms
0] 1 nth™ 19 4 F
[puht”] ZFE;OW [Z"]S(:) 7" o n(2)27, (%)
0 LE - it m —i—1¢6 z -7' h™ m —j—16 F
0 ZF 5 H;n mz::() 7(1 — ) [2"]S(2) E_i(2) ,,LZ::O 70 "y [2"]S(2) E_j(2) | Z%.

(> * )

For these contributions I apply very similar arguments but for the first term, as in the disk case, I utilise
the trick that [z*]:Z = (a + 1)[z**!]. T will omit the details; the necessary ideas have been demonstrated
for the first term (A\) above as well as in the disk case, the arguments are analogous. Very briefly, it suffices



7.5. Recursions for fully simple maps 741

to consider, for each instance of the £-operator, the cases s = 0 and s = 1 separately, and, within each of
those cases, the possible values of ¢ that can arise. Conclude that the term (**) contributes

n m—+1

nl(m+1) 1 o
PP T | R
oo (R mmt Dl it k1
Jez=l
1 m—+2 m—+2
oy 2 2 daFSaleda) [T AFSiaGo|- ()

Jitetimt2=n =1 k=1
Je=1 k#q

The product term (x  *) contributes

' i1 o
! . o /.
2\ o, 2 TS
itj=n m1=0 i1t iy =it k=1

J 1 1 mo+1 . o
) ( Z (J —jm2)! (mg + 1)! Z H ]kFSO,l(]k)>

mo=0 Jit o time+1=75 k=1

7 7,' 1 mi+1 . . mi+1 . . .
+ ( > =) o 5 D) > > 3qFSoa(psdg) [ iFSS (i)

m1=0 i1+"'+im,l+1:i q=1 k=1
k#q

J i 1 m2+1. . .
(S ety T Masion)| @

ma=0 Jit o time+1=7 k=1

Collect all terms given by A to conclude the result. |

In the case of (g,n) = (1,1)

Finding a Tutte-like recursion in the case of (g,n) = (1,1) is similar to the case of (g,n) = (0, 1), in that
this is obtained by applying Z—lF Prt2Vi, to ZF but in this case we must extract the coefficient of Dyh.

This leads to the following Tutte-like recursion for fully simple maps in the punctured torus case; that is, when

(g,m) = (1,1). Again, this recursion has been used to reproduce the data calculated by Garcia-Failde [58].

Proposition 7.5.3. The enumeration of fully simple maps in the punctured torus case (g,n) = (1,1) satisfies the
Jollowing recursion for alln > 1:

A 1
2411(n) +2411(n) = ~A1a(n +2) — > tiAva(n+ i), (7.42)
i>1
where
NN 1 1, 5 e
= (8 meesia v ) [LaRsiG
m=0 jitAim_1=N k=1
Jre=1
1 m+1
s D ( S GedaFSealinda) T ikFSe1Gi)
Tt Hime1=N \ 1<p<qg<m+1 k=1
Jr>1 k#p,q

m+1 m+1
+ Z quST,l(jq) H ijSS,l(jk)>]a

g=1 k=1
k#q
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m

+1 ) ' _ L
7;4m' < Z @+ +im—1) H JkFSo,1(Jk)>

j1+""+jm:N k=1
Je21

S UNED S st

it tim=N k=1

A N
AL (V) = Z_:O (N —m)!

Je=1
m + 1 m—+2
- (m + 2)! Z ( Z jquFSgQ(jpvjq) H ijsg,l(jk)

Cjitetime2=N \ 1<p<q<m+2 k=1
Jr=1 k#p,q

m—+2 m+2

+ > 3aFS5 G0 [T ijSS,lok))]-
q=1 k=1
k#q

Proof: Again, I'll begin by considering the following term from the V,I" operator

n! hm —n—1¢4
ZF Z 2MS8(2) e (2) 2T

m= O

Using a similar argument in the case of (g, n) = (0, 1), the £-operator cannot contain any terms that multiply
by any p;, thus the above expression reduces to

1 < | pm .
g 2 oy IS E ()2
mO
¢ n! m —m 1 —n— 1 1
N s 3| DS | TR
>0

m=0 Jit-t+je=n k=1
Jr=>1

N

Again using a similar argument as in the disk case, given that we are extracting a coefficient of A=™*! we
must apply at least m — 1 derivatives, thus £ > m — 1. On the other hand, as always m > ¢ — 1: this is
because, minimally one can take the constant term from S(z)™"~!, the 2~! term from le) and the linear
terms from all ¢ of the ¢(j;z) terms. Conclude that ¢ is constrained by m —1 < ¢ < m+ 1. I will consider
each of these in turn in decreasing order. That is, first consider the case where £ = m + 1. This case yields

m—+1

>, Iy

n! —m 1
D oot " gE

m=0 Jit+ -t Iimy1=n k=1
Jre=1
n n[ m—+1
=D G l S iaFSsalnda) [ eFSe k)

m=0 ’ Tt Fimar=n L1<p<q<m+1 k=1
Jr=>1 k#p,q

m—+1 m—+1

+ > 4aFST1Ge) [T 3kFS510k) |-
q=1 k=1

k#q

The two distinct types of terms arise in the following way. For the term containing FS&Q, m — 1 of the

derivatives act on (0, 1)-terms contributing A~™*!

, while the last two derivatives both act on the same FSg ,
contributing A°. For the term containing FS7 1, m of the derivatives act on (0, 1)-terms contributing /=",
while the last derivative acts on a FS; ; term contributing 2'. These two options are the only possible
contributions; while this may not be immediately clear, a few minutes consideration should be enough for
one to convince themselves. For / = m we have

~ 1 11
Z m[ m T ZFS(Z)_R_Iﬁg Z H S jkz

m=0 Jit+otim=n k=1
Je21
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Considering extracting the coefficient of 2™ from the product of ¢- and S-functions allows us to conclude

that this term cannot contribute using the same parity argument as in the case of (¢g,n) = (0, 2).

Finally consider / = m — 1:

g n! m —m+1 L —n—li 1
2 L 7l O o e D H sUk2)g
Jittim—1=n k=1

m=0
Jr>1

Because we are applying m — 1 derivatives and extracting the coefficient of h~™%!, each derivative must

act on a (0, 1)-term. Extracting the coefficient of 2™ can be rewritten as follows:

— 1 g a —n— T
[2"]S( IT H o)=Y ST < (jr2)-
k=1 a+b+c=m k:]
There are three possibilities for a, b and ¢, summarised in the following table.

a b e RUSE)TTY [ RIS sGke)

2 -1 m-1 —ntl 1 [T | 'k

0 1 m-1 1 -+ I Yk

0 —1 m+l 1 I e ) D

The contribution when £ = m — 1 is

n

m—1
) e m;f!(m —; [ > i(a’% oot mea —n=2) [ ijSé.’,l(jk)l-

m=0 Jit+tim—1=n k=1
Jr=1

Therefore, the overall contribution for the term labelled (%) is

Z n! [(mil)! ( Z 2714(jl2+...+j72n_1 —n—2) 1:[ ijSS,l(jk)>

(n—m)!

m=0 Jit+ -t Iim—1=n el
Jre=1
1 m—+1
T (m—+1)! Z ( Z Jpiq¥'S0 2 (ps Jq) H Jk¥SG,1 (k)
Ciitetimer=n \ 1<p<q<m+1 Pl
Je>1 k#p.q
m+1 m—+1
+ Z 3qFS1 1 (Jq) H ijSS,l(jk)>]. (D)
qg=1

k=1
k#q

Next I consider the %é’,n(z) term and again use the trick [2%]2Z = (a + 1)[2*"!]. This gives

n n! pmt1 .
m=0
~ n! " et bem L O 1 1

:Zm > Sz bk ]ﬁg@ g![ > ng’cz z"

m=0 a+b=m £>0 Ji+- —;ylg =n k=1
_ - n! —-m a —n—1 b+1 1 1 1 : F
= Zm[ﬁ ] Z [29]S(2) (b+1)[z ]ﬁ@ZZ Z H§jk2

m=0 a+b=m >0 Jit+-+je=n k=1

Jr2=1
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Now ¢ > mand m+1 2 £ — 1, thus m < £ < m + 2. Following a completely analogous argument as in the
case for the term (*) above, we conclude that this term yields the following contribution:

n

n!
Z (n—m)!

m=0

m—+1 ) ] L . .
at( % G0 i)
’ Jit+F+Iim=n k=1
Jr=21

_m=Lnt]) > ﬁ 3k¥Sg,1 (k)

24m]! , /
it im=n k=1

Jr>1
m+1 e m+-2 . o
+ m Z Z Jpiq¥S0,2(ps Jq) H JxFSg 1 (i)

' Jittimt2=n 1<p<g<m+2 k=1
k21 k#p,q

m+2 m—+2

+ Z quS(lj,l(jq) H ijSS,1(jk)>]. (A)
q=1 k=1
k#q

Finally, for the product term, recall the argument given in the case of (g,n) = (0, 1); that is, whenever n = 1,

RNy (Z ! [zmw(z)-l‘-lé_i(z)) (Z S [zmw(z)-j—lé_j(z)) z"

i+j=n \m=0 m—0 (j—m)

~ 1 n n!ﬁm+1 m e 0 -
== > =) [Z"1S(2) " e (2)2".
0

m=

Thus, the product term yields the same contribution as the %é,n(z) term. Collecting the terms labelled
by (A\) yields the statement of proposition (7.42). |

7.5.2 A relation between ordinary and fully simple map enumerations

In this section, I deduce a relation between ordinary maps and fully simple maps via the semi-infinite wedge
in the case of (g,n) = (0,1). Again, one would ideally like to be able to go this for n = 1 and all genera, or
even more generally for all (g, n).

In the disk case: (g,n) = (0,1)

Begin with the vacuum expectation for the enumeration Map(u1, . . ., ft,) for ordinary maps given in equa-
tion (7.20) specialised in the case of n = 1, and use the fact that H) = 1 to rewrite it in the following

way:
Map() = { exp(sG) exp (M o))
= { exp(sG) exp (@1 %a,m)ﬁﬁ-l%ﬁ>
= %< exp(sG) exp rtr:;ia_m)rH XM: (Mﬂl_h:L)' [2"]S( )_“‘1g—u(z)>
=0

= i< exp(sG) exp
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Thus conclude

1IN 1l 1 i)
Map(y) = ~ "S@) T S ) S :
ap(ﬂ) i mz:O (/J o m)| [Z } (Z) §(Z) = Yl PR |JE Jk
lm
<exp( g) XP(Z h()‘—m>7’[ Qjy - Ay >
m>1

The third equality is using Lemma 7.4.7, while the fourth equality is using the bosonic form of the &-
operator (1.20). The normal ordering in this case will push all bosonic operators with positive subscripts to
the right and negative subscripts to the left. Given that «,, for a positive integer m annihilates the vacuum,
it follows that the sum is zero unless iy, < 0 for all k € {1,2,...,¢}. Thus,

Map(e) = L3 I g Ly L g [ sl
b 2 (i) &2
Jk
<eXp(8g) exp (ngl %a—m>7{a—j1 T o‘—j/z>’

sUr2) ;
k

where I have relabelled j; — —ji and noted that is even in jj. Therefore,

Iz m ¢
uMap(u) = Z (/l'_h'[zm] Z i Z lH g(jkz)l FSMap(j1,...,7¢), (7.43)

m):
m=0 H ) £>O Jit+Fje=p Lk=1
Jk>0

where I have used the following vacuum expectation for FSMap:

; i) = . g Qe
FSMap(j1,...,je) = <exp(sg) exp (ﬂ; mﬁa_m)H 5 - ¢ >

One could read equation (7.43) as a reformulation of (7.6) from Theorem 7.2.3 in the case of Map(p).

To obtain a specific relation in genus g, extract a coefficient of 4/29~! from both sides, recalling that

Map(#lv---v#n ZM ,ulw"),u‘n) h2g72+na
gEZ

and that one can use inclusion-exclusion to pass from the disconnected enumeration to the connected and

vice versa:
| M|

Map(ur,-opm) = Y [ Map®(far,). (7.44)
MHF{1,...,n} i=1

In the specific case of g = 0, extract the coefficient of 2~* from both sides and note that all maps (ordinary
and fully simple) are connected when n = 1. The left yields ;Mg ; (1) while the right side gives

¢

Y s S Y 8 [chkz)] FSMap(ji, . . )

m=0 H m)' £20  jit+je=p Lk=1
Jk>0
13
Z m + 1) Z [himil}FSMap(jla o a.jm-‘rl)
Jit ot Imp1=p
m+1

Z m)u'(m +1)! Z H ijSS,1(jk)~

m:O Jit o time1=p k=1

This statement is nontrivial. From the fact we are extracting the coefficient of h~! and the expression
contains 2™ it follows that we require [A~™"1|FSMap(j1, ..., j¢). The smallest power of / that can arise
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in FSMap(ji, ..., je) is —¢, which occurs in the term A= “Fy1(j1) - Fo1(j¢). Thus —m — 1 > —¢ or
equivalently m + 1 < ¢. On the other hand the power of z in the expression must be at least ¢ — 1:
minimally, we can take the constant term from S(z)"#~!, the z term from each of the ¢(j;z) series and
the 1/z term from 1/¢. Hence m > ¢ — 1 (since we are extracting the coefficient of ™) or equivalently
m + 1 > {. Combining these two inequalities gives that £ = m + 1 and this is what is being applied in the
first equality above. The second equality is using (7.44) in the case of fully simple maps.

Therefore, conclude with the following relation between the enumerations of ordinary and fully simple disks.

Proposition 7.5.4. For ;i a positive integer, we have the following relation between ordinary and fully simple maps

in the disk case:
w m+1

MG = 3 e S [T aRshiG.

m=0 Jittimy1=p k=1

Given the form of the result above, it is quite hopeful that there is a direct combinatorial interpretation for
the relation.

7.5.3 Recovering the spectral curve for topological recursion

In the setting of topological recursion, it is common knowledge that the spectral curve usually contains the
data of the (0, 1)-enumeration, or, conversely, that from the (0, 1) information one can deduce the spectral
curve. See Section 4.2.2 in Chapter 4 for how this process can be done in the case of single Hurwitz numbers.

As discussed in the introduction, it has been proven that the enumeration of fully simple maps is governed
by topological recursion with the spectral curve in Theorem 7.1.2, and, perhaps more importantly, that this
is precisely the spectral curve obtained by taking the spectral curve for ordinary maps in Theorem 7.1.1
and switching the roles of z and y. In this section, I use the Tutte-like recursion in the case of (g,n) = (0, 1)
obtained in Proposition 7.5.1 and recover the spectral curve for fully simple maps. The form of the spectral
I will use here will be different to its presentation in Theorem 7.1.1, namely, I will use its global form which

can be written as

2? =V'(y)x — Poa(y), (7.45)

where

i—1
Vi) =y—> ta'™", and  Roa(y) =1+ Aoa(Dy " =D iy v 72 Ao1(h).

i>1 i>1  j=0

This form of the spectral curve for fully simple maps aligns with the spectral curve for ordinary maps given
by Eynard [45, Equation (3.1.2)] and switching « and y. To avoid confusion, I will use ;g and yorq for the
meromorphic functions of the ordinary maps spectral curve, while z and y will continue to be those for the
fully simple maps spectral curve. Thus 2 = yoq and y = Zora.

Begin with the Tuttelike recursion for fully simple maps in the disk case (g,n) = (0,1) given in Proposi-
tion 7.5.1. Throughout this section the s-parameter will not be required, hence set s = 1. The Tutte-like
recursion reads, for alln > 1,

2401(n) +2401(n) = Ao1(n+2) = > t; A 1(n + 1), (D)
i>1
where
N N1 m+1
onl(N) = Z (N o m)'(m+ 1)' Z H ]kFS&l(Jk)
m=0 ’ T it A ime1=N k=1
N m—42
. N!(m+1) L qo /s
Aoa(N) =2 (N —m)l(m +2)! >, 1l aFssaGo-

0

3
I

Jit o tim42=N k=1
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To pass to generating functions multiply by n+1 and sum over all n > 0. This recursion is only valid for
> 1, thus I need to derive the correspondlng recursion when n = 0. This is done by following the process
outlined at the start of Section 7.5.1; in this case one must apply Z—lppg Vi to Z and extract the coefficient

of pohi~!. Recall the Virasoro operator for n = 0:

AR s 1 o 2™ s
Vi = hl2& + o Z oIS E) ERORSDY i 15G) 3E_a(2).
izl m= 0 ' m=0 ’
Following the outlined process yields the recursion
1=A401(2 ZfAm (AA)

i>1

Multiply the equation A throughout by yn% and sum over all n > 1, then add to it the equation (AA)
multiplied throughout by % Finally, multiply throughout again by % This leads to

2) Apa(n) n+2+2ZA01 yn1+2 7 =Y Ap1(n+2) e ZZtAOln—i—z 1 . (7.46)

n>=1 n>1 n=0 n>01:i>1

Begin with the right side and rewrite it in the following way. The aim of this manipulation is to introduce
the potential V/(y).

ZA017”L+2 ZZL‘AMTH-Z )

n>0 n=0i>1

=2 Aoaln) o =ty ) Aoa(n) s

n>2 i>1 n=i
—yz n+1_ *—thy 12:1401 n+1+zt 291]21401

n>1 i>1 n>i i>1 j=1
iy 0.1( g —i1 0,1( Y 0.1(
[ -ty 1]ZA ——A +Zt2” 24
i>1 n>1 i>1 =

The first equality is applying the relabelling n +— n — 2 to the first term and n — n — ¢ to the second.
Recall the relation derived in Proposition 7.5.4 and observe that the right side of this relation is Ag 1 (u) as
defined in Proposition 7.5.1,

m—+1

R S e rren D DR | EA L ESER )

m=0 g1+t Iimyr1=p k=1

As defined by Eynard [45],

ord

wo,1
Yord = = + Mo 1 (
o dxord Tord ; 5:51 ’
hence
- + Z pMo 1 ( 7#“ =- + Z #+1 (7.47)
pn=1 pn=1

Returning to the right side and rewriting further gives

(R DR D PO SVMRUTSS o8 et

=1 n>1 i1 j=1

g g W} R Y

izl n=1 i1 izl j=1

=V'(y)x — Po1(y),
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where I have absorbed the first sum over ¢ > 1 into the second and, for convenience, defined A ;(0) := 1.

Next, take equation (7.47), let ;1 = n and square both sides. Doing this gives

2
1
2o RS A ]

Yy n>1
1
SRR WINDELED S Z o
n>1 n>=2 Lit+j=n
1
:72"_22‘4011( +2+2ZA01 ynt2’
y n>1 n>2

The final equality has used the identity for Ag ;(n) derived in Section 7.5.1, equation (7.39),

7 mi+1

1 i! 1 Qo /s
5 Z Z G —my)! (my + 1)) Z H irFSg 1 (ik)

i+j=n [m1=0 i1+t img 1= k=1

J mo+1

mamo U = m2)t (m2 + DL 1t img+1=) k=1

n

n!( m+1)
Z ) (m+2)!

y : S I AFSsGe)

m+2

> [T #FS5 1 Gi)-

0 Jit-tim+2=n k=1

Hence, the left side of (7.46) is equal to 22 and I can conclude that

2? =V'(y)a — Poa(y),

as required.



Chapter 8

Topological Narayana polynomials

8.1 Introduction

One relatively unexplored feature of topological recursion is its ability to generalise existing combinatorial
problems. A spectral curve, input to topological recursion, stores the (0, 1)-enumeration of a problem
and thus can motivate generalisations of a combinatorial enumeration to higher topologies. For instance,
Narayana polynomials arise in a number of combinatorial settings [86, 95] and provide a prime example
of an enumeration ripe for such a generalisation. In this chapter, I describe joint work in progress with
Xavier Coulter and Norman Do, which introduces a particular generalisation of Narayana polynomials that

is motivated by topological recursion.

Narayana polynomials are known to satisfy a number of notable properties, including a linear recursion [57],
a quadratic recursion [95], symmetry of coefficients, real-rootedness [57], and interlacing [57]. It is natural
to ask if our generalisation preserves these properties; indeed, in this ongoing research, we prove that some
of these properties generalise and conjecture that the remaining ones do as well.

For 1 < k < n, define the Narayana number N(n,k) to be N(n,k) = +(})(,",). Define the Narayana

polynomial N(n) to be the generating function

N(n) = zn: % (Z) (k " 1) t*, 8.1)

k=1
for n > 1 and define N(0) = 1. The Narayana numbers and polynomials are a refinement of the Catalan
numbers in the sense that

> N(n,k)=N(n)|,_, = Cat,.
k=1

Narayana numbers and polynomials can be realised as enumerations of a number of combinatorial objects;

for example, N(n, k) is equal to:
¢ the number of words containing n pairs of parentheses, which are correctly matched and contain k
distinct nestings [78];

o the number of Dyck paths of length 2n with &k peaks; that is, a lattice path from (0,0) to (n,n)
consisting of n horizontal steps, n vertical steps, contains k peaks (a peak is a vertical step followed
immediately by a horizontal step), and where all points (7, j) on the path satisfy ¢ < j [95]; and

¢ the number of unlabelled rooted plane trees with n non-rooted vertices and £ left-pointing leaves [95].
The Narayana polynomials satisfy the following linear recursion for n > 2 [57]:
1
N =
(n)= "7
Furthermore, the Narayana polynomials satisfy the following quadratic recursion for n > 1 [95]:

N(n)= > N(@N(@B)+(t—1)N(n-1). (8.3)

a+B=n—1

(2n—1)(t+1)N(n—1)— (n—2)(t — 1)>N(n —2)]. (8.2)

Note that the difference between the definition here and in [95] is given by N(n) = ¢tC,,(t). The choice not
to carry n as a subscript here is to avoid possible confusion with the generalised polynomials.

149
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Each Narayana polynomial is symmetric in the sense that it is a polynomial in ¢ whose coefficients form a
palindromic sequence. More precisely, the Narayana polynomial NV (n) has degree n, and the coefficient of
th is equal to the coefficient of t"+t1=F for each k. This is immediate from the definition (8.1) and leads
to interesting consequences once the Narayana number is interpreted as an enumeration of combinatorial
objects. For example, the symmetry suggests that there is a natural bijection between the sets of Dyck paths
of length 2n with k peaks and the sets of Dyck paths of length 2n with n+1—k peaks .The bijectively-minded
reader might find this an enjoyable exercise.

Narayana polynomials also satisfy two deeper properties that are interrelated; namely, real-rootedness and
interlacing. Precisely, the Narayana polynomial N (n) has only real roots, and the Narayana polynomial
N(n) interlaces with N(n + 1) [57]. Interlacing can be deduced from the linear recursion (8.2) and one
obtains real-rootedness as a direct consequence. For a definition of interlacing, see Section 8.2.5.

In this chapter, topological recursion is used to motivate a generalisation of the Narayana polynomials via
the following approach. The generating function for Narayana polynomials was used to define a spectral
curve—which necessarily carries the polynomial variable ¢ as a parameter—namely, the spectral curve (8.4)
of Theorem 8.2.2. Applying topological recursion to this spectral curve produces correlation differentials
wg,n Whose coefficients are polynomials in ¢, thereby producing a desired generalisation. The definition of

the polynomials given below was then devised to match the output of topological recursion.!

Given that Narayana polynomials are a refinement of Catalan numbers, one can use the latter as a framework
for this process. Note that the Catalan numbers are stored in both the (0, 1)-enumeration of ribbon graphs
as well as the (0, 1)-enumeration of monotone Hurwitz numbers, thereby providing two natural spectral
curves to generalise. Here, we have modelled the generalisation in the framework of monotone Hurwitz
numbers, and a combinatorial definition of the enumeration produced by topological recursion can be seen
as a t-deformation of monotone Hurwitz numbers. While we have chosen to use the terminology topological
Narayana polynomials, the enumeration could equally be named t-deformed monotone Hurwitz numbers. This
leads to the following definition.

Definition 8.1.1. The topological Narayana polynomial H. , (1, ..., fin) is ﬁ times the weighted enumera-
tion of tuples (71, ...,7,,) of transpositions in the symmetric group S),| such that

“m=2g—2+n+|ul

* the cycles of 71 - - - 7, are labelled 1,2, ..., n such that cycle ¢ has length yu; for i € {1,2,...,n};

* (T1,...,Tm) is a transitive subgroup of Sj,; and

o if 7; = (a; b;) with a; < b;, then by < -+ < by,.

The weight of such a tuple ((a1b1),. .., (am bn)) is t* where w is the number of distinct integers in the
sequence b1, ..., b,,. The weight w is referred to as the hive number of the tuple.”

If one relaxes the transitivity condition, then one obtains the disconnected topological Narayana polynomial
H;,.n(/llv s nufn)

Substituting ¢ = 1 into the definition above recovers the monotone Hurwitz number H jn(ul, .+ vy lin) defined
in Definition 4.3.1. Definition 8.1.1 is indeed a generalisation of Narayana polynomials, because the (0, 1)-
enumeration H , (u) recovers the Narayana polynomials. Explicitly,

pHg (1) = N(p—1).

The presence of 1 on the left is due to the choice of normalisation for H! , (u1,. .., tin), while the shift
in p has occurred to ensure that the topological Narayana polynomials are equal to the monotone Hurwitz
numbers when ¢ = 1. A table of topological Narayana polynomials appears in Section 8.4.

1While for the organisation of this chapter, it is logical to begin with the enumeration then prove that it is governed by topological
recursion, one of the interesting features of this work is that our approach obtained these in the reverse order.
2(Because it denotes the number of bs).
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This definition compels us to ask: do topological Narayana polynomials satisfy combinatorial properties
analogous to those satisfied by Narayana polynomials? We answer this question in the affirmative in the
case of the linear recursion, the quadratic recursion, and the symmetry of coefficients. Further, we posit
explicit conjectures that generalise real-rootedness and interlacing to topological Narayana polynomials,
which are backed by strong computational evidence. Thus, it could be argued that topological recursion
has, in a sense, preserved the significant properties of Narayana polynomials.

This chapter is organised as follows. Section 8.2 discusses the following properties of topological Narayana
polynomials:

* a representation theoretic expression for topological Narayana polynomials that leads to a proof that
they are governed by topological recursion (Section 8.2.1);

* a proof via topological recursion that topological Narayana polynomials are symmetric (Section 8.2.2);

¢ the generalisation of the linear recursion (8.2) to a one-point recursion for topological Narayana poly-
nomials (Section 8.2.3);

¢ the generalisation of the quadratic recursion (8.3) to a cut-and-join recursion for topological Narayana
polynomials (Section 8.2.4); and

* explicit conjectures on the real-rootedness and interlacing properties of topological Narayana polyno-
mials (Section 8.2.5).

Section 8.3 concludes the chapter with brief remarks concerning the more general phenomenon of “topolo-
gising” combinatorial enumerations and potential connections to matrix integrals.

8.2 Properties

8.2.1 Topological recursion

First, the Jucys—Murphy elements in the symmetric group algebra Jj, € C[Sy] are defined by
Je=1k)+Q2k)+---+ (k—1k),

for k € {2,3,...,d}. The Jucys~Murphy elements satisfy remarkable properties [72, 85, 93] and are connec-
ted to topological Narayana polynomials via the following result.

Proposition 8.2.1. The disconnected topological Narayana polynomial H.®, (pi1, . . ., fin) is given by the formula

1 MO ady ot

H;,on(,ul’ ey lin) = m[cu][zm} ]};[2 #
Here, J3, J3, ... € C[S\,] are the Jucys—Murphy elements, m = 29 —2+n+ |u| is the number of transpositions in the
corresponding monotone sequence, [C,] signifies that we are extracting the coefficient of C,, from the resulting expression
in the centre ZC[S),,|] of the symmetric group algebra, while [x™"] signifies that we are extracting the coefficient of x™
in the resulting power series.
Proof. Recall that the disconnected topological Narayana polynomial H[®, (u1,. .., ) is ﬁ times the
weighted enumeration of monotone tuples (7i,...,7,;,) of transpositions in S|, that compose to give a
permutation whose cycles are labelled 1,2,...,n such that cycle ¢ has length p; for i € {1,2,...,n}, where
a tuple carries the weight ¢ to the power of its hive number. On the other hand, consider evaluating the
expression

|l

([Cul[z™] H (1+tady +ta®J2 + )

k=2
by expanding the product and expressing each Jucys—Murphy as a sum of transpositions. The result equals
ﬁ times the weighted enumeration of monotone tuples (71, ..., 7,,) of transpositions in S|,,| that compose
to give a permutation of cycle type i, where each tuple carries the weight ¢ to the power of its hive number.
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Therefore,

||
Cu|[Cu][z™] H (1+tady +ta?Jp +--+)
k=2

Aut
H_(j,.n(ulw-'aun) = | |M|‘u |

||

1 txJy :l
e e L

The factor |Aut p| arises to take into account the fact that the definition of the topological Narayana

polynomial requires the cycles of i to be labelled. |

The form of the expression given for H, (u1,...,p,) in the proposition above allows us to utilise the
work of Alexandrov, Chapuy, Eynard and Harnad [1] to deduce that topological Narayana polynomials
are governed by topological recursion. That is, the proposition above gives us that topological Narayana
polynomials are an example of so-called weighted Hurwitz numbers discussed in [1], where the weight is
given by G(z) = 152tL2; this weight matches precisely the form of the expression in the product formula
above and indeed, the product formula is what motivates the weight function. That is, the following theorem
is an application of Theorem 1.1 in [1] with G(z) = 155t%2, §(z) = z and v = 1. I note that, while the work
of Alexandrov, Chapuy, Eynard and Harnad [1] has the assumption that G(%) is a polynomial (whereas in
our case it is a rational function), the results in this work were later extended by Bychkov, Dunin-Barkowski,
Kazarian and Shadrin [20] to include the case where G is a power series. Thus, we deduce the following
result.

Theorem 8.2.2. The correlation differentials resulting from applying topological recursion to the rational spectral
curve (CP*, .y, wo,2) with

z(1—2)

_ _1—z+tz
T 1l—z+4t2

y(z) = 5 and woz2(z1,22) =

le ng

(21 — 22)?

x(z) (8.4)

satisfy

dzq dxs
_ t M1 n
Won (21, .+, 2n) = 04,0 0n,2 5 tdi-dy E Hg,n(ﬂla-~-aﬂn)11 Ceeghn
(x1 — x2)
H1yeeespbn 21

Setting ¢ = 1 into the spectral curve (8.4) recovers the monotone Hurwitz number spectral curve given
by Do, Dyer and Mathews [31].

The above spectral curve is a rational parametrisation of the global spectral curve given by

ry? +(t—1ry—y+1=0.

8.2.2 Symmetry

The topological Narayana polynomial H/ ,(fi1, ..., fin) is a polynomial in ¢ of degree || — 1, vanishing at
t = 0; these facts are reasonably clear from the definition of H;m(,ul, ..+, in). In addition, the topological
Narayana polynomial H_(in(,ul, ..+, lin) is symmetric, which is the content of the next proposition.

Proposition 8.2.3. The topological Narayana polynomial H}, , (j11, ..., (i) is symmetric in the sense that its coef-
ficients form a palindromic sequence. That is,

H;,n(lula s "u”)’t:tfl = til‘ulH;,n(Hh ey ,Un)-

Proof. 1will prove this using the topological recursion for topological Narayana polynomials, Theorem 8.2.2.
Take the spectral curve S = (CP!, z,y, wp,2) defined in (8.4) and define S =8y Applying topological
recursion to S yields correlation differentials that satisfy

~ t ,
Ogn(z1y..oy2n) =dy---dy Z Hg,n(,ul,...,un)h'_}t_l R (%)
H1yeeesfbn 21
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for (g,n) # (0,2).
On the other hand, define S = (CP', #,§,wp ) with &(2) = t~'x(z) and §(2) = ty(z) + 1 — t. Applying

topological recursion to S yields correlation differentials that satisfy

Ggn(@s e z) = dioedn 3 Hyn(uyeepn) 870 ()

This is a nontrivial statement. First, it is known that rescaling z or y by a constant c rescales w, , by ¢*~297";

this is a direct application of the homogeneity result of Eynard and Orantin [54, Section 4.1]. Thus given
that S has rescaled by t~! and y by ¢, the resulting factors in Wg,n cancel. Further, the constant term 1 —¢
in 9 does not contribute to @, ,,. The only role y plays in the definition of the recursion is in the occurrence
of § in denominator of the recursion kernel K, (21, z), but in this case the constant terms cancel:

9(2) = 9(oa(2)) = ty(2) + 1 =t = (ty(0a(2)) + 1 = 1) = t[y(2) — y(oa(2))]-

One can verify that both S and S are parametrisations of the same algebraic curve, satisfying

zy?+ (3 -Day—y+1=0, and P>+ (2-Dig—g+1=0.

-

Therefore, &g, = @y, under the transformation x +— & and y — 7, and equating coefficients in the
asterisked equations yields

H;n(ul, - 7/%)}]‘/'_)#1 = t_‘“‘H;n(Mh ey )
for (g,n) # (0,2). In the case of (g,n) = (0,2), ©o2 = @2 = wp 2, hence,

dxl dIQ le dZ2 dl‘l dxz

~. _ — _ :d d E Ht , M1 /,“‘2’
2T — )2 (- 2)? (11 —ma)? P o o2(bs 2]y 245
p1,p221
while di; di dzr d dz1 d
~ rpdxry 21 A2 r1dry t INTERNTE
w072 — - = = — = d1d2 H /}Jl, [LQ T XT .
(i1 —72)2 (21— 22)2 (21— a2)2 Z>1 0,2( ) B 25
Hi,H2 2
Thus Hf 5(p1,p2)|,,, + =t~ HE 5 (11, p2), as required. [ ]

The use of the topological recursion in the proof the symmetry result above reveals that this type of symmetry
is detectable from the spectral curve. Hence one can seek this type of symmetry in spectral curves more
generally, and this might lead to sequences of polynomials that are suitable for generalising via topological
recursion.

8.2.3 One-point recursion

The topological Narayana polynomials also satisfy a one-point recursion, which generalises the linear recur-
sion for Narayana polynomials of equation (8.2). This one-point recursion can be proven using a computer,
using the Gfun package in Maple [99] and following the techniques of Chaudhuri and Do [23].

Proposition 8.2.4. For ;i > 3, the topological Narayana polynomials satisfy the following recursion:

pPH () = (t+1)2p = 3)(u— DH,  (p—1) — (t = 1)*(n — 3)(u — 2)Hy 1 (1 — 2)
+ (= 1)*H, 1 (n). (8.5)

Setting ¢ = 1 into the recursion (8.5) above recovers the one-point recursion for monotone Hurwitz numbers
of Chaudhuri and Do [23], while setting g = 0 recovers the recursion (8.2) for Narayana polynomials, using
the fact that pHf | (1) = N(p — 1).
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8.2.4 Cut-and-join recursion

The following cut-and-join recursion is a higher topology analogue of the quadratic recursion for Narayana
polynomials of equation (8.3), in the sense that restricting it to the case of (g,n) = (0,1) recovers (8.3).
Moreover, setting ¢ = 1 recovers the known cut-andjoin recursion for monotone Hurwitz numbers of
Goulden, Guay-Paquet and Novak [61], and the proof below generalises their argument.

Proposition 8.2.5. Let S = {2,3,...,n}. Forall (g,n) and p11 + -+ + pn > 1, the topological Narayana
polynomials satisfy the following recursion:

n

pH, (s fis) = Z(Ml + i) Hyy oy (1 + iy iy gay) + Z afH, |, (a, B, fis)
=2 a+pB=p1

+ > Y aBHL s (eniin) HY, i (Briis) + (6= 1) (= DHL (1 — 1, fis).  (8.6)
a+B=p1 Q}er]?z_?g

For I = {iy,...,ix}, the shorthand notation [i; denotes ji;,, ..., . Along with the base case Hf | (1) = 1, this
uniquely defines all topological Narayana polynomials.

Proof. Fix a permutation o € S, with cycle type (u1,. .., ftn) where the element d is in a cycle of length
1. For simplicity, I will say that d is in the ;1;-cycle of 0. While this is not strictly correct because the cycles
are not labelled at this point, the analysis and resulting recursion will be the same. If, for example, after we
label the cycles the element d happens to be in the cycle labelled 2 (corresponding to 1), we would have
obtained the same recursion but with a relabelling of ;; and ps.

Let (71,...,7m) be a tuple of transpositions satisfying the first, third and fourth conditions given in Defini-
tion 8.1.1 and such that

T Tm = O. (8.7)
Let M}, (u1, ..., tin; o) be the number of such tuples of transpositions.
The transitivity condition forces d = |x| to appear at least once in 7y, . . ., 7,,, while the monotonicity insists

that 7,, = (ad) for some a € {1,2,...,d — 1}
Apply 7, to both sides of (8.7) to obtain
TL Tm—1 =0 (ad).

Applying (ad) to o forces the cycle type of o to change in one of the following two ways. Either « is not in
the same cycle as d and applying (a d) joins some p; cycle to pq, for i € {2,3,...,n}, or a is in the same
cycle of o as d, in which case applying (a d) cuts the p;-cycle into two.

In the former case, for each cycle y; for i € {2,3,...,n}, there are u; choices for a. Hence, for each i, there
are y; such transpositions (a d) that give rise to this scenario. In this case, the subgroup (74, ..., Tyy—1) must
be transitive on {1, 2,...,d}, therefore, the t-weight for 71, ..., 7,,—1 is the same as for 71, ..., 7y,. All such

tuples of transpositions are therefore enumerated by

n
Z My 3 (1 4 pa, fis\ (i} 0)-
i=2
In the latter case where a is in the p;-cycle of o, one can split the 1;-cycle into two cycles of lengths o and
B for all & + 8 = py. For each such «, 3, there is only one transposition (a d) that cuts the pq-cycle of the
fixed permutation o into two cycles with the correct lengths. If (7y,...,7,_1) is transitive on {1,2,...,d},
then the sequence of transpositions 7y, ..., 7,,—1 has again the same t-weight as 7, ..., 7,, and contributes

E: Aﬁflm+lkhﬁ7ﬁ5;0)

a+B=pu1
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In the case that (71,...,7m—1) is not transitive on {1,2,...,d}, the only time 71, ...,7y_1 has a different
t-weight to 7q,...,7,, is when 7y,...,7,,—1 does not contain d. In this case the weight of the tuple of
transpositions 71, ...,T,—1 is precisely one fewer than that of 71,...,7,. This scenario contributes to
MR (1) M5, (u1 — 1, fis). Therefore, the case where 7, cuts y; and 71,...,7,, 1 is not transitive on

{1,2,...,d} contributes

o > My plenfine) My, g (B figio) + (= DMy, (= 1, is; 0).

a+B=p1 g1+g92=9
IuJj=S

Therefore,
M;,n(ﬂ’lvﬁs;o—) = Z/LiM;n—l(,u’l +N’Zaﬁ5’\{z}a Z 1n+1 Bvﬁs;o’)
=2 a+ﬂ H1

D D My (@ fino) My, gy (B o) + (6= DM (i — 1 fisio). (88)

at+f=p1 91t92=g

IuJ=8
Note that the M/, (u1,...,pin;0) enumerates tuples of transpositions that compose to give a fixed per-
mutation o € S|, of cycle type 4, while the topological Narayana polynomial H, ,,(y11, . - ., jin) enumerates

tuples of transpositions that give any permutation of cycle type i, but where the cycles of the permutation
are labelled and each tuple is weighted by \71\’ Therefore, pass from the tuples I have enumerated to those
enumerated by H;’n(ul, ..., ) and carrying the correct weight by

1
H;n(:u’l)"wun) ||C ||1Aut IU’|M (M17'-'7Mn;0) = niM;n(:u’la"'aun;O’)'
]! [Tizy i
The second equality is using that the size of the conjugacy class is |C),| = W Applying this
substitution to (8.8) and dividing throughout by ps - - - 115, yields the cut-and-join (8.6). |

8.2.5 Realrootedness and interlacing conjectures

Computation of topological Narayana polynomials, some of which appear in Section 8.4, gives strong evid-
ence for the conjectures that topological Narayana polynomials have only real roots and that they interlace

in the precise sense described below.

Conjecture 8.2.6. The topological Narayana polynomial H;n(ul, <« ln) has only real roots.

To state the interlacing conjecture, I first give a definition of interlacing.
Definition 8.2.7. We say that a polynomial ¢(z) interlaces with a polynomial p(x) if

q(z) has degree n and p(z) has degree n + 1, for a positive integer n;
* ¢(z) has n real roots by < --- < b, while p(z) has n + 1 real roots a; < --- < an41, counted with
multiplicity; and

'algblg"'gangbngan—kl-

The sequence of Narayana polynomials interlace; that is, N(n) interlaces with N(n + 1) for all positive
integers 7. On the other hand, the family of topological Narayana polynomials H, (1, ..., n) do not
form a single sequence, so one can ask what the analogous notion of interlacing is in this generalised setting.
The following conjecture posits that the topological Narayana polynomial H;n(,ul, ..., lin) interlaces with
each topological Narayana polynomial in which one of the arguments has been increased by 1.

Conjecture 8.2.8. The topological Narayana polynomial H! , (p1, . . ., ji,) interlaces with the topological Narayana
polynomials

H;,n(ﬂl + ]-7/1'27 e 7ﬂn)vH;,n(M17M2 + ]-v e 7/1471)7 e 7H‘;,n(ﬂ17p“27 sy Mn + 1)
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Interlacing for the usual Narayana polynomials can be proved using what I call the linear recursion (8.2):

N(n) =~ i C[@n =D+ DN =1) = (n - 2)(t - 1)°N(n - 2)].

The idea of the proof proceeds by induction on n: assume that N (n —2) interlaces with N (n — 1), substitute
the roots of N(n — 1) into the recursion above, and use a sign argument along with the intermediate value
theorem to deduce that N(n — 1) interlaces with N (n).

Generalising this argument for topological Narayana polynomials is met with a number of obstructions.
First, neither the one-point nor the cut-andjoin recursion for topological Narayana polynomials has the
three-term structure exhibited in the linear recursion, hence the sign argument doesn’t follow through in
the same way. To use a sign argument in conjunction with the one-point recursion for topological Narayana
polynomials (8.5), one comes up against the issue that the term z*(u—1)2H],_; | (1) prevents a straightfor-
ward inductive argument from carrying through. Furthermore, this would only prove that H, ; (1) interlaces
with Hy 1 (¢ — 1), and one would require a new idea to extend this to general n > 1. On the other hand, to
use a sign argument in conjunction with the cut-andjoin recursion (8.6) one would require a much stronger
inductive assumption on the locations of the roots of the topological Narayana polynomials that feature on
the right side of the recursion.

The data given in Section 8.4 affirms both the real-rootedness and interlacing conjectures.

8.3 Remarks

While the idea of using topological recursion to generalise natural and pre-existing combinatorial problems
is relatively unexplored, one can wonder whether the apparent phenomenon exhibited here is more general.
That is, to what extent does generalising enumerative problems via topological recursion preserve properties
of the original enumerations? In particular, it would be interesting to find other examples of the conjectural
real-rootedness and interlacing phenomena described above. A natural place to start such an exploration
is with sequences of polynomials that are known to satisfy such properties, for example, orthogonal poly-
nomials. On the other hand, one can detect the symmetry property of topological Narayana polynomials
from the spectral curve (8.4); this idea could also lead to other natural candidates to study.

In the process of generalising Narayana polynomials via topological recursion, a choice was made in the
way that the Narayana polynomials are stored in the spectral curve. As mentioned in the introduction, as a
refinement of the Catalan numbers, Narayana numbers are stored in the (0, 1)-enumeration of both ribbon
graphs and monotone Hurwitz numbers; the way in which each of these enumerations is stored in their
respective spectral curves differs. Thus, we could have instead deformed the ribbon graph spectral curve
to generalise Narayana polynomials and one might wonder what polynomials are generated in this case.
Explicitly, the enumerations of ribbon graphs and monotone Hurwitz numbers in the case of (g,n) = (0,1)
(that is, Catalan numbers) are stored in the (0, 1) correlation differentials in the following different ways:

wg/g{ =d Z H(fl (p)zt = Z ,uHog,1 (p) "~ tdx = Z Cat,—q 2"~ ' da

p>1 [>3% n=1
w}}fi =d Z Roi(p)z™ = Z —nuRo () x * tde = Z —Cat,, x~ 2" dz.
p=1 pn=1 u=1

The final equalities in each line are using that uHél (n) = Caty—1 and 2u R 1 (21) = Cat,, respectively.
If one uses the ribbon graph enumeration as the framework for generalising Narayana polynomials, one
obtains the following global spectral curve:

o+ (t—1) -2y +z=0.

This is a genus 1 curve; it is well-known that dealing with positive genus spectral curves is necessarily more
difficult than genus 0. The analysis may still be possible though and is deferred to future work.
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Monotone Hurwitz numbers first appeared in the literature in a series of papers by Goulden, Guay-Paquet
and Novak [60, 61, 62] where they featured as coeflicients of the large N expansion of the Harish-Chandra—
Itzukson—Zuber (HCIZ) matrix integral. Separately, though through a similar mechanism, monotone Hur-
witz numbers make an appearance as the coefficients of the large IV expansion of the cumulants of the inverse
Laguerre unitary ensemble [28]. It would be interesting to know if either of these matrix models can be
deformed to introduce a ¢-parameter and recover the topological Narayana polynomials. In particular, the
representation theoretic interpretation, Proposition 8.2.1, lends itself well to potentially being studied via the
Weingarten calculus to reverse engineer a matrix integral that stores the topological Narayana polynomials
as coefficients of its large N expansion [27].

8.4 Data

The following data was calculated in SageMath [98] using the cut-and-join recursion in Proposition 8.2.5.

g (ayeeospin)  pa g Hy (g1, s i)

0 (1) 1

0 (2) t

0 (3) 24+t

0 (4) 3432 + ¢

0 (5) th+ 613 +6t2 +1¢

0 (6) t5 4+ 10t* 4 20t3 + 10t2 + ¢

0 (7) t% 4+ 15¢5 + 50t* + 5063 + 15¢2 + ¢
0 (8) t7 4 2145 4+ 105¢° + 175¢* + 105¢3 + 212 + ¢
0 (1,1) t

0 (2,1) 2t% + 2t

0 (3,1) 3t3 + 9% + 3t

0 (2,2) 43 + 102 + 4t

0 (4,1) 4 + 2413 + 2447 + 4t

0 (3,2) 6t* + 30> + 30t2 + 6t

0 (5,1) 5t5 4+ 50t* + 100t3 4 50t2 + 5t

0 (4,2) 8t + 68t + 1283 + 68t2 + 8t

0 (3,3) Ot° + 72t* + 13813 + 72t2 4+ 9t

0 (1,1,1) 42 + 4t

0 (2,1,1) 103 + 28¢% + 10t

0 (3,1,1) 18t* + 102t + 102t + 18¢

0 (2,2,1) 2414 + 120t3 + 12012 + 24t

0 (4,1,1) 28t5 + 268t* + 528t + 2682 + 28t
0 (3,2,1) 4215 + 348t* + 66013 + 34812 + 42t
0 (2,2,2) 565 + 424t + 7683 + 424¢* + 56t
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g (1, pn)  pr i Y (s i)

1 (2) t

1 (3) 5t% + 5t

1 (4) 15¢% + 40t + 15t

1 (5) 35t + 175t + 1752 + 35t

1 (6) 70t° + 560t* + 1050t + 560t + 70t

1 (7) 210t7 + 33605 + 14700¢° + 23520t* + 14700t + 3360t2 + 210t
1 (8) 330t% 4 6930t" + 415805 + 970205 + 97020t* + 415803 + 6930¢% + 330t
1 (1,1) t

1 (2,1) 102 + 10t

1 (3,1) 45t% + 120t2 + 45t

1 (2,2) 503 + 1282 + 50t

1 (4,1) 140t* + 700¢3 + 700¢2 + 140t

1 (3,2) 168t* + 792t3 + 792t + 168t

1 (5,1) 350t5 + 2800t* + 5250t3 + 2800t2 + 350t

1 (4,2) 4485 + 3348t1 + 612813 + 3348t% + 448t

1 (3,3) 462t° + 3432t* + 631213 + 34322 + 462t

1 (1,1,1) 202 + 20t

1 (2,1,1) 140t + 3682 + 140t

1 (3,1,1) 588t* + 28923 + 2892t% + 588t

1 (2,2,1) 672" + 3168t + 3168t% + 672t

1 (4,1,1) 18485 + 14548t* + 27128t3 + 1454812 + 1848t

1 (3,2,1) 672t* + 3168t + 3168t + 672t

1 (2,2,2) 2688t° + 19128t* + 34416¢> + 19128t% 4 2688t

2 (2) t

2 (3) 212 + 21t

2 (4) 1613 + 413t + 161t

2 (5) TTTEY 4 361263 + 36122 + 77Tt

2 (6) 2835t° + 20538t* + 373383 + 20538t + 2835¢

2 (7) 8547t6 + 884735 + 251328t* + 251328t3 + 88473t% + 8547t
2 (8) 22407t7 + 313005t° + 1273041¢° + 1990296t* + 1273041¢% + 313005¢2 + 22407t
2 (1,1) t

2 (2,1) 4262 + 42¢

2 (3,1) 4833 + 1239t + 483t

2 (2,2) 50413 4 12782 + 504t

2 (4,1) 3108t + 144483 + 14448t + 3108t

2 (3,2) 3402t + 154503 + 15450t + 3402t

2 (5,1) 141755 + 102690t* + 186690¢> + 102690t + 14175t
2 (4,2) 16296t° + 114256t* + 205376t + 114256t + 16296t
2 (3,3) 16443t° + 115344¢* + 207666t> + 1153442 + 16443t
2 (1,1,1) 84t% + 84t

2 (2,1,1) 14703 + 3756t + 1470¢

2 (3,1,1) 12726t + 587943 + 5879412 + 12726t

2 (2,2,1) 13608t* 4 61800¢* + 61800¢2 + 13608t

2 (4,1,1) 72996t° 4 525016t 4+ 952136t3 + 525016t + 72996t
2 (3,2,1) 81774t° + 573456t* + 1031460t + 5734562 + 81774t
2 (2,2,2) 90552t° + 619728t* + 1104624t + 6197282 + 90552t
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