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theory that embeds 4D, N=1 M-theory and the 3D Type II superstring. The worldvolume
(5-brane) theory is that of a single 6D gauge 2-form XMN (σP ) whose field strength is
selfdual. Thus unlike string theory, the spacetime indices are tied to the worldsheet ones:
in the Hamiltonian formalism, the spacetime coordinates are a 10 of the GL(5) of the 5 σ’s
(neglecting τ). The current algebra gives a rederivation of the F-bracket. The background-
independent subalgebra of the Virasoro algebra gives the usual section condition, while a
new type of section condition follows from Gauß’s law, tying the worldvolume to spacetime:
solving just the old condition yields M-theory, while solving only the new one gives the
manifestly T-dual version of the string, and the combination produces the usual string. We
also find a covariant form of the condition that dimensionally reduces the string coordinates.
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1 Introduction

We continue our considerations [1, 2] of how string theory (S-theory) relates to its mani-
festly T-dual formulation (T-theory), M-theory, and the interpretation of F-theory as the
manifestly STU-dual version of all these. These extensions of string theory all give rise
to additional target space coordinates. For M-theory, this the familiar eleventh dimension
arising in the strong-coupling limit of IIA [3] and heterotic E8 strings [4]. For manifestly
T-duality-invariant theories they are the coordinates of double field theory for the winding
modes of compactified strings [5–7]. (Generalized Geometry is a further simplification of
this in which the winding coordinates are truncated.)

In its original form, similar coordinates were conjectured for F-theory, as a review of
section 3 of the foundational reference [8] shows. Indeed, even the string worldvolume was
conjectured to be extended to fundamental brane with 2+2 signature. (The modern use of
the term often refers to type IIB backgrounds that are referred to in [8] as “evidence” for
the existence of such a spacetime- and worldvolume-extended theory.) In this paper, we
will continue to apply the term as originally intended (and extend it to lower-dimensional
“non-critical” versions of that idea). In particular, the models will be of F-theory type if
the U-duality group is realized on the algebra of world-volume currents.

So far all the work on this F-theory [1, 2, 9–19] has described only the massless sector.
However, T-theory was originally derived from string current algebra [5–7]. In this paper
we approach F-theory from its formulation as a fundamental 5-brane, using current algebra
to derive its symmetries, and how they act on a massless background. This fundamental
5-brane is a dynamical one, meant to be first-quantized (and maybe second) in a manner
similar to the string. (Details of the dynamics will be left for the future.) In particular,
in addition to the target space coordinates and their exceptional extensions, the spectrum
will contain infinitely many massive modes.
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Our treatment of fundamental branes also differs from previous versions [20–26] in that
the worldvolume fields XMN (σP ) describing spacetime coordinates are gauge fields. Also,
the currents are all linear in X, unlike treatments based on consideration of Wess-Zumino
terms [14–16]. For the case of F-theory embedding the 3D string, this gauge field is the
6D gauge 2-form with selfdual field strength. The worldvolume indices on this gauge field
X (actually the 5D indices remaining in a temporal gauge) thus become identified with
spacetime indices. Analysis of the current algebra of this theory naturally leads to the
spacetime gauge fields of the massless sector of F-theory, their gauge transformations, the
F-bracket resulting from their algebra, the F-section condition, etc. Just as the indices of
the gauge field tie the worldvolume to spacetime, so does the 2-form’s Gauß law, which
adds a constraint to the generalized Virasoro algebra as well as a new section condition
that reduces σ as well as x.

2 Currents and constraints

Covariant selfdual 6D field theory has been described previously in terms of an action [27].
For simplicity, we start here in a “conformal gauge” where both the 6D metric and Lagrange
multiplier for selfduality have been fixed, using the action only to define the Hamiltonian
formalism, which we find convenient for our analysis.

The action is then, in Lagrangian form,

S = 1
12

∫
FMNPF

MNP d6σ (2.1)

with FMNP = 1
2∂[PXMN ] and F

(±)
MNP = FMNP ± 1

3!εMNP
QRSFQRS . The momentum con-

jugate to Xmn is Pmn. In Hamiltonian form (σM → τ, σm)

S = −
∫ 1

2Pmn∂τX
mnd5σdτ +

∫
H dτ

H =
∫ (1

4PmnP
mn + 1

12FmnpF
mnp +Xτm∂nPmn

)
d5σ, (2.2)

where the field strengths in Hamiltonian language are

Fmnp = 1
2∂[pXmn] and Pmn = Fτmn. (2.3)

The selfdual field strengths are the currents for the covariant derivatives [28]

.mn := F (+)
τmn = Pmn + 1

2εmnpqr∂
rXpq, (2.4)

while the antiselfdual field strengths are the symmetry currents

.̃mn := F (−)
τmn = Pmn −

1
2εmnpqr∂

rXpq. (2.5)

As usual (cf. electromagnetism) the time components of the gauge field X become
Lagrange multipliers. After using them to identify the constraint (Gauß’s law), we eliminate
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them by choosing a temporal gauge. The Virasoro algebra is then defined by the energy-
momentum tensor for the selfdual field strength

TMN = 1
4FM

PQFNPQ ⇒ T
(+)
MN = 1

8F
(+)
M

PQF
(+)
NPQ. (2.6)

(The unusual normalization is consequence of our definition of F (+)
MNP .) This is symmetric

and traceless. Its Hamiltonian components (T(+)mn,T(+)τm,T(+)ττ ) are

Tmn = ηmnT −
1
2η

pq .mp .nq , Sr = 1
16ε

rmnpq .mn .pq , T = 1
8η

mpηnq .mn .pq. (2.7)

The Gauß constraint is

Um := ∂nPmn. (2.8)

For purposes of analyzing kinematics, we need consider only those constraints that are
GL(5) covariant, that is, need not involve the SO(3,2) metric ηmn. (This requires treating
contravariant indices on Xmn as opposite to those on σm.) This is the subset that’s
background independent, since the background is introduced as a GL(5)/SO(3,2)GL(1)
element to break GL(5) to SO(3,2). Various section-like conditions can then be introduced
by replacing some string coordinates in these constraints with their zero-modes [29]:

Virasoro Sm = 1
16ε

mnpqr .np .qr (2.9a)

dimensional reduction
◦
Sm := 1

4ε
mnpqrpnpPqr Um = ∂nPmn (2.9b)

section condition S
◦
m := 1

8ε
mnpqrpnppqr U

◦ m
:= ∂npmn (2.9c)

where the section conditions are to be interpreted as being applied as both

AB = 0 ⇒ ABf = (Af)(Bg) = 0 (2.10)

for f, g that are functions of σ or X(σ) (for hitting with ∂m) or functions of x or X(σ) (for
hitting with pmn).

We thus have 3 types of conditions:

1. We generalized (the background independent part of) the string Virasoro algebra
with the generators Sm of coordinate transformations for the 5 σ’s.

2. We treat Gauß’s law Um, which arises because the 6D X is a gauge field, as a
dimensional reduction condition since it’s linear in the string variables. We also
have a new covariant dimensional reduction condition

◦
Sm. (It simplified using U

◦ m
.

Since ∂[m∂n] = 0, both dimensional reduction conditions can be written with P

replaced with either . or .̃: the latter allows them to commute with Virasoro.) It
replaces PL−PR used in the manifestly T-dual version of the string that has doubled
coordinates. (This reduces to ηmnpmPn in that formalism. Dimensional reduction
for doubled coordinates was invented in [30]. T-theory with doubled selfdual scalars
was considered in [31]. T-theory with both selfdual and anti-selfdual scalars was
attempted in [32, 33].)
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3. The section conditions include S
◦
, originally found by closure of gauge transformations

(see below) in F-gravity [9], and a new one U
◦
that mutually restricts x and σ. (The

former condition reduces to the original section condition 1
2η

mnpmpn in T-theory [5–
7].)

3 Algebras and gauge symmetries

Using the Poisson bracket

[Pmn(1), Xpq(2)] = −iδp[mδ
q
n]δ(1− 2), (3.1)

we find the algebra

[ .mn(1), .pq(2)] = 2iεmnpqr∂rδ(1− 2)[
.mn(1), .̃pq(2)

]
= 0[

.̃mn(1), .̃pq(2)
]

= −2iεmnpqr∂rδ(1− 2). (3.2)

(Here “1” and “2” refer to points on the worldvolume, and δ(1−2) is shorthand for δ(5)(σ1−
σ2).) Selfduality ( .̃ = 0) is thus a second-class constraint (as for string scalars [28]), but we
saw above the covariant division into first-class as 1

4ε
mnpqrpnpPqr = 1

4ε
mnpqrpnp .̃qr (using

a section condition). Unlike [27], the new constraint is linear in the string coordinates.
From the .. commutation relations we find

[Sp(1), .mn(2)] = i

2∂
qδ(1− 2)δp[q .mn](1) and [Up(1), .mn(2)] = 0. (3.3)

Straighforward calculation gives

[Sm(1), Sn(2)] = i∂(mδ(1− 2)Sn) 1
2((1) + (2))− i

2δ(1− 2)
[
∂[mSn] − εmnpqr .pqUr

]
[S,U] = [U,U] = 0 (3.4)

where we are defining O1
2((1) + (2)) := 1

2 [O(1) + O(2)].
On functions f(X) = f(0) + 1

2X
mn∂mnf(0) + O(X2), the Poisson brackets with the

currents give spacetime derivatives

[ .mn(1), f(X(2))] = −i∂mnfδ(1− 2) = [ .̃mn(1), f(X(2))]. (3.5)

The worldvolume version of this is given by

[(Sm − S̃m)(1), f(2)] = −i∂mfδ(1− 2) (3.6)

(with S̃ formally the same as S but with . replaced by .̃) so that, up to second-class
constraints, S generates translations in σ. To see this, note that

∂rf = 1
8ε

mnpqr(∂mnf)( .pq − .̃pq)− (∂mXnr)(∂mnf) = 1
8ε

mnpqr(∂mnf)( .pq − .̃pq) (3.7)
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modulo the new section condition (2.9c)

(∂nf)(∂mng) = 0 ∀ f(X), g(X). (3.8)

(In T-theory the analogue of this formula for ∂f was derived by dimensionally reducing
(solving the second-class constraint) and then oxidizing [6].)

Worldvolume (σ) reparameterizations are generated by

δξ = i

∫
ξm Sm. (3.9)

Then (3.3) implies

δξ .mn = 1
2∂

p(ξ[p .mn]) = (∂pξp) .mn + (∂pξ[m) .n]p + ξp∂
p .mn + ξ[m∂

p .n]p, (3.10)

corresponding to a density term (integrable on scalars), two contravariant index transfor-
mation terms, a coordinate transformation, and two terms for integrability on non-scalars.
This demonstrates that . isn’t exactly a tensor, but its integral is invariant.

Using (3.7), we can compute the commutator of two vector fields V mn
i for i = 1, 2:

[V mn
1 .mn, V pq

2 .pq] = 2iεmnpqr∂rδ(1− 2)V mn
1 V pq

2
1
2((1) + (2))

− iδ(1− 2)
[
V mn

[1 ∂mnV
pq

2] −
1
8V

[mn
[1 ∂mnV

pq]
2]

]
.pq, (3.11)

modulo the second-class constraints (and sectioning). We use this to check the algebra of
(spacetime) gauge transformations: defining

Λi := i

2

∫
λmni .mn (3.12)

for i = 1, 2, we find for their commutator

[Λ1,Λ2] = i

2

∫ [1
2λ

mn
[1 ∂mnλ

pq
2] .pq −

1
16λ

[mn
[1 ∂mnλ

pq]
2] .pq

]
. (3.13)

This shows that the algebra of gauge transformations (cf. ref. [9]) closes

[Λ1,Λ2] = Λ12 with λmn12 = 1
2λ

pq
[1 ∂pqλ

mn
2] −

1
16λ

[mn
[1 ∂pqλ

pq]
2]

= 1
4λ

pq
[1 ∂pqλ

mn
2] −

1
2λ

p[m
[1 ∂pqλ

n]q
2] −

1
4λ

mn
[1 ∂pqλ

pq
2] . (3.14)

Note that (3.7) implies that the gauge parameter itself has the gauge ambiguity

δλmn = 1
2ε

mnpqr∂pqλr. (3.15)
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4 Backgrounds

Background fields are introduced as usual through the covariant derivatives

.ab = 1
2Eab

mn .mn. (4.1)

Then (3.11) applied to δλ .ab = [Λ, .ab] gives

δλEab
mn = 1

2λ
pq∂pqEab

mn − 1
2Eab

pq∂pqλ
mn + 1

8Eab
[mn∂pqλ

pq]

= 1
2λ

pq∂pqEab
mn + 1

2Eab
mn∂pqλ

pq + Eab
p[m∂pqλ

n]q, (4.2)

in agreement with [9]. (There is also a nonderivative Sp(4) gauge transformation on the
flat indices a, b.)

Factorization of the vielbein follows from requiring that the result Sa of replacing .mn
with .ab in S does not generate an independent symmetry. This is essentially the statement
that ε is a tensor under transformation by the vielbein, and thus the vielbein is an element
of GL(5): introducing linear dependence through a new vielbein Ema,

Sa ∼ SmEm
a ⇒ 1

4ε
abcdeEbc

mnEde
pq ∼ εmnpqrEra ⇒ Eab

mn = E[a
mEb]

n (4.3)

where Eam is the inverse of Ema, and we have chosen the proportionality factor to be
det(Eam) in the final step for convenience. Thus Eam and Eab

mn are representations of
GL(5) in the 5 and 10 representations, each of which has been expressed in terms of the
other above.

Alternatively, using (3.11) again, one computes that

[ .ab(1), .cd(2)] = i

2εmnpqr∂
rδ(1− 2)EabmnEcdpq

1
2((1) + (2)) (4.4)

− i

8δ(1− 2)
[
Eab

mn∂mnEcd
pq − 1

8Eab
[mn∂mnEcd

pq] − ab ↔ cd

]
Epq

ef .ef .

Then the first term has to be proportional to εabcdeEme∂mδ(1 − 2). Since Eam is thus an
unconstrained matrix, it’s more convenient to use as the fundamental field. We therefore
use (4.2) to find its gauge transformation:

δEa
m = 1

2λ
pq∂pqEa

m + 1
4Ea

m∂pqλ
pq + Ea

p∂pqλ
qm. (4.5)

To rewrite (4.4) in terms of the fundamental field, it is useful to flatten the indices on the
derivatives ∂ab := Ea

mEb
n∂mn. The anholonomy coefficients

[∂ab, ∂cd] = 1
2
[
cab cd

ef − ccd abef
]
∂ef (4.6)

reduce to cab cdef = (∂abE[c
m)Em[eδ

f ]
d] =: cab [c

[eδ
f ]
d] . In terms of these, (4.4) becomes

[ .ab(1), .cd(2)] = i

2δ(1−2)
[
ce[ab]

e .cd+cab [c
e .d]e+ce[c| [ae .b]|d]+c[c|[ab]

e .|d]e−([ab]↔ [cd])
]

+2idet(Eam)εabcde∂eδ(1−2), (4.7)

where ∂a := Em
a∂m and we have rewritten EamEbnEcpEdqEerεmnpqr = det(Eam)εabcde.

– 6 –



J
H
E
P
0
2
(
2
0
2
1
)
0
4
7

5 Sections: F → M,T,S

Sectioning is straightforward. Solving the old section condition S
◦
m as before, but also the

new dimensional reduction condition
◦
Sm, gives (for m = −1, 0, 1, 2, 3)

εmnpqrpnppqr = 0 ⇒ pij = 0 ; p = p−1i (i = 0, 1, 2, 3)

εmnpqrpnpPqr = 0 ⇒ Pij = 0 ; P = P−1i

.−1i = P−1i , .ij = −εijkl∂kX−1l

Si = (∂[iX−1j])P−1j , S−1 = 1
2εijkl(∂

iX−1j)(∂kX−1l)

Ui = −∂−1P−1i , U−1 = ∂iP−1i

(5.1)

describing M-theory, still on a 5-brane, but in 4 spacetime dimensions.
On the other hand, solving the new conditions U and U

◦
gives

∂npmn = 0 ⇒ ∂i = p3i = 0 ; ∂ = ∂3 , p = pij (i = −1, 0, 1, 2)

∂nPmn = 0 ⇒ P3i = 0 ; P = pij

.3i = 0 , .ij = Pij + 1
2εijkl∂

3Xkl

Si = 0 , S3 = 1
8ε

ijkl .ij .kl
◦
Si = 0 ,

◦
S3 = 1

4ε
ijklpijPkl

(5.2)

describing T-theory on a 1-brane (string), in 6 (i.e., doubled) dimensions.
Solving both sets of conditions gives S-theory:

∂ = ∂3 , p = p−1i (i = 0, 1, 2)

P = P−1i

.3i = 0 ; .−1i = P−1i , .ij = −εijk∂3X−1k

S = S3 = (∂3X−1i)P−1i (5.3)

6 Conclusions

Starting from the worldvolume theory of a selfdual gauge form in D=6, we have derived the
conditions (2.9) that generalize string theory to F-theory. All of them are new except for the
section condition of F-gravity, which we have now found from first principles, along with the
field representation of F-gravity. (Reduction to T-theory also gives a new covariant form
for its dimensional reduction condition.) Their algebra follows from that of the (selfdual)
currents (2.4), which generate the gauge transformations of F-gravity. (The constraints Sm

generate σ reparametrizations.)
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Many future avenues of investigation are suggested:

1. The covariant 6D conformal field theory might be useful, e.g., for analyzing α′ cor-
rections. This would require an analysis of the algebra of the “T” constraints in (2.7)
responsible for the dynamics. A related problem is the 6D worldvolume vielbein:
if part is identified with the spacetime vielbein, then the remainder might be the 6
gauge fields/Lagrange multipliers for worldvolume coordinate transformations.

2. Including the currents for SO(3,2) (or SO(3,3) for the 6D formulation) would allow
the definition of truly covariant derivatives on the worldvolume and their torsion and
curvature [34].

3. We have looked at only the bosonic string. Generalization to the superstring should be
straightforward using [2]. Then reduction to T-theory can be compared to the formu-
lation with Ramond-Ramond currents [35]. The tying of worldvolume and spacetime
symmetries in the bosonic case suggests that the Green-Schwarz and Ramond-Neveu-
Schwarz formulations might be more directly related.

4. Of course, these results should be generalized to higher dimensions. However, simple
use of selfdual forms would give different cosets than those found in the bosonic sectors
of supergravities. Supersymmetry, especially for the D = 4, 6, and 10 superstrings,
should place new restrictions. For the D = 4 case, the bosonic coordinates are a spinor
16 representation of SO(5,5). Then the section condition uses a 10D γ-matrix [36, 37].
The bosonic covariant derivative then resembles a fermionic supersymmetry-covariant
derivative:

.µ = Pµ + (γm)µν∂mXν ⇒ [ .µ, .ν ] = 2i(γm)µν∂mδ . (6.1)

Also,
Sm = 1

4(γm)µν .µ .ν . (6.2)
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