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Abstract

The field of enumerative geometry has seen an explosion of activity over recent decades, primarily due
to emerging connections with other areas, such as representation theory, integrability, and mathematical
physics. This thesis showcases new results and conjectures for four di�erent enumerative problems motivated
by the aforementioned connections.

First, I prove that a certain enumeration of lattice points in the Deligne–Mumford compactification of
the moduli space of curves is governed by local topological recursion. Local topological recursion is a
relatively recent generalisation of the topological recursion of Chekhov, Eynard and Orantin, however its
benefits remain unclear. This result resolves a question of Do and Norbury, and serves as one of the first
demonstrations of local topological recursion governing a natural combinatorial problem.

Second, this thesis contains proofs of three key results for double Hurwitz numbers: I prove that double
Hurwitz numbers satisfy a polynomiality structure, that they are governed by topological recursion, and
finally, that they can be expressed in terms of intersection numbers on moduli spaces of curves. These
results subsume analogous results that have previously appeared in the literature for the simpler settings of
single and orbifold Hurwitz numbers. Further, the techniques used to prove these results can be adapted for
a variety of other enumerative problems, with the relative Gromov–Witten invariants of the sphere providing
a likely fruitful example.

Third, I derive a sequence of Virasoro operators that annihilate the partition function for fully simple maps.
This is achieved by combining a known relation between the enumerations of ordinary and fully simple
maps with techniques from the semi-infinite wedge formalism. The thesis describes preliminary findings
stemming from this result, including work towards a Tutte-like recursion for fully simple maps, and a direct
relation between the enumerations of ordinary and fully simple disks.

Finally, I use topological recursion to motivate the definition and study of a new generalisation of the
Narayana polynomials that can be considered a deformation of monotone Hurwitz numbers. This family of
so-called topological Narayana polynomials continues to satisfy certain recursive and symmetry properties
possessed by their original counterparts. I prove these and posit explicit conjectures pertaining to the real-
rootedness and interlacing of this new family of polynomials. Thus it appears that one can “topologise”
sequences of polynomials via topological recursion while preserving key properties, a new phenomenon
that prompts further study.

The novel results for these four enumerative problems have standalone merit, yet they share underlying,
unifying themes. The work on the lattice point enumeration, double Hurwitz numbers, and topological
Narayana polynomials all prove some form of topological recursion. For double Hurwitz numbers and the
enumeration of fully simple maps, the semi-infinite wedge formalism is a vital tool. And, as is typical for
such problems in enumerative geometry, these results form part of a rich tapestry of ongoing work that
connects various areas of mathematics.
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Preface

This thesis is split into two distinct halves: Part I describes background material while Part II presents novel
research.

In Part I, Chapter 1 introduces the semi-infinite wedge space, providing foundational knowledge on as-
pects of the semi-infinite wedge formalism that are required for some results in Part II. Chapter 2 defines
the topological recursion of Chekhov, Eynard and Orantin, fixing key notations for the remainder of the
thesis. Chapters 3 and 4 provide gentle introductions to maps and Hurwitz numbers respectively. Chapter 3
also defines the combinatorial object that is associated to the enumeration discussed in Chapter 5 and
describes the sense in which this combinatorial object enumerates lattice points in the moduli space of
curves. Chapter 4 also presents a proof of the previously known polynomiality of single Hurwitz numbers
via the semi-infinite wedge.

Chapter 5 signifies the start of Part II and describes joint work with Anupam Chaudhuri and Norman Do
proving that the enumeration of lattice points in the Deligne–Mumford compactification of the moduli space
of curves is governed by local topological recursion. The results described in this chapter can also be found
in the arxiv preprint [24] and answers a long-standing question asked by Do and Norbury in their original
work on this lattice point enumeration.

Chapter 6 contains joint work with Gaëtan Borot, Norman Do, Maksim Karev and Danilo Lewański which
appears in [8]. This chapter proves that double Hurwitz numbers satisfy a polynomiality structure, are
governed by topological recursion, and can be expressed via intersection theory on the moduli spaces of
curves. These results resolve a conjecture of Do and Karev.

Chapter 7 deduces a sequence of Virasoro operators that annihilate the partition function for fully simple
maps. This chapter, motivated originally by the now-proven conjecture of Borot and Garcia-Failde that
fully simple maps are governed by topological recursion, also presents work towards deriving a Tutte-like
recursion for fully simple maps, and deducing an explicit relation between ordinary and fully simple maps.

Finally, Chapter 8 uses topological recursion to motivate the definition of a new enumeration called topolo-
gical Narayana polynomials. This chapter contains proofs that the enumeration is governed by topological
recursion, along with two other recursions, and that it satisfies a particular symmetry property. Further, it
states two conjectures that topological Narayana polynomials are real-rooted and that they interlace.
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Chapter 1

Semi-in�nite wedge

1.1 Introduction

The semi-infinite wedge, sometimes referred to as the infinite wedge space or the fermionic Fock space, ori-
ginally emerged from the study of infinite-dimensional Lie algebras [73] and has applications to enumerative
geometry [40, 92], integrable systems [29, 83, 100], random partitions [90], and modular forms [5].

Use of the semi-infinite wedge is instrumental for deducing results for double Hurwitz numbers and fully
simple maps. In Chapter 6 on double Hurwitz numbers, the semi-infinite wedge formalism was used to
prove a polynomiality structure theorem. This result acted as a catalyst for proving topological recursion
for double Hurwitz numbers, from which an ELSV-like formula was obtained. In other words, all substantial
results for double Hurwitz numbers in this thesis were proved as a consequence of the semi-infinite wedge
analysis. In Chapter 7 on fully simple maps, the semi-infinite wedge provides a particularly nice setting for
deriving a set of Virasoro operators that annihilate the partition function for the enumeration.

The purpose of this chapter is to provide foundational knowledge on aspects of the semi-infinite wedge
formalism that are required for Chapters 6 and 7. Previous work of Okounkov [90] is used as the main
reference for definitions and notations, while the survey paper of Ríos-Zertuche [96] contains a number of
useful results that are cited here.

The structure of this chapter is as follows. Section 1.2 provides the key definitions and notations (Sec-
tion 1.2.1) as well as common diagrammatic representations for vectors in the semi-infinite wedge (Sec-
tion 1.2.2). Section 1.3 defines the operators that will be used throughout this thesis, namely, fermionic
and bosonic operators; the E -operators appearing in the work of Okounkov and Pandharipande [92]; vertex
operators; and F -operators. Section 1.4 contains results required in later chapters: Section 1.4.1 describes
the Murnaghan–Nakayama rule via operators acting on the semi-infinite wedge, and Section 1.4.2 details
the so-called boson-fermion correspondence.

1.2 Preliminaries

1.2.1 De�nitions and notations

Let V be a C-vector space with basis {s | s ∈ Z + 1
2}.

De�nition 1.2.1. The semi-in�nite wedge space, denoted Λ
∞
2 V , is a C-vector space with a preferred basis

containing vectors
vS = s1 ∧ s2 ∧ · · · ,

where S = {s1 > s2 > · · · } ⊂ Z + 1
2 is such that the sets

S+ = S \ (Z60 − 1
2 ), S− = (Z60 − 1

2 ) \ S (1.1)

are finite.

We equip the semi-infinite wedge space with an inner product 〈· , ·〉, for which the basis {vS} is orthonormal.
That is, define

〈vS , vT 〉 = δS,T .

3



4 1. Semi-in�nite wedge

Example 1.2.2. An example of a basis element in the semi-infinite wedge is

7
2 ∧

3
2 ∧

1
2 ∧ −

3
2 ∧ −

9
2 ∧ −

11
2 ∧ −

13
2 ∧ −

15
2 ∧ · · · .

The condition (1.1) that the sets S+ and S− are finite implies that there are only finitely many positive
half-integers present and only finitely many negative half-integers missing. In this example, there are only
three positive half-integers present, 7

2 ,
3
2 ,

1
2 , and three negative half-integers missing, − 1

2 ,−
5
2 ,−

7
2 .

A particular basis vector that arises naturally in many calculations is the vacuum vector, denoted v∅ and given
by

v∅ := − 1
2 ∧ −

3
2 ∧ −

5
2 ∧ −

7
2 ∧ −

9
2 ∧ · · · . (1.2)

Section 1.2.2 explains the way in which v∅ corresponds to the empty partition, and hence gives context for
the notation.

Finally, define the vacuum expectation of an operator O on Λ
∞
2 V to be

〈O〉 := 〈Ov∅, v∅〉. (1.3)

1.2.2 Diagrammatics

Basis vectors in the semi-infinite wedge are represented via two common diagram types; the first is a Young
diagram and the second is a Maya diagram. Here both are considered, using the basis vector from Ex-
ample 1.2.2 as an example. In the subsequent sections of this chapter, the Young diagram representation is
used exclusively. Maya diagrams are defined here for completeness.

In the Young diagram presentation of the semi-infinite wedge the basis vectors are represented as continuous
piecewise linear functions with gradient ±1 defined up to an additive constant in the following way. For a
given basis vector vS , s ∈ S corresponds to a gradient of −1 (a down-step) in the interval [s − 1

2 , s + 1
2 ],

whereas s /∈ S corresponds to a gradient of +1 (an up-step) in the same interval. The fact that the sets S+

and S− (defined in equation (1.1) above) are finite dictates that this piecewise linear function has positive
gradient for su�ciently positive x-values and negative gradient for su�ciently negative x-values. By drawing
the “V-shape” created by these two lines of positive and negative gradients, one encloses a union of squares,
each of area 2, creating a Young diagram. The Young diagram corresponding to Example 1.2.2 above can
be seen in Figure 1.1.

vS = 7
2 ∧

3
2 ∧

1
2 ∧ −

3
2 ∧ −

9
2 ∧ −

11
2 ∧ −

13
2 ∧ −

15
2 ∧ · · · .

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

Figure 1.1: Young diagram of vS in the semi-infinite wedge corresponding to the partition λ = (4, 3, 3, 2)

and charge c = 0.
.



1.3. Operators 5

From the Young diagram of a basis vector one can associate a pair (λ, c). The partition λ corresponds to the
Young diagram, where the rows appear along lines of gradient +1, and c is an integer that corresponds to
the x-value of the vertex of the V-shape and is called the charge. The Young diagram associated to Figure 1.1
produces the partition λ = (4, 3, 3, 2) (rather than its transpose (4, 4, 3, 1)) and the charge c = 0.

Charge zero basis elements span a subspace of the semi-infinite wedge, referred to as the charge zero subspace
and denoted Λ

∞
2

0 V . Further, it is often useful to describe a basis vector by the partition corresponding to
its Young diagram, using the notation vλ. This is done primarily when vλ ∈ Λ

∞
2

0 V or if the charge is clear
from context. For example, vS in Figure 1.1 can instead be written as v(4,3,3,2).

The vacuum vector defined in equation (1.2) is the element of the semi-infinite wedge corresponding to the
empty partition in the charge zero subspace; see Figure 1.2.

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

Figure 1.2: The vacuum vector, v∅.

Alternatively, Maya diagrams are given by the placements of black or white beads at each position in Z+ 1
2 ;

a black bead is used if s ∈ S and a white bead is used if s /∈ S. The Maya diagram corresponding
to Example 1.2.2 is shown in Figure 1.3.

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

Figure 1.3: Maya diagram corresponding to the vector v(4,3,3,2).

1.3 Operators

1.3.1 Fermionic operators

De�nition 1.3.1. For k ∈ Z + 1
2 , define the fermionic operator ψk : Λ

∞
2 V → Λ

∞
2 V by

ψkvS = k ∧ vS .

Define ψ∗k to be the adjoint operator of ψk; that is, define ψ∗k to be the operator that satisfies 〈ψku, v〉 =

〈u, ψ∗kv〉 for all u, v ∈ Λ
∞
2 V .

Using the usual skew-symmetry of the wedge product, a ∧ b = −b ∧ a, which in turn implies a ∧ a = 0, the
actions of ψk and ψ∗k on basis vectors can be expressed as

ψkvS =

{
±vS∪{k}, if k /∈ S,
0, if k ∈ S,

ψ∗kvS =

{
±vS\{k}, if k ∈ S,
0, if k /∈ S.
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In both cases, the sign is given by (−1)|{s∈S|s>k}|.

For example, consider the element in the charge zero subspace given by the Young diagram (3, 2); that is,
v(3,2) = 5

2 ∧
1
2 ∧ −

5
2 ∧ −

7
2 ∧ · · · . Applying the fermionic operator ψk with k = 3

2 ,
1
2 respectively gives

ψ3/2v(3,2) = 3
2 ∧

5
2 ∧

1
2 ∧ −

5
2 ∧ −

7
2 ∧ · · · = −

(
5
2 ∧

3
2 ∧

1
2 ∧ −

5
2 ∧ −

7
2 ∧ · · ·

)
ψ1/2v(3,2) = 1

2 ∧
5
2 ∧

1
2 ∧ −

5
2 ∧ −

7
2 ∧ · · · = −

(
5
2 ∧

(
1
2 ∧

1
2

)
∧ − 5

2 ∧ −
7
2 ∧ · · ·

)
= 0.

On the other hand, applying the adjoint fermionic operators ψ∗(3,2) and ψ
∗
(1,2) to v(3,2) respectively yields

ψ∗3/2v(3,2) = 0, and ψ∗1/2v(3,2) = −
(

5
2 ∧ −

5
2 ∧ −

7
2 ∧ · · ·

)
.

Hence, one thinks of ψk as adding k to S if missing (up to sign) and returning zero otherwise, while ψ∗k
removes k from S if present (up to sign) and returns zero otherwise. Figure 1.4 shows the action of ψ3/2 on
v(3,2) in the Young diagram representation. We can see that ψ3/2 has shifted the charge of v(3,2) by +1; this
is true in general, ψk increases the charge by 1 while its adjoint ψ∗k decreases the charge by 1.

−4 −3 −2 −1 0 1 2 3 4

ψ3/2

−

−4 −3 −2 −1 0 1 2 3 4

Figure 1.4: Young diagram of v(3,2) and ψ3/2v(3,2), showing the action of ψk.

The fermionic operators satisfy canonical anti-commutation relations.

Proposition 1.3.2. The fermionic operators satisfy the anti-commutation relations

[ψi, ψ
∗
j ]+ = ψiψ

∗
j + ψ∗jψi = δij (1.4)

[ψi, ψj ]+ = [ψ∗i , ψ
∗
j ]+ = 0. (1.5)

Proof. The anti-commutation relation [ψi, ψj ]+ = 0 follows immediately from the skew-symmetry of the
wedge product, while the relation [ψ∗i , ψ

∗
j ]+ = 0 follows from the first by taking adjoints.

For (1.4), if i 6= j, then the operator ψiψ∗j + ψ∗jψi acting on vS will only contribute if i ∈ S but j /∈ S. In
this case, both terms ψiψ∗j and ψ∗jψi acting on vS will yield the same result, up to sign, where the signs are
necessarily opposite to each other. Hence, if i 6= j, (ψiψ

∗
j + ψ∗jψi)vS = 0 for all basis vectors vS ∈ Λ

∞
2 V .

If i = j, then either i, j ∈ S, in which case ψ∗i ψivS = 0 and ψiψ
∗
i vS = vS , or i, j /∈ S, in which case

ψ∗i ψivS = vS and ψiψ∗i vS = 0. Hence, ψiψ∗j + ψ∗jψi = δij , as required. �

Also, define the normally ordered product of fermionic operators as follows.

De�nition 1.3.3. The normally ordered product of fermionic operators is defined to be

: ψiψ
∗
j :=

{
ψiψ

∗
j , if j > 0,

−ψ∗jψi, if j < 0.
(1.6)

The normal ordering is introduced to cater for the possibility of non-convergent infinite sums; consider for
example, the expression

∑
k∈Z+ 1

2
ψkψ

∗
k. The operator ψkψ∗k acts on a basis vector vλ and returns vλ if
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there is a down-step at k in the corresponding Young diagram, and 0 otherwise. Since the number of down-
steps in any Young diagram is infinite, the action of

∑
k∈Z+ 1

2
ψkψ

∗
k is not well-defined. On the other hand,∑

k∈Z+ 1
2

: ψkψ
∗
k : is a well-defined diagonal operator, for which the eigenvalue associated to vλ is equal to

the number of down-steps at positive k minus the number of up-steps at negative k in the corresponding
Young diagram. That is, it precisely enumerates the di�erence in the sizes of the sets S+ and S− defined
in (1.1), and hence, it detects the charge of a basis vector.

1.3.2 Bosonic operators

De�nition 1.3.4. For n ∈ Z \ {0}, define the bosonic operator αn : Λ
∞
2 V → Λ

∞
2 V by

αn =
∑

k∈Z+ 1
2

: ψk−nψ
∗
k : . (1.7)

The adjoint α∗n is given by

α∗n =
( ∑
k∈Z+ 1

2

: ψk−nψ
∗
k :
)∗

=
∑

k∈Z+ 1
2

: ψkψ
∗
k−n :=

∑
k∈Z+ 1

2

: ψk+nψ
∗
k := α−n.

Observe that the bosonic operators preserve charge, so they can be considered as operators on the charge
zero subspace Λ

∞
2

0 V .

Consider the action of α−1 on some vλ in the charge zero subspace:

α−1 vλ =
∑

k∈Z+ 1
2

ψk+1ψ
∗
k vλ.

In the Young diagram representation, α−1 corresponds to detecting all down-up sequences, and converting
them to up-down sequences. In other words, α−1vλ is the linear combination of basis vectors obtained by
adding one box to the Young diagram for λ in every possible way. (In general, each term in this sum picks
up a sign based on the height of the ribbon, but in the case of α−1 the sign is always positive.)

k k + 1 k k + 1

D U U D

Figure 1.5: The local action of α−1.

For example, consider v(2,1,1) in Figure 1.6: there are three down-up sequences in the Young diagram, hence
there are three possible locations where a box can be added (or if you like, three possible locations where a
box can land when dropped in from above; think Tetris). Thus

α−1 v(2,1,1) = v(3,1,1) + v(2,2,1) + v(2,1,1,1).

One can extend this idea to all α±n; to do this, the notion of an n-ribbon is required.

A skew shape, denoted λ \ µ, is a pair of partitions (λ, µ) with λ = (λ1, . . . , λ`(λ)) and µ = (µ1, . . . , µ`(µ))

such that `(µ) 6 `(λ) and µi 6 λi for all i ∈ {1, 2, . . . , `(µ)}. A skew Young diagram of shape λ \ µ is
obtained by removing a Young diagram of shape µ from the Young diagram of shape λ. A Young diagram
is connected if, for any two cells, a path via adjacent cells can be drawn between them. An n-ribbon is a
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−5 −4 −3 −2 −1 0 1 2 3 4 5

Figure 1.6: Here we see v(2,1,1) and the three possible locations for an added box in pink.

λ = (5, 4, 4, 2) µ = (2, 2, 1) λ/µ

Figure 1.7: Young diagrams of shape (5, 4, 4, 2),
(2, 2, 1) and (5, 4, 4, 2)/(2, 2, 1).

Figure 1.8: Three 5-ribbons of heights 0, 1, and 2,
from left-to-right.

connected skew Young diagram comprising n boxes that does not contain any 2× 2 blocks. The height of a
ribbon is one fewer than the number of rows it occupies.

The operator α−n for n > 0 acts on basis vectors vλ by adding an n-ribbon to λ in all possible ways, with
each term picking up a sign depending on the parity of the height of the ribbon. Conversely, αn removes
n-ribbons in all possible ways, again with each term picking up the appropriate sign depending on the height
of the ribbon removed.

For example, α−3 v(4,3,1) adds a 3-ribbon to λ = (4, 3, 1) in all possible ways (with sign), while α3 v(4,3,1)

removes a 3-ribbon in all possible ways. That is,

α−3 v(4,3,1) = v(7,3,1) − v(5,5,1) − v(4,3,2,2) + v(4,3,1,1,1,1)

α3 v(4,3,1) = −v(2,2,1).

−5 −4 −3 −2 −1 0 1 2 3 4 5 −5 −4 −3 −2 −1 0 1 2 3 4 5

Figure 1.9: Left: v(4,3,1) with an added 3-ribbon, becoming v(4,3,2,2). Right: v(4,3,1) with a 3-ribbon removed,
making v(2,2,1).

In contrast to the fermionic operators and their anti-commutation relations, the bosonic operators obey
canonical commutation relations.

Proposition 1.3.5. The bosonic operators αn satisfy the commutation relation

[αm, αn] = mδm,−n. (1.8)

This can be proven by using the definition of the bosonic operators in terms of fermionic operators (1.7),
then applying the anti-commutation relations of the latter. A cute alternative proof proceeds as follows.
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Proof of Proposition 1.3.5. One can prove that [αm, αn] = 0 form+n 6= 0 directly via the fermionic definition
of αn; this is left as a straightforward though tedious exercise for the enthusiastic reader.

To prove that [αm, α−m] = m, begin with the case of m = 1. For any vλ ∈ Λ
∞
2 V with some fixed charge c,

[α1, α−1] vλ = α1α−1vλ − α−1α1vλ.

The term α1α−1vλ corresponds to adding then removing a box from λ, while α−1α1vλ removes then adds a
box to λ. If the boxes are being added and removed from di�erent locations the order doesn’t matter, hence,
in those cases the commutator [α1, α−1] doesn’t contribute. Thus, any contribution to α1α−1vλ−α−1α1vλ
arises from the di�erence between the number of ways to add then remove the same box versus the number of
ways to remove then add the same box. This, in turn, is equal to the number of valleys (down-up sequences)
minus the number of mountains (up-down sequences). The inherent V-shape underlying the Young diagram
corresponding to a basis vector implies that the number of valleys will always be one greater than the number
of mountains. Thus conclude that [α1, α−1] = 1.

To prove the commutation relation for general m > 0, upgrade the argument above in the following way.
The commutation [αm, α−m] vλ corresponds to adding then removing an m-ribbon versus removing then
adding an m-ribbon. Adding an m-ribbon to vλ arises from changing a down-step to an up-step at some
position k, and doing the opposite (changing an up-step to a down-step) m places away at position k +m.

Take vλ and label each up- or down-step, in order from left-to-right, with a “colour” from 1, 2, . . . ,m. That
is, from left-to-right, the colour labellings read 1, 2, . . . ,m, 1, 2, . . ., and so on. For each i ∈ {1, 2, . . . ,m},
define vλ(i) to be the basis vector corresponding to the sequence of up- and down-steps labelled with the
colour i.

Adding or removing an m-ribbon to vλ corresponds to adding or removing a single box to vλ(i) for some
i ∈ {1, 2, . . . ,m}. Hence, the di�erence between the number of ways to add then remove an m-ribbon from
vλ versus removing then adding anm-ribbon to vλ is equal to the number of ways to add then remove a box
minus the number of ways to remove then add a box to some vλ(i) . As argued above, [α1, α−1] = 1, hence
[αm, α−m] = m.

For m < 0, [αm, α−m] = −[α−m, αm] = m. This concludes the proof. �

(1) (1) (1)

(1)(2)

(2)

(2) (2)(3)

(3)

(3)

(3)

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

Figure 1.10: The basis element vλ for λ = (4, 3, 2, 2) with every third step labelled with the same colour.
Adding a 3-ribbon corresponds to adding a box to one of vλ(1) , vλ(2) or vλ(3) .

1.3.3 E -operators

First, define ς(z) := ez/2 − e−z/2.
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De�nition 1.3.6. For n ∈ Z, define the operator En(z) : Λ
∞
2 V → Λ

∞
2 V by

En(z) =
∑

k∈Z+ 1
2

ez(k−
n
2 ) : ψk−nψ

∗
k : +

δn,0
ς(z)

.

The constant term, δn,0/ς(z), is a regularisation term that adjusts for the normal ordering of : ψkψ
∗
k :. One

can also consider these operators without the regularisation term, denoted Ẽ , and defined to be

Ẽn(z) =
∑

k∈Z+ 1
2

ez(k−
n
2 ) : ψk−nψ

∗
k : .

The E -operator satisfies the following commutation relation, the statement of which can be found in the
work of Okounkov and Pandharipande [92].

Proposition 1.3.7. For all a, b ∈ Z, the E -operator satis�es the following commutation relation:

[Ea(z), Eb(w)] = ς(aw − bz) Ea+b(z + w). (1.9)

The E -operator specialises to the bosonic operator in the case of z = 0; that is, for n ∈ Z \ {0},

En(0) = αn.

The E -operator also has a nice expression in terms of the bosonic operators. That is,

En(z) =
1

ς(z)

∑
`>0

1

`!

∑
i1+···+i`=n
ik∈Z\{0}

ς(i1z) · · · ς(i`z)
i1 · · · i`

: αi1 · · ·αi` : .

This expression can be proven using the boson-fermion correspondence; see Lemma 1.4.8 in Section 1.4.2.
The normal ordering of bosonic operators denotes that we write bosonic operators with positive subscripts
to the right and those with negative subscripts to the left; that is, we remove boxes first before adding boxes.
Explicitly, applying the normal ordering to the expression above gives

En(z) =
1

ς(z)

∑
`,s>0
q>0

1

`! s!

[ ∑
j1+···+j`=q

jk>1

∏̀
k=1

ς(jkz)

jk
α−jk

][ ∑
i1+···+is=q+n

ik>1

s∏
k=1

ς(ikz)

ik
αik

]
.

1.3.4 Other operators

For n > 0, define the operator Fn : Λ
∞
2 V → Λ

∞
2 V by

Fn :=
∑

k∈Z+ 1
2

kn

n!
: ψkψ

∗
k : = [zn] E0(z). (1.10)

Here the notation [zn] E0(z) denotes the coe�cient of zn in the series expansion of the operator E0(z).

The operator F1 is called the energy operator and it satisfies F1vλ = |λ| vλ. This is true because, for each
k ∈ Z + 1

2 , F1 counts down-steps with weight k for k > 0 and up-steps with weight −k for k < 0. This in
turn returns the number of boxes in λ. One can use the operator F1 to define the energy of an operator;
that is, one can say that an operator O on Λ

∞
2 V has energy n ∈ Z if

[O,F1] = nO.

The operators Fn all have energy zero, while αn and En both have energy n.

The operator F2 plays a particularly vital role in the context of Hurwitz numbers, single and double,
appearing in the vacuum expectations of both enumerations. Its appearance functions by enumerating
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the number of simple branch points for both single and double Hurwitz numbers, and the reason for this
is as follows. The operator F2 is a diagonal operator with eigenvalue f2(λ) for eigenvector vλ; that is,
F2 vλ = f2(λ) vλ, where

f2(λ) = |C(2,1,...,1)|
χλ(2,1,...,1)

dimλ
. (1.11)

Here, |C(2,1,...,1)| is the size of the conjugacy class of transpositions, χλ(2,1,...,1) is the character of the irredu-
cible representation corresponding to λ evaluated on an element of C(2,1,...,1) (that is, any transposition);
and dimλ = χλ(1,1,...,1) is the dimension of the irreducible representation corresponding to λ.

As an aside, one can more generally define

fµ(λ) =

(
|λ|
|µ|

)
|Cµ|

χλµ
dimλ

,

where, if |µ| < |λ|, the character χλµ is defined via the natural inclusion of symmetric groups S|µ| ⊂ S|λ|,
and if |µ| > |λ| the binomial vanishes. These operators arise in the general setting of enumerating Hurwitz
numbers with arbitrary ramification; see the work of Okounkov and Pandharipande [92].

An explicit expression for f2(λ) is given by

f2(λ) =
1

2

`(λ)∑
i=1

[(
λi − i+ 1

2

)2 − (− i+ 1
2

)2]
. (1.12)

Via this last equation, one can show that f2(λ) is equal to the sum of the contents of λ, which is defined as
follows. For a Young diagram corresponding to a partition λ, the content of a box in column j and row i is
j − i. For example, consider the Young diagram given by λ = (5, 4, 4, 2, 2); Figure 1.11 shows the Young
diagram with filling given by its contents. In this case, the sum of the contents of λ is −2, and one can verify
that f2(λ) = −2.

0 1 2 3 4

−1 0 1 2

−2 −1 0 1

−3 −2

−4 −3

Figure 1.11: Young diagram with contents for the partition λ = (5, 4, 4, 2, 2).

To see that (1.12) is indeed the sum of the contents, first note

f2(λ) =
1

2

`(λ)∑
i=1

[(
λi − i+ 1

2

)2 − (− i+ 1
2

)2]
=

1

2

`(λ)∑
i=1

λi
(
λi − 2i+ 1

)
.

The second equality is using the di�erence of squares. Then, observe that the sum of the contents of row i

is equal to the number of boxes in the row, λi, multiplied by the average of the fillings; the contents of row
i are given by 1− i, 2− i, . . . , λi − i, hence the average of the contents of row i is 1

2 (λi − 2i+ 1). Sum over
all rows to conclude.

De�nition 1.3.8. Define the vertex operators Γ±(~p) on the semi-infinite wedge space by

Γ±(~p) = exp

(∑
m>1

pm
m
α±m

)
,

where p1, p2, . . . are formal variables.
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The vertex operators satisfy the following commutation relation [73]:

Γ+(~p) Γ−(~q) = exp

(∑
m>1

pm qm
m

)
Γ−(~q) Γ+(~p). (1.13)

The vertex operators are related to the Schur symmetric polynomials in the following way. Begin with Γ−,
write the exponential of the sum as a product of exponentials, then expand each exponential as a power
series to obtain

Γ−(~p) = exp

(∑
m>1

pm
m
α−m

)
=
∏
m>1

exp
(pm
m
α−m

)
=
∏
m>1

[ ∑
km>0

pkmm
mkm km!

αkm−m

]

=
∑

k1,k2,...>0

pk11 pk22 · · ·
1k1 2k2 · · · k1! k2! · · ·

αk1−1α
k2
−2 · · · .

(1.14)

Now rewrite this sum over k1, k2, . . . as a sum over partitions µ = (1k1 , 2k2 , . . . ,mkm). In this case,

~pµ = pk11 pk22 · · ·
`(µ)∏
i=1

µi = 1k1 2k2 · · ·

|Aut µ| = k1! k2! · · · α−µ1 · · ·α−µ`(µ) = αk1−1α
k2
−2 · · · .

Thus,

Γ−(~p) =
∑
µ∈P

~pµ

|Aut µ|
∏`(µ)
i=1 µi

α−µ1 · · ·α−µ`(µ) =
∑
µ∈P

~pµ
z(µ)

α−µ1 · · ·α−µ`(µ) , (1.15)

using the common notation z(µ) = |Aut µ|
∏`(µ)
i=1 µi.

Now apply the vertex operator Γ− to the vacuum vector v∅ to obtain

Γ−(~p)v∅ =
∑
µ∈P

~pµ
z(µ)

α−µ1
· · ·α−µ`(µ)v∅ =

∑
µ∈P

~pµ
z(µ)

∑
λ`|µ|

χλµ vλ =
∑
λ∈P

(∑
µ∈P

χλµ ~pµ

z(µ)

)
vλ =

∑
λ∈P

sλ(~p) vλ.

Here, P is the set of all partitions (including the empty partition), the notation |µ| denotes the sum of the
parts of µ: |µ| = µ1 + · · ·+µ`(µ), the notation λ ` |µ| denotes that λ is an integer partition of |µ|, and sλ(~p)

is the Schur symmetric polynomial indexed by λ, written in terms of the power sum symmetric polynomials
p1, p2, . . .. (It is generally to our benefit to secretly think of the formal variables p1, p2, . . . as the power sum
symmetric polynomials). The second equality is using the Murnaghan–Nakayama rule; see Theorem 1.4.3
in the following section. The third equality is swapping the order of the summations and using the fact that
χλµ = 0 for λ and µ such that |λ| 6= |µ|. The final equality is using the change of basis between the power
sum symmetric polynomials and the Schur symmetric polynomials in the ring of symmetric functions [81].

1.4 Results

1.4.1 Murnaghan–Nakayama rule

The Murnaghan–Nakayama rule provides a combinatorial identity for calculating irreducible characters of
symmetric groups; the original statement of the theorem can be found in [81]. The Murnaghan–Nakayama
rule also has an alternate description in terms of operators acting on the semi-infinite wedge. This result
plays a fundamental role in the vacuum expectation derivation for Hurwitz numbers, both single and double,
but also appears in Chapter 7 on fully simple maps.

Before I can state the semi-infinite wedge version of the Murnaghan–Nakayama rule I will first state the
original theorem, and to do that I will first define a number of necessary objects.

First, recall that the �lling of a Young diagram is a labelling of each box in the diagram with a positive
integer. A Young tableau is any filling of a Young diagram, while a semistandard Young tableau is a filling
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that is weakly increasing across each row and strictly increasing down each column. Although not used
here, for reference, a standard Young tableau is a semistandard Young tableau where the boxes are filled with
1, 2, . . . , d, each occurring precisely once.

And finally, a ribbon tableau of shape λ and type µ is a Young tableau that satisfies the following: the filling
is weakly increasing across each row and down each column; and the filling of the tableau is prescribed
by µ. That is, the tableau has a µ1-ribbon of 1s, a µ2-ribbon of 2s, and so on. Recall that an n-ribbon is a
connected skew Young diagram comprising n boxes that does not contain any 2× 2 blocks, and the height
of a ribbon is one fewer than the number of rows it occupies.

For example, a Young diagram, Young tableau, semistandard Young tableau and standard Young tableau
all of shape (4, 3, 1, 1) are shown in Figure 1.12, while all possible ribbon tableaux of shape (3, 2) and type
(3, 1, 1) are given in Figure 1.13.

5 2 4 4
2 5 6
1
9

1 1 3 4
2 2 5
3
7

1 3 4 5
2 8 9
6
7

Figure 1.12: From left-to-right: a Young diagram, Young
tableau, semistandard Young tableau and standard Young
tableau.

1 1 1
2 3

1 1 2
1 3

1 1 3
1 2

Figure 1.13: All ribbon tableaux of
shape (3, 2) and type (3, 1, 1).

Theorem 1.4.1 (Murnaghan–Nakayama rule). The character evaluated on a permutation in the conjugacy class
corresponding to µ in the unique irreducible representation of the symmetric group corresponding to λ, χλµ, satis�es

χλµ =
∑
T

(−1)h(T ).

Here, the summation is over is the set of ribbon tableaux T of shape λ and type µ, and h(T ) is the sum of the heights
of the ribbons in T .

For more on the representation theory of the symmetric group, see [97].

Example 1.4.2. Let us use Theorem 1.4.1 to calculate χ(4,3,2)
(4,3,1,1). Here λ = (4, 3, 2) determines the shape of

the Young diagram, while µ = (4, 3, 1, 1) determines the type. There are seven possible tableaux of shape λ
and type µ, and these are given below.

1 1 1 1
2 2 2
3 4

1 1 1 1
2 2 3
2 4

1 1 1 1
2 2 4
2 3

1 1 1 3
1 2 4
2 2

1 1 1 4
1 2 3
2 2

1 1 2 3
1 2 2
1 4

1 1 2 4
1 2 2
1 3

Let these be T1, . . . , T7 respectively. The heights of the ribbons in T4 are 1, 1, 0 and 0 for µ1, µ2, µ3 and µ4

respectively, hence h(T1) = 1 + 1 + 0 + 0 = 2. Following the same process for the remaining six tableaux
leads to the following calculation for χ(4,3,2)

(4,3,1,1):

χ
(4,3,2)
(4,3,1,1) = (−1)0 + (−1)1 + (−1)1 + (−1)2 + (−1)2 + (−1)3 + (−1)3

= 1− 1− 1 + 1 + 1− 1− 1 = −1.

The Murnaghan–Nakayama rule given via operators acting on the semi-infinite wedge is the following.1

1Actually, the following result is an immediate consequence of the Murnaghan–Nakayama rule given in Theorem 1.4.1, but is often
also simply referred to as the Murnaghan–Nakayama rule.
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Theorem 1.4.3 (Murnaghan–Nakayama rule via the semi-infinite wedge). Let (µ1, . . . , µn) be a tuple of
positive integers such that µ1 + · · ·+ µn = d. Then

α−µ1
· · ·α−µn v∅ =

∑
λ`d

χλµ vλ.

Here, χλµ is the character evaluated on a permutation in the conjugacy class corresponding to µ in the unique irreducible
representation of the symmetric group corresponding to λ.

Example 1.4.4. Let us use Theorem 1.4.3 to calculate χ(3,1)
(2,1,1). The theorem tells us that

α−2α
2
−1v∅ =

∑
λ`4

χλ(2,1,1) vλ.

Because α−m commutes with any α−n, it does not matter in which order we apply the α−µi . Thus,∑
λ`4

χλ(2,1,1) vλ = α2
−1α−2v∅ = α2

−1v(2) − α2
−1v(1,1)

= α−1v(3) + α−1v(2,1) − α−1v(2,1) − α−1v(1,1,1)

= v(4) + v(3,1) − v(2,1,1) − v(1,1,1,1).

Hence, χ(3,1)
(2,1,1) = 1.

1.4.2 Boson-fermion correspondence

The bosonic operators are, by definition, written in terms of the fermionic operators. At heart, the boson-
fermion correspondence states that the reverse is true; that the fermionic operators can, in turn, be written
in terms of the bosonic operators. More precisely and more generally, the boson-fermion correspondence
describes a vector space isomorphism between the so-called bosonic and fermionic Fock spaces. To describe
this isomorphism and the description of fermions in terms of bosons, a number of new definitions and
notations will be introduced. The first half of this section will primarily follow Miwa, Jimbo and Date [83],
however it is important to note that some conventional choices di�er between this thesis and [83].

Begin by defining the bosonic Fock space. For n a positive integer, define operators αn, α∗n acting on
polynomials f(~x) ∈ C[x1, x2, . . .] by the following rules:

(αnf)(~x) = xnf(~x), and (α∗nf)(~x) = n
∂f

∂xn
(~x). (1.16)

These operators satisfy the canonical commutation relations

[αm, αn] = 0, [α∗m, α
∗
n] = 0, and [αm, α

∗
n] = mδn,m. (1.17)

Define B to be the algebra generated by the abstract symbols {αn, α∗n}n=1,2,... satisfying the relations (1.17);
B is called the Heisenberg algebra.

Define an algebra representation of the Heisenberg algebra B on the polynomial ring C[~x]; that is, define
ρ : B → End(C[~x]) by αn 7→ xn, and α∗n 7→ n ∂

∂xn
. The representation space C[~x] is called the bosonic Fock

space.

The operators αn, α∗n have been suggestively labelled, and indeed, the commutation relations (1.17) coincide
with the commutation relations for the bosonic operators defined in Definition 1.3.4; thus, one obtains a
representation of the Heisenberg algebra B on the semi-infinite wedge space Λ

∞
2 V via the bosonic operators

α±n defined in Definition 1.3.4.

Define Λ
∞
2

` V to be the charge ` subspace of Λ
∞
2 V . There is a natural isomorphism between the charge

` subspace, for each ` ∈ Z, and the bosonic Fock space C[~x]. This isomorphism can be described for all
charges at once. To do this, define

C[w,w−1;x1, x2, . . .] =
⊕
`∈Z

w` C[x1, x2, . . .].
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Let v` ∈ Λ
∞
2

` V denote the vacuum vector in the charge ` subspace; that is,

v` := `− 1

2
∧ `− 3

2
∧ `− 5

2
∧ · · · .

And finally, define Φ: Λ
∞
2 V → C[w±1; ~x] by

Φ(v) =
∑
`∈Z

w`
〈
v, exp

( ∑
m>1

xm
m

α−m

)
v`

〉
.

Theorem 1.4.5 (Miwa, Jimbo and Date [83, Theorem 5.1]). The correspondence

Φ: Λ
∞
2 V → C[w,w−1;x1, x2, . . .]

is an isomorphism of vector spaces. Moreover, we have

Φ(αnv) =

{
n ∂
∂xn

Φ(v), if n > 0,

x−nΦ(v), if n < 0.

Theorem 1.4.5 allows us to identify the fermionic and bosonic Fock spaces, which, in turn, means that
one ought to be able to represent the action of the fermionic operators in terms of operators acting on the
bosonic Fock space. This is the content of the following theorem, but first I state a number of definitions.

Define the fermionic operator generating functions by

ψ(z) =
∑

k∈Z+ 1
2

ψkz
k− 1

2 and ψ∗(z) =
∑

k∈Z+ 1
2

ψ∗kz
−k− 1

2 .

Introduce operators zC and R acting on the space C[w±1; ~x] by

(zCf)(w, ~x) = f(zw, ~x) and (Rf)(w, ~x) = wf(w, ~x).

Loosely, the operator zC measures the charge while the operator R shifts the charge by +1. Define

ξ(~x, z) =
∑
n>1

znxn.

And finally define

Ψ(z) = RzC exp (ξ(~x, z)) exp
(
− ξ(~∂, z−1)

)
Ψ∗(z) = R−1 z−C exp (−ξ(~x, z)) exp

(
ξ(~∂, z−1)

)
,

(1.18)

where ~∂ denotes
~∂ =

(
∂

∂x1
,
∂

∂x2
, . . .

)
, and ξ(~∂, z−1) =

∑
m>1

z−m
∂

∂xm
.

Theorem 1.4.6 (Miwa, Jimbo and Date [83, Theorem 5.2]). The fermionic generating functions ψ(z) and ψ∗(z)
are realised in the bosonic Fock space by (1.18). That is, for any v ∈ Λ

∞
2 V we have

Φ(ψ(z) v) = Ψ(z) Φ(v) and Φ(ψ∗(z) v) = Ψ∗(z) Φ(v).

Together, Theorems 1.4.5 and 1.4.6 imply that there’s a description of fermionic operators ψk, ψ∗k in terms
of the bosonic operators α±n defined in Definition 1.3.4.2 There is indeed such an expression; this is the
content of the following theorem, which can be found in the work of Kac [73].

First, define the charge C and translation R operators on the semi-infinite wedge space by

C =
∑

k∈Z+ 1
2

: ψkψ
∗
k :, and R (s1 ∧ s2 ∧ · · · ) = s1 + 1 ∧ s2 + 1 ∧ · · · .

Note that the operator C featured in the discussion immediately after Definition 1.3.3; it enumerates the
di�erence in the sizes of the sets S+ and S− and hence detects the charge of a basis element.

2Note that I often confuse the bosonic operators introduced in Definition 1.3.4 and those defined by (1.16), using the term “bosonic
operators” to mean either of the operators.
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Theorem 1.4.7 (Kac [73]). The fermionic operator generating functions ψ(z) and ψ∗(z) have the following expres-
sions in terms of the bosonic operators:

ψ(z) = zC RΓ−(~z) Γ+(−~z −1)

ψ∗(z) = R−1 z−C Γ−(−~z) Γ+(~z −1).
(1.19)

One can use Theorem 1.4.7 to prove the bosonic operator form of the E -operator that appeared in Sec-
tion 1.3.3; that is, to prove the following lemma. This bosonic expression of the E -operator is a necessary
component of the proof of the main Virasoro result for fully simple maps in Chapter 7.

Lemma 1.4.8. The E -operator introduced in De�nition 1.3.6 can be described in terms of bosonic operators. That is,

En(z) =
1

ς(z)

∑
`>0

1

`!

∑
i1+···+i`=n

ς(i1z) · · · ς(i`z)
i1 · · · i`

: αi1 · · ·αi` : . (1.20)

Proof. Define Qn(z) to be operator given on the right side of (1.20) above and rewrite to obtain

Qn(z) =
1

ς(z)

∑
`>0

1

`!

∑
i1+···+i`=n

ς(i1z) · · · ς(i`z)
i1 · · · i`

: αi1 · · ·αi` :

=
1

ς(z)

∑
`,s>0
q>0

1

`! s!

[ ∑
j1+···+j`=q

jk>1

∏̀
k=1

ς(jkz)

jk
α−jk

][ ∑
i1+···+is=q+n

ik>1

s∏
k=1

ς(ikz)

ik
αik

]

=
1

ς(z)

∑
q>0

∑
λ`q

1

z(λ)

`(λ)∏
i=1

ς(λiz)α−λi

 ∑
µ`q+n

1

z(µ)

`(µ)∏
j=1

ς(µjz)αµj

 ,
where z(µ) = |Aut µ|

∏`(µ)
i=1 µi. The second equality is using the normal ordering of bosonic operators,

while the third equality is rewriting the sum over tuples (i1, . . . , is) as a sum over partitions µ ∈ P , and
each tuple (i1, . . . , is) arises s!/|Aut µ| times; see (1.14) for this calculation in detail.

Sum the Qn(z)-operators over all n to give

∑
n∈Z
Qn(z) =

1

ς(z)

∑
n∈Z

∑
q>0

∑
λ`q

1

z(λ)

`(λ)∏
i=1

ς(λiz)α−λi

 ∑
µ`q+n

1

z(µ)

`(µ)∏
j=1

ς(µjz)αµj


=

1

ς(z)

∑
λ∈P

1

z(λ)

`(λ)∏
i=1

ς(λiz)α−λi

∑
µ∈P

1

z(µ)

`(µ)∏
j=1

ς(µjz)αµj


=

1

ς(z)
Γ−({ς(k z)}) Γ+({ς(k z)})

=
1

ς(z)
Γ−({−e−kz/2}) Γ−({ekz/2}) Γ+({ekz/2}) Γ+({−e−kz/2}).

Here, the notation Γ({k z}) denotes Γ(z, 2z, 3z, . . .). The third equality is using (1.15). The final equality is
using the fact that ς(z) = ez/2 − e−z/2, hence Γ±({ekz/2 − e−kz/2}) = Γ±({ekz/2}) Γ±({−e−kz/2}), along
with the fact that Γ−-operators commute with each other. Using the commutation relation (1.13) on the
inner two vertex operators gives

Γ−({ekz/2}) Γ+({ekz/2}) = exp

(
−
∑
k>1

ekz

k

)
Γ+({ekz/2}) Γ−({ekz/2})

= (1− ez) Γ+({ekz/2}) Γ−({ekz/2}).

Here, the second equality is using the Taylor series expansion of log(1− x); that is,

(1− ez) = exp(log(1− ez)) = exp

(
−
∑
k>1

ekz

k

)
.
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Therefore, ∑
n∈Z
Qn(z) =

(1− ez)
ς(z)

Γ−({−e−kz/2}) Γ+({ekz/2}) Γ−({ekz/2}) Γ+({−e−kz/2})

= −ez/2 Γ−({−e−kz/2}) Γ+({ekz/2}) Γ−({ekz/2}) Γ+({−e−kz/2}).

Use Theorem 1.4.7 to rewrite the product of vertex operators in terms of the fermionic operator generating
functions as follows:∑

n∈Z
Qn(z) = −ez/2 Γ−({−e−kz/2}) Γ+({ekz/2}) Γ−({ekz/2}) Γ+({−e−kz/2})

= −ez/2
(
eCz/2Rψ∗(e−z/2)

) (
R−1e−Cz/2 ψ(ez/2)

)
= −ez/2 eCz/2

∑
j∈Z+ 1

2

ψ∗j+1e
jz/2e−z/4 e−Cz/2

∑
i∈Z+ 1

2

ψie
iz/2ez/4

= −
∑

i,j∈Z+ 1
2

e(i+j)z/2ψ∗jψi.

The second equality is using Theorem 1.4.7. The third equality is using the conjugation of ψj by R; that
is, RψjR−1 = ψj+1 [90]. The fourth equality is relabelling j 7→ j − 1 and using the fact that, because ψ∗k
decreases the charge by 1, the charge operator C commutes with ψ∗k by ψ∗ke

C = eC+1ψ∗k.

Now split the sum over j into j positive and j negative and use the commutation relation for the fermionic
operators (1.4) along with the definition of the normally ordered product of fermions (1.6) to obtain∑

n∈Z
Qn(z) = −

∑
i,j∈Z+ 1

2
j<0

e(i+j)z/2ψ∗jψi +
∑

i,j∈Z+ 1
2

j>0

e(i+j)z/2ψiψ
∗
j −

∑
k∈Z+ 1

2
k>0

ekz

=
∑

i,j∈Z+ 1
2

e(i+j)z/2 : ψiψ
∗
j : +

1

ς(z)

=
∑
n∈Z

[ ∑
k∈Z+ 1

2

ez(k−
n
2 ) : ψk−nψ

∗
k : +

δn,0
ς(z)

]

=
∑
n∈Z
En(z).

The third equality is using the fact that

∑
k∈Z+ 1

2
k>0

ekz = ez/2 + e3z/2 + · · · = ez/2
(
1 + ez + e2z + · · ·

)
= − ez/2

ez − 1
= − 1

ς(z)
.

Equating operators with equal energy on both sides yields Qn(z) = En(z), as required. �
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Chapter 2

Topological recursion

2.1 Introduction

The topological recursion of Chekhov, Eynard and Orantin was borne out of the abstraction of loop equa-
tions from the theory of matrix models [25, 52]. Since its inception, it is has been proven or conjectured
to govern a widespread collection of problems in mathematics and physics, including: the enumeration of
ribbon graphs and hypermaps [34, 36, 41, 88]; simple, monotone, orbifold, spin, and double Hurwitz num-
bers [8, 14, 17, 31, 32, 33, 39, 49, 84]; intersection theory on moduli spaces of curves [52]; Weil–Petersson
volumes of moduli spaces of hyperbolic surfaces [55]; Gromov–Witten invariants of CP1 [42, 89] and toric
Calabi–Yau threefolds [16, 51, 56]; coloured HOMFLY-PT polynomials of torus knots [38]; and the asymp-
totics of the coloured Jones polynomials of knots [9, 30].

Topological recursion persists as a theme throughout this thesis, playing a key role in results described
in Chapters 5, 6 and 8. The present chapter will serve the purpose of introducing the original Chekhov–
Eynard–Orantin topological recursion (hereafter referred to as CEO topological recursion) that will form
the basis of all topological recursion discussion throughout this thesis.

In Section 2.2.1, I define the necessary components of topological recursion: the input data, base cases,
and the recursion itself. Since topological recursion was first introduced, a number of variations and gen-
eralisations have been defined; Section 2.2.2 provides a brief description of some that have appeared in the
literature. Section 2.3 works through two hallmark examples from the history of topological recursion: the
Airy curve (Section 2.3.1), and the ribbon graph spectral curve (Section 2.3.2). Section 2.3 is aimed at the
topological recursion novice; while the seasoned topological recurser may be all-too-familiar with these ex-
amples, those readers looking for a gentle introduction to topological recursion may enjoy working through
this section for valuable hands-on experience.

2.2 Preliminaries

2.2.1 De�nitions

At heart, topological recursion is just a recursion; it is a tool that can be used to inductively calculate numer-
ical information, and the values it produces are determined by the input chosen. The “miracle” of topological
recursion lies in the variety and breadth of the problems that it has been proven to govern. Depending on
the input data used, topological recursion may generate information from such diverse problems as map
enumeration, Gromov–Witten invariants of toric Calabi–Yau threefolds, and asymptotics of coloured Jones
polynomials of knots (conjecturally); these are just three examples of many. While in this section I provide
the full definition of the so-called Chekhov–Eynard–Orantin topological recursion, Section 2.3 is intended
to be more illustrative in terms of gaining an understanding of how to calculate with topological recursion.

Topological recursion takes as input a spectral curve and produces a family of meromorphic multidi�eren-
tials ωg,n for all integers g > 0 and n > 1. I will refer to these multidi�erentials ωg,n as correlation di�erentials.
More precisely, ωg,n is a meromorphic section of the line bundle π1(T ∗C)⊗π2(T ∗C)⊗· · ·⊗πn(T ∗C) over Cn,
where the Riemann surface C is part of the initial data and πi : Cn → C is projection onto the ith factor.
One can define topological recursion explicitly as follows.

19
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Input. A spectral curve (C, x, y, T ) consists of a compact Riemann surface C, two meromorphic functions
x, y : C → CP1, and a Torelli marking T on C; that is, a choice of a symplectic basis of the first homology
group H1(C;Z). It is required that all zeros of dx are simple and disjoint from the zeros and poles of dy.
We refer to these zeros of dx as branch points.

Base cases. The base cases are ω0,1(z1) := y(z1) dx(z1) and ω0,2(z1, z2), where z1, z2 ∈ C. Here, ω0,2(z1, z2)

is the unique bidi�erential on C×C that satisfies the following: symmetric in its arguments; has double poles
along the diagonal z1 = z2 and is holomorphic away from the diagonal; and is normalised on the A-cycles
of the Torelli marking. That is, it has the form

ω0,2(z1, z2) =
dz1 dz2

(z1 − z2)2
+ [symmetric, holomorphic bidi�erential]

and satisfies ∮
Ai
ω0,2(z1, z2) = 0,

for i = 1, 2, . . . , genus(C).

Recursion. For all (g, n) 6= (0, 1), (0, 2), define the multidi�erentials ωg,n recursively by the equation

ωg,n(z1, ~zS) =
∑
α

Res
z=α

Kα(z1, z)

[
ωg−1,n+1(z, σα(z), ~zS) +

◦∑
g1+g2=g
ItJ=S

ωg1,|I|+1(z, ~zI)ωg2,|J|+1(σα(z), ~zJ)

]
.

(2.1)
Here S = {2, 3, . . . , n}, and for I = {i1, . . . , ik}, the shorthand notation ~zI denotes zi1 , . . . , zik . The outer
summation is over the zeros α of dx, while the ◦ superscript on the inner summation denotes that we
exclude all terms containing ω0,1. The constraint that the zeros of dx are simple implies that for each zero
α of dx there exists a unique meromorphic function z 7→ σα(z) such that x(σα(z)) = x(z) for all z in a
neighbourhood of α but σα(z) 6= z. Finally, for each branch point α, the kernel Kα(z1, z) is defined by

Kα(z1, z) =

∫ z
o
ω0,2(z1, · )

[y(z)− y(σα(z))] dx(z)
.

It turns out that the topological recursion is not sensitive to the choice of basepoint o nor the path of
integration on the spectral curve [52].

Observe that the equation given by (2.1) is indeed a recursion, on the negative Euler characteristic 2g−2+n.

I make a number of conventional remarks. First, note that the sign convention used here di�ers to that
of Eynard and Orantin [52]; here I have omitted the negative signs in their definitions of ω0,1 and Kα(z1, z).
This is just convention; over time it has become increasingly popular in the literature to omit these signs.

Second, throughout this chapter, the Riemann surface C underlying the spectral curve will be taken to be
the Riemann sphere CP1, in which case the Torelli marking is trivial; and indeed there are no non-zero
holomorphic di�erentials on the Riemann sphere and this in turn forces ω0,2 = dz1 dz2

(z1−z2)2 . Hence, for this
chapter, the Torelli marking will be omitted from the spectral curve input data and ω0,2 will be taken to be
the canonical bidi�erential satisfying the conditions given above; that is, ω0,2 = dz1 dz2

(z1−z2)2 .

Third, while ωg,n is technically defined to be an nth tensor product of forms, the tensor products will be
omitted for convenience. That is, dz1 ⊗ · · · ⊗ dzn will instead be written in the shorthand dz1 · · · dzn.

Topological recursion admits a number of striking features. It is remarkable that, despite the fact that
the recursion given in equation (2.1) is inherently asymmetrical with respect to z1 versus z2, . . . , zn, the
correlation di�erentials ωg,n(z1, . . . , zn) are symmetric in their arguments [52]. Further, ωg,n possesses a
certain pole structure. Namely, that for 2g−2+n > 0 the correlation di�erential ωg,n satisfies the following:
for all branch points α, ωg,n(z1, . . . , zn) + ωg,n(σα(z1), z2, . . . , zn) is holomorphic at z1 = α; and that ωg,n
has a pole of order 6g − 4 + 2n at each of the branch points and no poles elsewhere [10, 46, 52]. Another
remarkable feature of topological recursion is that the resulting correlation di�erentials can be expressed
via intersection theory on moduli spaces of curves [46].
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Note that the definition I give here is somewhat classical, in the sense that the Riemann surface C given as
part of the spectral curve data is assumed to be compact. On the other hand, the main result of Chapter 5
proves that the enumeration of lattice points inMg,n is governed by a more recent generalisation known
as local topological recursion, which notably does not require C to be compact. It is also worth noting that
the topological recursion for single and double Hurwitz numbers uses x that is not meromorphic due to the
appearance of the natural logarithm. However, one still has that dx(z) is meromorphic, and this weaker
assumption is all that is required to apply the topological recursion. See Section 2.2.2 below or Chapter 5
for a more thorough discourse on local topological recursion, and see Chapter 6 for the precise statement
of topological recursion in the case of double Hurwitz numbers.

2.2.2 Generalisations and variations

Since its introduction into the literature, topological recursion has been generalised, essentially, to encom-
pass a wider range of problems and hence widen the scope of its applicability. Here I give a brief descrip-
tion of three notable such generalisations: global topological recursion; local topological recursion; and the
Kontsevich–Soibelman formulation of topological recursion.

Global topological recursion. The definition of topological recursion given above—which aligns with the
original CEO topological recursion—imposes the condition that the zeros of dx are simple, however it has
been proven by Bouchard, Hutchinson, Loliencar, Meiers and Rupert [15] and Bouchard and Eynard [13]
that topological recursion can be naturally generalised to include spectral curves that do not satisfy this
condition. The work of Bouchard, Hutchinson, Loliencar, Meiers and Rupert [15] defined a generalisation
of topological recursion that included spectral curves with higher order branching. Bouchard and Eynard
[13] then proved that one can actually consider all branch points of a spectral curve as a branch point of
order d, where d is the degree of x. They then used this to give a so-called “global topological recursion”,
which is defined globally, rather than locally around the branch points. This global topological recursion
then allows one to, for example, take the limit as two or more branch points approach each other.

Local topological recursion. It was observed that the definition of CEO topological recursion depends
only on local information around each of the branch points of the spectral curve; that is, the CEO topological
recursion does not use the information of the global underlying Riemann surface C of the spectral curve.
This led to the definition of “local topological recursion” [42] where, instead of including a compact Riemann
surface C as part of the spectral curve input data, one instead defines local neighbourhoodsDi with canonical
coordinates around each of theN branch points and the input data becomes the disjoint unionD1t· · ·tDN .
In this case, given that there is no compact Riemann surface underlying the spectral curve, and hence
no Torelli marking, it is necessary to include ω0,2 as part of the spectral curve input data. See the work
of Dunin-Barkowski, Orantin, Shadrin and Spitz [42] for a detailed and precise definition of local topological
recursion.

Kontsevich–Soibelman topological recursion. The reformulation of topological recursion due to Kont-
sevich and Soibelman [76] takes a more algebraic approach. It treats the partition function as the central
object and defines the input data to be a quantum Airy structure, namely, a sequence of at-most quadratic
di�erential operators that form a subalgebra of the overarching space of formal di�erential operators acting
on some finite-dimensional C-vector space. This approach emphasizes the role of the Virasoro algebra, as
well as other W-algebras, and, by the nature of its definition, extends the existing topological recursion
framework to include a broader variety enumerative problems. More explicitly, quantum Airy structures
have underlying abstract Lie algebras associated to them. The abstract Lie algebras coming from CEO
topological recursion are formed by taking a copy of the Virasoro algebra for each branch point. Quantum
Airy structures also capture not only the local and global topological recursions, but their definition allows
for the input data to be even more general than this.



22 2. Topological recursion

2.3 Examples

2.3.1 Airy spectral curve

Input data. Define the Airy spectral curve to be (CP1, x, y) with

x(z) =
1

2
z2, and y(z) = z. (2.2)

Here, ω0,2 is the canonical bilinear di�erential, ω0,2(z1, z2) = dz1 dz2
(z1−z2)2 .

It was proven by Eynard [47] that the correlation di�erentials resulting from applying topological recursion
to the Airy spectral curve (2.2) store ψ-class intersection numbers on the moduli space of curves Mg,n.
This is the content of the following theorem, which is a special case of Theorem 1.1 in the work of Eynard
[47]. (One can obtain Theorem 2.3.1 below from Theorem 1.1 in [47] by setting t̃k = 0 for all k > 1.)

Theorem 2.3.1 (Eynard [47]). For (g, n) satisfying 2g − 2 + n > 0, the correlation di�erentials resulting from
applying topological recursion to the spectral curve (CP1, x, y) de�ned in equation (2.2) satisfy

ωg,n =
(−1)n

23g−3+n

∑
d1+···+dn=3g−3+n

n∏
i=1

(2di + 1)!

di!

dzi

z2di+2
i

[∫
Mg,n

ψd11 · · ·ψdnn

]
. (2.3)

Here, ψi ∈ H2(Mg,n,Q) is the �rst Chern class of the cotangent bundle to the ith marked point, and the integral
denotes taking the cup product ψd11 · · ·ψdnn ∈ H∗(Mg,n;Q) and pairing it with the fundamental class [Mg,n] ∈
H∗(Mg,n;Q); see the book of Harris and Morrison [68] for a precise de�nition of such intersection numbers.

To apply topological recursion to this spectral curve, we first calculate: the branch points; that is, the points
z ∈ CP1 that satisfy dx(z) = 0; the involution σ at each of the branch points; and the kernel K(z1, z).

Branch points. The branch points of the spectral curve are the points satisfying dx(z) = 0:

dx(z) = 0 ⇒ z dz = 0 ⇒ z = 0.

Involutions. The involution σ at the branch point z = 0 is the unique non-identity meromorphic function
such that x(σ(z)) = x(z) for all z ∈ CP1 in a neighbourhood of z = 0. Here, the meromorphic function
σ(z) = −z satisfies these conditions.

Recursion kernel. The recursion kernel can be taken to be

K(z1, z) =

∫ z
∞ ω0,2(z1, · )

[y(z)− y(σ(z))] dx(z)
=

∫ z
∞

dz1 dt
(z1−t)2

[z − (−z))] z dz
=

1

2z2 (z1 − z)
dz1

dz
.

Base cases: 2g − 2 + n = −1 and 2g − 2 + n = 0. The base cases ω0,1 and ω0,2 are given by

ω0,1(z1) = y(z1) dx(z1) = z2
1 dz1, and ω0,2(z1, z2) =

dz1 dz2

(z1 − z2)2
.

We are now well-prepared to calculate ωg,n for the first non-trivial case, when 2g − 2 + n = 1; namely,
(g, n) = (0, 3) and (g, n) = (1, 1).

The case 2g − 2 + n = 1.

• (g, n) = (1, 1)

ω1,1(z1)

dz1
= Res

z=0

K(z1, z)

dz1
ω0,2(z, σ(z)) = Res

z=0

1

2z2 (z1 − z)
1

dz

dz d(−z)
(z − (−z))2

= −Res
z=0

1

8z4

1

(z1 − z)
dz = −Res

z=0

1

8z4

1

z1

1

1− z
z1

dz

= −Res
z=0

1

8z4

1

z1

(
1 +

z

z1
+
z2

z2
1

+
z3

z3
1

+
z4

z4
1

+ · · ·
)

dz

= − 1

8z4
1
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This residue can be calculated by a computer (using, for example, SageMath); while the computer
will be the main tool for such calculations subsequently, the above calculation is simple enough that
one is able to do it by hand, and doing so can be illustrative.

• (g, n) = (0, 3)

ω0,3(z1, z2, z3)

dz1 dz2 dz3
= Res

z=0

K(z1, z)

dz1 dz2 dz3
[ω0,2(z, z2)ω0,2(σ(z), z3) + ω0,2(z, z3)ω0,2(σ(z), z2)]

= Res
z=0

1

2z2(z1 − z)
1

dz dz2 dz3

[
dz dz2

(z − z2)2

d(−z) dz3

(−z − z3)2
+

dz dz3

(z − z3)2

d(−z) dz2

(−z − z2)2

]
= − 1

z2
1 z

2
2 z

2
3

The case 2g − 2 + n = 2.

• (g, n) = (1, 2)

ω1,2(z1, z2)

dz1 dz2
= Res

z=0

K(z1, z)

dz1 dz2
[ω0,3(z, σ(z), z2) + ω0,2(z, z2)ω1,1(σ(z)) + ω1,1(z)ω0,2(σ(z), z2)]

= Res
z=0

1

2z2(z1 − z)
1

dz dz2

[
−dz d(−z) dz2

z2 (−z)2 z2
2

− dz dz2

(z − z2)2

d(−z)
8(−z)4

− dz

8z4

d(−z) dz2

(−z − z2)2

]
=

5

8

1

z2
1 z

6
2

+
3

8

1

z4
1 z

4
2

+
5

8

1

z6
1 z

2
2

• (g, n) = (0, 4)

ω0,4(z1, z2, z3, z4)

dz1 dz2 dz3 dz4

= Res
z=0

K(z1, z)

dz1 dz2 dz3 dz4

4∑
i=2

[
ω0,2(z, zi)ω0,3(σ(z), ~zS\{i}) + ω0,3(z, ~zS\{i})ω0,2(σ(z), zi)

]
=

3

z2
1 z

2
2 z

2
3 z

2
4

(
1

z2
1

+
1

z2
2

+
1

z2
3

+
1

z2
4

)
Extracting coe�cients. One can use the correlation di�erentials ωg,n to calculate all intersection numbers
of ψ-classes onMg,n. In this case, extracting coe�cients from ωg,n when expanded in a power series about
zi = ∞ for i ∈ {1, 2, . . . , n} yields these intersection numbers. Specifically, use (2.3), extract a coe�cient
by calculating a residue, then rearrange to obtain∫

Mg,n

ψd11 · · ·ψdnn = 23g−3+n(−1)n
n∏
i=1

di!

(2di + 1)!
Res
z1=∞

· · · Res
zn=∞

ωg,n

n∏
i=1

z2di+1
i .

Using this to calculate intersection numbers of ψ-classes leads to the following data.

• (g, n) = (1, 1) ∫
M1,1

ψd1 =

{
1
24 , if d = 1,

0, otherwise.

• (g, n) = (0, 3) ∫
M0,3

ψd11 ψd22 ψd33 =

{
1, if d1 = d2 = d3 = 0,

0, otherwise.

• (g, n) = (1, 2) ∫
M1,2

ψd11 ψd22 =


1
24 , if d1 = d2 = 1,

1
24 , if d1 = 2, d2 = 0 or d1 = 0, d2 = 2,

0, otherwise.
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• (g, n) = (0, 4) ∫
M0,4

ψd11 ψd22 ψd33 ψd44 =

{
1, if d1 + d2 + d3 + d4 = 1,

0, otherwise.

These values can be (and have been) verified using the base cases
∫
M0,3

1 = 1 and
∫
M1,1

ψ1
1 = 1

24 , and the
string and dilaton equations [68].

2.3.2 Ribbon graph spectral curve

Input data. Define the ribbon graph spectral curve to be (CP1, x, y) with

x(z) = z +
1

z
, and y(z) = z. (2.4)

Here, ω0,2 is the canonical bilinear di�erential, ω0,2(z1, z2) = dz1 dz2
(z1−z2)2 .

It was proven by Eynard and Orantin [54] that the correlation di�erentials resulting from applying topological
recursion to the ribbon graph spectral curve (2.4) store the enumerations of ribbon graphs. This is the
content of the following theorem, which is a special case of Theorem 7.3 in the work of Eynard and Orantin
[54]. (One can obtain Theorem 2.3.2 below from Theorem 7.3 in [54], this time by setting tk = 0 for all
k > 1.)

Theorem 2.3.2 (Eynard and Orantin [54]). For (g, n) 6= (0, 2), the correlation di�erentials resulting from
applying topological recursion to the spectral curve (CP1, x, y) de�ned in equation (2.4) satisfy

ωg,n = d1 · · · dn
∑

µ1,...,µn>1

Rg,n(µ1, . . . , µn)

n∏
i=1

x−µii . (2.5)

Here, xi is a shorthand notation for x(zi), di denotes applying the exterior derivative in the ith variable, and
Rg,n(µ1, . . . , µn) is the weighted enumeration of ribbon graphs of type (g, n) where the degree of boundary face i
is µi. See De�nition 3.2.10 for a precise de�nition of Rg,n.

While the theorem excludes (g, n) = (0, 2), one can “correct” ω0,2 = dz1 dz2
(z1−z2)2 to obtain the generating

function for the (0, 2)-enumeration in the following way:

ω0,2 =
dx1 dx2

(x1 − x2)2
+ d1 d2

∑
µ1,µ2>1

R0,2(µ1, µ2)x−µ1

1 x−µ2

2 .

To apply topological recursion to this spectral curve, we first calculate: the branch points; that is, the points
z ∈ CP1 that satisfy dx(z) = 0; the involution σ at each of the branch points; and the kernel K(z1, z).

Branch points. The branch points of the spectral curve are the points satisfying dx(z) = 0:

dx(z) = 0 ⇒
(

1− 1

z2

)
dz = 0 ⇒ z = ±1.

Involutions. The involutions σ±1 at the branch points z = ±1 are the unique non-identity meromorphic
functions such that x(σ±1(z)) = x(z) for all z ∈ CP1 in neighbourhoods of z = ±1. Here, the meromorphic
function σ(z) = 1

z satisfies these conditions for both branch points; so σ(z) = σ+1(z) = σ−1(z) = 1
z .

Recursion kernel. The recursion kernel can be taken to be

K(z1, z) =

∫ z
∞ ω0,2(z1, · )

[y(z)− y(σ(z))] dx(z)
=

∫ z
∞

dz1 dt
(z1−t)2[

z − 1
z

] (
1− 1

z2

)
dz

=
1

(z1 − z)
dz1

dz

z3

(1− z2)2
.

Base cases: 2g − 2 + n = −1 and 2g − 2 + n = 0. The base cases ω0,1 and ω0,2 are given by

ω0,1(z1) = y(z1) dx(z1) =
(
z1 −

1

z1

)
dz1, and ω0,2(z1, z2) =

dz1 dz2

(z1 − z2)2
.
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The case 2g − 2 + n = 1.

• (g, n) = (1, 1)

ω1,1(z1)

dz1
=

∑
α∈{±1}

Res
z=α

K(z1, z)

dz1
ω0,2(z, σ(z)) =

∑
α∈{±1}

Res
z=α

1

(z1 − z)
1

dz

z3

(1− z2)2

dz d
(

1
z

)
(z − 1

z )2

= − z3
1

(1− z2
1)4

• (g, n) = (0, 3)

ω0,3(z1, z2, z3)

dz1 dz2 dz3

=
∑

α∈{±1}

Res
z=α

K(z1, z)

dz1 dz2 dz3
[ω0,2(z, z2)ω0,2(σ(z), z3) + ω0,2(z, z3)ω0,2(σ(z), z2)]

=
∑

α∈{±1}

Res
z=α

1

(z1 − z)
z3

(1− z2)2

1

dz dz2 dz3

[
dz dz2

(z − z2)2

d
(

1
z

)
dz3

( 1
z − z3)2

+
dz dz3

(z − z3)2

d
(

1
z

)
dz2

( 1
z − z2)2

]

= −1

2

[
3∏
i=1

1

(1− zi)2
−

3∏
i=1

1

(1 + zi)2

]

The case 2g − 2 + n = 2.

• (g, n) = (1, 2)

ω1,2(z1, z2)

dz1 dz2

=
∑

α∈{±1}

Res
z=α

K(z1, z)

dz1 dz2
[ω0,3(z, σ(z), z2) + ω0,2(z, z2)ω1,1(σ(z)) + ω1,1(z)ω0,2(σ(z), z2)]

=
5

32 (1− z1)2(1− z2)2

2∑
i=1

(
z2
i

(1− zi)4
− zi

4(1− zi)2

)
+

3z1z2

32 (1− z1)4(1− z2)4

+
5

32 (1 + z1)2(1 + z2)2

2∑
i=1

(
z2
i

(1 + zi)4
+

zi
4(1 + zi)2

)
+

3z1z2

32 (1 + z1)4(1 + z2)4

+
z1z2

8(1− z2
1)2(1− z2

2)2

• (g, n) = (0, 4)

ω0,4(z1, z2, z3, z4)

dz1 dz2 dz3 dz4

=
∑

α∈{±1}

Res
z=α

K(z1, z)

dz1 dz2 dz3 dz4

[
4∑
i=2

ω0,2(z, zi)ω0,3(σ(z), ~zS\{i}) + ω0,3(z, ~zS\{i})ω0,2(σ(z), zi)

]

=

[
3

4

3∏
i=1

1

(1− zi)2

3∑
j=1

zj
(1− zj)2

− 3

4

3∏
i=1

1

(1 + zi)2

3∑
j=1

zj
(1 + zj)2

+
1

2

3∏
i=1

1

(1− z2
i )2

∑
{i,j,k,`}={1,2,3,4}

zizj(1 + z2
k)(1 + z2

` )

]

Extracting coe�cients. Again, one can use the correlation di�erentials ωg,n to calculate all enumerations
of ribbon graphs. In this case, extracting coe�cients from ωg,n when expanded in a power series about
xi =∞ for i ∈ {1, 2, . . . , n} yields the numbers Rg,n(µ1, . . . , µn). Specifically, use equation (2.5), extract a
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coe�cient by calculating a residue, then rearrange to obtain

Rg,n(µ1, . . . , µn) = Res
x1=∞

· · · Res
xn=∞

ωg,n

n∏
i=1

xµii
−µi

.

Recall that the general theory of topological recursion asserts that the correlation di�erential ωg,n satisfies
the property that α, ωg,n(z1, . . . , zn) + ωg,n(σα(z1), z2, . . . , zn) is holomorphic at z1 = α, and only has
poles at the branch points, each of degree 6g − 4 + 2n. One can use this known pole structure to deduce a
quasi-polynomiality structure for the ribbon graph enumeration, although we do not pursue this here. This
structure is analogous to the polynomiality for Hurwitz numbers.

Calculating the appropriate residues of ωg,n in the cases above gives the data in the following tables. Note
that Rg,n(µ1, . . . , µn) = 0 if |µ| = µ1 + · · ·+ µn is odd, hence values for these cases have been omitted.

Data.

n = 1

(µ) R0,1(µ) R1,1(µ)

(2) 1
2 0

(4) 1
2

1
4

(6) 5
6

5
3

(8) 7
4

35
4

(10) 21
5 42

(12) 11 385
2

(14) 429
14 858

(16) 715
8

15015
4

(18) 2431
9

48620
3

(20) 4199
5

138567
2

n = 2

(~µ) R0,2(~µ) R1,2(~µ)

(1, 1) 1 0

(3, 1) 1 0

(2, 2) 1
2 0

(5, 1) 2 1

(4, 2) 1 1
2

(3, 3) 4
3

1
3

(7, 1) 5 10

(6, 2) 5
2 5

(5, 3) 3 4

(4, 4) 9
4

15
4

n = 3

(~µ) R0,3(~µ)

(2, 1, 1) 1

(4, 1, 1) 3

(3, 2, 1) 2

(2, 2, 2) 1

(5, 2, 1) 6

(4, 3, 1) 6

(4, 2, 2) 3

(3, 3, 2) 4

(5, 4, 1) 18

(5, 3, 2) 12

n = 4

(~µ) R0,4(~µ)

(3, 1, 1, 1) 2

(2, 2, 1, 1) 2

(5, 1, 1, 1) 12

(4, 2, 1, 1) 9

(3, 3, 1, 1) 8

(3, 2, 2, 1) 6

(5, 2, 2, 1) 24

(4, 3, 2, 1) 24

(5, 4, 2, 1) 90

(3, 3, 3, 1) 24



Chapter 3

Maps, fully simple maps, and ribbon graphs

3.1 Introduction

Loosely speaking, maps are obtained by gluing together polygons to create a surface. Maps and their
combinatorics have been studied extensively since the pioneering work of Tutte [104]. The enumeration of
fully simple maps, meanwhile, was defined only recently by Borot and Garcia-Failde [11]: a map is said to
be fully simple if it satisfies further conditions restricting how boundary faces can interact with each other
and themselves. (The overarching subset of maps may henceforth be referred to as ordinary maps to avoid
confusion.)

Since the early studies of maps in the literature, a number of significant results have been proven. For
example, the enumeration of ordinary maps satisfies a recursion known as the Tutte recursion; this was
proven first in the case of planar maps by Tutte [105], then in higher genus by Walsh and Lehman [106].
And, the enumeration of maps is equivalent to a particular enumeration of triples of permutations, so maps
can therefore be studied via this so-called permutation model [79].

The enumeration of ordinary maps is also known to be governed by the 1-Hermitian matrix model [18, 79].
The partition function for ordinary maps with no boundary faces ZM is given by

ZM =

∫
HN

exp (N Tr [V (M)]) dM

where the integral is over the space HN of N × N Hermitian matrices, V (x) =
∑
k>1

tkx
k

k is called the
potential, and dM is the Gaussian measure. For more on matrix models and maps, see [79] or [108].

The enumeration of ordinary maps was also a significant progenitor of topological recursion. It was the
first enumeration shown to be governed by topological recursion, and the theory of topological recursion
evolved from the abstraction of loop equations from the theory of matrix models in the particular context of
the specific matrix model that governs the enumeration of maps, the 1-Hermitian matrix model mentioned
above [25, 48, 52]. The enumeration of fully simple maps has also now been shown to be governed by
topological recursion [7, 19]. For more details on maps and topological recursion, see the introduction
in Chapter 7 on fully simple maps.

In this chapter, Section 3.2 synthesises relevant literature and provides a guided and thorough introduction
to maps, ordinary and fully simple, and their enumerations. Section 3.2.1 gives the formal definition of both
ordinary maps and fully simple maps as embeddings of graphs on surfaces satisfying certain conditions,
aided by a number of illustrative examples. Section 3.2.2 defines the permutation model for both ordinary
and fully simple maps, again illustrated with examples, and uses the permutation model to provide an
alternate perspective on the automorphisms of a map. Section 3.2.3 briefly introduces a third viewpoint on
maps as certain branched covers of CP1. Section 3.2.4 defines the enumerations of ordinary and fully simple
maps Mg,n(µ1, . . . , µn) and FSg,n(µ1, . . . , µn) respectively. Finally, Section 3.2.5 gives the well-known Tutte
recursion for ordinary maps.

The purpose of Section 3.3 is to complement the results in Chapter 5. In Chapter 5, I describe joint work
with Chaudhuri and Do which proves that a certain lattice point enumeration of the Deligne–Mumford
compactification of the moduli space of curvesMg,n is governed by local topological recursion. Section 3.3

27



28 3. Maps

describes the correspondence between lattice points ofMg,n and a combinatorial object called a stable rib-
bon graph, establishing the connection with the enumeration defined in Chapter 5. Specifically, in Chapter 5,
I define the lattice point enumeration as a count of branched covers of CP1 satisfying particular conditions;
in Section 3.3 I will define the combinatorial object that is associated to this count and I will describe the
sense in which this combinatorial object—the stable ribbon graph—enumerates lattice points inMg,n.

3.2 Maps and fully simple maps

3.2.1 Maps

One can informally think of a map as a way to glue polygons to form a surface. A formal definition of a
map that captures this intuition is as follows.

De�nition 3.2.1 (Map). A map is a finite graph embedded in a compact oriented surface such that the
complement of the graph on the surface is a disjoint union of topological disks, called faces.

A half-edge, or oriented edge, is an edge with a choice of orientation. A half-edge is adjacent to the face on its
left and incident to the vertex to which it points. Choose n faces to be marked and label these 1, 2, . . . , n;
these are called boundary faces while other faces are internal faces. The number of half-edges adjacent to a
face is the degree of that face. If the underlying surface has genus g and n boundary faces, then the map is
said to be of type (g, n).

Two maps are isomorphic if there exists an orientation-preserving homeomorphism of the underlying surface
that maps all vertices, half-edges and faces of the first map bijectively to the second, preserving all incidences,
adjacencies and labelled boundary faces.

A ribbon graph is a map without internal faces.

Example 3.2.2. In Figure 3.1 the diagram (1) is not a map — one component of the graph’s complement
is not homeomorphic to a disk. Diagrams (2)-(5) display maps of type (1, 1), (0, 2), (0, 1), (0, 1) and (2, 2)

respectively. Although diagrams (3)-(5) are drawn on the plane, we consider them as graphs on the sphere
by compactifying the plane.

1

(1)

1

(2)

1

2

(3)

1

(4)

1

(5)

1

2

(6)

Figure 3.1: Clockwise from top-left the diagrams depict: (1) a graph embedded on a surface that is not a
map; and (2-5) maps of type (1, 1), (0, 2), (0, 1), (0, 1) and (2, 2) respectively.
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Remark 3.2.3. Note that Definition 3.2.1 includes as a map the graph of a single vertex on the sphere,
sometimes referred to as a degenerate map. It will be convenient to indeed consider this as a map, although
it will need to be treated separately when discussing the permutation model below.

A sidebar on rooted maps. Instead of choosing n boundary faces, one can alternatively choose n half-edges
adjacent to distinct faces and dictate that these are boundary faces; in essence, each boundary face has a
distinguished adjacent half-edge. The corresponding objects are called rooted maps, defined below, and are
the objects defined and used in related literature such as the work of Borot, Charbonnier, Do and Garcia-
Failde [6] and Garcia-Failde [58]. The enumeration of rooted maps introduces a simple combinatorial factor
when compared to the unrooted analogue.

De�nition 3.2.4 (Rooted map). A rooted map is a map along with a tuple of distinct half-edges, called roots
and depicted by arrows, such that no two are adjacent to the same face. The faces adjacent to the roots are
the boundary faces.

Two rooted maps are isomorphic if there exists an orientation-preserving isomorphism of the underlying
maps that preserves the tuple of roots.

Although this thesis will primarily discuss maps rather than rooted maps, it will be useful for both objects
to be defined for maximum versatility.

1

Figure 3.2: A rooted map, where the root is represented by an arrow.

Definition 3.2.1 allows for distinct boundary faces to intersect via edges or vertices, or for a boundary face
to intersect with itself. In Figure 3.1, (3) has two distinct boundary faces that intersect at a common vertex,
while (4) shows a map in which a boundary face intersects itself along an edge. Informally, a map is fully
simple if it does not exhibit these types of behaviour. This is captured in the following definition.

De�nition 3.2.5 (Fully simple map). A half-edge of a map is a boundary edge if it is adjacent to a boundary
face. A map is fully simple if each vertex is incident to at most one boundary edge.

In instances of ambiguity, the class of all maps may be referred to as ordinary maps to distinguish from the
subclass of fully simple maps.

A sidebar on simple maps. There is also a notion of a simple map in which boundary faces are not allowed
to intersect themselves at vertices or along edges, but distinct boundary faces are allowed to intersect. A
simple map can include the behaviour seen in (3) in Figure 3.1, but not the behaviour seen in (4). The
notion of a simple map will not arise naturally in this thesis and their definition is merely included here for
completeness.

In Figure 3.1, (2), (5) and (6) are examples of fully simple maps, (3) is simple but not fully simple, and (4)
is not simple and hence not fully simple.

Thinking about fully simple maps informally as ordinary maps where the boundary faces are not self-adjacent
may lead one to the conclusion that the map depicted in Figure 3.3 is not fully simple. However, referring
to the definition of fully simple maps, Definition 3.2.5, we see that the two half-edges are boundary edges
and the two vertices are incident to precisely one boundary edge each. Thus, the unique map consisting of
one degree two boundary face and no internal faces is indeed fully simple.
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1

Figure 3.3: The slightly surprising fully simple map with one degree two boundary face and no internal
faces.

A map is connected if the underlying surface is connected and disconnected otherwise. Note that we define
the genus for a disconnected surface by taking the Euler characteristic to be additive over disjoint union.
In particular, this implies that the genus of a disconnected surface can be negative. Although we ultimately
strive to calculate enumerations for connected maps, for our analysis in Chapter 7 on fully simple maps it
will be necessary to first consider the possibly disconnected enumeration, and thus here I introduce both
the connected and possibly disconnected objects.

3.2.2 Permutation model

What additional information does one need to attach to a graph in order to define a map? Considering a
neighbourhood of a vertex in a map, we see that the embedding imposes a cyclic ordering of the half-edges
about the vertex, arising from the orientation of the underlying surface. For example, the two diagrams
shown in Figure 3.4 depict the same graph but two distinct maps—the left map has two faces of degrees 7
and 3, while the right map has two faces both of degree 5. This notion of the cyclic ordering of edges about
a vertex can be captured by a permutation of the half-edges, and this idea leads to the permutation model
for maps. Although I aim to give a complete and accessible definition of the permutation model for maps,
the interested reader may refer to work of Lando and Zvonkin [79] for an alternate introduction. One should
note that the conventions here di�er to those used in this reference.

Figure 3.4: The two diagrams depict maps that are not isomorphic, yet their underlying graphs are iso-
morphic.

In the following, I will represent an edge as a two-way street, as in Figure 3.5. (Because I live in Australia)
I will opt for the convention where we “drive on the left side of the road”. More precisely, if you view edges
from the point of view of a vertex, then the half-edges incident to that vertex are on the right; see Figure 3.6
to observe this perspective.

We then define a permutation on the set of half-edges of a map that rotates each half-edge anticlockwise
about the vertex to which it is incident. This encodes the cyclic ordering of the half-edges about the vertices
of a map; the choice of anticlockwise rotation is consistent with the conventional orientation of a surface.

This information, however, is not yet su�cient to recover a map. Currently, the cyclic ordering of edges
about each vertex gives local information of how the half-edges are organised about each vertex, but no
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Figure 3.5: The two half-edges comprising a single edge viewed as a “two-way street” where convention
dictates that we drive on the left.

global information of how the half-edges are glued to form a map. To define a map, it su�ces to further
define a permutation that prescribes how the half-edges are glued together to create edges. That is, define a
permutation that swaps every pair of half-edges belonging to the same underlying edge. The information of
this permutation (swapping half-edges) coupled with the previous (anticlockwise rotation of edges about a
vertex) recover a unique map. As we will see, it will be convenient to furthermore define a third permutation
that rotates half-edges anticlockwise about the face to which they are adjacent.

We can now introduce the permutation model for ordinary maps. The correspondence described will be
between triples of permutations and labelled maps. A labelled map is a map where the half-edges are labelled
with the integers 1, 2, . . . , d, where d is the number of half-edges.

The information of a labelled ordinary map is encoded in a triple of permutations (σ0, σ1, σ2) ∈ Sd acting
on the set of labelled half-edges in the following way:

• σ0 rotates half-edges anticlockwise about the vertices to which they are incident;

• σ1 is a fixed point free involution that swaps half-edges belonging to the same underlying edge; and

• σ2 rotates half-edges anticlockwise about the faces to which they are adjacent.

It follows that σ0σ1σ2 = id, where I use the convention of multiplying permutations from right to left.
Further, to choose the n boundary faces required in Definition 3.2.1 it su�ces to choose a tuple B of n
distinct cycles of σ2. See Figure 3.6 for a depiction of the actions of σ0, σ1 and σ2.

From now on, I will write (σ0, σ1, σ2, B); these will be the objects in bijection with labelled maps.

e = σ0σ1σ2(e)

σ2(e)

σ1σ2(e)

σ1(e)

σ0(e)

Figure 3.6: A local diagram of a vertex depicting the actions of σ0, σ1 and σ2 on a half-edge e. Edge labels
in pink show why one has σ0σ1σ2 = id.

From the way the permutation model was constructed, this automatically leads to the following bijection
between the set of labelled maps and the set of tuples (σ0, σ1, σ2, B). And further, there is a correspondence
between isomorphism classes of these objects, hence to state the equivalence fully we first need the notion
of an isomorphism of triples of permutations. An isomorphism between (σ0, σ1, σ2, B) and (σ′0, σ

′
1, σ
′
2, B

′) is
a permutation φ ∈ Sd that satisfies σ′i = φσiφ

−1 for i ∈ {0, 1, 2} and sends B to B′.



32 3. Maps

Proposition 3.2.6. There is a one-to-one correspondence between labelled ordinary maps (excluding the map consisting
of a single vertex on the sphere) and tuples (σ0, σ1, σ2, B), where σ0, σ1, σ2 ∈ Sd, σ1 is a �xed point free involution,
σ0σ1σ2 = id, and B is a tuple of distinct cycles in σ2.

Further, there is a one-to-one correspondence between isomorphism classes of ordinary maps (excluding the map consisting
of a single vertex on the sphere) and isomorphism classes of triples of permutations σ0, σ1, σ2 ∈ Sd such that σ1 is a
�xed point free involution and σ0σ1σ2 = id, along with a tuple B of distinct cycles in σ2.

The subgroup generated by the triple, 〈σ0, σ1, σ2〉 6 Sd, acts transitively on {1, 2, . . . , d} if and only if the
corresponding labelled ordinary map is connected.

I may refer to a tuple (σ0, σ1, σ2, B) as a combinatorial map in contrast to the object from Definition 3.2.1
which I may call a topological map.

The automorphism group of a labelled map depends only on the underlying map and not on any choice
of labelling. This allows us to define the automorphism of a (topological) map as an automorphism of
the associated combinatorial map. Thus, define an automorphism of a map to be an automorphism of a
corresponding tuple (σ0, σ1, σ2, B); that is, a permutation φ ∈ Sd that satisfies σi = φσiφ

−1 for i ∈ {0, 1, 2}
and sends B to B.

Example 3.2.7. Figure 3.7 shows a labelled map, and the corresponding triple of permutations is

σ0 = (1863)(2)(45)(7)

σ1 = (15)(23)(46)(78)

σ2 = (1234)(5678).

And one can verify that

σ−1
1 σ−1

0 = (15)(23)(46)(78) ◦ (1368)(45) = (1234)(5678) = σ2,

or equivalently that σ0σ1σ2 = id.

32

78

1

6

4

5

Figure 3.7: One way to represent a labelled map.

As observed above, from the information of the tuple (σ0, σ1, σ2, B), one can construct the labelled topo-
logical map. However, if one were to write down all d! labellings of the same underlying topological map,
not all of these would be unique combinatorial maps. The orbit-stabiliser theorem tells us that the ratio
between the size of the isomorphism class of the tuple (σ0, σ1, σ2, B)—denoted |orb(σ0, σ1, σ2)|—and the
total number of labellings, d!, is precisely the number of automorphisms of the combinatorial map. That is,

d! = |Aut(σ0, σ1, σ2)| · |orb(σ0, σ1, σ2)|.
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Example 3.2.8. Figure 3.8 shows all 4! labellings of the ordinary map with one degree four boundary
face and no internal faces. Each labelled map has a “partner” which is represented by the same tuple
(σ0, σ1, σ2, B), signifying a non-trivial automorphism between them. By the orbit-stabiliser theorem

24 = d! = |Aut(σ0, σ1, σ2)| · |orb(σ0, σ1, σ2)| = 2 · 12,

as expected. (“As expected” because we secretly knew that this map has two automorphisms, though usually
one might use the orbit-stabiliser theorem to calculate the number of automorphisms of a topological map.)
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Figure 3.8: All possible relabellings of the ordinary map with one degree four boundary face and no internal
faces. The two maps drawn in pink are represented by the same tuple (σ0, σ1, σ2, B), signifying a non-trivial
automorphism between them.

The following example demonstrates an isomorphism of combinatorial maps.

Example 3.2.9. Figure 3.9 shows three labellings of the same topological map. The leftmost two diagrams
represent the same labelled map (σ0, σ1, σ2, B), demonstrating a non-trivial automorphism φ ∈ Sd satisfying
φσiφ

−1 = σi for i ∈ {0, 1, 2} and φ(B) = B. The outer two labellings depict isomorphic combinatorial
maps. The triples of permutations for the outer two maps are

σ0 = (1 8)(2 7 10)(3 9)(4 12 5)(6 11) σ′0 = (1 9)(2 12 10)(3 11)(4 6 8)(5 7)

σ1 = (1 5)(2 8)(3 10)(4 9)(6 12)(7 11) σ′1 = (1 12)(2 3)(4 9)(5 10)(6 11)(7 8)

σ2 = (1 2 3 4)(5 6 7 8)(9 10 11 12) σ′2 = (1 4 7 10)(2 5 8 11)(3 6 9 12)

B = (5 6 7 8) B′ = (2 5 8 11).

The isomorphism is given by φ = (1 3 9)(2 6 5)(4 12 10)(7 8 11), and one can again verify that φσiφ−1 = σ′i
for i ∈ {0, 1, 2} and φ(B) = B′.

By considering the combinatorics of graph isomorphisms, one can reason that any labelling of this topo-
logical map has only two automorphisms, the identity and the one that corresponds to the automorphism
between the leftmost two diagrams in Figure 3.9. To see this, consider the half-edge labelled 5 in the leftmost
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map. It is incident to a 3-valent vertex, and adjacent to the boundary face. Hence this half-edge must either
stay where it is or be sent to the edge labelled 7, allowing us to deduce that the number of automorphisms
is at most two. Yet, Figure 3.9 shows that both of these choices give rise to valid automorphisms. So the
number of automorphisms is exactly two. Because an isomorphism between maps must preserve all adja-
cencies and incidences, the image of one half-edge determines the images of all half-edges, as long as the
maps are connected.
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Figure 3.9: Three labellings of the same topological map. The two labellings on the left are the same labelled
map, while the outer labellings represent isomorphic maps.

The condition for an ordinary map to be fully simple in the permutation model can be given as follows. For
a combinatorial map (σ0, σ1, σ2, B), let B be the union of half-edges in B. The map is fully simple if and
only if the elements of B lie in di�erent σ0-orbits.

Finally, I will briefly describe the one-to-one correspondence by outlining how to obtain a triple of permuta-
tions from a map and vice versa. (The forward direction was loosely and intuitively described by way of
motivation at the start of this section, but I restate it here more precisely.) Begin with a map and label the
half-edges. There is no canonical way to do this, but recall that the correspondence is between isomorphism
classes of both maps and triples of permutations. Now one can write down the permutations σ0, σ1 and
σ2: the cycles of σ0 are given by the anticlockwise rotation of half-edges about a vertex; σ1 is a fixed point
free involution associating a pair of half-edges to an underlying edge; and the cycles of σ2 are given by the
anticlockwise rotation of half-edges incident to a face. By the construction of the permutation model, it then
follows that σ0σ1σ2 = id and one can indeed check that σ2 = σ−1

1 σ−1
0 .

Conversely, begin with a triple of permutations (σ0, σ1, σ2) and construct a map as follows. Associate to
each cycle of σ2 of length k a polygon of degree k, where the sides of the polygon are half-edges labelled
and oriented anticlockwise according to the cycle. Next glue half-edges together according to σ1 such that
the orientation of two half-edges being glued is always opposite. The result will be a surface where the
embedded graph is given by the edges and vertices of the polygons. The cyclic ordering of the vertices will
automatically be glued according to σ0 = σ−1

2 σ−1
1 .

3.2.3 Maps as branched covers of the sphere

In addition to the permutation model, maps are also in natural bijection with certain branched covers of
CP1. The bijection occurs in the following way. For an ordinary map of type (g, n) realised by permutations
(σ0, σ1, σ2) one can associate a branched cover f : (C; p1, . . . , pn) → (CP1;∞) from a genus g compact
Riemann surface C with n marked points p1, . . . , pn satisfying the following conditions.

• The degree of f is equal to the sum of the degrees of all faces of the corresponding map, and is
unramified over CP1 \ {0, 1,∞}.

• The monodromy around 0, 1, and∞ ∈ CP1 is given by σ0, σ1, and σ2 respectively.

For a tuple (p1, . . . , pn), the notation f : (C; p1, . . . , pn)→ (CP1;∞) denotes a map f : C → CP1 that satisfies
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f(pi) =∞ for all i ∈ {1, 2, . . . , n}.

Given a morphism satisfying the above conditions, one obtains the corresponding map by taking the preim-
age f−1([0, 1]). The preimages of 0 ∈ CP1 are the vertices of the map; the preimages of 1 ∈ CP1 are the
midpoints of the edges; and the preimages of ∞ ∈ CP1 are the centres of the faces of the map. The faces
containing the marked points p1, . . . , pn correspond to the boundary faces labelled 1, . . . , n respectively.

Conversely, for any triple of permutations (σ0, σ1, σ2) satisfying σ0σ1σ2 = id the Riemann existence theorem
guarantees that there exists a unique holomorphic map f : C → CP1 ramified only at 0, 1, and∞ that realises
(σ0, σ1, σ2) as its monodromy representation. Here, C is a possibly disconnected compact Riemann surface.
A statement and proof of this theorem can be found in [22].

This point of view is particularly useful for the perspective used in Section 3.3.1 to identify so-called stable
ribbon graphs as lattice points in the Deligne–Mumford compactification of the moduli space of curvesMg,n.

3.2.4 Generating functions

The following generating functions for the enumerations of ordinary maps and fully simple maps will be
useful in Chapter 7.

De�nition 3.2.10. Let µ1, . . . , µn be positive integers, and define M◦g,n(µ1, . . . , µn) to be the weighted
enumeration of (isomorphism classes of) connected genus g ordinary maps with n boundary faces such that
the degree of boundary face i is µi. The weight of each map M is given by

se(M)

|Aut M |
t
f1(M)
1 t

f2(M)
2 t

f3(M)
3 · · · ,

where fi(M) is the number of internal faces of degree i, e(M) denotes the number of edges of M , and
|AutM | is the number of automorphisms ofM . Define FS◦g,n(µ1, . . . , µn) to be the analogous enumeration of
connected fully simple maps, and let M•g,n(µ1, . . . , µn) and FS•g,n(µ1, . . . , µn) be the analogous enumerations
for possibly disconnected maps and fully simple maps respectively.

Define R◦g,n(µ1, . . . , µn) to be the weighted enumeration of ribbon graphs with n faces such that the degree
of boundary face i is µi. The weight of each ribbon graph R is given by

s|µ|/2

|Aut R|
.

Here, |µ| = µ1 + · · · + µn. Let R•g,n(µ1, . . . , µn) be the analogous enumeration for possibly disconnected
ribbon graphs.

Finally, let M̂◦g,n, F̂S
◦
g,n, R̂

◦
g,n and and M̂•g,n, F̂S

•
g,n, R̂

•
g,n denote the corresponding generating functions for

the rooted connected and rooted disconnected enumerations respectively (see Definition 3.2.4).

The enumeration of ribbon graphs is indeed equal to the enumeration of ordinary maps with no internal
faces. That is, Rg,n(µ1, . . . , µn) = Mg,n(µ1, . . . , µn)

∣∣
ti=0

.

The inclusion of the formal parameter s in the definitions of the generating functions is not necessary since
it can be recovered from the remaining parameters in the generating function. However, it can be useful to
make use of the operator ∂

∂s , which appears in the evolution equations for these enumerations and is utilised
in Chapter 7 on fully simple maps.

The generating functions Mg,n and FSg,n are formal power series in the t-variables; that is,

M◦g,n(µ1, . . . , µn),FS◦g,n(µ1, . . . , µn),M•g,n(µ1, . . . , µn),FS•g,n(µ1, . . . , µn) ∈ Q[[t1, t2, . . .]]

M̂◦g,n(µ1, . . . , µn), F̂S
◦
g,n(µ1, . . . , µn), M̂•g,n(µ1, . . . , µn), F̂S

•
g,n(µ1, . . . , µn) ∈ Q[[t1, t2, . . .]].

For maps of type (g, n) with boundary face degrees given by µ1, . . . , µn, one can obtain the enumeration of
ordinary maps with prescribed internal face degrees from Mg,n(µ1, . . . , µn) by extracting the appropriate
coe�cient of t-monomials.
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Finally, as alluded to in Section 3.2.1, the enumeration of maps and rooted maps are related by a combin-
atorial factor. In fact, the enumeration of rooted maps are obtained from the unrooted enumeration by
multiplying by the product of the boundary face degrees. That is, for µ1, . . . , µn positive integers,

M̂•g,n(µ1, . . . , µn) = µ1 · · ·µnM•g,n(µ1, . . . , µn),

and similarly for FS•g,n and R•g,n. The reason for this is straightforward: for the boundary face labelled i,
there are µi choices for the root.

Example 3.2.11. Consider connected ordinary maps on the sphere with one boundary face of degree
four that are quadrangulations; that is, all internal faces are of degree four. The corresponding generating
function is then given by setting ti = 0 for all i 6= 4 which yields

M◦0,1(4)
∣∣∣ti=0
i6=4

=
1

2
s2 +

9

4
t4s

4 +
27

2
t24s

6 +
189

2
t34s

8 + 729t44s
10 + · · · . (3.1)

Figure 3.10 shows (1) the only ordinary map with one boundary of degree four and no internal faces, as
well as (2) the set of ordinary maps with one boundary and one internal face, both of degree four. The sizes
of the automorphism groups for these maps are 2, 4, 1 and 1, respectively, and hence one can see that these
enumerations correspond to the first two terms in the generating function M◦0,1(4) above.

In Figure 3.10, only the second map from the left is fully simple. The corresponding generating function
for fully simple maps is

FS◦0,1(4) =
1

4
t4s

4 +
5

2
t24s

6 +
45

2
t34s

8 +
405

2
t44s

10 + · · · .

The data for both the ordinary map and fully simple map generating functions have been calculated via
SageMath [98], the latter using the results from Chapter 7.

(1) (2)

Figure 3.10: Ordinary maps with one boundary face and (1) zero internal faces or (2) one internal face, all
of degree four. The sizes of the automorphism groups for these maps are, from left to right, 2, 4, 1 and 1

respectively.

A sidebar on enumerating ordinary and fully simple maps. The data in Example 3.2.11 for ordinary maps has
been calculated via SageMath using the following relation to ribbon graphs:

M◦g,n(µ1, . . . , µn) =
∑
ν∈P

R◦g,n(~µ, ~ν)
~tν

|Aut ν|
s
|ν|
2 . (3.2)

Here, P is the set of all partitions, |ν| = ν1 + · · · + ν`(ν), ~tν is a shorthand notation for the monomial
tν1 · · · tν`(ν) , and |Aut ν| denotes the number of automorphisms of the partition ν. Equation (3.2) can be
proven in a straightforward combinatorial manner by proving that the coe�cient of tν on each side is equal.

In SageMath, the sum in (3.2) has been calculated up to partitions ν of size 10 and R◦g,n has been calculated
using the Tutte recursion for ribbon graphs; see Proposition 3.2.12 in Section 3.2.5 and restrict to ribbon
graphs by setting ti = 0 for all positive integers i.
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3.2.5 Tutte recursion

Tutte first derived a combinatorial recursion for genus 0 rooted maps with one boundary in 1963 [105]. This
was then generalised to higher genus by Walsh and Lehman [106]. The idea behind the recursion for genus
0 rooted ordinary maps with one boundary face is as follows. Begin with an ordinary map on the sphere
and remove the rooted edge from the first marked face; that is, the marked face labelled 1. Let the degree
of this face be µ. The edge removed separates two faces and either these two faces are the same or they are
di�erent. In the former case, the result after removing the chosen edge (and cutting the surface into two
and patching each component with disks) is two genus 0 maps, each having one boundary face with lengths
α and β where α + β = µ − 2. Alternatively, the edge removed separates two distinct faces in which case
the other face is an internal face of some degree, say j. Removing the chosen edge results in a new map
with boundary length µ + j − 2 and one fewer internal face of degree j. In either case the rooted edges
on new boundary faces are chosen canonically by the cyclic ordering of the edges at the vertices. That is,
after removing the rooted edge e, in the first case we choose the edges σ0(e) and σ0σ1(e) to be the two new
rooted edges, and in the latter case we choose σ0(e).

This leads to the following recursion

1

s
M̂◦0,1(µ) =

∑
α+β=µ−2

M̂◦0,1(α)M̂◦0,1(β) +
∑
t>1

tjM̂
◦
0,1(µ+ j − 2),

valid for all µ > 0, and with the base case given by M̂◦0,1(0) = 1 (recall the so-called degenerate map
in Remark 3.2.3).

The generalisation of this bijection to all genus g involves a number of new options, however all cases
are again mutually exclusive and the combinatorial analysis follows through in a similar manner. For a
discussion of the combinatorics behind the generalised Tutte equation, see previous work of Eynard [45].

Proposition 3.2.12 (Tutte recursion). Let S = {2, 3, . . . , n}. For all (g, n) and µ1 + · · ·+ µn > 0, connected
(rooted) ordinary maps satisfy the following recursion:

1

s
M̂◦g,n(µ1, . . . , µn)

=

n∑
i=2

µiM̂
◦
g,n−1(µ1 + µi − 2, ~µS\{i}) +

∑
j>1

tjM̂
◦
g,n(µ1 + j − 2, ~µS)

+
∑

α+β=µ1−2

[
M̂◦g−1,n+1(α, β, ~µS) +

∑
g1+g2=g

ItJ={2,...,n}

M̂◦g1,|I|+1(α, ~µI)M̂
◦
g2,|J|+1(β, ~µJ)

]
.

For I = {i1, . . . , ik}, the shorthand notation ~µI denotes µi1 , . . . , µik . Along with the base case given byM◦0,1(0) = 1,
this uniquely determines the value of M̂◦g,n(~µ) for all g, n and ~µ.

Note the 1/s factor on the left side, which arises from the fact that the s-parameter in the definition of
Mg,n(µ1, . . . , µn) keeps track of the number of edges. The Tutte recursion acts by removing an edge, hence
the number of edges after applying the Tutte recursion has been reduced by one.

3.3 Stable ribbon graphs

3.3.1 Counting lattice points inMg,n

The goal of this section is to describe the correspondence between certain branched covers, so-called
stable ribbon graphs and lattice points in the Deligne–Mumford compactification of the moduli space of
curvesMg,n. In some sense, this is a compactified version of a simpler correspondence between branched
covers, ribbon graphs and lattice points in the uncompactified moduli space of curvesMg,n. To motivate
and provide context for the former correspondence I will first describe the latter.
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But first I provide a brief definition of the moduli spacesMg,n andMg,n. Complete and precise definitions
of these spaces are quite subtle and ideally framed in the language of stacks; providing a complete and
precise definition here would take me too far afield of the scope of this thesis. For a full introduction to
moduli spaces of curves I refer the reader to the book of Harris and Morrison [68], while for more on stacks,
see The Stacks Project [71]. Define the moduli space

Mg,n =

{
(C; p1, . . . , pn)

∣∣∣∣∣ C is a smooth algebraic curve of genus
g with n distinct points p1, . . . , pn

}/
∼

where (C; p1, . . . , pn) ∼ (D; q1, . . . , qn) if there exists an isomorphism from C to D that sends pi to qi for all
i ∈ {1, 2, . . . , n}.

The spaceMg,n is not compact. While there are many ways to compactify this moduli space, the Deligne–
Mumford compactification will be relevant to the work described here. The Deligne–Mumford compactific-
ation broadens the definition of the space to allow stable algebraic curves. Hence, define the space

Mg,n =

{
(C; p1, . . . , pn)

∣∣∣∣∣ C is a stable algebraic curve of genus g
with n distinct smooth points p1, . . . , pn

}/
∼

where (C; p1, . . . , pn) ∼ (D; q1, . . . , qn) if there exists an isomorphism from C to D that sends pi to qi for all
i ∈ {1, 2, . . . , n}. An algebraic curve is stable if it has at worst nodal singularities and a finite automorphism
group. All smooth algebraic curves are stable, henceMg,n ⊆Mg,n.

This describes the moduli spaces as sets, but they are actually endowed with a lot of geometric structure.
In particular, they can be considered as orbifolds, varieties, schemes or stacks. Furthermore, the orbifold
structure arises from curves with non-trivial automorphisms and means that we will consider the cohomology
with rational (as opposed to integer) coe�cients.

As described in Section 3.2.3, maps are in one-to-one correspondence with certain branched covers of CP1.
For the sake of completeness and clarity, I will briefly describe this correspondence explicitly in the context
of ribbon graphs. Recall from Definition 3.2.1 that a ribbon graph is a map with no internal faces. More
concretely, a ribbon graph of type (g, n) is a finite graph embedded on a compact oriented genus g surface
such that the complement of the graph on the surface is a disjoint union of n topological disks which are
labelled 1 to n.

In this section, we restrict our attention to ribbon graphs where the degree of every vertex is at least two,
motivated by the connection between ribbon graphs and moduli spaces of curves. For this reason, I give a
definition for the following enumeration, which is analogous to Rg,n(µ1, . . . , µn) from Definition 3.2.10.

De�nition 3.3.1. Let µ1, . . . , µn be positive integers. Define Ng,n(µ1, . . . , µn) to be the weighted enumer-
ation of isomorphism classes of connected genus g ribbon graphs with n boundary components, where the
degree of every vertex is at least two and the degree of the boundary component labelled i is µi. The weight
of each such ribbon graph R is

1

|Aut R|
.

For a ribbon graph of type (g, n) with boundary degrees given by µ1, . . . , µn, one can associate a branched
cover f : (C; p1, . . . , pn) → (CP1;∞) from a compact genus g Riemann surface C with n marked points
p1, . . . , pn satisfying the following conditions.

• The degree of f is equal to the sum µ1 + · · ·+ µn and is unramified over CP1 \ {0, 1,∞}.

• The ramification profile of ∞ ∈ CP1 is (µ1, . . . , µn), where pk ∈ C has ramification index µk for
k ∈ {1, 2, . . . , n}.

• The ramification profile of 1 ∈ CP1 is (2, 2, . . . , 2) and each point in the preimage of 0 ∈ CP1 has
ramification index at least 2.



3.3. Stable ribbon graphs 39

The corresponding ribbon graph can be obtained by considering the preimage of the line segment between
0 ∈ CP1 and 1 ∈ CP1; that is, by considering f−1([0, 1]) ⊂ C. The labelling of the points p1, . . . , pn gives
rise to the labelling of the faces of the ribbon graph. Let Zg,n(µ1, . . . , µn) ⊂ Mg,n be the set of genus g
Riemann surfaces C—or equivalently the set of genus g smooth complex algebraic curves—such that there
exists a morphism f : C → CP1 with the properties described above. Note that if a smooth curve admits
such a morphism then that morphism is unique. Furthermore, the automorphisms of the curve and of
the morphism agree. See Remark 1.3 in [35]. Hence, the weighted enumeration of such curves equals the
enumeration of such morphisms.

The sense in which ribbon graphs enumerate lattice points in the uncompactified moduli spaceMg,n is due
to a cell decomposition of the decorated moduli space of curves, proved independently by Harer [67] using
Strebel di�erentials, and by Penner [94] using hyperbolic geometry. Specifically, to each smooth genus g
curve with n marked points, each decorated by a positive real number, one can associate a metric ribbon
graph of type (g, n). A metric ribbon graph is a ribbon graph whose vertex degrees are at least three and which
has a positive real number associated to each edge. This association allows one to decompose the decorated
moduli space of curves into cells

Mg,n × Rn+ ∼=
⊔
Γ

PΓ,

where the union is over ribbon graphs Γ of type (g, n) whose vertex degrees are at least three, and the cell
PΓ consists of all metric ribbon graphs whose underlying ribbon graph is Γ. Fixing n positive real numbers
(b1, . . . , bn) ∈ Rn+, we obtain the following decomposition from the previous one

Mg,n
∼=
⊔
Γ

PΓ(b1, . . . , bn),

where the union is again over ribbon graphs Γ of type (g, n) whose vertex degrees are at least three, and
PΓ(b1, . . . , bn) is the set of metric ribbon graphs with boundary lengths given by b1, . . . , bn. Here, the
boundary length of a face in a metric ribbon graph is equal to the sum of the positive real numbers associated
to the edges adjacent to that face.

Originally proposed by Norbury [87, 88], one can restrict consideration to metric ribbon graphs of type (g, n)

with vertex degrees at least three and where the edge lengths are positive integers. Further, these objects
are in fact equivalent to ribbon graphs with vertex degrees at least two. To see this correspondence one
can simply consider an edge in a metric ribbon graph with an associated integer k as a path of k edges in a
ribbon graph. Norbury interprets such ribbon graphs as lattice points inMg,n and links their enumeration
with the geometry of the moduli space.

Kontsevich’s proof of Witten’s conjecture [75, 107] proceeds by calculating certain volumes of moduli spaces
of curves using the cell decomposition described above. Norbury’s lattice point count can be seen as a
discretisation of this volume calculation.

Therefore, Zg,n(µ1, . . . , µn) ⊂Mg,n is in bijection with ribbon graphs with vertex degrees at least two and
can be thought of as capturing the “lattice points” inMg,n. Further the automorphism group of the curve
agrees with the automorphism group of the ribbon graph. To enumerate the points in the set Zg,n, one
should take into account the natural orbifold nature ofMg,n by counting C ∈ Zg,n(µ1, . . . , µn) with weight
equal to one over the size of the automorphism group of C. This enumeration is equal to the orbifold Euler
characteristic of Zg,n(µ1, . . . , µn). This leads to the following result due to Norbury [87, 88],

Ng,n(µ1, . . . , µn) =
∑

C∈Zg,n(µ1,...,µn)

1

|Aut C|
= χ(Zg,n(µ1, . . . , µn)),

where Ng,n(µ1, . . . , µn) is the enumeration of connected ribbon graphs of type (g, n) with boundary face
degrees given by µ1, . . . , µn, as defined in Definition 3.3.1.

Do and Norbury [35] generalised this notion to the Deligne–Mumford compactification of the moduli space
of curvesMg,n. The generalisation is reasonably natural from the viewpoint of ribbon graphs as branched
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covers and the set Zg,n(µ1, . . . , µn). That is, instead of considering the set of smooth curves with an
associated morphism as described above, one can consider the set of stable curves with an associated
morphism satisfying certain conditions and respecting certain stability conditions, motivated by the notion
of a stable map in Gromov–Witten theory. This leads to the following definition.

De�nition 3.3.2. Let µ1, . . . , µn be positive integers, and define Zg,n(µ1, . . . , µn) ⊂ Mg,n to be the set
of genus g stable curves C ∈ Mg,n with n marked points p1, . . . , pn such that there exists a morphism
f : (C; p1, . . . , pn)→ (CP1;∞) satisfying the following conditions.

• The degree of f is equal to the sum µ1 + · · ·+ µn and is unramified over CP1 \ {0, 1,∞}.

• The ramification profile of ∞ ∈ CP1 is (µ1, . . . , µn), where pk ∈ C has ramification index µk for
k ∈ {1, 2, . . . , n}.

• The ramification profile of 1 ∈ CP1 is (2, 2, . . . , 2) and each point in the preimage of 0 ∈ CP1 has
ramification index at least 2 or is a node.

Unlike in the uncompactified case, the set Zg,n(µ1, . . . , µn) is no longer a finite set of points, and indeed also
contains components with positive dimension. For example, in the instance that a curve C ∈ Mg,n contains
a ghost component—that is, an entire component that is being mapped to 0—then it could be that that ghost
component may be continuously deformed to other curves Zg,n(µ1, . . . , µn), leading to a positive dimension
component. However, as in the uncompactified enumeration, Do and Norbury define the enumeration of
the set Zg,n(µ1, . . . , µn) via the orbifold Euler characteristic and argue that this enumeration is natural and
possesses interesting structure [35].

De�nition 3.3.3. For positive integers µ1, . . . , µn, define

Ng,n(µ1, . . . , µn) = χ(Zg,n(µ1, . . . , µn)).

3.3.2 Combinatorial construction

Given that there is a correspondence between lattice points ofMg,n and ribbon graphs via the set of stable
curves satisfying certain conditions, Zg,n(µ1, . . . , µn), it is natural to define the corresponding combinatorial
object in the case of Zg,n(µ1, . . . , µn) andMg,n. In this section, I define the notion of a stable ribbon graph.
These objects were previously defined by Kontsevich [75] as well as Do and Norbury [35]; for a more thorough
introduction I refer the reader to these references. The exposition in this section is largely based on the
work of Do and Norbury [35, Section 2].

The idea is as follows. From a map f : (C; p1, . . . , pn) → (CP1;∞) satisfying the conditions of Defini-
tion 3.3.2 we would like to associate a combinatorial object—a stable ribbon graph—from which the stable
curve C ∈ Mg,n can be uniquely obtained. Morally, the stable ribbon graph captures the pre-image
f−1([0, 1]). If a component of C maps to CP1 with positive degree, the inverse image of [0, 1] on this
component will be a ribbon graph, where the nodes—that must map to 0—are distinguished vertices. If
a component, or a connected collection of components, of C maps to 0 ∈ CP1 with degree 0, then this
component is one of the so-called ghost components and becomes a distinguished vertex in the resulting
stable ribbon graph. To be able to recover this entire component from the resulting stable ribbon graph, we
require only its genus. Thus we store the genus of these ghost components via a genus function defined on
the vertices corresponding to ghost components.

The stable ribbon graph then becomes the information of the ribbon graphs associated to each component
of C that maps under f with positive degree; a set of distinguished vertices containing both the vertices that
correspond to the nodes (where two vertices will be identified) along with the vertices that correspond to
the ghost components; and a genus function defined on this set of distinguished vertices that records the
genus of the ghost components that was collapsed or 0 for a node. This leads to the following definition.

De�nition 3.3.4. A stable ribbon graph is a possibly disconnected ribbon graph along with the following
extra information:
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• a subset S of distinguished vertices;

• an equivalence relation ∼ on S; and

• a genus function h : S/∼ → {0, 1, 2, . . .} where for any equivalence class S0 ⊂ S, if |S0| = 1 then
h(S0) > 0.

An isomorphism between stable ribbon graphs is an isomorphism of the possibly disconnected ribbon graphs
that leaves S invariant and preserves ∼ and h.

Definition 3.3.4 has been previously introduced by Kontsevich [75] and separately by Do and Norbury [35].

As we do in the case of ribbon graphs, we would like to enumerate stable ribbon graphs according to their
genus and number of boundary components. The genus of a stable ribbon graph is defined to be the genus
of the underlying stable curve to which is is associated. The contributions to the genus come from the
genera of the original components, the genera of the ghost components (obtained via the genus function),
and any extra contributions arising from gluing components together to form “loops”.

To calculate the genus of the stable ribbon graph, we will use the notion of the dual graph of a stable ribbon
graph Γ. Denote by π0Γ the set of connected components of Γ. The genus of a connected component Γ′

of Γ is determined by 2− 2g(Γ′) = V (Γ′ \ S)− E(Γ′) + F (Γ′), where the set of distinguished vertices has
been removed.

Define the dual graph of a stable ribbon graph Γ, denoted G(Γ), to be the graph consisting of vertices
V = (S/∼)∪ π0Γ, edges E = S ∪F (Γ) and incidence relations given by inclusion. Extend the definition of
the genus function h to h : V (G(Γ)) → {0, 1, 2, . . .} by defining h(v) for some v ∈ V (G(Γ)) \ (S/∼) to be
equal to the genus of the corresponding connected component in π0Γ.

Calculate the genus of a stable ribbon graph Γ by

g(Γ) = b1(G(Γ)) +
∑

v∈V (G(Γ))

h(v),

where b1(G(Γ)) is the first Betti number of G(Γ).

The term with the first Betti number counts the genus contributed by the “loops” described above, while
the terms in the sum corresponding to v ∈ S/∼ contribute the genera of the ghost components and terms
corresponding to the remaining vertices contribute the genera of the connected components in π0Γ.

De�nition 3.3.5. For positive integers b1, . . . , bn, define Rstable
g,n (b1, . . . , bn) to be the set of isomorphism

classes of genus g stable ribbon graphs, connected after identification of vertices by ∼, with n boundary
components of lengths b1, . . . , bn, and where all valence 1 vertices are contained in S.

The following proposition states that the enumeration of Ng,n(b1, . . . , bn) given in Definition 3.3.3 matches
the enumeration of stable ribbon graphs [35].

Proposition 3.3.6 (Do and Norbury [35]). For positive integers b1, . . . , bn,

Ng,n(b1, . . . , bn) =
∑

Γ∈Rstable
g,n (b1,...,bn)

1

|Aut Γ|
∏

v∈S/∼

χ(Mh(v),n(v)),

where n(S0) = |S0| for an equivalence class S0 ⊂ S, and we de�ne χ(M0,2) := 1.

The proof of this proposition goes via the set Zg,n(b1, . . . , bn) in the following way. Given a morphism
f : C → CP1 satisfying the conditions given in Definition 3.3.2, one can construct a stable ribbon graph
as follows. First, as described earlier in Section 3.3.1, construct a ribbon graph Γ′ by Γ′ = f−1([0, 1]) \
{nodes, ghost components}, but note that in this case Γ′ is possibly disconnected and may have leaves;
that is, edges that don’t end in a vertex. Define a stable ribbon graph Γ to be the closure of Γ′ in the
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normalisation of C by adding vertices to the non-compact ends of Γ′. Define the subset of distinguished
vertices by S = Γ \Γ′ and dictate that two vertices are in the same equivalence class of S if they coincide in
the non-ghost components of C. Define h : S/∼→ {0, 1, 2, . . .} by dictating that the genus of an equivalence
class S0 ⊂ S is equal to the genus of the collapsed ghost component and zero if S0 corresponds to a node.

This process defines a map Zg,n(b1, . . . , bn)→ Rstable
g,n (b1, . . . , bn). This map is not one-to-one and indeed,

each stable ribbon graph describes a component of Zg,n(b1, . . . , bn); some of these components are points
and some are positive-dimensional. However, the weight of the orbifold Euler characteristic in Proposi-
tion 3.3.6 counts the stable ribbon graphs in precisely the necessary way such that the enumeration is equal
to Ng,n(b1, . . . , bn).



Chapter 4

Hurwitz numbers

4.1 Introduction

In the late nineteenth century, Hurwitz [69] studied enumerations of branched covers of the Riemann sphere
with prescribed ramification data. While interest in Hurwitz numbers lulled in the century that followed,
the last twenty-five years has seen a boom of activity in the Hurwitz theory literature. One major catalyst
for this boom is the rich mathematical structure discovered within single Hurwitz numbers, defined below.
In fact, single Hurwitz numbers have since been treated as an archetype for many similar problems and
generalisations in the enumerative geometry of curves.

This chapter reviews these major results for single Hurwitz numbers and provides a skeleton or prototype
for the generalisations of these results.

De�nition 4.1.1. The single Hurwitz number Hg,n(µ1, . . . , µn) is a weighted enumeration of isomorphism
classes of connected genus g branched covers of the Riemann sphere f : (C; p1, . . . , pn) → (CP1;∞) such
that

• the point pi ∈ f−1(∞) has ramification index µi for i ∈ {1, 2, . . . , n}; and

• all other branching is simple and occurs at m fixed points of CP1.

The weight of a cover is given by
1

m! |Aut f |
,

where Aut f is the group of automorphisms of f . An automorphism of a branched cover f : (C; p1, . . . , pn)→
(CP1;∞) is an isomorphism φ : C → C that preserves the marked points p1, . . . , pn and satisfies f ◦ φ = f .

Recall, for a tuple (p1, . . . , pn), the notation f : (C; p1, . . . , pn)→ (CP1;∞) denotes a map f : C → CP1 that
satisfies f(pi) =∞ for all i ∈ {1, 2, . . . , n}.

The factor of 1/m! is a normalisation factor which has become increasingly commonplace in the definition
of single Hurwitz numbers in the recent literature, primarily to enable cleaner statements for subsequent
results (for example, polynomiality and the ELSV formula; see below).

The number of simple branch points is related to the genus of the Riemann surface C and the tuple µ1, . . . , µn
via the Riemann–Hurwitz formula. Recall that the Riemann–Hurwitz formula for a given degree d non-
constant holomorphic map f : X → Y between Riemann surfaces is

χ(X) = χ(Y ) d−
∑
x∈X

(kx − 1),

where kx is the ramification index of f at x and χ(X) = 2−2g(X) relates the Euler characteristic ofX to its
genus. In the case of single Hurwitz numbers we are considering a genus g branched cover of the Riemann
sphere with prescribed ramification profile (µ1, . . . , µn) over∞ and simple ramification elsewhere.1 Letting

1Recall that rami�cation points live upstairs on C while branch points live downstairs on CP1. These definitions are infinitely elusive
and I personally find I have to re-recall them every time.

43



44 4. Hurwitz numbers

m be the number of branch points with simple ramification, the formula reduces to

2− 2g = 2d−
n∑
i=1

(µi − 1)−m

m = 2d+ 2g − 2− |µ|+ n,

where the notation |µ| denotes the sum of the parts: |µ| = µ1 + · · ·+ µn. Here, d is the degree of the map,
so d = |µ|, and in this case the Riemann–Hurwitz formula yields

m = 2g − 2 + n+ |µ|.

It was first observed and conjectured by Goulden, Jackson and Vainshtein [65] that single Hurwitz numbers
satisfy the following structural property.

Theorem 4.1.2 (Conjectured by Goulden, Jackson and Vainshtein [65], proven by Ekedahl, Lando, Shapiro
and Vainshtein [43]). For (g, n) satisfying 2g − 2 + n > 0, there exist symmetric polynomials Pg,n(µ1, . . . , µn) of
degree 3g − 3 + n such that

Hg,n(µ1, . . . , µn) =

[
n∏
i=1

µµii
µi!

]
Pg,n(µ1, . . . , µn). (4.1)

A proof of this polynomiality structure was obtained by Ekedahl, Lando, Shapiro, and Vainshtein as a direct
corollary of the celebrated ELSV formula, which relates single Hurwitz numbers to intersection theory on
moduli spaces of curves [43]. Specifically, their result is the following.

Theorem 4.1.3 (Ekedahl, Lando, Shapiro and Vainshtein [43]). For (g, n) satisfying 2g−2+n > 0, the single
Hurwitz number Hg,n(µ1, . . . , µn) satis�es

Hg,n(µ1, . . . , µn) =

n∏
i=1

µµii
µi!

∫
Mg,n

c(Λ∨)∏n
i=1(1− µiψi)

. (4.2)

Here,Mg,n is the Deligne–Mumford compactification of the moduli space of curves, c(Λ∨) is the total Chern
class of the dual Hodge bundle overMg,n, and ψi is the first Chern class of the cotangent line bundle to
the ith marked point. For a thorough introduction to the moduli space of curvesMg,n and its characteristic
classes, see the book of Harris and Morrison [68].

Further, Bouchard and Mariño [17] conjectured that single Hurwitz numbers are governed by topological
recursion. This conjecture was motivated by earlier work of Bouchard, Klemm, Mariño and Pasquetti [16]
on the remodelling conjecture, or BKMP conjecture, which states that Gromov–Witten invariants of toric
Calabi–Yau threefolds are governed by topological recursion. The conjecture for single Hurwitz numbers
arises as a particular limiting case of the BKMP conjecture. Specifically, the Bouchard–Mariño conjecture
is as follows.

Theorem 4.1.4 (Conjectured by Bouchard and Mariño [17], proven by Eynard, Mulase and Safnuk [49]).
The correlation di�erentials resulting from applying topological recursion to the spectral curve (C∗, x, y, ω0,2) with

x(z) = ln z − z, y(z) = z, ω0,2(z1, z2) =
dz1 dz2

(z1 − z2)2

satisfy

ωg,n(z1, . . . , zn) =
∑

µ1,...,µn>1

Hg,n(µ1, . . . , µn)

n∏
i=1

d exp(µix(zi)).

Note that for the topological recursion input data here, I have replaced the Torelli marking with ω0,2,
utilising local topological recursion instead of CEO. However this is not strictly necessary. Although x(z) is
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not meromorphic on all of CP1, the form dx(z) is, and this is ultimately what is required to apply topological
recursion. Thus, one could still treat the single Hurwitz numbers spectral curve as compact.

Since these results were proven, there has been a wealth of subsequent work to prove analogous results—
polynomiality, topological recursion, and ELSV-type formulas—for generalisations and variations of Hur-
witz numbers. Such variations (as well as combinations thereof) include weakly and strictly monotone, or-
bifold, and spin; see the introduction of [8] for a more extensive list of such results and references. Chapter 6
provides proofs of analogous results for double Hurwitz numbers, which generalise single and orbifold
Hurwitz numbers.

The present chapter provides an introduction to Hurwitz numbers, using as a framework the specific enu-
meration of single Hurwitz numbers. In particular, I aim to present some well-known results and techniques
used in Hurwitz theory in the setting of single Hurwitz numbers. This is the content of Section 4.2, which
comprises:

• Section 4.2.1 gives the classical equivalent formulation of single Hurwitz numbers via enumerations
of sequences of transpositions in the symmetric group Sd;

• Section 4.2.2 gives the cut-and-join recursion for single Hurwitz numbers, both at the level of the
enumeration and at the level of the partition function;

• Section 4.2.3 writes single Hurwitz numbers as a vacuum expectation in the semi-infinite wedge; and

• Section 4.2.4 performs an analysis on the semi-infinite wedge vacuum expectation to prove the poly-
nomiality for single Hurwitz numbers.

Section 4.3 briefly introduces two prominent variations of Hurwitz numbers—monotone and spin—that
have been the subject of recent study.

4.2 Single Hurwitz numbers

4.2.1 Hurwitz numbers via permutations

One can use the notion of monodromy to give an equivalent formulation of single Hurwitz numbers as
an enumeration of sequences of transpositions in the symmetric group satisfying certain conditions. To
motivate this equivalence, consider the following.

Let µ1, . . . , µn be positive integers. Let f : (C; p1, . . . , pn) → (CP1;∞) be a holomorphic map that has
ramification profile (µ1, . . . , µn) over∞, simple ramification at m fixed points, and is unramified elsewhere.
Let B ⊂ CP1 be the set of branch points of f .

Consider loops γ, α1, . . . , αm ∈ π1(CP1 \B, p), where γ is a simple loop based at p that separates ∞ from
the other branch points, and each αi separates the ith simple branch point, as shown in Figure 4.1. And
now consider the concatenation γ · α1 · · ·αm; the order has been chosen to match the orientation of the
underlying sphere. There exists a homotopy between γ · α1 · · ·αm and a loop that does not separate any
branch points, or equivalently, the constant loop; that is, the identity in π1(CP1 \B; p).

Recall the corresponding monodromy representation

ϕ : π1(CP1 \B; p)→ Sd

defined by α 7→ σα, where σα : f−1(p) → f−1(p) is an element of Sym(f−1(p)), and by labelling the d
preimages of p one can consider σα as an element in the symmetric group Sd on d elements. Standard
results on monodromy assert that the cycle type of the permutation σα depends only on the ramification
profile of the branch point it encloses. Specifically in our setting, γ has cycle type (µ1, . . . , µn) and αi has
cycle type (2, 1, . . . , 1) for all i ∈ {1, 2, . . . ,m}. And finally, given that the concatenation γ · α1 · · ·αm is
homotopic to the identity in the fundamental group, the composition σγσα1 · · ·σαm must equal the identity
permutation.
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This correspondence between representations and covers is surjective due to the Riemann existence theorem;
that is, for a representation φ : π1(Y \ B) → Sd, such that the image of π1(Y \ B) acts transitively on
{1, 2, . . . , d}, there is a connected Riemann surface X and a non-constant holomorphic map f : X → Y

that realises φ as its monodromy representation. Moreover, f and X are unique up to isomorphism. This
correspondence between representations and covers leads to the following theorem [22].

p

∞

α1 α2
αm

γ

Figure 4.1: Loops γ, α1, α2, . . . , αm on CP1.

Theorem 4.2.1. The single Hurwitz number Hg,n(µ1, . . . , µn) is equal to 1/(m! d!) multiplied by the number of
tuples (τ1, . . . , τm) of permutations in the symmetric group such that

• the cycles of τ1 · · · τm are labelled 1, 2, . . . , n such that cycle i has length µi for i ∈ {1, 2, . . . , n};
• τi is a transposition for all i ∈ {1, 2, . . . ,m}; and
• 〈τ1, . . . , τm〉 6 Sd acts transitively on {1, 2, . . . , d}.

Recall that d = |µ|. The factor of 1/d! arises from the fact that the d sheets of the cover are not naturally
labelled, but one naturally labels them to produce the monodromy data. As mentioned in Section 4.1,
the factor 1/m! is primarily aesthetic, and gives rise to cleaner formulas for polynomiality and the ELSV
formula.

Example 4.2.2. Calculate H0,2(2, 1) using Theorem 4.2.1. Here, the number of simple branch points, and
hence the number of transpositions required, is m = 2g − 2 + n + |µ| = 3. So to calculate H0,2(2, 1), one
enumerates the number of tuples (τ1, τ2, τ3) ∈ S3

3 such that τ1, τ2, τ3 are transpositions and τ1τ2τ3 has cycle
type (2, 1). Below I list all possible calculations of τ1τ2τ3 for τ1, τ2, τ3 transpositions in S3, where I multiply
permutations from right to left.

(12)(12)(12) = (12) (12)(12)(13) = (13) (12)(12)(23) = (23)

(12)(13)(12) = (23) (12)(13)(13) = (12) (12)(13)(23) = (13)

(12)(23)(12) = (13) (12)(23)(13) = (23) (12)(23)(23) = (12)

(13)(12)(12) = (13) (13)(12)(13) = (23) (13)(12)(23) = (12)

(13)(13)(12) = (12) (13)(13)(13) = (13) (13)(13)(23) = (23)

(13)(23)(12) = (23) (13)(23)(13) = (12) (13)(23)(23) = (13)

(23)(12)(12) = (23) (23)(12)(13) = (12) (23)(12)(23) = (13)

(23)(13)(12) = (13) (23)(13)(13) = (23) (23)(13)(23) = (12)

(23)(23)(12) = (12) (23)(23)(13) = (13) (23)(23)(23) = (23)
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The only tuples that do not contribute to H0,2(2, 1) are the three corresponding to the calculations above
highlighted in red text; these three triples of transpositions do not satisfy the transitivity condition. Note
that here the labelling of the cycles in τ1τ2τ3 does not a�ect the resulting Hurwitz number. Therefore,

H0,1(3) =
1

m! d!
· 24 =

1

3! 3!
· 24 =

2

3
.

The transitivity condition in Theorem 4.2.1 ensures the connectedness of the domain Riemann surface of
the branched cover. Relaxing this condition leads to an analogous enumerative problem where the source
surface may not be connected. The enumeration of such branched covers are called disconnected Hurwitz
numbers and are denoted H•g,n(µ1, . . . , µn). The enumeration of the connected enumeration may henceforth
be denoted H◦g,n(µ1, . . . , µn) to distinguish it from the disconnected enumeration. It is always possible to
calculate the connected numbers from the disconnected enumeration, and vice versa, via inclusion-exclusion;
see Section 6.3.1 in Chapter 6 on double Hurwitz numbers for an explicit inclusion–exclusion formula.

Note that a disconnected surface can lead to negative genus. This stems from the fact that the Euler
characteristic is a topological invariant that is naturally additive under disjoint union, whereas the genus is
not. That is, χ(X tY ) = χ(X) +χ(Y ). For example, consider the genus of the disjoint union of two copies
of the Riemann sphere: X = CP1 t CP1. The Euler characteristic of the Riemann sphere is

χ(CP1) = 2− 2g(CP1) = 2,

therefore
χ(X) = χ(CP1) + χ(CP1) = 2 + 2 = 4.

Using this to calculate the genus of X via χ(X) = 2− 2g(X), one finds g(X) = −1.

4.2.2 The cut-and-join recursion

Single Hurwitz numbers (and actually, many variations of Hurwitz numbers) satisfy a recursion known as
the cut-and-join recursion. If one had a desire to calculate single Hurwitz numbers (by hand or by computer),
the cut-and-join recursion would be one of the more e�cient ways from a not-so-small number of possible
ways to do so.

A sidebar on calculating single Hurwitz numbers. Ways to calculate single Hurwitz numbers include, in approx-
imate order from least to most computationally e�cient: by hand(!); via permutations (Theorem 4.2.1);
using the character formula (Proposition 4.2.6); via the semi-infinite wedge (Proposition 4.2.7 or equa-
tion (4.7)); and by the cut-and-join (Proposition 4.2.3).

The cut-and-join recursion was first formulated in genus 0 by Goulden and Jackson [64], but has since been
generalised to all genus, again by Goulden and Jackson [63].

Proposition 4.2.3 (Cut-and-join recursion, Goulden and Jackson [63]). The single Hurwitz numbers satisfy the
equation

mH◦g,n(µ1, . . . , µn) =
∑
i<j

(µi + µj)H
◦
g,n−1(~µS\{i,j}, µi + µj)

+
1

2

n∑
i=1

∑
α+β=µi

αβ

[
H◦g−1,n+1(α, β, ~µS\{i}) +

∑
g1+g2=g
ItJ=S\{i}

H◦g1,|I|+1(α, ~µI)H
◦
g2,|J|+1(β, ~µJ)

]
. (4.3)

Here S = {1, 2, . . . , n}, and for I = {i1, . . . , ik} the shorthand notation ~µI denotes µi1 , . . . , µik . Further, the
recursion uniquely determines all Hurwitz numbers from the base case H0,1(1) = 1 corresponding to the unique
connected branched cover with no rami�cation, namely, the identity map CP1 → CP1).

This can be proven combinatorially via the permutation interpretation for single Hurwitz numbers, by
analysing the result of multiplying both sides of the equation τ1 . . . τm = σ−1 on the right by the transposition
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τm. Alternatively, this can also be proven at the level of branched covers by considering what happens as
one of the simple branch points approaches infinity. In particular, note that both of these processes are
not sensitive to the ramification over 0 (or elsewhere), and hence variations of Hurwitz numbers (including
orbifold and double Hurwitz numbers) also satisfy essentially the same recursion, but necessarily with
di�erent base cases.

The cut-and-join recursion can also be expressed at the level of the partition function as a di�erential
equation. First, define the partition function for single Hurwitz numbers as follows:

Z(p1, p2, . . . ; ~; s) = exp

[∑
g>0

∑
n>1

∑
µ1,...,µn>1

H◦g,n(µ1, . . . , µn) s2g−2+n+|µ| ~2g−2+n

n!
pµ1 · · · pµn

]
.

Then we have the following reformulation of the cut-and-join recursion, obtained using the usual generating
function tricks Goulden and Jackson [63].

Proposition 4.2.4 (Cut-and-join recursion, Goulden and Jackson [63]). The partition function for single Hur-
witz numbers satis�es the following di�erential equation

∂

∂s
Z(p1, p2, . . . ; ~; s) =

1

2

∑
i,j>1

ijpi+j
∂2

∂pi∂pj
+ (i+ j)pipj

∂

∂pi+j

Z(p1, p2, . . . ; ~; s),

with initial condition Z(p1, p2, . . . ; ~; s)|s=0 = exp(p1).

Obtaining the spectral curve from the cut-and-join recursion

As may be commonly known to those studying topological recursion, the spectral curve often directly stores
the (0, 1) data for an enumerative problem. Define the free energies

Fg,n(x1, . . . , xn) =
∑

µ1,...,µn>1

H◦g,n(µ1, . . . , µn) exp(µ1x1) · · · exp(µnxn).

Then, the Bouchard–Mariño conjecture, Theorem 4.1.4, gives

ωg,n = d1 · · · dn Fg,n(x1, . . . , xn),

where di denotes applying the exterior derivative to the ith variable. In particular,

y dx = ω0,1 = dF0,1(x) =
∑
µ>1

H◦0,1(µ)µ exp(µx) dx.

One can often solve the (0, 1) part of the enumerative problem by taking the recursion in the case of (0, 1)

and expressing this as an equation in terms of x and y, leading to an expression for the spectral curve.
Let us see how this works in the case of single Hurwitz numbers. First, recall the spectral curve for single
Hurwitz numbers: x(z) = ln z − z, y(z) = z, or in unparametrised form, ex = ye−y.

For (g, n) = (0, 1), the cut-and-join recursion (4.3) reduces to

(µ− 1)H◦0,1(µ) =
1

2

∑
α+β=µ

αβ H◦0,1(α)H◦0,1(β).

Multiply both sides by exp(µx) and sum over all µ > 1. This yields

∑
µ>1

(µ− 1)H◦0,1(µ) exp(µx) =
1

2

∑
µ>1

 ∑
α+β=µ

αβ H◦0,1(α)H◦0,1(β)

 exp(µx),

or in equivalent generating function form,[
d

dx
− 1

]
F0,1(x) =

1

2

[
d

dx
F0,1(x)

]2

.
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One can either solve this di�erential equation, or in this case where the spectral curve is already known,
check that the spectral curve satisfies this di�erential equation. That is, check that x(z) = ln z− z, y(z) = z

satisfies this di�erential equation where dF0,1(x) = y dx. To do this, first apply d
dx to both sides,

d2

dx2
F0,1(x)− d

dx
F0,1(x) =

d

dx
F0,1(x) · d2

dx2
F0,1(x).

From dF0,1(x) = y dx, we obtain

d2

dx2
F0,1(x) =

d

dx
y =

1
1
z − 1

d

dz
y =

z

1− z
.

Substituting both of these into the left side yields

d2

dx2
F0,1(x)− d

dx
F0,1(x) =

z

1− z
− z =

z − z(1− z)
1− z

=
z2

1− z
,

while substituting them into the right side gives

d

dx
F0,1(x) · d2

dx2
F0,1(x) =

z2

1− z
,

as required.

4.2.3 Hurwitz numbers via the semi-in�nite wedge

Single Hurwitz numbers can be packaged via the semi-infinite wedge as an appropriate vacuum expectation.
This section will follow standard procedure to prove this result.

Begin by deriving a character formula for single Hurwitz numbers. A general formula for enumerating
sequences of elements in specified conjugacy classes that multiply to give the identity in a finite group G is
originally attributable to Frobenius [79, Appendix A]. However, rather than providing the result and proof
in full generality, I will instead derive the character formula in the specific setting of symmetric groups.

To enumerate Hurwitz numbers in the context of permutations in the symmetric group (via monodromy;
see Section 4.2.1), we wish to count the number of tuples of permutations (σ1, . . . , σk) such that σi has cycle
type λi, and the cycles of σ1 · · ·σk = id. Let Cλ ∈ ZC[Sd] be the conjugacy class considered as an element
of the centre of the symmetric group algebra corresponding to the partition λ of d. That is,

Cλ =
∑
σ

σ,

where the sum is over all σ ∈ Sd such that σ has cycle type λ.2 For example,

C(3,1) = (123) + (132) + (124) + (142) + (234) + (243) ∈ ZC[S4].

The number of such tuples of permutations (σ1, . . . , σk) that satisfy these two conditions is equal to the
coe�cient of C(1) = (1) in the product Cλ1

· · ·Cλk ∈ ZC[Sd].3 And indeed, one can calculate possibly dis-
connected Hurwitz numbers this way and recover the connected enumeration thereafter through inclusion-
exclusion.

Example 4.2.5. Calculate the single Hurwitz number H•0,1(3). The number of simple branch points is
m = 2g−2+n+|µ| = 2. Note that enumerating the number of tuples (τ1, . . . , τm) of transpositions satisfying
the conditions given in Theorem 4.2.1 is equivalent to enumerating tuples (σ, τ1, . . . , τm) of permutations in

2Note that I may use a slight abuse of notation throughout this thesis, where Cλ can refer to either the conjugacy class (as a set)
corresponding to λ in the symmetric group, or the formal sum of all permutations with cycle type λ in the group algebra. I would also
like to note that this abuse of notation is common(!) in the literature, in my experience often without explanation. It’s a wild world we
live in.

3Here C(1) is another slight abuse of notation, denoting C(1d); it is common in this thesis to write (1) in place of (1d).
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the symmetric group where σ has cycle type µ, τi is a transposition for i ∈ {1, 2, . . . ,m}, and στ1 · · · τm = id,
and counting each tuple with weight |Aut µ|.

Thus one can calculate H•0,1(3) using the following.

[C(1)]C(3)C
2
(2,1) = [C(1)]((123) + (132))((12) + (13) + (23))2

= 3 [C(1)]((123) + (132))((1) + (123) + (132))

= 6 [C(1)]((1) + (123) + (132)) = 6 [C(1)](C(1) + C(3)) = 6

Here I am multiplying permutations from right to left. And so we find that the single Hurwitz number is

H•0,1(3) =
|Aut µ|
m! d!

[C(1)]C(3)C
2
(2,1) =

6

2! 3!
=

1

2
.

Note that the connected and possibly disconnected enumerations coincide for n = 1.

Recall that I aim to obtain a character formula for single Hurwitz numbers. To do this, one can rewrite the
product Cλ1

· · ·Cλk as a product of orthogonal idempotents Eρ1 · · ·Eρk using the fact that that both the
conjugacy classes {Cλ} and the orthogonal idempotents {Eρ} form a linear basis for the centre of the group
algebra.

First I set a number notations. Denote by χρλ the character of the irreducible representation correspond-
ing to ρ evaluated on an element of Cλ; dim ρ = χρ(1) is the dimension of the irreducible representation
corresponding to ρ, and ρ ` d denotes that ρ is a partition of the integer d. For an introduction on the
representation theory of the symmetric group, see the book of Sagan [97].

Then following the steps outlined above yields

[C(1)]Cλ1
· · ·Cλk = [C(1)]

k∏
i=1

[
|Cλi |

∑
ρi

χρiλi
dim ρi

Eρi

]

= [C(1)] |Cλ1
| · · · |Cλk |

∑
ρ`d

χρλ1
· · ·χρλk

(dim ρ)k
Eρ

= |Cλ1 | · · · |Cλk |
∑
ρ`d

χρλ1
· · ·χρλk

(dim ρ)k
[C(1)]

[
dim ρ

d!

∑
λ`d

χρλCλ

]

= |Cλ1
| · · · |Cλk |

∑
ρ`d

χρλ1
· · ·χρλk

(dim ρ)k

[
dim ρ

d!
χρ(1)

]

=
|Cλ1
| · · · |Cλk |
d!

∑
ρ`d

χρλ1
· · ·χρλk

(dim ρ)k−2
.

The first and third equalities are using the change of basis relation between the two bases for the centre of
the group algebra; that is, Cλ and the orthogonal idempotents Eρ, which are given by

Cλ = |Cλ|
∑
ρ

χρλ
dim ρ

Eρ and Eρ =
dim ρ

d!

∑
λ`d

χρλCλ,

respectively. The second equality is using the fundamental relation for orthogonal idempotents EρEµ =

δρ,µEρ, while the fifth and final equality uses that χρ(1) = dim ρ. Thus, the number of tuples of permutations
(σ1, . . . , σk) such that σi has cycle type λi, and σ1 · · ·σk = (1) is equal to

|Cλ1
| · · · |Cλk |
d!

∑
ρ`d

χρλ1
· · ·χρλk

(dim ρ)k−2
.

In the case of single Hurwitz numbers, by Theorem 4.2.1, the single Hurwitz number Hg,n(µ1, . . . , µn) is
equal to |Aut µ|

m! d! multiplied by the number of tuples of permutations (σ, τ1, . . . , τm) such that
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• στ1 · · · τm = (1);

• σ has cycle type (µ1, . . . , µn) while τi is a transposition for all i ∈ {1, . . . ,m}; and

• 〈τ1, . . . , τm〉 6 Sd acts transitively on {1, . . . , d}.

If one drops the transitivity condition (since our calculation via the group algebra above imposes no such
condition), then using the calculation above one can conclude that the possibly disconnected single Hurwitz
number can be calculated by a specific version of the character formula. The exact statement is given in the
proposition below, and has used that the size of the conjugacy class corresponding to µ is

|Cµ| =
d!

|Aut µ|
∏n
i=1 µi

.

Proposition 4.2.6. The disconnected single Hurwitz number H•g,n(µ1, . . . , µn) satis�es

H•g,n(µ1, . . . , µn) =
1

m! d!
∏n
i=1 µi

∑
ρ`d

[
|C(2,1,...,1) χ

ρ
(2,1,...,1)

]m
(dim ρ)m−1

χρµ. (4.4)

The character formula calculates possibly disconnected Hurwitz numbers because, while all other conditions
given in Theorem 4.2.1 are satisfied, the character formula does not enforce that 〈τ1, . . . , τm〉 6 Sd acts
transitively on {1, 2, . . . , d}.

We can now use the character formula of Proposition 4.2.6 to derive a vacuum expectation for single Hurwitz
numbers using the semi-infinite wedge. First, define the following generating function for disconnected single
Hurwitz numbers

h•~µ(s) =
∑
g∈Z

H•g,n(µ1, . . . , µn)s2g−2+n. (4.5)

Proposition 4.2.7. The generating function for disconnected single Hurwitz numbers h•~µ(s) is equal to the following
vacuum expectation in the semi-in�nite wedge.

h•~µ(s) =
〈

exp
(α1

s

)
exp(sF2)

n∏
i=1

α−µi
µi

〉
(4.6)

Here, the bosonic operators, α±m, and the diagonal operator F2 are de�ned in De�nition 1.3.4 and equation (1.10)
respectively.

Proof. Consider the action of the product of operators eα1/sesF2
∏n
i=1

α−µi
µi

on the vacuum vector.

exp
(α1

s

)
exp(sF2)

n∏
i=1

α−µi
µi

v∅ = exp
(α1

s

)
exp(sF2)

∑
λ`|µ|

χλµ∏n
i=1 µi

vλ

=
∑
λ`|µ|

χλµ∏n
i=1 µi

exp
(α1

s

) ∞∑
m=0

sm

m!
Fm2 vλ

=
∑
m>0

∑
λ`|µ|

χλµ∏n
i=1 µi

sm

m!
exp

(α1

s

)
f2(λ)mvλ

=
∑
m>0

∑
λ`|µ|

χλµ∏n
i=1 µi

sm f2(λ)m

m!

∑
k>0

αk1
sk k!

vλ

The first equality is using the Murnaghan–Nakayama rule, Theorem 1.4.3. The second and fourth equalities
are expanding exp(sF2) and exp(α1/s) as power series respectively. The third equality is using the fact that
F2 is diagonal with eigenvalue f2(λ) for the eigenvector vλ, and f2(λ) in turn is given by the sum of the
contents of λ as a Young diagram. For a Young diagram corresponding to partition λ, the content of a box
in column j and row i is j − i.
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Recall that we are calculating the inner product〈
exp

(α1

s

)
exp(sF2)

n∏
i=1

α−µi
µi

〉
,

hence, only the summand in the sum over k with k = |λ| will provide a non-zero contribution. In this case〈
exp

(α1

s

)
exp(sF2)

n∏
i=1

α−µi
µi

〉
=
∑
m>0

∑
λ`|µ|

χλµ∏n
i=1 µi

sm f2(λ)m

m!

〈∑
k>0

αk1
sk k!

vλ, v∅

〉

=
∑
m>0

∑
λ`|µ|

χλµ∏n
i=1 µi

sm f2(λ)m

m!

〈 α
|λ|
1

s|λ| |λ|!
vλ, v∅

〉
=
∑
m>0

∑
λ`|µ|

χλµ∏n
i=1 µi

sm f2(λ)m

m!

dimλ

s|λ| |λ|!
.

The third equality uses that 〈α|λ|1 vλ, v∅〉 is equal to the number of standard Young tableaux of size λ, and
that this in turn is equal to the dimension of the irreducible representation of the symmetric group labelled
by λ. That is, 〈α|λ|1 vλ, v∅〉 = dimλ. Now use that, as defined in equation (1.11),

f2(λ) =
|C(2,1,...,2)|χλ(2,1,...,2)

dimλ
.

This allows us to rewrite the vacuum expectation

〈
exp

(α1

s

)
exp(sF2)

n∏
i=1

α−µi
µi

〉
=
∑
m>0

∑
λ`|µ|

1

m! d!
∏n
i=1 µi

[
|C(2,1,...,2)|χλ(2,1,...,2)

]m
(dimλ)m−1

χλµ s
m−|λ|

=
∑
m>0

H•g,n(µ1, . . . , µn)sm−|µ| = h•~µ(s),

as required. The first equality is using the character formula in Proposition 4.2.6 while the final equality is
using the definition of the generating function h•~µ(s). �

Thus, single Hurwitz numbers can be packaged as a vacuum expectation in the semi-infinite wedge, and as
we will see in the subsequent section, the semi-infinite wedge provides a suitable environment for proving the
polynomiality structure of single Hurwitz numbers. To prove this polynomiality structure, we will rewrite
the vacuum expectation for single Hurwitz numbers using the E -operators defined in Definition 1.3.6. This
is what is being done in the next lemma.

Lemma 4.2.8. The generating function for disconnected single Hurwitz numbers h•~µ(s) is equal to the following
vacuum expectation in the semi-in�nite wedge:

h•~µ(s) =
1∏n
i=1 µi

∑
k1+···+kn=0

[
n∏
i=1

µµi−kii S(µis)
µi−ki

(µi − ki)!

]〈
E−k1(µ1s) · · · E−kn(µns)

〉
, (4.7)

where S(z) = ς(z)
z = ez/2−e−z/2

z and Ea(z) is as de�ned in De�nition 1.3.6. Or, alternatively,

h•~µ(s) = 〈C(µ1, s) · · · C(µn, s)〉,

where

C(µ, s) :=
1

µ

∑
k6µ

µµ−kS(µs)µ−k

(µ− k)!
E−k(µs).

Proof. Begin with the vacuum expectation for the generating function h•~µ(s) given in Proposition 4.2.7,

h•~µ(s) =
〈

exp(α1/s) exp(sF2)

n∏
i=1

α−µi
µi

〉
.
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Observe that exp(−sF2) exp(−α1/s) fix the vacuum vector. This allows us to write

h•~µ(s) =
1∏n
i=1 µi

〈 n∏
i=1

exp(α1/s) exp(sF2)α−µi exp(−sF2) exp(−α1/s)
〉
.

One can compute the inner conjugation by observing that α−µ = E−µ(0) and F2 = [z2]E0(z), and using
Hadamard’s lemma, given below as equation (4.8), coupled with the commutation relation (1.9) for the
E -operators, [Ea(z), Eb(w)] = ς(aw − bz)Ea+b(z + w). Or, alternatively, observe that the operator F2 is
diagonal with eigenvalue f2(λ) corresponding to the eigenvector vλ. As mentioned previously, the function
f2(λ) is equal to the sum of the contents of the Young diagram given by the partition λ. In this case, for
any partition λ,

esF2α−µe
−sF2vλ = e−sf2(λ)esF2α−µvλ = e−sf2(λ)esF2

∑
λ+µ

vλ+µ

=
∑
λ+µ

es(f2(λ+µ)−f2(λ))vλ+µ =
∑

k∈Z+
1
2

e
sµ
(
k+

µ
2

)
: ψk+µψ

∗
k : vλ

= E−µ(µs),

where the sum over λ+µ is over all Young diagrams that can be obtained from adding a µ-ribbon to λ.4

Hence,

h•~µ(s) =
1∏n
i=1 µi

〈 n∏
i=1

exp(α1/s) E−µi(µis) exp(−α1/s)
〉
.

Compute the outer conjugation using Hadamard’s lemma,

eABe−A = B +
∑
k>1

1

k!
[A, [A, . . . , [A,B] · · · ]], (4.8)

where there are k commutators in the kth summand. Doing so gives

exp(α1/s)E−µ(µs) exp(−α1/s) =
∑
m>0

ς(µs)m

m! sm
E−µ+m(µs).

Therefore,

h•~µ(s) =
1∏n
i=1 µi

〈 n∏
i=1

exp(α1/s) E−µi(µis) exp(−α1/s)
〉

=
1∏n
i=1 µi

〈 n∏
i=1

∑
mi>0

ς(µis)
mi

mi! smi
E−µi+mi(µis)

〉

=
1∏n
i=1 µi

∑
k1+···+kn=0

[
n∏
i=1

µµi−kii S(µis)
µi−ki

(µi − ki)!

]〈
E−k1(µ1s) · · · E−kn(µns)

〉
= 〈C(µ1, s) · · · C(µn, s)〉

The third equality above has relabelledmi 7→ µi−ki for i ∈ {1, 2, . . . , n} and used the fact that the energies
of the E -operators must sum to zero for the vacuum expectation to provide a contribution. The fact that
ki 6 µi stems from mi > 0. �

4.2.4 Polynomiality of Hurwitz numbers

This section is dedicated to proving the polynomiality structure of single Hurwitz numbers that was in-
dicated at the start of this chapter. It may be interesting to note that the polynomiality of single Hurwitz

4This latter proof that the conjugation of α−µ by esF2 leads to the E -operator is somewhat more enlightening than the route via
Hadamard’s lemma; and in fact, it gives some sort of justification for the definition of the E -operator itself.
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numbers was not originally proved using this method, but was proven as a direct corollary of the ELSV
formula, Theorem 4.1.3. Of course in the setting of single Hurwitz numbers, where the ELSV formula was
proven using algebro-geometric methods and polynomiality is a direct consequence, it is not necessary to
resort to proving the polynomiality structure via the semi-infinite wedge. However, in analogous or gener-
alised settings, obtaining an ELSV-like formula for Hurwitz-type enumerations is a daydream, and hence it
is desirable to prove polynomiality another way.

So far, the primary way of doing such a task has been via the semi-infinite wedge; this has been done for
orbifold Hurwitz numbers [40], and double Hurwitz numbers (this is the content of Chapter 6). However, a
complete and accurate proof of the polynomiality of single Hurwitz numbers using the semi-infinite wedge
is lacking. For this reason, I lay out the method here; I do this not only for a sense of completeness, but as a
demonstrative tool. My approach is necessarily a specialisation of the results mentioned above for orbifold
Hurwitz numbers and double Hurwitz numbers.

One might question why polynomiality-like structures for these types of enumerations is so highly sought-
after. The most pertinent reason in recent times is that polynomiality, or a polynomiality-like structure, is
a necessary ingredient to prove that an enumeration is governed by topological recursion, which can then
lead to deeper geometric information on the original enumeration.

Theorem 4.1.2 (Conjectured by Goulden, Jackson and Vainshtein [65], proven by Ekedahl, Lando, Shapiro
and Vainshtein [43]). For 2g − 2 + n > 0, there exist symmetric polynomials Pg,n(µ1, . . . , µn) such that

H◦g,n(µ1, . . . , µn) =

[
n∏
i=1

µµii
µi!

]
Pg,n(µ1, . . . , µn).

Proof. First, fix µ2, . . . , µn to be positive integers. The aim of the proof is to consider the dependence of
h•~µ(s) on µ1, then to use the symmetry of H◦g,n(µ1, . . . , µn) to deduce polynomiality in µ2, . . . , µn.

The main steps of the proof are as follows.

1. Use the vacuum expectation from Lemma 4.2.8 to show that, aside from the combinatorial factor
present in (4.1), h•~µ(s) is a rational function in µ1 with at most simple poles at µ1 = −j for all
j ∈ {1, 2, . . . , µ2 + · · ·+ µn} and a double pole at µ1 = 0.

2. Study the residues of h•~µ(s) at µ1 = −j for j ∈ {1, 2, . . . , µ2 + · · · + µn} and j = 0 (Lemmas 4.2.9
and 4.2.10 respectively) to conclude that H◦g,n(µ1, . . . , µn) is indeed polynomial in µ1.

3. Conclude the polynomiality structure of single Hurwitz numbers by invoking the symmetry of the
Hurwitz number in µ1, . . . , µn.

Begin with the vacuum expectation from Lemma 4.2.8,

h•(s) =
1∏n
i=1 µi

∑
k1+···+kn=0

[
n∏
i=1

µµi−kii S(µis)
µi−ki

(µi − ki)!

]〈
E−k1(µ1s) · · · E−kn(µns)

〉
,

and focus on the dependence on µ1.

The fact that the leftmost E -operator acts on the covacuum dictates that k1 6 0 for the vacuum expectation
to be non-zero. Further, from the proof of Lemma 4.2.8 we have that −ki = −µi +mi for mi a non-negative
integer, hence it follows that −ki > −µi for all i ∈ {2, . . . , n}. Therefore, using k1 = −k2 − · · · − kn gives
us the following bounds on k1:

−µ2 − · · · − µn 6 k1 6 0.

Relabelling −k1 7→ k, one can write

h•~µ(s) =

µ2+···+µn∑
k=0

µµ1+k−1
1 S(µ1s)

µ1+k

(µ1 + k)!

〈
Ek(µ1s) C(µ2, s) · · · C(µn, s)

〉
=
µµ1

1

µ1!

〈
B(µ1, s) C(µ2, s) · · · C(µn, s)

〉
, (4.9)
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where

B(µ1, s) :=

µ2+···+µn∑
k=0

µk−1
1 S(µ1s)

µ1+k

(µ1 + 1) · · · (µ1 + k)
Ek(µ1s).

Observe that the combinatorial factor µ
µ1
1

µ1! is present, and that B(µ1, s) is a finite linear combination of
E -operators whose coe�cients are power series in s. Hence, for each fixed power of s, its coe�cient in
B(µ1, s) is a rational function in µ1 with, as stated above, at worst simple poles at negative integers, and a
double pole at zero.

Hence, to deduce the polynomiality of the connected single Hurwitz number H◦g,n(µ1, . . . , µn) in µ1, it
remains to prove that, after inclusion-exclusion has been applied to obtain the connected contribution and
the coe�cient of s has been extracted, the resultant single Hurwitz number is no longer a rational function
in µ1 but a polynomial in µ1 (with the combinatorial coe�cient). This can be shown by considering an
appropriate residue of 〈B(µ1, s) C(µ2, s) · · · C(µn, s)〉 at µ1 = −j for j ∈ {0, 1, . . . , µ2 + · · ·+ µn}.

I will now prove two mini-lemmas concerning the poles. Lemmas 6.3.7 and 6.3.8 in Chapter 6 are the
analogous results pertaining to the residues in the more general setting of double Hurwitz numbers.

Lemma 4.2.9. Fix µ2, . . . , µn to be positive integers, and �x n > 2. Then for all j ∈ {1, 2, . . . , µ2 + · · ·+ µn},

Res
µ1=−j

〈
B(µ1, s)

n∏
i=2

C(µi, s)
〉

dµ1 = F (j)
〈

exp(α1/s) exp(sF2)αj exp(−sF2) exp(−α1/s)
n∏
i=2

C(µi, s)
〉
,

where F (j) = jj

j! .

Proof. Given that h•~µ(s) has at most simple poles at µ1 = −j for j ∈ {1, 2, . . . , µ2 + · · · + µn}, one can
calculate the residue of 〈B(µ1, s)

∏n
i=2 C(µi, s)〉 at µ1 = −j by multiplying by (µ1 + j) then taking the limit

µ1 → −j. That is,

Res
µ1=−j

〈
B(µ1, s)

n∏
i=2

C(µi, s)
〉

dµ1 = lim
µ1=−j

(µ1 + j)

µ2+···+µn∑
k=0

µk−1
1 S(µ1s)

µ1+k

(µ1 + 1) · · · (µ1 + k)

〈
Ek(µ1s)

n∏
i=2

C(µi, s)
〉
.

This is non-zero only when j ∈ {1, 2, . . . , µ2 + · · · + µn}. For any given summand, if j > k then that
summand will not contribute to the residue. For this reason, I can rewrite the above as

Res
µ1=−j

〈
B(µ1, s)

n∏
i=2

C(µi, s)
〉

dµ1

= lim
µ1=−j

µ2+···+µn∑
k=j

µk−1
1 S(µ1s)

µ1+k

(µ1 + 1) · · · (µ1 + j − 1)(µ1 + j + 1) · · · (µ1 + k)

〈
Ek(µ1s)

n∏
i=2

C(µi, s)
〉

=

µ2+···+µn∑
k=j

1

(−j + 1) · · · (−1)

(−j)k−1S(−js)−j+k

1 · · · (−j + k)

〈
Ek(−js)

n∏
i=2

C(µi, s)
〉

=
(−j)j−1

(−j + 1) · · · (−1)

µ2+···+µn∑
k=j

(−j)−j+kS(−js)−j+k

1 · · · (−j + k)

〈
Ek(−js)

n∏
i=2

C(µi, s)
〉
.

On the other hand, apply the techniques from the proof of Lemma 4.2.8 to rewrite

exp(α1/s) exp(sF2)αj exp(−sF2) exp(−α1/s) = exp(α1/s)Ej(−js) exp(−α1/s)

=
∑
m>0

ς(−js)m

m! sm
Ej+m(−js)

=
∑
k>j

(−j)−j+k S(−js)−j+k

(−j + k)!
Ek(−js).
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An upper bound on k, namely k 6 µ2 + · · · + µn can be deduced when considering the overall vacuum
expectation 〈Ek(−js)

∏n
i=2 C(µi, s)〉 by making the same observations as at the start of this proof. Defining

F (j) :=
(−j)j−1

(−j + 1) · · · (−1)
=

(−j)j

(−j)(−j + 1) · · · (−1)
=
jj

j!

concludes the proof of the lemma. �

To state the next lemma, I require the notion of a connected correlator. Define the connected correlator of
a tuple of operators (O1, . . . ,On), denoted 〈O1 · · · On〉◦, to be what one obtains from applying inclusion-
exclusion to the disconnected correlator. That is,

〈O1 · · · On〉◦ =
∑

M`{1,...,n}

(−1)|M |−1 (|M | − 1)!

|M |∏
i=1

〈 ~OMi〉, (4.10)

where ~OMi
=
∏
j∈Mi

Oj .

Lemma 4.2.10. Fix µ2, . . . , µn to be positive integers, and �x n > 2. Then,

Res
µ1=0

µ1

〈
B(µ1, s)

n∏
i=2

C(µi, s)
〉

dµ1 = Res
µ1=0

µ1

〈
B(µ1, s)

〉〈 n∏
i=2

C(µi, s)
〉

dµ1,

and hence, applying the inclusion-exclusion formula to obtain the connected contribution yields

Res
µ1=0

µ1

〈
B(µ1, s)

n∏
i=2

C(µi, s)
〉◦

dµ1 = 0.

Proof. A pole at µ1 = 0 of

〈
B(µ1, s)

n∏
i=2

C(µi, s)
〉

=

µ2+···+µn∑
k=0

µk−1
1 S(µ1s)

µ1+k

(µ1 + 1) · · · (µ1 + k)

〈
Ek(µ1s)

n∏
i=2

C(µi, s)
〉

can only occur in the summand corresponding to k = 0, for which the contribution of B(µ1, s) is given by
1
µ1
S(µ1s)

µ1E0(µ1s). Given that E0(µ1, s) is acting on the covacuum, 〈E0(µ1s)O〉 = 1
ς(µ1s)

〈O〉, and since

1

ς(µ1s)
=

1

µ1s
− µ1s

24
+

7µ3
1s

3

5760
− · · · ,

the k = 0 summand will contribute a double pole at zero, with zero residue. We can compute the coe�cient
of the double pole by calculating the residue of µ1〈B(µ1, s)

∏n
i=2 C(µi, s)〉 as follows.

Res
µ1=0

µ1

〈
B(µ1, s)

n∏
i=2

C(µi, s)
〉

dµ1 = Res
µ1=0

µ1
1

µ1
S(µ1s)

µ1

〈
E0(µ1s)

n∏
i=2

C(µi, s)
〉

dµ1

= Res
µ1=0

µ1
1

µ1
S(µ1s)

µ1
1

ς(µ1s)

〈 n∏
i=2

C(µi, s)
〉

dµ1

= Res
µ1=0

µ1
1

µ1
S(µ1s)

µ1

〈
E0(µ1s)

〉〈 n∏
i=2

C(µi, s)
〉

dµ1

= Res
µ1=0

µ1

〈
B(µ1, s)

〉〈 n∏
i=2

C(µi, s)
〉

dµ1

(4.11)

The final equality is using

〈
B(µ1, s)

〉
=

µ2+···+µn∑
k=0

µk−1
1 S(µ1s)

µ1+k

(µ1 + 1) · · · (µ1 + k)

〈
Ek(µ1s)

〉
=

1

µ1
S(µ1s)

µ1
〈
E0(µ1s)

〉
.
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Consider the connected correlator 〈B(µ1, s)
∏n
i=2 C(µi, s)〉◦ by applying inclusion-exclusion to the discon-

nected correlator (using Equation (4.10)) then take the residue to obtain

Res
µ1=0

µ1

〈
B(µ1s)

n∏
i=2

C(µi, s)
〉◦

dµ1

= Res
µ1=0

µ1

∑
N⊆{2,...,n}

M`{2,...,n}\N

(−1)|M ||M |! 〈B(µ1s) C(~µN , s)〉
|M |∏
i=1

〈C(~µMi , s)〉 dµ1,

where, forMi = {i1, . . . , ik}, C(~µMi
, s) is a convenient shorthand notation that denotes

∏k
j=1 C(µij , s). Use

the result (4.11) above, which is true for any n > 2, to obtain

Res
µ1=0

µ1

〈
B(µ1s)

n∏
i=2

C(µi, s)
〉◦

dµ1

= Res
µ1=0

µ1

∑
N⊆{2,...,n}

M`{2,...,n}\N

(−1)|M ||M |!〈B(µ1s)〉〈C(~µN , s)〉
|M |∏
i=1

〈C(~µMi
, s)〉 dµ1.

Each term in this sum arises twice: once for N = ∅, which occurs with coe�cient (−1)|M | |M |!, and |M |
times when N = Mi for all i ∈ {1, . . . , |M |} and each of these arise with coe�cient (−1)|M |−1(|M | − 1)!.
Thus, all terms cancel whenever n > 2. �

It now remains to conclude that H◦g,n(µ1, . . . , µn) is polynomial in µ1. To do this, I will combine the above
results, extract the appropriate coe�cient of s from h•~µ(s), and apply inclusion-exclusion. As with the case
of double Hurwitz numbers in Chapter 6, it will be necessary to consider the cases n = 1, n = 2, and n > 3

separately.

Case n = 1. When n = 1, the connected and disconnected enumerations coincide H•g,1(µ) = H◦g,1(µ) =

Hg,1(µ). Also, the case (g, n) = (0, 1) constitutes one of the so-called unstable terms, and is omitted from
the statement of polynomiality (along with (g, n) = (0, 2), which will be explicitly considered below) for the
obvious reason — it is not polynomial. And in fact it is known [69] that

H0,1(µ) =
µµ

µ!

1

µ2
=

µµ−3

(µ− 1)!
.

I will show that

h◦µ(s) =
µµ

µ!

 1

µ2s
+
∑
g>1

Pg,1(µ)s2g−1

 ,
where Pg,1(µ) is a polynomial in µ for all g > 1, which implies that H0,1(µ) = µµ

µ!
1
µ2 and Hg,1(µ) =

µµ

µ! Pg,1(µ).

By equation (4.7) from Lemma 4.2.8,

h◦µ(s) =
1

µ

µµ

µ!
S(µs)µ〈E0(µs)〉 =

1

µ

µµ

µ!
S(µs)µ

1

ς(µs)
=

1

µ2s

µµ

µ!
S(µs)µ−1

=
1

µ2s

µµ

µ!

(
1 +

µ2s2

24
+
µ4s4

1920
+ · · ·

)µ−1

=
µµ

µ!

[
1

µ2s
+ (µ− 1)

s

24
+

(
(µ− 1)

1920
+

(µ− 1)(µ− 2)

2 · 242

)
µ2s3 + · · ·

]
.

Hence,

H0,1(µ) = [s−1]hµ(s) =
µµ

µ!

1

µ2
=

µµ−3

(µ− 1)!
,
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as required. For general genus when n = 1 we have 2g − 2 + n = 2g − 1, so

Hg,1(µ) = [s2g−1]hµ(s) = [s2g]
1

µ2

µµ

µ!

(
1 +

µ2s2

24
+
µ4s4

1920
+ · · ·

)µ−1

.

Letting c2k = [z2k]S(z), I can write

Hg,1(µ) =
µµ

µ!
µ2g−2

∑
a1+···+aj=g

c2a1 · · · c2aj =
µµ

µ!
Pg,1(µ),

where Pg,1(µ) is a polynomial in µ for g > 1. This concludes the proof of polynomiality for the case n = 1.

Case n = 2. Begin with equation (4.9) specialised to n = 2,

h•~µ(s) =
µµ1

1

µ1!

〈
B(µ1, s) C(µ2, s)

〉
=

µ2∑
k=0

µµ1+k−1
1 S(µ1s)

µ1+k

(µ1 + k)!

〈
Ek(µ1s) C(µ2, s)

〉
,

and now consider the possible structure of the poles. I have already deduced that the only possible poles
in µ1 are at 0,−1, . . . ,−µ2, but Lemma 4.2.10 eliminates the possibility that the connected single Hurwitz
number has a pole at µ1 = 0. Considering the poles at negative integers, Lemma 4.2.9 gives

Res
µ1=−j

〈
B(µ1, s) C(µ2, s)

〉
dµ1 = F (j)

〈
exp(α1/s) exp(sF2)αj exp(−sF2) exp(−α1/s)C(µ2, s)

〉
= F (j)

〈
exp(α1/s) exp(sF2)αj

α−µ2

µ2

〉
= F (j) δj,µ2

(4.12)

where the last equality is using the commutation relation [αj , α−µ2 ] = µ2δj,µ2 , along with the facts that αj
annihilates the vacuum, and exp(α1/s) and exp(sF2) both fix the vacuum.

Therefore, the only residue contributing toHg,2(µ1, µ2) arises when µ1 = −µ2. Look again at equation (4.7),
in the case of n = 2,

h•~µ(s) =
1

µ1 µ2

∑
k1+k2=0

[
µµ1−k1

1 S(µ1s)
µ1−k1

(µ1 − k1)!

µµ2−k2
2 S(µ2s)

µ2−k2

(µ2 − k2)!

]〈
E−k1(µ1s) E−k2(µ2s)

〉
=

1

µ1 µ2

µ2∑
k=0

[
µµ1+k

1 S(µ1s)
µ1+k

(µ1 + k)!

µµ2−k
2 S(µ2s)

µ2−k

(µ2 − k)!

]〈
Ek(µ1s) E−k(µ2s)

〉
.

Here, the second equality is using the fact that k = −k1 = k2 is bounded by 0 6 k 6 µ2. The inclusion-
exclusion formula in Equation (4.10) in the case of n = 2 reads

〈Ek(z1) E−k(z2)〉◦ = 〈Ek(z1) E−k(z2)〉 − 〈Ek(z1)〉 〈E−k(z2)〉.

Thus, because 〈Ek(z)〉 vanishes unless k = 0, to pass to the connected generating function it su�ces to
remove the k = 0 term from the summation. That is,

h◦~µ(s) =
1

µ1 µ2

µ2∑
k=1

[
µµ1+k

1 S(µ1s)
µ1+k

(µ1 + k)!

µµ2−k
2 S(µ2s)

µ2−k

(µ2 − k)!

]〈
Ek(µ1s) E−k(µ2s)

〉◦
.

A residue at µ1 = −µ2 can only occur when k = µ2, so to analyse the pole it is su�cient to consider only
the k = µ2 term in the sum. That is, consider

1

µ1 µ2

µµ1+µ2

1

(µ1 + µ2)!
S(µ1s)

µ1+µ2〈Eµ2
(µ1s)E−µ2

(µ2s)〉◦

=
1

µ1 µ2

µµ1+µ2

1

(µ1 + µ2)!
S(µ1s)

µ1+µ2
ς((µ1 + µ2)µ2s)

ς((µ1 + µ2)s)

=
1

µ1 µ2

µµ1+µ2

1

(µ1 + µ2)!

[(
1 +

µ2
1s

2

24
+O(µ4

1s
4)

)µ1+µ2
(

1 +
µ2

2 − 1

24
(µ1 + µ2)2s2 +O((µ1 + µ2)4s4)

)]
.
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The second equality is using the commutation relation for the E -operators given in equation (1.9) in Chapter 1,
[Ea(z), Eb(w)] = ς(aw− bz)Ea+b(z+w), along with the fact that 〈E0(z)〉 = 1

ς(z) . Observe that the coe�cient
of s2k for any k > 1 will necessarily include a factor of µ1 + µ2. Combine these facts to conclude that, for
g > 1,

Hg,2(µ1, µ2) =
µµ1

1

µ1!
Pµ2

g,2(µ1)

where Pµ2

g,2(µ1) is a polynomial in µ1.

Although it isn’t central to this proof, I also deduce the unstable term, H◦0,2(µ1, µ2), for posterity. First,
extract the coe�cient of s0 from h◦~µ(s). Using that Ek(0) = αk I have

[s0]S(µ1s)
µ1+kS(µ2s)

µ2−k〈Ek(µ1s) E−k(µ2s)〉◦ = S(0)µ1+kS(0)µ2−k〈αk α−k〉◦ = k,

therefore

H◦0,2(µ1, µ2) = [s0]h◦~µ(s) =
1

µ1 µ2

µ2∑
k=1

µµ1+k
1

(µ1 + k)!

µµ2−k
2

(µ2 − k)!
k.

Next I calculate the residues for µ1 = −j where j ∈ {1, 2, . . . , µ2}. By (4.12), for j 6= µ2,

Res
µ1=−j

H◦0,2(µ1, µ2) = 0,

while

Res
µ1=−µ2

〈
B(µ1, s) C(µ2, s)

〉
dµ1 = F (µ2) =

µµ2

2

µ2!

Hence, I can conclude that

H◦0,2(µ1, µ2) =
µµ1

1

µ1!

µµ2

2

µ2!

1

µ1 + µ2
+ P (µ1) =

µµ1

1

µ1!

µµ2

2

µ2!

1

µ1 + µ2
,

where P (µ1) some polynomial in µ1. The final equality is using the fact that H◦0,2(µ1, µ2) is symmetric in
µ1 and µ2 to conclude that P (µ1) = 0. The final expression aligns with the formula deduced by Goulden
and Jackson [64].

Case n > 3. Again, begin with equation (4.9),

h•~µ(s) =
µµ1

1

µ1!

〈
B(µ1, s) C(µ2, s) · · · C(µn, s)

〉
. (4.13)

Lemma 4.2.10 gives that any poles of h◦~µ(s) at µ1 = 0 are cancelled via the inclusion-exclusion process.
Use Lemma 4.2.9 to consider the residue at negative integers. That is,

Res
µ1=−j

〈
B(µ1, s)

n∏
i=2

C(µi, s)
〉

dµ1 = F (j)
〈

exp(α1/s) exp(sF2)αj exp(−sF2) exp(−α1/s)

n∏
i=2

C(µi, s)
〉

= F (j)
〈

exp(α1/s) exp(sF2)αj
α−µ2

µ2
· · · α−µn

µn

〉
.

Commute αj to the right. The bosonic commutation relation, [αj , α−µk ] = j δj,µk implies that the residue
vanishes except if j = µk for some k ∈ {2, 3, . . . , n}. In this case, the residue becomes

δj,µkF (j)
〈

exp(α1/s) exp(sF2)
α−µ2

µ2
· · · α̂µk · · ·

α−µn
µn

〉
= δj,µkF (j)

〈 n∏
i=2
i6=k

C(µi, s)
〉
.

On the right side, the notation α̂µk denotes that we exclude αµk from the product. This simple pole at
µ1 = −µk cancels via inclusion-exclusion with the simple pole arising from the term〈

B(µ1, s) C(µk, s)
〉〈 n∏

i=2
i 6=k

C(µi, s)
〉
.
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Indeed, by Lemma 4.2.9,

Res
µ1=−µk

〈
B(µ1, s) C(µk, s)

〉〈 n∏
i=2
i 6=k

C(µi, s)
〉

dµ1 = f(µk)
〈

exp(α1/s) exp(sF2)αµk
α−µk
µk

〉〈 n∏
i=2
i 6=k

C(µi, s)
〉

= f(µk)
〈 n∏
i=2
i6=k

C(µi, s)
〉
.

Thus, for n > 3,

H◦g,n(µ1, . . . , µn) =
µµ1

1

µ1!
Pg,n(µ1)

where Pg,n(µ1) is a polynomial in µ1.

Conclude the polynomiality structure for all µ2, . . . , µn by invoking the symmetry of H◦g,n(µ1, . . . , µn) in
µ1, . . . , µn; see Theorem 6.3.11 for a generalised version of this statement. �

Note that I do not prove the condition that Pg,n(µ1, . . . , µn) is degree 3g − 3 + n.

4.2.5 Data

4.3 Generalisations and variations

As discussed in the introduction of this chapter, since the profound results regarding single Hurwitz num-
bers were discovered, many Hurwitz number generalisations and variations have been defined and similarly
studied. In particular, mathematicians have aimed to deduce a polynomiality structure, topological recur-
sion, and an ELSV-like formula for many such problems. Some generalisations and variations that have
been prominent in the recent literature are double Hurwitz numbers, monotone Hurwitz numbers, and spin
Hurwitz numbers.

4.3.1 Monotone Hurwitz numbers

A particularly interesting variation of single Hurwitz numbers is given by the monotone single Hurwitz numbers.
Whereas single Hurwitz numbers can be described as the number of ways to factorise a permutation with a
given cycle type into transpositions, (weakly) monotone Hurwitz numbers impose an extra condition where
the factorisation by transpositions τ1 · · · τm is monotone; that is, if τi = (ai, bi) is written conventionally
with ai < bi, then b1 6 · · · 6 bm.

De�nition 4.3.1. The weakly monotone Hurwitz number H6g,n(µ1, . . . , µn) is equal to 1/d! multiplied by the
number of tuples (τ1, . . . , τm) of permutations in the symmetric group Sd such that such that

• τ1 · · · τm = (1);

• the cycles of τ1 · · · τmare labelled 1, 2, . . . , n such that cycle i has length µi for i ∈ {1, 2, . . . , n};

• 〈τ1, . . . , τm〉 6 Sd acts transitively on {1, 2, . . . , d}; and

• if τi = (ai bi) with ai < bi, then b1 6 · · · 6 bm.

The monotone Hurwitz numbers first appeared in the literature in a series of papers by Goulden, Guay-
Paquet and Novak, where monotone Hurwitz numbers featured as coe�cients in the large N expansion
of the Harish–Chandra-Itzukson–Zuber (HCIZ) matrix integral [60, 61, 62]. Monotonicity is also natural
from the viewpoint of Jucys–Murphy elements in the symmetric group algebra C[Sd] and the representation
theory of the symmetric group Sd [72, 85, 93].

Since their debut in the literature nearly a decade ago, monotone Hurwitz numbers have made recurring
cameos, in particular on two occasions relevant to this thesis. First, monotone Hurwitz numbers were
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proved by Do, Dyer and Mathews [31] to be governed by topological recursion applied to the spectral curve
(CP1, x, y) with

x(z) =
z − 1

z2
, y(z) = −z, ω0,2(z1, z2) =

dz1 dz2

(z1 − z2)2
.

Second, Borot, Charbonnier, Do and Garcia-Failde [6] and Borot and Garcia-Failde [11] used monotone
Hurwitz numbers to prove a relation between ordinary maps and fully simple maps; this relation forms the
basis for the research presented in Chapter 7 on fully simple maps.

4.3.2 Spin Hurwitz numbers

One other variation of Hurwitz numbers that has attracted attention recently is the r-spin Hurwitz number.
The r-spin Hurwitz number enumerates ramified genus g covers of CP1 with prescribed ramification over∞
and all other ramification is given by (r + 1)-completed cycles.

First note that here I am referring to the spin Hurwitz numbers introduced by Shadrin, Spitz, and Zvonk-
ine [102], not the enumeration that was introduced by Eskin, Okounkov and Pandharipande [44] and has
also been referred to as “spin Hurwitz numbers” by Giacchetto, Kramer and Lewański [59]. Second, I do not
define a completed cycle, to do so would take me too far afield of the scope of this chapter; for a description
of completed cycles, see previous work of Okounkov and Pandharipande [92].

De�nition 4.3.2. The r-spin Hurwitz number Hr
g,n(µ1, . . . , µn) is a weighted enumeration of isomorphism

classes of connected genus g branched covers of the Riemann sphere f : (C; p1, . . . , pn) → (CP1;∞) such
that

• the point pi ∈ f−1(∞) has ramification index µi for i ∈ {1, 2, . . . , n}; and
• all other branching is given by (r + 1)-completed cycles, and occurs at m fixed points of CP1.

The weight of a cover is given by
1

(r!)m |Aut f |
,

where Aut f is the group of automorphisms of f .

By the Gromov–Witten/Hurwitz correspondence, r-spin Hurwitz numbers are relative Gromov–Witten in-
variants of CP1 [92].

4.3.3 Deformed Hurwitz numbers

I finish o� this chapter with a new variation of Hurwitz numbers, arising from joint work in progress with
Norman Do, which we call deformed Hurwitz numbers. First, fix d to be a positive integer.

The motivation for this enumeration was to create an analogue of an enumeration with arbitrary internal
faces as in the setting of maps and ribbon graphs.

De�nition 4.3.3. The deformed Hurwitz number Hg,n(µ1, . . . , µn) is a weighted enumeration of isomorphism
classes of connected genus g branched covers of the Riemann sphere f : (C; p1, . . . , pn) → (CP1;∞) such
that

• the point pi ∈ f−1(∞) has ramification index µi for i ∈ {1, 2, . . . , n};
• every other preimage of∞ has ramification order at most d; and

• all other branching is simple and occurs at m fixed points of CP1.

We say that the points p1, . . . , pn are the marked preimages of ∞, while all other preimages of ∞ are
unmarked. The weight of a cover is given by

1

|Aut f |
sm

m!
t
r1(f)
1 · · · trd(f)

d ,

where Aut f is the group of automorphisms of f , m is the number of simple branch points, and, for
i ∈ {1, 2, . . . , d}, ri(f) denotes the number of unmarked preimages of ∞ with ramification order i.
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The deformed Hurwitz number Hg,n(µ1, . . . , µn) is a formal power series in the ring Q[[s; t1, . . . , td]].

One can ask whether this enumeration satisfies similar properties to those satisfied by many other Hurwitz
enumerations. That is, does it satisfy a polynomiality structure; is the enumeration governed by topological
recursion; can the enumeration expressed via intersection theory on moduli spaces of curves.
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Chapter 5

Local topological recursion governs the
enumeration of lattice points inMg,n

5.1 Introduction

In this chapter, I prove that a certain enumeration of lattice points in the Deligne–Mumford compactifica-
tion of the moduli space of curves is governed by local topological recursion. Local topological recursion,
first introduced by Dunin-Barkowski, Orantin, Shadrin and Spitz [42], is a generalisation of the topological
recursion of Chekhov, Eynard and Orantin (CEO) [25, 52]. In the last 15 years, CEO topological recursion
has been revealed to govern a vast array of problems and has thus garnered significant attention. Its con-
temporary generalisation, local topological recursion, has also sparked some interest but remains largely
uninvestigated and its benefits over CEO topological recursion are yet unclear. In this chapter, I provide
one of the first instances in which local topological recursion is related to a natural combinatorial problem,
and in particular, one which captures some of the geometry of the moduli spaceMg,n.

The moduli spaceMg,n has a rich structure and has been widely studied due to its ties to many areas of
mathematics and physics. It was shown by Norbury [88] that a certain enumeration of lattice points in the
uncompactified moduli space of curves Mg,n is governed by CEO topological recursion. Yet through its
aforementioned applications to other fields—algebraic and hyperbolic geometry and mathematical physics
are some examples—the Deligne–Mumford compactification proves to be the inherently more natural object
to study. In this case, one might ask whether an analogous count in Mg,n also obeys the recursion of
Chekhov, Eynard and Orantin. In fact, Do and Norbury [35] defined an analogous count of lattice points
in the compactified spaceMg,n but were unable to prove that the enumeration satisfied CEO topological
recursion, stating:

“It would be interesting to know whether the compacti�ed lattice point polynomials can be used to de�ne
multidi�erentials which also satisfy a topological recursion.”

However, it has not been investigated whether the lattice point enumeration inMg,n is governed by local
topological recursion. Thus, the primary motivation of this chapter is to prove that the enumeration
Ng,n(b1, . . . , bn) defined by Do and Norbury [35], when stored as coe�cients in a multidi�erential power
series, is governed by local topological recursion. The key result is the following theorem.

Theorem 5.1.1. For (g, n) satisfying 2g−2+n > 0, the correlation di�erentials resulting from applying topological
recursion to the spectral curve (C∗, x, y, ω0,2) with

x(z) = z +
1

z
, y(z) = z, ω0,2(z1, z2) =

dz1 dz2

(z1 − z2)2
+

dz1 dz2

z1 z2
, (5.1)

satisfy

ωg,n(z1, . . . , zn) =
∑

b1,...,bn>0

Ng,n(b1, . . . , bn)

n∏
i=1

[bi]z
bi−1
i dzi.

Here, we use the notation [b] = b for b positive and [0] = 1.

65
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The spectral curve in Theorem 5.1.1 is local in the sense that the input data cannot be extended to the
compact Riemann surface CP1 such that ω0,2 satisfies the conditions necessary for CEO topological recur-
sion. Dunin-Barkowski [37] writes “ ... local topological recursion (to the moment) lacks interesting applications or
profound meaning separate from what originates from ordinary (global) topological recursion.” Yet the key result of
this chapter demonstrates that local topological recursion governs a natural enumerative problem which is
not governed by CEO topological recursion. Moreover, this phenomenon has been discovered elsewhere,
such as in the work of Andersen, Borot, Charbonnier, Delecroix, Giacchetto, Lewański and Wheeler [3], in
which they relate Masur–Veech volumes to local topological recursion using the Airy spectral curve with a
specific choice for ω0,2.

Relevant background for this chapter, specifically, the definition of the enumeration of Do and Norbury
Ng,n(b1, . . . , bn), is given in Section 3.3.1 of Chapter 3 (in particular, see Definitions 3.3.2 and 3.3.3). This
background section describes the way in which Ng,n(b1, . . . , bn) enumerates lattice points in the compactified
moduli space of curves Mg,n. Further, it shows that Ng,n(b1, . . . , bn) can be equivalently defined as a
weighted enumeration of stable ribbon graphs.

In this chapter, Section 5.2 presents the local topological recursion as well as relevant calculations specific
to the spectral curve (5.1) in Theorem 5.1.1. Section 5.3 then contains the proof of Theorem 5.1.1.

The work in this chapter is a product of collaboration with Anupam Chaudhuri and Norman Do [24].

5.2 Local topological recursion

5.2.1 De�nitions and background

Recall from Chapter 2 that CEO topological recursion has as input a spectral curve (C, x, y, T ) consisting of
a compact Riemann surface C, two meromorphic functions x and y defined on C, and a Torelli marking T on
C [25, 52]. The CEO topological recursion then recursively outputs correlation di�erentials ωg,n for g > 0

and n > 1. In particular, ω0,2(z1, z2) is defined implicitly by the fact that it has double poles without residue
along the diagonal z1 = z2, is holomorphic away from the diagonal, and is normalised on the A-cycles of
the Torelli marking. The assumption that C is compact implies that ω0,2(z1, z2) is uniquely defined by the
spectral curve data.

In contrast to this, local topological recursion does not require a compact Riemann surface as part of the
initial data [42]. It was observed that CEO topological recursion only utilises local information around each
of the branch points (where dx vanishes) and hence one can instead define local neighbourhoods Di with
canonical coordinates around each of the N branch points and the underlying Riemann surface becomes
D1 tD2 t · · · tDN , without mention of a way to glue these neighbourhoods together to form a compact
Riemann surface. In this case, ω0,2(z1, z2) is no longer uniquely defined and must be included as part of
the initial data.

Here, I introduce a definition of local topological recursion which is specifically suitable for use in the context
of the lattice point enumeration; one can find a more general formulation in the work of Dunin-Barkowski,
Orantin, Shadrin and Spitz [42].

Define a local spectral curve (C, x, y, ω0,2) to consist of a Riemann surface C, which may be non-compact
and disconnected; two meromorphic functions x, y : C → CP1; and a bidi�erential ω0,2 which has a double
pole at z1 = z2 and is holomorphic away from the diagonal. And, as in the definition of CEO topological
recursion, we require that the zeros of dx are simple. (Note that due to the work of Bouchard and Eynard
[13], we now know that this last condition is not strictly necessary, however I impose it here for simplicity.)

Define the base cases of the recursion to be ω0,1(z) = −y(z) dx(z) and ω0,2 where the latter is defined in
the initial data. And finally, define the recursion to be as in Chapter 2 for CEO topological recursion: for
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(g, n) satisfying 2g − 2 + n > 0, the correlation di�erentials ωg,n are defined recursively to be

ωg,n(z1, ~zS) =
∑
α

Res
z=α

Kα(z1, z)

[
ωg−1,n+1(z, σα(z), ~zS) +

◦∑
g1+g2=g
ItJ=S

ωg1,|I|+1(z, ~zI)ωg2,|J|+1(σα(z), ~zJ)

]
,

(5.2)
where S = {2, 3, . . . , n} and ~zI = (zi1 , . . . , zik) for I = {i1, . . . , ik}. The outer summation is over all zeros
α of dx, while ◦ over the inner summation denotes that we exclude all terms including ω0,1. The involutions
σα and the kernel Kα are defined as in the definition for CEO topological recursion. That is, for each
branch point α, σα is defined to be the non-trivial holomorphic involution defined in a neighbourhood of
z = α such that x(σα(z)) = x(z), and Kα is

Kα(z1, z) = −
∫ z
o
ω0,2(z1, · )

[y(z)− y(σα(z))] dx(z)
,

where o is any arbitrary point on the spectral curve.

5.2.2 The spectral curve for the lattice point enumeration

This section details calculations using the spectral curve (5.1) that will be necessary in the proof of The-
orem 5.1.1 in Section 5.3. Namely, I calculate the kernel appearing in the recursion, K(z1, z), as well as
the correlation di�erentials ω0,3 and ω1,1 produced by topological recursion. Recall that the spectral curve
utilised in Theorem 5.1.1 is defined to be (C∗, x, y, ω0,2) with

x(z) = z +
1

z
, y(z) = z, ω0,2(z1, z2) =

dz1 dz2

(z1 − z2)2
+

dz1 dz2

z1 z2
.

First, calculate the recursion kernel,K(z1, z). The branch points of the spectral curve are given by dx(z) = 0,
hence z = ±1. The local involution σ is given by z 7→ 1

z at both branch points. Hence,

K(z1, z) = −
∫ z
o
ω0,2(z1, · )

[y(z)− y(σ(z))] dx(z)

= −

∫ z
o

dz1 dt
(z1−t)2 + dz1 dt

z1 t[
z − 1

z

] (
1− 1

z2

)
dz

= − z3

(1− z2)2

dz1

dz

[∫ z

∞

dt

(z1 − t)2
+

∫ z

1

dt

z1 t

]
= − z3

(1− z2)2

dz1

dz

[
1

z1 − z
+

log(z)

z1

]
. (5.3)

The third equality is using the fact that the topological recursion is not sensitive to the choice of base point
in the integration — any constants that arise from the integral in the recursion kernel do not contribute to
the residue calculations and as such do not a�ect the resultant multidi�erentials produced by topological
recursion. For this reason, we can split the integral and choose separate (and convenient) base points for
each term.

Hence topological recursion gives the following expression for ωg,n, where S = {2, 3, . . . , n}:

ωg,n(z1, ~zS) =
∑

α∈{±1}

Res
z=α

−z3

(1− z2)2

dz1

dz

[
1

z1 − z
+

log(z)

z1

][
ωg−1,n+1(z, 1

z , ~zS)

+

◦∑
g=g1+g2
ItJ=S

ωg1,|I|+1(z, ~zI)ωg2,|J|+1( 1
z , ~zJ)

]
. (5.4)

I now calculate the first correlation di�erentials produced by the topological recursion; that is, ωg,n for
which 2g − 2 + n = 1, namely ω0,3 and ω1,1. These will be necessary for the proof of the main theorem
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in Section 5.3. Applying the topological recursion to calculate ω0,3 yields

ω0,3(z1, z2, z3)

=
∑

α∈{±1}

Res
z=α

K(z1, z) [ω0,2(z, z2)ω0,2(σ(z), z3) + ω0,2(z, z3)ω0,2(σ(z), z2)]

= −
∑

α∈{±1}

Res
z=α

z3

(1− z2)2

dz1

dz

[
1

z1 − z
+

log(z)

z1

][(
dz dz2

(z − z2)2
+

dz dz2

z z2

)(
d( 1

z ) dz3

( 1
z − z3)2

+
d( 1

z ) dz3

1
z z3

)

+

(
dz dz3

(z − z3)2
+

dz dz3

z z3

)(
d( 1

z ) dz2

( 1
z − z2)2

+
d( 1

z ) dz2

1
z z2

)]

=
1

2

[
3∏
i=1

z2
i − zi + 1

zi(zi − 1)2
+

3∏
i=1

z2
i + zi + 1

zi(zi + 1)2

]
dz1 dz2 dz3. (5.5)

Here, the last line was calculated by a computer.

Calculating ω1,1 I find

ω1,1(z1) =
∑

α∈{±1}

Res
z=α

K(z1, z)ω0,2(z, σ(z))

= −
∑

α∈{±1}

Res
z=α

z3

(1− z2)2

dz1

dz

[
1

z1 − z
+

log(z)

z1

](
dz d( 1

z )

(z − 1
z )2

+
dz d( 1

z )
1
z z

)

=
∑

α∈{±1}

Res
z=α

z3

(1− z2)2

[
1

z1 − z
+

log(z)

z1

](
1

(z2 − 1)2
+

1

z2

)
dz dz1

=
1

12

5z8
1 − 8z6

1 + 18z4
1 − 8z2

1 + 5

z1(z2
1 − 1)4

dz1. (5.6)

Again the final equality here was calculated with a computer.

5.3 Proof of the main theorem

To prove Theorem 5.1.1 I adopt a general strategy that has previously been used to prove that an enumeration
satisfies topological recursion. This strategy has been used for lattice points in uncompactified moduli space
of curves [87] and various kinds of Hurwitz numbers, including simple [49], orbifold [14, 33], and monotone
Hurwitz numbers [31]. The overarching steps in this strategy are typically thus: begin with the combinatorial
recursion for the underlying enumerative problem and write it in terms of multidi�erentials; use structural
properties of the enumeration to deduce equivalent properties for the multidi�erentials, then use these to
acquire an asymmetric version of the equation obtained; use the fact that a rational di�erential form is equal
to the sum of its principal parts, then finally match the resulting expression with the topological recursion.

First, define the following formal multidi�erentials.

Ωg,n(z1, . . . , zn) =
∑

b1,...,bn>0

Ng,n(b1, . . . , bn)

n∏
i=1

[bi] z
bi−1
i dzi (5.7)

Theorem 5.1.1 is essentially the statement that the multidi�erentials ωg,n(z1, . . . , zn) arising from apply-
ing the topological recursion to the spectral curve in equation (5.1) are equal to the multidi�erentials
Ωg,n(z1, . . . , zn) defined above; that is,

Ωg,n(z1, . . . , zn) = ωg,n(z1, . . . , zn),

for (g, n) satisfying 2g − 2 + n > 0.

Adapting the strategy given above as required in our case results in the following four steps.
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1. Use the known quasi-polynomiality of Ng,n(b1, . . . , bn) given by Theorem 5.3.1 to deduce analytic and
symmetry properties of Ωg,n(z1, . . . , zn) (Lemma 5.3.5).

2. Rewrite the combinatorial recursion of Theorem 5.3.1 in terms of the multidi�erentials Ωg,n(z1, . . . , zn)

(Proposition 5.3.7).

3. Apply the operator F (z) 7→ F (z)− 1
z2F ( 1

z ) and use the symmetry properties of Ωg,n to asymmetrise
the equation obtained in the preceding step (Proposition 5.3.8).

4. Use the fact that a rational multidi�erential is equal to the sum of its principal parts, where the
principal part of a di�erential form Ω(z1) at z1 = α can be expressed as

Res
z=α

dz1

z1 − z
Ω(z).

Finally, compare the resulting recursion for Ωg,n(z1, . . . , zn) from the above process with the topo-
logical recursion for the correlation di�erentials ωg,n(z1, . . . , zn) and use induction to prove that
Ωg,n = ωg,n for all (g, n) satisfying 2g − 2 + n > 0.

The above four steps are carried out in the following four subsections respectively.

5.3.1 Structure of the enumeration

First begin by recalling the following properties of Ng,n(b1, . . . , bn) proven by Do and Norbury [35].

Theorem 5.3.1 (Do and Norbury [35]).

1. Quasi-polynomiality. For (g, n) satisfying 2g−2+n > 0, Ng,n(b1, . . . , bn) is a symmetric quasi-polynomial
in b21, . . . , b

2
n of degree 3g − 3 + n. We use the term quasi-polynomial to refer to a function on Zn+ that is

polynomial on each �xed parity class. Observe that Ng,n(b1, . . . , bn) = 0 whenever b1 + · · · + bn is odd and
that quasi-polynomiality allows us to extend Ng,n(b1, . . . , bn) to evaluation at bi = 0 for all i ∈ {1, 2, . . . , n}.

2. Combinatorial recursion. For (g, n) satisfying 2g − 2 + n > 2, the compacti�ed lattice point count
Ng,n(b1, . . . , bn) satis�es the following recursion:(

n∑
i=1

bi

)
Ng,n(~bS) =

∑
i<j

∑
p+q=bi+bj

q even

[p]qNg,n−1(p,~bS\{i,j})

+
1

2

∑
i

∑
p+q+r=bi
r even

[p][q]r

[
Ng−1,n+1

(
p, q,~bS\{i}

)
+

stable∑
g1+g2=g
ItJ=S\{i}

Ng1,|I|+1

(
p,~bI

)
Ng2,|J|+1

(
q,~bJ

)]
,

Here S = {1, 2, . . . , n} and for an index set I = {i1, . . . , in}, let ~bI = (bi1 , . . . , bin). In the summations, p,
q and r vary over all non-negative integers, and we use the notation [p] = p for p positive and [0] = 1. The
word stable over the �nal summation denotes that we exclude all terms with N0,1 and N0,2.

3. Top degree coe�cients. For non-negative integers α1 + · · ·+αn = 3g−3+n, the coe�cient of b2α1
1 · · · b2αnn

in any non-zero polynomial underlying Ng,n(b1, . . . , bn) is equal to the psi-class intersection number

1

25g−6+2nα1! · · ·αn!

∫
Mg,n

ψα1
1 · · ·ψαnn .

4. Orbifold Euler characteristics. Let χg,n denote the orbifold Euler characteristic of Mg,n. The quasi-
polynomial Ng,n(b1, . . . , bn) satis�es Ng,n(0, 0, . . . , 0) = χg,n. Further, these orbifold Euler characteristics
χg,n satisfy the following recursion for 2g − 2 + n > 0, with the convention χ0,1 = 0 and χ0,2 = 1.

χg,n+1 = (2− 2g − n)χg,n +
1

2
χg−1,n+2 +

1

2

∑
g1+g2=g
i+j=n

(
n

i

)
χg1,i+1 χg2,j+1
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Next, define the following vector space, which captures the structure of the family of multidi�erentials
Ωg,n(z1, . . . , zn).

De�nition 5.3.2. Define the complex vector space of di�erential forms

V (z) =

{ ∞∑
b=0

[b]Q(b) zb−1 dz
∣∣∣ Q(b) is a quasi-polynomial in b2

}
.

The quasi-polynomiality of Ng,n(b1, . . . , bn) given by Theorem 5.3.1 amounts to the fact that, for (g, n)

satisfying 2g − 2 + n > 0,

Ωg,n(z1, . . . , zn) ∈ V (z1)⊗ V (z2)⊗ · · · ⊗ V (zn).

For the purposes of proving Theorem 5.1.1, it will be useful to deduce some analytic and symmetry properties
for the forms Ω(z) ∈ V (z). I begin by deriving a vector space basis for V (z).

Lemma 5.3.3. The vector space V (z) has basis
{
ξeven
k (z), ξodd

k (z) | k > 0
}
, where

ξeven
k (z) =

d

dz

(
z

d

dz

)2k
z2

1− z2
dz +

δk,0
z

dz and ξodd
k (z) =

d

dz

(
z

d

dz

)2k
z

1− z2
dz.

Proof. First observe that a quasi-polynomial is a unique linear combination of monomials, acting on either
even or odd arguments. So the following is a basis for V (z), with k varying over all non-negative integers.

ξeven
k (z) =

∑
b>0
b even

[b] · b2kzb−1 dz ξodd
k (z) =

∑
b>0
b odd

[b] · b2kzb−1 dz

=
d

dz

(
z

d

dz

)2k ∑
b>0
b even

zb dz +
δk,0
z

dz =
d

dz

(
z

d

dz

)2k ∑
b>0
b odd

zb dz

=
d

dz

(
z

d

dz

)2k
z2

1− z2
dz +

δk,0
z

dz =
d

dz

(
z

d

dz

)2k
z

1− z2
dz �

Example 5.3.4. It has been previously shown [35] that

N0,3(b1, b2, b3) =

{
1, b1 + b2 + b3 even,

0, b1 + b2 + b3 odd,
and N1,1(b1) =

{
1
48 (b21 + 20), b1 even,

0, b1 odd.

We can calculate the corresponding di�erentials Ω0,3 and Ω1,1 in terms of the basis elements as follows.
First in the case of Ω0,3 we have

Ω0,3(z1, z2, z3) =
∑

b1,b2,b3>0
b1+b2+b3=even

[b1] [b2] [b3] zb1−1
1 zb2−1

2 zb3−1
1 dz1 dz2 dz3

Thus Ω0,3 is a linear combination of products of ξeven
0 and ξodd

0 satisfying a parity condition resulting from
the constraint that b1 + b2 + b3 is even. To satisfy this, either b1, b2, b3 are all even or exactly two are odd.
Hence

Ω0,3(z1, z2, z3) = ξeven
0 (z1) ξeven

0 (z2) ξeven
0 (z3) + ξeven

0 (z1) ξodd
0 (z2) ξodd

0 (z3)

+ ξodd
0 (z1) ξeven

0 (z2) ξodd
0 (z3) + ξodd

0 (z1) ξodd
0 (z2) ξeven

0 (z3)

= dz1 dz2 dz3

[
3∏
i=1

(
2zi

(1− z2
i )2

+
1

zi

)
+

(
2z1

(1− z2
1)2

+
1

z1

)
1 + z2

2

(1− z2
2)2

1 + z2
3

(1− z2
3)2

+

(
2z2

(1− z2
2)2

+
1

z2

)
1 + z2

1

(1− z2
1)2

1 + z2
3

(1− z2
3)2

+

(
2z3

(1− z2
3)2

+
1

z3

)
1 + z2

1

(1− z2
1)2

1 + z2
2

(1− z2
2)2

]
=

1

2

[
3∏
i=1

z2
i − zi + 1

zi(zi − 1)2
+

3∏
i=1

z2
i + zi + 1

zi(zi + 1)2

]
dz1 dz2 dz3.
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This agrees with the calculation of ω0,3 obtained in equation (5.5) by topological recursion.

Similarly, calculate Ω1,1(z1) as a linear combination of ξeven
1 (z1) and ξeven

0 (z1) in the following way.

Ω1,1(z1) =
1

48
(ξeven

1 (z1) + 20 ξeven
0 (z1))

=
1

48

[
d

dz1

(
z1

d

dz1

)2
z2

1

1− z2
1

+ 20

(
d

dz1

z2
1

1− z2
1

+
1

z1

)]
dz1

=
1

48

[
8z5

1 + 32z3
1 + 8z1

(1− z2
1)4

+
20(z4

1 + 1)

z1(1− z2
1)2

]
dz1

=
1

12

5z8
1 − 8z6

1 + 18z4
1 − 8z2

1 + 5

z1(z2
1 − 1)4

dz1

Again, this agrees with the calculation of ω1,1 obtained in equation (5.6) by topological recursion.

The next lemma asserts certain pole structure and symmetry properties for Ω(z) ∈ V (z) that will be
necessary for the proof of Theorem 5.1.1.

Lemma 5.3.5. For all Ω(z) ∈ V (z),

1. Ω(z) can have poles only at z = 1, z = −1 and z = 0, with at worst a simple pole occurring at z = 0; and

2. Ω(z) + Ω(1/z) = 0.

Proof. It is su�cient to prove these two statements for the basis elements ξevenk (z), ξoddk (z), and the results
for general Ω(z) ∈ V (z) can then be deduced by linearity. The first statement is a direct consequence

of Lemma 5.3.3: the operators d
dz and d

dz

(
z d

dz

)2k
do not introduce poles and therefore it follows that the

basis elements ξevenk (z), ξoddk (z) can have poles only at z = 1, z = −1 and z = 0, with at worst a simple pole
at z = 0. For the second statement, first observe

1

z

d

d(1/z)
= −z d

dz
.

Expressing ξevenk (z) as

ξevenk (z) = d

[(
z

d

dz

)2k
z2

1− z2
+ δk,0 log(z)

]
allows us to write

ξevenk (z) + ξevenk (1/z) = d

[(
z

d

dz

)2k
z2

1− z2
+ δk,0 log(z)

]
+ d

[(
−z d

dz

)2k
(1/z)2

1− (1/z)2
+ δk,0 log(1/z)

]

= d

[(
z

d

dz

)2k
z2 − 1

1− z2
+ δk,0 (log(z) + log(1/z))

]
= 0.

Similarly in the case of ξoddk (z),

ξoddk (z) + ξoddk (1/z) = d

[(
z

d

dz

)2k
z

1− z2

]
+ d

[(
−z d

dz

)2k
(1/z)

1− (1/z)2

]
= 0. �

Next I state a further and final lemma regarding the pole structure of the forms Ω(z). This lemma is
necessary for Theorem 5.1.1 to assimilate the logarithmic terms that arise from the extra term in ω0,2.

Lemma 5.3.6. For all Ω(z) ∈ V (z), ∑
α∈{±1}

Res
z=α

Ω(z) log(z) = Res
z=0

Ω(z). (5.8)
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Proof. As in the proof of Lemma 5.3.5, it is only necessary to prove the statement for the basis elements
ξeven
k (z), ξodd

k (z) for all k > 0, and the general result follows by linearity. First consider the case of ξeven
k (z),

and here I will deal with k = 0 and k > 1 separately. Observe that the right side is zero for k > 1:

Res
z=0

ξeven
k (z) = Res

z=0

d

dz

(
z

d

dz

)2k
z2

1− z2
dz = 0.

In this case, the left side is∑
α∈{±1}

Res
z=α

ξeven
k (z) log(z) = −

∑
α∈{±1}

Res
z=α

[∫
ξevenk (z)

]
d log(z)

= −
∑

α∈{±1}

Res
z=α

[(
z

d

dz

)2k
z2

1− z2

]
dz

z

= −
∑

α∈{±1}

Res
z=α

d

dz

(
z

d

dz

)2k−1(
−1 +

1

1− z2

)
dz

= 0.

The first equality uses the fact that a function F (z) meromorphic at z = α satisfies Res
z=α

dF = 0. It follows by

taking F = fg that Res
z=α

f dg = −Res
z=α

g df for any two functions f(z), g(z) that are meromorphic at z = α.

The last equality uses the fact that the sum of the residues of a meromorphic form equals zero: given that
the operators d

dz and z d
dz do not introduce any poles, the expression has the same poles as −1 + 1

(1−z)2 ,
which are +1 and −1, and both of which are being summed over.

When k = 0, the right side is

Res
z=0

ξeven0 (z) = Res
z=0

[
d

dz

z2

1− z2
dz +

1

z
dz

]
= Res

z=0

[
d

dz

(
−1 +

1

1− z2

)
dz +

1

z
dz

]
= 1,

while the left side can be rewritten as∑
α∈{±1}

Res
z=α

ξeven
0 (z) log(z) =

∑
α∈{±1}

Res
z=α

[
d

dz

z2

1− z2
dz +

1

z
dz

]
log(z)

=
∑

α∈{±1}

Res
z=α

[
d

dz

z2

1− z2
dz

]
log(z)

= −
∑

α∈{±1}

Res
z=α

[
z2

1− z2

]
d log(z)

= −
∑

α∈{±1}

Res
z=α

z

1− z2
dz.

Here the second equality uses the fact that log(z)/z is holomorphic at z = ±1, while the third equality
uses again that Res

z=α
f dg = −Res

z=α
g df for any two functions f(z), g(z) that are meromorphic at z = α.

Since z
1−z2 has only simple poles at z = 1 and z = −1, the residue at these points can be calculated by

multiplying the expression by (z−1) and (z+ 1) and substituting z = 1 and z = −1 respectively. Therefore
the expression equates to

∑
α∈{±1}

Res
z=α

ξeven
0 (z) log(z) = −

∑
α∈{±1}

Res
z=α

z

1− z2
dz = −z(z − 1)

1− z2

∣∣∣∣∣
z=1

− z(z + 1)

1− z2

∣∣∣∣∣
z=−1

= 1,

as required. It remains to prove the statement for ξoddk (z) with k > 0. In this case note again that the right
side is zero:

Res
z=0

ξodd
k (z) = Res

z=0

d

dz

(
z

d

dz

)2k
z

1− z2
dz = 0.
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Using a similar argument to the case of ξeven
k (z) for k > 0, the left side is

∑
α∈{±1}

Res
z=α

ξodd
k (z) log(z) = −

∑
α∈{±1}

Res
z=α

[∫
ξodd
k (z)

]
d log(z)

= −
∑

α∈{±1}

Res
z=α

[(
z

d

dz

)2k
z

1− z2

]
1

z
dz = 0.

The first equality is using the fact that Res
z=α

f dg = −Res
z=α

g df for any two functions f(z), g(z) that are

meromorphic at z = α, and the last equality is using the fact that the residues of a meromorphic form sum
to zero. �

5.3.2 Combinatorial recursion

The aim of this section is to rewrite the combinatorial recursion of Theorem 5.3.1 in terms of natural
generating functions. First define the following generating functions, which will be used rather than the
multidi�erentials Ωg,n(z1, . . . , zn) defined at the start of the section. That is, define

Wg,n(z1, . . . , zn) =
Ωg,n(z1, . . . , zn)

dz1 dz2 · · · dzn
=

∑
b1,...,bn>0

Ng,n(b1, . . . , bn)

n∏
i=1

[bi]z
bi−1
i .

Proposition 5.3.7. For (g, n) satisfying 2g− 2 +n > 2, we have the following equation, where S = {1, 2, . . . , n}
and ~zI = (zi1 , . . . , zik) for I = {i1, . . . , ik}.

n∑
i=1

∂

∂zi
ziWg,n(z1, ~zS) =

∑
i<j

(
∂

∂zi

[
2

zj

z3
i

(1− z2
i )2

Wg,n−1(~zS\{j})

]
+

∂

∂zj

[
2

zi

z3
j

(1− z2
j )2

Wg,n−1(~zS\{i})

]

+ 2
∂

∂zi

∂

∂zj

[
zj

zi − zj
z3
i

(1− z2
i )2

Wg,n−1(~zS\{j})−
zi

zi − zj
z3
j

(1− z2
j )2

Wg,n−1(~zS\{i})

])

+

n∑
i=1

∂

∂zi

z4
i

(1− z2
i )2

[
Wg−1,n+1(zi, zi, ~zS\{i}) +

stable∑
g1+g2=g
ItJ=S\{i}

Wg1,|I|+1(zi, ~zI)Wg2,|J|+1(zi, ~zJ)

]
(5.9)

The term stable over the �nal summation denotes that we exclude all terms with W0,1 or W0,2.

Proof. First recall from Theorem 5.3.1 the following combinatorial recursion for Ng,n(b1, . . . , bn) where (g, n)

satisfies 2g − 2 + n > 2 and b1, . . . , bn > 0.

(
n∑
i=1

bi

)
Ng,n(~bS) =

∑
i<j

∑
p+q=bi+bj
q even

[p]qNg,n−1(p,~bS\{i,j})

+
1

2

∑
i

∑
p+q+r=bi
r even

[p][q]r

[
Ng−1,n+1(p, q,~bS\{i}) +

stable∑
g1+g2=g
ItJ=S\{i}

Ng1,|I|+1(p,~bI) Ng2,|J|+1(q,~bJ)

]
(5.10)

Define the operators

O =
∑

b1,...,bn>0

[ · ]
n∏
i=1

[bi] z
bi−1
i and OJ =

∑
bi>0:i/∈J

[ · ]
∏
i/∈J

[bi] z
bi−1
i ,

for all J ⊆ {1, 2, . . . , n}.
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To obtain the result, apply the operatorO to both sides of the combinatorial recursion. The left side becomes

∑
b1,...,bn>0

(
n∑
i=1

bi

)
Ng,n(~bS)

n∏
i=1

[bi] z
bi−1
i =

∑
b1,...,bn>0

(
n∑
i=1

∂

∂zi
zi

)
Ng,n(~bS)

n∏
i=1

[bi] z
bi−1
i

=

n∑
i=1

∂

∂zi
ziWg,n(~zS).

Applying O to the (i, j)th summand in the first term on the right side yields

∑
b1,...,bn>0

∑
p+q=bi+bj
q even

[p]qNg,n−1(p,~bS\{i,j})

n∏
i=1

[bi] z
bi−1
i

= Oi,j
∑

bi,bj>0

∑
p+q=bi+bj
q even

[p]qNg,n−1(p,~bS\{i,j}) [bi] [bj ] z
bi−1
i z

bj−1
j

= Oi,j
∑
p,q>0
q even

[p]qNg,n−1(p,~bS\{i,j})

(
p+q∑
k=0

[p+ q − k] [k] zp+q−k−1
i zk−1

j

)

= Oi,j
∑
p,q>0
q even

[p]qNg,n−1(p,~bS\{i,j})

[
∂

∂zi
zp+qi z−1

j +
∂

∂zj
z−1
i zp+qj

]

+Oi,j
∑
p,q>0
q even

[p]qNg,n−1(p,~bS\{i,j})
∂

∂zi

∂

∂zj

(
zp+q−1
i z1

j + zp+q−2
i z2

j + · · ·+ z1
i z
p+q−1
j

)
. (4)

The third equality has exchanged the sum over bi and bj with the sum over p and q. Considering the entire
term in the first line of the final equality above,

Oi,j
∑
p,q>0
q even

[p]qNg,n−1(p,~bS\{i,j})

[
∂

∂zi
zp+qi z−1

j +
∂

∂zj
z−1
i zp+qj

]

= Oi,j
∂

∂zi
z−1
j zi

∑
q>0
q even

qzqi
∑
p>0

[p] Ng,n−1(p,~bS\{i,j})z
p−1
i

+Oi,j
∂

∂zj
z−1
i zj

∑
q>0
q even

qzqj
∑
p>0

[p] Ng,n−1(p,~bS\{i,j})z
p−1
j

=
∂

∂zi

[
2

zj

z3
i

(1− z2
i )2

Wg,n−1

(
~zS\{j}

)]
+

∂

∂zj

[
2

zi

z3
j

(1− z2
j )2

Wg,n−1

(
~zS\{i}

)]
. (∗)

The final equality has used the following:

∑
q>0
q even

qzqi = zi
∑
q>0
q even

qzq−1
i = zi

∂

∂zi

1

1− z2
i

=
2z2
i

(1− z2
i )2

. (5.11)

The sum in brackets in the second line of the final equality in the expression above (4) is a geometric series
with ratio zj/zi and p+ q terms, hence it is equal to

zp+q−1
i z1

j + zp+q−2
i z2

j + · · ·+ z1
i z
p+q−1
j =

zp+qi zj − zi zp+qj

zi − zj
.
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Therefore,

Oi,j
∑
p,q>0
q even

[p]qNg,n−1(p,~bS\{i,j})
∂

∂zi

∂

∂zj

(
zp+q−1
i z1

j + zp+q−2
i z2

j + · · ·+ z1
i z
p+q−1
j

)

= Oi,j
∑
p,q>0
q even

[p]qNg,n−1(p,~bS\{i,j})
∂

∂zi

∂

∂zj

zp+qi zj − zi zp+qj

zi − zj

= Oi,j
∂

∂zi

∂

∂zj

 1

zi − zj

∑
p,q>0
q even

[p]qNg,n−1(p,~bS\{i,j})
(
zp+qi zj − zi zp+qj

)
= 2

∂

∂zi

∂

∂zj

[
zj

zi − zj
z3
i

(1− z2
i )2

Wg,n−1

(
~zS\{j}

)
− zi
zi − zj

z3
j

(1− z2
j )2

Wg,n−1

(
~zS\{i}

)]
. (∗)

The ith summand of the third term in (5.10) under the operator is∑
b1,...,bn>0
p+q+r=bi
r even

1

2
[p][q]r

[
Ng−1,n+1(p, q,~bS\{i}) +

stable∑
g1+g2=g
ItJ=S\{i}

Ng1,|I|+1(p,~bI) Ng2,|J|+1(q,~bJ)

]
n∏
i=1

[bi] z
bi−1
i

= Oi
∑
bi>0

p+q+r=bi
r even

1

2
[p][q]r

[
Ng−1,n+1(p, q,~bS\{i}) +

stable∑
g1+g2=g
ItJ=S\{i}

Ng1,|I|+1(p,~bI) Ng2,|J|+1(q,~bJ)

]
[bi] z

bi−1
i

= Oi
∂

∂zi
zi

∑
p,q,r>0
r even

1

2
[p][q]r

[
Ng−1,n+1(p, q,~bS\{i}) +

stable∑
g1+g2=g
ItJ=S\{i}

Ng1,|I|+1(p,~bI) Ng2,|J|+1(q,~bJ)

]
zp+q+r−1
i

=
∂

∂zi

z4
i

(1− z2
i )

2

[
Wg−1,n+1(zi, zi, ~zS\{i}) +

stable∑
g1+g2=g
ItJ=S\{i}

Wg1,|I|+1(zi, zI
)
Wg2,|J|+1(zi, zJ)

]
. (∗)

In the final line, the sums over p, q and factors of zp−1
i , zq−1

i have been absorbed into the generating
functions Wg,n, while for the sum over r I have used the same idea as in equation (5.11). In other words,

z3
i

2

∑
r>0
r even

rzr−1
i =

z3
i

2

∂

∂zi

1

1− z2
i

=
z4
i

(1− z2
i )2

.

Combine the contributions from the expressions marked by (∗) to obtain the desired result. �

5.3.3 Breaking the symmetry

Thus far we have acquired a symmetric expression for the combinatorial recursion of Ng,n(b1, . . . , bn) in
terms of the generating functions Wg,n(z1, . . . , zn); however, the topological recursion given in Section 5.2
is inherently asymmetric with the variable z1 playing a special role. In this section, I apply the operator

F (z1, . . . , zn) 7→ F (z1, . . . , zn)− 1

z2
1

F ( 1
z1
, z2, . . . , zn), (5.12)

and use the properties of multidi�erentials Ω(z) ∈ V (z) in Lemma 5.3.5 to break the symmetry in (5.9).
This yields an appropriate asymmetric recursion that is ultimately compared with the topological recursion.
By the second result of Lemma 5.3.5,

Ωg,n(z1, . . . , zn) + Ωg,n(1/z1, z2, . . . , zn) = 0,

and at the level of generating functions this property becomes

Wg,n(z1, . . . , zn)− 1

z2
1

Wg,n( 1
z1
, z2, . . . , zn) = 0. (5.13)

This motivates the definition of the operator (5.12).
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Proposition 5.3.8. For (g, n) satisfying 2g− 2 +n > 2, we have the following equation, where S = {2, 3, . . . , n}
and ~zI = (zi1 , . . . , zik) for I = {i1, . . . , ik}.

Wg,n(z1, ~zS)−Res
p=0

Wg,n(p, ~zS) dp

z1
=

n∑
j=2

(
2

z1zj
+

1

(z1 − zj)2
+

1

(1− z1zj)2

)
z3

1

(1− z2
1)2

Wg,n−1(z1, ~zS\{j})

−
n∑
j=2

∂

∂zj

[(
1

z1 − zj
+

zj
1− z1zj

)
z3
j

(1− z2
j )2

Wg,n−1(~zS)

]

+
z3

1

(1− z2
1)2

[
Wg−1,n+1(z1, z1, ~zS) +

stable∑
g1+g2=g
ItJ=S

Wg1,|I|+1(z1, ~zI)Wg2,|J|+1(z1, ~zJ)

]
(5.14)

Proof. Recall equation (5.9) of Proposition 5.3.7, but note that I have used the notation S′ = {1, 2, . . . , n}
(while S = {2, 3, . . . , n} as in the statement of the proposition),

n∑
i=1

∂

∂zi
ziWg,n(~zS′) =

∑
i<j

(
∂

∂zi

[
2

zj

z3
i

(1− z2
i )2

Wg,n−1(~zS′\{j})

]
+

∂

∂zj

[
2

zi

z3
j

(1− z2
j )2

Wg,n−1(~zS′\{i})

]

+ 2
∂

∂zi

∂

∂zj

[
zj

zi − zj
z3
i

(1− z2
i )2

Wg,n−1(~zS′\{j})−
zi

zi − zj
z3
j

(1− z2
j )2

Wg,n−1(~zS′\{i})

])

+

n∑
i=1

∂

∂zi

z4
i

(1− z2
i )2

[
Wg−1,n+1(zi, zi, ~zS′\{i}) +

stable∑
g1+g2=g

ItJ=S′\{i}

Wg1,|I|+1(zi, ~zI)Wg2,|J|+1(zi, ~zJ)

]
.

The result can be obtained by applying the operator (5.12) to all terms. The left side becomes

∂

∂z1
z1Wg,n(z1, ~zS)− 1

z2
1

∂

∂( 1
z1

)

1

z1
Wg,n( 1

z1
, ~zS) +

n∑
i=2

[
∂

∂zi
ziWg,n(z1, ~zS)− 1

z2
1

∂

∂zi
ziWg,n( 1

z1
, ~zS)

]

=
∂

∂z1
z1Wg,n(z1, ~zS) +

1

z2
1

z2
1

∂

∂z1

1

z1
Wg,n( 1

z1
, ~zS) +

n∑
i=2

∂

∂zi
zi

[
Wg,n(z1, ~zS)− 1

z2
1

Wg,n( 1
z1
, ~zS)

]
= 2

∂

∂z1
z1Wg,n(z1, ~zS).

Here the final equality has used (5.13) to writeWg,n( 1
z1
, ~zS) in terms ofWg,n(z1, ~zS), and further, to deduce

that each summand in the sum over i is equal to zero.

For the first two lines on the right side the property (5.13) will ensure that the only terms to contribute will
be when i = 1 and j ∈ {2, 3, . . . , n}. In this case, applying the operator (5.12) to the jth summand in the
first term yields

∂

∂z1

[
2

zj

z3
1

(1− z2
1)2

Wg,n−1(z1, ~zS\{j})

]
− 1

z2
1

∂

∂ 1
z1

[
2

zj

1
z31

(1− 1
z21

)2
Wg,n−1( 1

z1
, ~zS\{j})

]

= 2
∂

∂z1

[
2

zj

z3
1

(1− z2
1)2

Wg,n−1(z1, ~zS\{j})

]
.

Doing so for the second term gives

∂

∂zj

[
2

z1

z3
j

(1− z2
j )2

Wg,n−1(~zS)

]
− 1

z2
1

∂

∂zj

[
2z1

z3
j

(1− z2
j )2

Wg,n−1(~zS)

]
= 0.
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The second line becomes

2
∂

∂z1

∂

∂zj

[
zj

z1 − zj
z3

1

(1− z2
1)2

Wg,n−1(z1, ~zS\{j})

]
− 2

z2
1

∂

∂ 1
z1

∂

∂zj

[
zj

1
z1
− zj

1
z31

(1− 1
z21

)2
Wg,n−1( 1

z1
, ~zS\{j})

]

− 2
∂

∂z1

∂

∂zj

[
z1

z1 − zj
z3
j

(1− z2
j )2

Wg,n−1(~zS)

]
+ 2

2

z2
1

∂

∂ 1
z1

∂

∂zj

[
1
z1

1
z1
− zj

z3
j

(1− z2
j )2

Wg,n−1(~zS)

]

= 2
∂

∂z1

∂

∂zj

[(
zj

z1 − zj
+

z1zj
1− z1zj

)
z3

1

(1− z2
1)2

Wg,n−1(z1, ~zS\{j})

−
(

z1

z1 − zj
+

1

1− z1zj

)
z3
j

(1− z2
j )2

Wg,n−1(~zS)

]
Finally, and similarly to previously, after application of the operator (5.12) only terms corresponding to i = 1

in the third and final line will contribute. In this case, we have

∂

∂z1

z4
1

(1− z2
1)2

[
Wg−1,n+1(z1, z1, ~zS) +

stable∑
g1+g2=g
ItJ=S

Wg1,|I|+1(z1, ~zI)Wg2,|J|+1(z1, ~zJ)

]

− 1

z2
1

∂

∂ 1
z1

1
z41

(1− 1
z21

)2

[
Wg−1,n+1( 1

z1
, 1
z1
, ~zS) +

stable∑
g1+g2=g
ItJ=S

Wg1,|I|+1( 1
z1
, ~zI)Wg2,|J|+1( 1

z1
, ~zJ)

]

= 2
∂

∂z1

z4
1

(1− z2
1)2

[
Wg−1,n+1(z1, z1, ~zS) +

stable∑
g1+g2=g
ItJ=S

Wg1,|I|+1(z1, ~zI)Wg2,|J|+1(z1, ~zJ)

]

Collecting all contributions obtained thus far—and dividing throughout by 2—gives

∂

∂z1
z1Wg,n(z1, ~zS) =

n∑
j=2

∂

∂z1

[
2

zj

z3
1

(1− z2
1)2

Wg,n−1(z1, ~zS\{j})

]

+

n∑
j=2

∂

∂z1

∂

∂zj

[(
zj

z1 − zj
+

z1zj
1− z1zj

)
z3

1

(1− z2
1)2

Wg,n−1(z1, ~zS\{j})

−
(

z1

z1 − zj
+

1

1− z1zj

)
z3
j

(1− z2
j )2

Wg,n−1(~zS)

]

+
∂

∂z1

z4
1

(1− z2
1)2

[
Wg−1,n+1(z1, z1, ~zS) +

stable∑
g1+g2=g
ItJ=S

Wg1,|I|+1(z1, ~zI)Wg2,|J|+1(z1, ~zJ)

]
.

Computing the di�erentiation

∂

∂zj

(
zj

z1 − zj
+

z1zj
1− z1zj

)
=

z1

(z1 − zj)2
+

z1

(1− z1zj)2
,

using the fact that
∂

∂zj

1

1− z1zj
=

∂

∂zj

(
1 +

z1zj
1− z1zj

)
=

∂

∂zj

z1zj
1− z1zj

,

and grouping the first two terms on the right side allows me to write

∂

∂z1
z1Wg,n(~zS) =

n∑
j=2

∂

∂z1

[(
2

zj
+

z1

(z1 − zj)2
+

z1

(1− z1zj)2

)
z3

1

(1− z2
1)2

Wg,n−1(z1, ~zS\{j})

]

−
n∑
j=2

∂

∂z1

∂

∂zj

[(
z1

z1 − zj
+

z1zj
1− z1zj

)
z3
j

(1− z2
j )2

Wg,n−1(~zS)

]

+
∂

∂z1

z4
1

(1− z2
1)2

[
Wg−1,n+1(z1, z1, ~zS) +

stable∑
g1+g2=g
ItJ=S

Wg1,|I|+1(z1, ~zI)Wg2,|J|+1(z1, ~zJ)

]
.
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Integrate both sides with respect to z1 and divide throughout by z1 to obtain

Wg,n(z1, ~zS) +
c

z1
=

n∑
j=2

[(
2

z1zj
+

1

(z1 − zj)2
+

1

(1− z1zj)2

)
z3

1

(1− z2
1)2

Wg,n−1(z1, ~zS\{j})

]

−
n∑
j=2

∂

∂zj

[(
1

z1 − zj
+

zj
1− z1zj

)
z3
j

(1− z2
j )2

Wg,n−1(~zS)

]

+
z3

1

(1− z2
1)2

[
Wg−1,n+1(z1, z1, ~zS) +

stable∑
g1+g2=g
ItJ=S

Wg1,|I|+1(z1, ~zI)Wg2,|J|+1(z1, ~zJ)

]
,

where c is constant with respect to z1. Recalling that Wg,n(z1, . . . , zn) has at worst a simple pole at z1 = 0

we can infer that the right side has no pole at z1 = 0: the factors of z3
1 in the first and third lines on the

right side will cancel with any possible pole at z1 = 0. Therefore,

c = −Res
p=0

Wg,n(p, ~zS) dp,

and this concludes the proof. �

5.3.4 Proof of topological recursion

I am now equipped to prove the main result.

Proof of Theorem 5.1.1. I use induction to prove

Ωg,n(z1, . . . , zn) = ωg,n(z1, . . . , zn)

for all (g, n) such that 2g − 2 + n > 0.

The base cases for the induction are given by (g, n) satisfying 2g − 2 + n = 1; that is, (g, n) = (0, 3) and
(1, 1). First, on the topological recursion side ω0,3 and ω1,1 were calculated in equations (5.5) and (5.6) to
be

ω0,3(z1, z2, z3) =
1

2

[
3∏
i=1

z2
i − zi + 1

zi(zi − 1)2
+

3∏
i=1

z2
i + zi + 1

zi(zi + 1)2

]
dz1 dz2 dz3,

and

ω1,1(z1) =
1

12

5z8
1 − 8z6

1 + 18z4
1 − 8z2

1 + 5

z1(z2
1 − 1)4

dz1.

Comparing these expressions with Ω0,3(z1, z2, z3) and Ω1,1(z1) of Example 5.3.4 we have Ωg,n = ωg,n for
(g, n) satisfying 2g − 2 + n = 1. Now fix (g, n) and assume

Ωg′,n′(z1, . . . , zn) = ωg′,n′(z1, . . . , zn)

for all (g′, n′) such that 2g − 2 + n > 2g′ − 2 + n′ > 0.

Begin with the recursion proven in Proposition 5.3.8 and multiply both sides by dz1 · · · dzn to obtain a
recursion in terms of Ωg,n(z1, . . . , zn). This gives

Ωg,n(z1, ~zS)− dz1

z1
Res
p=0

Ωg,n(p, ~zS)

=

n∑
j=2

(
2

z1zj
+

1

(z1 − zj)2
+

1

(1− z1zj)2

)
z3

1

(1− z2
1)2

Ωg,n−1(z1, ~zS\{j}) dzj

−
n∑
j=2

∂

∂zj

[(
1

z1 − zj
+

zj
1− z1zj

)
z3
j

(1− z2
j )2

Wg,n−1(~zS)

]
dz1 . . . dzn

+
z3

1

(1− z2
1)2

1

dz1

[
Ωg−1,n+1(z1, z1, ~zS) +

stable∑
g1+g2=g
ItJ=S

Ωg1,|I|+1(z1, ~zI) Ωg2,|J|+1(z1, ~zJ)

]
. (5.15)
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Use the fact that a rational di�erential is equal to the sum of its principal parts, where the principal part of
a rational di�erential Ω(z1) at z1 = α can be written

Res
z=α

dz1

z1 − z
Ω(z).

By Lemma 5.3.5, Ω(z1) is indeed a rational di�erential and has at worst a simple pole at z1 = 0 and poles
at z1 = ±1. Therefore, given that the left side of (5.15) above has poles only at z1 = ±1, we can write

Ωg,n(z1, ~zS)− dz1

z1
Res
p=0

Ωg,n(p, ~zS)

=
∑

α∈{±1}

Res
z=α

dz1

z1 − z

[
Ωg,n(z, ~zS)− dz

z
Res
p=0

Ωg,n(p, ~zS)

]

=
∑

α∈{±1}

Res
z=α

1

z1 − z
z3

(1− z2)2

dz1

dz

[
n∑
j=2

dz dzj

(
2

zzj
+

1

(z − zj)2
+

1

(1− zzj)2

)
Ωg,n−1(z, ~zS\{j})

+ Ωg−1,n+1(z, z, ~zS) +

stable∑
g1+g2=g
ItJ=S

Ωg1,|I|+1(z, ~zI) Ωg2,|J|+1(z, ~zJ)

]

=
∑

α∈{±1}

Res
z=α

1

z1 − z
−z3

(1− z2)2

dz1

dz

[
n∑
j=2

ω0,2(z, zj) Ωg,n−1( 1
z , ~zS\{j}) + ω0,2( 1

z , zj) Ωg,n−1(z, ~zS\{j})

+ Ωg−1,n+1(z, 1
z , ~zS) +

stable∑
g1+g2=g
ItJ=S

Ωg1,|I|+1(z, ~zI) Ωg2,|J|+1( 1
z , ~zJ)

]

=
∑

α∈{±1}

Res
z=α

1

z1 − z
−z3

(1− z2)2

dz1

dz

[
ωg−1,n+1(z, 1

z , ~zS) +

◦∑
g1+g2=g
ItJ=S

ωg1,|I|+1(z, ~zI)ωg2,|J|+1( 1
z , ~zJ)

]
.

(5.16)

The second equality has substituted in the right side of equation (5.15) and used the fact that, since the
entire second line of the right side of (5.15) is analytic at z1 = ±1, it will not contribute. The third equality
has used the definition of ω0,2,

ω0,2(z, zj) =
dz dzj

(z − zj)2
+

dz dzj
z zj

,

which implies that

ω0,2(z, zj)− ω0,2( 1
z , zj) =

2 dz dzj
zzj

+
dz dzj

(z − zj)2
+

dz dzj
(1− zzj)2

.

The third equality is also using the fact that Ωg,n(z1, . . . , zn) = −Ωg,n( 1
z1
, z2, . . . , zn) for all (g, n). To obtain

the final equality, I have absorbed the terms including ω0,2 into the sum over g1 + g2 = g and I tJ = S and
used the inductive hypothesis. The symbol ◦ over the sum indicates that we exclude all terms that involve
ω0,1.

Lemma 5.3.6 tells us that

dz1

z1
Res
p=0

Ωg,n(p, ~zS) =
dz1

z1

∑
α∈{±1}

Res
z=α

Ωg,n(z, ~zS) log(z).

Substitute the expression for Ωg,n given by equation (5.15) into the right side of the equation immediately
above and observe that the terms

dz

z
Res
p=0

Ωg,n(p, ~zS)

and
n∑
j=2

∂

∂zj

[(
1

z − zj
+

zj
1− zzj

)
z3
j

(1− z2
j )2

Wg,n−1(~zS)

]
dz dz2 · · · dzn
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are analytic at z = ±1. Doing so, then following the same steps of manipulation as was done above to
derive (5.16), I obtain

dz1

z1
Res
p=0

Ωg,n(p, ~zS)

=
dz1

z1

∑
α∈{±1}

Res
z=α

Ωg,n(z, ~zS) log(z)

=
∑

α∈{±1}

Res
z=α

log(z)

z1

z3

(1− z2)2

dz1

dz

 n∑
j=2

dz dzj

(
2

zzj
+

1

(z − zj)2
+

1

(1− zzj)2

)
Ωg,n−1(z, ~zS\{j})

+ Ωg−1,n+1(z, z, ~zS) +

stable∑
g1+g2=g
ItJ=S

Ωg1,|I|+1(z, ~zI) Ωg2,|J|+1(z, ~zJ)


=

∑
α∈{±1}

Res
z=α

log(z)

z1

−z3

(1− z2)2

dz1

dz

[
ωg−1,n+1(z, 1

z , ~zS) +

◦∑
g1+g2=g
ItJ=S

ωg1,|I|+1(z, ~zI)ωg2,|J|+1( 1
z , ~zJ)

]
.

(5.17)

Substituting (5.17) into (5.16) yields

Ωg,n(z1, ~zS) =
∑

α∈{±1}

Res
z=α

[
1

z1 − z
+

log(z)

z1

]
−z3

(1− z2)2

dz1

dz

[
ωg−1,n+1(z, 1

z , ~zS\{1})

+

◦∑
g=g1+g2
ItJ=S

ωg1,|I|+1(z, ~zI)ωg2,|J|+1( 1
z , ~zJ)

]
.

The right side coincides with (5.4) and hence I deduce that, by induction, Ωg,n = ωg,n for all (g, n) satisfying
2g − 2 + n > 0, and this concludes the proof. �

5.4 Remarks

I conclude this chapter with a number of brief remarks.

The ribbon graph spectral curve and its stable analogue di�er only in ω0,2. While the preceding sections
prove that this di�erence does indeed capture the stable part of the enumeration, one might still seek an
explanation for why this works. Loosely speaking, gluing information, and hence nodal information, is stored
in ω0,2. Hence ω0,2 stores the information of N0,2(b1, b2), and, by virtue of the geometric setup, nodes are
captured by evaluating at zero. Morally, one wants to incorporate nodes by defining N0,2(0, 0) = 1. This
would then, by equation (5.7), introduce an additional term of dz1 dz2

z1 z2
to ω0,2. This term then propagates

via the topological recursion machinery to account for the stable contributions in all topologies. Of course,
in the uncompactified lattice point enumeration, there is no N0,2(0, 0) contribution.

The enumeration of ribbon graphs in general and the restricted enumeration in which vertices have degree
at least two are both captured by topological recursion on the same spectral curve (2.4). The former is
obtained by expanding the correlation di�erentials at xi =∞, while the latter is obtained by expanding at
zi = 0. This relation should extend to the stable case; that is, expanding the correlation di�erential obtained
from applying topological recursion to the spectral curve (5.1) at xi =∞ yields an analogous enumeration
to Ng,n(b1, . . . , bn) in which the condition on the ramification order being at least 2 over 0 ∈ CP1 is removed.

One would expect that using our amended ω0,2 for the well-studied ordinary map spectral curve (7.1) would
produce a naturally defined stable analogue of the ordinary map enumeration, which, to the best of my
knowledge, has not yet been written down.

Looking at the data in Section 5.5 it should be immediately clear that the coe�cients of the quasi-polynomials
are non-negative. This suggests the following conjecture.
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Conjecture 5.4.1. The polynomials underlying the quasi-polynomial Ng,n have non-negative coe�cients.

This positivity conjecture is not immediate from the definition of the enumeration nor the perspective of
the combinatorial recursion of Theorem 5.3.1, nor topological recursion. A potential approach to prove
non-negativity is to derive a geometric interpretation for the coe�cients. The general theory of topological
recursion should allow one to relate the enumeration of lattice points inMg,n with intersection theory on
Mg,n, via the formula of Eynard [46], or the connection to cohomological field theories [42]. Work along
these lines for the uncompactified lattice point enumeration was carried out by Andersen, Chekhov, Norbury
and Penner [4]. It would be interesting to have an analogous result for the compactified case, which may
potentially shed light on the positivity conjecture.

5.5 Data

By the result of Do and Norbury [35] given in Theorem 5.3.1, Ng,n(b1, . . . , bn) is a quasi-polynomial in
b21, . . . , b

2
n that is fixed on each parity class of (b1, . . . , bn) and zero if b1 + · · · + bn is odd. Hence the

enumeration Ng,n(b1, . . . , bn) can be described by polynomials N (k)
g,n(b1, . . . , bn) for k an even non-negative

integer where b1, . . . , bk are odd and bk+1, . . . , bn are even.

The following data has been sourced from the literature [35] and shows these polynomials for low (g, n).

g n k N
(k)
g,n(b1, . . . , bn)

0 3 0 1
0 3 2 1
1 1 0 1

48 (b21 + 20)

0 4 0 1
4 (b21 + b22 + b23 + b24 + 8)

0 4 2 1
4 (b21 + b22 + b23 + b24 + 2)

0 4 4 1
4 (b21 + b22 + b23 + b24 + 8)

1 2 0 1
384 (b41 + b42 + 2b21b

2
2 + 36b21 + 36b22 + 192)

1 2 2 1
384 (b41 + b42 + 2b21b

2
2 + 36b21 + 36b22 + 84)

0 5 0 1
32

∑
b4i + 1

8

∑
b2i b

2
j + 7

8

∑
b2i + 7

0 5 2 1
32

∑
b4i + 1

8

∑
b2i b

2
j + 5

16 (b21 + b22) + 1
8 (b23 + b24 + b25) + 19

16

0 5 4 1
32

∑
b4i + 1

8

∑
b2i b

2
j + 5

16 (b21 + b22 + b23 + b24) + 7
8b

2
5 + 7

8

1 3 0 1
4608

∑
b6i + 1

768

∑
b4i b

2
j + 1

384b
2
1b

2
2b

2
3 + 13

1152

∑
b4i + 1

24

∑
b2i b

2
j + 29

144

∑
b2i + 17

12

1 3 2 1
4608

∑
b6i + 1

768

∑
b4i b

2
j+ 1

384b
2
1b

2
2b

2
3 + 43

4608

∑
b4i + 1

24

∑
b2i b

2
j+ 277

4608

∑
b2i + 1

512b
4
3 + 1

1536b
2
3 + 81

256

2 1 0 1
1769472b

8
1 + 3

40960b
6
1 + 133

61440b
4
1 + 1087

34560b
2
1 + 247

1440

0 6 0 1
384

∑
b6i + 3

28

∑
b4i b

2
j + 3

32

∑
b2i b

2
jb

2
k + 1

6

∑
b4i + 9

6

∑
b2i b

2
j + 109

24 b
2
i + 34
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Chapter 6

Polynomiality, topological recursion, and an
ELSV-like formula for double Hurwitz
numbers

6.1 Introduction

Hurwitz numbers enumerate branched covers of the Riemann sphere with prescribed ramification data. First
studied by Hurwitz in the late nineteenth century [69], recent decades have seen a resurgence of interest in
Hurwitz numbers due to their connections to algebraic geometry and mathematical physics. The resulting
study into these connections has catalysed significant expansion of Hurwitz theory.

Single Hurwitz numbers provide a particular enumeration of branched covers of the Riemann sphere. The
structural results proven for single Hurwitz numbers—which were found to be quite surprising at the time—
have instigated the study of further Hurwitz numbers. A particular generalisation of these single Hurwitz
numbers, Double Hurwitz numbers have been shown to satisfy a wealth of structure, including piecewise
polynomiality and wall-crossing [21, 66, 101], and arise as coe�cients in a τ -function for the Toda integrable
hierarchy [90]. The results given in this chapter, first presented in joint work with Borot, Do, Karev, and
Lewański [8], are motivated by results proven for single Hurwitz numbers (described in Chapter 4), and
significantly generalise them.

This chapter provides results for polynomiality, topological recursion, and an ELSV-like formula for the enu-
meration of double Hurwitz numbers. These results now resolve the conjectures given by Do and Karev [32],
which originally posited that double Hurwitz numbers are governed by topological recursion, and, relatedly,
that they satisfy a polynomiality structure analogous to the polynomiality of single Hurwitz numbers.

Double Hurwitz numbers, defined below, are a generalisation of single Hurwitz numbers where the rami-
fication profiles of two points—chosen to be ∞ and 0 by convention—is prescribed, rather than just one
point in the case of single Hurwitz numbers. In this case, the results given here for double Hurwitz numbers
subsume not only the results described above for single Hurwitz numbers, but also analogous results in the
literature, such as those pertaining to orbifold Hurwitz numbers [33, 40].

Before defining the double Hurwitz number, henceforth fix d to be a positive integer, s a complex parameter,
and let q1, . . . , qd ∈ C be a set of weights.

De�nition 6.1.1. The double Hurwitz number DHg,n(µ1, . . . , µn) is the weighted enumeration of connected
genus g branched covers f : (C; p1, . . . , pn)→ (CP1;∞) such that

• the point pi ∈ f−1(∞) has ramification index µi for i ∈ {1, 2, . . . , n};

• each preimage of 0 ∈ CP1 has ramification order at most d; and

• all other branch points have simple ramification and occur at m fixed points of CP1.

The weight of such a branched cover is

s2g−2+n

m!
· qλ1

· · · qλ`
|Aut(f)|

,

83
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where the ramification profile over 0 ∈ CP1 is given by the partition λ = (λ1, . . . , λ`) andm = 2g−2+n+`

is the number of simple branch points, as determined by the Riemann–Hurwitz formula.

Double Hurwitz numbers have not previously been defined this way. Historically, double Hurwitz numbers
have been defined to depend on two partitions, the ramification profiles of both 0 and ∞. This approach,
however, defines them to depend on one partition, the ramification profile of ∞ only, and we allow the
ramification profile of 0 to vary, introducing parameters to record this ramification.

The following theorems state that double Hurwitz numbers satisfy a polynomiality-like structure (which
we simply call polynomiality), are governed by topological recursion, and can be expressed as intersection
numbers on moduli spaces of curves.

Theorem 6.1.2 (Polynomiality). For 2g − 2 + n > 0, there exist Cg,n
(
j1,...,jn
m1,...,mn

)
∈ C(q1, . . . , qd, s), which

vanish for all but �nitely many values of j1, . . . , jn ∈ {1, . . . , d} and non-negative integers m1, . . . ,mn, such that

DHg,n(µ1, . . . , µn) =
∑

16j1,...,jn6d
m1,...,mn>0

Cg,n
(
j1,...,jn
m1,...,mn

) n∏
i=1

Ajimi(µi)

where

Ajm(µ) = j
∑
λ`µ−j

µ`(λ)+m

|Aut(λ)|
qλ1 · · · qλ`(λ) .

Here, λ represents a partition with `(λ) parts and Aut(λ) is the set of permutations of the tuple (λ1, . . . , λ`(λ)) that
leave it invariant.

Theorem 6.1.3 (Topological recursion). Let Q(z) = q1z + · · · + qdz
d. The correlation di�erentials resulting

from applying topological recursion to the spectral curve (C∗, x, y, ω0,2) with

x(z) = ln z −Q(z), y(z) =
1

s
Q(z), ω0,2(z1, z2) =

dz1 dz2

(z1 − z2)2

satisfy

ωg,n(z1, . . . , zn) =
∑

µ1,...,µn>1

DHg,n(µ1, . . . , µn)

n∏
i=1

d(exp(µix(zi)).

The following ELSV-like formula involves certain tautological classes Ω
[d]
g;a1,...,an ∈ H∗(Mg,n+`;Q) indexed

by a1, . . . , an ∈ {0, 1, . . . , d− 1}, which come from the moduli space of d-spin curves. This class is defined
in Section 6.4.1, but for a more thorough introduction see [26] or [80]. For an introduction to the moduli
spaces of curves and its characteristic classes, see the book of Harris and Morrison [68].

Theorem 6.1.4 (ELSV-like formula). For (g, n) satisfying 2g−2+n > 0 and d > 2, the double Hurwitz number
DHg,n(µ1, . . . , µn) may be expressed in terms of the following intersection numbers over the moduli spaces of curves
Mg,n+` for ` > 0.

DHg,n(µ1, . . . , µn) = (d/s)2g−2+n
n∏
i=1

(µi/d)bµi/dc

bµi/dc!

×
∑
`>0

p1,...,p`>0
16k1,...,k`6d−1

(d/s)`

`!

d
∑

(µi/d+ki/d) q
∑
µi/d−

∑
(d−ki)/d

d

(sd)
∑
ki

(∫
g,n+`

Ω
[d]
g;−µ,d−k∏n

i=1(1− µi
d ψi)

)∏̀
i=1

Q
(pi)
d−ki

(pi + 1)!
.

Here, Q(p)
d−k ∈ C(q1, . . . , qd) are de�ned by equation (6.21), Ω

[d]
g;−µ,d−k ∈ H∗(Mg,n+`;Q) is a Chiodo class, where

−µ is a shorthand for −µ = (−µ1, . . . ,−µn), and −µi ∈ {0, 1, . . . , d− 1} is the unique residue of −µi mod d.
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Note that this formula is explicit. One can calculate Q(p)
d−k ∈ C(q1, . . . , qd) by (6.21) then use known double

Hurwitz numbers along with the above formula to calculate the Chiodo classes Ω
[d]
g;−µ,d−k ∈ H∗(Mg,n+`;Q)

(or vice versa).

As mentioned above, these results generalise previously known results, specifically the analogous results for
single Hurwitz numbers [17, 43, 49] and orbifold Hurwitz numbers [33, 40]. These can be obtained from
the results given above by taking the specialisations q1 = 1, qi = 0 for i > 1, and qk = 1, qi = 0 for i 6= k

respectively.

It is interesting to note that, while in the case of double Hurwitz numbers the structure theorem was proved
first and all other results followed, this is not always so. For single Hurwitz numbers, the famed ELSV
formula was originally used to prove the polynomiality as a direct consequence, and the polynomiality
then became an ingredient in the proof of topological recursion. However, no analogue of the ELSV for-
mula is known in the more general setting of double Hurwitz numbers; the approach in this chapter is to
prove the polynomiality structure first. To date, without access to an analogue of the ELSV formula, such
polynomiality results have exclusively been proven using the semi-infinite wedge formalism (another strong
advertisement for the power of the semi-infinite wedge).

The theorems above are obtained in the following logical order. First, using previous work of Do and
Karev [32], we reduce the proof of Theorem 6.1.3 (topological recursion) to Theorem 6.1.2 (polynomiality).
The proof of the polynomiality structure comprises the greatest proportion of the work in this chapter and
therein lies the main di�culty in proving these results. The method here goes via the semi-infinite wedge
space and is one that has successfully been used previously for other enumerative problems in Hurwitz
theory [40, 77]. In the case of double Hurwitz numbers this process is somewhat more intricate and involved,
but follows through nonetheless. The correlation di�erentials produced by topological recursion can be
expressed as intersection numbers on moduli spaces of “coloured” stable curves—where the components of
the curve are coloured by the branch points of the spectral curve—via a process outlined by Eynard [46].
For the double Hurwitz number spectral curve above, we do not follow this procedure, which appears to be
di�cult and does not immediately lead to classes onMg,n that are geometrically natural. For this reason, to
obtain an ELSV-like formula for double Hurwitz numbers, we have taken an alternate approach which hinges
on a variational result of Eynard and Orantin [52]. This approach’s starting point is the known analogue
of the ELSV formula for orbifold Hurwitz numbers due to Johnson, Pandharipande, and Tseng [70, 80].
Encoding the spectral curves for orbifold and double Hurwitz numbers within a one-parameter family of
spectral curves, we then use the variational result to flow from the Johnson–Pandharipande–Tseng formula
to a formula that expresses the double Hurwitz numbers as a linear combination of intersection numbers
on moduli spaces of curves.

In some sense, the ELSV-like formula obtained in Theorem 6.1.4 is not in an ideal form. For instance,
one would like an ELSV formula to directly imply the polynomiality structure as in the case of the ELSV
formula (4.2) for single Hurwitz numbers. This is not immediately obvious from the ELSV-like formula for
double Hurwitz numbers given in this chapter, and this is in part due to the fact that the formula involves
intersection numbers over Mg,n+` for non-negative integers `. One would like to obtain an expression
involving the intersection theory of Mg,n alone, which could potentially be obtained via pushforward.
However, the pushforward of Chiodo classes by forgetting marked points is not su�ciently well understood
at present.

This chapter is structured as follows.

• Section 6.2 relies on previous work of Do and Karev [32] to reduce the proof of topological recursion
to the polynomiality structure. This is done by studying the vector space of rational functions which
satisfy the linear loop equations, and detailing the structure they exhibit; necessarily implying that the
double Hurwitz numbers must satisfy this structure in order to be governed by topological recursion.
In this section I also deal with the technical issue where the ramification points of x(z) may have
higher order branching.
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• Section 6.3 is devoted to the proof of polynomiality via a detailed analysis using the semi-infinite wedge
formalism.

• In Section 6.4 we derive the ELSV-like formula for double Hurwitz numbers by using the known ELSV
formula for orbifold Hurwitz numbers [70, 80] and a variational result of Eynard and Orantin [52].

This chapter contains joint work with Gaëtan Borot, Norman Do, Maksim Karev, and Danilo Lewański that
appears in [8].

6.2 Topological recursion

In this section, I follow the previous work of Do and Karev [32] to reduce the proof of Theorem 6.1.3 to the
polynomiality structure of Theorem 6.1.2. First, however, I deal with a technicality; that is, the definition of
topological recursion provided in Chapter 2 requires that the zeroes of dx are simple, which is not necessarily
the case for the spectral curve defined in Theorem 6.1.3.

6.2.1 Higher order zeroes

The topological recursion of Chekhov, Eynard and Orantin requires the assumption that the zeroes of
dx are simple, yet this is not necessarily the case for the spectral curve stated in Theorem 6.1.3, because
dx =

(
1
z −Q

′(z)
)

dz may have higher order zeroes. This section addresses this issue by appealing to a result
of Bouchard and Eynard [13]. Specifically, Bouchard and Eynard introduce a so-called global topological
recursion in which the recursion is defined globally, not locally around the ramification points, and hence
only depends on the degree of the branched cover, not the multiplicity of the ramification points. Thus, for a
spectral curve with non-simple ramification points, one can use the global topological recursion of Bouchard
and Eynard to calculate the corresponding correlation di�erentials. Bouchard and Eynard then prove that
the result of using the global topological recursion is equivalent to using CEO topological recursion then
taking the limit as two or more branch points approach each other. We can use their work in our setting
with the following lemma.

Lemma 6.2.1. If Theorem 6.1.3 holds in the case that 1 − zQ′(z) has simple roots, then it also holds in the case
that 1− zQ′(z) has roots of arbitrary order.

Proof. In the case that the zeroes of 1 − zQ′(z) are simple, the proof of Theorem 6.1.3 provided in the
subsequent section tells us that

DHg,n(µ1, . . . , µn) = Res
zn=0

· · · Res
z1=0

ωg,n(z1, . . . , zn)

n∏
i=1

exp(−µix(zi))

µi
.

We can then invoke the result of Bouchard and Eynard [13, Section 3.5]. Bouchard and Eynard prove that
ωg,n is continuous in neighbourhoods of the ramification points, and therefore one can take the limit of the
right-side above as two branch points approach each other. They prove that obtaining the double Hurwitz
number in this way is equivalent to applying their so-called global topological recursion to the spectral
curve defined in Theorem 6.1.3, where this recursion does not require the assumption that the roots of dx

are simple. �

Thus we now can, and will, proceed with the assumption that the spectral curve has simple branch points.

6.2.2 Structure of the enumeration

The correlation di�erentials ωg,n satisfy the so-called linear loop equations [10, 12], hence, we are motivated
to investigate the vector space spanned by such functions. To this end, introduce the following vector space.
Let A = {a1, . . . , ad} be the set of ramification points of the meromorphic function x(z); that is, the points
that satisfy dx(z) = 0.
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De�nition 6.2.2. Let V (z) be the C(q1, . . . , qd, s)-vector space consisting of rational functions f(z) such
that

• f(z) has poles only at the ramification points a1, . . . , ad; and

• f(z) + f(σ(z)) is analytic at z = ai for all i ∈ {1, 2, . . . , d}.

Here, σ is the local involution that satisfies x(σ(z)) = x(z), as defined in Section 2.2.

We now define a basis for the vector space V (z). For each j ∈ {1, 2, . . . , d}, let φj−1(z) = zj and define
φjm(z) inductively by

φjm+1(z) =
∂

∂x
φjm(z) =

z

1− zQ′(z)
∂

∂z
φjm(z).

Lemma 6.2.3. The family {φjm(z)} for j ∈ {1, 2, . . . , d} and non-negative integers m provide a vector space basis
for V (z).

Proof. For each ramification point a, define a local coordinate wa to be such that x = w2
a + x(a), and hence

the local involution is given by wa 7→ −wa. Observe that for each j, φj−1(z) = zj only has a pole at∞, while

φj0(z) = jzj

1−zQ′(z) does not hence φj0(z) = jzj

1−zQ′(z) ∈ V (z). Given that the φjm(z) are defined iteratively

by applying ∂
∂x , showing that φjm(z) ∈ V (z) for m > 0 and j ∈ {1, 2, . . . , d} reduces to showing that ∂

∂x

preserves V (z).

Note that ∂
∂x = z

1−zQ′(z)
∂
∂z introduces no new poles outside of {a1, . . . , ad}, and consider the action of ∂

∂x

on a function in V (z) locally around a single ramification point a. In the local coordinate wa, the principal
part of any φ(z) ∈ V (z) is an odd polynomial in w−1

a , and

∂

∂x
=

1

2wa

∂

∂wa

preserves the parity of the power of any monomial in wa. Further, ∂
∂xC[[wa]] ⊆ Cw−2

a ⊕ C[[wai ]]. Hence,
∂
∂xV (z) ⊆ V (z), so φjm(z) ∈ V (z) for all j ∈ {1, 2, . . . , d} and non-negative integers m.

It remains to show that the φjm(z) span V (z), and for this, it is useful to consider principal parts. Iterating
over possible m for each j means that there exists a φjm(z) with every possible odd pole order, and hence
the principal parts of φjm(z) form a basis for

⊕
α∈A w

−1
α C(q1, . . . , qd)[w

−2
α ]. The fact that the principal parts

of a meromorphic function determines the whole function up to a constant—given by Liouville’s theorem—
means that one can uniquely find φjm(z) from its principal part only. And therefore, {φjm(z)} form a basis
for V (z). �

Thus, given that the ωg,n satisfy the linear loop equations, it follows that they can be written as a lin-
ear combination of the basis elements φjm(z). Precisely, for (g, n) satisfying 2g − 2 + n > 0, there exist
Cg,n

(
j1,...,jn
m1,...,mn

)
∈ C(q1, . . . , qd, s) which vanish for all but finitely many j1, . . . , jn ∈ {1, 2, . . . , d} and non-

negative integers m1, . . . ,mn, such that

ωg,n(z1, . . . , zn) =
∑

16j1,...,jn6d
m1,...,mn>0

Cg,n
(
j1,...,jn
m1,...,mn

)
dφj1m1

(z1)⊗ · · · ⊗ dφjnmn(zn). (6.1)

The double Hurwitz numbers DHg,n(µ1, . . . , µn) are stored in the correlation di�erentials as coe�cients of
X(zi) = exp(x(zi)) in the expansion of the correlation di�erentials at X = 0 (or equivalently z = 0). For
this reason, consider the expansion of the basis φjm(z) around X = 0. That is, write

φjm(z) =
∑
µ>1

Ajm(µ)X(z)µ, (6.2)

and note that the expansion of this series has no constant term because, by definition φ(0) = 0, and
X(z) = z exp(−Q(z)) = z +O(z2). By definition

φjm(z) =
( ∂
∂x

)m+1

φj−1(z) =
(
X

∂

∂X

)m+1

zj ,
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hence, observing that applications of X ∂
∂X to φjm(z) in (6.2) only introduces factors of µ in the expansion

of φjm(z) at X = 0, it is su�cient to consider (6.2) for m = −1. That is, consider

φj−1(z) = zj =
∑
µ>1

Aj−1(µ)Xµ.

Compute the coe�cients Aj−1(µ) by

Aj−1(µ) = Res
z=0

zj

X(z)µ+1
dX(z) =

j

µ
Res
z=0

zj−1

X(z)µ
dz

=
j

µ
Res
z=0

zj−µ−1 exp(µQ(z)) dz =
j

µ
[zµ−j ] exp(µQ(z))

=
j

µ
[zµ−j ]

d∏
i=1

∞∑
ki=0

µkiqkii z
iki

ki!
=
j

µ
[zµ−j ]

∑
λ=(1k1 ,...,dkd )

~qλµ
`(λ)z|λ|

|Aut λ|

= j
∑
λ`µ−j

~qλµ
`(λ)−1

|Aut λ|
.

The second equality uses the fact that Res
z=α

f dg = −Res
z=α

g df for any two functions f(z) and g(z) that are

meromorphic at z = α. (Note: This trick will be used again throughout this chapter and shall henceforth
be referred to simply as integration by parts.) Also, because residues are coordinate-invariant this allows us
to write Aj−1(µ) as the residue over z = 0 rather than X = 0.

The upshot of this calculation is that, because Ajm(µ) is obtained from Aj−1(µ) by iteratively applying ∂
∂X ,

we can deduce a formula for Ajm(µ) for all m > 0 and j ∈ {1, 2, . . . , d}.

It will be useful to define a vector space which is the span of these coe�cients. Note that here I use a slight
abuse of notation and write V (µ) for the space spanned by the coe�cients of the X = 0 expansions of
elements in V (z).

De�nition 6.2.4. Define the vector space V (µ) to be the C(q1, . . . , qd, s)-span of Ajm(µ) defined by

Ajm(µ) = j
∑
λ`µ−j

~qλµ
`(λ)+m

|Aut λ|

for j ∈ {1, 2, . . . , d} and non-negative integers m.

6.2.3 Equivalence between topological recursion and polynomiality

We are now equipped to prove the equivalence of the polynomiality result, Theorem 6.1.2, and topological
recursion, Theorem 6.1.3.

Theorem 6.2.5. Theorem 6.1.2 (polynomiality) and Theorem 6.1.3 (topological recursion) are equivalent.

Proof. The fact that the correlation di�erentials ωg,n satisfy the linear loop equations, and Lemma 6.2.3
giving a basis for the vector space of functions V (z) that satisfy the linear loop equations, both imply the
following. For all (g, n) satisfying 2g−2 +n > 0, there exist Cg,n

(
j1,...,jn
m1,...,mn

)
∈ C(q1, . . . , qd, s) which vanish

for all but finitely many j1, . . . , jn ∈ {1, 2, . . . , d} and non-negative integers m1, . . . ,mn, such that

ωg,n(z1, . . . , zn) =
∑

16j1,...,jn6d
m1,...,mn>0

Cg,n
(
j1,...,jn
m1,...,mn

)
dφj1m1

(z1)⊗ · · · ⊗ dφjnmn(zn).

Further, φ(z) written as an expansion in X(z) = exp(x(z)) around z = 0 is given by

φ(z) =
∑
µ>1

Ajm(µ)X(z)µ =
∑
µ>1

j
∑
λ`µ−j

~qλµ
`(λ)+m

|Aut λ|
X(z)µ.
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Therefore, one can write

ωg,n(z1, . . . , zn) =
∑

16j1,...,jn6d
m1,...,mn>0

Cg,n
(
j1,...,jn
m1,...,mn

) n∏
i=1

∑
µi>1

Ajimi(µi) dX(z1)µ1 ⊗ · · · ⊗ dX(zn)µn ,

and this gives us that Theorem 6.1.3 (topological recursion) implies Theorem 6.1.2 (polynomiality). The
converse was proved in previous work by Do and Karev [32, Theorem 26]. �

The converse statement follows a similar approach to the one taken in Chapter 5 to prove that the lattice
point enumeration is governed by topological recursion.

6.3 Polynomiality

The aim of this section is to prove Theorem 6.1.2. This is achieved by proving that DHg,n(µ1, . . . , µn)

satisfies the polynomiality structure for µ1 when µ2, . . . , µn are fixed, then using the fact that double Hurwitz
numbers are symmetric in µ1, . . . , µn to deduce the result. Specifically, I first aim to prove that for fixed
positive integers µ2, . . . , µn and for all (g, n) satisfying 2g − 2 + n > 0, the connected double Hurwitz
generating function H◦(µ1, . . . , µn; s) can be written

H◦(µ1, . . . , µn; s) =

d∑
r=1

 ∑
λ`µ1−r

~qλµ
`(λ)
1

|Aut λ|

∑
g>0

P rg,n(µ1, . . . , µn; ~q)s2g−2+n,

where P rg,n(µ1, . . . , µn; ~q) is a polynomial in µ1 and ~q.

The proof of Theorem 6.1.2 is divided into the following five parts.

1. Begin with a previously known vacuum expectation for double Hurwitz numbers (Theorem 6.3.2)
and rewrite it in a form that will be convenient for the proof of the polynomiality structure (Proposi-
tion 6.3.3).

2. Use the vacuum expectation derived in Proposition 6.3.3 for H•(µ1, . . . , µn; s) and consider the de-
pendence on µ1. This yields an expression including a sum over partitions of size µ1 +a for a positive
integer a. Use a “peeling lemma”, Lemma 6.3.4, to reduce this to a sum over partitions of size µ1 − r
for r ∈ {1, 2, . . . , d} (Lemma 6.3.6).

3. Use of Lemma 6.3.4 in step 2 results in a rational expression with distinct factors of the form µ1

µ1+k

for k a non-negative integer. Therefore, in the aim toward showing that DHg,n(µ1, . . . , µn) satisfies
a polynomiality structure, I prove two useful lemmas regarding the residue of H•(µ1, . . . , µn; s) at
µ1 = −a for all non-negative integers a (Lemmas 6.3.7 and 6.3.8).

4. Use the results in step 3 to deduce that

H◦(µ1, . . . , µn; s) =

d∑
r=1

∑
λ`µ1−r

~qλµ
`(λ)
1

|Aut λ|

`(λ)∏
k=1

S(µ1λks)
∑
k>0

Qrk,n(µ1, . . . , µn; ~q)sk,

where Qrk,n(µ1, . . . , µn; ~q) is a polynomial in µ1 and ~q, then extract the coe�cient of s2g−2+n to yield
the desired structural result about the double Hurwitz numbers; that is, DHg,n(µ1, . . . , µn) ∈ V (µ1)

(Theorem 6.3.10).

5. Use the symmetry of DHg,n(µ1, . . . , µn) in µ1, . . . , µn to conclude that DHg,n(µ1, . . . , µn) satisfies
the polynomiality structure for µ1, . . . , µn for all (g, n) satisfying 2g − 2 + n > 0 (Theorem 6.3.11).

These five steps are carried out in Sections 6.3.2 to 6.3.6 respectively. Section 6.3.1 below introduces some
preliminary notations, including the distinction between connected and disconnected double Hurwitz num-
bers, and the relation between these enumerations.
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6.3.1 Preliminaries

Before proceeding with the proof of polynomiality, I first introduce some useful notions. First, define the
possibly disconnected double Hurwitz number, denotedDH•g,n(µ1, . . . , µn), to be as in Definition 6.1.1, but where
the source surface Σ in the branched cover f : (Σ; p1, . . . , pn)→ (CP1;∞) may be disconnected. Hereafter
for clarity, I will writeDH◦g,n(µ1, . . . , µn) when referring to the connected double Hurwitz number. Next, for
positive integers µ1, . . . , µn, define the generating functions for connected and disconnected double Hurwitz
numbers to be

H◦(µ1, . . . , µn; s) =
∑
g>0

DH◦g,n(µ1, . . . , µn) s2g−2+n,

and
H•(µ1, . . . , µn; s) =

∑
g∈Z

DH•g,n(µ1, . . . , µn) s2g−2+n,

respectively. The genus of a disconnected surface is defined by its Euler characteristic which is naturally
additive under disjoint union; this results in a disconnected surface possibly having negative genus and thus
the sum over the genus above runs over all integers. (However, observe that for fixed µ1, . . . , µn, the genus
is bounded and the genus cannot be arbitrarily large in magnitude.)

To relate disconnected double Hurwitz numbers to the connected counts consider the possible ways in which
the source surface can be disconnected. We are necessarily forced to have at least one of the preimages
f−1(∞) = {p1, . . . , pn} in each component, which predicates that the number of components is limited to
at most n. Given that these preimages are labelled and the fact that the genus of the disconnected surface
is dictated by its Euler characteristic leads to the following sum over set partitions of {µ1, . . . , µn}. That is,

DH•g,n(µ1, . . . , µn) =
∑

M`{1,...,n}

∑
g1+···+g|M|=g−1+|M |

|M |∏
i=1

DH◦gi,|Mi|(~µMi
),

where if Mi = {i1, . . . , ij}, then ~µMi
= (µi1 , . . . , µij ). At the level of the generating function, the sum over

the possible genera g1, . . . , g|M | is taken care of by the parameter s and this gives the relation

H•(~µ; s) =
∑

M`{1,...,n}

|M |∏
i=1

H◦(~µMi
; s). (6.3)

This relation is invertible via the inclusion-exclusion formula, which is given by the following lemma.

Lemma 6.3.1. The generating function for connected double Hurwitz numbers can be written in terms of the discon-
nected enumeration via

H◦(µ1, . . . , µn; s) =
∑

M`{1,...,n}

(−1)|M |−1 (|M | − 1)!

|M |∏
i=1

H•(~µMi
; s).

Here,M is a set partition of {1, . . . , n} and ifMi = {i1, . . . , ik} then ~µMi
= (µi1 , . . . , µik).

Proof. Begin with the right side of the statement above and substitute using (6.3). This gives

∑
M`{1,...,n}

(−1)|M |−1 (|M | − 1)!

|M |∏
i=1

H•(~µMi ; s)

=
∑

M`{1,...,n}

(−1)|M |−1 (|M | − 1)!

|M |∏
i=1

∑
N`Mi

|N |∏
j=1

H◦(~µNj ; s).

Consider the coe�cient of each term on the right. An arbitrary term H◦(~µN1 ; s) · · ·H◦(~µN|N| ; s) can arise
from any partition {M1, . . . ,M|M |} where |M | is within the range 1 6 |M | 6 |N |. For each distinct |M |,
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the coe�cient of the term H◦(~µN1
; s) · · ·H◦(~µN|N| ; s) is given by (−1)|M |−1(|M | − 1)! multiplied by the

number of times it can occur in this way, which is the number of ways one can group |N | objects into |M |
groups—also known as Stirling numbers of the second kind—and this is given by the formula

|M |∑
j=1

(−1)|M |−jj|N |

j! (|M | − j)!
.

Therefore, summing over possible sizes |M |, the coe�cient of H◦(~µN1 ; s) · · ·H◦(~µN|N| ; s) is given by

|N |∑
|M |=1

(−1)|M |−1(|M | − 1)!

|M |∑
j=1

(−1)|M |−jj|N |

j! (|M | − j)!
=

|N |∑
j=1

|N |∑
|M |=j

(−1)|M |−1(|M | − 1)!
(−1)|M |−jj|N |

j! (|M | − j)!

=

|N |∑
j=1

(−1)j+1j|N |−1

|N |∑
|M |=j

(
|M | − 1

j − 1

)

=

|N |∑
j=1

(−1)j+1j|N |−1

(
|N |
j

)

=

{
1, if |N | = 1,

0, if |N | > 1.

The first equality has switched the two sums, while the third equality is true by the hockey-stick identity.
The fourth equality for |N | = 1 is clear by computation. For |N | > 1, consider

(
x

d

dx

)|N |−1 (
−(1− x)|N |

)
=

(
x

d

dx

)|N |−1 |N |∑
j=0

(−1)j+1xj
(
|N |
j

)

=

|N |∑
j=1

(−1)j+1j|N |−1xj
(
|N |
j

)
.

The expression (1− x)|N | has a root of order |N | at x = 1, and given that applications of d/dx reduce the
order of the root by 1 while applying x does not a�ect the root, it follows that (xd/dx)|N |−1(1− x)|N | has
a simple root at x = 1. Substituting x = 1 into the expression above yields

|N |∑
j=1

(−1)j+1j|N |−1

(
|N |
j

)
= 0

when |N | > 1, as claimed. Hence

∑
M`{1,...,n}

(−1)|M |−1 (|M | − 1)!

|M |∏
i=1

H•(~µMi
; s) = H◦(µ1, . . . , µn; s),

as required. �

Define the connected correlator of a tuple of operators (O1, . . . ,On), denoted 〈O1 · · · On〉◦, to be what one
obtains from applying inclusion-exclusion to the disconnected correlator. That is,

〈O1 · · · On〉◦ =
∑

M`{1,...,n}

(−1)|M |−1 (|M | − 1)!

|M |∏
i=1

〈 ~OMi
〉, (6.4)

where ~OMi
=
∏
j∈Mi

Oj .
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6.3.2 Double Hurwitz numbers via the semi-in�nite wedge

Begin with the previously derived vacuum expectation for the double Hurwitz generating function given
below [91, 103].

Theorem 6.3.2. The generating function for disconnected double Hurwitz numbers satis�es the following equation.

H•(µ1, . . . , µn; s) =

〈
exp

( ∞∑
j=1

qj
js
αj

)
exp(sF2)

n∏
i=1

α−µi
µi

〉
(6.5)

Here αm and F2 are operators de�ned in De�nition 1.3.4 and equation (1.10) respectively.

The following theorem rewrites the above vacuum expectation in a way that will be convenient for the proof
of the polynomiality structure.

Proposition 6.3.3. The generating function for disconnected double Hurwitz numbers is given by the following
vacuum expectation in the semi-in�nite wedge space:

H•(µ1, . . . , µn; s) =
〈
C(µ1, s) C(µ2, s) · · · C(µn, s)

〉
, (6.6)

where

C(µ, s) =
1

µ

∑
i∈Z

 ∑
λ`µ−i

~qλµ
`(λ)

|Aut λ|

`(λ)∏
k=1

S(µλks)

 E−i(µs),
and ~qλ = qλ1qλ2 · · · qλ`(λ) . The function S(z) = ς(z)

z = ez/2−e−z/2
z and operator Ea(z) is de�ned in De�ni-

tion 1.3.6.

Proof. Begin with the vacuum expectation (6.5) given in Theorem 6.3.2 and, observing that exp(−sF2) and
exp

(
−
∑∞
j=1

αjqj
js

)
fix the vacuum vector, rewrite it as

H•(~µ; s) =
1∏n
i=1 µi

〈 n∏
i=1

exp
( ∞∑
j=1

qj
js
αj

)
exp(sF2)α−µi exp(−sF2) exp

(
−
∞∑
j=1

qj
js
αj

)〉
.

Consider first the inner conjugation esF2α−µe
−sF2 . One can compute this conjugation by noting that α−µ =

E−µ(0), F2 = [z2]E0(z), and using Hadamard’s lemma (6.7) coupled with the commutation relation for
the E -operators (1.9). Or, alternatively, observe that the operator F2 is diagonal, with eigenvalue f2(λ)

corresponding to the eigenvector vλ. The function f2(λ) returns the sum of the contents of the Young
diagram given by the partition λ, where the content of the box in column j and row i is j − i. In this case,
for any partition λ,

esF2α−µe
−sF2vλ = e−sf2(λ)esF2α−µvλ = e−sf2(λ)esF2

∑
λ+µ

vλ+µ

=
∑
λ+µ

es(f2(λ+µ)−f2(λ))vλ+µ =
∑

k∈Z+
1
2

e
sµ
(
k+

µ
2

)
: ψk+µψ

∗
k : vλ

= E−µ(µs),

where the sums over λ+µ are over all Young diagrams that can be obtained from adding a µ-ribbon to λ.

Compute subsequent conjugations by iteratively applying the Hadamard Lemma,

eABe−A = B +
∑
k>1

1

k!
[A, [A, . . . , [A,B] · · · ]], (6.7)

where there are k commutators in the summand. The first iteration gives

exp
(αdqd
ds

)
E−µ(µs) exp

(
− αdqd

ds

)
=
∑
kd>0

ς(µds)kdqkdd
kd!(ds)kd

E−µ+dkd(µs)

=
∑
kd>0

(µqd)
kdS(µds)kd

kd!
E−µ+dkd(µs).
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Further iterations therefore result in

exp
( ∞∑
j=1

qj
js
αj

)
E−µ(µs) exp

(
−
∞∑
j=1

qj
js
αj

)
=
∑
k1>0

(µq1)k1S(µs)k1

k1!

∑
k2>0

(µq2)k2S(2µs)k2

k2!
· · ·
∑
kd>0

(µqd)
kdS(dµs)kd

kd!
E−µ+k1+···+dkd(µs)

=
∑

λ=(1k1 ,...,dkd )

~qλµ
`(λ)

|Aut λ|

`(λ)∏
k=1

S(µλks) E−µ+|λ|(µs).

Here λ is a partition, hence the number of permutations that fix λ is given by the multiplicities; that is,
|Aut λ| = k1! k2! · · · kd!. Letting −i = |λ| − µ yields the result. �

6.3.3 Dependence on µ1

With the aim of proving that the double Hurwitz number DH◦g,n(µ1, . . . , µn) satisfies the polynomiality
structure, first consider the dependence of H•(µ1, . . . , µn; s) on µ1. Now fix µ2, . . . , µn. As detailed in the
outline at the start of this section, the dependence on µ1 yields an expression with a sum over partitions of
size µ1 + a and it is desirable to reduce this to a sum over partitions of size µ1 − r. For this, we require the
“peeling lemma”, Lemma 6.3.4. First, allowing a small abuse of notation, define Âk(x) by

Âk(x) =
∑
λ`k

~qλx
`(λ)

|Aut λ|
,

where x is a formal variable and j ∈ Z. Recalling the definition of Ajm(µ) in Definition 6.2.4, observe that

jÂµ−j(x)
∣∣
x=µ

= Aj0(µ) ∈ V (µ)

for j ∈ {1, 2, . . . , d}. Defining the expression Âµ−j(x) that distinguishes between µ in the sum and x`(λ) in
the numerator will be useful in proving Lemma 6.3.4 and, later in the section, Lemma 6.3.9.

Lemma 6.3.4 (Peeling lemma). For a positive integer µ and any integer a,

∑
λ`µ+a

~qλµ
`(λ)

|Aut λ|

`(λ)∏
k=1

S(µλks) =
µ

µ+ a

d∑
r=1

rqrS(µrs)
∑

λ`µ+a−r

~qλµ
`(λ)

|Aut λ|

`(λ)∏
k=1

S(µλks).

Proof. I first aim to show

Âµ+a(x) =
x

µ+ a

d∑
r=1

rqrÂ
µ+a−r(x). (6.8)

To do this, consider the coe�cient of ~qνx`(ν) of both sides. The left side gives

[~qνx
`(ν)]

∑
λ`µ+a

~qλx
`(λ)

|Aut λ|
=

1

|Aut ν|
,

where |ν| = |λ| = µ+ a. For the right side, note that the sum will be over all possible partitions λ acquired
by removing one part of ν, and this will result in a sum over distinct parts in ν. Thus, if ν = (1i1 , . . . , did),

[~qνx
`(ν)]

x

µ+ a

d∑
r=1

rqr
∑

λ`µ+a−r

~qλx
`(λ)

|Aut λ|
=

d∑
k=1

k

|ν| |Aut ν \ k|
,

where I have used that `(λ) = `(ν)− 1. Observing that

d∑
k=1

k |Aut ν|
|Aut ν \ k|

= |ν|,



94 6. Double Hurwitz numbers

we have

[~qνx
`(ν)]

x

µ+ a

d∑
r=1

rqr
∑

λ`µ+a−r

~qλx
`(λ)

|Aut λ|
=

1

|Aut ν|
,

proving equation (6.8). Letting x = µ and applying the rescaling qk 7→ qkS(µks) yields the result. �

The following definition of admissible sequences is also required, to be utilised in Lemma 6.3.6.

De�nition 6.3.5. Define Pd to be the set of (possibly empty) sequences P = (p1, . . . , p`(P )) that satisfy
1 6 pi 6 d for all i ∈ {1, 2, . . . , `(P )}. Fix a positive integer r ∈ {1, 2, . . . , d}, and define Pd,r ⊂ Pd to be
the set of all non-empty sequences P such that p`(P ) > r. Denote by e(P ) the sum of the terms of P ; that
is, e(P ) = p1 + · · ·+ pd. Further, define Pd(e) ⊂ Pd to be the set of all possible sequences where e = e(P )

is fixed.

Lemma 6.3.6. For �xed positive integers µ2, . . . , µn, the double Hurwitz generating function H•(µ1, . . . , µn; s)

can be written

H•(~µ; s) =

d∑
r=1

∑
λ`µ1−r

~qλµ`(λ)
1

|Aut λ|

`(λ)∏
k=1

S(µ1λks)

〈Br(µ1, s) C(µ2, s) · · · C(µn, s)
〉
, (6.9)

where

Br(µ1, s) =
1

µ1

∑
P∈Pr,d

`(P )∏
i=1

µ1

µ1 − r +
∑`(P )
j=i pi

piqpiS(µ1pis)

 E−r+e(P )(µ1s).

Proof. Begin with the vacuum expectation (6.6) for the double Hurwitz generating function as in Proposi-
tion 6.3.3,

H•(µ1, . . . , µn; s) =
〈
C(µ1, s) C(µ2, s) · · · C(µn, s)

〉
,

where

C(µ, s) =
1

µ

∑
i∈Z

 ∑
λ`µ−i

~qλµ
`(λ)

|Aut λ|

`(λ)∏
k=1

S(µλks)

 E−i(µs).
Observe that, for the vacuum expectation to return a non-zero value, the energies of the E operators must
sum to zero; that is, i1 + i2 + · · · + in = 0. Hence, i1 = −i2 − i3 − · · · − in. Further, given that E−i1(µ1s)

is acting on the covacuum, i1 has an upper bound i1 6 0. Finally, for each j ∈ {1, 2, . . . , n}, the relation
−ij = −µj + |λj | gives a bound −ij > −µj for all ij , and thus i1 > −µ2 − µ3 − · · · − µn. Given that
µ2, µ3, . . . , µn are fixed positive integers, this establishes a lower bound for i1. Hence,

H•(µ1, . . . , µn; s) =
1

µ1

µ2+···+µn∑
a=0

 ∑
λ`µ1+a

~qλµ
`(λ)
1

|Aut λ|

`(λ)∏
k=1

S(µ1λks)

〈Ea(µ1s)

n∏
j=2

C(µj , s)
〉
.

Apply Lemma 6.3.4 repeatedly to decrease µ1 + a to µ1− r for some r ∈ {1, 2, . . . , d}. The first application
gives

1

µ1

µ2+···+µn∑
a=0

d∑
p1=1

µ1

µ1 + a
p1qp1S(µ1p1s)

∑
λ`µ1+a−p1

~qλµ
`(λ)
1

|Aut λ|

`(λ)∏
k=1

S(µ1λks).

Apply Lemma 6.3.4 again, this time with the shift a 7→ a − p1 and leaving summands corresponding to
negative a− p1 unchanged. Thus the second application will include terms of the form

1

µ1

µ1

µ1 + a

µ1

µ1 + a− p1
p1qp1S(µ1p1s) p2qp2S(µ1p2s)

∑
λ`µ1+a−p1−p2

~qλµ
`(λ)
1

|Aut λ|

`(λ)∏
k=1

S(µ1λks).

Repeat this process until a − p1 − p2 − · · · − p`(P ) is negative for all terms in the summation. The set of
all possible sequences (p1, p2, . . . , p`(P )) that can be constructed thus for all possible a gives rise to the set
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Pd,r in Definition 6.3.5 (and summing over this set Pd,r absorbs the sum over a). The condition that each
pi satisfies 1 6 pi 6 d ensures that the peeling process will terminate after a finite number of iterations.
The condition p`(P ) > r is implied by the stopping condition of the algorithm, which is given by the two
inequalities

a− p1 − p2 − · · · − p`(P )−1 > 0,

a− p1 − p2 − · · · − p`(P )−1 + p`(P ) < 0.

This concludes the proof of the lemma. �

6.3.4 Calculating the residue

Observe that in the expression for H•(µ1, . . . , µn; s) in Lemma 6.3.6, the constraints on the set Pd,r dictate
that the operator Br(µ1, s) is a finite linear combination of E -operators whose coe�cients are power series
in s. Further, for each fixed power of s, its coe�cient is a rational function in µ1 (tensored with parameters
q1, . . . , qd). Therefore, speaking of the poles of Br(µ1, s) is well-defined. First note that the factors in the
term

`(P )∏
i=1

µ1

µ1 − r +
∑`(P )
j=i pi

contribute at most simple poles at negative integers. To ultimately show that DH◦g,n(µ1, . . . , µn) satisfies a
polynomiality structure, I consider the residue of H•(µ1, . . . , µn; s) at µ = −a for positive integers a; this is
the content of Lemma 6.3.7.

A pole at zero can only occur in the summand corresponding to the sequence P = (p1 = r); in this case
the factor 1

µ1
in Br(µ1, s) introduces a pole at zero, and further, as this term must involve an E -operator

with zero energy, evaluation of E0(µ1s) on the covacuum makes it a second-order pole. However, it can be
shown that for n > 2, terms of this form correspond precisely to a disconnected contribution; this is shown
in Lemma 6.3.8.

Lemma 6.3.7. Fix µ2, . . . , µn to be positive integers and �x n > 2. Then, for all positive integers a and for
r ∈ {1, 2, . . . , d},

Res
µ1=−a

〈
Br(µ1, s)

n∏
j=2

C(µj , s)
〉

dµ1

= Mr(a; s)
〈

exp
( ∞∑
j=1

αjqj
js

)
exp(sF2)αa exp(−sF2) exp

(
−
∞∑
j=1

αjqj
js

) n∏
j=2

C(µj , s)
〉
,

where

Mr(a; s) =
∑

P ′∈Pd,r

(−a)`(P
′)−1

∏`(P ′)
i=1 p′iqp′iS(ap′is)∏`(P ′)

i=2 (−a− r +
∑`(P ′)
j=i p′j)

.

Proof. As observed at the start of this section, H•(µ1, . . . , µn; s) has at most simple poles at µ1 = −a for
positive integers a. Hence, calculate the residue at −a by multiplying

〈
Br(µ1, s)

∏n
i=2 C(µi, s)

〉
by (µ1 + a)

then taking the limit µ1 → −a. That is,

Res
µ1=−a

〈
Br(µ1, s)

n∏
j=2

C(µj , s)
〉

dµ1

= lim
µ1=−a

µ1 + a

µ1

∑
P∈Pd,r

`(P )∏
i=1

µ1

µ1 − r +
∑`(P )
j=i pj

piqpiS(µ1pis)

〈E−r+e(P )(µ1s)

n∏
j=2

C(µj , s)
〉 .
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This is only non-zero when a = −r+ pk + pk+1 + · · ·+ p`(P ) for some k ∈ {1, 2, . . . , `(P )}. Cancelling this
factor with (µ1 + a), substituting in µ1 = −a and noting that S is an even function gives

Res
µ1=−a

〈
Br(µ1, s)

n∏
j=2

C(µj , s)
〉

dµ1 =
∑

P∈Pd,r
a+r=

∑`(P )
j=k pj

(−a)`(P )−1
k−1∏
i=1

piqpiS(apis)

−a− r +
∑`(P )
j=i pj

· pkqpkS(apks)

×
`(P )∏
i=k+1

piqpiS(apis)

−a− r +
∑`(P )
j=i pj

〈
E−r+e(P )(−as)

n∏
j=2

C(µj , s)
〉
.

Rewrite the denominators of the fractions in the first product using the condition on a; that is, rewrite using
a = −r + pk + pk+1 + · · ·+ p`(P ). Split P = (p1, p2, . . . , p`(P )) into two sequences

P ′ := (pk, pk+1, . . . , p`(P )) = (p′1, p
′
2, . . . , p

′
`(P ′)) and P ′′ := (pk−1, pk−2, . . . , p1) = (p′′1 , p

′′
2 , . . . , p

′′
`(P ′′))

so that P ′ t P ′′ = P as sets. Observe that −r + e(P ) = a+ e(P ′′). Therefore,

Res
µ1=−a

〈
Br(µ1, s)

n∏
j=2

C(µj , s)
〉

dµ1

=

 ∑
P ′∈Pd,r

(−a)`(P
′)−1

∏`(P ′)
i=1 p′iqp′iS(ap′is)∏`(P ′)

i=2 −a− r +
∑`(P ′)
j=i p′j


×

∑
P ′′∈Pd

(−a)`(P
′′)

`(P ′′)∏
i=1

p′′i qp′′i S(ap′′i s)∑i
j=1 p

′′
j

〈
Ea+e(P ′′)(−as)

n∏
j=2

C(µj , s)
〉

On the other hand, use the same technique as in Proposition 6.3.3 for a > 1 to calculate

exp
( ∞∑
j=1

αjqj
js

)
esF2αae

−sF2 exp
(
−
∞∑
j=1

αjqj
js

)
=
∑
λ

~qλ(−a)`(λ)

|Aut λ|

`(λ)∏
j=1

S(aλjs)Ea+|λ|(−as)

=
∑
i>a

∑
λ`−a+i

~qλ(−a)`(λ)

|Aut λ|

`(λ)∏
j=1

S(aλjs)Ei(−as).

Now apply Lemma 6.3.4 iteratively to reduce −a+ i to 0. The first application gives

∑
i>a

∑
λ`−a+i

qλ(−a)`(λ)

|Aut λ|

`(λ)∏
j=1

S(aλjs)Ei(−as)

=
∑
i>a

d∑
p1=1

−a
−a+ i

p1qp1S(ap1s)
∑

λ`−a+i−p1

qλ(−a)`(λ)

|Aut λ|

`(λ)∏
j=1

S(aλjs)Ei(−as).

Repeating the process yields a sum over (possibly empty) sequences P = (p1, p2, . . . , p`(P )) such that
p1 + p2 + · · · + p`(P ) = −a + i for all possible i > a. We include the empty sequence to take into account
the term i = a. As per Definition 6.3.5, all possible such sequences comprise the set Pd(−a + i). Thus,
applying the process above iteratively gives

∑
i>a

∑
λ`−a+i

qλ(−a)`(λ)

|Aut λ|

`(λ)∏
j=1

S(aλjs)Ei(−as)

=
∑

P∈Pd(−a+i)

−a
−a+ i

`(P )−1∏
k=1

−a
−a+ i−

∑k
j=1 pj

`(P )∏
j=1

pjqpjS(apjs)

∑
λ=∅

~qλ(−a)`(λ)

|Aut λ|

`(λ)∏
j=1

S(aλjs)

 Ei(−as)
=

∑
P∈Pd(−a+i)

(−a)`(P )

`(P )∏
j=1

pjqpjS(apjs)∑i
b=1 pb

Ea+e(P )(−as),

where the last line has applied the relabelling (p1, p2, . . . , p`(P )) 7→ (p`(P ), p`(P )−1, . . . , p2, p1). �
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It remains to consider the double pole at zero, which is treated by the following lemma.

Lemma 6.3.8. Fix µ2, . . . , µn to be positive integers and �x n > 2. Then for all r ∈ {1, 2, . . . , d},

Res
µ1=0

µ1

〈
Br(µ1, s)

n∏
j=2

C(µj , s)
〉

dµ1 = Res
µ1=0

µ1

〈
Br(µ1, s)

〉〈 n∏
j=2

C(µj , s)
〉

dµ1,

and hence, applying the inclusion-exclusion formula,

Res
µ1=0

µ1

〈
Br(µ1, s)

n∏
j=2

C(µj , s)
〉◦

dµ1 = 0.

Proof. As stated at the start of this section, a pole at zero can only occur in the summand corresponding to
P = (p1 = r), and in this case this term in Br(µ1, s) is

srqrS(µ1rs)E0(µ1s).

The factor of µ−1
1 in Br(µ1, s) makes it a second-order pole. Observe that the expression has no simple pole

at zero; given that S is an even function, the residue is indeed 0. Compute the double pole as

Res
µ1=0

µ1

〈
Br(µ1, s)

n∏
j=2

C(µj , s)
〉

dµ1 = Res
µ1=0

µ1
srqrS(µ1rs)

µ1

〈
E0(µ1s)

n∏
j=2

C(µj , s)
〉

dµ1

= Res
µ1=0

srqrS(µ1rs)
〈
E0(µ1s)

〉〈 n∏
j=2

C(µj , s)
〉

dµ1

= Res
µ1=0

µ1

〈
Br(µ1, s)

〉〈 n∏
j=2

C(µj , s)
〉

dµ1,

(6.10)

where the second equality is using the fact that for any operator O, 〈E0(z)O〉 = ς(z)−1〈O〉 = 〈E0(z)〉〈O〉.
Apply the residue to the inclusion-exclusion formula (6.4),

Res
µ1=0

µ1

〈
Br(µ1, s)

n∏
j=2

C(µj , s)
〉◦

dµ1

= Res
µ1=0

µ1

∑
N⊆{2,...,n}

M`{2,...,n}\N

(−1)|M ||M |!〈Br(µ1, s)C(~µN , s)〉
|M |∏
i=1

〈C(~µMi
, s)〉dµ1,

where, forMi = {i1, . . . , ik}, C(~µMi
, s) is a convenient shorthand notation that denotes

∏k
j=1 C(µij , s). Use

the result (6.10), which is true for any n > 2, to obtain

Res
µ1=0

µ1

〈
Br(µ1, s)

n∏
j=2

C(µj , s)
〉◦

dµ1

= Res
µ1=0

µ1

∑
N⊆{2,...,n}

M`{2,...,n}\N

(−1)|M ||M |!〈Br(µ1, s)〉〈C(~µN , s)〉
|M |∏
i=1

〈C(~µMi
, s)〉dµ1,

Each term in this sum arises twice — either when N = ∅, which occurs with coe�cient (−1)|M ||M |! or if
N = Mi for some i ∈ {1, 2, . . . , |M |}, and this occurs with a factor |M | · (−1)|M |−1(|M | − 1)!. Thus, each
term cancels whenever n > 2. �

6.3.5 Polynomiality in µ1

Before giving the main result of this section, I first prove a lemma about extracting the coe�cient of s from∏`(λ)
k=1 S(µλks).
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Lemma 6.3.9. For all non-negative integers m,

[s2m]
∑
λ`µ−r

~qλµ
`(λ)

|Aut λ|

`(λ)∏
k=1

S(µλks) =
∑
λ`µ−r

~qλµ
`(λ)

|Aut λ|
f(λ),

where f(λ) is a symmetric function in λ = (λ1, . . . , λ`(λ)). Further, for any symmetric function f(λ),

∑
λ`µ−r

~qλµ
`(λ)

|Aut λ|
f(λ) ∈ V (µ).

Proof. First, that extracting the coe�cient of s from the product
∏`(λ)
k=1 S(µλks) yields a symmetric function

of λ is evident by expanding the functions S as power series in s. This can be shown through direct
computation; for example, in the case m = 2,

[s4]S(µ1λ1s)S(µ2λ2s) · · · S(µ1λ`(λ)s)

= [s4]

(
1 +

µ2
1λ

2
1s

2

24
+
µ4

1λ
4
1s

4

1920
+ · · ·

) (
1 +

µ2
1λ

2
2s

2

24
+
µ4

1λ
4
2s

4

1920
+ · · ·

)
· · ·

(
1 +

µ2
1λ

2
`(λ)s

2

24
+
µ4

1λ
4
`(λ)s

4

1920
+ · · ·

)

= µ4
1

`(λ)∑
i=1

λ4
i

1920
+

`(λ)∑
i,j=1

λ2
iλ

2
j

242

 .

It remains to show that ∑
λ`µ−r

~qλµ
`(λ)

|Aut λ|
f(λ) ∈ V (µ).

By linearity, it su�ces to show the above statement in the case where g(λ) is a product of power sum
symmetric polynomials pa1(λ), pa2(λ), . . . , pam(λ), where pa(λ) = λa1 + λa2 + · · · + λa`(λ), since the power
sum symmetric polynomials provide a basis for the ring of symmetric functions. To do this, define the
operator Qa to be

Qa =

d∑
k=1

kaqk
∂

∂qk
,

for a a positive integer. The action of Qa on Aj0(µ) for j ∈ {1, 2, . . . , d} is

QaAj0(µ) = j
∑
λ`µ−j

µ`(λ)

|Aut λ|

d∑
k=1

kaqk
∂

∂qk
~qλ = j

∑
λ`µ−j

~qλµ
`(λ)

|Aut λ|
pa(λ),

hence, applying a product of operators Qa1 · · · Qam yields

Qa1 · · · QamA
j
0(µ) = j

∑
λ`µ−j

~qλµ
`(λ)

|Aut λ|
pa1(λ) · · · pam(λ).

It remains to show that the right side lives in the vector space V (µ). We first claim that

∑
λ`µ−j

~qλx
`(λ)

|Aut λ|
pa(λ) = x

d∑
k=1

kaqk
∑

λ`µ−j−k

~qλx
`(λ)

|Aut λ|
, (6.11)

which we can prove by considering the coe�cient of ~qνx`(ν) of both sides. On the left side

[~qνx
`(ν)]

∑
λ`µ−j

~qλx
`(λ)

|Aut λ|
pa(λ) =

pa(ν)

|Aut ν|
,
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with |ν| = µ − j. Similar to the argument in the proof of Lemma 6.3.4, the right side will be a sum over
partitions λ acquired by removing one part of ν which will result in a sum over distinct parts in ν, and again
`(ν) = `(λ)− 1. Observing that ∑

k∈ν
distinct

ka

|Aut ν \ k|
=

pa(ν)

|Aut ν|
,

the right side yields

[~qνx
`(ν)] x

d∑
k=1

kaqk
∑

λ`µ−j−k

~qλx
`(λ)

|Aut λ|
=
∑
k∈ν

distinct

ka

|Aut ν \ k|
=

pa(ν)

|Aut ν|
.

Substituting x = µ into equation (6.11), we therefore have

QaAj0(µ) =
∑
λ`µ−j

~qλµ
`(λ)

|Aut λ|
pa(λ) = µ

d∑
k=1

kaqk
∑

λ`µ−j−k

~qλµ
`(λ)

|Aut λ|

=

d−j∑
k=1

kaqk
∑

λ`µ−j−k

~qλµ
`(λ)+1

|Aut λ|
+ µ

d∑
k=d−j+1

kaqk
∑

λ`µ−j−k

~qλµ
`(λ)

|Aut λ|
.

Hence, proving the second statement of the lemma has been reduced to showing that Qa preserves the
vector space V (µ). The first term in the expression above is a linear combination of Aj+k,1(µ) where
j + k ∈ {2, . . . , d}, hence

d−j∑
k=1

kaqk
∑

λ`µ−j−k

~qλµ
`(λ)+1

|Aut λ|
∈ V (µ).

To prove that the second term also lives in V (µ), it su�ces to show µAd+i
0 (µ) ∈ V (µ) for i ∈ {1, 2, . . . , d}.

Proceed by induction on i. When i = 1,

µAd+1
0 (µ) = µ

∑
λ`µ−d−1

~qλµ
`(λ)

|Aut λ|
.

From the proof Lemma 6.3.4, we have

∑
λ`µ+a

~qλµ
`(λ)

|Aut λ|
=

µ

µ+ a

d∑
k=1

kqk
∑

λ`µ+a−k

~qλµ
`(λ)

|Aut λ|
, (6.12)

for all integers a. Using a = −1 and rearranging, we find

µ
∑

λ`µ−1−d

~qλµ
`(λ)

|Aut λ|
=
µ− 1

dqd

∑
λ`µ−1

~qλµ
`(λ)

|Aut λ|
− 1

dqd

d−1∑
k=1

kqk
∑

λ`µ−1−k

~qλµ
`(λ)+1

|Aut λ|
,

and hence µAd+1
0 (µ) ∈ V (µ). Now assume µAd+1

0 (µ), . . . , µAd+m−1
0 (µ) ∈ V (µ) and consider

µAd+m
0 (µ) = µ

∑
λ`µ−m−d

~qλµ
`(λ)

|Aut λ|
.

Using (6.12) with a = −m and rearranging gives

µ
∑

λ`µ−m−d

~qλµ
`(λ)

|Aut λ|

=
µ−m
dqd

∑
λ`µ−m

~qλµ
`(λ)

|Aut λ|
− µ

dqd

d−1∑
k=1

kqk
∑

λ`µ−m−k

~qλµ
`(λ)

|Aut λ|

=
µ−m
dqd

∑
λ`µ−m

~qλµ
`(λ)

|Aut λ|
− 1

dqd

d−m∑
k=1

kqk
∑

λ`µ−m−k

~qλµ
`(λ)+1

|Aut λ|
− µ

dqd

d−1∑
k=d−m+1

kqk
∑

λ`µ−m−k

~qλµ
`(λ)

|Aut λ|
.
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The first two terms live in V (µ) because they are linear combinations of the basis elements Ajm(µ), while
the last term lives in V (µ) by the induction hypothesis. Therefore µAd+i

0 (µ) ∈ V (µ) for i ∈ {1, 2, . . . , d},
and we can conclude that QaAj0(µ) ∈ V (µ).

Given that the vector spaces V (z) and V (µ) are isomorphic, the fact that Qa (acting on elements in V (z)

via the isomorphism) and ∂
∂x commute, and that ∂

∂x acts on Ajm(µ) by a shift m 7→ m + 1, it follows that
Qa preserves the vector space V (µ), and this concludes the proof of the result. �

We are now equipped to prove that DH◦g,n(µ1, . . . , µn) satisfies the polynomiality structure. Specifically, we
prove the following theorem.

Theorem 6.3.10. Fix µ2, . . . , µn to be positive integers. Then, for all (g, n) satisfying 2g−2+n > 0, the connected
double Hurwitz generating function H◦(µ1, . . . , µn; s) can be written

H◦(µ1, . . . , µn; s) =

d∑
r=1

( ∑
λ`µ1−r

~qλµ
`(λ)
1

|Aut λ|

)∑
g>0

P rg,n(µ1, µ2, . . . , µn; ~q)s2g−2+n,

where P rg,n(µ1, µ2, . . . , µn; ~q) is a polynomial in µ1 and ~q.

Proof. It will be convenient to consider the cases n = 1, n = 2 and n > 3 separately.

Case n = 1. In this case, I aim to prove that the generating function for double Hurwitz numbers can be
written as

H◦(µ; s) =

d∑
r=1

( ∑
λ`µ−r

~qλµ
`(λ)

|Aut λ|

)(
rqr
µ2s

+

∞∑
g=1

P rg,1(µ; ~q)s2g−1

)
,

where P rg,1 is a polynomial in µ and ~q for all g > 1.

When n = 1, the connected and disconnected double Hurwitz numbers coincide, in which case, by Propos-
ition 6.3.3, we have

H•(µ; s) = H◦(µ; s) =
1

µ

∑
i∈Z

( ∑
λ`µ−i

~qλµ
`(λ)

|Aut λ|

`(λ)∏
k=1

S(µλks)

)〈
E−i(µs)

〉
.

Only the summand corresponding to i = 0 contributes non-trivially, and in this case 〈E0(x)〉 = 1
ς(x) . Ap-

ply Lemma 6.3.4 once yields a sum over all sequences of the form P = (p1 = r) which gives

H◦(µ; s) =
1

µ

d∑
r=1

( ∑
λ`µ−r

~qλµ
`(λ)

|Aut λ|

`(λ)∏
k=1

S(µλks)

)
rqrS(µrs)

1

ς(µs)

=

d∑
r=1

( ∑
λ`µ−r

~qλµ
`(λ)

|Aut λ|

`(λ)∏
k=1

S(µλks)

)
rqrS(µrs)

µ2sS(µs)
.

Extracting the coe�cient of s2g−1 yields

DH◦g,1(µ) = [s2g−1]

d∑
r=1

( ∑
λ`µ−r

~qλµ
`(λ)

|Aut λ|

`(λ)∏
k=1

S(µλks)

)
rqrS(µrs)

µ2sS(µs)

=
∑

a+b=2g
a,b even

d∑
r=1

( ∑
λ`µ−r

~qλµ
`(λ)

|Aut λ|
[sa]

`(λ)∏
k=1

S(µλks)

)
rqr
µ2

[sb]
S(µrs)

S(µs)
.

The case g = 0 corresponds to choosing the constant from each S term and this gives P r0,1(µ; ~q) = rqr
µ2 , as
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expected. When g > 0,

∑
a+b=2g
a,b even

d∑
r=1

( ∑
λ`µ−r

~qλµ
`(λ)

|Aut λ|
[sa]

`(λ)∏
k=1

S(µλks)

)
rqr
µ2

[sb]
S(µrs)

S(µs)

=
∑

a+b=2g
a,b even

d∑
r=1

( ∑
λ`µ−r

~qλµ
`(λ)

|Aut λ|
µaf(λ)

)
rqr
µ2

µbcb(r),

where cb(r) is a degree b polynomial in r. Applying the second statement of Lemma 6.3.9 yields the desired
result, concluding the proof of the case n = 1.

Case n = 2. The expression given in Lemma 6.3.6 in the case of n = 2 is

H•(µ1, µ2; s) =

d∑
r=1

∑
λ`µ1−r

(
~qλµ

`(λ)
1

|Aut λ|

`(λ)∏
k=1

S(µ1λks)

)〈
Br(µ1, s) C(µ2, s)

〉
.

By Lemma 6.3.8 any poles at zero are cancelled when passing to the connected count via inclusion-exclusion.
Hence, it remains to treat the poles at negative integers; here Lemma 6.3.7 gives

Res
µ1=−a

〈
Br(µ1, s)C(µ2, s)

〉
dµ1

= Mr(a; s)
〈

exp
( ∞∑
j=1

αjqj
js

)
exp(sF2)αa exp(−sF2) exp

(
−
∞∑
j=1

αjqj
js

)
C(µ2, s)

〉
= Mr(a; s)

〈
exp

( ∞∑
j=1

αjqj
js

)
exp(sF2)αa

α−µ2

µ2

〉
= Mr(a; s) δa,µ2 .

The last line uses the commutation relation for the bosonic operators α±m (1.8), and the fact that the vacuum

expectation 〈e
∑
j

αjqj
js +sF2〉 contributes 1. This shows that the residue is only non-zero when µ1 = −µ2.

Consider the expression for double Hurwitz numbers as given by Proposition 6.3.3 and note that in the case
n = 2 the constraint on the energies is i1 = −i2 = a with a ∈ {0, 1, . . . , µ2}. Thus,

H•(µ1, µ2; s)

=
1

µ1 µ2

µ2∑
a=0

( ∑
λ1`µ1+a

~qλ1µ
`(λ1)
1

|Aut λ1|

`(λ1)∏
k=1

S(µ1λ
1
ks)

)( ∑
λ2`µ2−a

~qλ2µ
`(λ2)
2

|Aut λ2|

`(λ2)∏
k=1

S(µ2λ
2
ks)

)
〈
Ea(µ1s)E−a(µ2s)

〉
.

The inclusion-exclusion formula in the case of n = 2 is

〈Ea(z1)E−a(z2)〉◦ = 〈Ea(z1)E−a(z2)〉 − 〈Ea(z1)〉 〈E−a(z1)〉,

hence, because 〈Ea(z)〉 vanishes unless a = 0, one can pass to the connected generating function by exclud-
ing the a = 0 term from the summand. In the aim of showing DH◦g,2(µ1, µ2) ∈ V (µ1) for g > 0, one would
apply Lemma 6.3.4 to reduce the sum over λ1 ` µ1 + a to one over µ1 − r for some r = 1, 2, . . . , d. Recall
that applying Lemma 6.3.4 to an expression that is being summed over λ ` µ1 + a introduces a factor of
µ1

µ1+a . With this in mind, a pole at µ1 = −µ2 can only arise when applying Lemma 6.3.4 to an expression
including a sum over λ ` µ1 + µ2 (and this would yield a factor of µ1

µ1+µ2
). Observe that a sum of this form

corresponds to the a = µ2 term in the sum over a. Hence, by the argument above that the residue is only
non-zero when µ1 = −µ2, it su�ces to consider the a = µ2 summand in the sum — and in this case λ2 = ∅.
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That is, to consider the poles of H•(µ1, µ2; s), it su�ces to consider only the following expression:

∑
λ`µ1+µ2

~qλµ
`(λ)
1

|Aut λ|

`(λ)∏
k=1

S(µ1λks)
〈
Eµ2(µ1s)E−µ2(µ2s)

〉◦

=
∑

λ`µ1+µ2

~qλµ
`(λ)
1

|Aut λ|

`(λ)∏
k=1

S(µ1λks)
S(µ2(µ1 + µ2)s)

S((µ1 + µ2)s)
.

The expansion of the ratio of the S functions begins

S(µ2(µ1 + µ2)s)

S((µ1 + µ2)s)
= 1 +

(µ2
2 − 1)

24
(µ1 + µ2)2s2 +O((µ1 + µ2)2s4),

and, extracting the coe�cient of any positive power of s from this term would include a factor of (µ1 +µ2)k

for k even and k > 2, which annihilates any simple pole at µ1 = −µ2. Therefore, it remains to study the
coe�cient of s2g in the expression

f(~µ; s; ~q) :=
∑

λ`µ1+µ2

~qλµ
`(λ)
1

|Aut λ|

`(λ)∏
k=1

S(µ1λks)

for g > 0. I achieve this by showing that the coe�cient of s2g for g > 0 can in fact be written as a linear
combination of terms of the form

g∑
b=1

∑
λ′`µ1+µ2−b

~qλ′µ
`(λ′)
1

|Aut λ′|
.

That is, for g > 0, extracting the coe�cient of s from f(~µ; s; ~q) reduces the sum over λ ` µ1 + µ2 − b for
b strictly positive. Hence, applying Lemma 6.3.4 to f(~µ; s; ~q) after extracting a coe�cient of s will only
introduce factors of the form µ1

µ1+µ2−b for b strictly positive, and therefore, a pole at µ1 = −µ2 cannot be
introduced. Combining this with the argument above that a pole can only arise at µ1 = −µ2 would conclude
the proof in this case.

In the case g = 0, extracting the coe�cient of s0 corresponds to choosing the constant from each S(µ1λks)

term. Hence,

[s0]
∑

λ`µ1+µ2

~qλµ
`(λ)
1

|Aut λ|

`(λ)∏
k=1

S(µ1λks) =
∑

λ`µ1+µ2

~qλµ
`(λ)
1

|Aut λ|
,

which, when applying Lemma 6.3.4, as described above, will pick up a factor of 1
µ1+µ2

, as expected.

To prove that [s2g]f(~µ; s~q) can be written as a linear combination of terms of the appropriate form, first
rewrite

f(~µ; s; ~q) =
∑

λ`µ1+µ2

~qλµ
`(λ)
1

|Aut λ|

`(λ)∏
k=1

S(µ1λks) =
∑

λ`µ1+µ2

d∏
j=1

q
kj
j µ

kj
1

kj !
S(µ1js)

kj ,

recalling that λ = (1k1 , 2k2 , . . . , dkd). Now consider the product S(µ1js)
kj . If S(x) =

∑
k c2kx

2k, then

S(µ1js)
kj =

(
1 +

1

24
s2µ2

1j
2 +

1

1920
s4µ4

1j
4 +

1

5760
s6µ6

1j
6 + · · ·

)kj
= 1 +

(
kj
1

)
1

24
µ2

1s
2j2 + µ4

1s
4j4

(
1

1920

(
kj
1

)
+

1

242

(
kj
2

))
+ µ4

1s
6j6

(
1

5760

(
kj
1

)
+

1

1920 · 24

(
kj
1, 1

)
+

1

243

(
kj
3

))
+ · · ·

= 1 +

(
kj
1

)
c2 c

kj−1
0 µ2

1s
2j2 + µ4

1s
4j4

(
c4 c

kj−1
0

(
kj
1

)
+ c22 c

kj−2
0

(
kj
2

))
+ µ4

1s
6j6

(
c6 c

kj−1
0

(
kj
1

)
+ c4 c2 c

kj−2
0

(
kj
1, 1

)
+ c32 c

kj−3
0

(
kj
3

))
+ · · ·

=
∑
i>0

µ2i
1 s

2ij2i
∑
|ρ|=2i
`(ρ)=kj

~cρkj !

m0!m2! · · ·m2i!
,
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where ρ = (0m0 , 2m2 , . . . , 2im2i). Extracting the coe�cient of s2g, for g > 0,

[s2g]f(~µ; s; ~q) =
∑

λ`µ1+µ2
a1+···+ad=g

d∏
j=1

q
kj
j µ

kj
1

kj !
[s2aj ]S(µ1js)

kj

=
∑

λ`µ1+µ2
a1+···+ad=g

d∏
j=1

q
kj
j µ

kj
1

kj !

∑
|ρ|=2aj
`(ρ)=kj

~cρ µ
2aj
1 j2aj kj !

m0!m2! · · ·m2aj !

=
∑

λ`µ1+µ2

∑
ρ1,ρ2,...,ρd∑d
j=1 |ρ

j |=2g

`(ρj)=kj

d∏
j=1

µm0
1 qm0

j

m0!

~cρ (µ1qj)
kj−m0(µ1j)

2aj

m2!m4! · · ·m2aj !

=
∑

λ`µ1+µ2

 d∏
j=1

kj∑
mj0=0

µ
mj0
1 q

mj0
j

mj
0!

 ∑
ρ1,ρ2,...,ρd∑d
j=1 |ρ

j |=2g

d∏
j=1

~cρj (µ1qj)
`(ρj)(µ1j)

2aj

mj
2!mj

4! · · ·mj
2aj

!
,

where ρi is equal to ρi but with all zero-parts removed; that is, ρi is now a partition of 2ai with only even
parts.

The key step in the above working lies in the observation that extracting the coe�cient of s2aj from Skj for
each j ∈ {1, 2, . . . , d} yields a factor of kj ! which cancels with the same factor in the denominator, and allows
us to rewrite the sum over λ ` µ1 + µ2 with λ = (1k1 , 2k2 , . . . , dkd) as a sum over λ′ = (1m

1
0 , 2m

2
0 , . . . , dm

d
0 )

with λ′ ` µ1 + µ2 − b for all possible b.

The contribution for

b =

d∑
j=1

j `(ρj)

is given by ∑
ρ1,ρ2,...,ρd∑d
i=1 |ρ

i|=2g

d∏
j=1

~cρj (µ1qj)
kj−mj0(µ1j)

2aj

mj
2!mj

4! · · ·mj
2aj

!
.

Hence,

[s2g]
∑

λ`µ1+µ2

~qλµ
`(λ)
1

|Aut λ|

`(λ)∏
k=1

S(µ1λks)

=

g∑
b=1

∑
λ′`µ1+µ2−b

~qλ′µ
`(λ′)
1

|Aut λ′|
∑

ρ1,ρ2,...,ρd∑d
i=1 |ρ

i|=2g

d∏
j=1

~cρj (µ1qj)
kj−mj0(µ1j)

2aj

mj
2!mj

4! · · ·mj
2aj

!
,

where the sum over b starts at 1 because g > 0 and concludes with b = g because
∑d
j=1 |ρ

j | = 2g.
Applying Lemma 6.3.4 now will only introduce rational terms with denominators µ1 + µ2 − b for b > 0;
hence this process cannot introduce a pole at µ1 = −µ2. Therefore, we can conclude that, in the case n = 2,

H◦(µ1, µ2; s) =

d∑
r=1

( ∑
λ′`µ1−r

~qλ′µ
`(λ′)
1

|Aut λ′|

)∑
g>0

P rg,2(µ1, µ2; ~q)s2g

where P rg,2(µ1, µ2; ~q) is a polynomial in µ1 and ~q for all g > 0. This concludes the case n = 2.

Case n > 3. Begin with the expression given in Lemma 6.3.6,

H•(µ1, . . . , µn; s) =

d∑
r=1

∑
λ`µ1−r

(
~qλµ

`(λ)
1

|Aut λ|

`(λ)∏
k=1

S(µ1λks)

)〈
Br(µ1, s) C(µ2, s) C(µ3, s) · · · C(µn, s)

〉
.
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As in the n = 2 case, Lemma 6.3.8 gives that any poles at zero are cancelled via the inclusion-exclusion
process. Use Lemma 6.3.7 to calculate the residue at negative integers. That is,

Res
µ1=−a

〈
Br(µ1, s)

n∏
j=2

C(µj , s)
〉

dµ1

= Mr(a; s)
〈

exp
( ∞∑
j=1

αjqj
js

)
exp(sF2)αa exp(−sF2) exp

(
−
∞∑
j=1

αjqj
js

) n∏
j=2

C(µj , s)
〉

= Mr(a; s)
〈

exp
( ∞∑
j=1

αjqj
js

)
exp(sF2)αa

α−µ2

µ2

α−µ3

µ3
· · · α−µn

µn

〉
.

Commute αa to the right. The commutation relation [αa, α−µk ] = a δa,µk implies that the residue vanishes
except possibly if a is equal to one of the fixed positive integers µk for some k ∈ {2, 3, . . . , n}. In this case,
the residue reads

δa,µkMr(µk; s)
〈

exp
( ∞∑
j=1

αjqj
js

)
exp(sF2)

α−µ2

µ2
· · · α̂−µk · · ·

α−µn
µn

〉
= δa,µkMr(µk; s)

〈 n∏
i=2
i 6=k

C(µi, s)
〉
.

This simple pole at µ1 = −µk simplifies via the inclusion-exclusion formula against the simple pole arising
from the term 〈

Br(µ1, s) C(µk, s)
〉〈 n∏

i=2
i 6=k

C(µi, s)
〉
.

Indeed, by Lemma 6.3.7,

Res
µ1=−µk

〈
Br(µ1, s) C(µk, s)

〉〈 n∏
i=2
i 6=k

C(µi, s)
〉

dµ1

= Mr(µk; s)
〈

exp
( ∞∑
j=1

αjqj
js

)
exp(sF2)αa

α−µ2

µ2

〉〈 n∏
i=2
i 6=k

C(µi, s)
〉

= Mr(µk; s)
〈 n∏
i=2
i 6=k

C(µi, s)
〉
.

Applying inclusion-exclusion and induction on n as in the case of the double pole at zero (see Lemma 6.3.8)
proves that for n > 3 the connected generating function H◦(µ1, . . . , µn; s) can be written

H◦(µ1, . . . , µn; s) =

d∑
r=1

( ∑
λ`µ1−r

~qλµ
`(λ)
1

|Aut λ|

`(λ)∏
k=1

S(µ1λks)

)∑
h>0

Qrh,n(µ1, µ2, . . . , µn; ~q)s2h−2+n.

Now apply Lemma 6.3.9 to conclude the result. �

6.3.6 Invoking symmetry

To conclude the proof of Theorem 6.1.2, it remains to use the symmetry of DH◦g,n(µ1, . . . , µn) in µ1, . . . , µn
to show that DH◦g,n(µ1, . . . , µn) ∈ V (µ1)⊗ V (µ2)⊗ · · · ⊗ V (µn).

Theorem 6.3.11. Suppose that F (µ1, . . . , µn) is a symmetric function of positive integers µ1, . . . , µn. If, for �xed
positive integers µ2, . . . , µn we have F (µ1, . . . , µn) ∈ V (µ1), then

F (µ1, . . . , µn) ∈ V (µ1)⊗ V (µ2)⊗ · · · ⊗ V (µn).

Proof. By assumption F (µ1, . . . , µn) ∈ V (µ1), and considering the definition of V (µ) as given in Defini-
tion 6.2.4, we can write F (µ1, . . . , µn) as

F (µ1, . . . , µn) =

m−1∑
k=0

Ak(µ1)bk(µ2, µ3, . . . , µn)
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where m− 1 is a finite integer. Here, we have taken an index set X to be the sensible relabelling of {j,m}
where j ∈ {1, 2, . . . , d} and m is a non-negative integer, and we write Ak(µ1) = Ajm(µ1) for k ∈ X . Prove
F (µ1, . . . , µn) ∈ V (µ2) by showing that bk(µ2, µ3, . . . , µn) ∈ V (µ2) for all k ∈ {0, 1, . . . ,m− 1}.

Begin by computing the values of F at µ1 ∈ {1, . . . ,m}, resulting in the following system of equations.

F (1, µ2, . . . , µn) =

m−1∑
k=0

Ak(1)bk(µ2, . . . , µn)

F (2, µ2, . . . , µn) =

m−1∑
k=0

Ak(2)bk(µ2, . . . , µn)

...

F (m,µ2, . . . , µn) =

m−1∑
k=0

Ak(m)bk(µ2, . . . , µn)

Now invoke the symmetry of F (µ1, . . . , µn) in µ1, . . . , µn to write

F (µ1, . . . , µn) = F (µ2, . . . , µn, µ1),

and find the following equivalent system of linear equations.

F (µ2, . . . , µn, 1) =

m−1∑
k=0

Ak(µ2)bk(µ3, . . . , µn, 1)

F (µ2, . . . , µn, 2) =

m−1∑
k=0

Ak(µ2)bk(µ3, . . . , µn, 2)

...

F (µ2, . . . , µn,m) =

m−1∑
k=0

Ak(µ2)bk(µ3, . . . , µn,m)

Equating the right hand sides of the two systems above gives

m−1∑
k=0

Ak(1)bk(µ2, . . . , µn) =

m−1∑
k=0

Ak(µ2)bk(µ3, . . . , µn, 1)

m−1∑
k=0

Ak(2)bk(µ2, . . . , µn) =

m−1∑
k=0

Ak(µ2)bk(µ3, . . . , µn, 2)

...
m−1∑
k=0

Ak(m)bk(µ2, . . . , µn) =

m−1∑
k=0

Ak(µ2)bk(µ3, . . . , µn,m).

As outlined above, we ultimately wish to show that bk(µ2, µ3, . . . , µn) ∈ V (µ2) for all k ∈ {0, 1, . . . ,m− 1}.
Note that Ak(µ2) ∈ V (µ2) for all k ∈ {0, 1, . . . ,m − 1} by definition, and bk(µ3, . . . , µn, c) is constant
with respect to µ2. Hence, as the right hand sides of the equations above are linear combinations of terms
Ak(µ2) bk(µ3, . . . , µn, c) for k ∈ {0, 1, . . . ,m − 1} and c ∈ {1, 2, . . . ,m}, it follows that both sides of the
equations above live in V (µ2). If the system of equations is solvable for b0, . . . , bm, then it will follow that
each of these functions must live in the vector space V (µ2). Thus, it remains to show that the system of
linear equations above is solvable, or equivalently, that the matrix

A0(1) A1(1) A2(1) · · · Am−1(1)

A0(2) A1(2) A2(2) · · · Am−1(2)
...

...
...

. . .
...

A0(m− 1) A1(m− 1) A2(m− 1) · · · Am−1(m− 1)


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is invertible. But

Ak(µ) = Ajm(µ) =
∑
λ`µ−j

~qλµ
`(λ)+m

|Aut λ|

are linearly independent if and only if the φjm(z) are linearly independent. To show this, first observe that for
j ∈ {1, 2, . . . , d}, the φj−1(z) = zj are linearly independent, and for distinct m, φjm(z) = (∂/∂x)m+1φj−1(z)

have distinct pole orders, hence any set of φjm(z) with distinct m are linearly independent. It remains
then to show that {φ1

m(z), . . . , φdm(z)} are linearly independent for all m. If {φ1
m−1(z), . . . , φdm−1(z)} are

linearly independent, then it follows that { ∂∂xφ
1
m−1, . . . ,

∂
∂xφ

d
m−1} = {φ1

m(z), . . . , φdm(z)} are also linearly
independent. Since {φ1

−1(z), . . . , φd−1(z)} are linearly independent, it follows that {φ1
m(z), . . . , φdm(z)} are

for all non-negative integers m.

Therefore, bk(µ2, µ3, . . . , µn) ∈ V (µ2) for all k ∈ {0, 1, . . . ,m − 1} and hence F (µ1, . . . , µn) ∈ V (µ2).
Iterating this argument for µ3, . . . , µn, it follows that F (µ1, . . . , µn) ∈ V (µ1)⊗· · ·⊗V (µn), as required. �

6.4 An ELSV-like formula for double Hurwitz numbers

This section works toward obtaining an ELSV-like formula for double Hurwitz numbers. This is done by
considering the spectral curve for double Hurwitz numbers within a 1-parameter deformation of the spectral
curve of a similar enumeration, orbifold Hurwitz numbers. One can then use a variational result of Eynard
and Orantin [52, Theorem 5.1] to relate the free energies of the enumeration.

First, we introduce orbifold Hurwitz numbers and recall the relevant results for this enumeration.

6.4.1 Orbifold Hurwitz numbers

The orbifold Hurwitz number H [d]
g,n(µ1, . . . , µn) is the weighted enumeration of connected genus g branched

covers f : (Σ; p1, p2, . . . , pn)→ (CP1;∞) such that

• the point pi ∈ f−1(∞) has ramification index µi for i ∈ {1, 2, . . . , n};

• the ramification profile of 0 ∈ CP1 is (d, d, . . . , d); and

• all other branching is simple and occurs over prescribed points of CP1.

The weight of a branched cover is given by

1

m! |Aut f |
,

where m = 2g − 2 + n + |µ|/d is the number of simple branch points, as given by the Riemann–Hurwitz
formula.

Note that orbifold Hurwitz numbers are a specialisation of double Hurwitz numbers, and their enumeration
can be obtained from Definition 6.1.1 by setting qd = 1 and qk = 0 for all k 6= d.

Orbifold Hurwitz numbers have previously been expressed via intersection theory on moduli spaces of
curves in a number of ways, due to Johnson, Pandharipande and Tseng [70], and, separately by Lewański,
Popolitov, Shadrin and Zvonkine [80]. A third formula, and the starting point for the work in this chapter,
can be obtained by either of the ELSV formulas found in these references by pushforward toMg,n, which
gives

H [d]
g,n(µ1, . . . , µn) = d2g−2+n+

∑
µi/d

n∏
i=1

(µi/d)bµi/dc

bµi/dc!

∫
Mg,n

Ω
[d]
g;−µ∏n

i=1(1− µi
d ψi)

. (6.13)

Here,

Ω[d]
g;a1,...,an := ε̃∗C

d,d
g;a1,...,an = ε∗

(
g∑
k=0

(−1)kλUk

)
∈ H∗(Mg,n;Q),

where Cr,sg;a1,...,an is the Chiodo class first defined and explicitly calculated by Chiodo [26].
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Given that orbifold Hurwitz numbers are a specialisation of double Hurwitz numbers for specific values
for the q-weights, Theorem 6.1.3 implies that orbifold Hurwitz numbers too are governed by topological
recursion. In fact, this was previously known in the literature, having been proven by Bouchard, Hernández
Serrano, Liu and Mulase [14], and separately by Do, Leigh and Norbury [33]. For orbifold Hurwitz numbers,
we define the spectral curve S [d] by

x[d](z) = ln z − zd, y[d](z) = zd, ω
[d]
0,2(z1, z2) =

dz1 dz2

(z1 − z2)2
.

Also define X [d](z) = exp(x[d](z)) = z exp(−zd). Denote by ω[d]
g,n(z1, . . . , zn) the correlation di�erentials

produced by topological recursion applied to S [d]. Define the free energies F [d]
g,n(z1, . . . , zn) for orbifold

Hurwitz numbers

F [d]
g,n(z1, . . . , zn) =

∫ zn

0

· · ·
∫ z1

0

ω[d]
g,n.

Theorem 6.4.1 (Bouchard, Hernández Serrano, Liu and Mulase [14] and Do, Leigh and Norbury [33]). For
(g, n) 6= (0, 2), we have the expansion

F [d]
g,n(z1, . . . , zn) =

∑
µ1,...,µn>1

H [d]
g,n(µ1, . . . , µn)

n∏
i=1

X [d](zi)
µi .

We can write F [d]
g,n in a basis of natural meromorphic functions. For a ∈ {1, 2, . . . , d} let φ[d]

j,−1(z) = zj

j and
for m > −1 iteratively define

φ
j,[d]
m+1(z) =

∂

∂x[d]
φ

[d]
j,m(z) = X [d] ∂

∂X [d]
φ

[d]
j,m(z) =

z

1− dzd
d

dz
φ

[d]
j,m(z). (6.14)

Expanding in the variable X [d](z) and using Lagrange inversion to determine the coe�cients of X [d](z)µ,
we can write

φ
[d]
j,−1(z) =

∑
k>0

(kd+ j)k−1

k!
X [d](z)kd+j ,

hence

φ
[d]
j,m(z) =

(
X [d] ∂

∂X [d]

)m+1

φ
[d]
j,−1(z) =

∑
k>0

(kd+ j)k+m

k!
X [d](z)kd+j , (6.15)

Now rewrite the ELSV formula for orbifold Hurwitz numbers in terms of the free energies by substitut-
ing equation (6.13) into Theorem 6.4.1. That is,

F [d]
g,n(z1, . . . , zn) =

∑
µ1,...,µn>1

H [d]
g,n(µ1, . . . , µn)

n∏
i=1

X [d](zi)
µi

=
∑

µ1,...,µn>1

[
d2g−2+n+

∑
µi/d

n∏
i=1

(µi/d)bµi/dc

bµi/dc!

∫
Mg,n

Ω
[d]
g;−µ∏n

i=1(1− µi
d ψi)

]
n∏
i=1

X [d](zi)
µi .

Using equation (6.15) then yields

F [d]
g,n(z1, . . . , zn) = d2g−2+n

∑
16j1,...,jn6d
m1,...,mn>0

d
∑

(ji/d−mi)

(∫
Mg,n

Ω
[d]
g;d−j

n∏
i=1

ψmii

)
n∏
i=1

φ
[d]
ji,mi

(zi), (6.16)

where d− j is a shorthand notation d− j = (d− j1, . . . , d− jn). Also note that, due to considerations of the
degree of relevant moduli spaces, the sum is only over tuples j1, . . . , jn whose sum is a multiple of d, and
second, because of cohomological degree considerations the sum is only over m1, . . . ,mn whose sum is at
most 3g−3+n. Equation (6.16) will be the starting point for the ELSV-like formula given in Theorem 6.1.4.
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6.4.2 Deformation to double Hurwitz numbers

Let Q̂(z) = qd−1z
d−1 + · · ·+ q1z, and define a 1-parameter family of spectral curves St by

xt(z) = ln z − (qdz
d + tQ̂(z)), yt(z) =

1

s

(
qdz

d + tQ̂(z)
)
, ωt0,2(z1, z2) =

dz1 dz2

(z1 − z2)2
.

Denote by ωtg,n the correlation di�erentials corresponding to applying topological recursion to the above
spectral curve St and define the free energies F tg,n by

F tg,n(z1, . . . , zn) =

∫ zn

0

· · ·
∫ z1

0

ωtg,n.

Substituting t = 0 and qd = 1 into St recovers the orbifold spectral curve St=0 = S [d], while t = 1 gives
the double Hurwitz spectral curve St=1 = S and Theorem 6.1.3 confirms that ωg,n = ωt=1

g,n is a generating
function for double Hurwitz numbers DHg,n(µ1, . . . , µn).

Let z̃ = q
1/d
d z, in which case

x0(z) = x[d](z̃)− 1

d
ln qd, y0(z) = sy[d](z̃), ω0

0,2(z1, z2) = ω
[d]
0,2(z̃1, z̃2).

The homogeneity property of topological recursion under rescaling gives the relation

ω0
g,n(z1, . . . , zn) = s2−2g−nω[d]

g,n(z̃1, . . . , z̃n),

hence

F 0
g,n(z1, . . . , zn) = s2−2g−nF [d]

g,n(z̃1, . . . , z̃n). (6.17)

The spectral curve St is smooth in t in a neighbourhood U of [0, 1] provided that s is chosen small enough
relative to q1, . . . , qd ensuring that the branch points of the deformed curve remain simple. In this case F tg,n
is an analytic function of t ∈ U and we compute its value at t = 1 via the Taylor series

Fg,n(z1, . . . , zn) = F t=1
g,n (z1, . . . , zn) =

∑
i>0

1

i!

∂i

∂ti
F tg,n(z1, . . . , zn)

∣∣∣
t=0

,

where the t-derivatives are computed while keeping xt(zi) = x1(zi) fixed. Now apply the result of Eynard
and Orantin [52, Theorem 5.1] to compute these derivatives with respect to t. First, find f(w) satisfying( ∂

∂t
yt(z)

)
dxt(z)−

( ∂
∂t
xt(z)

)
dyt(z) = − Res

w=∞
ωt0,2(z, w)f(w).

In this case, choosing

f(w) =
1

s

d−1∑
i=1

qi
i
wi

satisfies the equation above. The result of Eynard and Orantin then implies

∂

∂t
ωtg,n(z1, . . . , zn) = − Res

w=∞
ωtg,n+1(z1, . . . , zn, w)f(w), (6.18)

where the derivative is taken for fixed xt(zi). Now apply the operator ∂/∂t iteratively but note that, because
w is a function of t, one must apply the product rule to the right side. That is, applying the derivative again
yields

∂2

∂t2
ωtg,n(z1, . . . , zn) = −f(w1) Res

w1=∞

∂

∂t
ωtg,n+1(z1, . . . , zn, w1)− Res

w1=∞
ωtg,n+1(z1, . . . , zn, w1)

∂

∂t
f(w1)

= Res
w1=∞

ωtg,n+2(z1, . . . , zn, w1, w2)f(w1)f(w2)− Res
w1=∞

ωtg,n+1(z1, . . . , zn, w1)
∂

∂t
f(w1).
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Applying this process i times and dividing both sides by i! yields the following sum over tuples:

1

i!

∂i

∂ti
ωtg,n(z1, . . . , zn) =

i∑
`=1

(−1)`

`!
Res
w`=∞

· · · Res
w1=∞

ωtg,n+`(z1, . . . , zn, w1, . . . , w`)

∑
p1,...,p`>0∑`
j=1 pj=i−`

1

(p1 + 1)!

∂p1

∂tp1
f(w1) · · · 1

(p` + 1)!

∂p`

∂tp`
f(w`). (6.19)

Now, take equation (6.19) and compute the antiderivatives with respect to z1, . . . , zn on both sides. The left
side is ∫ zn

0

· · ·
∫ z1

0

1

i!

∂i

∂ti
ωtg,n(z′1, . . . , z

′
n)
∣∣∣
t=0

=
1

i!

∂i

∂ti
F tg,n(z1, . . . , zn)

∣∣∣
t=0

.

Letting

f (k)(z) :=

[
∂k

∂tk
f(z)

]
t=0

,

the right side gives

∫ zn

0

· · ·
∫ z1

0

i∑
`=1

(−1)`

`!
Res
w`=∞

· · · Res
w1=∞

ω0
g,n+`(z

′
1, . . . , z

′
n, w1, . . . , w`)

∑
p1,...,p`>0∑`
j=1 pj=i−`

∏̀
j=1

f (pj)(wj)

(pj + 1)!

=

∫ w`

0

· · ·
∫ w1

0

∫ zn

0

· · ·
∫ z1

0

i∑
`=1

1

`!
Res
w`=∞

· · · Res
w1=∞

ω0
g,n+`(z

′
1, . . . , z

′
n, w

′
1, . . . , w

′
`)

×
∑

p1,...,p`>0∑`
j=1 pj=i−`

∏̀
j=1

d
(f (pj)(wj)

(pj + 1)!

)

=

i∑
`=1

∑
p1,...,p`>0∑`
j=1 pj=i−`

1

`!
Res
w`=∞

· · · Res
w1=∞

F 0
g,n+`(z1, . . . , zn, w1, . . . , w`)

∏̀
j=1

d
(f (pj)(wj)

(pj + 1)!

)

=

i∑
`=1

∑
p1,...,p`>0∑`
j=1 pj=i−`

s2−2g−n−`

`!
Res
w`=∞

· · · Res
w1=∞

F
[d]
g,n+`(z̃1, . . . , z̃n, w̃1, . . . , w̃`)

∏̀
j=1

d
(f (pj)(wj)

(pj + 1)!

)
,

where z̃ = q
1/d
d z and we define w̃ = q

1/d
d w similarly. The second equality is using integration by parts, while

the fourth equality is applying (6.17). Thus, at this point we have

Fg,n(z1, . . . , zn) =
∑
i>0

1

i!

∂i

∂ti
F tg,n(z1, . . . , zn)

∣∣∣
t=0

=
∑
i>0

i∑
`=1

∑
p1,...,p`>0∑`
j=1 pj=i−`

s2−2g−n−`

`!
Res
w`=∞

· · · Res
w1=∞

F
[d]
g,n+`(z̃1, . . . , z̃n, w̃1, . . . , w̃`)

∏̀
j=1

d
(f (pj)(wj)

(pj + 1)!

)
. (6.20)

The free energies F [d]
g,n+` can be written as a linear combination of the basis elements φ[d]

j,m(z̃), in which case
to calculate the expression above it su�ces to compute

R
(p)
j,m := Res

z=∞
φ

[d]
j,m(z̃) d(f (p)(z)).

We can write f (p)(z) in the form

f (p)(z) =
1

s

d−1∑
i=1

Q
(p)
i

i
zi,
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where Q(p)
j ∈ C(q1, . . . , qd), and hence

R
(p)
j,m = Res

w=0
φ

[d]
j,m(q

1/d
d w−1)

1

s

d−1∑
i=1

Q
(p)
i

1

wi−1
d(w−1) = −1

s
Res
w=0

d−1∑
i=1

Q
(p)
i

wi+1
φ

[d]
j,m(q

1/d
d w−1) dw

= −1

s

d−1∑
i=1

Q
(p)
i [z−i]φ

[d]
j,m(z̃),

where [z−i]f(z) denotes the coe�cient of z−i in the series expansion of f(z) at z =∞. By induction on m,
one can show that

φ
[d]
j,m(z̃) =

zj pj,m(z̃d)

(1− dzd)2j+1
, (6.21)

for some polynomial pj,m, which has degreem if j ∈ {1, 2, . . . , d−1} or degreem−1 if j = d. This implies
that R(p)

j,m = 0 for m > 1. Now, calculate R(p)
j,0 using (6.14) to obtain

R
(p)
j,0 = −1

s

d−1∑
i=1

Q
(p)
i [z−i]φ

[d]
j,0(z̃) = −1

s

d−1∑
i=1

Q
(p)
i [z−i]

z̃j

1− qdz̃d

= −1

s

d−1∑
i=1

Q
(p)
i [z−i]

q
j/d
d zj

1− dqdzd

=


Q

(p)
d−j

sdq
(d−j)/d
d

, if j ∈ {1, 2, . . . , d− 1}

0, if j = d.

Substituting equation (6.16) into equation (6.20) we find

Fg,n(z1, . . . , zn) = (d/s)2g−2+n
∑
`>0

∑
p1,...,p`>0

(d/s)`

`!

∑
16j1,...,jn6d
16k1,...,k`6d
m1,...,mn+`>0

d
∑

(ji/d+ki/d−mi)

(∫
Mg,n+`

Ω
[d]
g;d−j,d−k

n+∏̀
i=1

ψmii

)
n∏
i=1

φ
[d]
ji,mi

(z̃i)
∏̀
i=1

Res
wi=∞

φ
[d]
ki,mn+i

(w̃i) d
(f (pi)(wi)

(pi + 1)!

)
.

Using the expression for R(p)
k,m calculated above gives

Fg,n(z1, . . . , zn) = (d/s)2g−2+n
∑
`>0

∑
p1,...,p`>0

(d/s)`

`!

∑
16j1,...,jn6d

16k1,...,k`6d−1
m1,...,mn>0

d
∑

(ji/d+ki/d−mi)

(sd)
∑
kiq

∑
(d−ki)/d

d

(∫
Mg,n+`

Ω
[d]
g;d−j,d−k

n∏
i=1

ψmii

)
n∏
i=1

φ
[d]
ji,mi

(z̃i)
∏̀
i=1

Q
(pi)
d−ki

(pi + 1)!
.

Double Hurwitz numbers are stored in the expansion of Fg,n(z1, . . . , zn) at X(zi) = 0. Using the series
expansion for φ[d]

ji,mi
(zi) at X [d](zi) = 0 given in (6.15) and the fact that X(zi) = q

−1/d
d X [d](z̃i) gives

DHg,n(µ1, . . . , µn) = (d/s)2g−2+n
n∏
i=1

(µi/d)bµi/dc

bµi/dc!

×
∑
`>0

p1,...,p`>0
16k1,...,k`6d−1

(d/s)`

`!

d
∑

(µi/d+ki/d) q
∑
µi/d−

∑
(d−ki)/d

d

(sd)
∑
ki

(∫
Mg,n+`

Ω
[d]
g;−µ,d−k∏n

i=1(1− µi
d ψi)

)∏̀
i=1

Q
(pi)
d−ki

(pi + 1)!
,

and this concludes the proof of Theorem 6.1.4.
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6.5 Remarks

Theorem 6.1.4 connects double Hurwitz numbers to intersection theory on moduli spaces of curves, however
I refer to this as an ELSV-like formula because it is not exactly what one would obtain by using the approach
of Eynard [46] or Dunin-Barkowski, Orantin, Shadrin and Spitz [42]. In particular, the double Hurwitz
number DHg,n(µ1, . . . , µn) is related to intersection numbers onMg,n+` for arbitrary ` > 0. Further, the
polynomiality structure of double Hurwitz numbers is not immediate from the ELSV-like formula.

It is possible to obtain a bona fide ELSV formula using, as stated above, the approach of Eynard [46]
or Dunin-Barkowski, Orantin, Shadrin and Spitz [42]. One might then wonder whether this matches what
one would obtain by pushing forward the ELSV-like formula of Theorem 6.1.4 to Mg,n. At present, the
behaviour of Chiodo classes under pushforward is not well-enough understood to carry this out.

The idea of using deformation of spectral curves to obtain ELSV-like formulas is largely unexplored but may
have applications to other settings. For example, from the viewpoint of considering double Hurwitz numbers
with simple branching as relative Gromov–Witten invariants with τ1-insertions, it is natural to generalise to
arbitrary insertions. Utilising a new family of parameters by associating a w-weight to each τ -insertion, this
leads to the following conjecture.

Conjecture 6.5.1 (Topological recursion). Let Q(z) = q1z + · · ·+ qdz
d andW (z) = w1z + · · ·+wkz

k. The
correlation di�erentials resulting from applying topological recursion to the spectral curve (C∗, x, y, ω0,2) with

x(z) = ln z −W (Q(z)), y(z) = Q(z), ω0,2(z1, z2) =
dz1 dz2

(z1 − z2)2

satisfy

ωg,n(z1, . . . , zn) =

∞∑
µ1,...,µn=1

GWg,n(µ1, . . . , µn)

n∏
i=1

d(exp(µix(zi)).

Here, the coe�cient GWg,n(µ1, . . . , µn) ∈ Q(q1, . . . , qd;w1, . . . , wk) stores the genus g stationary Gromov–Witten
invariants of CP1 relative to 0 and∞ via

GWg,n(µ1, . . . , µn) =
∑
ν`d

α`2g−2+`(µ)+`(ν)

〈 ν | τα1 · · · τα`(α)
|µ 〉g

~qν ~wα
|Aut ν| |Aut α|

.

One ought to be able to push through the techniques of this chapter to prove this conjecture. Further,
one could implement the approach of spectral curve variation to obtain an ELSV-like formula for these
Gromov–Witten invariants by deforming the known spectral curve of Dunin-Barkowski, Kramer, Popolitov
and Shadrin [39] for orbifold spin Hurwitz numbers.

6.6 Data

The following data was calculated in Maple [82] using the semi-infinite wedge vacuum expectation for double
Hurwitz numbers given in Proposition 6.3.3.

g (µ1, . . . , µn) DHg,n(µ1, . . . , µn) evaluated at s = 1

0 (1) q1

0 (2) 1
2q

2
1 + 1

2q2

0 (3) 1
2q

3
1 + q1q2 + 1

3q3

0 (4) 2
3q

4
1 + 2q2

1q2 + 1
2q

2
2 + q1q3 + 1

4q4

0 (5) 25
24q

5
1 + 25

6 q
3
1q2 + 5

2q1q
2
2 + 5

2q
2
1q3 + q2q3 + q1q4 + 1

5q5

0 (6) 9
5q

6
1 + 9q4

1q2 + 9q2
1q

2
2 + q3

2 + 6q3
1q3 + 6q1q2q3 + 1

2q
2
3 + 3q2

1q4 + q2q4 + q1q5 + 1
6q6
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g (µ1, . . . , µn) DHg,n(µ1, . . . , µn) evaluated at s = 1

0 (1, 1) 1
2q

2
1 + q2

0 (2, 1) 2
3q

3
1 + 2q1q2 + q3

0 (3, 1) 9
8q

4
1 + 9

2q
2
1q2 + 3

2q
2
2 + 3q1q3 + q4

0 (2, 2) q4
1 + 4q2

1q2 + q2
2 + 3q1q3 + q4

0 (4, 1) 32
15q

5
1 + 32

3 q
3
1q2 + 8q1q

2
2 + 8q2

1q3 + 4q2q3 + 4q1q4 + q5

0 (3, 2) 9
5q

5
1 + 9q3

1q2 + 6q1q
2
2 + 15

2 q
2
1q3 + 3q2q3 + 4q1q4 + q5

0 (1, 1, 1) q3
1 + 4q1q2 + 3q3

0 (2, 1, 1) 2q4
1 + 10q2

1q2 + 4q2
2 + 9q1q3 + 4q4

0 (3, 1, 1) 9
2q

5
1 + 27q3

1q2 + 24q1q
2
2 + 51

2 q
2
1q3 + 15q2q3 + 16q1q4 + 5q5

0 (2, 2, 1) 4q5
1 + 24q3

1q2 + 20q1q
2
2 + 24q2

1q3 + 12q2q3 + 16q1q4 + 5q5

1 (2) 1
12q

2
1 + 1

4q2

1 (3) 3
8q

3
1 + 3

2q1q2 + q3

1 (4) 4
3q

4
1 + 20

3 q
2
1q2 + 7

3q
2
2 + 6q1q3 + 5

2q4

1 (5) 625
144q

5
1 + 625

24 q
3
1q2 + 125

6 q1q
2
2 + 625

24 q
2
1q3 + 25

2 q2q3 + 50
3 q1q4 + 5q5

1 (1, 1) 1
24q

2
1 + 1

6q2

1 (2, 1) 1
3q

3
1 + 5

3q1q2 + 3
2q3

1 (3, 1) 27
16q

4
1 + 81

8 q
2
1q2 + 9

2q
2
2 + 45

4 q1q3 + 6q4

1 (2, 2) 4
2q

4
1 + 8q2

1q2 + 10
3 q

2
2 + 9q1q3 + 14

3 q4

1 (4, 1) 64
9 q

5
1 + 448

9 q3
1q2 + 48q1q

2
2 + 176

3 q2
1q3 + 104

3 q2q3 + 136
3 q1q4 + 50

3 q5

1 (3, 2) 21
4 q

5
1 + 147

4 q3
1q2 + 34q1q

2
2 + 355

8 q2
1q3 + 24q2q3 + 104

3 q1q4 + 25
2 q5

2 (2) 1
240q

2
1 + 1

48q2

2 (3) 9
80q

3
1 + 27

40q1q2 + 3
4q3

2 (4) 52
45q

4
1 + 364

45 q
2
1q2 + 61

15q
2
2 + 54

5 q1q3 + 41
6 q4

2 (5) 3125
384 q

5
1 + 3125

48 q3
1q2 + 625

9 q1q
2
2 + 4375

48 q2
1q3 + 1375

24 q2q3 + 250
3 q1q4 + 425

12 q5

2 (1, 1) 1
720q

2
1 + 1

120q2

2 (2, 1) 13
180q

3
1 + 91

180q1q2 + 27
40q3

2 (3, 1) 729
640q

4
1 + 729

80 q
2
1q2 + 27

5 q
2
2 + 567

40 q1q3 + 54
5 q4

2 (2, 2) 13
15q

4
1 + 104

15 q
2
1q2 + 182

45 q
2
2 + 54

5 q1q3 + 122
15 q4

2 (4, 1) 1472
135 q

5
1 + 1472

15 q3
1q2 + 1808

15 q1q
2
2 + 7024

45 q2
1q3 + 1736

15 q2q3 + 7448
45 q1q4 + 250

3 q5

2 (3, 2) 303
40 q

5
1 + 2727

40 q3
1q2 + 412

5 q1q
2
2 + 1747

16 q2
1q3 + 1561

20 q2q3 + 1736
15 q1q4 + 1375

24 q5



Chapter 7

Virasoro constraints for fully simple maps

7.1 Introduction

Maps, which informally correspond to ways to glue polygons together to create surfaces, are a cornerstone in
the field of topological recursion. The enumeration of maps is the prototypical example of a problem that is
governed by topological recursion. Indeed, the theory of topological recursion evolved from the abstraction
of loop equations from the theory of matrix models, with one of the most fundamental examples given by
the 1-Hermitian matrix model. Specifically, the following theorem was developed in a series of works, most
notably by Chekhov, Eynard and Orantin [25, 48, 52].

Theorem 7.1.1 (Chekhov, Eynard and Orantin [25, 48, 52]). The correlation di�erentials resulting from applying
topological recursion to the spectral curve (CP1, x, y) with

x(z) = α+ γ
(
z +

1

z

)
, and y(z) = −

d−1∑
j=1

ujz
−j (7.1)

satisfy
ωg,n(z1, . . . , zn) = d1 · · · dn

∑
µ1,...,µn>1

Mg,n(µ1, . . . , µn)x−µ1

1 · · ·x−µnn .

Here, uj for j ∈ {0, . . . , d− 1} are polynomials in α and γ that satisfy

V ′(x(z)) =

d−1∑
j=0

uj(z
j − z−j)

for V ′(x) = x −
∑
i>1 tix

i−1. The parameters α, γ ∈ Q[t1, . . . , td][[t]] are the unique solutions of u0 = 0 and
u1 = t

γ that behave like α = O(t) and γ =
√
t(1 +O(t)).

For a formal definition of maps see Definition 3.2.1 in Chapter 3, and see Definition 3.2.10 in the same
chapter for the full definition of the enumeration Mg,n(µ1, . . . , µn).

In the statement of Theorem 7.1.1 above, the parameter t is typically used in the generating function of the
enumeration to track the number of vertices of a map, while the positive integer d is fixed at the outset; d is
used to provide an upper bound on the possible degree of an internal face. Topological recursion inherently
requires analyticity of the generating functions involved and hence the role of d is partly to allow objects
that could otherwise only be considered as formal power series to be viewed as analytic. In this chapter I
do not need to track the number of edges, and separately, I do not utilise any analytic arguments, hence
the parameter t and the integer d are not required.

Relatively recently, the closely related enumeration of fully simple maps was defined by Borot and Garcia-
Failde [11]. As discussed in the background Chapter 3 on maps, the enumeration of fully simple maps is
a subset of the enumeration of ordinary maps; that is, a fully simple map is an ordinary map that satisfies
extra conditions. The definition of fully simple maps arose from the study of random matrix models and a
discussion of this viewpoint can be found in previous work of Borot and Garcia-Failde [11].

One of the remarkable features of the enumeration of fully simple maps is the conjecture posited by Borot
and Garcia-Failde [11] that the enumeration of fully simple maps is governed by topological recursion but

113
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where the spectral curve for the fully simple enumeration is obtained by taking the rational spectral curve for
ordinary maps and switching the meromorphic functions x and y that comprise the spectral curve data. This
transformation of switching x and y is an example of a symplectic transformation, which is any transforma-
tion of x and y that preserves |dx ∧ dy|. In the setting of topological recursion, symplectic transformations
are related to the somewhat mysterious property of symplectic invariance. Symplectic invariance, first pro-
posed by Eynard and Orantin [50, 53] and still an open question today, states that the free energies Fg,0
are invariant under symplectic transformations of the spectral curve. For a definition of the quantities Fg,0
and a discussion of symplectic transformations and symplectic invariance, see previous work of Eynard and
Orantin [50, 53].

The conjecture of Borot and Garcia-Failde [11] has since been proved simultaneously by Borot, Charbonnier
and Garcia-Failde [7] and Bychkov, Dunin-Barkowski, Kazarian and Shadrin [19]. The statement of the
theorem is the following.

Theorem 7.1.2 (Borot, Charbonnier and Garcia-Failde [7] and Bychkov, Dunin-Barkowski, Kazarian and
Shadrin [19]). The correlation di�erentials resulting from applying the topological recursion to the spectral curve
(CP1, x, y) with

x(z) = −
d−1∑
j=1

ujz
−j , and y(z) = α+ γ

(
z +

1

z

)
(7.2)

satisfy

ωg,n(z1, . . . , zn) = d1 · · · dn
∑

µ1,...,µn>1

FSg,n(µ1, . . . , µn)xµ1

1 · · ·xµnn .

Here, uj for j ∈ {0, . . . , d− 1} are polynomials in α and γ that satisfy

V ′(y(z)) =

d−1∑
j=0

uj(z
j − z−j)

for V ′(y) = y −
∑
i>1 tiy

i−1. The parameters α, γ ∈ Q[t1, . . . , td][[t]] are the unique solutions of u0 = 0 and
u1 = t

γ that behave like α = O(t) and γ =
√
t(1 +O(t)).

Again, for a formal definition of fully simple maps see Definition 3.2.1 in Chapter 3, and see Definition 3.2.10
in the same chapter for the full definition of the enumeration FSg,n(µ1, . . . , µn).

Beyond topological recursion, a relation between the enumerations of ordinary and fully simple maps via
monotone Hurwitz numbers was proven by Borot, Charbonnier, Do, and Garcia-Failde [6, 11]; see The-
orem 7.2.3 in Section 7.2.1. One can give an equivalent expression for monotone Hurwitz numbers as a
character formula, and hence as a vacuum expectation in the semi-infinite wedge; see Chapter 4 for a demon-
stration of this process in the case of single Hurwitz numbers. Separately, the semi-infinite wedge o�ers a
particularly nice setting for deriving di�erential operators that act on, and annihilate, partition functions.

The aim of this chapter is to deduce a sequence of Virasoro operators V Fn for n > −1 that annihilate the
partition function for fully simple maps ZF . Use of the semi-infinite wedge is instrumental for deducing this
result. The steps taken to obtain this result are as follows.

1. Begin by deriving a vacuum expectation for the partition function of ribbon graphs (Lemma 7.3.2),
then use a combinatorial argument to pass to a vacuum expectation for the partition function for
ordinary maps (Proposition 7.3.3).

2. Use the relation between ordinary maps and fully simple maps, Theorem 7.2.3, along with the known
character formula for weakly monotone Hurwitz numbers (7.4) to deduce a vacuum expectation for
the partition function for fully simple maps (Theorem 7.3.4).

3. Use the known Virasoro constraints for ordinary maps to derive the Virasoro constraints for fully
simple maps as a conjugation of the Virasoro operators for ordinary maps (Theorem 7.4.8).
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The structure of this chapter is as follows. Section 7.2 contains useful preliminary definitions and results
regarding ordinary maps and fully simple maps (Section 7.2.1) as well as key results pertaining to operators in
the semi-infinite wedge (Section 7.2.2). Section 7.3 develops vacuum expectations for the partition functions
of ordinary maps (Section 7.3.1) and fully simple maps (Section 7.3.2). Section 7.4 derives the Virasoro
constraints of fully simple maps: Section 7.4.1 reproduces the known derivation of the Virasoro operators
for ordinary maps from the Tutte recursion; Section 7.4.2 outlines a number of useful preliminary conjugation
results that are needed in the following section; and Section 7.4.3 contains the main result of this chapter,
the derivation of the Virasoro constraints for the enumeration of fully simple maps.

Section 7.5 describes some work in progress towards further desirable results. Namely, Section 7.5.1 outlines
work towards a Tutte-like recursion for fully simple maps; Section 7.5.2 provides a relation between ordinary
and fully simple maps in the case of (g, n) = (0, 1); and Section 7.5.3 details an enlightening calculation
that recovers the spectral curve for fully simple maps from the (0, 1)-Tutte-like recursion.

All work in this chapter is joint work with Norman Do.

7.2 Preliminaries

7.2.1 Maps and fully simple maps

Begin by defining particular generating functions for ordinary and fully simple maps that will be useful
throughout this chapter.

De�nition 7.2.1. Let µ1, . . . , µn be positive integers, and define Map(µ1, . . . , µn) to be the weighted enu-
meration of (isomorphism classes of possibly disconnected) ordinary maps with n boundary faces such that
the degree of boundary face i is µi. The weight of each map M is given by

~2g−2+n se(M)

|Aut M |
t
f1(M)
1 t

f2(M)
2 t

f3(M)
3 · · · ,

where g is the genus of the underlying surface, e(M) denotes the number of edges, fi(M) is the number of
internal faces of degree i, and |Aut M | is the number of automorphisms of M .

Define FSMap(µ1, . . . , µn) to be the analogous enumeration of fully simple maps.

Note that this definition packages possibly disconnected ordinary maps and fully simple maps, and indeed
throughout this chapter ordinary maps and fully simple maps will be possibly disconnected unless explicitly
stated otherwise.

The generating function Map(µ1, . . . , µn) is equal to the sum of the enumerations M•g,n(µ1, . . . , µn) ranging
over all genera; that is,

Map(µ1, . . . , µn) =
∑
g∈Z

M•g,n(µ1, . . . , µn)~2g−2+n,

and similarly for FSMap and FS•g,n. Note that the sum over genus above ranges over all integers, positive
and negative. This is because Map enumerates disconnected objects and the genus of a disconnected surface
may be negative. This particular generating function Map(µ1, . . . , µn) is useful when packaging the ordinary
map enumerative data in the semi-infinite wedge. That is, the generating function Map(µ1, . . . , µn) can be
conveniently written as a vacuum expectation in the semi-infinite wedge. The analogous generating functions
were also employed in Chapters 4 and 6 to write single and double Hurwitz numbers via the semi-infinite
wedge.

Next, recall the relation between the enumerations of ordinary maps and fully simple maps via monotone
Hurwitz numbers, first proven by Borot and Garcia-Failde [11], and separately also proven by Borot, Char-
bonnier, Do and Garcia-Failde [6]. (Note that although monotone Hurwitz numbers are already defined
in Definition 4.3.1 (Section 4.3.1), the way that they are packaged here is su�ciently di�erent that it will be
most convenient to simply include the necessary definition here.) A sequence of transpositions τ1, . . . , τk
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in the symmetric group Sd is called strictly monotone if, when writing the transposition τi = (ai bi) conven-
tionally with ai < bi, then b1 < · · · < bn. Similarly, a sequence of transpositions τ1, . . . , τk is called weakly
monotone if b1 6 · · · 6 bn.

De�nition 7.2.2. Let λ and µ be partitions of a positive integer d, and let k be a non-negative integer.
The strictly monotone Hurwitz number H<

k (λ;µ) is 1
d! multiplied by the number of tuples (ρλ, τ1, . . . , τk, ρµ)

of permutations in the symmetric group Sd such that

• ρλ and ρµ have cycle type λ and µ respectively;

• τ1, . . . , τk is a strictly monotone sequence of transpositions; and

• ρλτ1 · · · τk, ρµ = id.

The weakly monotone Hurwitz number H6k (λ;µ) is defined analogously where τ1, . . . , τk is a weakly monotone
sequence of transpositions.

Also define the following generating functions for these monotone Hurwitz numbers

H<(λ;µ) =
∑
k>0

H<
k (λ;µ) ~k and H6(λ;µ) =

∑
k>0

H6k (λ;µ) ~k.

I also record the following character formulas for strictly and weakly monotone Hurwitz numbers [6], which
will be needed to write fully simple maps as a vacuum expectation in the semi-infinite wedge:

H<(λ;µ) =
∑
ρ`d

χρλ χ
ρ
µ

z(λ)z(µ)

∏
�∈ρ

(1 + c(�)~) (7.3)

H6(λ;µ) =
∑
ρ`d

χρλ χ
ρ
µ

z(λ)z(µ)

∏
�∈ρ

1

1− c(�)~
. (7.4)

Here, the notation χρλ refers to the character of the symmetric group indexed by the partition ρ evaluated
on a permutation of cycle type λ, the notation ρ ` d denotes that ρ is a partition of the integer d, and the
notation z(λ) for a partition λ denotes

z(λ) =

`(λ)∏
i=1

λi
∏
j>1

mj(λ)!, (7.5)

where mj(λ) is the number of occurrences of the positive integer j in the partition λ.

Theorem 7.2.3 (Borot, Charbonnier, Do and Garcia-Failde [6] and Borot and Garcia-Failde [11]). For any
partitions λ and µ,

λ1 · · ·λ` Map(λ1, . . . , λ`) = z(λ)
∑
µ`|λ|

H<(λ;µ) µ1 · · ·µn FSMap(µ1, . . . , µn) (7.6)

µ1 · · ·µn FSMap(µ1, . . . , µn) = z(µ)
∑
λ`|µ|

H6(µ;λ)
∣∣
~ 7→−~ λ1 · · ·λ` Map(λ1, . . . , λ`). (7.7)

Here |µ| = µ1 + · · · + µn. Note that this theorem as stated is superficially di�erent to its presentation in
the work of Borot, Charbonnier, Do and Garcia-Failde [6]; this is because the generating functions I have
defined, Map and FSMap, enumerate unrooted disconnected ordinary maps and fully simple maps, while
the objects of study in this reference are their rooted counterparts. Defining M̂ap and ˆFSMap to be the
corresponding generating functions for rooted ordinary and fully simple maps respectively, one can easily
switch between these enumerations using the relation

M̂ap(µ1, . . . , µn) = µ1 · · ·µnMap(µ1, . . . , µn),

and similarly for FSMap. As described in Section 3.2.4, this is because, to pass from the unrooted enu-
meration to the rooted enumeration one needs to choose a root (an edge on the boundary face) for each
boundary face and for the boundary face labelled i there are µi choices for the root.
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Further, the corresponding generating functions defined by Borot, Charbonnier, Do and Garcia-Failde [6] do
not include the s-parameter that I am utilising here (that tracks the number of edges). However, following
either of the combinatorial bijections described by the authors of this paper one observes that from an
ordinary map one obtains a fully simple map with the same number of edges, hence the above formula has
been (trivially) amended to include the s-parameter.

7.2.2 Semi-in�nite wedge

Lemma 7.2.4. Let m be a positive integer. Then, the following is true:

αm exp

(∑
m>1

pm
m
α−m

)〉
= pm exp

( ∞∑
m=1

pm
m
α−m

)〉

α−m exp

( ∞∑
m=1

pm
m
α−m

)〉
= m

∂

∂pm
exp

( ∞∑
m=1

pm
m
α−m

)〉
.

Proof. The second equation follows immediately by applying the di�erential operator m ∂
∂pm

to the expo-
nential.

To prove the first equation, use the following application of the Baker–Campbell–Hausdor� formula. If
[X,Y ] is central, then

esXY e−sX = Y + s[X,Y ].

Take X = pk
k α−k and Y = αk. As [α−k, αk] = −k is indeed central, applying the formula yields

exp
(pk
k
α−k

)
αk exp

(
− pk

k
α−k

)
= αk +

pk
k

[α−k, αk]

= αk − pk

exp
(pk
k
α−k

)
αk = αk exp

(pk
k
α−k

)
− pk exp

(pk
k
α−k

)
.

Apply both sides to the vacuum vector. The left side vanishes and I obtain

αk exp
(pk
k
α−k

)〉
= pk exp

(pk
k
α−k

)〉
.

Apply the operator

exp

( ∞∑
m=1
m 6=k

pm
m
α−m

)

to both sides to obtain the desired result. �

Finally, I also define a number of operators that will be needed throughout this chapter. First, define the
following operators on the semi-infinite wedge.

De�nition 7.2.5. For all n ∈ Z, define the two sequences of operators

Mn =
1

6

∑
i+j+k=n

: αiαjαk : , (7.8)

and

Kn =
1

2

∑
i+j=n

: αiαj : , (7.9)

where I adopt the convention that α0 := 0. As defined in Definition 1.3.3 the colons surrounding these sets
of operators denotes that we use the normal ordering of the product.
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Next recall the definition of the E -operator from Definition 1.3.6 in Chapter 1,

En(z) =
∑

k∈Z+ 1
2

ez(k−
n
2 ) : ψk−nψ

∗
k : +

δn,0
ς(z)

,

where ς(z) = ez/2 − e−z/2. Also recall the fact that En(0) = αn. By Lemma 1.4.8 the E -operator can
alternatively be written in terms of the bosonic operators as

En(z) =
1

ς(z)

∑
`>0

1

`!

∑
i1+···+i`=n

ς(i1z) · · · ς(i`z)
i1 · · · i`

: αi1 · · ·αi` : .

These E -operators satisfy the commutation relation, equation (1.9):

[Ea(z), Eb(w)] = ς(aw − bz) Ea+b(z + w).

To prove the main result of this chapter, it will be useful to observe that the operator Kn is related to the
z-coe�cient of the En(z) operator. That is, using (1.20) for the E -operator, I have that

[z]En(z) = [z]
1

ς(z)

∑
`>0

1

`!

∑
i1+···+i`=n

ς(i1z) · · · ς(i`z)
i1 · · · i`

: αi1 · · ·αi` :

=
(

[z−1]
1

ς(z)

)
[z2]

∑
`>0

1

`!

∑
i1+···+i`=n

ς(i1z) · · · ς(i`z)
i1 · · · i`

: αi1 · · ·αi` :

+
(

[z1]
1

ς(z)

)
[z0]

∑
`>0

1

`!

∑
i1+···+i`=n

ς(i1z) · · · ς(i`z)
i1 · · · i`

: αi1 · · ·αi` :

=
1

2

∑
i1+i2=n

: αi1αi2 : −δn,0
24

= Kn −
δn,0
24

.

Here I’m using the following expansions:

1

ς(z)
=

1

z
− z

24
+

7z3

5760
+O(z5)

ς(z) = z +
z3

24
+

z5

1920
+O(z7).

Hence,

Kn = [z] En(z) +
δn,0
24

. (7.10)

The following commutation relations, while not strictly necessary for the results in this chapter, are proven
here for the sake of interest.

Lemma 7.2.6. For all non-zero integers m and all integers n, we have the following commutation relations:

[Mn, αm] = −mKn+m, (7.11)

and

[Kn, αm] =

{
−mαn+m, if n+m = 0,

0, otherwise.
(7.12)

Proof. Begin with equation (7.12). Use equation (7.10) and the fact that αm = Em(0): then we can utilise
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the commutation relation for the E -operator (1.3.7). This gives

[Kn, αm] = [z][En(z), Em(0)] + [z]
[δn,0

24
, Em(0)

]
= [z]ς(−mz)En+m(z)

= [z]ς(−mz) 1

ς(z)

∑
`>0

1

`!

∑
i1+···+i`=n+m

ς(i1z) · · · ς(i`z)
i1 · · · i`

: αi1 · · ·αi` :

=
(

[z0]ς(−mz) 1

ς(z)

)
[z1]

∑
`>0

1

`!

∑
i1+···+i`=n+m

ς(i1z) · · · ς(i`z)
i1 · · · i`

: αi1 · · ·αi` :

=

{
−mαn+m, if n+m 6= 0,

0, otherwise.

The third equality is using the fact that ς(−mz) 1
ς(z) is even, while the fourth equality is using that, when

m+ n = 0,

[z1]
∑
`>0

1

`!

∑
i1+···+i`=0

ς(i1z) · · · ς(i`z)
i1 · · · i`

= 0.

This is because, given that i1 + · · · + i` = 0 and i1, . . . , i` are non-zero, then ` must be even and thus
ς(i1z) · · · ς(i`z) must too be even in z. Hence conclude that [z1]ς(i1z) · · · ς(i`z) = 0.

Equation (7.11) uses the fact thatMn = [z2]En(z)− n2−1
24 αn and a similar argument to the one above. �

Finally, define the following operator that will be central to the work in this chapter.

De�nition 7.2.7. Define the operator

G = ~M2 +K2 +
1

2~
α2

=
~
2

∑
i,j>1

(α2−i−jαiαj + α−iα−jαi+j+2) +
∑
i>1

α−iα2+i +
1

2
α2

1 +
1

2~
α2.

(7.13)

A side bar on the G-operator. One might find it interesting to observe that the operator G can be written
succinctly as

G =
~
6

∑
i+j+k=2

: αiαjαk :,

by defining the convention that α0 = 1
~ . This might lead one to the definition of the operator

Gn =
~
6

∑
i+j+k=n

: αiαjαk := ~Mn +Kn +
1

2~
αn,

still using the same convention α0 = 1
~ . It is natural to wonder if there is there a context in which these

operators are useful.

I’m also going to define the following di�erential operators. First, define

M2 =
~
2

∑
i,j>1

(
(i+ j − 2)pipj

∂

∂pi+j−2
+ ijpi+j+2

∂2

∂pi∂pj

)
, (7.14)

and

K2 =
∑
i>1

ipi+2
∂

∂pi
+

1

2
p2

1. (7.15)

And finally, define the operator

G = ~M2 +K2 +
1

2~
p2

=
~
2

∑
i,j>1

(
(i+ j − 2)pipj

∂

∂pi+j−2
+ ijpi+j+2

∂2

∂pi∂pj

)
+
∑
i>1

ipi+2
∂

∂pi
+

1

2
p2

1 +
1

2~
p2.

(7.16)
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These three operators have been very suggestively labelled: they are the indeed each related to their calli-
graphic counterparts via Lemma 7.2.4. This can be seen by quick and straightforward calculation.

7.3 Partition functions via the semi-in�nite wedge

7.3.1 Partition functions for ribbon graphs and maps

First define the partition function for ribbon graphs:

ZR(~p; ~) = exp

(∑
n>1

∑
g>0

∑
µ1,...,µn>1

R◦g,n(µ1, . . . , µn)
~2g−2+n

n!
~pµ

)
. (7.17)

Recall that the definition of Rg,n(µ1, . . . , µn) includes the s-parameter which tracks the number of edges.

Begin with the so-called evolution equation for ribbon graphs (alternatively called the master equation) which
is a reformulation of the Tutte recursion at the level of the partition function [74], given in the following
theorem below.

Theorem 7.3.1. The partition function for ribbon graphs ZR satis�es the evolution equation

∂

∂s
ZR(~p; ~)

= GZR(~p; ~) =
(
~M2 +K2 +

1

2~
p2

)
ZR(~p; ~)

=

~
2

∑
i,j>1

(i+ j − 2)pipj
∂

∂pi+j−2
+ ijpi+j+2

∂2

∂pi∂pj
+
∑
i>1

ipi+2
∂

∂pi
+

1

2
p2

1 +
1

2~
p2

ZR(~p; ~).

One can prove this di�erential equation, as done by Kazarian and Zograf [74], by proving that the Tutte
recursion for ribbon graphs (equation 12 in the same reference [74], or, originally proven by Walsh and
Lehman [106]) is equivalent to the Virasoro constraints for ribbon graphs [74, Theorem 3 (i)], then multiply-
ing the nth Virasoro operator Ln by pn+2 and summing over all n. The fact that the Virasoro operators
annihilate the partition function for ribbon graphs guarantees that the resulting evolution equation will as
well.

One can use the evolution equation along with Lemma 7.2.4 to derive a vacuum expectation for the ribbon
graph partition function; this is what is being done in the following lemma.

Lemma 7.3.2. The partition function for ribbon graphs is given by the following vacuum expectation in the semi-
in�nite wedge:

ZR(~p; ~) =

〈
exp(sG) exp

(∑
m>1

pm
m
α−m

)〉
. (7.18)

Here, the operator G is de�ned in De�nition 7.2.7, while the bosonic operators, α±m, are de�ned in De�nition 1.3.4.

Proof. Begin with the vacuum expectation on the right side of (7.18) and apply the operator ∂
∂s . Define the

result to be Z? (which I ultimately aim to show is equal to ZR). Thus

Z? :=
∂

∂s

〈
exp(sG) exp

(∑
m>1

pm
m
α−m

)〉

=

〈
exp(sG)G exp

(∑
m>1

pm
m
α−m

)〉

=

〈
exp(sG)

(
~
6

∑
i+j+k=2

: αiαjαk : +
∑
i>1

α−iα2+i +
1

2
α2

1 +
1

2~
α2

)
exp

(∑
m>1

pm
m
α−m

)〉

=

(
~
2

∑
i,j>1

(i+ j − 2)pipj
∂

∂pi+j−2
+ ijpi+j+2

∂2

∂pi∂pj
+
∑
i>1

ipi+2
∂

∂pi
+

1

2
p2

1 +
1

2~
p2

)
Z?

= GZ?,
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where the penultimate equality has applied Lemma 7.2.4. Hence, Z? satisfies ∂
∂sZ

? = GZ?. Given that ZR

also satisfies ∂
∂sZ

R = GZR, uniqueness of solutions guarantees that, up to multiplicative constant (in s),
they are both equal to exp(sG) · 1.

The s0 coe�cient of ZR is 1 by definition, therefore,

ZR(~p; ~) =
Z?

Z?|s=0
=

〈
exp(sG) exp

(∑
m>1

pm
m α−m

)〉
〈

exp
(∑

m>1
pm
m α−m

)〉 =
〈

exp(sG) exp
( ∑
m>1

pm
m
α−m

)〉
,

as required. �

Next, use the vacuum expectation for ribbon graphs to derive a vacuum expectation for the partition function
for ordinary maps. First, define the partition function for ordinary maps to be

ZM (~p; ~) = exp

(∑
n>1

∑
g>0

∑
µ1,...,µn>1

M◦g,n(µ1, . . . , µn)
~2g−2+n

n!
~pµ

)
. (7.19)

And again recall that the definition of Mg,n(µ1, . . . , µn) includes the s-parameter which tracks the number
of edges.

Proposition 7.3.3. The partition function for ordinary maps is given by the following vacuum expectation in the
semi-in�nite wedge:

ZM (~p; ~) =

〈
exp(sG) exp

(∑
m>1

tm
m ~

α−m

)
exp

(∑
m>1

pm
m
α−m

)〉
.

Here, the operator G is de�ned in De�nition 7.2.7, while the bosonic operators, α±m, are de�ned in De�nition 1.3.4.

Proof. Let Map(∅) be the enumeration of ordinary maps from Definition 7.2.1 but with no boundary faces.
Observe that

Map(∅) = ZR
( ~t
~ ; ~
)

= ZR
( t1
~
,
t2
~
,
t3
~
, . . . ; ~

)
.

To prove this, I will compare the two generating functions and show that they are equal. Intuitively, the
mechanism behind this equality is the fact that an ordinary map with no boundary faces can equivalently
be thought of as a ribbon graph, where one considers the internal faces of the ordinary map to be the
boundary faces of the ribbon graph. And, in this case, the above equality is also stating that the two
generating functions Map(∅) and ZR

( ~t
~ ; ~
)
are enumerating these same objects in the same way.

Let M(µ1, . . . , µn) be the set of (isomorphism classes of) possibly disconnected ordinary maps with n

boundary faces, where the degree of boundary face i is µi. Then,

Map(∅) =
∑

M∈M(∅)

~2g−2 se(M)

|Aut M |
t
f1(M)
1 t

f2(M)
2 t

f3(M)
3 · · · ,

where g is the genus of the underlying surface, fi(M) is the number of internal faces of degree i, and |AutM |
is the number of automorphisms of M . As reasoned above, this enumerates ribbon graphs, where the sum
is varying over all genus, number of (boundary) faces, and the degrees of faces. I can instead write this as
a sum over these variables instead. Doing this yields

Map(∅) =
∑
µ∈P

∑
g∈Z

R•g,n(µ1, . . . , µn)
~2g−2

|Aut µ|
tµ1
· · · tµn ,

where P is the set of all partitions, including the empty partition. Recall, from Definition 3.2.10 that
R•g,n(µ1, . . . , µn) is the weighted enumeration of possibly disconnected ribbon graphs with n faces such that
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the degree of boundary face i is µi, and the weight of a ribbon graph R is s|µ|/2

|Aut R| . It remains to observe
that for an ordinary map with no boundary faces M corresponding to a ribbon graph R,

|Aut M | = |Aut R| · |Aut µ|.

This is because, for an ordinary map with no boundary faces and n internal faces with degrees µ1, . . . , µn,
there are |Aut µ| unique ways to label the n faces 1, . . . , n to yield the corresponding ribbon graph with n
boundary faces. (Recall that internal faces are not labelled, while boundary faces are.)

And hence,

Map(∅) = 1 +
∑
n>1

∑
g∈Z

∑
µ1,...,µn>1

R•g,n(µ1, . . . , µn)
~2g−2

n!
tµ1 · · · tµn

= 1 +
∑
n>1

∑
g∈Z

∑
µ1,...,µn>1

R•g,n(µ1, . . . , µn)
~2g−2+n

n!

tµ1

~
· · · tµn

~

= ZR
( ~t
~ ; ~
)
.

In the first equality, the leading 1 outside the summations corresponds to the empty map, and the factor of
1/n! arises because the sum is over µ1, . . . , µn as a tuple rather than µ ∈ P as a partition and each tuple
arises n!/|Aut µ| times. Next observe that

Map(µ1, . . . , µn) =

[
n∏
i=1

~
∂

∂tµi

]
Map(∅).

This is a combinatorial statement which can be reasoned thus. From an ordinary map with no boundary
faces, one can obtain an ordinary map with n boundary faces by choosing n of the internal faces and
labelling them 1, 2, . . . , n. Thus, in the expression above, we can obtain the generating function for all maps
with n boundary faces such that the degree the boundary face labelled i has degree µi from the generating
function for ordinary maps with no boundary faces by converting n internal faces with degrees µ1, . . . , µn
into boundary faces — this is being done by the product of di�erential operators

∏n
i=1

∂
∂µi

— and labelling
them accordingly, noting that the labelling is given by µ1, . . . , µn.

To prove this statement, it is required to prove that the resultant map obtained from this procedure carries
the precise weight with which it would appear in the generating function Map(µ1, . . . , µn). Or equivalently,
we are proving that the coe�cients of the two power series are equal.

To do this, begin with a map M ∈M(∅) with weight

~2g−2 se(M)

|Aut M |
t
f1(M)
1 t

f2(M)
2 t

f3(M)
3 · · · ,

and call the resulting map after converting n internal faces to n boundary faces M ; the weight of M in
Map(µ1, . . . , µn) is

~2g′−2+n se(M)

|Aut M |
t
f1(M)
1 t

f2(M)
2 t

f3(M)
3 · · · ,

Observe that this combinatorial procedure preserves the genus as well as the number of edges of the map,
hence g′ = g(M) = g(M) = g, and e(M) = e(M). Further, the operator

∏n
i=1 ~

∂
∂tµi

increases the power of

~ for each boundary face introduced. The number and degrees of the internal faces ofM is precisely given
by the resulting t-monomial after applying

∏n
i=1 ~

∂
∂tµi

to t
f1(M)
1 t

f2(M)
2 t

f3(M)
3 · · · , while the weight from

applying this di�erential operator combines with the number of automorphisms of M to give the number
of automorphisms of M . That is, if we write µ = (µ1, . . . , µn) alternatively as µ = (1k1 , 2k2 , 3k3 , . . .) where
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ki is a non-negative integer for all i, then[
n∏
i=1

∂

∂tµi

]
t
f1(M)
1 t

f2(M)
2 t

f3(M)
3 · · ·

=

[
∂k1

∂tk11

∂k2

∂tk22

∂k3

∂tk33

· · ·

]
t
f1(M)
1 t

f2(M)
2 t

f3(M)
3 · · ·

=
f1(M)!

(f1(M)− k1)!
t
f1(M)−k1
1

f2(M)!

(f2(M)− k2)!
t
f2(M)−k2
2

f3(M)!

(f3(M)− k3)!
t
f3(M)−k3
3 · · ·

=
f1(M)!

(f1(M)− k1)!
t
f1(M)
1

f2(M)!

(f2(M)− k2)!
t
f2(M)
2

f3(M)!

(f3(M)− k3)!
t
f3(M)
3 · · · .

It remains to observe that

1

|Aut M |
f1(M)!

(f1(M)− k1)!

f2(M)!

(f2(M)− k2)!

f3(M)!

(f3(M)− k3)!
· · · = 1

|Aut M |
.

This is because fi(M)!/(fi(M) − ki)! is precisely the number of ways to choose ki faces of degree i to
convert from internal faces to boundary faces where the ordering of the resulting boundary faces matters
because di�erent labellings of these ki boundary faces gives rise to di�erent ordinary maps M . Loosely,
if M has fi(M) internal faces of degree i then |Aut M | will include a factor of fi(M)!, while M now has
(fi(M)− ki) internal faces of degree i and hence |Aut M | ought to include a factor of (fi(M)− ki)!.

Combining these observations, I can conclude[
n∏
i=1

~
∂

∂tµi

]
~2g−2 se(M)/2

|Aut M |
t
f1(M)
1 t

f2(M)
2 t

f3(M)
3 · · · = ~2g′−2+n se(M)/2

|Aut M |
t
f1(M)
1 t

f2(M)
2 t

f3(M)
3 · · · ,

as required.

Therefore,

Map(µ1, . . . , µn) =

[
n∏
i=1

~
∂

∂tµi

]
Map(∅) =

[
n∏
i=1

~
∂

∂tµi

]
ZR(~t/~)

=

[
n∏
i=1

~
∂

∂tµi

]〈
exp(sG) exp

( ∑
m>1

pm
m
α−m

)〉
=
〈

exp(sG) exp
( ∑
m>1

tm
m ~

α−m

)α−µ1

µ1
· · · α−µn

µn

〉
. (7.20)

On the other hand, by the definition of the partition function for ordinary maps (7.19), we have

ZM (~p; ~) = 1 +
∑
n>1

∑
g∈Z

∑
µ1,...,µn>1

1

n!
M•g,n(µ1, . . . , µn)h2g−2+n ~pµ

= 1 +
∑
n>1

∑
µ1,...,µn>1

1

n!
Map(µ1, . . . , µn) ~pµ

= 1 +
∑
n>1

∑
µ1,...,µn>1

1

n!

〈
exp(sG) exp

( ∑
m>1

tm
m ~

α−m

)α−µ1

µ1
· · · α−µn

µn

〉
~pµ

=

〈
exp(sG) exp

(∑
m>1

tm
m ~

α−m

)
exp

(∑
m>1

pm
m
α−m

)〉
.

The third equality is using (7.20) above, while the final equality is using the following:

exp
( ∑
m>1

pm
m
α−m

)
=
∏
m>1

∑
km>0

pkmm
mkm km!

αkm−m =
∑

λ=(1k1 ,2k2 ,...)

pλ1 · · · pλ`(λ)∏`(λ)
m=1 λm |Aut λ|

`(λ)∏
m=1

α−λm

= 1 +
∑
n>1

∑
µ1,...,µn>1

1

n!

α−µ1

µ1
· · · α−µn

µn
~pµ.

(7.21)
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The first equality includes in the sum the empty partition λ = ∅, and this corresponds to the leading 1 in
the final line (denoting the identity operator). Further, in the final expression, the 1/n! arises because the
inner sum is over µ1, . . . , µn as a tuple (rather than a partition), and each tuple arises n!/|Aut λ| times. �

7.3.2 Partition function for fully simple maps

Define the partition function for fully simple maps to be

ZF (~p; ~) = exp

(∑
n>1

∑
g>0

∑
µ1,...,µn>1

FS◦g,n(µ1, . . . , µn)
~2g−2+n

n!
~pµ

)
. (7.22)

Also, define a diagonal operator, denoted H, acting on the semi-infinite wedge by the following action on
basis elements:

Hvλ =
∏
�∈λ

1

1 + c(�)~
vλ. (7.23)

The product is over all boxes in the Young diagram corresponding to λ while c(�) is the content of the
box. Recall that, when considering a Young diagram corresponding to a partition λ, the content of a box
in column j and row i is j − i.

Theorem 7.3.4. The partition function for fully simple maps ZF is given by the following vacuum expectation in
the semi-in�nite wedge space:

ZF (~p; ~) =

〈
exp(sG) exp

(∑
m>1

tm
m ~

α−m

)
H exp

(∑
m>1

pm
m
α−m

)〉
.

The bosonic operators α±m are de�ned in De�nition 1.3.4 while the de�nition of H is given in equation (7.23) above.

Proof. First, for the ease of the reader, let me use the following shorthand notations: αλ = αλ1 · · ·αλ` , and

Γ−(~t/~) = exp
( ∑
m>1

tm
m ~

α−m

)
,

where the latter uses the Γ± notation of the vertex operator defined in Chapter 1.

Begin with the partition function for fully simple maps (7.22), rewrite it as a sum over partitions of dis-
connected fully simple maps, and apply the relation between maps and fully simple maps (Theorem 7.2.3),
specifically, apply equation (7.7) that writes the generating function for fully simple maps in terms of the
generating functions for ordinary maps and weakly monotone Hurwitz numbers. Doing so gives

ZF (~p; ~) = 1 +
∑
n>1

∑
g∈Z

∑
µ1,...,µn>1

1

n!
FS•g,n(µ1, . . . , µn) ~2g−2+n~pµ

= 1 +
∑
n>1

∑
µ1,...,µn>1

1

n!
FSMap(µ1, . . . , µn) ~pµ

=
∑
µ∈P

1

z(µ)
µ1 · · ·µnFSMap(µ1, . . . , µn) ~pµ

=
∑
µ∈P

∑
λ`|µ|

H6(µ;λ)
∣∣
~ 7→−~ λ1 · · ·λ`Map(λ1, . . . , λ`)

 ~pµ

=
∑
µ∈P

∑
λ`|µ|

∑
ρ`|µ|

χρµ χ
ρ
λ

z(µ)z(λ)

∏
�∈ρ

1

1 + c(�)~

〈
exp(sG)Γ−(~t/~)α−λ

〉 ~pµ.

Here, P denotes the set of all partitions, including the empty partition. The last equation has used the
character formula for weakly monotone Hurwitz numbers (7.4) as well as the vacuum expectation for
Map(λ1, . . . , λ`) given in equation (7.20).
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Next use the Murnaghan–Nakayama rule (Theorem 1.4.3):

αλv∅ =
∑
ν`|λ|

χνλvν ,

as well as the orthogonality of characters, which in the context of symmetric groups is

δρ,ν =
1

|Sd|
∑
σ∈Sd

χρσ χ
ν
σ =

1

|Sd|
∑
λ`d

χρλ χ
ν
λ

|Sd|
z(λ)

=
∑
λ`d

χρλ χ
ν
λ

z(λ)
.

The second equality here rewrites the sum over permutations in Sd as a sum over partitions of d and, to
each term, adds the weight of the number of elements in the conjugacy class corresponding to that partition.
That is, for each λ ` d, the size of the conjugacy class corresponding to λ is

|Cλ| =
d!

|Aut λ
∏`(λ)
i=1 λi

=
|Sd|
z(λ)

,

where z(λ) is defined in (7.5).

Applying these results to ZF (~p; ~) yields

ZF (~p; ~) =
∑
µ∈P

∑
λ`|µ|

∑
ρ`|µ|

χρλ χ
ρ
µ

z(λ)z(µ)

∏
�∈ρ

1

1 + c(�)~

〈
exp(sG) Γ−(~t/~)

∑
ν`|λ|

χνλvν , v∅

〉 ~pµ

=
∑
µ∈P

∑
ρ`|µ|

χρµ
z(µ)

∏
�∈ρ

1

1 + c(�)~

〈
exp(sG) Γ−(~t/~)

∑
ν`|λ|

( ∑
λ`|µ|

χρλ χ
ν
λ

z(λ)

)
vν , v∅

〉 ~pµ

=
∑
µ∈P

∑
ρ`|µ|

χρµ
z(µ)

〈
exp(sG) Γ−(~t/~)H

∑
ν`|λ|

δρ,νvν , v∅

〉 ~pµ.

The last equality has also used the definition of H. Use the Murnaghan–Nakayama rule once more, and
rewrite the sum over partitions µ as a sum over tuples to obtain

ZF (~p; ~) =
∑
ρ∈P

〈
exp(sG) exp

( ∑
m>1

tm
m ~

α−m

)
H
∑
µ`|ρ|

χρµ
z(µ)

vρ, v∅

〉
~pµ

=
∑
µ∈P

1

z(µ)

〈
exp(sG) exp

( ∑
m>1

tm
m ~

α−m

)
H
∑
ρ`|µ|

χρµvρ, v∅

〉
~pµ

= 1 +
∑
n>1

∑
µ1,...,µn

1

n!

〈
exp(sG) exp

( ∑
m>1

tm
m ~

α−m

)
H α−µ1

µ1
· · · α−µn

µn

〉
~pµ

=
〈

exp(sG) exp
( ∑
m>1

tm
m ~

α−m

)
H exp

( ∑
m>1

pm
m
α−m

)〉
,

as announced. The penultimate equality is using the fact that the inner sum is over µ1, . . . , µn as a tuple
and each tuple arises n!/|Aut µ| times. The final equality is using (7.21). �

7.4 Virasoro constraints

7.4.1 Virasoro constraints for ordinary maps

My starting point for deriving the Virasoro constraints for fully simple maps is the Virasoro constraints for
ordinary maps (Theorem 7.4.2 below, first proven by Eynard [45]). Out of interest, I will also include a proof
of the derivation of the Virasoro constraints for ordinary maps, which are in turn derived from the Tutte
recursion (Theorem 7.4.1 below, also first proven by Eynard [45]). The fact that the Virasoro operators for
ordinary maps VM satisfy the commutation relation [VMn , VMm ] = (n−m)VMn+m I leave as an exercise.



126 7. Fully simple maps

Theorem 7.4.1 (Eynard [45, Equation (1.3.2)]). For all g > 0, n > 1 and µ1, . . . , µn such that µ1+· · ·+µn > 2,
connected ordinary maps satisfy the following recursion:

µ1

s
M◦g,n(µ1, . . . , µn) =

n∑
j=2

(µ1+µj−2)M◦g,n−1(µ1+µj−2, ~µS\{j})+
∑
j>1

tj(µ1+j−2)M◦g,n(µ1+j−2, ~µS)

+2(µ1−2)M◦g,n(µ1−2, ~µS)+
∑

i+j=µ1−2

ij

[
M◦g−1,n+1(i, j, ~µS)+

∑
g1+g2=g
ItJ=S

M◦g1,|I|+1(i, ~µI) M◦g2,|J|+1(j, ~µJ)

]
.

(7.24)

Here, S = {2, . . . , n} and the notation ~µI denotes µi1 , . . . , µik for I = {i1, . . . , ik}.

Theorem 7.4.2 (Eynard [45, Proposition 2.6.2]). For all n > −1, the di�erential operator

VMn =
∑
i>1

(i+n)(~pi + ti)
∂

∂pi+n
+ ~

∑
i+j=n

ij
∂2

∂pi∂pj
+ 2n

∂

∂pn
+ δn,−1

(
p1 +

t1
~

)
+

1

~
δn,0−

1

s
(n+ 2)

∂

∂pn+2

annihilates the partition function for ribbon graphs; that is,

VMn ZM (~p; ~) = 0.

Proposition 7.4.3 (Eynard [45, Proposition 2.6.2]). For all n > −1, the di�erential operator

VMn =
∑
i>1

(i+n)(~pi + ti)
∂

∂pi+n
+ ~

∑
i+j=n

ij
∂2

∂pi∂pj
+ 2n

∂

∂pn
+ δn,−1

(
p1 +

t1
~

)
+

1

~
δn,0−

1

s
(n+ 2)

∂

∂pn+2

satisfy the commutation relation [VMn , VMm ] = (n−m)VMn+m.

I include a quick proof of Theorem 7.4.2.

Proof of Theorem 7.4.2. The Virasoro constraints are a reformulation of the Tutte recursion for ordinary maps.
To derive the former from the latter, we multiply each term in the Tutte recursion by

pµ2 · · · pµn ~2g−2+n

(n− 1)!
(∗)

then sum over all possible values of n > 1, g > 0 and µ2, . . . , µn > 1. Denote by O the application of this
operator—that is, multiplying by (∗) and summing over all µ2, . . . , µn > 1. Note that I am summing over
all n > 1 and µ1 + · · · + µn > 1 but the recursion in Theorem 7.4.1 is only valid for µ1 + · · · + µn > 2.
This can be fixed by manually adding a finite number of correction terms to the recursion for the base cases
~µ ∈ {(1), (2), (1, 1)}. The correction terms in these three cases are t1, 1, and 1 respectively, therefore the
recursion becomes

µ1

s
M◦g,n(µ1, . . . , µn) =

n∑
j=2

(µ1+µj−2)M◦g,n−1(µ1+µj−2, ~µS\{j})+
∑
j>1

tj(µ1+j−2)M◦g,n(µ1+j−2, ~µS)

+ 2(µ1 − 2)M◦g,n(µ1 − 2, ~µS) +
∑

i+j=µ1−2

ij

[
M◦g−1,n+1(i, j, ~µS) +

∑
g1+g2=g
ItJ=S

Mg1,|I|+1(i, ~µI) Mg2,|J|+1(j, ~µJ)

]

+ δg,0δn,1δµ1,1t1 + δg,0δn,1δµ1,2 + δg,0δn,2δµ1,1δµ2,1.

Now fix µ1 and apply the operator O described above. The term on the left side becomes∑
n>1

∑
g>0

∑
µ2,...,µn>1

µ1

s
M◦g,n(µ1, . . . , µn)

pµ2
· · · pµn ~2g−2+n

(n− 1)!

=
µ1

s

∂

∂pµ1

∑
n>1

∑
g>0

∑
µ′1,...,µn>1

M◦g,n(µ′1, . . . , µn)
pµ′1pµ2

· · · pµn ~2g−2+n

n!

=
µ1

s

∂F

∂pµ1

, (4)
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where F (~p; ~) is the following generating function of connected objects, typically called the free energy:

F (~p; ~) =
∑
n>1

∑
g>0

∑
µ′1,...,µn>1

M◦g,n(µ′1, . . . , µn)
pµ′1pµ2 · · · pµn ~2g−2+n

n!
.

Also, recall that exponentiating the connected enumeration yields the disconnected one. That is, ZM =

expF .

Applying O to the first term on the right side yields

∑
n>2

∑
g>0

∑
µ2,...,µn>1

n∑
j=2

(µ1 + µj − 2)M◦g,n−1(µ1 + µj − 2, ~µS\{j})
pµ2 · · · pµn ~2g−2+n

(n− 1)!

=
∑
i>1

∑
n>2

∑
g>0

∑
µ2,...,µ̂j ,...,µn>1

pi(µ1 + i− 2)M◦g,n−1(µ1 + i− 2, ~µS\{j})
pµ2
· · · p̂µj · · · pµn~2g−2+n

(n− 2)!

= ~
∑
i>1

pi(µ1 + i− 2)
∂

∂pµ1+i−2

∑
n>2

∑
g>0

∑
µ′1,...,µ

′
n−1>1

M◦g,n−1(µ′1, . . . , µ
′
n−1)

pµ′1 · · · pµ′n−1
~2g−2+(n−1)

(n− 2)!

= ~
∑
i>1

pi(µ1 + i− 2)
∂F

∂pµ1+i−2
. (4)

Similarly, the second term on the right becomes

∑
n>2

∑
g>0

∑
µ2,...,µn>1

∑
j>1

tj(µ1 + j − 2)M◦g,n−1(µ1 + j − 2, ~µS)
pµ2
· · · pµn ~2g−2+n

(n− 1)!

=
∑
i>1

tj(µ1 + j − 2)
∂F

∂pµ1+j−2
. (4)

Applying the operator to the term 2(µ1 − 2)M◦g,n(µ1 − 2, ~µS) gives∑
n>2

∑
g>0

∑
µ2,...,µn>1

2(µ1 − 2)M◦g,n(µ1 − 2, ~µS)
pµ2 · · · pµn ~2g−2+n

(n− 1)!
= 2(µ1 − 2)

∂F

∂pµ1−2
, (4)

while the subsequent two terms become

~
∑

i+j=µ1−2

ij
∂2F

∂pi∂pj
, and ~

∑
i+j=µ1−2

ij
∂F

∂pi

∂F

∂pj
, (4)

respectively. And the final three terms corresponding to the base cases become

t1
~
δµ1,1,

1

~
δµ1,2, p1δµ1,1 (4)

respectively. Collect all terms labelled 4, relabel µ1 7→ n+ 2 and multiply throughout by expF . Note that

∂F

∂x
expF =

∂

∂x
(expF ) =

∂ZM

∂x
,

in which case, we obtain

n+ 2

s

∂ZM

∂pn+2
=
∑
i>1

(~pi + ti)(n+ i)
∂ZM

∂pn+i
+ 2n

∂ZM

∂pn

+ ~
∑
i+j=n

ij
∂2ZM

∂pi∂pj
+
(
p1 +

t1
~

)
δn,−1Z

M +
1

~
δn,0Z

M .

The first term on the second line is using the fact that

∂2

∂pi∂pj
(expF ) =

∂

∂pi

(∂F
∂pi

expF
)

=

(
∂2F

∂pi∂pj
+
∂F

∂pi

∂F

∂pj

)
expF.
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Defining

VMn :=
∑
i>1

(i+n)(~pi+ ti)
∂

∂pi+n
+~

∑
i+j=n

ij
∂2

∂pi∂pj
+ 2n

∂

∂pn
+ δn,−1

(
p1 +

t1
~

)
+

1

~
δn,0−

1

s
(n+ 2)

∂

∂pn+2

for n > −1, it follows that VMn ZM = 0. �

7.4.2 Conjugation results

I will now prove a key conjugation result that will be needed to derive the Virasoro constraints for fully
simple maps. For context, my overarching approach to deriving the Virasoro operator V Fn for fully simple
is by conjugating the Virasoro operator for ordinary maps by the operator H. This will be more explicit in
the next section, but nevertheless, my intermediate goal is to derive conjugations of the operators αn and
Kn by H. First, I obtain a result writing these conjugations in terms of the fermionic operators ψ,ψ∗, then
use results stated by Kramer, Lewański, and Shadrin [77] to translate the conjugated operators into bosonic
form.

First, begin with the following lemma.

Lemma 7.4.4. For all positive integers n,

H−1αnH =
∑

k∈Z+ 1
2

n∏
i=1

1

1 + (k − i+ 1
2 )~

: ψk−nψ
∗
k :, (7.25)

H−1KnH =
∑

k∈Z+ 1
2

(
k + n

2

) n∏
i=1

1

1 + (k − i+ 1
2 )~

: ψk−nψ
∗
k : . (7.26)

and

H−1α−nH =
∑

k∈Z+ 1
2

n∏
i=1

(1 + (k + i− 1
2 )~) : ψk+nψ

∗
k :, (7.27)

H−1K−nH =
∑

k∈Z+ 1
2

(
k − n

2

) n∏
i=1

(1 + (k + i− 1
2 )~) : ψk+nψ

∗
k : . (7.28)

The bosonic operators α±k are de�ned in De�nition 1.3.4 the operatorKn is de�ned in De�nition 7.2.5, equation (7.9),
while the fermionic operators ψi, ψ∗j are de�ned in De�nition 1.3.1.

Proof. Begin with H−1αnH (7.25), and first consider the case where n is a positive integer. Looking at the
action of this operator on a basis vector vλ leads to the following argument:

H−1αnH vλ =
∏
�∈λ

1

1 + c(�)~
H−1αnvλ =

∏
�∈λ

1

1 + c(�)~
H−1

∑
ρ=λ−

sgn(λ \ λ−) vρ

=
∏
�∈λ

1

1 + c(�)~
∑
ρ=λ−

sgn(λ \ λ−)
∏
�∈ρ

(1 + c(�)~)vρ =
∑
ρ=λ−

sgn(λ \ λ−)
∏
�∈λ\ρ

1

1 + c(�)~
vρ.

The sums over ρ = λ− are over all Young diagrams ρ that can be obtained from λ by removing an n-ribbon,
and sgn(λ\λ−) is equal to the parity of the height of the n-ribbon that was removed less one (the usual sign
introduced by the action of the α-operators). Thus, for n positive, H−1αnH acts by removing all possible
n-ribbons and for each contribution, dividing by (1 + c(�)~) for each box in the removed ribbon. Writing
this action in terms of the fermionic operators yields the desired expression (7.25).

For n negative this works analogously; that is, the operator acts by summing over all the ways to add an
n-ribbon and in each case multiplying by the product of (1 + c(�)~) for each box in the ribbon added.

For H−1KnH, use (7.10) with n 6= 0,
Kn = [z] En(z),
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and consider

H−1KnH = [z]H−1En(z)H = [z]H−1
∑

k∈Z+
1
2

ez(k−
n
2 ) : ψk−nψ

∗
k : H

= H−1
∑

k∈Z+
1
2

(
k − n

2

)
: ψk−nψ

∗
k : H.

Use the above reasoning for H−1αnH to conclude. �

The goal now is to write these conjugated operators in bosonic form. For this we use the following two
results that appear in Kramer, Lewański, and Shadrin [77].

Lemma 7.4.5 (Kramer, Lewański, and Shadrin [77, Lemma 3.4]). If the variables in a symmetric polynomial
are all o�set by the same amount, they can be re-expressed as a linear combination of non-o�set symmetric polynomials
as follows:

hm(x1 +A, . . . , xn +A) =

m∑
i=0

(
m+ n− 1

i

)
hm−i(x1, . . . , xn)Ai

em(x1 +A, . . . , xn +A) =

m∑
i=0

(
n+ i−m

i

)
em−i(x1, . . . , xn)Ai.

(7.29)

Here, h and e are the elementary and homogeneous symmetric polynomials respectively.

The elementary and homogeneous symmetric polynomials when evaluated at integers have nice descriptions
in terms of the first and second kind of Stirling numbers respectively. Recall that the (unsigned) Stirling
number of the �rst kind

[
n
k

]
is the number of permutations of {1, 2, . . . , n} which have exactly k cycles, while

the Stirling number of the second kind
{
n
k

}
is the number of set partitions of {1, 2, . . . , n} into k parts. Then,

the elementary and symmetric polynomials evaluated at integers have the following descriptions:

ev(1, 2, . . . , t− 1) =

[
t

t− v

]
hv(1, 2, . . . , t) =

{
t+ v

t

}
.

(7.30)

For a thorough discourse on symmetric functions, see the book of Macdonald [81]. The second result from
Kramer, Lewański, and Shadrin [77] that I require is the following.

Lemma 7.4.6 (Kramer, Lewański, and Shadrin [77, Lemma 3.6]). We have[
j

t

]
= [yj−t]

(j − 1)!

(t− 1)!
S(y)−jeyj/2, and

{
j

t

}
= [yj−t]

j!

t!
S(y)teyt/2. (7.31)

Here, S(z) = ς(z)
z = ez/2−e−z/2

z .

I can now write the conjugated operators H−1αnH and H−1KnH in terms of bosonic operators, or, more
precisely, in terms of the operator E .

Lemma 7.4.7. For all positive integers n,

H−1α−nH =

n∑
m=0

n! ~m

(n−m)!
[zm]S(z)−n−1E−n(z)

H−1K−nH =

n∑
m=0

n! ~m

(n−m)!
[zm]S(z)−n−1 ∂

∂z
E−n(z),
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and

H−1αnH =

∞∑
m=0

(n+m− 1)! (−~)m

(n−m)!
[zm]S(z)n−1En(z)

H−1KnH =

∞∑
m=0

(n+m− 1)! (−~)m

(n−m)!
[zm]S(z)n−1 ∂

∂z
En(z).

Here, the bosonic operators α±k are de�ned in De�nition 1.3.4 the operators Kn and En(z) are de�ned in De�ni-
tion 7.2.5 and De�nition 1.3.6 respectively, and S(z) = ς(z)

z = ez/2−e−z/2
z .

Proof. Begin with (7.27) from Lemma 7.4.4 for H−1α−nH and rewrite it in terms of elementary symmetric
polynomials. Doing so gives

H−1α−nH =
∑

k∈Z+ 1
2

n∏
i=1

(1 + (k + i− 1
2 )~) : ψk+nψ

∗
k :

=
∑

k∈Z+ 1
2

n∑
m=0

em(k + 1
2 , k + 3

2 , . . . , k + n− 1
2 )~m : ψk+nψ

∗
k : .

Apply the result of Lemma 7.4.5 for elementary symmetric polynomials, followed by the expression for
em(x1, . . . , xn) in terms of Stirling numbers of the first kind (7.30), then the result in Lemma 7.4.6. We
obtain

em(k + 1
2 , k + 3

2 , . . . , k + n− 1
2 ) =

m∑
i=1

(
n+ i−m

i

)
em−i(1, . . . , n)

(
k − 1

2

)i
=

m∑
i=1

(
n+ i−m

i

)[
n+ 1

n+ 1−m+ i

](
k − 1

2

)i
=

m∑
i=1

(
n+ i−m

i

)
[ym−i]

n!

(n−m+ i)!
S(y)−n−1ey(n+1)/2

(
k − 1

2

)i
.

Substitute this result back into the expression for H−1α−nH and rewrite in the following way to obtain

H−1α−nH

=
∑

k∈Z+ 1
2

n∑
m=0

m∑
i=1

(
n+ i−m

i

)
[ym−i]

n!

(n−m+ i)!
S(y)−n−1ey(n+1)/2

(
k − 1

2

)i
~m : ψk+nψ

∗
k :

=
∑

k∈Z+ 1
2

n∑
m=0

m∑
i=1

(n+ i−m)!

(n−m)! i!
[ym−i]

n!

(n−m+ i)!
S(y)−n−1ey(n+1)/2 [zi]i!ez(k−

1
2 )~m : ψk+nψ

∗
k :

=
∑

k∈Z+ 1
2

n∑
m=0

m∑
i=1

n! ~m

(n−m)!
[ym−i]S(y)−n−1ey(n+1)/2 [zi]ez(k−

1
2 ) : ψk+nψ

∗
k :

=
∑

k∈Z+ 1
2

n∑
m=0

n! ~m

(n−m)!
[zm]S(z)−n−1ez(k+n

2 ) : ψk+nψ
∗
k :

=

n∑
m=0

n! ~m

(n−m)!
[zm]S(z)−n−1E−n(z),

as announced. The second equality is using the fact that ez =
∑
i>0

zi

i! , the third equality is merely simpli-
fying, and the fourth equality is using [zm]f(z)g(z) =

∑m
i=0[zm−i]f(z) [zi]g(z).
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Beginning with (7.28) and following an identical calculation for H−1K−nH yields

H−1K−nH =

n∑
m=0

n! ~m

(n−m)!
[zm]S(z)−n−1

∑
k∈Z+ 1

2

(
k +

n

2

)
ez(k+n

2 ) : ψk+nψ
∗
k :

=

n∑
m=0

n! ~m

(n−m)!
[zm]S(z)−n−1 ∂

∂z
E−n(z),

as required. For H−1αnH, we follow a very similar process as with H−1α−nH. Expressing equation (7.25)
in terms of the homogeneous symmetric functions gives

H−1αnH =
∑

k∈Z+ 1
2

n∏
i=1

1

1 + (k − i+ 1
2 )~

: ψk−nψ
∗
k :

=
∑

k∈Z+ 1
2

∑
m>0

hm(k − 1
2 , k −

3
2 , . . . , k − n+ 1

2 )(−~)m : ψk−nψ
∗
k :

=
∑

k∈Z+ 1
2

∑
m>0

hm(k + 1
2 , k + 3

2 , . . . , k + n− 1
2 )(−~)m : ψkψ

∗
k+n :,

where the last line has applied the relabelling k 7→ k + n. Again, apply the result of Lemma 7.4.5 along
with equation (7.30), this time in the case of homogeneous symmetric functions. This gives

hm(k + 1
2 , k + 3

2 , . . . , k + n− 1
2 ) =

m∑
i=0

(
m+ n− 1

i

)
hm−i(0, 1, . . . , n− 1)

(
k +

1

2

)i
=

m∑
i=0

(
m+ n− 1

i

){
n− 1 +m− i

n− 1

}(
k +

1

2

)i
=

m∑
i=0

(m+ n− 1)!

i! (n− 1)!
[ym−i]S(y)n−1ey(n−1)/2

(
k +

1

2

)i
.

Reinserting this expression into H−1αnH and utilising the same tricks as in the case of H−1α−nH above
yields

H−1αnH

=
∑

k∈Z+ 1
2

∑
m>0

m∑
i=0

(m+ n− 1)!

i! (n− 1)!
[ym−i]S(y)n−1ey(n−1)/2

(
k +

1

2

)i
(−~)m : ψkψ

∗
k+n :

=
∑

k∈Z+ 1
2

∑
m>0

m∑
i=0

(m+ n− 1)!

(n− 1)!
[ym−i]S(y)n−1ey(n−1)/2 [zi]ez

(
k+ 1

2

)
(−~)m : ψkψ

∗
k+n :

=
∑

k∈Z+ 1
2

∑
m>0

(m+ n− 1)! (−~)m

(n− 1)!
[zm]S(z)n−1ez

(
k+n

2

)
: ψkψ

∗
k+n :

=
∑
m>0

(m+ n− 1)! (−~)m

(n− 1)!
[zm]S(z)n−1En(z).

The result for H−1KnH is now immediate. �

7.4.3 Virasoro constraints for fully simple maps

I am now equipped to derive a sequence of Virasoro operators for fully simple maps. The overarching idea
to obtain said operators is by conjugating the Virasoro operators for ordinary maps by the operatorH. That
is, the Virasoro operators for fully simple maps will be obtained by conjugating VMn by H. First, define

Ên(z) :=
1

ς(z)

∑
`,s>0
q>0

1

`! s!

[ ∑
i1+···+is=q

ik>1

s∏
k=1

ς(ikz)

ik
pik

][ ∑
j1+···+j`=q+n

jk>1

∏̀
k=1

ς(jkz)
∂

∂pjk

]
. (7.32)
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This operator is the counterpart to En(z) via Lemma 7.2.4. Note that, while the di�erential counterparts to
calligraphic operators acting on the semi-infinite wedge are usually denoted by straight letters throughout
this chapter, I adopt an alternate notation here to forsake any possible ambiguity.

Theorem 7.4.8. The di�erential operators

V Fn = ~
n∑

m=0

n! ~m

(n−m)!
[zm]S(z)−n−1 ∂

∂z
Ê−n(z) +

∑
i>1

ti

n+i∑
m=0

(n+ i)! ~m

(n+ i−m)!
[zm]S(z)−n−i−1Ê−n−i(z)

+
~
2

∑
i+j=n

(
i∑

m=0

i! ~m

(i−m)!
[zm]S(z)−i−1Ê−i(z)

)(
j∑

m=0

j! ~m

(j −m)!
[zm]S(z)−j−1Ê−j(z)

)

+ 2

n∑
m=0

n! ~m

(n−m)!
[zm]S(z)−n−1Ê−n(z)− 1

s

n+2∑
m=0

(n+ 2)! ~m

(n+ 2−m)!
[zm]S(z)−n−3Ê−n−2(z) (7.33)

for n > 1 and

V F−1 = ~
∑
m>0

m! (−~)m

(1−m)!
[zm]

∂

∂z
Ê1(z) +

∑
i>2

ti

i−1∑
m=0

(i− 1)! ~m

(i− 1−m)!
[zm]S(z)−iÊ1−i(z)

+
∑
m>0

m! (−~)m

(1−m)!
[zm]Ê1(z) +

t1
~
− 1

s

1∑
m=0

~m

(1−m)!
[zm]S(z)−2Ê−1(z) (7.34)

V F0 = ~ [z]Ê0(z) +
~
24

+
∑
i>1

ti

i∑
m=0

i! ~m

(i−m)!
[zm]S(z)−i−1Ê−i(z) +

1

~
− 1

s

2∑
m=0

2! ~m

(2−m)!
[zm]S(z)−3Ê−2(z)

(7.35)

annihilate the partition function for fully simple maps and satisfy the Virasoro constraints; that is, V Fn Z
F = 0 for all

n > −1, and [V Fn , V
F
m ] = (n−m)V Fn+m. Here, Ê is de�ned in equation (7.32), while S(z) = ς(z)

z = ez/2−e−z/2
z .

Proof. The ultimate aim will be to derive the Virasoro operators for fully simple maps, V Fn , by a conjugation
for the Virasoro operators for ordinary maps, VMn , using the semi-infinite wedge as the medium. That is,
I will define VFn := H−1VMn H via the semi-infinite wedge and prove that the corresponding di�erential
operator V Fn , obtained by applying Lemma 7.2.4 to VFn , annihilates the partition function.

As an aside, it is possible to follow this process entirely without the semi-infinite wedge formalism, but in
the world of di�erential operators acting on the partition function for fully simple maps. The semi-infinite
wedge formalism simply provides a particularly nice language for deriving the conjugation H−1VMn H.

Begin with the Virasoro operators for ordinary maps, which I restate here for convenience:

VMn =
∑
i>1

(i+n)(~pi+ ti)
∂

∂pi+n
+~

∑
i+j=n

ij
∂2

∂pi∂pj
+ 2n

∂

∂pn
+ δn,−1

(
p1 +

t1
~

)
+

1

~
δn,0−

1

s
(n+ 2)

∂

∂pn+2
.

Use the fact that VMn ZM = 0 for all n > −1 as well as Lemma 7.2.4 to write the following:

0 = HVMn ZM = HVMn

〈
exp(sG) exp

(∑
m>1

tm
m ~

α−m

)
exp

(∑
m>1

pm
m
α−m

)〉

= H

〈
exp(sG) exp

(∑
m>1

tm
m ~

α−m

)
VMn exp

(∑
m>1

pm
m
α−m

)〉

=

〈
exp(sG) exp

(∑
m>1

tm
m ~

α−m

)
VMn H exp

(∑
m>1

pm
m
α−m

)〉

=

〈
exp(sG) exp

(∑
m>1

tm
m ~

α−m

)
HB exp

(∑
m>1

pm
m
α−m

)〉
,
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where B = H−1VMn H. Here, H is the di�erential operator that is the counterpart to H via Lemma 7.2.4.
Such a di�erential operator H exists because it can be written in terms of bosonic operators [2]. More
precisely, Alexandrov, Lewański, and Shadrin [2] show that H can also be written as

H = exp

([
Ẽ0
(
−~2 d

d~
)

ς
(
−~2 d

d~
) −F1

]
log ~

)
,

where ς(z) = ez/2 − e−z/2 as usual, F1 is the diagonal operator F1 = [z]E0(z) =
∑
k∈Z+ 1

2
k : ψkψ

∗
k :, and

Ẽ0(z) is the E -operator in energy zero without the usual correction term; that is,

Ẽ0(z) =
∑

k∈Z+ 1
2

ezk : ψkψ
∗
k : .

Equation (1.20) writes E in terms of bosonic operators, hence it is also possible to do so for Ẽ0 and F1 (the
latter because F1 is the z-coe�cient of E0(z)).

Thus it follows that one can apply Lemma 7.2.4 to H and obtain a corresponding di�erential operator H .
(It is not problematic that such an H will inevitably be unwieldy, for the purposes of this chapter, it only
matters that such an operator exists.)

Thus, define VFn := H−1VMn H. It follows that〈
exp(sG) exp

(∑
m>1

tm
m ~

α−m

)
HVFn exp

(∑
m>1

pm
m
α−m

)〉
= 0

for all n > −1. This in turn yields that V Fn Z
F = 0 where V Fn is the di�erential operator given by apply-

ing Lemma 7.2.4 to VFn . That V Fn satisfies the Virasoro constraints is given immediately by the fact that VFn
is defined to be the conjugation of an operator that satisfies the Virasoro constraints, and hence the same is
true of V Fn ; this is easily verified as follows. Begin with the Virasoro constraints for ordinary maps,

(n−m)VMn+m = [VMn , VMm ] = VMn VMm − VMm VMn ,

and apply H on the left and H−1 on the right. This gives

(n−m)V Fn+m = (n−m)HVMn+mH
−1 = HVMn VMm H−1 −HVMm VMn H−1

=
(
HVMn H−1

) (
HVMm H−1

)
−
(
HVMm H−1

) (
HVMn H−1

)
= V Fn V

F
m − V Fm V Fn ,

hence, (n−m)V Fn+m = [V Fn , V
F
m ] as required.

It remains to conjugate VMn by H and hence derive expression for VFn and V Fn for all n > −1.

The operator VMn obtained from applying Lemma 7.2.4 to VMn is given by the following expression in terms
of bosonic operators:

VMn =
∑
i>1

(~α−i−nαi + tiα−i−n) + ~
∑
i+j=n

α−iα−j + 2α−n + δn,−1

(
α1 +

t1
~

)
+

1

~
δn,0 −

1

s
α−n−2,

using the convention that α0 = 0. Note the slight abuse of notation: by Lemma 7.2.4,m ∂
∂pm

only corresponds
to α−n for n positive, hence the term 2α−n in VMn is only present for n positive.

Using the fact that

K−n =
1

2

∑
i+j=−n

: αiαj : =
∑
i>1

α−n−iαi +
1

2

∑
i+j=n

α−iα−j ,

we can rewrite VMn as

VMn = ~K−n +
~
2

∑
i+j=n

α−iα−j +
∑
i>1

tiα−i−n + 2α−n + δn,−1

(
α1 +

t1
~

)
+

1

~
δn,0 −

1

s
α−n−2.
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I will now conjugate VMn by H. To do this, I consider the cases of n = −1, n = 0 and n > 1 separately.
First in the case of n = −1 I obtain

VF−1 := H−1VM−1H = ~H−1K1H+
∑
i>2

tiH−1α−i+1H+H−1α1H+
t1
~
− 1

s
H−1α−1H

= ~
∑
m>0

m! (−~)m

(1−m)!
[zm]

∂

∂z
E1(z) +

∑
i>2

ti

i−1∑
m=0

(i− 1)! ~m

(i− 1−m)!
[zm]S(z)−iE1−i(z)

+
∑
m>0

m! (−~)m

(1−m)!
[zm]E1(z) +

t1
~
− 1

s

1∑
m=0

~m

(1−m)!
[zm]S(z)−2E−1(z).

The second equality is using the fact that the operator H commutes with constants. In the case of n = 0 we
have

VF0 := H−1VM0 H = ~H−1K0H+
∑
i>1

tiH−1α−iH+
1

~
− 1

s
H−1α−2H

= ~ [z]E0(z) +
~
24

+
∑
i>1

ti

i∑
m=0

i! ~m

(i−m)!
[zm]S(z)−i−1E−i(z) +

1

~
− 1

s

2∑
m=0

2! ~m

(2−m)!
[zm]S(z)−3E−2(z).

Here, the last equality is using the fact that K0 is diagonal and the operator H commutes with diagonal
operators (as well as constants), along with equation (7.10),

K0 = [z] E0(z) +
1

24
.

The operatorH commutes with diagonal operators becauseH itself is diagonal. Finally, for n > 1, we define
VFn to be

VFn := H−1VMn H

= ~H−1K−nH+
~
2

∑
i+j=n

H−1α−iα−jH+
∑
i>1

tiH−1α−i−nH+ 2H−1α−nH−
1

s
H−1α−n−2H

= ~
n∑

m=0

n! ~m

(n−m)!
[zm]S(z)−n−1 ∂

∂z
E−n(z) +

∑
i>1

ti

n+i∑
m=0

(n+ i)! ~m

(n+ i−m)!
[zm]S(z)−n−i−1E−n−i(z)

+
~
2

∑
i+j=n

(
i∑

m=0

i! ~m

(i−m)!
[zm]S(z)−i−1E−i(z)

)(
j∑

m=0

j! ~m

(j −m)!
[zm]S(z)−j−1E−j(z)

)

+ 2

n∑
m=0

n! ~m

(n−m)!
[zm]S(z)−n−1E−n(z)− 1

s

n+2∑
m=0

(n+ 2)! ~m

(n+ 2−m)!
[zm]S(z)−n−3E−n−2(z).

The third equality is using the fact that H−1α−iα−jH = (H−1α−iH)(H−1α−jH). Recall the bosonic
operator form of the E -operator:

En(z) =
1

ς(z)

∑
`>0

1

`!

∑
i1+···+i`=n

ς(i1z) · · · ς(i`z)
i1 · · · i`

: αi1 · · ·αi` :

=
1

ς(z)

∑
`,s>0
q>0

1

`! s!

[ ∑
j1+···+j`=q

jk>1

∏̀
k=1

ς(jkz)

jk
α−jk

][ ∑
i1+···+is=q+n

ik>1

s∏
k=1

ς(ikz)

ik
αik

]
.

Here the second equality has implemented the normal ordering. Recalling the definition for the Ê -operator
given by equation (7.32), the statement of the theorem now follows. �
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7.5 Recursions for fully simple maps

7.5.1 A Tutte-like recursion for fully simple maps

One can use the Virasoro operators for fully simple maps to derive a Tutte-like recursion; this is done by
following the reverse process to what was done in the proof of Theorem 7.4.2 to derive the Tutte recursion for
ordinary maps. Explicitly, to derive a Tutte-like recursion for (connected) fully simple maps in full generality
for all (g, n), one applies 1

ZF
pn+2Vn to ZF and extracts the coe�cient of pµ1

· · · pµn~2g−2+n. The role of
dividing by ZF after applying Vn is a trick that ensures the resulting recursion is in terms of the connected
enumeration. To see this, define the free energy for fully simple maps, a generating function for the connected
enumeration,

F (~p; ~) :=
∑
n>1

∑
g>0

∑
µ1,...,µn>1

FS◦g,n(µ1, . . . , µn)
pµ1pµ2 · · · pµn ~2g−2+n

n!
.

Then observe
1

ZF
∂

∂x
ZF =

1

ZF
∂

∂x
expF =

1

ZF
∂F

∂x
expF =

∂F

∂x
,

hence, the result on the right-most side is in terms of connected fully simple maps only.

In this section, I derive a Tutte-like recursion for fully simple maps for some special cases of low (g, n);
namely, (g, n) = (0, 1), (0, 2), and (1, 1).

Ideally one would like to be able to do this process in full generality. However, the Virasoro operator V Fn
for fully simple maps involves extracting coe�cients from the S(z) and ς(z) functions: [za]S(z)−n−1 and
[zb] 1

ς(z)

∏m
k=1 ς(jkz). For low (g, n) this process is highly constrained (as we will see) but in full generality

this is not the case and the contributions of these terms become intractable.

The disk case: (g, n) = (0, 1)

My first aim is to find a Tutte-like recursion for fully simple maps in the case of (g, n) = (0, 1). This is done
by applying 1

ZF
pn+2Vn to ZF and extracting the coe�cient of pn+2~−1. In this case (and actually for all

n = 1),

[pn+2~−1]
1

ZF
pn+2VnZ

F = [~−1]
1

ZF
VnZ

F

and hence it follows that we would like to extract terms from 1
ZF
VnZ

F that are constant in the p-variables.
This is equivalent to disregarding any terms of Vn that include an application of p, or applying 1

ZF
VnZ

F

then setting ~p = ~0.

This leads to the following Tutte-like recursion for fully simple maps in the disk case; that is, when (g, n) =

(0, 1). This recursion has been used to reproduce the data calculated by Garcia-Failde [58, Section 2.2.2].

Proposition 7.5.1. The enumeration of fully simple maps in the disk case satis�es the following recursion for all
n > 1:

2Â0,1(n) + 2A0,1(n) =
1

s
A0,1(n+ 2)−

∑
i>1

tiA0,1(n+ i), (7.36)

where

A0,1(N) =

N∑
m=0

N !

(N −m)!(m+ 1)!

∑
j1+···+jm+1=N

m+1∏
k=1

jkFS◦0,1(jk)

Â0,1(N) =

N∑
m=0

N ! (m+ 1)

(N −m)!(m+ 2)!

∑
j1+···+jm+2=N

m+2∏
k=1

jkFS◦0,1(jk).
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Proof. First recall V Fn for convenience.

V Fn = ~
n∑

m=0

n! ~m

(n−m)!
[zm]S(z)−n−1 ∂

∂z
Ê−n(z) +

∑
i>1

ti

n+i∑
m=0

(n+ i)! ~m

(n+ i−m)!
[zm]S(z)−n−i−1Ê−n−i(z)

+
~
2

∑
i+j=n

(
i∑

m=0

i! ~m

(i−m)!
[zm]S(z)−i−1Ê−i(z)

)(
j∑

m=0

j! ~m

(j −m)!
[zm]S(z)−j−1Ê−j(z)

)

+ 2

n∑
m=0

n! ~m

(n−m)!
[zm]S(z)−n−1Ê−n(z)− 1

s

n+2∑
m=0

(n+ 2)! ~m

(n+ 2−m)!
[zm]S(z)−n−3Ê−n−2(z) (7.37)

Let us begin with the first term on the third line. That is, let me consider extracting the coe�cient of ~−1

from the application of this term applied to ZF :

[~−1]
1

ZF

n∑
m=0

n! ~m

(n−m)!
[zm]S(z)−n−1Ê−n(z)ZF .

Let me also restate the definition of Ê−n(z):

Ên(z) :=
1

ς(z)

∑
`,s>0
q>0

1

`! s!

[ ∑
i1+···+is=q

ik>1

s∏
k=1

ς(ikz)

ik
pik

][ ∑
j1+···+j`=q+n

jk>1

∏̀
k=1

ς(jkz)
∂

∂pjk

]
.

Recalling that because n = 1, after the application of the operator to ZF we are forced to extract the terms
that are constant in the p-variables. Therefore, we can consider only the terms in Ên(z) where s = 0. That
is,

[~−1]
1

ZF

n∑
m=0

n! ~m

(n−m)!
[zm]S(z)−n−1Ê−n(z)ZF

=

n∑
m=0

n!

(n−m)!

∑
a+b=m

[za]S(z)−n−1[zb ~−m−1]
1

ZF
1

ς(z)

∑
`>0

1

`!

[ ∑
j1+···+j`=n

jk>1

∏̀
k=1

ς(jkz)
∂

∂pjk

]
ZF . (∗)

From here it follows that the contribution of this term is
n∑

m=0

n!

(n−m)! (m+ 1)!

∑
j1+···+jm+1=n

m+1∏
k=1

jkFS◦0,1(jk). (4)

This is not a trivial statement, and one can reason this in the following way. We are extracting a negative
power of ~ from 1

ZF
Ên(z)ZF that is constant in the p-variables, and the only terms that carry a negative

power of ~ are (0, 1)-terms where ~2g−2+n = ~−1. Hence, in the mth summand of the m-sum, we need to
apply at least m+ 1 derivatives for the term to contribute:

[~−m−1]
1

ZF

m+1∏
k=1

∂

∂pjk
ZF = [~−m−1]

1

ZF

m+1∏
k=1

FS◦0,1(jk)~−1ZF =

m+1∏
k=1

FS◦0,1(jk).

Thus, ` > m + 1. Yet it is also true that we can apply at most m + 1 derivatives. This is because of the
ς -functions. The expansions of ς and 1/ς begin

1

ς(z)
=

1

z
− z

24
+O(z3) and ς(z) = z +

z3

24
+O(z5),

hence each copy of ς in the inner product over k,
∏`
k=1 ς(jkz), contributes at least one power of z, while

from the 1
ς(z) in front of the `-sum we can collect either one negative power of z or odd positive powers of z.

From this latter half of the expression,

[zb ~−m−1]
1

ZF
1

ς(z)

∑
`>0

1

`!

[ ∑
j1+···+j`=q

jk>1

∏̀
k=1

ς(jkz)
∂

∂pjk

]
ZF ,



7.5. Recursions for fully simple maps 137

I am extracting the coe�cient of zb for 0 6 b 6 m and this therefore forces m > b > `− 1, or equivalently,
` 6 m+ 1. Recalling that I also had the constraint ` > m+ 1, one can conclude that ` = m+ 1, b = m and
a = 0. Applying these constraints to the original expression (∗) results in the contribution given by 4, as
announced.

Returning to the Virasoro operator for fully simple maps (7.37), one can use an identical argument for the
second terms on the first and third lines to deduce the following contributions respectively:

∑
i>1

ti

n+i∑
m=0

(n+ i)!

(n+ i−m)! (m+ 1)!

∑
j1+···+jm+1=n+i

m+1∏
k=1

jkFS◦0,1(jk), (4)

− 1

s

n+2∑
m=0

(n+ 2)!

(n+ 2−m)! (m+ 1)!

∑
j1+···+jm+1=n+2

m+1∏
k=1

jkFS◦0,1(jk). (4)

For the first term on the first line—the ∂
∂z Ên(z) term—I apply a similar argument but also utilise the trick

that, as operators, [za] ∂∂z = (a+ 1)[za+1]. This gives

[h−1]
1

ZF

n∑
m=0

n! ~m+1

(n−m)!
[zm]S(z)−n−1 ∂

∂z
Ê−n(z)ZF

=
n∑

m=0

n!

(n−m)!

∑
a+b=m

[za]S(z)−n−1[zb ~−m−2]
1

ZF
∂

∂z

1

ς(z)

∑
`>0

1

`!

[ ∑
j1+···+j`=n

jk>1

∏̀
k=1

ς(jkz)
∂

∂pjk

]
ZF

=

n∑
m=0

n!

(n−m)!
[~−m−2]

1

ZF
(m+ 1)[zm+1]

1

ς(z)

∑
`>0

1

`!

[ ∑
j1+···+j`=n

jk>1

∏̀
k=1

ς(jkz)
∂

∂pjk

]
ZF

=

n∑
m=0

n! (m+ 1)

(n−m)!(m+ 2)!

∑
j1+···+jm+2=n

m+2∏
k=1

jkFS◦0,1(jk). (4)

The second equality is using the fact that, by similar arguments to the case above, ` = m+ 2.

It remains to treat the term in V Fn given by the product of Ê -operators:

~
2

∑
i+j=n

(
i∑

m=0

i! ~m

(i−m)!
[zm]S(z)−i−1Ê−i(z)

)(
j∑

m=0

j! ~m

(j −m)!
[zm]S(z)−j−1Ê−j(z)

)
. (7.38)

Apply this operator to the partition function for fully simple maps, divide by ZF , and extract the coe�cient
of ~−1. Again utilise the fact that n = 1 to discard any term of the Ê -operator that multiplies by some pi
and deduce that the contribution is equal to

[~−1]
1

ZF
~
2

∑
i+j=n

 i∑
m1=0

i! ~m1

(i−m1)!
[zm1

1 ]S(z1)−i−1 1

ς(z1)

∑
`1>0

1

`1!

∑
i1+···+i`1=i

`1∏
k=1

ς(ikz1)
∂

∂pik


 j∑
m2=0

j! ~m2

(i−m2)!
[zm2

2 ]S(z2)−j−1 1

ς(z2)

∑
`2>0

1

`2!

∑
j1+···+j`2=j

`2∏
k=1

ς(jkz2)
∂

∂pjk

ZF .
Note that in contrast to the preceding expression above I have utilised explicitly distinct indexing variables
m1 and m2 and formal variables z1 and z2 for clarity. Again, as previously, for the m1th summand of
the m1-sum and m2th summand of the m2-sum, the overall number of derivatives applied must be at least
m1 + m2 + 2 to yield a term resulting in an overall factor of ~−1 (after being multiplied by ~m1+m2+1).
However, due to the fact that we are extracting the coe�cient of zm1

1 from the first bracket and zm2
2 from

the second, the maximum number of derivatives that can be applied is m1 + 1 + m2 + 1 = m1 + m2 + 2.
Therefore `1 + `2 = m1 +m2 + 2. Further, because of the series expansions for 1

ς(z) and ς(z), it follows that
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m1 > `1−1 and m2 > `2−1. Conclude that `i = mi+ 1 for i ∈ {1, 2}. This collapses the above expression
to

1

2

∑
i+j=n

 i∑
m1=0

i!

(i−m1)!

1

(m1 + 1)!

∑
i1+···+im1+1=i

m1+1∏
k=1

ikFS◦0,1(ik)


 j∑
m2=0

j!

(j −m2)!

1

(m2 + 1)!

∑
j1+···+jm2+1=j

m2+1∏
k=1

jkFS◦0,1(jk)

 .
In fact, this expression is equal to the contribution from the ∂

∂z Ên(z) term; that is,

1

2

∑
i+j=n

 i∑
m1=0

i!

(i−m1)!

1

(m1 + 1)!

∑
i1+···+im1+1=i

m1+1∏
k=1

ikFS◦0,1(ik)


 j∑
m2=0

j!

(j −m2)!

1

(m2 + 1)!

∑
j1+···+jm2+1=j

m2+1∏
k=1

jkFS◦0,1(jk)


=

n∑
m=0

n! (m+ 1)

(n−m)! (m+ 2)!

∑
j1+···+jm+2=n

m+2∏
k=1

jkFS◦0,1(jk). (7.39)

This can be argued in the following way. What I’m calling the ∂
∂z Ên(z) term—the first term on the first line

of (7.37)—stems from, in the setting of operators in the semi-infinite wedge, conjugating the K−n operator;
that is,

~
n∑

m=0

n! ~m

(n−m)!
[zm]S(z)−n−1 ∂

∂z
Ê−n(z) = ~H−1K−nH = ~H−1

(∑
i>1

α−n−iαi +
1

2

∑
i+j=n

α−iα−j

)
H.

In the setting of di�erential operators acting on a partition function the K−n operator corresponds to

~
∑
i>1

(i+ n)pi
∂

∂pi+n
+

~
2

∑
i+j=n

ij
∂2

∂pi∂pj
.

On the other hand, the product term (7.38) stems from the conjugating the operator ~
2

∑
i+j=n α−iα−j ,

which in turn also corresponds to ~
2

∑
i+j=n ij

∂2

∂pi∂pj
in terms of di�erential operators. In the case of n = 1

and any genus, the term that corresponds to conjugating ~
∑
i>1(i + n)pi

∂
∂pi+n

is not going to contribute
because this term multiplies the resulting expression by pi; recall that in the case of n = 1 we extract terms
that are constant in the p-variables. It remains to observe that H is a diagonal operator and hence the
application of multiplying by pi is unchanged by the conjugation by H. Therefore, when n = 1,

[h2g−1]
1

ZF
~
2

∑
i+j=n

(
i∑

m=0

i! ~m

(i−m)!
[zm]S(z)−i−1Ê−i(z)

)(
j∑

m=0

j! ~m

(j −m)!
[zm]S(z)−j−1Ê−j(z)

)
ZF

= [h2g−1]
1

ZF

n∑
m=0

n! ~m+1

(n−m)!
[zm]S(z)−n−1 ∂

∂z
Ê−n(z)ZF . (7.40)

Collect all terms labelled with a triangle (4) to conclude. �

One might be able to prove the identity in equation (7.39) directly; via a combinatorial bijection or perhaps
using generating functions. At the time of writing, such a proof has eluded me.

The cylinder case: (g, n) = (0, 2)

Find a Tutte-like recursion for fully simple maps in the case of (g, n) = (0, 2) by applying 1
ZF
pn+2Vn

and extracting the coe�cient of pµ1pµ2~0. This is equivalent to applying 1
ZF
Vn to ZF and extracting the

coe�cient of pµ~0.
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This leads to the following Tutte-like recursion for fully simple maps in the cylinder case; that is, when
(g, n) = (0, 2). Again, this recursion has been used to reproduce the data calculated by Garcia-Failde [58].

Proposition 7.5.2. Fix µ to be a positive integer. The enumeration of fully simple maps in the cylinder case satis�es
the following recursion for all n > 1:

Â0,2(n, µ) + Ǎ0,2(n, µ) + 2A0,2(n, µ) =
1

s
A0,2(n+ 2, µ)−

∑
i>1

tiA0,2(n+ i, µ), (7.41)

where

A0,2(N,µ) =

n∑
m=0

N !

(N −m)!

[
1

m!

∑
j1+···+jm=µ+N

jk>1

m∏
k=1

jkFS◦0,1(jk)

+
1

(m+ 1)!

∑
j1+···+jm+1=N

jk>1

m+1∑
q=1

jqFS◦0,2(µ, jq)

m+1∏
k=1
k 6=q

jkFS◦0,1(jk)

]

Â0,2(N,µ) =

N∑
m=0

N ! (m+ 1)

(N −m)!

[
1

(m+ 1)!

∑
j1+···+jm+1=µ+N

jk>1

m+1∏
k=1

jkFS◦0,1(jk)

+
1

(m+ 2)!

∑
j1+···+jm+2=N

jk>1

m+2∑
q=1

jqFS◦0,2(µ, jq)

m+2∏
k=1
k 6=q

jkFS◦0,1(jk)

]
,

and

Ǎ0,2(N,µ) =
∑

i+j=N

( i∑
m1=0

i!

(i−m1)!

1

m1!

∑
i1+···+im1=i+µ

m1∏
k=1

ikFS◦0,1(ik)

)

×

(
j∑

m2=0

j!

(j −m2)!

1

(m2 + 1)!

∑
j1+···+jm2+1=j

m2+1∏
k=1

jkFS◦0,1(jk)

)

+

(
i∑

m1=0

i!

(i−m1)!

1

(m1 + 1)!

∑
i1+···+im1+1=i

m1+1∑
q=1

jqFS0,2(µ, jq)

m1+1∏
k=1
k 6=q

ikFS◦0,1(ik)

)

×

(
j∑

m2=0

j!

(j −m2)!

1

(m2 + 1)!

∑
j1+···+jm2+1=j

m2+1∏
k=1

jkFS◦0,1(jk)

) .
Proof. Begin with

[pµ~0]
1

ZF

n∑
m=0

n! ~m

(n−m)!
[zm]S(z)−n−1Ê−n(z)ZF . (∗)

Again recall the definition of the Ê−n(z) operator:

Ên(z) :=
1

ς(z)

∑
`,s>0
q>0

1

`! s!

[ ∑
i1+···+is=q

ik>1

s∏
k=1

ς(ikz)

ik
pik

][ ∑
j1+···+j`=q+n

jk>1

∏̀
k=1

ς(jkz)
∂

∂pjk

]
.

The pµ can either arise from an s = 1 term from the Ê−n(z) operator, or from an application of a di�erential
operator applied to the partition function ∂

∂pj
ZF . Therefore s = 0 or s = 1; I’ll treat these separately. First

consider the case when s = 1. Then q = µ and we have

n∑
m=0

n!

(n−m)!
[zm ~−m]

1

ZF
S(z)−n−1 1

ς(z)

∑
`>0

1

`!

ς(µz)

µ

[ ∑
j1+···+j`=µ+n

jk>1

∏̀
k=1

ς(jkz)
∂

∂pjk

]
ZF .
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Using a similar argument as in the case of (g, n) = (0, 1), because we are ultimately exacting a coe�cient of
~−m we must apply at least m derivatives to the partition function; hence ` > m. However, in the process
of extracting the coe�cient of zm we obtain the constraint that m > `. This is because, minimally, one can
take the constant term from S(z)−n−1, and the leading terms from 1

ς(z) , ς(µz) and each of the ς(jkz) terms.
Therefore, ` = m and this leads to the following contribution:

n∑
m=0

n!

(n−m)!m!

∑
j1+···+jm=µ+n

jk>1

m∏
k=1

jkFS◦0,1(jk).

When s = 0, the contribution becomes

n∑
m=0

n!

(n−m)!
[pµ z

m ~−m]
1

ZF
S(z)−n−1 1

ς(z)

∑
`>0

1

`!

[ ∑
j1+···+j`=n

jk>1

∏̀
k=1

ς(jkz)
∂

∂pjk

]
ZF .

Using an analogous reasoning as just above, we have that ` > m and m > ` − 1; that is, m 6 ` 6 m + 1.
When ` = m the expression reduces to

n∑
m=0

n!

(n−m)!m!
[pµ z

m ~−m]
1

ZF
S(z)−n−1 1

ς(z)

[ ∑
j1+···+jm=n

jk>1

m∏
k=1

ς(jkz)
∂

∂pjk

]
ZF .

This term cannot contribute. Because the functions ς(z) and S(z)−n−1 are even in z while the function 1
ς(z)

is odd, overall the expression is odd in z. The minimal power of z we can take is m− 1, thus there is no zm

term. When ` = m+ 1 the term is equal to

n∑
m=0

n!

(n−m)!(m+ 1)!
[pµ z

m ~−m]
1

ZF
S(z)−n−1 1

ς(z)

[ ∑
j1+···+jm+1=n

jk>1

m+1∏
k=1

ς(jkz)
∂

∂pjk

]
ZF

=

n∑
m=0

n!

(n−m)!(m+ 1)!

∑
j1+···+jm+1=n

jk>1

m+1∑
q=1

jqFS◦0,2(µ, jq)

m+1∏
k=1
k 6=q

jkFS◦0,1(jk).

Therefore, the overall contribution of the term labelled (∗) is

n∑
m=0

n!

(n−m)!

[
1

m!

∑
j1+···+jm=µ+n

jk>1

m∏
k=1

jkFS◦0,1(jk)

+
1

(m+ 1)!

∑
j1+···+jm+1=n

jk>1

m+1∑
q=1

jqFS◦0,2(µ, jq)

m+1∏
k=1
k 6=q

jkFS◦0,1(jk)

]
. (4)

Next consider both the terms

[pµ~0]
1

ZF
~

n∑
m=0

n! ~m

(n−m)!
[zm]S(z)−n−1 ∂

∂z
Ê−n(z)ZF , (∗∗)

[pµ~0]
1

ZF
~
2

∑
i+j=n

(
i∑

m=0

i! ~m

(i−m)!
[zm]S(z)−i−1Ê−i(z)

)(
j∑

m=0

j! ~m

(j −m)!
[zm]S(z)−j−1Ê−j(z)

)
ZF .

(∗ ∗ ∗)

For these contributions I apply very similar arguments but for the first term, as in the disk case, I utilise
the trick that [za] ∂∂z = (a + 1)[za+1]. I will omit the details; the necessary ideas have been demonstrated
for the first term (4) above as well as in the disk case, the arguments are analogous. Very briefly, it su�ces
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to consider, for each instance of the Ê -operator, the cases s = 0 and s = 1 separately, and, within each of
those cases, the possible values of ` that can arise. Conclude that the term (∗∗) contributes

n∑
m=0

n! (m+ 1)

(n−m)!

[
1

(m+ 1)!

∑
j1+···+jm+1=µ+n

jk>1

m+1∏
k=1

jkFS◦0,1(jk)

+
1

(m+ 2)!

∑
j1+···+jm+2=n

jk>1

m+2∑
q=1

jqFS◦0,2(µ, jq)

m+2∏
k=1
k 6=q

jkFS◦0,1(jk)

]
. (4)

The product term (∗ ∗ ∗) contributes

∑
i+j=n

( i∑
m1=0

i!

(i−m1)!

1

m1!

∑
i1+···+im1=i+µ

m1∏
k=1

ikFS◦0,1(ik)

)

×

(
j∑

m2=0

j!

(j −m2)!

1

(m2 + 1)!

∑
j1+···+jm2+1=j

m2+1∏
k=1

jkFS◦0,1(jk)

)

+

(
i∑

m1=0

i!

(i−m1)!

1

(m1 + 1)!

∑
i1+···+im1+1=i

m1+1∑
q=1

jqFS0,2(µ, jq)

m1+1∏
k=1
k 6=q

ikFS◦0,1(ik)

)

×

(
j∑

m2=0

j!

(j −m2)!

1

(m2 + 1)!

∑
j1+···+jm2+1=j

m2+1∏
k=1

jkFS◦0,1(jk)

) . (4)

Collect all terms given by 4 to conclude the result. �

In the case of (g, n) = (1, 1)

Finding a Tutte-like recursion in the case of (g, n) = (1, 1) is similar to the case of (g, n) = (0, 1), in that
this is obtained by applying 1

ZF
pn+2Vn to ZF but in this case we must extract the coe�cient of pµ~.

This leads to the following Tutte-like recursion for fully simple maps in the punctured torus case; that is, when
(g, n) = (1, 1). Again, this recursion has been used to reproduce the data calculated by Garcia-Failde [58].

Proposition 7.5.3. The enumeration of fully simple maps in the punctured torus case (g, n) = (1, 1) satis�es the
following recursion for all n > 1:

2Â1,1(n) + 2A1,1(n) =
1

s
A1,1(n+ 2)−

∑
i>1

tiA1,1(n+ i), (7.42)

where

A1,1(N) =

N∑
m=0

N !

(N −m)!

[
1

(m− 1)!

( ∑
j1+···+jm−1=N

jk>1

1

24

(
j2
1 + · · ·+ j2

m−1 −N − 2
)m−1∏
k=1

jkFS◦0,1(jk)

)

+
1

(m+ 1)!

∑
j1+···+jm+1=N

jk>1

( ∑
16p<q6m+1

jpjqFS◦0,2(jp, jq)

m+1∏
k=1
k 6=p,q

jkFS◦0,1(jk)

+

m+1∑
q=1

jqFS◦1,1(jq)

m+1∏
k=1
k 6=q

jkFS◦0,1(jk)

)]
,
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and

Â1,1(N) =

n∑
m=0

N !

(N −m)!

[
m+ 1

24m!

( ∑
j1+···+jm=N

jk>1

(
j2
1 + · · ·+ j2

m − 1
) m∏
k=1

jkFS◦0,1(jk)

)

− (m− 1)(N + 1)

24m!

∑
j1+···+jm=N

jk>1

m∏
k=1

jkFS◦0,1(jk)

+
m+ 1

(m+ 2)!

∑
j1+···+jm+2=N

jk>1

( ∑
16p<q6m+2

jpjqFS◦0,2(jp, jq)

m+2∏
k=1
k 6=p,q

jkFS◦0,1(jk)

+

m+2∑
q=1

jqFS◦1,1(jq)

m+2∏
k=1
k 6=q

jkFS◦0,1(jk)

)]
.

Proof. Again, I’ll begin by considering the following term from the V Fn operator

[~]
1

ZF

n∑
m=0

n! ~m

(n−m)!
[zm]S(z)−n−1Ê−n(z)ZF .

Using a similar argument in the case of (g, n) = (0, 1), the Ê -operator cannot contain any terms that multiply
by any pj , thus the above expression reduces to

[~]
1

ZF

n∑
m=0

n! ~m

(n−m)!
[zm]S(z)−n−1Ê−n(z)ZF

=

n∑
m=0

n!

(n−m)!
[zm ~−m+1]

1

ZF
S(z)−n−1 1

ς(z)

∑
`>0

1

`!

[ ∑
j1+···+j`=n

jk>1

∏̀
k=1

ς(jkz)
∂

∂pjk

]
ZF . (∗)

Again using a similar argument as in the disk case, given that we are extracting a coe�cient of ~−m+1 we
must apply at least m − 1 derivatives, thus ` > m − 1. On the other hand, as always m > ` − 1: this is
because, minimally one can take the constant term from S(z)−n−1, the z−1 term from 1

ς(z) and the linear
terms from all ` of the ς(jkz) terms. Conclude that ` is constrained by m− 1 6 ` 6 m+ 1. I will consider
each of these in turn in decreasing order. That is, first consider the case where ` = m+ 1. This case yields

n∑
m=0

n!

(n−m)! (m+ 1)!
[~−m+1]

1

ZF

[ ∑
j1+···+jm+1=n

jk>1

m+1∏
k=1

jk
∂

∂pjk

]
ZF

=

n∑
m=0

n!

(n−m)! (m+ 1)!

∑
j1+···+jm+1=n

jk>1

[ ∑
16p<q6m+1

jpjqFS◦0,2(jp, jq)

m+1∏
k=1
k 6=p,q

jkFS◦0,1(jk)

+

m+1∑
q=1

jqFS◦1,1(jq)

m+1∏
k=1
k 6=q

jkFS◦0,1(jk)

]
.

The two distinct types of terms arise in the following way. For the term containing FS◦0,2, m − 1 of the
derivatives act on (0, 1)-terms contributing ~−m+1, while the last two derivatives both act on the same FS◦0,2
contributing ~0. For the term containing FS◦1,1, m of the derivatives act on (0, 1)-terms contributing ~−m,
while the last derivative acts on a FS1,1 term contributing ~1. These two options are the only possible
contributions; while this may not be immediately clear, a few minutes consideration should be enough for
one to convince themselves. For ` = m we have

n∑
m=0

n!

(n−m)!
[zm ~−m+1]

1

ZF
S(z)−n−1 1

ς(z)

1

m!

[ ∑
j1+···+jm=n

jk>1

m∏
k=1

ς(jkz)
∂

∂pjk

]
ZF .
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Considering extracting the coe�cient of zm from the product of ς - and S -functions allows us to conclude
that this term cannot contribute using the same parity argument as in the case of (g, n) = (0, 2).

Finally consider ` = m− 1:

n∑
m=0

n!

(n−m)!
[zm ~−m+1]

1

ZF
S(z)−n−1 1

ς(z)

1

(m− 1)!

[ ∑
j1+···+jm−1=n

jk>1

m−1∏
k=1

ς(jkz)
∂

∂pjk

]
ZF

Because we are applying m − 1 derivatives and extracting the coe�cient of ~−m+1, each derivative must
act on a (0, 1)-term. Extracting the coe�cient of zm can be rewritten as follows:

[zm]S(z)−n−1 1

ς(z)

m−1∏
k=1

ς(jkz) =
∑

a+b+c=m

[za]S(z)−n−1[zb]
1

ς(z)
[zc]

m−1∏
k=1

ς(jkz).

There are three possibilities for a, b and c, summarised in the following table.

a b c [za]S(z)−n−1 [zb] 1
ς(z) [zc]

∏m−1
k=1 ς(jkz)

2 −1 m− 1 −n+1
24 1

∏m−1
k=1 jk

0 1 m− 1 1 − 1
24

∏m−1
k=1 jk

0 −1 m+ 1 1 1 1
24 (j2

1 + · · ·+ j2
m−1)

∏m−1
k=1 jk

The contribution when ` = m− 1 is

n∑
m=0

n!

(n−m)! (m− 1)!

[ ∑
j1+···+jm−1=n

jk>1

1

24

(
j2
1 + · · ·+ j2

m−1 − n− 2
)m−1∏
k=1

jkFS◦0,1(jk)

]
.

Therefore, the overall contribution for the term labelled (∗) is

n∑
m=0

n!

(n−m)!

[
1

(m− 1)!

( ∑
j1+···+jm−1=n

jk>1

1

24

(
j2
1 + · · ·+ j2

m−1 − n− 2
)m−1∏
k=1

jkFS◦0,1(jk)

)

+
1

(m+ 1)!

∑
j1+···+jm+1=n

jk>1

( ∑
16p<q6m+1

jpjqFS◦0,2(jp, jq)

m+1∏
k=1
k 6=p,q

jkFS◦0,1(jk)

+

m+1∑
q=1

jqFS◦1,1(jq)

m+1∏
k=1
k 6=q

jkFS◦0,1(jk)

)]
. (4)

Next I consider the ∂
∂z Ê−n(z) term and again use the trick [za] ∂∂z = (a+ 1)[za+1]. This gives

[~]
1

ZF

n∑
m=0

n! ~m+1

(n−m)!
[zm]S(z)−n−1 ∂

∂z
Ê−n(z)ZF

=

n∑
m=0

n!

(n−m)!

∑
a+b=m

[za]S(z)−n−1[zb ~−m]
1

ZF
∂

∂z

1

ς(z)

∑
`>0

1

`!

[ ∑
j1+···+j`=n

jk>1

∏̀
k=1

ς(jkz)
∂

∂pjk

]
ZF

=

n∑
m=0

n!

(n−m)!
[~−m]

∑
a+b=m

[za]S(z)−n−1(b+ 1)[zb+1]
1

ZF
1

ς(z)

∑
`>0

1

`!

[ ∑
j1+···+j`=n

jk>1

∏̀
k=1

ς(jkz)
∂

∂pjk

]
ZF .
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Now ` > m and m+ 1 > `− 1, thus m 6 ` 6 m+ 2. Following a completely analogous argument as in the
case for the term (∗) above, we conclude that this term yields the following contribution:

n∑
m=0

n!

(n−m)!

[
m+ 1

24m!

( ∑
j1+···+jm=n

jk>1

(
j2
1 + · · ·+ j2

m − 1
) m∏
k=1

jkFS◦0,1(jk)

)

− (m− 1)(n+ 1)

24m!

∑
j1+···+jm=n

jk>1

m∏
k=1

jkFS◦0,1(jk)

+
m+ 1

(m+ 2)!

∑
j1+···+jm+2=n

jk>1

( ∑
16p<q6m+2

jpjqFS◦0,2(jp, jq)

m+2∏
k=1
k 6=p,q

jkFS◦0,1(jk)

+

m+2∑
q=1

jqFS◦1,1(jq)

m+2∏
k=1
k 6=q

jkFS◦0,1(jk)

)]
. (4)

Finally, for the product term, recall the argument given in the case of (g, n) = (0, 1); that is, whenever n = 1,

[h2g−1]
1

ZF
~
2

∑
i+j=n

(
i∑

m=0

i! ~m

(i−m)!
[zm]S(z)−i−1Ê−i(z)

)(
j∑

m=0

j! ~m

(j −m)!
[zm]S(z)−j−1Ê−j(z)

)
ZF

= [h2g−1]
1

ZF

n∑
m=0

n! ~m+1

(n−m)!
[zm]S(z)−n−1 ∂

∂z
Ê−n(z)ZF .

Thus, the product term yields the same contribution as the ∂
∂z Ê−n(z) term. Collecting the terms labelled

by (4) yields the statement of proposition (7.42). �

7.5.2 A relation between ordinary and fully simple map enumerations

In this section, I deduce a relation between ordinary maps and fully simple maps via the semi-infinite wedge
in the case of (g, n) = (0, 1). Again, one would ideally like to be able to go this for n = 1 and all genera, or
even more generally for all (g, n).

In the disk case: (g, n) = (0, 1)

Begin with the vacuum expectation for the enumeration Map(µ1, . . . , µn) for ordinary maps given in equa-
tion (7.20) specialised in the case of n = 1, and use the fact that H〉 = 1 to rewrite it in the following
way:

Map(µ) =
〈

exp(sG) exp
( ∑
m>1

tm
m ~

α−m

)αµ
µ

〉
=
〈

exp(sG) exp
( ∑
m>1

tm
m ~

α−m

)
HH−1αµ

µ
H
〉

=
1

µ

〈
exp(sG) exp

( ∑
m>1

tm
m ~

α−m

)
H

µ∑
m=0

µ! ~m

(µ−m)!
[zm]S(z)−µ−1E−µ(z)

〉
=

1

µ

〈
exp(sG) exp

( ∑
m>1

tm
m ~

α−m

)
H

µ∑
m=0

µ! ~m

(µ−m)!
[zm]S(z)−µ−1

1

ς(z)

∑
`>0

1

`!

∑
j1+···+j`=−µ

[∏̀
k=1

ς(jkz)

jk

]
: αj1 · · ·αj` :

〉
.
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Thus conclude

Map(µ) =
1

µ

µ∑
m=0

µ! ~m

(µ−m)!
[zm]S(z)−µ−1 1

ς(z)

∑
`>0

1

`!

∑
j1+···+j`=−µ

[∏̀
k=1

ς(jkz)

jk

]
〈

exp(sG) exp
( ∑
m>1

tm
m ~

α−m

)
H : αj1 · · ·αj` :

〉
.

The third equality is using Lemma 7.4.7, while the fourth equality is using the bosonic form of the E -
operator (1.20). The normal ordering in this case will push all bosonic operators with positive subscripts to
the right and negative subscripts to the left. Given that αm for a positive integer m annihilates the vacuum,
it follows that the sum is zero unless ik < 0 for all k ∈ {1, 2, . . . , `}. Thus,

Map(µ) =
1

µ

µ∑
m=0

µ! ~m

(µ−m)!
[zm]S(z)−µ−1 1

ς(z)

∑
`>0

1

`!

∑
j1+···+j`=µ

jk>0

[∏̀
k=1

ς(jkz)

jk

]
〈

exp(sG) exp
( ∑
m>1

tm
m ~

α−m

)
Hα−j1 · · ·α−j`

〉
,

where I have relabelled jk 7→ −jk and noted that ς(jkz)jk
is even in jk. Therefore,

µMap(µ) =

µ∑
m=0

µ! ~m

(µ−m)!
[zm]S(z)−µ−1 1

ς(z)

∑
`>0

1

`!

∑
j1+···+j`=µ

jk>0

[∏̀
k=1

ς(jkz)

]
FSMap(j1, . . . , j`), (7.43)

where I have used the following vacuum expectation for FSMap:

FSMap(j1, . . . , j`) =
〈

exp(sG) exp
( ∑
m>1

tm
m ~

α−m

)
Hα−j1

j1
· · · α−j`

j`

〉
.

One could read equation (7.43) as a reformulation of (7.6) from Theorem 7.2.3 in the case of Map(µ).

To obtain a specific relation in genus g, extract a coe�cient of ~2g−1 from both sides, recalling that

Map(µ1, . . . , µn) =
∑
g∈Z

M•g,n(µ1, . . . , µn) ~2g−2+n,

and that one can use inclusion-exclusion to pass from the disconnected enumeration to the connected and
vice versa:

Map(µ1, . . . , µn) =
∑

M`{1,...,n}

|M |∏
i=1

Map◦(~µMi
). (7.44)

In the specific case of g = 0, extract the coe�cient of ~−1 from both sides and note that all maps (ordinary
and fully simple) are connected when n = 1. The left yields µM◦0,1(µ) while the right side gives

[~−1]

µ∑
m=0

µ! ~m

(µ−m)!
[zm]S(z)−µ−1 1

ς(z)

∑
`>0

1

`!

∑
j1+···+j`=µ

jk>0

[∏̀
k=1

ς(jkz)

]
FSMap(j1, . . . , j`)

=

µ∑
m=0

µ!

(µ−m)! (m+ 1)!

∑
j1+···+jm+1=µ

[~−m−1]FSMap(j1, . . . , jm+1)

=

µ∑
m=0

µ!

(µ−m)! (m+ 1)!

∑
j1+···+jm+1=µ

m+1∏
k=1

jkFS◦0,1(jk).

This statement is nontrivial. From the fact we are extracting the coe�cient of ~−1 and the expression
contains ~m it follows that we require [~−m−1]FSMap(j1, . . . , j`). The smallest power of ~ that can arise
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in FSMap(j1, . . . , j`) is −`, which occurs in the term ~−`F0,1(j1) · · ·F0,1(j`). Thus −m − 1 > −` or
equivalently m + 1 6 `. On the other hand the power of z in the expression must be at least ` − 1:
minimally, we can take the constant term from S(z)−µ−1, the z term from each of the ς(jkz) series and
the 1/z term from 1/ς . Hence m > ` − 1 (since we are extracting the coe�cient of zm) or equivalently
m + 1 > `. Combining these two inequalities gives that ` = m + 1 and this is what is being applied in the
first equality above. The second equality is using (7.44) in the case of fully simple maps.

Therefore, conclude with the following relation between the enumerations of ordinary and fully simple disks.

Proposition 7.5.4. For µ a positive integer, we have the following relation between ordinary and fully simple maps
in the disk case:

µM◦0,1(µ) =

µ∑
m=0

µ!

(µ−m)! (m+ 1)!

∑
j1+···+jm+1=µ

m+1∏
k=1

jkFS◦0,1(jk).

Given the form of the result above, it is quite hopeful that there is a direct combinatorial interpretation for
the relation.

7.5.3 Recovering the spectral curve for topological recursion

In the setting of topological recursion, it is common knowledge that the spectral curve usually contains the
data of the (0, 1)-enumeration, or, conversely, that from the (0, 1) information one can deduce the spectral
curve. See Section 4.2.2 in Chapter 4 for how this process can be done in the case of single Hurwitz numbers.

As discussed in the introduction, it has been proven that the enumeration of fully simple maps is governed
by topological recursion with the spectral curve in Theorem 7.1.2, and, perhaps more importantly, that this
is precisely the spectral curve obtained by taking the spectral curve for ordinary maps in Theorem 7.1.1
and switching the roles of x and y. In this section, I use the Tutte-like recursion in the case of (g, n) = (0, 1)

obtained in Proposition 7.5.1 and recover the spectral curve for fully simple maps. The form of the spectral
I will use here will be di�erent to its presentation in Theorem 7.1.1, namely, I will use its global form which
can be written as

x2 = V ′(y)x− P0,1(y), (7.45)

where

V ′(y) = y −
∑
i>1

tiy
i−1, and P0,1(y) = 1 +A0,1(1)y−1 −

∑
i>1

ti

i−1∑
j=0

yi−j−2A0,1(j).

This form of the spectral curve for fully simple maps aligns with the spectral curve for ordinary maps given
by Eynard [45, Equation (3.1.2)] and switching x and y. To avoid confusion, I will use xord and yord for the
meromorphic functions of the ordinary maps spectral curve, while x and y will continue to be those for the
fully simple maps spectral curve. Thus x = yord and y = xord.

Begin with the Tutte-like recursion for fully simple maps in the disk case (g, n) = (0, 1) given in Proposi-
tion 7.5.1. Throughout this section the s-parameter will not be required, hence set s = 1. The Tutte-like
recursion reads, for all n > 1,

2Â0,1(n) + 2A0,1(n) = A0,1(n+ 2)−
∑
i>1

tiA0,1(n+ i), (4)

where

A0,1(N) =

N∑
m=0

N !

(N −m)!(m+ 1)!

∑
j1+···+jm+1=N

m+1∏
k=1

jkFS◦0,1(jk)

Â0,1(N) =

N∑
m=0

N ! (m+ 1)

(N −m)!(m+ 2)!

∑
j1+···+jm+2=N

m+2∏
k=1

jkFS◦0,1(jk).
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To pass to generating functions multiply by 1
yn+1 and sum over all n > 0. This recursion is only valid for

n > 1, thus I need to derive the corresponding recursion when n = 0. This is done by following the process
outlined at the start of Section 7.5.1; in this case one must apply 1

ZF
p2V

F
0 to ZF and extract the coe�cient

of p2~−1. Recall the Virasoro operator for n = 0:

V F0 = ~ [z]Ê0(z) +
~
24

+
∑
i>1

ti

i∑
m=0

i! ~m

(i−m)!
[zm]S(z)−i−1Ê−i(z) +

1

~
−

2∑
m=0

2! ~m

(2−m)!
[zm]S(z)−3Ê−2(z).

Following the outlined process yields the recursion

1 = A0,1(2)−
∑
i>1

tiA0,1(i). (44)

Multiply the equation 4 throughout by 1
yn+1 and sum over all n > 1, then add to it the equation (44)

multiplied throughout by 1
y . Finally, multiply throughout again by 1

y . This leads to

2
∑
n>1

Â0,1(n)
1

yn+2
+ 2

∑
n>1

A0,1(n)
1

yn+2
+

1

y2
=
∑
n>0

A0,1(n+ 2)
1

yn+2
−
∑
n>0

∑
i>1

tiA0,1(n+ i)
1

yn+2
. (7.46)

Begin with the right side and rewrite it in the following way. The aim of this manipulation is to introduce
the potential V ′(y).∑
n>0

A0,1(n+ 2)
1

yn+2
−
∑
n>0

∑
i>1

tiA0,1(n+ i)
1

yn+2

=
∑
n>2

A0,1(n)
1

yn
−
∑
i>1

tiy
i−1
∑
n>i

A0,1(n)
1

yn+1

= y
∑
n>1

A0,1(n)
1

yn+1
−A0,1(1)

1

y
−
∑
i>1

tiy
i−1
∑
n>i

A0,1(n)
1

yn+1
+
∑
i>1

ti

i−1∑
j=1

yi−j−2A0,1(j)

=

[
y −

∑
i>1

tiy
i−1

]∑
n>1

A0,1(n)
1

yn+1
−A0,1(1)

1

y
+
∑
i>1

ti

i−1∑
j=1

yi−j−2A0,1(j)

The first equality is applying the relabelling n 7→ n− 2 to the first term and n 7→ n− i to the second.

Recall the relation derived in Proposition 7.5.4 and observe that the right side of this relation is A0,1(µ) as
defined in Proposition 7.5.1,

µM◦0,1(µ) =

µ∑
m=0

µ!

(µ−m)! (m+ 1)!

∑
j1+···+jm+1=µ

m+1∏
k=1

jkFS◦0,1(jk) = A0,1(µ).

As defined by Eynard [45],

yord =
ωord

0,1

dxord
=

1

xord
+
∑
µ>1

µM0,1(µ)
1

xµ+1
ord

,

hence
x =

1

y
+
∑
µ>1

µM0,1(µ)
1

yµ+1
=

1

y
+
∑
µ>1

A0,1(µ)
1

yµ+1
. (7.47)

Returning to the right side and rewriting further gives[
y −

∑
i>1

tiy
i−1

]∑
n>1

A0,1(n)
1

yn+1
−A0,1(1)

1

y
+
∑
i>1

ti

i−1∑
j=1

yi−j−2A0,1(j)

=

[
y −

∑
i>1

tiy
i−1

] [
1

y
+
∑
n>1

A0,1(n)
1

yn+1

]
−A0,1(1)

1

y
− 1 +

∑
i>1

tiy
i−2 +

∑
i>1

ti

i−1∑
j=1

yi−j−2A0,1(j)

= V ′(y)x− P0,1(y),
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where I have absorbed the first sum over i > 1 into the second and, for convenience, defined A0,1(0) := 1.

Next, take equation (7.47), let µ = n and square both sides. Doing this gives

x2 =

[
1

y
+
∑
n>1

A0,1(n)
1

yn+1

]2

=
1

y2
+ 2

∑
n>1

A0,1(n)
1

yn+2
+
∑
n>2

[ ∑
i+j=n

A0,1(i)A0,1(j)

]
1

yn+2

=
1

y2
+ 2

∑
n>1

A0,1(n)
1

yn+2
+ 2

∑
n>2

Â0,1(n)
1

yn+2
.

The final equality has used the identity for Â0,1(n) derived in Section 7.5.1, equation (7.39),

1

2

∑
i+j=n

 i∑
m1=0

i!

(i−m1)!

1

(m1 + 1)!

∑
i1+···+im1+1=i

m1+1∏
k=1

ikFS◦0,1(ik)


 j∑
m2=0

j!

(j −m2)!

1

(m2 + 1)!

∑
j1+···+jm2+1=j

m2+1∏
k=1

jkFS◦0,1(jk)


=

n∑
m=0

n! (m+ 1)

(n−m)! (m+ 2)!

∑
j1+···+jm+2=n

m+2∏
k=1

jkFS◦0,1(jk).

Hence, the left side of (7.46) is equal to x2 and I can conclude that

x2 = V ′(y)x− P0,1(y),

as required.



Chapter 8

Topological Narayana polynomials

8.1 Introduction

One relatively unexplored feature of topological recursion is its ability to generalise existing combinatorial
problems. A spectral curve, input to topological recursion, stores the (0, 1)-enumeration of a problem
and thus can motivate generalisations of a combinatorial enumeration to higher topologies. For instance,
Narayana polynomials arise in a number of combinatorial settings [86, 95] and provide a prime example
of an enumeration ripe for such a generalisation. In this chapter, I describe joint work in progress with
Xavier Coulter and Norman Do, which introduces a particular generalisation of Narayana polynomials that
is motivated by topological recursion.

Narayana polynomials are known to satisfy a number of notable properties, including a linear recursion [57],
a quadratic recursion [95], symmetry of coe�cients, real-rootedness [57], and interlacing [57]. It is natural
to ask if our generalisation preserves these properties; indeed, in this ongoing research, we prove that some
of these properties generalise and conjecture that the remaining ones do as well.

For 1 6 k 6 n, define the Narayana number N(n, k) to be N(n, k) = 1
n

(
n
k

)(
n
k−1

)
. Define the Narayana

polynomial N(n) to be the generating function

N(n) =

n∑
k=1

1

n

(
n

k

)(
n

k − 1

)
tk, (8.1)

for n > 1 and define N(0) = 1. The Narayana numbers and polynomials are a refinement of the Catalan
numbers in the sense that

n∑
k=1

N(n, k) = N(n)
∣∣
t=1

= Catn.

Narayana numbers and polynomials can be realised as enumerations of a number of combinatorial objects;
for example, N(n, k) is equal to:

• the number of words containing n pairs of parentheses, which are correctly matched and contain k
distinct nestings [78];

• the number of Dyck paths of length 2n with k peaks; that is, a lattice path from (0, 0) to (n, n)

consisting of n horizontal steps, n vertical steps, contains k peaks (a peak is a vertical step followed
immediately by a horizontal step), and where all points (i, j) on the path satisfy i 6 j [95]; and

• the number of unlabelled rooted plane trees with n non-rooted vertices and k left-pointing leaves [95].

The Narayana polynomials satisfy the following linear recursion for n > 2 [57]:

N(n) =
1

n+ 1

[
(2n− 1)(t+ 1)N(n− 1)− (n− 2)(t− 1)2N(n− 2)

]
. (8.2)

Furthermore, the Narayana polynomials satisfy the following quadratic recursion for n > 1 [95]:

N(n) =
∑

α+β=n−1

N(α)N(β) + (t− 1)N(n− 1). (8.3)

Note that the di�erence between the definition here and in [95] is given by N(n) = tCn(t). The choice not
to carry n as a subscript here is to avoid possible confusion with the generalised polynomials.

149
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Each Narayana polynomial is symmetric in the sense that it is a polynomial in t whose coe�cients form a
palindromic sequence. More precisely, the Narayana polynomial N(n) has degree n, and the coe�cient of
tk is equal to the coe�cient of tn+1−k for each k. This is immediate from the definition (8.1) and leads
to interesting consequences once the Narayana number is interpreted as an enumeration of combinatorial
objects. For example, the symmetry suggests that there is a natural bijection between the sets of Dyck paths
of length 2n with k peaks and the sets of Dyck paths of length 2n with n+1−k peaks .The bijectively-minded
reader might find this an enjoyable exercise.

Narayana polynomials also satisfy two deeper properties that are interrelated; namely, real-rootedness and
interlacing. Precisely, the Narayana polynomial N(n) has only real roots, and the Narayana polynomial
N(n) interlaces with N(n + 1) [57]. Interlacing can be deduced from the linear recursion (8.2) and one
obtains real-rootedness as a direct consequence. For a definition of interlacing, see Section 8.2.5.

In this chapter, topological recursion is used to motivate a generalisation of the Narayana polynomials via
the following approach. The generating function for Narayana polynomials was used to define a spectral
curve—which necessarily carries the polynomial variable t as a parameter—namely, the spectral curve (8.4)
of Theorem 8.2.2. Applying topological recursion to this spectral curve produces correlation di�erentials
ωg,n whose coe�cients are polynomials in t, thereby producing a desired generalisation. The definition of
the polynomials given below was then devised to match the output of topological recursion.1

Given that Narayana polynomials are a refinement of Catalan numbers, one can use the latter as a framework
for this process. Note that the Catalan numbers are stored in both the (0, 1)-enumeration of ribbon graphs
as well as the (0, 1)-enumeration of monotone Hurwitz numbers, thereby providing two natural spectral
curves to generalise. Here, we have modelled the generalisation in the framework of monotone Hurwitz
numbers, and a combinatorial definition of the enumeration produced by topological recursion can be seen
as a t-deformation of monotone Hurwitz numbers. While we have chosen to use the terminology topological
Narayana polynomials, the enumeration could equally be named t-deformed monotone Hurwitz numbers. This
leads to the following definition.

De�nition 8.1.1. The topological Narayana polynomial Ht
g,n(µ1, . . . , µn) is 1

|µ|! times the weighted enumera-
tion of tuples (τ1, . . . , τm) of transpositions in the symmetric group S|µ| such that

• m = 2g − 2 + n+ |µ|;

• the cycles of τ1 · · · τm are labelled 1, 2, . . . , n such that cycle i has length µi for i ∈ {1, 2, . . . , n};

• 〈τ1, . . . , τm〉 is a transitive subgroup of S|µ|; and

• if τi = (ai bi) with ai < bi, then b1 6 · · · 6 bm.

The weight of such a tuple ((a1 b1), . . . , (am bm)) is tw where w is the number of distinct integers in the
sequence b1, . . . , bm. The weight w is referred to as the hive number of the tuple.2

If one relaxes the transitivity condition, then one obtains the disconnected topological Narayana polynomial
Ht•
g,n(µ1, . . . , µn).

Substituting t = 1 into the definition above recovers the monotone Hurwitz numberH6g,n(µ1, . . . , µn) defined
in Definition 4.3.1. Definition 8.1.1 is indeed a generalisation of Narayana polynomials, because the (0, 1)-
enumeration Ht

0,1(µ) recovers the Narayana polynomials. Explicitly,

µHt
0,1(µ) = N(µ− 1).

The presence of µ on the left is due to the choice of normalisation for Ht
g,n(µ1, . . . , µn), while the shift

in µ has occurred to ensure that the topological Narayana polynomials are equal to the monotone Hurwitz
numbers when t = 1. A table of topological Narayana polynomials appears in Section 8.4.

1While for the organisation of this chapter, it is logical to begin with the enumeration then prove that it is governed by topological
recursion, one of the interesting features of this work is that our approach obtained these in the reverse order.

2(Because it denotes the number of bs).
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This definition compels us to ask: do topological Narayana polynomials satisfy combinatorial properties
analogous to those satisfied by Narayana polynomials? We answer this question in the a�rmative in the
case of the linear recursion, the quadratic recursion, and the symmetry of coe�cients. Further, we posit
explicit conjectures that generalise real-rootedness and interlacing to topological Narayana polynomials,
which are backed by strong computational evidence. Thus, it could be argued that topological recursion
has, in a sense, preserved the significant properties of Narayana polynomials.

This chapter is organised as follows. Section 8.2 discusses the following properties of topological Narayana
polynomials:

• a representation theoretic expression for topological Narayana polynomials that leads to a proof that
they are governed by topological recursion (Section 8.2.1);

• a proof via topological recursion that topological Narayana polynomials are symmetric (Section 8.2.2);

• the generalisation of the linear recursion (8.2) to a one-point recursion for topological Narayana poly-
nomials (Section 8.2.3);

• the generalisation of the quadratic recursion (8.3) to a cut-and-join recursion for topological Narayana
polynomials (Section 8.2.4); and

• explicit conjectures on the real-rootedness and interlacing properties of topological Narayana polyno-
mials (Section 8.2.5).

Section 8.3 concludes the chapter with brief remarks concerning the more general phenomenon of “topolo-
gising” combinatorial enumerations and potential connections to matrix integrals.

8.2 Properties

8.2.1 Topological recursion

First, the Jucys–Murphy elements in the symmetric group algebra Jk ∈ C[Sd] are defined by

Jk = (1 k) + (2 k) + · · ·+ (k − 1 k),

for k ∈ {2, 3, . . . , d}. The Jucys–Murphy elements satisfy remarkable properties [72, 85, 93] and are connec-
ted to topological Narayana polynomials via the following result.

Proposition 8.2.1. The disconnected topological Narayana polynomial Ht•
g,n(µ1, . . . , µn) is given by the formula

Ht •
g,n(µ1, . . . , µn) =

1∏n
i=1 µi

[Cµ][xm]

|µ|∏
k=2

1− xJk + txJk
1− xJk

.

Here, J2, J3, . . . ∈ C[S|µ|] are the Jucys–Murphy elements,m = 2g−2+n+ |µ| is the number of transpositions in the
corresponding monotone sequence, [Cµ] signi�es that we are extracting the coe�cient of Cµ from the resulting expression
in the centre ZC[S|µ|] of the symmetric group algebra, while [xm] signi�es that we are extracting the coe�cient of xm

in the resulting power series.

Proof. Recall that the disconnected topological Narayana polynomial Ht•
g,n(µ1, . . . , µn) is 1

|µ|! times the
weighted enumeration of monotone tuples (τ1, . . . , τm) of transpositions in S|µ| that compose to give a
permutation whose cycles are labelled 1, 2, . . . , n such that cycle i has length µi for i ∈ {1, 2, . . . , n}, where
a tuple carries the weight t to the power of its hive number. On the other hand, consider evaluating the
expression

[Cµ][xm]

|µ|∏
k=2

(
1 + txJk + tx2J2

k + · · ·
)

by expanding the product and expressing each Jucys–Murphy as a sum of transpositions. The result equals
1
|Cµ| times the weighted enumeration of monotone tuples (τ1, . . . , τm) of transpositions in S|µ| that compose
to give a permutation of cycle type µ, where each tuple carries the weight t to the power of its hive number.
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Therefore,

Ht•
g,n(µ1, . . . , µn) =

|Aut µ|
|µ|!

|Cµ| [Cµ][xm]

|µ|∏
k=2

(
1 + txJk + tx2J2

k + · · ·
)

=
1∏n
i=1 µi

[Cµ][xm]

|µ|∏
k=2

[
1 +

txJk
1− xJk

]
.

The factor |Aut µ| arises to take into account the fact that the definition of the topological Narayana
polynomial requires the cycles of µ to be labelled. �

The form of the expression given for Ht
g,n(µ1, . . . , µn) in the proposition above allows us to utilise the

work of Alexandrov, Chapuy, Eynard and Harnad [1] to deduce that topological Narayana polynomials
are governed by topological recursion. That is, the proposition above gives us that topological Narayana
polynomials are an example of so-called weighted Hurwitz numbers discussed in [1], where the weight is
given by G(z) = 1−z+tz

1−z ; this weight matches precisely the form of the expression in the product formula
above and indeed, the product formula is what motivates the weight function. That is, the following theorem
is an application of Theorem 1.1 in [1] with G(z) = 1−z+tz

1−z , S(z) = z and γ = 1. I note that, while the work
of Alexandrov, Chapuy, Eynard and Harnad [1] has the assumption that G(z) is a polynomial (whereas in
our case it is a rational function), the results in this work were later extended by Bychkov, Dunin-Barkowski,
Kazarian and Shadrin [20] to include the case where G is a power series. Thus, we deduce the following
result.

Theorem 8.2.2. The correlation di�erentials resulting from applying topological recursion to the rational spectral
curve (CP1, x, y, ω0,2) with

x(z) =
z(1− z)

1− z + tz
, y(z) =

1− z + tz

1− z
, and ω0,2(z1, z2) =

dz1 dz2

(z1 − z2)2
(8.4)

satisfy

ωg,n(z1, . . . , zn) = δg,0 δn,2
dx1 dx2

(x1 − x2)2
+ d1 · · · dn

∑
µ1,...,µn>1

Ht
g,n(µ1, . . . , µn)xµ1

1 · · ·xµnn .

Setting t = 1 into the spectral curve (8.4) recovers the monotone Hurwitz number spectral curve given
by Do, Dyer and Mathews [31].

The above spectral curve is a rational parametrisation of the global spectral curve given by

xy2 + (t− 1)xy − y + 1 = 0.

8.2.2 Symmetry

The topological Narayana polynomial Ht
g,n(µ1, . . . , µn) is a polynomial in t of degree |µ| − 1, vanishing at

t = 0; these facts are reasonably clear from the definition of Ht
g,n(µ1, . . . , µn). In addition, the topological

Narayana polynomial Ht
g,n(µ1, . . . , µn) is symmetric, which is the content of the next proposition.

Proposition 8.2.3. The topological Narayana polynomial Ht
g,n(µ1, . . . , µn) is symmetric in the sense that its coef-

�cients form a palindromic sequence. That is,

Ht
g,n(µ1, . . . , µn)

∣∣
t=t−1 = t−|µ|Ht

g,n(µ1, . . . , µn).

Proof. I will prove this using the topological recursion for topological Narayana polynomials, Theorem 8.2.2.
Take the spectral curve S = (CP1, x, y, ω0,2) defined in (8.4) and define S̃ = S|t 7→t−1 . Applying topological
recursion to S̃ yields correlation di�erentials that satisfy

ω̃g,n(z1, . . . , zn) = d1 · · · dn
∑

µ1,...,µn>1

Ht
g,n(µ1, . . . , µn)

∣∣
t 7→t−1 x

µ1

1 · · ·xµnn . (∗)
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for (g, n) 6= (0, 2).

On the other hand, define Ŝ = (CP1, x̂, ŷ, ω0,2) with x̂(z) = t−1x(z) and ŷ(z) = ty(z) + 1 − t. Applying
topological recursion to Ŝ yields correlation di�erentials that satisfy

ω̂g,n(z1, . . . , zn) = d1 · · · dn
∑

µ1,...,µn>1

Ht
g,n(µ1, . . . , µn) x̂µ1

1 · · · x̂µnn . (∗)

This is a nontrivial statement. First, it is known that rescaling x or y by a constant c rescales ωg,n by c2−2g−n;
this is a direct application of the homogeneity result of Eynard and Orantin [54, Section 4.1]. Thus given
that Ŝ has rescaled x by t−1 and y by t, the resulting factors in ω̂g,n cancel. Further, the constant term 1− t
in ŷ does not contribute to ω̂g,n. The only role ŷ plays in the definition of the recursion is in the occurrence
of ŷ in denominator of the recursion kernel Kα(z1, z), but in this case the constant terms cancel:

ŷ(z)− ŷ(σα(z)) = ty(z) + 1− t− (ty(σα(z)) + 1− t) = t [y(z)− y(σα(z))] .

One can verify that both S̃ and Ŝ are parametrisations of the same algebraic curve, satisfying

xy2 +
(

1
t − 1)xy − y + 1 = 0, and x̂ŷ2 +

(
1
t − 1)x̂ŷ − ŷ + 1 = 0.

Therefore, ω̃g,n = ω̂g,n under the transformation x 7→ x̂ and y 7→ ŷ, and equating coe�cients in the
asterisked equations yields

Ht
g,n(µ1, . . . , µn)

∣∣
t7→t−1 = t−|µ|Ht

g,n(µ1, . . . , µn)

for (g, n) 6= (0, 2). In the case of (g, n) = (0, 2), ω̃0,2 = ω̂0,2 = ω0,2, hence,

ω̃0,2 −
dx1 dx2

(x1 − x2)2
=

dz1 dz2

(z1 − z2)2
− dx1 dx2

(x1 − x2)2
= d1d2

∑
µ1,µ2>1

Ht
0,2(µ1, µ2)

∣∣
t7→t−1 x

µ1

1 xµ2

2 ,

while

ω̂0,2 −
dx̂1 dx̂2

(x̂1 − x̂2)2
=

dz1 dz2

(z1 − z2)2
− dx1 dx2

(x1 − x2)2
= d1d2

∑
µ1,µ2>1

Ht
0,2(µ1, µ2) x̂µ1

1 x̂µ2

2 .

Thus Ht
0,2(µ1, µ2)

∣∣
t7→t−1 = t−|µ|Ht

0,2(µ1, µ2), as required. �

The use of the topological recursion in the proof the symmetry result above reveals that this type of symmetry
is detectable from the spectral curve. Hence one can seek this type of symmetry in spectral curves more
generally, and this might lead to sequences of polynomials that are suitable for generalising via topological
recursion.

8.2.3 One-point recursion

The topological Narayana polynomials also satisfy a one-point recursion, which generalises the linear recur-
sion for Narayana polynomials of equation (8.2). This one-point recursion can be proven using a computer,
using the Gfun package in Maple [99] and following the techniques of Chaudhuri and Do [23].

Proposition 8.2.4. For µ > 3, the topological Narayana polynomials satisfy the following recursion:

µ2Ht
g,1(µ) = (t+ 1)(2µ− 3)(µ− 1)Ht

g,1(µ− 1)− (t− 1)2(µ− 3)(µ− 2)Ht
g,1(µ− 2)

+ µ2(µ− 1)2Ht
g−1,1(µ). (8.5)

Setting t = 1 into the recursion (8.5) above recovers the one-point recursion for monotone Hurwitz numbers
of Chaudhuri and Do [23], while setting g = 0 recovers the recursion (8.2) for Narayana polynomials, using
the fact that µHt

0,1(µ) = N(µ− 1).
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8.2.4 Cut-and-join recursion

The following cut-and-join recursion is a higher topology analogue of the quadratic recursion for Narayana
polynomials of equation (8.3), in the sense that restricting it to the case of (g, n) = (0, 1) recovers (8.3).
Moreover, setting t = 1 recovers the known cut-and-join recursion for monotone Hurwitz numbers of
Goulden, Guay-Paquet and Novak [61], and the proof below generalises their argument.

Proposition 8.2.5. Let S = {2, 3, . . . , n}. For all (g, n) and µ1 + · · · + µn > 1, the topological Narayana
polynomials satisfy the following recursion:

µ1H
t
g,n(µ1, ~µS) =

n∑
i=2

(µ1 + µi)H
t
g,n−1(µ1 + µi, ~µS\{i}) +

∑
α+β=µ1

αβHt
g−1,n+1(α, β, ~µS)

+
∑

α+β=µ1

∑
g1+g2=g
ItJ=S

αβHt
g1,|I|+1(α, ~µI)H

t
g2,|J|+1(β, ~µJ) + (t− 1)(µ1 − 1)Ht

g,n(µ1 − 1, ~µS). (8.6)

For I = {i1, . . . , ik}, the shorthand notation ~µI denotes µi1 , . . . , µik . Along with the base case Ht
0,1(1) = 1, this

uniquely de�nes all topological Narayana polynomials.

Proof. Fix a permutation σ ∈ S|µ| with cycle type (µ1, . . . , µn) where the element d is in a cycle of length
µ1. For simplicity, I will say that d is in the µ1-cycle of σ. While this is not strictly correct because the cycles
are not labelled at this point, the analysis and resulting recursion will be the same. If, for example, after we
label the cycles the element d happens to be in the cycle labelled 2 (corresponding to µ2), we would have
obtained the same recursion but with a relabelling of µ1 and µ2.

Let (τ1, . . . , τm) be a tuple of transpositions satisfying the first, third and fourth conditions given in Defini-
tion 8.1.1 and such that

τ1 · · · τm = σ. (8.7)

Let M t
g,n(µ1, . . . , µn;σ) be the number of such tuples of transpositions.

The transitivity condition forces d = |µ| to appear at least once in τ1, . . . , τm while the monotonicity insists
that τm = (a d) for some a ∈ {1, 2, . . . , d− 1}.

Apply τm to both sides of (8.7) to obtain

τ1 · · · τm−1 = σ (a d).

Applying (a d) to σ forces the cycle type of σ to change in one of the following two ways. Either a is not in
the same cycle as d and applying (a d) joins some µi cycle to µ1, for i ∈ {2, 3, . . . , n}, or a is in the same
cycle of σ as d, in which case applying (a d) cuts the µ1-cycle into two.

In the former case, for each cycle µi for i ∈ {2, 3, . . . , n}, there are µi choices for a. Hence, for each i, there
are µi such transpositions (a d) that give rise to this scenario. In this case, the subgroup 〈τ1, . . . , τm−1〉 must
be transitive on {1, 2, . . . , d}, therefore, the t-weight for τ1, . . . , τm−1 is the same as for τ1, . . . , τm. All such
tuples of transpositions are therefore enumerated by

n∑
i=2

µiM
t
g,n−1(µ1 + µi, ~µS\{i};σ).

In the latter case where a is in the µ1-cycle of σ, one can split the µ1-cycle into two cycles of lengths α and
β for all α + β = µ1. For each such α, β, there is only one transposition (a d) that cuts the µ1-cycle of the
fixed permutation σ into two cycles with the correct lengths. If 〈τ1, . . . , τm−1〉 is transitive on {1, 2, . . . , d},
then the sequence of transpositions τ1, . . . , τm−1 has again the same t-weight as τ1, . . . , τm and contributes∑

α+β=µ1

M t
g−1,n+1(α, β, ~µS ;σ).
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In the case that 〈τ1, . . . , τm−1〉 is not transitive on {1, 2, . . . , d}, the only time τ1, . . . , τm−1 has a di�erent
t-weight to τ1, . . . , τm is when τ1, . . . , τm−1 does not contain d. In this case the weight of the tuple of
transpositions τ1, . . . , τm−1 is precisely one fewer than that of τ1, . . . , τm. This scenario contributes to
M tσ

0,1(1)M tσ
g,n(µ1 − 1, ~µS). Therefore, the case where τm cuts µ1 and τ1, . . . , τm−1 is not transitive on

{1, 2, . . . , d} contributes∑
α+β=µ1

∑
g1+g2=g
ItJ=S

M t
g1,|I|+1(α, ~µI ;σ)M t

g2,|J|+1(β, ~µJ ;σ) + (t− 1)M t
g,n(µ1 − 1, ~µS ;σ).

Therefore,

M t
g,n(µ1, ~µS ;σ) =

n∑
i=2

µiM
t
g,n−1(µ1 + µi, ~µS\{i};σ) +

∑
α+β=µ1

M t
g−1,n+1(α, β, ~µS ;σ)

+
∑

α+β=µ1

∑
g1+g2=g
ItJ=S

M t
g1,|I|+1(α, ~µI ;σ)M t

g2,|J|+1(β, ~µJ ;σ) + (t− 1)M t
g,n(µ1 − 1, ~µS ;σ). (8.8)

Note that the M t
g,n(µ1, . . . , µn;σ) enumerates tuples of transpositions that compose to give a fixed per-

mutation σ ∈ S|µ| of cycle type µ, while the topological Narayana polynomial Ht
g,n(µ1, . . . , µn) enumerates

tuples of transpositions that give any permutation of cycle type µ, but where the cycles of the permutation
are labelled and each tuple is weighted by 1

|µ|! . Therefore, pass from the tuples I have enumerated to those
enumerated by Ht

g,n(µ1, . . . , µn) and carrying the correct weight by

Ht
g,n(µ1, . . . , µn) =

1

|µ|!
|Cµ| |Aut µ|M t

g,n(µ1, . . . , µn;σ) =
1∏n
i=1 µi

M t
g,n(µ1, . . . , µn;σ).

The second equality is using that the size of the conjugacy class is |Cµ| = |µ|!
|Aut µ|

∏n
i=1 µi

. Applying this
substitution to (8.8) and dividing throughout by µ2 · · ·µn yields the cut-and-join (8.6). �

8.2.5 Real-rootedness and interlacing conjectures

Computation of topological Narayana polynomials, some of which appear in Section 8.4, gives strong evid-
ence for the conjectures that topological Narayana polynomials have only real roots and that they interlace
in the precise sense described below.

Conjecture 8.2.6. The topological Narayana polynomial Ht
g,n(µ1, . . . , µn) has only real roots.

To state the interlacing conjecture, I first give a definition of interlacing.

De�nition 8.2.7. We say that a polynomial q(x) interlaces with a polynomial p(x) if

• q(x) has degree n and p(x) has degree n+ 1, for a positive integer n;

• q(x) has n real roots b1 6 · · · 6 bn while p(x) has n + 1 real roots a1 6 · · · 6 an+1, counted with
multiplicity; and

• a1 6 b1 6 · · · 6 an 6 bn 6 an+1.

The sequence of Narayana polynomials interlace; that is, N(n) interlaces with N(n + 1) for all positive
integers n. On the other hand, the family of topological Narayana polynomials Ht

g,n(µ1, . . . , µn) do not
form a single sequence, so one can ask what the analogous notion of interlacing is in this generalised setting.
The following conjecture posits that the topological Narayana polynomial Ht

g,n(µ1, . . . , µn) interlaces with
each topological Narayana polynomial in which one of the arguments has been increased by 1.

Conjecture 8.2.8. The topological Narayana polynomialHt
g,n(µ1, . . . , µn) interlaces with the topological Narayana

polynomials

Ht
g,n(µ1 + 1, µ2, . . . , µn), Ht

g,n(µ1, µ2 + 1, . . . , µn), . . . ,Ht
g,n(µ1, µ2, . . . , µn + 1).
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Interlacing for the usual Narayana polynomials can be proved using what I call the linear recursion (8.2):

N(n) =
1

n+ 1

[
(2n− 1)(t+ 1)N(n− 1)− (n− 2)(t− 1)2N(n− 2)

]
.

The idea of the proof proceeds by induction on n: assume that N(n−2) interlaces with N(n−1), substitute
the roots of N(n− 1) into the recursion above, and use a sign argument along with the intermediate value
theorem to deduce that N(n− 1) interlaces with N(n).

Generalising this argument for topological Narayana polynomials is met with a number of obstructions.
First, neither the one-point nor the cut-and-join recursion for topological Narayana polynomials has the
three-term structure exhibited in the linear recursion, hence the sign argument doesn’t follow through in
the same way. To use a sign argument in conjunction with the one-point recursion for topological Narayana
polynomials (8.5), one comes up against the issue that the term µ2(µ− 1)2Ht

g−1,1(µ) prevents a straightfor-
ward inductive argument from carrying through. Furthermore, this would only prove that Hg,1(µ) interlaces
with Hg,1(µ− 1), and one would require a new idea to extend this to general n > 1. On the other hand, to
use a sign argument in conjunction with the cut-and-join recursion (8.6) one would require a much stronger
inductive assumption on the locations of the roots of the topological Narayana polynomials that feature on
the right side of the recursion.

The data given in Section 8.4 a�rms both the real-rootedness and interlacing conjectures.

8.3 Remarks

While the idea of using topological recursion to generalise natural and pre-existing combinatorial problems
is relatively unexplored, one can wonder whether the apparent phenomenon exhibited here is more general.
That is, to what extent does generalising enumerative problems via topological recursion preserve properties
of the original enumerations? In particular, it would be interesting to find other examples of the conjectural
real-rootedness and interlacing phenomena described above. A natural place to start such an exploration
is with sequences of polynomials that are known to satisfy such properties, for example, orthogonal poly-
nomials. On the other hand, one can detect the symmetry property of topological Narayana polynomials
from the spectral curve (8.4); this idea could also lead to other natural candidates to study.

In the process of generalising Narayana polynomials via topological recursion, a choice was made in the
way that the Narayana polynomials are stored in the spectral curve. As mentioned in the introduction, as a
refinement of the Catalan numbers, Narayana numbers are stored in the (0, 1)-enumeration of both ribbon
graphs and monotone Hurwitz numbers; the way in which each of these enumerations is stored in their
respective spectral curves di�ers. Thus, we could have instead deformed the ribbon graph spectral curve
to generalise Narayana polynomials and one might wonder what polynomials are generated in this case.
Explicitly, the enumerations of ribbon graphs and monotone Hurwitz numbers in the case of (g, n) = (0, 1)

(that is, Catalan numbers) are stored in the (0, 1) correlation di�erentials in the following di�erent ways:

ωMH
0,1 = d

∑
µ>1

H60,1(µ)xµ =
∑
µ>1

µH60,1(µ)xµ−1 dx =
∑
µ>1

Catµ−1 x
µ−1 dx

ωRG
0,1 = d

∑
µ>1

R0,1(µ)x−µ =
∑
µ>1

−µR0,1(µ)x−µ−1 dx =
∑
µ>1

−Catµ x
−2µ−1 dx.

The final equalities in each line are using that µH60,1(µ) = Catµ−1 and 2µR0,1(2µ) = Catµ respectively.
If one uses the ribbon graph enumeration as the framework for generalising Narayana polynomials, one
obtains the following global spectral curve:

xy2 + ((t− 1)− x2)y + x = 0.

This is a genus 1 curve; it is well-known that dealing with positive genus spectral curves is necessarily more
di�cult than genus 0. The analysis may still be possible though and is deferred to future work.
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Monotone Hurwitz numbers first appeared in the literature in a series of papers by Goulden, Guay-Paquet
and Novak [60, 61, 62] where they featured as coe�cients of the large N expansion of the Harish-Chandra–
Itzukson–Zuber (HCIZ) matrix integral. Separately, though through a similar mechanism, monotone Hur-
witz numbers make an appearance as the coe�cients of the largeN expansion of the cumulants of the inverse
Laguerre unitary ensemble [28]. It would be interesting to know if either of these matrix models can be
deformed to introduce a t-parameter and recover the topological Narayana polynomials. In particular, the
representation theoretic interpretation, Proposition 8.2.1, lends itself well to potentially being studied via the
Weingarten calculus to reverse engineer a matrix integral that stores the topological Narayana polynomials
as coe�cients of its large N expansion [27].

8.4 Data

The following data was calculated in SageMath [98] using the cut-and-join recursion in Proposition 8.2.5.

g (µ1, . . . , µn) µ1 · · ·µnHt
g,n(µ1, . . . , µn)

0 (1) 1

0 (2) t

0 (3) t2 + t

0 (4) t3 + 3t2 + t

0 (5) t4 + 6t3 + 6t2 + t

0 (6) t5 + 10t4 + 20t3 + 10t2 + t

0 (7) t6 + 15t5 + 50t4 + 50t3 + 15t2 + t

0 (8) t7 + 21t6 + 105t5 + 175t4 + 105t3 + 21t2 + t

0 (1, 1) t

0 (2, 1) 2t2 + 2t

0 (3, 1) 3t3 + 9t2 + 3t

0 (2, 2) 4t3 + 10t2 + 4t

0 (4, 1) 4t4 + 24t3 + 24t2 + 4t

0 (3, 2) 6t4 + 30t3 + 30t2 + 6t

0 (5, 1) 5t5 + 50t4 + 100t3 + 50t2 + 5t

0 (4, 2) 8t5 + 68t4 + 128t3 + 68t2 + 8t

0 (3, 3) 9t5 + 72t4 + 138t3 + 72t2 + 9t

0 (1, 1, 1) 4t2 + 4t

0 (2, 1, 1) 10t3 + 28t2 + 10t

0 (3, 1, 1) 18t4 + 102t3 + 102t2 + 18t

0 (2, 2, 1) 24t4 + 120t3 + 120t2 + 24t

0 (4, 1, 1) 28t5 + 268t4 + 528t3 + 268t2 + 28t

0 (3, 2, 1) 42t5 + 348t4 + 660t3 + 348t2 + 42t

0 (2, 2, 2) 56t5 + 424t4 + 768t3 + 424t2 + 56t
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g (µ1, . . . , µn) µ1 · · ·µnHt
g,n(µ1, . . . , µn)

1 (2) t

1 (3) 5t2 + 5t

1 (4) 15t3 + 40t2 + 15t

1 (5) 35t4 + 175t3 + 175t2 + 35t

1 (6) 70t5 + 560t4 + 1050t3 + 560t2 + 70t

1 (7) 210t7 + 3360t6 + 14700t5 + 23520t4 + 14700t3 + 3360t2 + 210t

1 (8) 330t8 + 6930t7 + 41580t6 + 97020t5 + 97020t4 + 41580t3 + 6930t2 + 330t

1 (1, 1) t

1 (2, 1) 10t2 + 10t

1 (3, 1) 45t3 + 120t2 + 45t

1 (2, 2) 50t3 + 128t2 + 50t

1 (4, 1) 140t4 + 700t3 + 700t2 + 140t

1 (3, 2) 168t4 + 792t3 + 792t2 + 168t

1 (5, 1) 350t5 + 2800t4 + 5250t3 + 2800t2 + 350t

1 (4, 2) 448t5 + 3348t4 + 6128t3 + 3348t2 + 448t

1 (3, 3) 462t5 + 3432t4 + 6312t3 + 3432t2 + 462t

1 (1, 1, 1) 20t2 + 20t

1 (2, 1, 1) 140t3 + 368t2 + 140t

1 (3, 1, 1) 588t4 + 2892t3 + 2892t2 + 588t

1 (2, 2, 1) 672t4 + 3168t3 + 3168t2 + 672t

1 (4, 1, 1) 1848t5 + 14548t4 + 27128t3 + 14548t2 + 1848t

1 (3, 2, 1) 672t4 + 3168t3 + 3168t2 + 672t

1 (2, 2, 2) 2688t5 + 19128t4 + 34416t3 + 19128t2 + 2688t

2 (2) t

2 (3) 21t2 + 21t

2 (4) 161t3 + 413t2 + 161t

2 (5) 777t4 + 3612t3 + 3612t2 + 777t

2 (6) 2835t5 + 20538t4 + 37338t3 + 20538t2 + 2835t

2 (7) 8547t6 + 88473t5 + 251328t4 + 251328t3 + 88473t2 + 8547t

2 (8) 22407t7 + 313005t6 + 1273041t5 + 1990296t4 + 1273041t3 + 313005t2 + 22407t

2 (1, 1) t

2 (2, 1) 42t2 + 42t

2 (3, 1) 483t3 + 1239t2 + 483t

2 (2, 2) 504t3 + 1278t2 + 504t

2 (4, 1) 3108t4 + 14448t3 + 14448t2 + 3108t

2 (3, 2) 3402t4 + 15450t3 + 15450t2 + 3402t

2 (5, 1) 14175t5 + 102690t4 + 186690t3 + 102690t2 + 14175t

2 (4, 2) 16296t5 + 114256t4 + 205376t3 + 114256t2 + 16296t

2 (3, 3) 16443t5 + 115344t4 + 207666t3 + 115344t2 + 16443t

2 (1, 1, 1) 84t2 + 84t

2 (2, 1, 1) 1470t3 + 3756t2 + 1470t

2 (3, 1, 1) 12726t4 + 58794t3 + 58794t2 + 12726t

2 (2, 2, 1) 13608t4 + 61800t3 + 61800t2 + 13608t

2 (4, 1, 1) 72996t5 + 525016t4 + 952136t3 + 525016t2 + 72996t

2 (3, 2, 1) 81774t5 + 573456t4 + 1031460t3 + 573456t2 + 81774t

2 (2, 2, 2) 90552t5 + 619728t4 + 1104624t3 + 619728t2 + 90552t
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