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In recent years there have been significant progresses in the understanding of scatter-

ing amplitudes at both strong and weak coupling. There are new dualities discovered,

new symmetries demystified and new hidden structures unearthed. And we will dis-

cuss these aspects of planar scattering amplitudes in N = 4 Super Yang-Mills theory

in this dissertation.

Firstly, we review the discovery and development of a new symmetry: the dual

superconformal symmetry. Inspired by this we present our study of dual confor-

mally invariant off-shell four-point Feynman diagrams. We classify all such diagrams

through four loops and evaluate 10 new off-shell integrals in terms of Mellin-Barnes

representations, also finding explicit expression for their infrared singularities.

Secondly, we discuss about the recent progress on the calculation of Wilson loops at

both strong and weak coupling. A remarkable feature of light-like polygon Wilson

loops is their conjectured duality to MHV scattering amplitudes, which apparently

holds at all orders in perturbation as well as non-perturbation theories. We demon-

strate, by explicit calculation, the completely unanticipated fact that the duality

continues to hold at two loops through order epsilon in dimensional regularization

for both the four-particle amplitude and the (parity-even part of the) five-particle

amplitude.

Finally, we discuss about the structure of scattering amplitudes in N = 8 Super

Gravity theory, which shares many features with that of N = 4 Super Yang-Mills.

We present and prove a new formula for the MHV scattering amplitude of n gravi-

tons at tree level. Some of the more interesting features of this formula, which set it

apart as being significantly different from many more familiar formulas, include the

absence of any vestigial reference to a cyclic ordering of the gravitons and the fact

that it simultaneously manifests both Sn−2 symmetry as well as large-z behavior.

The formula is seemingly related to others by an enormous simplification provided

by O(nn) iterated Schouten identities, but our proof relies on a complex analysis

argument rather than such a brute force manipulation. We find that the formula

has a very simple link representation in twistor space, where cancellations that are

non-obvious in physical space become manifest.
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Chapter 1

Introduction

1.1 Overview

In this dissertation, we will discuss about recent progress in the understanding of

the structure of scattering amplitudes in gauge theories, especially in N = 4 su-

persymmetric Yang-Mills (SYM) theory. One can wonder about the need to study

amplitudes in a more "realistic" theory than N = 4 SYM. We will justify this and

give a brief review of the field of scattering amplitudes as below.

The N = 4 SYM is a remarkable model of mathematical physics. It is the gauge the-

ory with maximal supersymmetry and is superconformally invariant at the classical

and quantum level with a coupling constant free of renormalization. In its planar

limit all observables of the SU(N) model depend on a single tunable parameter, the

’t Hooft coupling λ. Moreover the theory is dual to type IIB superstring theory on

AdS5 × S5 via the AdS/CFT correspondence [6]. The duality implies that the full

1
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quantum anomalous dimensions of various series of gauge-invariant composite op-

erators are equal to energies of different gravity modes or configurations of strings

in anti-de Sitter space. In recent years we have seen tremendous progress in our

understanding of this most symmetric AdS/CFT system due to its rich symmetries,

hidden structures and integrability.

The scattering amplitudes in N = 4 SYM have a number of remarkable properties

both at weak and at strong coupling. Defined as matrix elements of the S−matrix

between asymptotic on-shell states, they inherit the symmetries of the underlying

gauge theory. In addition, trying to understand the properties of the scattering

amplitudes, one can discover new dynamical symmetries of the N = 4 theory.

Although of fundamental interest in jet physics, perturbative QCD amplitudes are

notoriously difficult to calculate. The situation is alleviated in maximal N = 4

supersymmetry, but it had been, for a long time during the 1990’s, quite a formidable

effort to calculate first few orders of gluon scattering amplitudes although a unitarity

method was developed [64, 65]. Because N = 4 SYM shares many features with

QCD, especially at tree level, an understanding of structures in N = 4 SYM will

help to understand QCD, as well as supergravity.

Many developments have been made in the study of on-shell scattering amplitudes

in N = 4 SYM since the beginning of 2000’s. Back from 1988, maximally helicity

violating (MHV) n-gluon scattering amplitudes at tree-level have been given a very

simple form when expressed in the spinor helicity formalism conjectured by Park-

Taylor and proved by Berends-Giele [25, 26]. This indicates there should be a

hidden structure of amplitudes to be discovered. From the pioneer work of Witten

in 2003 [218] at tree level there is an interesting perturbative duality to strings
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in twistor space, that makes computation of Yang-Mills amplitudes feasible and

easy. The theory, which known as the twistor string theory, leads to a connected

prescription, in which an elegant and simple formula for all tree-level Yang-Mills

scattering amplitudes is presented by Roiban, Spradlin and Volovich [21]. Twistor

string theory also inspired the development of recursive techniques to construct

tree-level gauge theory amplitudes known as the BCFW recursion relations in 2004

[196, 209], and the development of the CSW method to construct higher order

amplitudes from MHV diagrams [12].

At the level of loop corrections Bern, Dixon and Smirnov (BDS) in 2005 [39] con-

jectured an all-loop form of the MHV amplitudes in N = 4 gauge theory, based on

an iterative structure [133] found at lower loop levels employing on-shell techniques

[64, 65]. The form of the proposed iterative structure of multi-loop planar SYM is

based on the understanding of how soft and collinear infrared singularities factorize

and exponentiate in gauge theory. Specifically, this form was dictated by the tree-

level and one-loop structure and the cusp anomalous dimension, a quantity which

is simultaneously the leading ultraviolet singularity of Wilson loops with light-like

cusps [108] and the scaling dimension of a particular class of local operators in the

high spin limit. Due to this latter property it may be obtained from the above men-

tioned Bethe equations. In fact the ABDK/BDS conjecture is now known to fail at

two loops and six points [60, 88, 121] but the deviations from it are constrained by

a novel symmetry, the dual conformal symmetry.

This symmetry was discovered by Drummond, Henn, Smirnov and Sokatchev [87]

in 2006. Since then, dual conformal symmetry has been studied extensively to

uncover its role in the structure of scattering amplitudes in N = 4 SYM. Thanks
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to many efforts that we now have a good understanding of this symmetry, though

the origin of it at weak coupling is still unknown. Dual conformal symmetry plays

an important role not only in the computation of four- and five-loop amplitudes by

generalized unitarity method [5, 50], but also in the derivation of a formula for all

tree-level scattering amplitudes [225], in the establishment of Yangian symmetry of

N = 4 SYM at least at tree level [232], in the discovery of a new duality between

amplitudes and Wilson loops [102, 131? ] and importantly in the conjecture of a

Grassmannian integral that gives all leading singularities of all amplitudes at all

loop orders [204, 205, 233].

The dual string theory prescription for computing scattering amplitudes was pro-

posed by Alday and Maldacena in 2007 [59]. There, the problem of computing

certain gluon scattering amplitudes at strong coupling was mapped via a T-duality

transformation to that of computing Wilson loops with light-like segments. The

strong coupling calculation of [59] is insensitive to the helicity structure of the am-

plitude being calculated. It was a year later then in 2008, Berkovits and Maldacena

[268] unveils the fermionic T-duality to explain the nature of dual conformal sym-

metry and the duality between amplitudes and Wilson loops. This transformation

maps the dual superconformal symmetry of the original theory to the ordinary su-

perconformal symmetry of the dual model.

At weak coupling, it was also found that light-like Wilson loops are dual to MHV

amplitudes, as was demonstrated for n = 4, 5, 6 gluons scattering up to two-loop

order [102, 131]. A direct implication of this Wilson loop/MHV amplitude duality is

the existence of the dual conformal symmetry of the amplitudes. This symmetry has

its interpretation as the ordinary conformal symmetry of the Wilson loops [131, 132].
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Indeed the two-loop, six-point calculations of [88, 121] showed that the amplitude

and the Wilson loop both differ from the BDS conjecture by the same function of

dual conformal invariants. This symmetry extends naturally to dual superconformal

symmetry when one considers writing all amplitudes (MHV and non-MHV) in on-

shell superspace [127]. In particular, tree-level amplitudes are covariant under dual

superconformal symmetry. And when we combine the conventional and the dual

superconformal symmetry, what we get is an infinite dimensional symmetry, the

Yangian symmetry for scattering amplitudes at, at least, tree level.

Now let us discuss on a different approach to understand the full structure of scat-

tering amplitudes by Mason-Skinner and Arkani-Hamed, Cachazo and collaborators.

In 1967, Roger Penrose proposed twistors as a fundamental tool for the physics of

spacetime. He argued that they should be relevant for quantum gravity. But for

decades, this claim remained nothing else than a wishful thinking. The pioneer work

of Witten in 2003 on twistor string theory makes this idea alive again. However this

connected prescription works only at tree level and does not apply to loops. In the

mean while, the leading singularity method has been "sharpened" by Cachazo [78]

to give useful results on loop amplitudes. In 2009, in an effort to make the ampli-

tude manifest dual conformal symmetry, Arkani-Hamed, Cachazo and collaborators

[205, 233], together with a parallel work by Mason and Skinner [204], have made an

important breakthrough with the discovery of an object, a Grassmannian integral,

that is conjectured to capture all leading singularities of all types of scattering am-

plitudes at all loops level. Later work revealed that this Grassmannian integral is a

special case of the amplitude formula in connected prescription at tree level [237]. It

was then shown that the form of this object is fixed uniquely by Yangian symmetry
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[232]. And an expression for a BCFW all-loop recursion relation for the integrand

was proposed [233], giving a way to compute loop amplitudes in momentum twistor

space.

So finally with recent developments and so much more to come, the full understand

of scattering amplitudes is being realized.

1.2 Scattering Amplitudes: Foundation

In this section we will review the foundations of scattering amplitudes [236] that

will be crucial for later work.

On-shell scattering amplitudes are among the basic quantities in any quantum

field theory that the standard textbooks relate them through the LSZ reduction

to Green’s functions, which will be computed in terms of Feynman diagrams. The

number of diagrams grows exponentially at loop level. The evaluation of individual

diagram is generally more complicated than that of the complete amplitude. This

fact implies that Feynman diagrams do not exhibit or take advantage of the symme-

tries of the theory, neither local nor global and that there are hidden structures yet

to be discovered.

Let consider the L-loop SU(N) gauge theory n-point scattering amplitudes, which

may be written in general as

A(L) = NL
∑

ρ∈Sn/Zn

Tr[T aρ(1) . . . T aρ(n) ]A(L)(kρ(1) . . . kρ(n), N) + multi−traces (1.2.1)
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where the sum extends over all non-cyclic permutations ρ of (1 . . . n).

The subleading terms in the 1/N expansion and the multi-trace terms are called

non-planar amplitudes and do not contribute to our main subject , amplitudes in

the large N (planar) limit. In this limit, a generic n−particle scattering amplitude

in the N = 4 SYM theory with an SU(N) gauge group has the form

An({pi, hi, ai}) = (2π)4δ(4)
( n∑

i=1

pi
) ∑

σ∈Sn/Zn

2n/2gn−2Tr[taσ(1) . . . taσ(n)]An
(
σ(1h1, . . . , nhn)

)
,

(1.2.2)

where each scattered particle (scalar, gluino with helicity ±1/2 or gluon with helicity

±1) is characterized by its on-shell momentum pµi (p2
i = 0), helicity hi and color

index ai. Here the sum runs over all possible non-cyclic permutations σ of the set

{1, . . . , n} and the color trace involves the generators ta of SU(N) in the fundamental

representation normalized as Tr(tatb) = 1
2
δab. All particles are treated as incoming,

so that the momentum conservation takes the form
∑n
i=1 pi = 0.

The color-ordered partial amplitudes An
(
σ(1h1, . . . , nhn)

)
only depend on the mo-

menta and helicities of the particles and admit a perturbative expansion in powers

of ‘t Hooft coupling a = g2N/(8π2). The best studied so far are the gluon scattering

amplitudes. In some cases, amplitudes with external particles other than gluons can

be obtained from them with the help of supersymmetry.
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1.2.1 General Properties

Color-ordered scattering amplitudes in Yang-Mills theory satisfy some general prop-

erties, follow from their construction in terms of Feynman diagrams, as below [236]:

1. Cyclicity: this is a consequence of the cyclic symmetry of traces

A(1, 2, . . . , n) = A(2, 3, . . . , n, 1) (1.2.3)

2. Reflection:

A(1, 2, . . . , n) = (−1)nA(n, n − 1, . . . , 1) (1.2.4)

3. Parity Invariance: In (2, 2) signature, amplitude is invariant if all helicities are

reversed and simultaneously all spinors are interchanged λ ↔ λ̃ (In Minskowski

signature both sides are related by complex conjugation):

A(λi, λ̃i, ηiA) =
∫
d4nψ exp

[
i
n∑

i=1

ηiAψ
A
i

]
A(λ̃i, λi, ψ

A
i ). (1.2.5)

4. Dual Ward Identity or Photon Decoupling: At tree-level, Ward identity ex-

presses the decoupling of U(1) degree of freedom: fixing one of the external legs

(supposed n as below) and summing over cyclic permutations C(1, . . . , n− 1)

of the remaining (n − 1) legs leads to a vanishing result:

∑

C(1,...,n−1)

A(1, 2, 3, . . . , n) = 0. (1.2.6)

At loop level, this identity is modified and relates planar and non-planar partial

amplitudes.
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A generalization of the above identity for Yang-Mills amplitudes is given as

follows:

∑

Perm(i,j)

A(i1, . . . , im, j1, . . . , jk, n+1) = 0, 1 ≤ m ≤ n−1, m+k = n,

(1.2.7)

where the sum is taken over permutations of the set (i1, . . . , im, j1, . . . , jk)

which preserve the order of the (i1, . . . , im) and (j1, . . . , jk) separately.

5. Soft (momentum) limit: in the limit in which one momentum becomes soft

(p1 → 0 as below) the amplitude universally factorizes as

Atree(1+, 2, . . . , n) −→ 〈n 2〉
〈n 1〉〈1 2〉A

tree(2, . . . , n) (1.2.8)

If particle 1 has negative helicity then the expression is conjugated.

6. Collinear limit: in the limit in which two adjacent momenta become collinear

kn−1 · kn → 0 a L-loop amplitude factorizes as

A(L)
n (1, . . . , (n−1)hn−1, nhn) 7→

L∑

l=0

∑

h

A
(L−l)
n−1 (1, . . . , kh)Split

(l)
−h((n−1)hn−1 , nhn) ,

(1.2.9)

where k = kn−1 + kn and hi denotes the helicity of the i-th gluon. For a

given gauge theory, the l-loop splitting amplitudes Split
(l)
−h((n−1)hn−1 , nhn) are

universal functions [22] of the helicities of the collinear particles, the helicity

of the external leg of the resulting amplitude and of the momentum fraction

z defined as

z =
ξ · kn−1

ξ · (kn−1 + kn)
. (1.2.10)
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In the strict collinear limit one may also use kn−1 → zk and kn → (1 − z)k

with k2 = 0. For example, the tree-level splitting amplitudes are:

Split
(0)
− (1+, 2+) =

1√
z(1 − z)

1

〈1 2〉 (1.2.11)

Split
(0)
− (1+, 2−) =

z2

√
z(1 − z)

1

[1 2]
Split

(0)
+ (1+, 2−) =

(1 − z)2

√
z(1 − z)

1

〈1 2〉

7. Multi-particle factorization: color-ordered amplitudes can only have poles

where the square of the sum of some cyclically adjacent momenta vanishes. At

tree-level this pole corresponds to some propagator going on-shell. At higher

loops, the amplitude decomposes into a completely factorized part given by

the sum of products of lower loop amplitudes and a non-factorized part, given

in terms of additional universal functions. At one-loop level and in the limit

k2
1,m ≡ (k1 + . . . km)2 → 0 we have [23]

A1 loop
n (1, . . . , n) −→ (1.2.12)

∑

hp=±

[
Atree
m+1(1, . . . , m, khk)

i

k2
1,m

A1 loop
n−m+1((−k)−hk , m+ 1, . . . , n)

+ A1 loop
m+1 (1, . . . , m, khk)

i

k2
1,m

Atree
n−m+1((−k)−hk , m+ 1, . . . , n)

+ Atree
m+1(1, . . . , m, khk)

iF(1 . . . n)

k2
1,m

Atree
n−m+1((−k)−hk , m+ 1, . . . , n)

]

1.2.2 Regularization and Factorization

In massless gauge theories, infrared singularities of scattering amplitudes, which is

a general feature in four dimensions that can not be renormalized away like the
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ultraviolet divergences, come from two different sources: the small energy region

of some virtual particle (soft limit) and the region in which some virtual particle

is collinear with some external one (collinear limit). These divergences can occur

simultaneously so in general at L-loops we can have up to 1/ǫ2L infrared singulari-

ties. They should cancel once gluon scattering amplitudes are combined to compute

physical infrared-safe quantities.

The structure of soft and collinear singularities in massless gauge theories in four

dimensions plays an important role in the structure of scattering amplitudes, as the

amplitudes can be factorized universally as follow [41, 42, 43]:

Mn =

[
n∏

i=1

Ji(
Q

µ
, αs(µ), ǫ)

]
× S(k,

Q

µ
, αs(µ), ǫ) × hn(k,

Q

µ
, αs(µ), ǫ) , (1.2.13)

where Q is factorization scale that separating soft and collinear momenta, µ is the

renormalization scale, αs(µ) = g(µ)2

4π
is the running coupling at scale µ, Ji(

Q
µ
, αs(µ), ǫ)

are the “jet” functions that contain information on collinear dynamics of virtual

particles, S(k, Q
µ
, αs(µ), ǫ) is the soft function responsible for the purely infrared

poles, hn(k, Q
µ
, αs(µ), ǫ) contains the effects of highly virtual fields.

In the planar limit, the above scattering amplitudes can be simplified as

Mn =

[
n∏

i=1

Mgg→1(
si,i+1

µ
, λ(µ), ǫ)

]1/2

hn , (1.2.14)

where λ(µ) = g(µ)2N is the ’t Hooft coupling.

Because the rescaled amplitude is independent of the factorization scale Q, we will

have an evolution equation for the soft function, in addition to a renormalization



12

group equation for the factors M[gg→1]
(
Q2

µ2 , λ(µ), ǫ
)
:

d

d lnQ2
M[gg→1]

(
Q2

µ2
, λ, ǫ

)
=

1

2

[
K(ǫ, λ) +G

(
Q2

µ2
, λ, ǫ

)]
M[gg→1]

(
Q2

µ2
, λ, ǫ

)
,

(1.2.15)

where the function K contains only poles and no scale dependence. The functions

K and G themselves obey renormalization group equations [28, 29, 30, 44, 45]

(
d

d lnµ
+ β(λ)

d

dg

)
(K +G) = 0

(
d

d lnµ
+ β(λ)

d

dg

)
K(ǫ, λ) = −γK(λ) .

(1.2.16)

In N = 4 SYM in the planar limit with β(λ) = −2ǫλ, we can solve these above

equations exactly and explicitly in terms of the expansion coefficients of the cusp

anomalous dimension

f(λ) ≡ γK(λ) =
∑

l

alγ
(l)
K (1.2.17)

and another set of coefficients defining the expansion of G:

G

(
Q2

µ2
, λ, ǫ

)
=
∑

l

G
(l)
0 a

l

(
Q2

µ2

)lǫ
(1.2.18)

where a = λ
8π2 (4πe−γ)ǫ is the coupling constant.

This then leads to the following result for the amplitude [39]:

Mn = exp


−1

8

∞∑

l=1

al


 γ

(l)
K

(lǫ)2
+

2G
(l)
0

lǫ




n∑

i=1

(
µ2

−si,i+1

)lǫ
 × hn

= exp

[
∞∑

l=1

al
(

1

4
γ

(l)
K + ǫ

l

2
G

(l)
0

)
Î(1)
n (lǫ)

]
× hn , (1.2.19)
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where

Î(1)
n = − 1

ǫ2

n∑

i=1

(
µ2

−si,i+1

)ǫ
. (1.2.20)

At weak coupling, we have [39, 46, 47, 48, 49, 50, 51, 52]:

f(λ) =
λ

2π2

(
1 − λ

48
+

11 λ2

11520
−
(

73

1290240
+

ζ2
3

512π6

)
λ3 + · · ·

)
, (1.2.21)

G(λ) = −ζ3

(
λ

8π2

)2

+
(
6ζ5 + 5ζ2ζ3

)( λ

8π2

)3

− 2(77.56 ± 0.02)

(
λ

8π2

)4

+ · · · ,

(1.2.22)

whereas at strong coupling [56, 57, 58, 59]:

f(λ) =

√
λ

π

(
1 − 3 ln 2√

λ
− K

λ
+ · · ·

)
, λ → ∞ , (1.2.23)

G(λ) = (1 − ln 2)

√
λ

8π
+ · · · , λ → ∞ , (1.2.24)

with K =
∑
n≥0

(−1)n

(2n+1)2 ≃ 0.9159656 . . . is the Catalan constant.

Because the scattering amplitudes have infrared singularities, we will need to reg-

ularize them in order to get meaningful results. There are several regularization

tools: by dimensional regularization, by dimension reduction or by introducing cer-

tain Higgs masses for amplitudes on the Coulomb branch [].
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1.2.3 Generalized-Unitarity-based Method

The generalized unitarity method is at present one of the most powerful general

tools for obtaining loop-level scattering amplitudes, that could be used in any mass-

less non-supersymmetric or supersymmetric theory for both planar and non-planar

contributions. The key feature of the unitarity method is that it constructs loop

amplitudes directly from on-shell tree amplitudes, making it possible to carry over

any newly identified property or symmetry of tree-level amplitudes to loop level.

This may be contrasted with Feynman diagrammatic methods, whose diagrams are

inherently gauge dependent and off-shell in intermediate states.

The idea of unitarity method is using unitarity cuts in such a way that if given

the discontinuity of an amplitude in some channel (or a cut), we could reconstruct

the complete amplitude by a dispersion integral. Let us recap briefly how this idea

works. Consider the unitarity condition for the scattering matrix S = 1 + iT , we

obtain

i(T † − T ) = 2 ℑT = T †T . (1.2.25)

The right hand side is the product of lower loop on-shell amplitudes, which could be

interpreted as a higher loop amplitude with some number of Feynman propagators

replaced by on-shell (or cut) propagators

1

l2 + iǫ
7→ −2πiθ(l0)δ(l2) . (1.2.26)

As a consequence of the iǫ prescription, the difference on the left hand side of

equation (1.2.25) is interpreted as the discontinuity in the multi-particle invariant

obtained by squaring the sum of the momenta of the cut propagators.
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Hence, this discontinuity at L-loops is determined in terms of products of lower-loop

amplitudes. There are two types of cuts: singlet (only one type of field crosses the

cut) and non-singlet (several types of particles cross the cut).

Then the real part of the amplitude is constructed from a dispersion integral as

follows

ℜf(s) =
1

π
P
∫ ∞

−∞
dw

ℑf(w)

w − s
− C∞ , (1.2.27)

where s is the momentum invariant flowing across the cut.

Now let us review the the procedure of generalized-unitarity based method in N = 4

super-Yang-Mills theory [238].

In general, the complete amplitude is determined from a spanning set of cuts. Such

sets are found by considering all potential independent contributions to the inte-

grand that can enter an amplitude (and which do not integrate to zero), based on

power counting or other constraints. One can often construct an ansatz for the

entire amplitude using various conjectured properties. Once one has an ansatz, by

confirming it over the spanning set, either numerically or analytically, we have a

proof of the correctness of the ansatz.

One simple spanning set is obtained from the set of standard unitarity cuts, where

a given amplitude is split into two lower-loop amplitudes, each with four or more

external legs. At L loops, this is given by all cuts starting from the two-particle cut

to the (L + 1)-particle cut in all channels. We can convert this to a spanning set

involving only tree amplitudes by iterating this process until no loops remain. If

the amplitudes are color ordered then we need to maintain a fixed ordering of legs,

depending on which planar or non-planar contribution is under consideration. On
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the other hand, if they are dressed with color then the distinct permutations of legs

enter each cut automatically.

Another spanning set that is especially useful in N = 4 super-Yang-Mills theory

is obtained by starting from "maximal cuts" (also referred to as "leading singulari-

ties" [78]), where the maximum numbers of internal propagators are placed on shell.

These maximal cuts decompose the amplitudes into products of three-point tree

amplitudes, summed over the states crossing the cuts. To construct a spanning set

we systematically release cut conditions one by one, first considering cases with one

internal line off shell, then two internal lines off shell and so forth. Each time a cut

condition is released, potential contact terms which would not be visible at earlier

steps are captured. The process terminates when the only remaining potential con-

tact terms exceed power counting requirements of the theory (or integrate to zero

in dimensional regularization).

Given a spanning set of unitarity cuts, the task is to then find an expression for the

integrand of the amplitude with the correct cuts in all channels. This can be done

either in a forward or reverse direction. In the forward direction the different cuts

are merged into integrands with no cut conditions. In the reverse direction we first

construct an ansatz for the amplitude containing unknown parameters which are

then determined by taking generalized cuts of the ansatz and comparing to the cuts

of the amplitude. The reverse direction is usually preferred because we can expose

desired properties, simply by imposing them on the ansatz and then checking if its

unitarity cuts are correct.

We can also construct four-dimensional unitarity cuts in superspace. The sum over

states crossing the unitarity cuts can be expressed simply as an integration over the
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fermionic variables ηA of the cut legs. The generalized N = 4 supercut is then given

by

C =
∫ [ k∏

i=1

d4ηi

]
Atree

(1) A
tree
(2) A

tree
(3) · · ·Atree

(m) , (1.2.28)

where Atree
(j) are the tree superamplitudes connected by k on-shell cut legs. These cuts

then constrain the amplitude, which are now functions in the on-shell superspace.

1.2.4 MHV Tree and Loop Gluon Scattering Amplitudes

With the knowledge of a powerful tool described in the previous section, the generalized-

unitarity based method, we will review how it would be applied to obtain the results

for MHV tree and loop gluon scattering amplitudes in N = 4 Super Yang-Mills the-

ory in the planar limit in this section [236].

It has been possible to derive a set of extremely simple formulae at tree level for

“maximally helicity-violating” (MHV) amplitudes with an arbitrary number of ex-

ternal gluons. Parke and Taylor [25] formulated conjectures for these amplitudes in

part by using an analysis of collinear limits and they were later proven by Berends

and Giele [26] using recursion relations.

AMHV
n (1+, . . . , j−, . . . , k−, . . . , n+) = i (2π)4 δ(4)

(
n∑

i=1

pi

)
〈j k〉4

〈1 2〉 〈2 3〉 · · · 〈n 1〉 .

(1.2.29)

The nonvanishing Parke-Taylor formulae are for amplitudes where two gluons have

a given helicity, and the remaining gluons all have the opposite helicity, in the

convention where all external particles are treated as outgoing. These amplitudes are

called “maximally helicity-violating” because amplitudes with all helicities identical,
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or all but one identical, vanish at tree-level as a consequence of supersymmetry Ward

identities [? ].

Atree(g+ . . . g+) = 0 Atree(g−g+ . . . g+) = 0 . (1.2.30)

However, for n = 3 one can construct amplitudes e.g. A3(1−, 2+, 3+) 6= 0 provided

the on-shell momenta are complex [218].

A remarkable property in planar SYM is that the finite terms in the MHV scattering

amplitudes can be organized into the same exponentiated form as the divergent

terms. All perturbative corrections can be factorized into a universal scalar factor

AMHV
n (1+... j−... k−... n+) = AMHV

n;0 MMHV
n . (1.2.31)

Here MMHV
n = MMHV

n ({sij}, a) is a function of the Mandelstam kinematical invari-

ants and of the ‘t Hooft coupling but independent of j and k.

We can construct the superamplitude by using the on-shell superspace with fermionic

variables ηA, which were first introduced by Ferber to extend twistors, representa-

tions of four-dimensional conformal group, to supertwistors. Nair [223] applied these

variables to represent MHV superamplitudes of N = 4 super-Yang-Mills theory as

AMHV
n (1, 2, · · · , n) =

i
∏n
j=1〈j(j + 1)〉 δ

(8)




n∑

j=1

λαj η
a
j


 , (1.2.32)

where leg n + 1 is to be identified with leg 1, and

δ(8)




n∑

j=1

λαj η
a
j


 =

4∏

a=1

n∑

i<j

〈ij〉ηai ηaj . (1.2.33)
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As a simple example to expect that superamplitudes for theories with fewer super-

symmetries are simply given by subamplitudes of the maximal theory, the MHV tree

amplitudes for the minimal gauge multiplets of N < 4 super-Yang-Mills theory are

given by [? ]

AMHV
n (1, 2, . . . , n) =

∏N
a=1 δ

(2)(Qa)
∏n
j=1〈j (j + 1)〉




n∑

i<j

〈i j〉4−N
4∏

a=N+1

ηai η
a
j


 , (1.2.34)

with N counting the number of supersymmetries, Qa =
∑n
i=1 λiη

a
i , and n ≥ 3.

Starting from the three-point MHV and MHV amplitude, one can obtain the higher-

point amplitudes in superspace via the MHV vertex expansion constructed by Cac-

hazo, Svrček and Witten (CSW) [12] or the on-shell recursion relations of Britto,

Cachazo, Feng, and Witten (BCFW) [196, 209].

The expression for the NmMHV superamplitude constructed via the CSW construc-

tion is given by

ANmMHV
n = im

∑

CSW graphs

∫ [ m∏

j=1

d4ηj
P 2
j

]
AMHV

(1) AMHV
(2) · · ·AMHV

(m) AMHV
(m+1) , (1.2.35)

where the integral is over the 4m internal Grassmann parameters (d4ηj ≡ ∏4
a=1 dη

a
j )

associated with the internal legs, and each Pj is the momentum of the j’th internal

leg of the graph.

At loop level there are two important consistency constraints on amplitudes, collinear

behavior and unitarity, which can be used as a guide in constructing ansätze for

amplitudes.

Now let consider the loop contributions of the scattering amplitude. It is convenient



20

to scale out a factor of the tree amplitude, and work with the quantities M (L)
n defined

by

M (L)
n (ρ; ǫ) = A(L)

n (ρ)/A(0)
n (ρ) . (1.2.36)

Here ρ indicates the dependence on the external momenta, ρ ≡ {s12, s23, . . .}, where

si(i+1) = (ki + ki+1)
2 are invariants built from color-adjacent momenta.

At one loop, all contributions to the amplitudes of massless supersymmetric theories

are determined completely by their four-dimensional cuts. Unfortunately, no such

theorem has been proven at higher loops. There is, however, substantial evidence

that it holds for four-point amplitudes in this theory through six loops [50]. It is

not expected to continue for higher-point amplitudes. Indeed, we know that for two-

loop six-point amplitudes, terms which vanish in D = 4 do contribute in dimensional

regularization [50].

2

41

(1)

3

s

(2)

s 2

21
2)

2
l + l 1(s

(3)b(3)a

Figure 1.1: Diagrams contribute to the leading-color MHV gluon scattering ampli-
tude: The box (1) at one loop, the planar double box (2) at two loops, and the
three-loop ladder (3a) and tennis-court (3b) at three loops.

The result for the one-loop four-point MHV amplitude is [183]

M
(1)
4 (ǫ) = −1

2
I

(1)(s, t) , (1.2.37)
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where the Mandelstam variables are s = (k1 + k2)
2 , t = (k2 + k3)

2 and

I(1)(s, t) ≡ st I
(1)
4 (s, t) , (1.2.38)

The factor of 1/2 in 1.2.37 follows from the normalization convention for A(L)
n .

The two-loop four-point MHV amplitude is given by [184]

M
(2)
4 (ǫ) =

1

4

[
I(2)(s, t) + I(2)(t, s)

]
, (1.2.39)

with the two-loop scalar double-box integral

I(2)(s, t) ≡ s2t I
(2)
4 (s, t) . (1.2.40)

The three-loop four-point MHV amplitude is given by [39, 184]

M
(3)
4 (ǫ) = −1

8

[
I(3)a(s, t) + 2 I(3)b(t, s) + I(3)a(t, s) + 2 I(3)b(s, t)

]
, (1.2.41)

where the scalar triple-ladder and non-scalar "tennis-court" integrals are

I(3)a ≡ s3t I
(3)a
4 (s, t) ,

I(3)b ≡ st2 I
(3)b
4 (s, t) . (1.2.42)

The explicit results of each I(s, t) integral through three loops are given in [39].

Using generalized cuts, Bern, Czakon, Dixon, Kosower and Smirnov [50] found that
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Figure 1.2: Rung-rule contributions to the leading-color four loop MHV gluon scat-
tering amplitude. An overall factor of st is suppressed.
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the four-loop planar amplitude receives contributions not only from diagrams con-

trolled by the rung rule as in Fig. 1.2, but also from non-rung-rule diagrams in Fig.

1.3. It is given by

M
(4)
4 (ǫ) =

1

16

[
I(a)(s, t) + I(a)(t, s) + 2 I(b)(s, t) + 2 I(b)(t, s) + 2 I(c)(s, t) + 2 I(c)(t, s)

+ I
(d)
4 (s, t) + I(d)(t, s) + 4 I(e)(s, t) + 4 I(e)(t, s) + 2 I(f)(s, t) + 2 I(f)(t, s)

− 2 I(d2)(s, t) − 2 I(d2)(t, s) − I
(f2)(s, t)

]
, (1.2.43)

with

I(x)(s, t) ≡ (−ieǫγπ−d/2)4
∫
∂dp ∂dq ∂du ∂dv

stN(x)

∏
j p

2
j

, (1.2.44)

The explicit result for each I(x)(s, t) integral is given in [50]. And the total four-loop

planar amplitude, M
(4)
4 , has the expansion,

M
(4)
4 (s, t) = (−t)−4ǫ

{
2

3 ǫ8
+

4

3 ǫ7
L+

1

ǫ6

[
L2 − 13

18
π2
]

+
4

3 ǫ5

[
H0,0,1(x) − LH0,1(x) +

1

2
(L2 + π2)H1(x) +

L3

4
− 5

6
π2 L− 59

12
ζ3

]

+
4

3 ǫ4
[−H0,0,0,1(x) −H0,0,1,1(x) −H0,1,0,1(x) −H1,0,0,1(x)

+L
(

5

2
H0,0,1(x) +H0,1,1(x) +H1,0,1(x)

)
− L2

2
(4H0,1(x) +H1,1(x))

−π2

2

(
H1,1(x) − 3

2
LH1(x) +

15

16
L2
)

+
11

12
L3 H1(x) + ζ3 H1(x) +

L4

32
− 28

3
ζ3L+

637

17280
π4

]

+ O(ǫ−3)
}
. (1.2.45)

Calculation of higher loop scattering amplitudes requires tremendous efforts if one
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tries to continually use generalized cuts: it is much more complicated with the

need to use D-dimensional cuts beside the usual 4-dimensional cuts. However, using

a newly discovered symmetry, dual conformal symmetry - which we will discuss

in details in chapter 2, Bern, Carrasco, Johansson and Kosower [5] were able to

determine the contributing diagrams as given in Fig. 1.4 and Fig. 1.5, and proposed

the complete five-loop four-point planar gluon scattering amplitude as below,

M
(5)
4 (1, 2, 3, 4) = − 1

32
[(I1 + 2I2 + 2I3 + 2I4 + I5 + I6 + 2I7 + 4I8 + 2I9 + 4I10

+2I11 + 4I12 + 4I13 + 4I14 + 4I15 + 2I16 + 4I17 + 4I18 + 4I19 + 4I20

+2I21 + 2I23 + 4I24 + 4I25 + 4I26 + 2I27 + 4I28 + 4I29 + 4I30

+2I31 + I32 + 4I33 + 2I34 + {s ↔ t}) + I22] . (1.2.46)

Finally using the supercut described in the previous section, we have the supercut

of the L-loop n-particle scattering superamplitude is given by [127]

AL
n

∣∣∣∣
cut

=
∫ ∏

{ij}

d4η{ij} × Atree
(1) Atree

(2) A
tree
(3) . . .Atree

(m)

= δ4(P )
∫ ∏

{ij}

d4η{ij} ×
∏

α

δ8 (Qα) fα

= δ4(P )δ8(Q)
∫ 
∏

lk

d8θlk


 ∏

{ij}

δ4(θijλ{ij})
∏

α

fα , (1.2.47)

where the product over internal loop label lk runs over the internal dual point labels

and Atree
n = δ4(P ) δ8(Q)fn.
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Figure 1.4: Diagrams with only cubic vertices that contribute to the five-loop four-
point gluon scattering amplitude.
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1.2.5 ABDK/BDS Ansatz

We will now review an important progress to the understanding of the structure of

scattering amplitudes: the ABDK/BDS ansatz for the all loop order n-point MHV

amplitude [39].

While evaluating the two-loop four-gluon amplitude in planar N = 4 super Yang-

Mills theory, Anastasiou-Bern-Dixon-Kosower (ABDK) [133] discovered a surprising

relation between one-loop amplitude and two-loop amplitude as below:

M
(2)
4 (ρ; ǫ) =

1

2

[
M

(1)
4 (ρ; ǫ)

]2

+ f (2)(ǫ)M
(1)
4 (ρ; 2ǫ) + C(2) + O(ǫ) , (1.2.48)

where

f (2)(ǫ) = −(ζ2 + ζ3ǫ+ ζ4ǫ
2) , (1.2.49)

and

C(2) = −1

2
ζ2

2 . (1.2.50)

The same expression holds for the two-loop splitting amplitude. This relation gives

rise to an iterative structure that is hidden in scattering amplitudes. Will this

structure hold at higher loop level? Answering this question in a later work, Bern-

Dixon-Smirnov (BDS) [39] calculated the three-loop four-gluon amplitude and found

the same structure as before:

M
(3)
4 (ρ; ǫ) = −1

3

[
M

(1)
4 (ρ; ǫ)

]3

+M
(1)
4 (ρ; ǫ)M

(2)
4 (ρ; ǫ) + f (3)(ǫ)M

(1)
4 (ρ; 3 ǫ)

+ C(3) + O(ǫ) , (1.2.51)
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where

f (3)(ǫ) =
11

2
ζ4 + ǫ(6ζ5 + 5ζ2ζ3) + ǫ2(c1ζ6 + c2ζ

2
3) , (1.2.52)

and

C(3) =
(

341

216
+

2

9
c1

)
ζ6 +

(
−17

9
+

2

9
c2

)
ζ2

3 . (1.2.53)

Then it was suggested that the four-loop iteration relation would have the following

form,

M
(4)
4 (ρ; ǫ) =

1

4

[
M

(1)
4 (ρ; ǫ)

]4

−
[
M

(1)
4 (ρ; ǫ)

]2

M
(2)
4 (ρ; ǫ) +M

(1)
4 (ρ; ǫ)M

(3)
4 (ρ; ǫ)

+
1

2

[
M

(2)
4 (ρ; ǫ)

]2

+ f (4)(ǫ)M
(1)
4 (ρ; 4 ǫ) + C(4) + O(ǫ) . (1.2.54)

This leads Bern-Dixon-Smirnov to propose that the all-loop-order n-gluon MHV

amplitude is given by (which is then known as the ABDK/BDS ansatz),

Mn(ρ) ≡ 1 +
∞∑

L=1

aLM (L)
n (ρ; ǫ) = exp

[
∞∑

l=1

al
(
f (l)(ǫ)M (1)

n (ρ; lǫ) + C(l) + E(l)
n (ρ; ǫ)

)]
.

(1.2.55)

where

a ≡ Ncαs
2π

(4πe−γ)ǫ , (1.2.56)

and

f (l)(ǫ) = f
(l)
0 + ǫf

(l)
1 + ǫ2f

(l)
2 . (1.2.57)

The objects f
(l)
k , k = 0, 1, 2, and C(l) are pure constants, independent of the external

kinematics ρ, and also independent of the number of legs n. f
(l)
0 are the Taylor
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coefficients of the cusp anomalous dimension or universal scaling function (1.2.17)

f(λ) = 4
∞∑

l=0

alf
(l)
0 . (1.2.58)

Similarly, we have

g(λ) = 2
∞∑

l=2

al

l
f

(l)
1 ≡ 2

∫
dλ

λ
G(λ) , k(λ) = −1

2

∞∑

l=2

al

l2
f

(l)
2 , (1.2.59)

which can be identified with quantities appearing in the resummed Sudakov form

factor (1.2.18).

Their one-loop values are defined to be,

f (1)(ǫ) = 1 , C(1) = 0 , E(1)
n (ρ; ǫ) = 0 . (1.2.60)

Let us consider the general L-loop n-particle amplitude

M (L)
n (ρ; ǫ) = X(L)

n

[
M (l)

n (ρ; ǫ)
]

+ f (L)(ǫ)M (1)
n (ρ;Lǫ) + C(L) + E(L)

n (ρ; ǫ) , (1.2.61)

where the quantities X(L)
n = X(L)

n [M (l)
n ] only depend on the lower-loop amplitudes

M (l)
n (ρ; ǫ) with l < L. The X(L)

n can be computed simply by performing the following

Taylor expansion,

X(L)
n

[
M (l)

n

]
= M (L)

n − ln

(
1 +

∞∑

l=1

alM (l)
n

) ∣∣∣∣
aL term

. (1.2.62)
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At lower loops, we have

X(2)
n

[
M (l)

n

]
=

1

2

[
M (1)

n

]2

, (1.2.63)

X(3)
n

[
M (l)

n

]
= −1

3

[
M (1)

n

]3

+M (1)
n M (2)

n , (1.2.64)

X(4)
n

[
M (l)

n

]
=

1

4

[
M (1)

n

]4

−
[
M (1)

n

]2

M (2)
n +M (1)

n M (3)
n +

1

2

[
M (2)

n

]2

. (1.2.65)

Now if we define

F (L)
n (ρ; ǫ) = M (L)

n −
L−1∑

l=0

Î(L−l)
n M (l)

n , (1.2.66)

with M (0)
n ≡ 1, then

F (L)
n (ρ; 0) ≡ X(L)

n

[
F (l)
n (ρ; 0)] + f (L)(ρ; 0)F (1)

n (ρ; 0) + C(L) . (1.2.67)

and we obtain

Fn(ρ; 0) ≡ 1 +
∞∑

L=1

âLF (L)
n (ρ; 0) = exp

[
∞∑

l=1

âl
(
f

(l)
0 F (1)

n (ρ; 0) + C(l)
)]

≡ exp
[
1

4
γK(â) F (1)

n (ρ; 0) + C(â)
]
, (1.2.68)

where C(â) =
∑∞
l=1 C

(l)âl.

Now let us investigate the divergent structure of the ABDK/BDS ansatz. The

infrared poles can be isolated as follow:

Divn = −
n∑

i=1

[
1

8ǫ2
f (−2)

(
λµ2ǫ

IR

(−si,i+1)ǫ

)
+

1

4ǫ
g(−1)

(
λµ2ǫ

IR

(−si,i+1)ǫ

)]
, (1.2.69)

where the invariants si,i+1 are assumed to be negative.
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Then we can rewrite the amplitude as

lnMn = Divn +
f(λ)

4
F (1)
n (0) + nk(λ) + C(λ) (1.2.70)

with C(λ) =
∑∞
l=1 C

(l)al.

The finite remainder function F (1)
n (0) is given as below:

For n = 4:

F
(1)
4 (0) =

1

2

(
ln
s12

s23

)2

+ 4ζ2 . (1.2.71)

For n > 4:

F (1)
n (0) =

1

2

n∑

i=1

gn,i , (1.2.72)

where

gn,i = −
⌊n/2⌋−1∑

r=2

ln


 −t[r]i

−t[r+1]
i


 ln


 −t[r]i+1

−t[r+1]
i


+Dn,i + Ln,i +

3

2
ζ2 , (1.2.73)

in which ⌊x⌋ is the greatest integer less than or equal to x and t
[r]
i = (ki+· · ·+ki+r−1)

2

are momentum invariants. (All indices are understood to be modn)

The form of Dn,i and Ln,i depends upon whether n is odd or even. For the even case

(n = 2m) these quantities are given by

D2m,i = −
m−2∑

r=2

Li2


1 − t

[r]
i t

[r+2]
i−1

t
[r+1]
i t

[r+1]
i−1


− 1

2
Li2


1 − t

[m−1]
i t

[m+1]
i−1

t
[m]
i t

[m]
i−1


 ,

L2m,i =
1

4
ln2


−t[m]

i

−t[m]
i+1


 . (1.2.74)
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In the odd case (n = 2m+ 1), we have

D2m+1,i = −
m−1∑

r=2

Li2


1 − t

[r]
i t

[r+2]
i−1

t
[r+1]
i t

[r+1]
i−1


 ,

L2m+1,i = −1

2
ln


−t[m−1]

i

−t[m+1]
i


 ln


 −t[m]

i+1

−t[m+1]
i−1


 . (1.2.75)

By construction, the ABDK/BDS ansatz has the correct infrared singularities as

well as the correct behavior under collinear limits. Although this ansatz has a

beautiful structure, calculations of scattering amplitudes at strong coupling [] and

at weak coupling [] have shown that the finite part of this ansatz is not correct

when the number of external legs n ≥ 6. The finite remainder function needs to

include a function of all dual conformal invariant cross-ratios, which are constructed

by kinematics. For n = 4, 5 case, there are no cross-ratios so there is no correction.

It is still an on-going effort to determine the exact form of this remainder function.

We will discuss more about this subject in chapter 3.

1.2.6 Recursion Relations

We will briefly review the derivation of the BCF recursion relations for tree-level

amplitudes [14, 15]. The important point of these recursion relations is factorization

on multi-particle poles. Let consider a particular deformation of an amplitude which

shifts two spinors, labelled here as i and j, of n massless external particles as

λ̃i → ˆ̃λi := λ̃i + zλ̃j , λj → λ̂j := λj − zλi , (1.2.76)
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where z is the complex parameter characterizing the deformation. The spinors λi

and λ̃j are left unshifted. The deformations (1.2.76) are chosen in such a way that

the corresponding shifted momenta

p̂i(z) := λi
ˆ̃λi = pi + zλiλ̃j , p̂j(z) := λ̂jλ̃j = pj − zλiλ̃j , (1.2.77)

are on-shell for all complex z. Furthermore, pi(z)+pj(z) = pi+pj. So the amplitude

A(p1, . . . , pi(z), . . . , pj(z), . . . , pn) is a well-defined one complex parameter function.

Then let’s consider the following contour integral

1

2πi

∮

C

dz
A(z)

z
, (1.2.78)

where the contour C is the circle at infinity in the complex z-plane. The integral

in (1.2.78) vanishes if A(z) → 0 as z → ∞. It then follows from Cauchy’s theorem

that we can write the amplitude we wish to calculate, A(0), as a sum of residues of

A(z)/z,

A(0) = −
∑

poles of A(z)/z
excluding z=0

Res

[
A(z)

z

]
. (1.2.79)

At tree level, A(z) has only simple poles in z. A pole at z= zP is associated with

a shifted momentum P̂ := P (zP ) flowing through an internal propagator becoming

null. The residue at this pole is then obtained by factorizing the shifted amplitude

on this pole. The result is that

A =
∑

P

∑

h

A
h
L(zP )

i

P 2
A

−h
R (zP ) , (1.2.80)

where the sum is over the possible assignments of the helicity h of the intermediate
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state, and over all possible P such that precisely one of the shifted momenta, say p̂i,

is contained in P .

The left and right hand amplitudes AL and AR are well-defined amplitudes only for

z= zP , when P (z) becomes null. We call λP̂ and λ̃P̂ the spinors associated to the

internal, on-shell momentum P̂ , so that P̂ := λP̂ λ̃P̂ . Notice that the intermediate

propagator is evaluated with unshifted kinematics.

Since a momentum invariant involving both (or neither) of the shifted legs i and

j does not give rise to a pole in z, the shifted legs i and j must always appear on

opposite sides of the factorization channel. In order to limit the number of recursive

diagrams, it is very convenient to shift adjacent legs. In this case, the sum over P

in (1.2.80) is just a single sum. In the following we will do this, so that the shifted

legs will always be i and j = i + 1. We will denote the shift in (1.2.76) with the

standard notation [i i+ 1〉.

Now for the supersymmetric version of the BCF recursion relation. Firstly, we

notice that it is very easy to describe the shifts (1.2.76), (1.2.77) using dual (or

region) momenta. One simply defines

p̂i := xi − x̂i+1 , p̂i+1 := x̂i+1 − xi+2 , (1.2.81)

where we have introduced a shifted region momentum

x̂i+1 := xi+1 − z λiλ̃i+1 . (1.2.82)
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Notice that this is the only region momentum that is affected by the shifts1. There-

fore in the supersymmetric case we expect that θi+1 is shifted but all other θ’s remain

unshifted. This implies that

θi − θi+2 = ηiλi + ηi+1λi+1 , (1.2.83)

should remain unshifted. This is in complete similarity to the fact that the sum of

the shifted momenta is unshifted, p̂i + p̂i+1 = pi + pi+1. Now, in the case of the

[i i + 1〉 shift employed here, we have shifted λi+1 according to (1.2.76) and so we

can achieve this by shifting ηi to

η̂i = ηi + z ηi+1 , (1.2.84)

and leaving ηi+1 unshifted. This then gives the shifted θi+1

θ̂i+1 := θi+1 − z ηi+1λi . (1.2.85)

The recursion relation builds up tree-level amplitudes recursively from lower point

amplitudes.

The supersymmetric recursion relation follows from arguments similar to those which

led to (1.2.80). We have

A =
∑

P

∫
d4ηP̂ AL(zP )

i

P 2
AR(zP ) , (1.2.86)

1This is true only if adjacent legs are shifted. If i and j are not adjacent, then region momenta
xi+1 . . . xj are all shifted by −z λiλ̃j .
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where ηP̂ is the anticommuting variable associated to the internal, on-shell leg with

momentum P̂ .

In the recursion relation (1.2.86) we have an important constraint on AL and AR,

namely the total helicity of AL plus the total helicity of AR must equal the total

helicity of the full amplitude A. This condition replaces the sum over internal

helicities in the standard BCF recursion (1.2.80).

1.3 Twistor String Theory and The Connected

Prescription

Gluon scattering amplitudes in Yang-Mills theory have some remarkable mathemat-

ical properties which are completely obscured in the Feynman diagram expansion by

which they are traditionally computed. One of the examples is the tree-level MHV

scattering amplitudes can be expressed in terms of a simple holomorphic or antiholo-

morphic function, which was conjectured by Park and Taylor [25] and proved later

by Berends and Giele [26]. Motivated by the desire to find an underlying explana-

tion for this structure, Witten suggested [218] that these mathematical properties

hint at the existence of a description of Yang-Mills theory in terms of twistor string

theory.

What will happen when the usual momentum space scattering amplitudes are Fourier

transformed to Penrose’s twistor space? Witten [218] proposed that the perturbative

expansion of N = 4 super Yang-Mills theory with U(N) gauge group is equivalent
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to the D-instanton expansion of the topological B model string theory, whose tar-

get space is the Calabi-Yau supermanifold CP3|4. This proposal gives a beautiful

relation between perturbative gauge theory and string theory, as well as a powerful

calculation method to evaluate scattering amplitudes in gauge theory.

We will now give a brief review of the setup. The standard textbook calculation of

color-stripped tree-level gluon scattering amplitude in Yang-Mills theory describes

the amplitude A of n gluons as a function of n momenta and n polarizations (pµi , ǫ
µ
i ),

which is highly redundant. A more efficient and sufficient choice of variables is given

by the spinor helicity notation (λi, λ̃i, gluon helicity ± 1), where we have written

the momenta as

paȧi = λai λ̃
ȧ
i . (1.3.1)

There is still redundancy that the spinor λ and λ̃ are not unique, but are determined

only modulo the scaling

λ → t λ, λ̃ → t−1 λ̃. (1.3.2)

In Minkowski signature (−+++), λ̃ would in fact be the complex conjugate of λ. It

is simpler to work with signature (− − ++) because λ and λ̃ are then independent

variables. The split signature (− − ++) allows for a rather simplified treatment

of the transformation to twistor space. We now make a choice of performing a

"1/2-Fourier transform" in which only the λ̃ȧi variables are transformed

λ̃ȧ → i
∂

∂µȧ
, −i ∂

∂λ̃ȧ
→ µȧ, (1.3.3)

so that the momentum and special conformal operators become first order, the di-

latation operator becomes homogeneous while the Lorentz generators are unchanged.
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This choice breaks the symmetry between left and right.

An amplitude A(λai , λ̃
ȧ
i ) can then be expressed in twistor space as

Ã(λai , µ
ȧ
i ) =

∫
d2nλ̃ exp i

n∑

j=1

µȧi λ̃iȧ A(λai , λ̃
ȧ
i ). (1.3.4)

Twistor string theory is naturally related not to pure Yang-Mills theory but to the

N = 4 supersymmetric version thereof, so we need to include a fermionic variable

ηAi , (A = 1, 2, 3, 4) with the same transformation as in the bosonic case:

ηA → i
∂

∂ψA
, −i ∂

∂ηA
→ ψA. (1.3.5)

So the supersymmetric extension of (nonprojective) twistor space with N = 4 su-

persymmetry is T̂ = C4|4 with four bosonic coordinates ZI = (λa, µȧ) and four

fermionic coordinates ψA. Then we make (ZI , ψA) as homogeneous coordinates by

using the symmetry group of the projectivized super-twistor space P̂T. A version

of that space in (2, 2) signature where ZI is real and we only consider functions of

(ZI , ψA), is called RP3|4. If ZI is complex then P̂T is a copy of CP3|4 Hence the

supersymmetric amplitude Ã(λai , µ
ȧ
i , η

A
i ) a function on the supermanifold P3|4.

Witten conjectured and checked in several cases that an n-gluon scattering amplitude

with q negative helicity gluons and n − q positive helicity gluons is supported on

curves in P3|4 of degree d = q − 1. This implies that Ã can be expressed as an

integral over the moduli space of degree d curves in P3|4.

Witten’s formulation of twistor string theory includes a collection of N D5-branes

spanning the the bosonic dimensions of P3|4 and D1-branes. Quantizing the open
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strings on D5-branes gives rise to the gluons of N = 4 super Yang-Mills theory. The

D1-branes can wrap any holomorphic curve (topologically a P1) inside P3|4. D1-

brane instantons give rise to new degrees of freedom, the open strings stretching

between the D1-brane and D5-branes. So the n-gluon scattering amplitude takes

the form as follows:

An ∼
∫
dMd

∫
dnz 〈J(z1) . . . J(zn)〉

n∏

i=1

φi(Z(zi)), (1.3.6)

here zi are n points on P1 where the open string vertex operator J is inserted, Z(z)

is an embedding P1 →֒ P3|4 of degree d describing the curve wrapped by the D1-

brane, φi(Z) are the wave-functions for the external gluons, and dMd is the measure

on the space of degree d curves in P3|4. We proceed by calculating the open string

correlator, which gives

〈J(z1) . . . J(zn)〉 =
1

(z1 − z2) . . . (zn − z1)
, (1.3.7)

writing out the moduli space of curves as,

dMd =

∏d
k=0 d4α d4β

GL(2,C)
, (1.3.8)

with α, β are the moduli of the curve, and finally expressing the wave-function to

be,

φi(λ
a, µȧ, ψA) =

∫
dξi
ξi
δ2(λai − ξiλ

a) exp
(
iξi[µ, λ̃i]

)
exp

(
iξiψ

AηiA
)
. (1.3.9)

Putting all together and integrating out half of the bosonic and all of the fermionic
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moduli, we obtain a formula for n-gluon scattering amplitude

A(λai , λ̃
ȧ
i , η

A
i ) =

∫ d2d+2α

GL(2,C)

dnz

(z1 − z2) . . . (zn − z1)

dmξ

ξ1 . . . ξm

n∏

i=1

δ2(λai − ξiZ
a(zi))

×
d∏

k=0

δ2

(
n∑

i=1

ξiz
k
i λ̃

ȧ
i

)
δ4

(
4∑

i=1

ξiz
k
i η

A
i

)
. (1.3.10)

Witten’s proposal leads to the so-called "connected prescription", by only consider-

ing connected instantons, for the tree-level S-matrix of Yang-Mills theory. Cachazo,

Svrcek and Witten [] used disconnected instantons to also reproduce the gauge the-

ory amplitudes while Bena, Bern and Kosower [] showed that the partially connected

instantons lead to the same result. To evaluate formula 1.3.10 for a scattering am-

plitude of d + 1 negative helicity gluons and n − d − 1 positive helicity gluons, we

first find all solutions to the 2n+ 2d+ 2 polynomial equations

0 =
n∑

i=1

ξiz
k
i λ̃

ȧ
i , (ȧ = 1, 2; k = 0, . . . , d)

0 = λai − ξi
d∑

k=0

zki α
a
k, (a = 1, 2; i = 1, . . . , n), (1.3.11)

in terms of the 2n+ 2d+ 2 variables (zi, ξi, α
a
k). These equations are guaranteed to

have solutions because of momentum conservation.

Then we sum a certain Jacobian, obtained by using

∫
dnx

n∏

i=1

δ(fi(x1, . . . , xn)) =
1

det
(
∂fi

∂xj

) , (1.3.12)

over the collection of roots from 1.3.10. This remarks an important feature of 1.3.10

is that it is completely localized, not really an integral - that would be complicated



41

to evaluate - but just a simple computation.

The formula 1.3.10 can be generalized to describe any tree-level n-particle scattering

amplitudes in super Yang-Mills. The conjectured generalization has similar formula

and has been checked [] to satisfy almost all properties of amplitudes: it has cyclic,

reflective and parity symmetries, obeys the (generalized) dual Ward identity, has

the correct soft and collinear limit. But it has not been proven to have the correct

multi-particle factorization, which will then prove the conjecture is true - something

that most people believe.

The connected prescription formula can be written again another form, using Zi =

(λαi , µ
α̇
i , η

A
i ) the 4|4 component homogeneous coordinates for the i-th particle in P3|4

as follows []:

A(Z) =
∫
d4k|4kA dnσ dmξ

vol GL(2)

n∏

i=1

δ4|4(Zi − ξiP(σi))

ξi(σi − σi+1)
, (1.3.13)

where P is the degree k − 1 polynomial given in terms of its k C4|4-valued superco-

efficients Ad by

P(σ) =
k−1∑

d=0

Adσ
d. (1.3.14)

This formula is a contour integral in a multidimensional complex space. It has a

GL(2) invariance in the integrand and the measure, which needs to be gauged. The

delta functions here specify the contour of integration, indicating which poles to

include in the sum over residues.



Chapter 2

Dual Conformal Symmetry

2.1 Magic Identities: the emerging of a new sym-

metry

We will review the discovery, formalism and recent developments of the dual su-

perconformal symmetry in this chapter [127]. Four-point correlators in the N = 4

super-Yang-Mills conformal field theory have attracted considerable attention since

the formulation of the AdS/CFT conjecture [6]. They can provide non-trivial dy-

namical information about the CFT side of the correspondence, which can then

be compared to its AdS dual. And although it may seem that the two problems,

that of the correlators of gauge-invariant composites and that of gluon scattering

amplitudes, are unrelated, it is quite significant that in both studies one deals with

the same conformal integrals. We will show later that the understanding of these

subjects has contributed greatly to the full understanding of scattering amplitudes

42
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in recent years.

The scattering amplitudes are typically described in terms of scalar loop integrals.

And a new symmetry emerged in 2006 when Drummond, Henn, Smirnov and Sokatchev

[87] found some ’magic identities’ by studying the four-point off-shell scattering am-

plitudes. They examined the structure of the loop corrections of scattering ampli-

tudes in N = 4 super Yang-Mills theory in the planar limit and deduced an iterative

procedure for constructing classes of off-shell four-point conformal integrals ,which

are identical, up to 4 loops as shown in Fig. 2.1 [87]. It was proven in there that

the three-loop ladder diagram and the three-loop tennis court diagram are precisely

equal to each other in four dimensions when taken off-shell. There are also other

relations between different integrals at higher loop levels. The origin of why these

identities exist wasn’t known at the time because there is no trace of these relations

when working on-shell. However this procedure does not generate all the contribut-

ing diagrams to the scattering amplitudes, which will be shown later in this section.

In addition to the new identities, it has also been found in [87] that all of the con-

tributing integrals obey a new conformal symmetry, which is called ’dual conformal

symmetry’. This symmetry, which is unrelated to the conventional conformal sym-

metry of N = 4 Yang-Mills, is dynamical and does not manifest in the Lagrangian

of the theory. It acts as conformal transformations on the variables xi ≡ ki − ki+1,

where ki are the cyclically ordered momenta of the particles participating in a scat-

tering process. This dual conformal symmetry is formal because the integrals are in

fact infrared divergent and the introduction of dimensional regularisation breaks the

symmetry. Nevertheless, even broken, the dual conformal symmetry still imposes

constraints on the on-shell scattering amplitudes. It is important to emphasize that
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Figure 2.1: Some integral topologies up to four loops. The integrals generated
from topologies in a given row are all equivalent. Each topology in the next row is
generated by integrating the slingshot in all possible orientations.

dual conformal invariance is a property of planar amplitudes only in super Yang-

Mills and not a property of supergravity theory. After its discovery and though its

origin is still under study, dual conformal symmetry was used as a guideline to find

the contributing diagrams to the scattering amplitudes at four loops [50] and five

loops [5].

Although somewhat mysterious at weak coupling, dual conformal symmetry is well

understood in the Alday-Maldacena prescription [59] which provides a geometrical

interpretation, making it manifest at strong coupling. One of the steps in this

construction involves T-dualizing along the four directions of AdS5 parallel to the

boundary, and dual conformal symmetry is the just isometry of this T-dualized AdS5.

We will discuss more about this in the next section.
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2.1.1 Properties of Dual Conformal Integrals

We will review here the definition and diagrammatic properties of dual conformal

integrals following [102, 132]. By way of illustration we consider first the one-loop di-

agram shown in Fig. 2.2. Black lines depict the underlying scalar Feynman diagram,

with each internal line associated to a 1/p2 propagator as usual. Each dotted red

line indicates a numerator factor (p1 + p2 + · · · + pn)2 where the pi are the momenta

flowing through the black lines that it crosses. Of course momentum conservation

at each vertex guarantees that a numerator factor only depends on where the dotted

red line begins and ends, not on the particular path that it traverses through the

diagram. We adopt a standard convention (see for example [255]) that each four-

Figure 2.2: The one-loop scalar box diagram with conformal numerator factors
indicated by the dotted red lines.

dimensional loop momentum integral comes with a normalization factor of 1/iπ2.

Thus the diagram shown in Fig.2.2 corresponds to the integral

I(1)(k1, k2, k3, k4) =
∫ d4p1

iπ2

(k1 + k2)
2(k2 + k3)2

p2
1(p1 − k1)2(p1 − k1 − k2)2(p1 + k4)2

. (2.1.1)

We regulate this infrared divergent integral by taking the external legs off-shell,

choosing for simplicity all of the ‘masses’ k2
i = µ2 to be the same. A different
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possible infrared regulator that one might consider would be to replace the 1/p2

propagators by massive propagators 1/(p2 − m2), but we keep all internal lines

strictly massless.

Following [102, 132] we then pass to dual coordinates xi by taking

k1 = x12, k2 = x23, k3 = x34, k4 = x41, p1 = x15, (2.1.2)

where xij ≡ xi − xj , so that [? ] becomes

I(1)(x1, x2, x3, x4) =
∫
d4x5

iπ2

x2
13x

2
24

x2
15x

2
25x

2
35x

2
45

. (2.1.3)

This expression is now easily seen to be invariant under arbitrary conformal trans-

formations on the xi. This invariance is referred to as ‘dual conformal’ symmetry

in [102] because it should not be confused with the familiar conformal symmetry

of N = 4 Yang-Mills. The coordinates xi here are momentum variables and are

not simply related to the position space variables on which the usual conformal

symmetry acts.

Figure 2.3: The one-loop scalar box with dotted red lines indicating numerator
factors and thick blue lines showing the dual diagram.
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To analyze the dual conformal invariance of a diagram it is convenient to consider

its dual diagram 1. In Fig.2.3 we have labeled the vertices of the dual diagram to

Fig.2.2 in accord with the expression 2.1.3. The numerator factors correspond to

dotted red lines as before, while denominator factors in the dual expression 2.1.3

correspond to the thick blue lines in the dual diagram. Neighboring external faces

are not connected by thick blue lines because the associated propagator is absent.

With this notation set up it is easy to formulate a diagrammatic rule for determining

whether a diagram can correspond to a dual conformal integral. We associate to

each face in the diagram (i.e., each vertex in the dual diagram) a weight which is

equal to the number of thick blue lines attached to that face minus the number of

dotted red lines. Then a diagram is dual conformal if the weight of each of the

four external faces is zero and the weight of each internal face is four (to cancel

the weight of the corresponding loop integration
∫
d4x). Consequently, no tadpoles,

bubbles or triangles are allowed in the Feynman diagram, each square must be

associated with no numerator factors, each pentagon must be associated with one

numerator factor, etc.

We distinguish slightly between dual conformal diagrams and dual conformal in-

tegrals. The latter are all diagrams satisfying the diagrammatic rule given above.

However in [132] it was pointed out that not all dual conformal diagrams give rise

to integrals that are finite off-shell in four dimensions. Those that are not finite can

only be defined with a regulator (such as dimensional regularization) that breaks the

dual conformal symmetry and hence cannot be considered dual conformal integrals.

1The fact that nonplanar graphs do not have duals is consistent with the observation that dual
conformal symmetry is a property only of the planar limit.
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Figure 2.4: Two examples of three-loop dual conformal diagrams.

In Fig. 2.4 we show two diagrams that are easily seen to be dual conformal according

to the above rules. The diagram on the left is the well-known three-loop tennis court

I(3)b . The diagram on the right demonstrates a new feature that is possible only

when the external lines are taken off-shell. The dotted red line connecting the top

external face to the external face on the right crosses only one external line and is

therefore associated with a numerator factor of k2
i = µ2. Such an integral is absent

when we work on-shell. Of course absent does not necessarily mean that an integral

vanishes if we first calculate it for finite µ2 and then take µ2 → 0. Indeed we will

see below that I(3)c ∼ ln3(µ2) in the infrared limit.

An important and well-known feature of four-point dual conformal integrals is that

they are constrained by the symmetry to be a function only of the conformally

invariant cross-ratios

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

14x
2
23

x2
13x

2
24

. (2.1.4)

Since we have chosen to take all external momenta to have the same value of k2
i = µ2,
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we see that u and v are are actually both equal to

x ≡ µ4

st
, (2.1.5)

where s = (p1+p2)
2 and t = (p2+p3)

2 are the usual Mandelstam invariants.Therefore

we can express any dual conformal integral as a function of the single variable x.

One immediate consequence of this observation is that any dual conformal integral is

invariant under rotations and reflections of the corresponding diagram, since x itself

is invariant under such permutations. A second consequence is that any degenerate

integral (by which we mean one where two or more of the external momenta enter

the diagram at the same vertex) must evaluate to a constant, independent of x.

2.2 Dual Conformal Symmetry at Weak Coupling

We will review here the dual conformal symmetry of gluon scattering amplitudes

following [127]. First we recall the conventional conformal symmetry of the scatter-

ing amplitudes, then describe how dual conformal symmetry emerges. N = 4 SYM

theory involves bosons (gluons and scalars), as well as fermions (gluinos). Each of

these particles is characterized by its on-shell momentum pµi (i = 1 . . . n) and helicity

hi = ±1 (gluons), ±1/2 (gluinos), 0 (scalars). All particles are treated as incoming,

so that the total momentum conservation condition is

n∑

i=1

(pi)
α̇α = 0 . (2.2.1)
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To solve the on-shell condition for pi, it is convenient to introduce commuting spinor

variables

(pi)
α̇α = λ̃α̇i λ

α
i , (2.2.2)

where λαi (α = 1, 2) and λ̃α̇i (α̇ = 1̇, 2̇) are two-component Weyl spinors. The

standard convention is that the spinors λ and λ̃ carry helicities −1/2 and +1/2,

respectively. Thus, the momentum (pi)
α̇α has vanishing helicity. We will refer to

the space with coordinates (λi, λ̃i) as the ‘on-shell’ space. We will let the momenta

complex so that there will be solutions in further applications. The spinors λαi and

λ̃α̇i could be determined in terms of the momentum up to a scale by the little group

transformation:

λαi → tiλ
α
i , λ̃α̇i → t−1

i λ̃α̇i . (2.2.3)

The advantage of using the spinor variables λ and λ̃ is that we can make a bridge

between Lorentz and massless Poincaré representations.

Let us introduce the spinor description of gluon states. On-shell gluons are massless

Poincaré states of helicity ±1 described, correspondingly, by G±(p). Their Lorentz

covariant description makes use of the self-dual and anti-self-dual parts of the gluon

field strength tensor, Gαβ(p) = λαλβ G
+(p) and Ḡα̇β̇(p) = λ̃α̇λ̃β̇ G

−(p) respectively,

satisfying the equations of motion pα̇αGαβ(p) = Ḡα̇β̇(p)pβ̇α = 0.

Then, as mentioned in chapter 1, the MHV tree-level gluon amplitude with the two

negative-helicity gluons occupying sites i and j is given by

An;0

(
1+ . . . i− . . . j− . . . n+

)
= i(2π)4δ(4)(

n∑

k=1

pk)
〈i j〉4

〈1 2〉〈2 3〉 . . . 〈n 1〉 (2.2.4)
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where

〈i j〉 = −〈j i〉 = λαi ǫαβ λ
β
j = λαi λj α . (2.2.5)

The above amplitude has a conformal symmetry [218], which is the ordinary confor-

mal symmetry SO(2, 4) of the N = 4 SYM Lagrangian, but realized on the particle

momenta (or, equivalently, on the spinor variables λ and λ̃). And the conformal

boost generator takes the form of a second-order differential operator

kαα̇ =
n∑

i=1

∂2

∂λαi ∂λ̃
α̇
i

, (2.2.6)

leading to kαα̇An;0 = 0.

Now let us introduce new ‘dual’ coordinates xi (with i = 1, . . . , n):

(pi)
α̇α = (xi)

α̇α − (xi+1)α̇α , (2.2.7)

satisfying the cyclicity condition

xn+1 ≡ x1 . (2.2.8)

The new variables xi have nothing to do with the coordinates in the original config-

uration space (which are the Fourier conjugates of the particle momenta pi).

With the scattering amplitudes having the following general form

An = i(2π)4δ(4)(
n∑

i=1

pi)An(p1, . . . , pn) , (2.2.9)

we can think of the relation (xi − xi+1)
α̇α = λ̃α̇i λ

α
i , xn+1 ≡ x1 as defining a surface
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in the full space and then we can interpret the function An(pi) = An(λi, λ̃i, xi)

appearing in the amplitude (2.2.9) as a function defined on this surface. This leads

to a dual translation invariance

Pαα̇An(λi, λ̃i, xi) = 0 (2.2.10)

with Pαα̇ being the generator of translations

Pαα̇ =
n∑

i=1

∂

∂xα̇αi
. (2.2.11)

We could rewrite the constraint to eliminate one variable from the Full space (x, λ, λ̃)

to go to the On-shell space (λ, λ̃) or the Dual space (x, λ). Here we will work in

the dual space to exhibit a new conformal symmetry of gluon scattering amplitudes.

We shall assume that the dual coordinates xα̇α transform in the standard way under

the conformal group SO(2, 4), and then deduce the transformation properties of λα

by requiring that the defining relation should remain covariant.

It is well known that the conformal group SO(2, 4) can be obtained from the

Poincaré group by adding the discrete operation of conformal inversion,

I[xαβ̇ ] =
xβα̇
x2

≡ (x−1)βα̇ . (2.2.12)

We can then use the following transformations

I[x2
ij] =

x2
ij

x2
ix

2
j

. (2.2.13)
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I
[
〈i i+ 1〉

]
= (x2

i )
−1 〈i i+ 1〉 , (2.2.14)

I
[
[i i+ 1]

]
= (x2

i+2)−1 [i i+ 1] .

to deduce the conformal weight of the tree-level MHV split-helicity amplitude to be

(+1) at all points:

I
[
AMHV
n;0

(
1−2−3+ . . . n+

)]
=
(
x2

1x
2
2 . . . x

2
n

)
AMHV
n;0

(
1−2−3+ . . . n+

)
, (2.2.15)

So all tree-level MHV split-helicity amplitudes AMHV
n;0

(
. . . G−

i G
−
i+1 . . .

)
are dual con-

formal covariant. The same property holds for all split-helicity tree-level non-MHV

amplitudes An;0 (1− . . . q−(q + 1)+ . . . n+), i.e. those amplitudes in which the negative-

helicity gluons appear contiguously.

I
[
An;0

(
1− . . . q−(q + 1)+ . . . n+

)]
=
(
x2

1x
2
2 . . . x

2
n

)
An;0

(
1− . . . q−(q + 1)+ . . . n+

)
.

(2.2.16)

However, the tree-level non-split-helicity MHV amplitudes AMHV
n;0 (. . . i− . . . j− . . .)

are not covariant for |i − j| > 1. The full understanding of the role of dual confor-

mal symmetry is achieved when the gluon amplitudes are combined together with

the amplitudes involving other particles (gluinos, scalars) into a bigger and unify-

ing object, the complete N = 4 superamplitude, which has well defined conformal

properties.

With the defined inversion operator, we can choose the generators of the dual special
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conformal transformation K = IPI in the full space to be

K α̇α =
n∑

i=1

[
xα̇βi xβ̇αi

∂

∂xβ̇βi
+ xα̇βi λαi

∂

∂λβi
+ xβ̇αi+1λ̃

α̇
i

∂

∂λ̃β̇i

]
. (2.2.17)

Now we will summarize here the dual conformal properties of the complete MHV

amplitude, which is naturally factorized into a tree-level factor and a loop-correction

factor as

AMHV = AMHV
n;0 MMHV

n (xi) (2.2.18)

where

MMHV
n (xi) = 1 + aM (1)

n (xi) + a2M (2)
n (xi) + . . . (2.2.19)

and the coupling a = g2N/8π2.

The M (j)
n (xi) is a combination of infrared divergent loop momentum integrals, which

needs to be regulated. Here we will use dimensional regularization (D = 4 − 2ǫ

with ǫ > 0) and the amplitudes will therefore depend on the regulator ǫ and some

associated scale µ.

One can split Mn(xi) into two parts:

lnMMHV
n = lnZMHV

n + lnFMHV
n +O(ǫ)

=
∞∑

l=1

al
[

Γ(l)
cusp

(lǫ)2
+

Γ
(l)
col

lǫ

]∑

i

(
µ2
IR

−si,i+1

)lǫ
+ FMHV

n (p1, . . . , pn; a) +O(ǫ).

(2.2.20)

The first part is the infrared divergent part, lnZMHV
n , that includes only simple

and double poles, which is controlled by the cusp anomalous dimension Γcusp(a) =
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∑
alΓ(l)

cusp. And the second part is the finite part, lnFMHV
n , that is controlled under

the anomalous conformal Ward identity as below

Kµ lnFMHV
n =

n∑

i=1

(2xνi xi · ∂i − x2
i∂

ν
i ) lnFMHV

n =
1

2
Γcusp(a)

n∑

i=1

ln
x2
i,i+2

x2
i−1,i+1

xνi,i+1 .

(2.2.21)

The general solution of this identity allows some freedom in the form of an arbitrary

function of the conformally invariant cross-ratios

uijkl =
x2
ijx

2
kl

x2
ilx

2
jk

, (2.2.22)

if n ≥ 6 (for n = 4, 5 there exist no cross-ratios, due to the light-like separation of

adjacent points).

2.3 Super Amplitudes

Beside the gluons, the N = 4 SYM theory also have eight fermion states (gluinos) ΓA

and Γ̄A with helicities 1/2 and −1/2, respectively, and six scalars (helicity zero states)

SAB = −SBA. Here A,B,C,D = 1, . . . , 4 are indices of the (anti)fundamental

representation of the R symmetry group SU(4).

We will briefly recall the N = 4 gluon supermultiplet [127]. One can build the

massless representation with a choice of Lorentz frame in which pµ = (p, 0, 0, p).

Then the supersymmetry algebra becomes the Clifford algebra

{qA1 , q̄B 1̇} = 2δAB p (2.3.1)
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with all the other anticommutators vanishing. In this frame the states (massless

Poincaré representations) are labeled by their helicity, the eigenvalue of the Lorentz

generator J12. For chiral spinors it is J12 = 1
2
(σ12)α

β, and for antichiral spinors

J12 = 1
2
(σ̃12)α̇

β̇. The helicity of qA1 is 1/2 and of q̄A 1̇ is −1/2.

Next, we define a vacuum state of helicity h by the condition that it be annihi-

lated by all those supersymmetry generators which anticommute among themselves

(annihilation operators):

qA1 |h〉 = qA2 |h〉 = q̄A 2̇|h〉 = (J12 − h) |h〉 = 0 . (2.3.2)

Then the massless supermultiplet of states is obtained by applying the four creation

operators q̄A 1̇ to the vacuum:

State Helicity Gluon SuperMultiplet Multiplicity

|h〉

q̄A 1̇|h〉

q̄A 1̇q̄B 1̇|h〉

ǫABCD q̄A 1̇q̄B 1̇q̄C 1̇|h〉

ǫABCD q̄A 1̇q̄B 1̇q̄C 1̇q̄D 1̇|h〉

h

h− 1/2

h− 1

h− 3/2

h− 2

1

1/2

0

−1/2

−1

1

4

6

4

1

(2.3.3)

In a physical theory the helicity should be |h| ≤ 2, so in the case N = 4 the allowed

values are h = 1, 3/2, 2. We see that the multiplet obtained by choosing h = 1 is

self-conjugate under PCT, since it contains all the helicities ranging from +1 to −1.

This is the so-called N = 4 gluon supermultiplet, describing massless particles of

helicities ±1 (gluons), ±1/2 (gluinos) and 0 (scalars).
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However, this construction requires the choice of a special frame, thus manifestly

breaking Lorentz invariance. We can reproduce the supermultiplet 2.3.3 in a man-

ifestly Lorentz covariant way. Let us rewrite the supersymmetry algebra using the

representation of the on-shell momentum:

{qAα , q̄B α̇} = δAB λαλ̃α̇ . (2.3.4)

The two-component spinor qAα has two Lorentz covariant projections, one ‘parallel’

to λα, qA||α = λαq
A (with λαqA||α = 0), the other ‘orthogonal’, qA⊥ = λαqAα . The same

applies to q̄A α̇. Then we obtain the covariant analog of the Clifford algebra 2.3.1 by

setting the orthogonal projections to zero:

{qA, q̄B} = δAB . (2.3.5)

Such algebras are most naturally realized in terms of anticommuting (Grassmann)

variables ηA, which transform in the fundamental representation of su(4) and have

helicity 1/2:

qAα = λαη
A , q̄Aα̇ = λ̃α̇

∂

∂ηA
, {ηA, ηB} = 0 . (2.3.6)

We can now use the generators 2.3.6 to reproduce the content of the multiplet 2.3.3

in the convenient and compact form of a super-wave function

Φ(p, η) = G+ + ηAΓA + 1
2!
ηAηBSAB + 1

3!
ηAηBηCǫABCDΓ

D
+ 1

4!
ηAηBηCηDǫABCDG

−.

(2.3.7)
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Here G+,ΓA, SAB = 1
2
ǫABCDS

CD
,Γ

A
, G− are the positive helicity gluon, gluino,

scalar, anti-gluino and negative helicity gluon states respectively.

The helicity generator, the central charge of the superconformal algebra su(2, 2|4),

h = −1
2
λα

∂

∂λα
+ 1

2
λ̃α̇

∂

∂λ̃α̇
+ 1

2
ηA

∂

∂ηA
, (2.3.8)

gives the helicity condition

hΦ = Φ , (2.3.9)

hiA(Φ1, . . . ,Φn) = A(Φ1, . . . ,Φn), i = 1, . . . , n. (2.3.10)

The superwave function Φ has helicity 1 because we have chosen a holomorphic ap-

proach, we could have the same description with a helicity (−1) superwave function

Φ̄(p, η̄), which is PCT self-conjugate and related to Φ by

Φ̄(p, η̄) =
∫
d4η ǫη̄Aη

A

Φ(p, η) . (2.3.11)

In a theory with N = 2 or N = 1 supersymmetry the gluon multiplet is not self-

conjugate, therefore we would need both a holomorphic and an anti-holomorphic

super-wave functions for the full theory.

The all-loop superamplitude in N = 4 super Yang-Mills theory is conjectured to be

written as follows [],

An ≡ AMHV
n + ANMHV

n + AN2MHV
n + . . .+ ANn−4MHV

n

= A
MHV
n

[
Rn(ηi, λi, λ̃i) +O(ǫ)

]
. (2.3.12)
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Here ANn−4MHV
n = AMHV

n is the googly, or anti-MHV amplitude. The ratio function

Rn(ηi, λi, λ̃i) = 1 +RNMHV
n +RN2MHV

n + . . .+RNn−4MHV
n (2.3.13)

is finite as ǫ → 0 and satisfies the dual conformal Ward identities

KµRn(ηi, λi, λ̃i) = DRn(ηi, λi, λ̃i) = 0 , (2.3.14)

with the dilatation D and conformal boost Kµ operators defined in the on-shell

superspace (ηi, λi, λ̃i).

Specifically, the tree-level superamplitude can be written as

A(Φ1, . . . ,Φn) ≡ An(λ, λ̃, η) = i(2π)4
δ(4)

(∑n

j=1
pj

)
δ(8)(

∑n

i=1
λα

i η
A
i )

〈12〉...〈n1〉
Pn(λi, λ̃i, ηi)

≡ AMHV
n;0 Pn;0, (2.3.15)

where Pn;0 can be expanded as,

Pn;0 = 1 + PNMHV
n;0 + PNNMHV

n;0 + . . . + PMHV
n;0 . (2.3.16)

and we have used Nair’s description of the n-particle MHV tree-level superamplitude

AMHV
n;0 =

i(2π)4δ(4)(
∑n
i=1 λαi λ̃

α̇
i ) δ(8)(

∑n
i=1 λαi η

A
i )

〈1 2〉〈2 3〉 . . . 〈n 1〉 . (2.3.17)

The explicit form of the function Pn;0 which encodes all tree-level amplitudes was

found in [225] by solving a supersymmetrised version [173, 229? ] of the BCFW

recursion relations [196, 209].
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The all-loop MHV superamplitude is given as

AMHV
n (p1, η1; . . . ; pn, ηn) = i(2π)4

δ(4)
(∑n

j=1 pj
)
δ(8)

(∑n
i=1 λ

α
i η

A
i

)

〈12〉〈23〉 . . . 〈n1〉 MMHV
n , (2.3.18)

where δ(8)
(∑n

i=1 λi αη
A
i

)
=
∏
α=1,2

∏4
A=1 λi αη

A
i is a Grassmann delta function.

For NMHV case, ANMHV
n transforms covariantly under the dual superconformal trans-

formations and has the same conformal weights as the MHV superamplitude AMHV
n .

As a result, the ‘ratio’ of the two superamplitudes is given by a linear combination

of superinvariants of the form (to one-loop order)

ANMHV
n = AMHV

n ×

 1

n

n∑

p,q,r=1

cpqr δ
(4) (Ξpqr) [1 + aVpqr +O(ǫ)] +O(a2)


 . (2.3.19)

Here δ(4) (Ξpqr) ≡ ∏4
A=1 ΞA

pqr are Grassmann delta functions. The integers p 6= q 6= r

label three points in the dual superspace (xi, λ
α
i , θ

Aα
i ) .

In [? ] it was argued that this conjecture holds for NMHV amplitudes at one loop,

based on explicit calculations up to nine points using supersymmetric generalised

unitarity. Subsequently [? ] it has been argued to hold for all one-loop amplitudes

by analysing the dual conformal anomaly arising from infrared divergent two-particle

cuts.

At tree level, we can obtain the explicit form in the NMHV case for the amplitude

as in 2.7.1 and 2.3.16 as follows [225? ? ]:

PNMHV
n;0 =

∑

a,b

Rn,ab (2.3.20)
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where the sum runs over the range 2 ≤ a < b ≤ n− 1 (with a and b separated by at

least two) and

Rn,ab =
〈a a− 1〉〈b b− 1〉δ4

(
〈n|xnaxab|θbn〉 + 〈n|xnbxba|θan〉

)

x2
ab〈n|xnaxab|b〉〈n|xnaxab|b− 1〉〈n|xnbxba|a〉〈n|xnbxba|a− 1〉 , (2.3.21)

is by itself a dual superconformal invariant. This formula was originally constructed

in [? ] by supersymmetrising the three-mass coefficients of NMHV gluon scattering

amplitudes at one loop in [? ]. It was then derived from supersymmetric generalised

unitarity [? ] as the general form of the one-loop three-mass box coefficient.

A simple one-loop expression for the n = 6 NMHV superamplitude is given in [] as

follows,

ANMHV
6 = AMHV

6

[
1

2
c146 δ

(4) (Ξ146) (1 + aV146) + (cyclic) +O(a2)
]
, (2.3.22)

where

Ξ146 = 〈61〉〈45〉
(
η4[56] + η5[64] + η6[45]

)
, (2.3.23)

c146 = − 〈34〉〈56〉
x2

46[1 ]x16x63|3][1 ]x16x64|4][1 ]x14x45|5][1 ]x14x46|6]
, (2.3.24)

and

V146 = − ln u1 ln u2 +
1

2

3∑

k=1

[
ln uk ln uk+1 + Li2(1 − uk)

]
, (2.3.25)

with the periodicity condition ui+3 = ui is implied and

u1 =
x2

13x
2
46

x2
14x

2
36

, u2 =
x2

24x
2
15

x2
25x

2
14

, u3 =
x2

35x
2
26

x2
36x

2
25

. (2.3.26)
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2.4 Dual SuperConformal Symmetry at Weak Cou-

pling

In the previous section, we have extended the bosonic coordinates x, λ, λ̃ to include

the fermionic coordinates θ, η and by doing so, promoted the dual conformal symme-

try SO(2, 4) to the dual superconformal symmetry SU(2, 2|4). We have also defined

our superamplitudes on the on-shell superspace and seen how their structures are

controlled by the dual superconformal symmetry. Now we will discuss about the

formalism of this symmetry as below, following [127].

Let us introduce dual xα̇αi coordinates to solve the momentum conservation con-

straint and chiral dual θAαi coordinates to solve the supercharge conservation con-

straint,

n∑

i=1

λαi λ̃
α̇
i = 0 =⇒ xα̇αi − xα̇αi+1 = λ̃α̇ßλ

α
i ,

n∑

i=1

λαi η
A
i = 0 =⇒ θAαi − θAai+1 = λαi η

A
i , (2.4.1)

and we impose the cyclicity conditions

xn+1 ≡ x1 , θn+1 ≡ θ1 . (2.4.2)

Similar to the dual conformal case, the space with coordinates (λi, λ̃i, xi, ηi, θi) is

called the Full Superspace. And we can use the constraint 2.4.1 to transform the Full

Superspace into the On-shell Superspace of (λi, λ̃i, ηi) or into the Dual Superspace,

which is chiral, of (xi, λi, θi).
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The dual (super)translation invariance is given as,

Pαα̇ Pn = 0 , QAαPn = 0 (2.4.3)

with

Pαα̇ =
n∑

i=1

∂

∂xα̇αi
, QAα =

n∑

i=1

∂

∂θAαi
, (2.4.4)

where they are not related to the usual translation generator pαα̇ or supercharge qAα .

As before, Pαα̇ generates shifts of dual x−variables, while QAα generates shifts of

θ’s

δQθ
Aα
i = ǫAα , (2.4.5)

with ǫAa being a constant odd parameter (a chiral Weyl spinor).

Dual Poincaré supersymmetry In the dual superspace with coordinates (xi, λi, θi)

we introduce the generators

QAα =
n∑

i=1

∂

∂θAαi
, Q̄A

α̇ =
n∑

i=1

θAαi
∂

∂xα̇αi
, Pαα̇ =

n∑

i=1

∂

∂xα̇αi
, (2.4.6)

satisfying the N = 4 Poincaré supersymmetry algebra

{QAα, Q̄
B
α̇ } = δBA Pαα̇ . (2.4.7)

The generator Q̄A
α̇ has an induced action on the on-shell superspace variables η,

Q̄A
α̇ =

n∑

i=1

ηAi
∂

∂λ̃α̇i
. (2.4.8)
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The choice of the chiral dual superspace is determined by the holomorphic descrip-

tion of the on-shell gluon multiplet. We could make the equivalent choice of an

antichiral dual superspace, corresponding to the antiholomorphic description of the

gluon multiplet in terms of η̄. The important point is that the specific nature of the

N = 4 gluon multiplet allows us to use either the one or the other description, and

does not oblige us to mix them.

For Dual superspace, we have:

I
[
θAαi

]
= (x−1

i )α̇βθAi β , I
[
θAiα
]

= θAβi (x−1
i )βα̇ . (2.4.9)

The combination of the dual supersymmetry transformation 2.4.5 with inversion

implies another continuous symmetry with generator S̄α̇A = IQAαI, in close analogy

with the conformal boosts Kµ = IP µI.

S̄α̇A =
n∑

i=1

xα̇αi
∂

∂θAαi
. (2.4.10)

[S̄α̇A, Pββ̇] = δα̇β̇QAβ . (2.4.11)

[QαA, Kββ̇] = ǫαβS̄A β̇ . (2.4.12)

The reason why we have SU(2, 2|4) and not PSU(2, 2|4) is that the algebra involves

a central charge, which is suggested to be identified with helicity.

For On-shell superspace we have:

I[ηAi ] =
x2
i

x2
i+1

(
ηAi − θAi x

−1
i λ̃i

)
, (2.4.13)
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which is not homogeneous as in the transformation of θ.

I[λαi ] =
(λixi)

α̇

x2
i

, I[λ̃α̇i ] =
(λ̃ixi)

α

x2
i+1

. (2.4.14)

And the generator S has the following form

S̄α̇A =
n∑

i=1

λ̃α̇i
∂

∂ηAi
(2.4.15)

The full set of generators of conventional and dual superconformal symmetry is given

in Appendix B.

The generator of dual conformal transformation of all variables xi, θi, λi, λ̃i, ηi is

given as

K α̇α =
n∑

i=1

[
xβ̇αi xα̇βi

∂

∂xβ̇βi
+ xα̇βi θBαi

∂

∂θβBi
+ xα̇βi λαi

∂

∂λβi
+ xβ̇αi+1λ̃

α̇
i

∂

∂λ̃β̇i
+ λ̃α̇i θ

B α
i+1

∂

∂ηBi
],

(2.4.16)

For any generator of the superconformal algebra psu(2, 2|4),

ja ∈ {pαα̇, qαA, q̄α̇A, mαβ , m̄α̇β̇, r
A
B, d, s

α
A, s̄

A
α̇ , kαα̇}, (2.4.17)

at tree-level we have, (up to contact terms which vanish for generic configurations

of the external momenta) [? ? ? ]:

jaAn = 0. (2.4.18)

Because there are no infrared divergences.
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And we can show that the tree-level MHV superamplitude transforms covariantly

under inversion and has equal conformal weights +1 at each point

I[AMHV
n;0 ] =

(
x2

1x
2
2 . . . x

2
n

)
AMHV
n;0 . (2.4.19)

In [? ] it was conjectured that the full tree-level superamplitude Atree
n is covariant

under dual superconformal symmetry:

Kαα̇An = −
∑

i

xαα̇i An, (2.4.20)

SαAAn = −
∑

i

θαAi An, (2.4.21)

together with DAn = nAn and CAn = nAn. The remaining generators of the dual

superconformal algebra annihilate the amplitudes.

2.5 Off-shell Amplitudes and Classification

Recent work on N = 4 super Yang-Mills theory has unlocked rich hidden structure

in planar scattering amplitudes which indicates the exciting possibility of obtaining

exact formulas for certain amplitudes. At weak coupling it has been observed at

two and three loops[133] that the planar four-particle amplitude satisfies certain

iterative relations which, if true to all loops, suggest that the full planar amplitude

A sums to the simple form

log(A/Atree) = (IR divergent terms) +
f(λ)

8
log2(t/s) + c(λ) + · · · , (2.5.1)



67

where f(λ) is the cusp anomalous dimension, s and t are the usual Mandelstam

invariants, and the dots indicate terms which vanish as the infrared regulator is

removed. Evidence for similar structure in the five-particle amplitude has been

found at two loops . At strong coupling, Alday and Maldacena[59] have recently

given a prescription for calculating gluon scattering amplitudes via AdS/CFT and

demonstrated that the structure 2.5.1 holds for large λ as well. An important role

in this story is evidently played by dual conformal symmetry [132].

The generalized unitarity methods which are used to construct the dimensionally-

regulated multiloop four-particle amplitude in N = 4 Yang-Mills theory express the

ratio A/Atree as a sum of certain scalar Feynman integrals—the same kinds of in-

tegrals that would appear in φn theory, but with additional scalar factors in the

numerator. However dimensional regularization explicitly breaks dual conformal

symmetry, so the authors of [132] used an alternative regularization which consists

of letting the four external momenta in these scalar integrals satisfy k2
i = µ2 in-

stead of zero. Then they observed that the particular Feynman integrals which

contribute to the dimensionally-regulated amplitude are precisely those integrals

which, if taken off-shell, are finite and dual conformally invariant in four dimensions

(at least through five loops, which is as far as the contributing integrals are currently

known).

Off-shell dual conformally invariant integrals have a number of properties which

make them vastly simpler to study than their on-shell cousins. First of all they are

finite in four dimensions, whereas an L-loop on-shell dimensionally regulated inte-

gral has a complicated set of infrared poles starting at order ǫ−2L. Moreover in our
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experience it has always proven possible to obtain a one-term Mellin-Barnes repre-

sentation for any off-shell integral, several examples of which are shown explicitly in

section 4. In contrast, on-shell integrals typically can only be written as a sum of

many (at four loops, thousands or even tens of thousands of) separate terms near

ǫ = 0. It would be inconceivable to include a full expression for any such integral in

a paper.

Secondly, the relative simplicity of off-shell integrals is such that a simple analytic

expression for the off-shell L-loop ladder diagram was already obtained several years

ago and generalized to arbitrary dimensions. For the on-shell ladder diagram an

analytic expression is well-known at one-loop, but it is again difficult to imagine

that a simple analytic formula for any L might even be possible.

Finally, various off-shell integrals have been observed to satisfy apparently highly

nontrivial relations, the ‘magic identities’ in [102], as mentioned above. Moreover a

simple diagrammatic argument was given which allows one to relate various classes

of integrals to each other at any number of loops. No trace of this structure is

evident when the same integrals are taken on-shell in 4 − 2ǫ dimensions.

Hopefully these last few paragraphs serve to explain our enthusiasm for off-shell

integrals. Compared to recent experience with on-shell integrals, which required

significant supercomputer time to evaluate, we find that the off-shell integrals we

study here are essentially trivial to evaluate.

Unfortunately however there is a very significant drawback to working off-shell,

which is that although we know (through five loops) which scalar Feynman inte-

grals contribute to the dimensionally-regulated on-shell amplitude, we do not know
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which integrals contribute to the off-shell amplitude. In fact it is not even clear

that one can in general provide a meaningful definition of the ‘off-shell amplitude.’

Taking k2
i = µ2 in a scalar integral seems to be a relatively innocuous step but we

must remember that although they are expressed in terms of scalar integrals, the

amplitudes we are interested in are really those of non-abelian gauge bosons. In

this light relaxing the on-shell condition k2
i = 0 does not seem so innocent. If it

is possible to consistently define a general off-shell amplitude in N = 4 Yang-Mills

then we would expect to see as µ2 → 0 the universal leading infrared singularity:

log (A/Atree) = −f(λ)

8
log2(µ4/st) + less singular terms, (2.5.2)

where f(λ) is the same cusp anomalous dimension appearing in [? ]. If an equation

of the form 2.5.2 could be made to work with off-shell integrals, it would provide

a method for computing the cusp anomalous dimension that is vastly simpler than

that of reading it off from on-shell integrals.

2.5.1 Classification of Dual Conformal Diagrams: Algorithm

Let us now explain a systematic algorithm to enumerate all possible off-shell dual

conformal diagrams [3]. We use the graph generating program qgraf [243] to gen-

erate all scalar 1PI 2 four-point topologies with no tadpoles or bubbles, and throw

away any that are non-planar or contain triangles since these cannot be made dual

conformal. After these cuts there remain (1, 1, 4, 25) distinct topologies at (1, 2, 3, 4)

2We do not know of a general proof that no one-particle reducible diagram can be dual conformal
but it is easy to check through four loops that there are no such examples.
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loops respectively respectively. We adopt the naming conventions which displays 24

out of the 25 four-loop topologies, omitting the one we call h in Fig. 2.10 since it

vanishes on-shell in dimensional regularization.

The next step is to try adding numerator factors to render each diagram dual con-

formal. Through three loops this is possible in a unique way for each topology, but

at four loops there are three topologies (shown in Fig. 2.5) that cannot be made

dual conformal at all while six topologies (b1, c, d, e, e2 and f , shown below) each

admit two distinct choices of numerator factors making the diagram dual conformal.

Figure 2.5: These are the three planar four-point 1PI four-loop tadpole-, bubble-
and triangle-free topologies that cannot be made into dual conformal diagrams by
the addition of any numerator factors. In each case the obstruction is that there is
a single pentagon whose excess weight cannot be cancelled by any numerator factor
because the pentagon borders on all of the external faces. (There are no examples
of this below four loops.)

We remark that we exclude from our classification certain ‘trivial’ diagrams that can

be related to others by rearranging numerator factors connected only to external

faces. For example, consider the two diagrams shown in Fig. 2.6. Clearly both are

dual conformal, but they differ from each other only by an overall factor of x = µ4/st.

In cases such as this we include in our classification only the diagram with the fewest
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number of µ2 powers in the numerator, thereby choosing the integral that is most

singular in the µ2 → 0 limit. In the example of Fig. 2.6 we therefore exclude the

diagram on the right, which actually vanishes in the µ2 → 0 limit, in favor of the

diagram on the left, which behaves like ln2(µ2).

Figure 2.6: Two dual conformal diagrams that differ only by an overall factor. As
explained in the text we resolve such ambiguities by choosing the integral that is
most singular in the µ2 → 0 limit, in this example eliminating the diagram on the
right.

Another possible algorithm, which we have used to double check our results, is to

first use the results of [253] to generate all planar 1PI vacuum graphs and then

enumerate all possible ways of attaching four external legs so that no triangles or

bubbles remain.

2.5.2 Classification of Dual Conformal Diagrams: Results

Applying the algorithm just described, we find a total of (1, 1, 4, 28) distinct dual con-

formal diagrams respectively at (1, 2, 3, 4) loops. While (1, 1, 2, 10) of these diagrams

have appeared previously in the literature on dual conformal integrals[102, 265, 267],

the remaining (0, 0, 2, 18) that only exist off-shell are new to this thesis. We classify

all of these diagrams into four groups, according to whether or not they are finite
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in four dimensions, and according to whether or not the numerator contains any

explicit factors of µ2 [3]. Hence we define:

Type I diagrams are finite in four dimensions and have no µ2 factors.

Type II diagrams are divergent in four dimensions and have no µ2 factors.

Type III diagrams are finite in four dimensions and have µ2 factors.

Type IV diagrams are divergent in four dimensions and have µ2 factors.

Type I and II diagrams through five loops have been classified, and some of their

properties studied, in[102, 132, 265, 267]. In particular, it has been observed in these

references that it is precisely the type I integrals that contribute to the dimensionally

regulated on-shell four-particle amplitude (at least through five loops). We display

these diagrams through four loops in Figs.2.7 and 2.8. The new type III and IV

diagrams that only exist off-shell are shown respectively in Figs.2.9 and 2.10. Each

diagram is given a name of the form I(L)i where L denotes the number of loops and

i is a label. The one- and two-loop diagrams are unique and do not require a label.

Below we will also use I(L) to refer to the L-loop ladder diagram (specifically, I(1),

I(2), I(3)a and I(4)a for L = 1, 2, 3, 4).

We summarize the results of our classification in the following table showing the

number of dual conformal diagrams of each type at each loop order:
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L I II III IV

1 1 0 0 0

2 1 0 0 0

3 2 0 2 0

4 8 2 9 9

Figure 2.7: Type I: Here we show all dual conformal diagrams through four loops that
are finite off-shell in four dimensions and have no explicit numerator factors of µ2.
These are precisely the integrals which contribute to the dimensionally-regulated on-
shell four-particle amplitude[242, 249, 258, 265]. For clarity we suppress an overall
factor of st in each diagram.
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Figure 2.8: Type II: These two diagrams have no explicit factors of µ2 in the numera-
tor and satisfy the diagrammatic criteria of dual conformality, but the corresponding
off-shell integrals diverge in four dimensions [132]. (There are no examples of this
type below four loops).

2.5.3 Evaluation of Dual Conformal Integrals: Previously

known integrals

In this section we describe the evaluation of dual conformal integrals [3]. Even

though dual conformal integrals are finite in four dimensions we evaluate them by

first dimensionally regulating the integral to D = 4−2ǫ dimensions, and then analyt-

ically continuing ǫ to zero using for example algorithms described in[251, 252, 260].

For a true dual conformal invariant integral the result of this analytic continuation

will be an integral that is finite in four dimensions, so that we can then freely set

ǫ = 0. However the type II and type IV diagrams shown in Figs.2.7 and2.9 turn

out to not be finite in four dimensions (as can be verified either by direct calcula-

tion, or by applying the argument used in [132] to identify divergences). This leaves

(1,1,4,17) integrals to be evaluated at (1,2,3,4) loops respectively.

Now we will briefly review the (1,1,2,5) off-shell dual conformal integrals that have

already been evaluated in the literature.
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Figure 2.9: Type III: Here we show all diagrams through four loops that correspond
to dual conformal integrals in four dimensions with explicit numerator factors of
µ2. (There are no examples of this type below three loops). In the bottom row we
have isolated three degenerate diagrams which are constrained by dual conformal
invariance to be equal to pure numbers (independent of s, t and µ2).
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Figure 2.10: Type IV: All remaining dual conformal diagrams. All of the corre-
sponding off-shell integrals diverge in four dimensions.
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The first class of integrals that have been evaluated off-shell are those corresponding

to the ladder diagrams I(1), I(2), I(3)a ≡ I(3) and I(4)a ≡ I(4). In fact an explicit

formula for the off-shell L-loop ladder diagram was given in the remarkable paper

[245]. The function Φ(L)(x, x) in that paper corresponds precisely to our conventions

in defining the ladder diagrams I(L) (including the appropriate conformal numerator

factors), so we copy here their result:

I(L)(x) =
2√

1 − 4x




(2L)!

L!2
Li2L(−y) +

L∑

k,l=0
k+l even

(k + l)!(1 − 21−k−l)

k!l!(L− k)!(L− l)!
ζ(k + l) log2L−l−k y


 ,

(2.5.3)

where

y =
2x

1 − 2x+
√

1 − 4x
. (2.5.4)

The second class of integrals that have been evaluated off-shell are those that can be

proven equal to I(L) using the ‘magic identities’ of [102] as mentioned above. There

it was shown that:

I(3)a = I(3)b = I(3), (2.5.5)

and

I(4)a = I(4)b = I(4)c = I(4)d = I(4)e = I(4). (2.5.6)

These identities appear to be highly nontrivial and are only valid for the off-shell

integrals in four dimensions; certainly no hint of any relation between these inte-

grals is apparent when they are taken on-shell and evaluated in 4 − 2ǫ dimensions

as in[258, 265, 273]. Moreover in [102] the relations 2.5.5 and 2.5.6 were given a

simple diagrammatic interpretation which can be utilized to systematically identify
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equalities between certain integrals at any number of loops.

2.5.4 Evaluation of Dual Conformal Integrals: New inte-

grals

As indicated above we evaluate these integrals by starting with Mellin-Barnes rep-

resentations in 4 − 2ǫ dimensions and then analytically continuing ǫ to zero. A very

useful Mathematica code which automates this process has been written by Czakon

[260]. We found however that this implementation was too slow to handle some of

the new integrals in a reasonable amount of time so we implemented the algorithm

in a C program instead. The most difficult off-shell integral we have evaluated,

I(4)f2, starts off in 4 − 2ǫ dimensions as a 24-fold Mellin-Barnes representation (far

more complicated than any of the on-shell four-loop integrals considered in[265, 266],

which require at most 14-fold representations), yet the analytic continuation to 4

dimensions takes only a fraction of a second in C. In what follows we display Mellin-

Barnes representations for the various integrals in 4 dimensions, after the analytic

continuation has been performed and ǫ has been set to zero [3].

The most surprising aspect of the formulas given below is that we are able to write

each integral in terms of just a single Mellin-Barnes integral in four dimensions.

This stands in stark contrast to dimensionally regulated on-shell integrals, for which

the analytic continuation towards ǫ = 0 can generate (at four loops, for example)

thousands or even tens of thousands of terms. For the off-shell integrals studied

here something rather amazing happens: the analytic continuation still produces

thousands of terms (or more), but for each off-shell integral it turns out that only
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one of the resulting terms is non-vanishing at ǫ = 0, leaving in each case only a

single Mellin-Barnes integral in four dimensions.

This surprising result is not automatic but depends on a number of factors, including

the choice of initial Mellin-Barnes representation, the choice of integration contour

for the Mellin-Barnes variables zi, and some details of the how the analytic contin-

uation is carried out. All of these steps involve highly non-unique choices, and by

making different choices it is easy to end up with more than one term that is finite

in four dimensions. However in such cases it is always possible to ‘reassemble’ the

finite terms into the one-term representations shown here by shifting the contours

of the remaining integration variables.

For the new 3-loop integrals, both shown in Fig.2.9, we find the Mellin-Barnes

representations3

I(3)c = −
∫ d5z

(2πi)5
xz2 Γ(−z1)Γ(−z2)Γ(z2 + 1)Γ(−z2 + z3 + 1)Γ(z1 + z3 − z4 + 1)

×Γ(−z4)2Γ(z4 − z3)Γ(−z2 − z5)2Γ(z1 − z4 − z5 + 1)

×Γ(z1 − z2 + z3 − z4 − z5 + 1)Γ(−z1 + z4 + z5)Γ(z2 + z4 + z5 + 1)

×Γ(−z1 + z2 + z4 + z5)Γ(−z1 − z3 + z4 + z5 − 1)/(Γ(1 − z4)

×Γ(−z2 − z5 + 1)Γ(z1 − z2 + z3 − z4 − z5 + 2)Γ(−z1 − z2 + z4 + z5)

×Γ(−z1 + z2 + z4 + z5 + 1)) (2.5.7)

3All formulas in this section are valid when the integration contours for the zi are chosen to be
straight lines parallel to the imaginary axis and such that the arguments of all Γ functions in the
numerator of the integrand have positive real part.
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and

I(3)d =
∫ d4z

(2πi)4
Γ(−z1)Γ(z1 + 1)Γ(−z2)Γ(z1 + z2 − z3 + 1)Γ(−z3)2Γ(z3 − z1)

×Γ(z2 − z3 − z4 + 1)Γ(z1 + z2 − z3 − z4 + 1)Γ(−z4)2Γ(z3 + z4 + 1)

×Γ(−z2 + z3 + z4)Γ(−z1 − z2 + z3 + z4)/(Γ(1 − z1)Γ(1 − z3)Γ(1 − z4)

×Γ(z1 + z2 − z3 − z4 + 2)Γ(−z2 + z3 + z4 + 1)). (2.5.8)

As expected, I(3)d is x-independent because the corresponding diagram is degenerate.

Upon evaluating 2.5.8 numerically (using CUBA [256]) we find

I(3)d ≈ 20.73855510 (2.5.9)

with a reported estimated numerical uncertainty smaller than the last digit shown.

Finally we have 12 off-shell four-loop integrals left to evaluate, corresponding to

the 9 diagrams shown in Fig.2.9, along with three of the diagrams (I(4)f , I(4)d2 and

I(4)f2) from Fig.2.7. It turns out that 4 of these 12 integrals (I(4)f , I(4)f ′
, I(4)e2′

and

I(4)c′
) are significantly more difficult than the rest because they apparently require

analytic continuation not only in ǫ but also in a second parameter ν parameterizing

the power of the numerator factors. (That is, the integrals initially converge only

for ν < 1 and must be analytically continued to ν = 1.) We postpone the study of

these more complicated integrals to future work.

In analyzing the remaining 8 off-shell four-loop integrals we have found two new
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‘magic identities’,

I(4)e2 = I(4)b1, I(4)c1 = −I(4)d2. (2.5.10)

We established these results directly by deriving Mellin-Barnes representations for

these integrals and showing that they can be related to each other under a suitable

change of integration variables. It would certainly be interesting to understand the

origin of the relations [140] and to see whether the insight gained thereby can be

used to relate various dual conformal integrals at higher loops to each other.

Mellin-Barnes representations for the 8 off-shell four-loop integrals are:

I(4)c1 = −I(4)d2 = −
∫

d7z

(2πi)7
xz2 Γ(−z1 − 1)Γ(z1 + 2)Γ(−z2)Γ(z2 + 1)

×Γ(−z1 − z3 − 1)Γ(−z3)Γ(z3 − z2)Γ(z1 − z2 + z3 + 1)Γ(−z4)

×Γ(z1 − z2 + z3 + z5 + 2)Γ(−z6)2Γ(z4 + z5 − z7 + 1)

×Γ(−z1 + z2 + z4 − z6 − z7)Γ(z4 + z5 − z6 − z7 + 1)Γ(−z7)2Γ(z7 − z5)

×Γ(z6 + z7 + 1)Γ(−z4 + z6 + z7)Γ(−z3 − z4 − z5 + z6 + z7 − 1)/

×(Γ(−z1 − z2 − 1)Γ(1 − z3)Γ(z1 − z2 + z3 + 2)Γ(1 − z6)Γ(1 − z7)

×Γ(z4 + z5 − z6 − z7 + 2)Γ(−z4 + z6 + z7 + 1)) (2.5.11)
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I(4)f2 =
∫ d10z

(2πi)10
xz1 Γ(−z1 − z10)2Γ(−z2)Γ(−z3)Γ(z1 + z10 + z3 + 1)2Γ(−z4)

×Γ(−z5)Γ(−z6)Γ(z10 + z2 + z6)Γ(−z7)2Γ(z4 + z7 + 1)2

×Γ(−z1 − z4 − z5 − z8 − 2)(−z1 − z10 − z2 − z4 − z6 − z7 − z8 − 2)

×Γ(−z8)Γ(z1 + z8 + 2)(z2 + z4 + z5 + z7 + z8 + 2)

×Γ(−z2 − z3 − z4 − z5 − z9 − 2)Γ(−z10 − z2 − z3 − z6 − z9)Γ(−z9)

×Γ(z1 + z10 + z2 + z3 + z6 + z9 + 2)

×Γ(z10 + z2 + z3 + z4 + z5 + z6 + z9 + 2)Γ(−z1 + z3 − z8 + z9)

×Γ(z2 + z4 + z5 + z6 + z8 + z9 + 2)/(Γ(z1 + z10 + z3 + 2)Γ(−z4 − z5)

×Γ(−z1 − z10 − z7)Γ(z4 + z7 + 2)Γ(−z1 − z10 − z2 − z6 − z8)

×Γ(−z3 − z9)Γ(−z1 + z10 + z2 + z3 + z6 − z8 + z9)

×Γ(z1 + z10 + z2 + z3 + z4 + z5 + z6 + z8 + z9 + 4)) (2.5.12)

I(4)e6 = −
∫

d5z

(2πi)5
xz2 Γ(−z1)Γ(−z2)4Γ(z2 + 1)2Γ(−z3)Γ(z3 + 1)

×Γ(z1 + z3 − z4 + 1)Γ(−z4)2Γ(z4 − z3)Γ(z1 − z4 − z5 + 1)

×Γ(z1 + z3 − z4 − z5 + 1)Γ(−z5)2Γ(z4 + z5 + 1)Γ(−z1 + z4 + z5)

×Γ(−z1 − z3 + z4 + z5)/(Γ(−2z2)Γ(1 − z3)Γ(1 − z4)Γ(1 − z5)

×Γ(z1 + z3 − z4 − z5 + 2)Γ(−z1 + z4 + z5 + 1)) (2.5.13)
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I(4)e2 = I(4)b1 = −
∫ d7z

(2πi)7
xz3 Γ(−z1)Γ(−z3)Γ(z3 + 1)Γ(z3 − z2)Γ(−z4)2

×Γ(z2 − z3 + z4 + 1)2Γ(−z5)2Γ(z1 + z2 − z5 − z6 + 2)Γ(−z6)2

×Γ(z5 + z6 + 1)Γ(−z1 − z2 + z5 + z6 − 1)Γ(−z1 − z2 + z3 + z5 + z6 − 1)

×Γ(−z4 + z5 − z7)Γ(−z1 − z2 − z4 + z5 + z6 − z7 − 1)Γ(−z7)

×Γ(−z3 + z4 + z7)Γ(z1 + z2 − z3 + z4 − z5 + z7 + 2)

×Γ(z1 − z5 − z6 + z7 + 1)/(Γ(z2 − z3 + z4 − z5 + 2)Γ(−z4 − z6 + 1)

×Γ(−z1 − z2 − z3 + z5 + z6 − 1)Γ(−z1 − z2 + z3 + z5 + z6)

×Γ(−z4 − z7 + 1)Γ(z1 + z2 − z3 + z4 − z5 − z6 + z7 + 2)) (2.5.14)

I(4)b2 = I(4)e1 =
∫ d6z

(2πi)6
Γ(−z1)Γ(−z2)Γ(−z3)Γ(z3 + 1)Γ(−z1 − z2 − z4 − 2)

×Γ(−z1 − z2 − z3 − z4 − 2)Γ(−z4)

×Γ(z1 + z2 + z4 + 3)Γ(z1 + z2 + z3 + z4 + 3)Γ(z1 + z3 − z5 + 1)Γ(−z5)

×Γ(z5 − z3)Γ(z2 + z4 + z5 + 2)Γ(−z4 − z5 − z6 − 1)Γ(−z6)
2

×Γ(z4 + z6 + 1)2Γ(z2 + z4 + z5 + z6 + 2)/(Γ(1 − z3)

×Γ(−z1 − z2 − z4 − 1)Γ(z1 + z2 + z3 + z4 + 4)Γ(1 − z5)

×Γ(z2 + z4 + z5 + 3)Γ(1 − z6)Γ(z4 + z6 + 2)) (2.5.15)

We do not consider the equality of the two degenerate integrals I(4)b2 = I(4)e1 to be a

‘magic’ identity since it is easily seen to be a trivial consequence of dual conformal
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invariance. Evaluating them numerically we find

I(4)b2 = I(4)e1 = 70.59, (2.5.16)

again with a reported estimated numerical uncertainty smaller than the last digit

shown.

It would certainly be interesting to obtain fully explicit analytic results for these

new integrals. Although this might seem to be a formidable challenge, the fact that

it has been possible for the ladder diagrams 2.5.3 suggests that there is hope.

2.5.5 Evaluation of Dual Conformal Integrals: Infrared sin-

gularity structure

Finally, it is clearly of interest to isolate the infrared singularities of the various

integrals [3]. For the previously known integrals reviewed in subsection 3.1 we

expand 2.5.3 for small x, finding

I(1) = log2 x+ O(1),

I(2) =
1

4
log4 x+

π2

2
log2 x+ O(1),

I(3) =
1

36
log6 x+

5π2

36
log4 x+

7π4

36
log2 x+ O(1),

I(4) =
1

576
log8 x+

7π2

432
log6 x+

49π4

864
log4 x+

31π6

432
log2 x+ O(1). (2.5.17)

For the new integrals evaluated in this paper we obtain the small x expansion directly
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from the Mellin-Barnes representations given in section 3.2 by writing each one in

the form
∫

dy

2πi
xyF (y), (2.5.18)

shifting the y contour of integration to the left until it sits directly on the imaginary

axis (picking up terms along the way from any poles crossed), expanding the resulting

integrand around y = 0 and then using the fact that the coefficient of the 1/yk

singularity at y = 0 corresponds in x space to the coefficient of the (−1)k

k!
logk x

singularity at x = 0. In this manner we find

I(3)c =
ζ(3)

3
log3 x− π4

30
log2 x+ 14.32388625 log x+ O(1) (2.5.19)

at three loops and

I(4)d2 = −I(4)c1 = −ζ(3)

12
log5 x+

7π4

720
log4 x− 6.75193310 log3 x

+15.45727322 log2 x− 41.26913 log x+ O(1),

I(4)f2 =
1

144
log8 x+

7π2

108
log6 x+

149π4

1080
log4 x+ 64.34694867 log2 x+ O(1),

I(4)e6 = −20.73855510 log2 x+ O(1),

I(4)e2 = I(4)b1 = − π4

720
log4 x+ 1.72821293 log3 x

−12.84395616 log2 x+ 52.34900 log x+ O(1) (2.5.20)

at four loops, where some coefficients have only been evaluated numerically with an

estimated uncertainly smaller than the last digit shown. Interestingly, the coefficient

of log2 x in I(4)e6 appears to be precisely (minus) the value of I(3)d shown in 2.5.9.
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Perhaps this can be traced to the diagrammatic relation that is evident in Fig.2.9:

I(3)d appears in the ‘upper diagonal’ of I(4)e6.

2.6 Dual SuperConformal Symmetry at Strong

Coupling

In the previous sections, we have seen many establishment of the dual superconfor-

mal symmetry at weak coupling, but its origin and fundamental understanding are

still mysterious questions. In this section, we discuss about how one can understand

this dual superconformal symmetry using a T-duality symmetry of the full super-

string theory on AdS5 ×S5, and will address the development of this symmetry into

a Yangian symmetry in the next section. Berkovits and Maldacena [268] found a new

symmetry, called fermionic T-duality, which maps a supersymmetric background to

another supersymmetric background with different RR fields and a different dilaton.

The T-duality here is a generalization of the Buscher version of T-duality in theories

with fermionic worldsheet scalars. The authors study this fermionic T-duality trans-

formation, in the pure spinor sigma model, of the Type II supergravity background

fields. This is the most convenient method method because in the pure spinor for-

malism, the BRST invariance determines the choice of torsion constraints and allows

a straightforward identification of the background fields.

Then they show that a certain combination of bosonic and fermionic T-dualities

maps the full superstring theory on AdS5 × S5 back to itself in such a way that

gluon scattering amplitudes in the original theory map to Wilson loops in the dual
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theory. This duality also maps the dual superconformal symmetry of the original

theory to the ordinary superconformal symmetry of the dual model, which explains

the dual superconformal invariance of planar scattering amplitudes of N = 4 super

Yang Mills and also gives the foundation of the connection between amplitudes and

Wilson loops, which is the subject of the next chapter.

2.7 Yangian Symmetry

Having both the conventional and dual superconformal symmetries at work, one

could come up with a natural question arising from these two symmetry algebras:

what mathematical structure arises, when one commutes generators of the conven-

tional superconformal and dual superconformal algebras with each other? One would

indeed expect to generate an infinite-dimensional symmetry algebra as a manifesta-

tion of the integrability of the theory. We shall show in this section that a Yangian

symmetry of scattering amplitudes appears, at least at tree level, following the work

of [232]. We also demonstrate how this Yangian symmetry fixes uniquely an impor-

tant structure of scattering amplitudes in twistor space.

First, let us recall the form of the tree-level superamplitude, mentioned earlier in

this chapter:

A(Φ1, . . . ,Φn) = An =
δ4(p)δ8(q)

〈12〉 . . . 〈n1〉Pn(λi, λ̃i, ηi) = AMHV
n Pn , (2.7.1)
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with the helicity condition

hiA(Φ1, . . . ,Φn) = A(Φ1, . . . ,Φn), i = 1, . . . , n (2.7.2)

and Pn is a function with no helicity,

hiPn = 0, i = 1, . . . , n. (2.7.3)

where the helicity operator is

hi = −1
2
λαi

∂

∂λαi
+ 1

2
λ̃α̇i

∂

∂λ̃α̇i
+ 1

2
ηAi

∂

∂ηAi
. (2.7.4)

The superconformal algebra is generically SU(2, 2|4) with central charge c =
∑
i(1−

hi), but imposing the homogeneity condition (2.7.2) the algebra becomes PSU(2, 2|4).

At tree-level, because there are no infrared divergences, amplitudes are annihilated

by the generators of the standard (conventional) superconformal symmetry, up to

contact terms:

jaAn = 0, (2.7.5)

where ja is any generator of PSU(2, 2|4),

ja ∈ {pαα̇, qαA, q̄α̇A, mαβ , m̄α̇β̇, r
A
B, d, s

α
A, s̄

A
α̇ , kαα̇}. (2.7.6)

Now, taking into account the dual superconformal symmetry [127] with the dual
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superspace coordinates,

xαα̇i − xαα̇i+1 = λαi λ̃
α̇
i , θαAi − θαAi+1 = λαi η

A
i , (2.7.7)

we can express the amplitudes in the dual variables as

An =
δ4(x1 − xn+1)δ8(θ1 − θn+1)

〈12〉 . . . 〈n1〉 Pn(xi, θi), (2.7.8)

which are covariant under certain generators (K, S, D and C) of the dual super-

conformal algebra. We will denote Ja as a generator of the dual superconformal

algebra,

Ja ∈ {Pαα̇, QαA, Q̄
A
α̇ ,Mαβ ,M α̇β̇, R

A
B, D, C, S

A
α , S

α̇

A, K
αα̇}. (2.7.9)

By making a redefinition as follows [232],

K ′αα̇ = Kαα̇ +
∑

i

xαα̇i , (2.7.10)

S ′αA = SαA +
∑

i

θαAi , (2.7.11)

D′ = D − n , (2.7.12)

we can get a vanishing central charge, C ′ = 0 while these generators still satisfy

the commutation relations of the superconformal algebra. More importantly, dual

superconformal symmetry becomes simply

J ′
aAn = 0 (2.7.13)
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with

J ′
a ∈ {Pαα̇, QαA, Q̄

A
α̇ ,Mαβ ,M α̇β̇, R

A
B, D

′, C ′ = 0, S ′A
α , S

α̇
A, K

′αα̇}. (2.7.14)

It was shown in [232] that the generators ja together with S ′ (or K ′) generate the

Yangian of the superconformal algebra, Y (PSU(2, 2|4)).

The generators ja form the level-zero PSU(2, 2|4) subalgebra, with [O2, O1] =

(−1)1+|O1||O2|[O1, O2],

[ja, jb] = fab
cjc. (2.7.15)

The level-one generators j(1)
a are defined by

[ja, jb
(1)] = fab

cjc
(1) (2.7.16)

and represented by the bilocal formula,

ja
(1) = fa

cb
∑

k<k′

jkbjk′c. (2.7.17)

The full symmetry of the tree-level amplitudes can be therefore written as

jAn = j(1)An = 0. (2.7.18)



91

We could also express the level-zero and level-one generators of the Yangian symme-

try, in terms of the twistor space variables ZA = (µ̃α, λ̃α̇, ηA),

jAB =
∑

i

ZA
i

∂

∂ZB
i

, (2.7.19)

j(1)A
B =

∑

i<j

(−1)C
[
ZA
i

∂

∂ZC
i

ZC
j

∂

∂ZB
j

− (i, j)
]
. (2.7.20)

We have suppressed the supertrace term (−1)AδAB . In this representation the gen-

erators of superconformal symmetry are first-order operators while the level-one

Yangian generators are second order.

We can also have an alternative T-dual representation, demonstrated in [232], that it

is the dual superconformal symmetries Ja which give the level-zero generators, while

the standard conformal symmetry together with the dual superconformal symmetry

provides the level-one generators.

JaPn = J (1)
a Pn = 0 (2.7.21)

where

J (1)
a = fa

cb
∑

i<j

JibJjc. (2.7.22)

The fact that Yangian symmetry appears at least at tree-level in N = 4 SYM

scattering amplitudes in twistor space was suggested many years ago in Witten’s

original twistor string theory work [218]. Let us see now how this symmetry fixes

uniquely an important structure of amplitudes.
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Recently a remarkable formula has been proposed which computes leading singu-

larities of scattering amplitudes in the N = 4 super Yang-Mills theory [233], which

takes the form of an integral over the Grassmannian G(k, n), the space of complex

k-planes in Cn:

L =
∫

C
K. (2.7.23)

We can write it in several equivalent forms as follows: In twistor space

LACCK(Z) =
∫

Dk(n−k)c

M1 . . .Mn

k∏

a=1

δ4|4
( n∑

i=1

caiZi

)
, (2.7.24)

where the cai are complex parameters which are integrated choosing a specific con-

tour. The denominator is the cyclic product of consecutive (k×k) minors Mp made

from the columns p, . . . , p+ k − 1 of the (k × n) matrix of the cai

Mp ≡ (p p+ 1 p+ 2 . . . p+ k − 1). (2.7.25)

or in momentum space [233],

LACCK(λ, λ̃, η) =
∫
Dk(n−k)c

∏
a d

2ρa
M1 . . .Mn

k∏

a=1

δ2
( n∑

i=1

caiλ̃i

)
δ4
( n∑

i−1

caiηi

) n∏

i=1

δ2
(
λi−

k∑

a=1

ρacai

)
,

(2.7.26)

or in momentum twistor space [? ],

LMS =
∫ Dk(n−k)t

M1 . . .Mn

k∏

a=1

δ4|4
( n∑

i=1

taiWi

)
, (2.7.27)

where the dual superconformal symmetry is manifest. The integration variables tai

are again a (k × n) matrix of complex parameters.
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The equivalence of the two formulations (2.7.26) and (2.7.27) was shown in [233],

through a change of variables. Therefore, since each of the formulas has a differ-

ent superconformal symmetry manifest, they both possess an invariance under the

Yangian Y (PSL(4|4)). The Yangian symmetry of these formulas was explicitly

demonstrated in [232] by directly applying the Yangian level-one generators to the

Grassmannian integrand to yield a total derivative

J (1)A
BK = dΩA

B (2.7.28)

which guarantees that L is invariant when the contour is closed.

Now let see if it is possible to modify the above form in some way that preserves

the property (2.7.28) by considering the same integral as before but with an extra

arbitrary function f(t) on the Grassmannian in the integrand,

L̃n,k =
∫

Dk(n−k)t

M1 . . .Mn
f(t)

∏

a

δm|m
( n∑

i=1

taiWi

)
. (2.7.29)

Preserving the property (2.7.28) leads to the following condition after many compu-

tations [232],
∑

a,j

Obl,aj
∂

∂taj
f(t) = 0, (2.7.30)

where the matrix O satisfies

detO = [M1 . . .Mn]2. (2.7.31)

Since the matrix O is generically invertible we can multiply (2.7.30) by the inverse of
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O and deduce that f(t) must be constant almost everywhere. In principle the func-

tion f(t) can have discontinuities across the hyperplanes defined by the vanishing

of the minors Mp but the only continuous function allowed is a constant function.

This shows that Yangian symmetry fixes uniquely the structure of the Grassmannian

integral, which produces leading singularities of Nk−2MHV scattering amplitudes

on a suitable closed contour.



Chapter 3

Wilson Loops and Duality

3.1 Duality at Strong Coupling

We will review the scattering amplitudes at strong coupling through AdS/CFT and

its duality to the Wilson loops in this section [59, 60, 236? ].

The AdS/CFT correspondence [6] relates the 4D N = 4 SYM theory with type IIB

string theory on AdS5 × S5, by the identification of gauge-invariant operators and

string states, as well as symmetries between the two theories. This correspondence

then provides a way to study the strong coupling regime of N = 4 SYM. In the limit

of large Nc (color number) and large ’t Hooft coupling λ, the string theory lives on

a weakly curved space that it could be described by a weakly-coupled worldsheet

sigma-model. Then by appending an open string sector to closed string theory in

AdS5 × S5, gluon scattering amplitude could be computed in terms of correlation

functions of vertex operators: one simply computes the transition amplitude between

95
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some in and out asymptotic states. To describe scattering amplitudes of N = 4 SYM

fields, these states must be located at spatial infinity in the directions parallel to

the boundary of the AdS space. As usual, two-dimensional conformal invariance on

the string worldsheet allows a description of the asymptotic states in terms of local

vertex operators inserted on the boundary of the worldsheet.

Since scattering amplitudes of colored objects are not well defined in the conformal

theory it is necessary to introduce an infrared regulator. The answer we obtain will

depend on the regularization scheme. Once we compute a well defined (IR safe)

physical observable the IR regulator will drop out. In terms of the gravity dual,

we will use a IR regulator, which is a D-brane that extends along the worldvolume

directions but is localized in the radial direction.

We will start with the AdS5 metric

ds2 = R2dy2
3+1 + dz2

z2
. (3.1.1)

and we place a D3-brane at some fixed and large value of the radial coordinate

z = zIR ≫ R. Such D-branes arise, if we go to the Coulomb branch of the theory.

The asymptotic states are open strings that end on the D-brane. We then scatter

these open strings and study the scattering at fixed angles and very high momentum.

Such amplitudes were studied in flat space by Gross and Mende, where an important

feature is that amplitudes at high momentum transfer are dominated by a saddle

point of the classical action. Thus, in order to compute our amplitude we simply

have to compute a solution of the classical action of a classical string in AdS.
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Let consider a metric of the form

ds2 = h(z)2(dyµdy
µ + dz2) . (3.1.2)

On an Euclidean worldsheet, the T-dual coordinates xµ are defined by

∂αx
µ = ih2(z)ǫαβ∂βy

µ . (3.1.3)

Defining the radial coordinate

r =
R2

z
(3.1.4)

leads to the metric

ds2 =
R2

r2

(
dxµdx

µ + dr2
)

, (3.1.5)

which is identical to (3.1.1) except that its boundary is located at r = 0 (where

z = ∞).

The transformation (3.1.3) has another effect: the zero-mode of the field y corre-

sponding to the momentum kµ (and described by a local vertex operator) is replaced

by a “winding” mode of the field x implying that the difference between the two

endpoints of the string obeys

∆xµ = 2πkµ , (3.1.6)

We then construct the boundary of the worldsheet as follows:

• For each particle of momentum kµ, draw a segment joining two points sepa-

rated by ∆xµ = 2πkµ.
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• Concatenate the segments according to the insertions on the disk (correspond-

ing to a particular color ordering or to a particular ordering of vertex operators

on the original boundary)

• As gluons are massless, the segments are light-like. Due to momentum conser-

vation, the diagram is closed.

As the infrared regulator is removed when zIR → ∞ in the original coordinates, the

boundary of the worldsheet moves towards the boundary of the T-dual metric, at

r = 0. The solution we want, living at values of r > rIR, is a surface which at

rIR = R2/zIR ends on the above light-like polygon.

The standard prescription [99, 100] implies that the leading exponential behavior of

the n−point scattering amplitude is given by the area A of the minimal surface that

ends on a sequence of light-like segments on the boundary of 3.1.5

An ∼ e−
√

λ
2π
A(k1,...,kn) . (3.1.7)

The area A(k1, ..., kn) contains the kinematic information about the momenta through

its boundary conditions.

By construction, to leading order in the strong coupling expansion, the computation

of scattering amplitudes becomes formally equivalent to that of the expectation

value of a Wilson loop given by a sequence of light-like segments. This establish the

duality between gluon scattering amplitudes and Wilson loops at strong coupling.

However the study of this duality at different aspects and higher orders is still an

open problem.
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Using this procedure, Alday and Maldacena [59] was able to derive the expression

for the four-gluon scattering amplitude at strong coupling as below

A = eiS = exp

[
iSdiv +

√
λ

8π

(
log

s

t

)2

+ C̃

]
, (3.1.8)

C̃ =

√
λ

4π

(
π2

3
+ 2 log 2 − (log 2)2

)
(3.1.9)

Sdiv = 2Sdiv,s + 2Sdiv,t , (3.1.10)

iSdiv,s = − 1

ǫ2
1

2π

√√√√ λµ2ǫ

(−s)ǫ − 1

ǫ

1

4π
(1 − log 2)

√√√√ λµ2ǫ

(−s)ǫ . (3.1.11)

and Sdiv,t is given by a similar expression with s → t.

We can see that the singularity structure and the momentum dependent finite piece

of this result are precisely the expression predicted by the ABDK/BDS ansatz, equa-

tions (1.2.69) and (1.2.70):

A ∼ (Adiv,s)
2 (Adiv,t)

2 exp

{
f(λ)

8
(ln s/t)2 +

4π2

3
+ C(λ)

}
(3.1.12)

Adiv,s = exp

{
− 1

8ǫ2
f (−2)

(
λµ2ǫ

sǫ

)
− 1

4ǫ
g(−1)

(
λµ2ǫ

sǫ

)}
. (3.1.13)

However, the constant finite pieces were later shown to not agree with the ABDK/BDS

ansatz in [60] when these authors calculate the n-point scattering amplitude and

take the limit n → ∞. This is the first evidence that the ABDK/BDS needs to be

corrected.

Let us summarize now what we have learned about the computation of the amplitude:

In the classical limit, a gluon scattering amplitude at strong coupling corresponds to
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a minimal surface that ends on the AdS5 boundary on a special null polygonal con-

tour, which is constructed as follows. When we consider a color-ordered amplitude

involving n particles with null momenta (k1, . . . , kn), we get the contour specified by

its ordered vertices (x1, . . . , xn) with xµi −xµi−1 = kµi . Then the computation of gluon

scattering amplitudes becomes identical to the computation of a Wilson loop with

this contour. And as mentioned in chapter 2, under a certain combination of bosonic

and fermionic T-dualities, the scattering amplitudes in the full superstring theory

on AdS5 × S5 are mapped into Wilson loops in the same AdS5 × S5 dual theory.

This duality also maps the dual superconformal symmetry of scattering amplitudes

of original theory into the conventional superconformal symmetry of Wilson loops

of the dual model.

Alday, Maldacena, Sever and Vieira [235] have shown how to compute this area of

the minimal surface as a function of the conformal cross ratios characterizing the

polygon at the boundary. Their method uses integrability of the sigma model in

the following way. First they define a family of flat connections with a spectral

parameter θ. Sections of this flat connection will be used to define solutions which

depend on the spectral parameter θ. Then they define a set cross ratios Yk(θ). They

find a functional Y system that constrains the θ dependence of the functions Yk.

For n-point amplitudes, this system has 3(n− 5) integration constants which come

in when we specify the boundary conditions for θ → ±∞. We can restate these

functional equations in terms of integral equations, where the 3(n − 5) parameters

appear explicitly. These integral equations have the form of Thermodynamic Bethe

Ansatz (TBA) equations. Schematically they are

log Yk(θ) = −mk cosh θ + ck +Kk,s ⋆ log(1 + Ys) , (3.1.14)
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where mk, ck are the 3(n−5) mentioned parameters and Kr,s are some kernels. And

the area can be expressed in terms of the TBA free nergy of the system as

Area =
∫
dθ

2π
mk cosh θ log(1 + Yk(θ)) . (3.1.15)

Evaluating Yk at θ = 0 we get the physical values of the cross ratios. The other

values of θ are a one parameter family of cross ratios , which give the same value

for the area. Changing θ generates a symmetry of the problem.

Motivated by the relation between Wilson loops and scattering amplitudes in N = 4

super Yang-Mills, there has been many efforts on the computation of the Wilson

loops in different contexts. Notable one is the use of an Operator Product Expansion

(OPE)-like expansion for light-like polygonal Wilson loops in [234] that is valid

for any conformal gauge theory, for any coupling and in any dimension. They

consider the case when several successive lines of the polygon are becoming aligned,

which corresponds to a collinear or multi-collinear limit. The OPE expansion is

performed by picking two non-consecutive null lines in the polygonal Wilson loop.

This divides the Wilson loop into a "top" part and a "bottom" part with states

propagating between the two. The state that propagates contains a flux tube going

between the two selected null lines. The states consist of excitations of this flux

tube. These states can also be understood as excitations around high spin operators.

The spectrum of states is continuous and consist of many particles propagating

along the flux tube. In N = 4 super Yang-Mills these particles have a calculable

dispersion relation. Then the OPE expansion leads to predictions for the Wilson

loop expectation values. Namely, it implies constraints on the subleading terms

in the collinear limit of the remainder function, which is the function containing
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the conformal invariant information of the Wilson loop expectation value. These

predictions have been checked both at strong coupling and at two loops at weak

coupling.

3.2 Duality at Weak Coupling

The infinite sequence of n-point planar maximally helicity violating (MHV) ampli-

tudes in N = 4 super-Yang-Mills theory (SYM) has a remarkably simple structure.

Due to supersymmetric Ward identities [143, 144, 145, 146], at any loop order L, the

amplitude can be expressed as the tree-level amplitude, times a scalar, helicity-blind

function M(L)
n :

A(L)
n = Atree

n M(L)
n . (3.2.1)

In [133], ABDK discovered an intriguing iterative structure in the two-loop expan-

sion of the MHV amplitudes at four points. This relation can be written as

M
(2)
4 (ǫ) − 1

2

(
M

(1)
4 (ǫ)

)2
= f (2)(ǫ)M

(1)
4 (2ǫ) + C(2) + O(ǫ) , (3.2.2)

where IR divergences are regulated by working in D = 4 − 2ǫ dimensions (with

ǫ < 0),

f (2)(ǫ) = −ζ2 − ζ3ǫ− ζ4ǫ
2 , (3.2.3)

and

C(2) = −1

2
ζ2

2 . (3.2.4)
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The ABDK relation (3.2.2) is built upon the known exponentiation of infrared di-

vergences [147, 148], which guarantees that the singular terms must agree on both

sides of (3.2.2), as well as on the known behavior of amplitudes under collinear lim-

its [149, 150]. The (highly nontrivial) content of the ABDK relation is that (3.2.2)

holds exactly as written at O(ǫ0). However, ABDK observed that the O(ǫ) terms do

not satisfy the same iteration relation [133].

In [133], it was further conjectured that (3.2.2) should hold for two-loop amplitudes

with an arbitrary number of legs, with the same quantities (3.2.3) and (3.2.4) for any

n. In the five-point case, this conjecture was confirmed first in [134] for the parity-

even part of the two-loop amplitude, and later in [84] for the complete amplitude.

Notice that for the iteration to be satisfied parity-odd terms that enter on the

left-hand side of the relation must cancel up to and including O(ǫ0) terms, since

the right-hand side is parity even up this order in ǫ. This has been checked and

confirmed at two-loop order for five and six particles [84, 92, 151]. This is also

crucial for the duality with Wilson loops (discussed below) which by construction

cannot produce parity-odd terms at two loops.

It has been found that starting from six particles and two loops, the ABDK/BDS

ansatz (3.2.2) needs to be modified by allowing the presence of a remainder function

Rn [142],

M(2)
n (ǫ) − 1

2

(
M(1)

n (ǫ)
)2

= f (2)(ǫ)M(1)
n (2ǫ) + C(2) + Rn + En(ǫ) , (3.2.5)

where Rn is ǫ-independent and En vanishes as ǫ → 0. We parameterize the latter as

En(ǫ) = ǫEn + O(ǫ2) . (3.2.6)
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In the next next subsections, we will discuss in detail En for n = 4, 5 where we find a

remarkable relation to the same quantity calculated from the Wilson loop. Hitherto

this relation was only expected to hold for the finite parts of the remainder Rn [1].

As we have seen in the previous section, Alday and Maldacena addressed the prob-

lem of calculating scattering amplitudes at strong coupling in N = 4 SYM using the

AdS/CFT correspondence. Their remarkable result showed that the planar ampli-

tude at strong coupling is calculated by a Wilson loop

W [Cn] := TrP exp
[
ig
∮

Cn

dτ ẋµ(τ)Aµ(x(τ))
]
, (3.2.7)

whose contour Cn is the n-edged polygon obtained by joining the light-like momenta

of the particles following the order induced by the color structure of the planar

amplitude. At strong coupling the calculation amounts to finding the minimal area

of a surface ending on the contour Cn embedded at the boundary of a T-dual AdS5

space [59]. Shortly after, it was realized that the very same Wilson loop evaluated

at weak coupling reproduces all one-loop MHV amplitudes in N = 4 SYM [129, 130].

The conjectured relation between MHV amplitudes and Wilson loops found further

strong support by explicit two loop calculations at four [131], five [132] and six points

[142, 151]. In particular, the absence of a non-trivial remainder function in the four-

and five-point case was later explained in [132] from the Wilson loop perspective,

where it was realized that the BDS ansatz is a solution to the anomalous Ward

identity for the Wilson loop associated to the dual conformal symmetry [140].

The Wilson loop in (3.2.7) can be expanded in powers of the ’t Hooft coupling
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a := g2N/(8π2) as

〈W [Cn]〉 := 1 +
∞∑

l=1

alW (l)
n := exp

∞∑

l=1

alw(l)
n . (3.2.8)

Note that the exponentiated form of the Wilson loop is guaranteed by the non-

Abelian exponentiation theorem. The w(l)
n are obtained from "maximally non-Abelian"

subsets of Feynman diagrams contributing to the W (l)
n and in particular from (3.2.8)

we find

w(1)
n = W (1)

n , w(2)
n = W (2)

n − 1

2
(W (1)

n )2 . (3.2.9)

The UV divergences of the n-gon Wilson loop are regulated by working in D = 4+2ǫ

dimensions with ǫ < 0. The one-loop Wilson loop w(1)
n times the tree-level MHV

amplitude is equal to the one-loop MHV amplitude, calculated by using the unitarity-

based approach [? ], up to a regularization-dependent factor. This implies that

non-trivial remainder functions can only appear at two and higher loops. At two

loops, we define the remainder function RWL
n for an n-sided Wilson loop as1

w(2)
n (ǫ) = f

(2)
WL(ǫ)w(1)

n (2ǫ) + C
(2)
WL + RWL

n + EWL
n (ǫ) , (3.2.10)

where

f
(2)
WL(ǫ) := f

(2)
0 + f

(2)
1,WLǫ+ f

(2)
2,WLǫ

2 . (3.2.11)

Note that f
(2)
0 = −ζ2, which is the same as on the amplitude side, while f

(2)
1,WL =

G
(2)
eik = 7ζ3 [153]. In [152], the four- and five-edged Wilson loops were cast in the

1We expect a remainder function at every loop order l and the corresponding equations would

be w
(l)
n (ǫ) = f

(l)
WL(ǫ) w

(1)
n (lǫ) + C

(l)
WL + R

(l)
n,WL + E

(l)
n,WL(ǫ).
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form (3.2.10) and by making the natural requirements

RWL
4 = RWL

5 = 0 , (3.2.12)

this allowed for a determination of the coefficients f
(2)
2,WL and C

(2)
WL. The results found

in[152], are2

f
(2)
WL(ǫ) = −ζ2 + 7ζ3 ǫ − 5ζ4 ǫ

2 , (3.2.13)

and

C
(2)
WL = −1

2
ζ2

2 . (3.2.14)

As noticed in [152], there is an intriguing agreement between the constant C
(2)
WL and

the corresponding value of the same quantity on the amplitude side.

What has been observed so far is a duality between Wilson loops and amplitudes up

to finite terms. In turn this can be reinterpreted as an equality of the corresponding

remainder functions

Rn = RWL
n . (3.2.15)

An alternative interpretation of the duality in terms of certain ratios of amplitudes

(Wilson loops) has been given recently in [154].

A consequence of the precise determination of the constants f
(2)
2,WL and C

(2)
WL is that

no additional constant term is allowed on the right hand side of (3.2.15). For the

same reason, the Wilson loop remainder function must then have the same collinear

2The O(1) and O(ǫ) coefficients of f
(2)
WL(ǫ) had been determined earlier in [131].
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limits as its amplitude counterpart, i.e.

RWL
n → RWL

n−1 , (3.2.16)

with no extra constant on the right hand side of (3.2.16).

3.2.1 At One-Loop Level for All n

One-Loop Amplitudes

We begin with the one-loop amplitudes, for which analytic results can be given to

all orders in ǫ.

Following the conventions of [133], the one-loop four-point amplitude may be ex-

pressed as [155]

M
(1)
4 = −1

2
stI

(1)
4 (3.2.17)

where s = (p1 + p2)
2, t = (p2 + p3)

2 are the usual Mandelstam variables and I
(1)
4 is

the massless scalar box integral

I
(1)
4 = =

eǫγ

iπD/2

∫
dDp

1

p2(p− p1)2(p− p1 − p2)2(p+ p4)2
,

(3.2.18)

which we have written out in order to emphasize the normalization convention (fol-

lowed throughout this section) that each loop momentum integral carries an overall

factor of eǫγ/iπD/2. The integral may be evaluated explicitly (see for example [156])
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in terms of the ordinary hypergeometric function 2F1, leading to the exact expression

M
(1)
4 = −eǫγ

ǫ2
Γ(1 + ǫ)Γ2(1 − ǫ)

Γ(1 − 2ǫ)

[
(−s)−ǫ

2F1(1,−ǫ, 1 − ǫ, 1 + s/t) + (s ↔ t)
]
,

(3.2.19)

valid to all orders in ǫ. We will always be studying the amplitude/Wilson loop

duality in the fully Euclidean regime where all momentum invariants such as s and

t are negative. The formula (3.2.19) applies in this regime as long as we are careful

to navigate branch cuts according to the rule

(−z)−ǫ
2F1(−ǫ,−ǫ, 1 − ǫ, 1 + z) := lim

ε→0
Re

[
2F1(−ǫ,−ǫ, 1 − ǫ, 1 + z + iε)

(−z + iε)ǫ

]
(3.2.20)

when z > 0.

Five-point loop amplitudes M
(L)
5 contain both parity-even and parity-odd contribu-

tions after dividing by the tree amplitude as in (3.2.1). The parity-even part of the

one-loop five-point amplitude is given by

M
(1)
5+ = −1

4

∑

cyclic

s3s4I
(1)
5 , I

(1)
5 = , (3.2.21)

where si = (pi + pi+1)
2 and the sum runs over the five cyclic permutations of the
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external momenta pi. This integral can also be explicitly evaluated (see for exam-

ple [156]), leading to the all-orders in ǫ result

M
(1)
5+ = −eǫγ

ǫ2
Γ(1 + ǫ)Γ2(1 − ǫ)

Γ(1 − 2ǫ)

1

2

∑

cyclic

[ (
−s1 − s4

s3s4

)ǫ
2F1(−ǫ,−ǫ, 1 − ǫ, 1 − s3

s1 − s4

)

+
(

−s1 − s3

s3s4

)ǫ
2F1(−ǫ,−ǫ, 1 − ǫ, 1 − s4

s1 − s3

)

−
(

−(s1 − s3)(s1 − s4)

s1s3s4

)ǫ
2F1(−ǫ,−ǫ, 1 − ǫ, 1 − s3s4

(s1 − s3)(s1 − s4)
)
]
,

(3.2.22)

again keeping in mind (3.2.20).

One-Loop Wilson Loops

The one-loop Wilson loop was found in [130] for any number of edges and to all

orders in the dimensional regularization parameter ǫ. It is obtained by summing

over diagrams with a single gluon propagator stretching between any two edges of

the Wilson loop polygon. Diagrams with the propagator stretching between adjacent

cusp :=Γ(1 + ǫ)eǫγ ×
(
− 1

2ǫ2 (−si)−ǫ
)

finite :=Γ(1 + ǫ)eǫγ × Fǫ

Figure 3.1: One-loop Wilson loop diagrams. The expression of Fǫ is given in (C.0.12)
of equivalently in (C.0.14).

edges pi and pi+1 are known as cusp diagrams, and give the infrared-divergent terms

in the Wilson loop, proportional to (−2pi · pi+1)
−ǫ/ǫ2 = (−si)−ǫ/ǫ2.
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On the other hand, diagrams for which the propagator stretches between two non-

adjacent edges are finite. Their contribution to the Wilson loop can be found to all

orders in ǫ and is (up to an ǫ-dependent factor) precisely equal to the finite part of

a two-mass easy or one-mass box function [130] (for details see appendix C). The

general n-point one loop amplitude is given by the sum over precisely these two-mass

easy and one-mass box functions [? ] to O(ǫ0).3 Thus we conclude that the Wilson

loop is equal to the amplitude at one loop for any n up to finite order in ǫ only (and

up to a kinematic independent factor).

However at four and five points a much stronger statement can be made. The four-

point amplitude and the parity-even part of the five-point amplitude are both given

by the sum over zero- and one-mass boxes to all orders in ǫ. Thus the Wilson loop

correctly reproduces these one-loop amplitudes to all orders in ǫ. Using the results

in appendix C, we find that the four-point Wilson loop (in a form which is manifestly

real in the Euclidean regime s, t < 0) is given by

W
(1)
4 = Γ(1 + ǫ)eǫγ

{
− 1

ǫ2

[
(−s)−ǫ + (−t)−ǫ

]
+ Fǫ(s, t, 0, 0) + Fǫ(t, s, 0, 0)

}

= Γ(1 + ǫ)eǫγ



− 1

ǫ2

[
(−s)−ǫ + (−t)−ǫ

]

+
1

ǫ2

(
u

st

)ǫ [ ( t
s

)ǫ
2F1(ǫ, ǫ; 1 + ǫ; −t/s) +

(
s

t

)ǫ
2F1(ǫ, ǫ; 1 + ǫ; −s/t) − 2πǫ cot(ǫπ)

]
 .

(3.2.23)

Note in particular the additional cotangent term explained in detail at the end of

appendix C. The generic form of the function Fǫ is given in (C.0.12) of equivalently

3The all-orders in ǫ n-point amplitude contains new integrals contributing at O(ǫ).
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in (C.0.14).

For the five-point amplitude we display a new form which has a simple analytic

continuation in all kinematical regimes and also a very simple expansion in terms

of Nielsen polylogarithms (see (C.0.11)). It is given in terms of 3F2 hypergeometric

functions and is derived in detail in appendix C:

W
(1)
5 =

5∑

i=1

Γ(1 + ǫ)eǫγ
[

− 1

2ǫ2
(−si)−ǫ + Fǫ(si, si+1, si+3, 0)

]

=
5∑

i=1

Γ(1 + ǫ)eǫγ



− 1

2ǫ2
(−si)−ǫ

− 1

2

(
si+3 − si − si+1

sisi+1

)ǫ[
si+3−si

si+1
3F2

(
1, 1, 1 + ǫ; 2, 2; si+3−si

si+1

)

+ si+3−si+1

si
3F2

(
1, 1, 1 + ǫ; 2, 2; si+3−si+1

si

)

+
H−ǫ

ǫ
− (si+3−si)(si+3−si+1)

sisi+1
3F2

(
1, 1, 1 + ǫ; 2, 2; (si+3−si)(si+3−si+1)

sisi+1

)]




(3.2.24)

where Hn is the nth-harmonic number. Using hypergeometric identities one can show

that (up to the prefactor) the four- and five-sided Wilson loops (3.2.23), (3.2.24)

are equal to the four-point and the (parity-even part of the) five-point amplitudes

of (3.2.19) and (3.2.22).

The precise relation between the Wilson loop and the amplitude is

W
(1)
4 =

Γ(1 − 2ǫ)

Γ2(1 − ǫ)
M

(1)
4 , W

(1)
5 =

Γ(1 − 2ǫ)

Γ2(1 − ǫ)
M

(1)
5+ , (3.2.25)

where M
(1)
4 is the one-loop four-point amplitude and M

(1)
5+ is the parity-even part of
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the five-point amplitude.

3.2.2 At Two-Loop Level for n = 4, 5

The main result of this subsection is that for n = 4, 5 the relation between amplitudes

and Wilson loops continues to hold for terms of order ǫ1. In particular we find

E
(2)
4 = E

(2)
4,WL − 3ζ5 , (3.2.26)

E
(2)
5 = E

(2)
5,WL − 5

2
ζ5 . (3.2.27)

Note that these results have been obtained (semi-)numerically with typical errors of

10−8 at n = 4 and 10−4 for n = 5. Details of the calculations are presented in the

remaining subsections of this chapter. More precisely E
(2)
4 is known analytically [39],

while the analytic evaluation of E
(2)
4,WL is discussed in appendix D. At five points all

results are numerical and furthermore on the amplitude side we only considered the

parity-even terms. It is an interesting open question whether the parity-odd terms

cancel at O(ǫ) as they do at O(ǫ0) [84].



113

Figure 3.2: Integrals appearing in the amplitude M
(2)
5+. Note that I

(2)d
5 contains the

indicated scalar numerator factor involving q, one of the loop momenta.

Two-Loop Amplitudes

The two-loop four-point amplitude is expressed as [80]

M
(2)
4 =

1

4
s2tI

(2)
4 + (s ↔ t), I

(2)
4 = , (3.2.28)

which may be evaluated analytically through O(ǫ2) using results from [39] (no all-

orders in ǫ expression for the double box integral is known), from which we find

E4 = 5 Li5(−x) − 4LLi4(−x) +
1

2
(3L2 + π2) Li3(−x) − L

3
(L2 + π2) Li2(−x)

− 1

24
(L2 + π2)2 log(1 + x) +

2

45
π4L− 39

2
ζ5 +

23

12
π2ζ3,

(3.2.29)

where x = t/s and L = log x. A comment is in order here: In order to be able to

present the amplitude remainder (3.2.29) in this form, we have pulled out a factor

of (st)−Lǫ/2 from each loop amplitude M
(L)
4 . This renders the amplitudes, and hence

the ABDK remainder E4(ǫ), dimensionless functions of the single variable x. We
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perform this step in the four-point case only, where we are able to present analytic

results for the amplitude and Wilson loop remainders.

The parity-even part of the two-loop five-point amplitude involves the two integrals

shown in Figure 3.2, in terms of which [84, 134? ]

M
(2)
5+ =

1

8

∑

cyclic

(
s3s

2
4I

(2)a + (pi → p6−i)
)

+ s1s3s4I
(2)d, (3.2.30)

where si = (pi + pi+1)
2. To evaluate this amplitude to O(ǫ) we must resort to a

numerical calculation using Mellin-Barnes parameterizations of the integrals (which

may be found for example in [134]), which we then expand through O(ǫ), simplify,

and numerically integrate with the help of the MB, MBresolve, and barnesroutines

programs [157, 158], In this manner we have determined the O(ǫ) contribution E
(2)
5

to the five-point ABDK relation numerically at a variety of kinematic points. The

results are displayed in Table 3.1.

Two-Loop Wilson Loops

At two-loop order, the n-point Wilson loop is given by a sum over six different types

of diagrams. These are described in general for polygons with any number of edges

in [152] and are displayed for illustration below.

The computation of the four-point two-loop Wilson loop up to O(ǫ0) was first per-

formed in [131]. In appendix ?? we display all the contributing diagrams for this

case and give expressions for these to all orders in ǫ in all cases except for the “hard"
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cross curtain factorised cross

Y hard self-energy

Figure 3.3: The six different diagram topologies contributing to the two-loop Wilson
loop. For details see [152].

diagram, which we give up to and including terms of O(ǫ). Summing up the con-

tributions from all these diagrams we obtain the result for the two-loop four-point

Wilson loop to O(ǫ). This is displayed in (3.2.31) of the next subsection.

The five-point two-loop Wilson loop was calculated up to O(ǫ0) in [132]. In order to

obtain results at one order higher in ǫ we have proceeded by using numerical methods.

In particular we have used Mellin-Barnes techniques to evaluate and expand all the

two-loop integrals of Figure 3.3. This is described in more detail in Section 3.2.2.

The Complete Two-Loop Wilson Loop at Four Points Here is our final

result for the four-point Wilson loop at two loops expanded up to and including

terms of O(ǫ):

w
(2)
4 = C ×

[
(−s)−2ǫ + (−t)−2ǫ

]
×
[
w2

ǫ2
+
w1

ǫ
+ w0 + w−1ǫ+ O(ǫ2)

]
,(3.2.31)
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where

w2 =
π2

48
, (3.2.32)

w1 = −7ζ3

8
, (3.2.33)

w0 = −π2

48

(
log2 x+ π2

)
+

π4

144
= −π2

48

(
log2 x+

2

3
π2
)
, (3.2.34)

w−1 = − 1

1440

[
− 46π4 log x− 10π2 log3 x+ 75π4 log(1 + x) + 90π2 log2 x log(1 + x)

+15 log4 x log(1 + x) + 240π2 log xLi2(−x) + 120 log3 xLi2(−x)

−300π2Li3(−x) − 540 log2 xLi3(−x) + 1440 logxLi4(−x)

−1800Li5(−x) − 1560π2ζ3 − 1260 log2 x ζ3 + 5940ζ5

]
, (3.2.35)

and

C := 2
[
Γ(1 + ǫ)eγǫ

]2

= 2
(

1 + ζ2ǫ
2 − 2

3
ζ3ǫ

3
)

+ O(ǫ4) . (3.2.36)

We recall that x = t/s.

We would like to point out the simplicity of our result (3.2.31) – specifically, (3.2.32)–

(3.2.35) are expressed only in terms of standard polylogarithms. Harmonic polyloga-

rithms and Nielsen polylogarithms are present in the expressions of separate Wilson

loop diagrams, as can be seen in appendix A, but cancel after summing all contri-

butions.

The O(ǫ) Wilson Loop Remainder Function at Four Points Using the result

(3.2.31) and the one-loop expression for the Wilson loop, one can work out the

expression for the remainder function at O(ǫ), as defined in (3.2.5) and (3.2.6). Our
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result is

E4,WL =
1

360

[
16π4 log x− 15π4 log(1 + x) − 30π2 log2 x log(1 + x)

−15 log4 x log(1 + x) − 120π2 log xLi2(−x) − 120 log3(x)Li2(−x)

+180π2Li3(−x) + 540 log2 xLi3(−x) − 1440 log(x)Li4(−x)

+1800Li5(−x) + 690π2ζ3 − 5940ζ5

]
, (3.2.37)

where we recall that En,WL is related to the quantity En introduced in (3.2.5) and

(3.2.6). Remarkably, (3.2.37) does not contain any harmonic polylogarithms. We

will compare the Wilson loop remainder (3.2.37) to the corresponding amplitude

remainder (3.2.29) in Section 3.2.2.4

The O(ǫ) Wilson Loop at Five Points and the Five-Point Remainder Func-

tion For the five-point amplitude and Wilson loop at two loops we resort to com-

pletely numerical evaluation of the contributing integrals, and a comparison of the

remainder functions is then performed. We postpone this discussion to section 3.2.2.

Mellin-Barnes Integration

The two-loop five-point Wilson loop and amplitude have been numerically evalu-

ated by means of the Mellin-Barnes (MB) method using the MB package [157] in

4 Similarly to what was done for the amplitude remainder (3.2.29), in arriving at (3.2.37) we
have pulled out a factor of (st)−ǫ/2 per loop in order to obtain a result which depends only on the
ratio x := t/s.
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MATHEMATICA. At the heart of the method lies the Mellin-Barnes representation

1

(X + Y )λ
=

1

2πi

1

Γ(λ)

∫ +i∞

−i∞
dz

Xz

Y λ+z
Γ(−z)Γ(λ + z). (3.2.38)

We will use the integral representation for the hard diagram of the Wilson loop as

an example in order to describe the procedure we followed. The integral for the

specific diagram shown in Figure 3.4 has the expression

fH(p1, p2, p3;Q1, Q2, Q3) (3.2.39)

=
1

8

Γ(2 + 2ǫ)

Γ(1 + ǫ)2

∫ 1

0
(

3∏

i=1

dτi)
∫ 1

0
(

3∏

i=1

dαi)δ(1 −
3∑

i=1

αi)(α1α2α3)
ǫ N

D2+2ǫ
.

We write the numerator and denominator as a function of the momentum invariants,

i.e. squares of sums of consecutive momenta,

D = −α1α2

[
(p1 +Q3 + p2)

2(1 − τ1)τ2 + (p1 +Q3)2(1 − τ1)(1 − τ2)

+(Q3 + p2)2τ1τ2 +Q2
3τ1(1 − τ2)

]
+ cyclic(1, 2, 3), (3.2.40)

N = 2 [2(p1p2)(p3Q3) − (p2p3)(p1Q3) − (p1p3)(p2Q3)]α1α2

+ 2(p1p2)(p3p1) [α1α2(1 − τ1) + α3α1τ1] + cyclic(1, 2, 3), (3.2.41)
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where

2pipi+1 = −(pi +Qi+2)2 +Q2
i+2 − (Qi+2 + pi+1)2 + (Qi + pi+2 +Qi+1)2,

2piQi = −(pi +Qi+2 + pi+1)
2 + (Qi+2 + pi+1)

2

− (pi+2 +Qi+1 + pi)
2 + (pi+2 +Qi+1)2,

2piQj = (pi +Qj)
2 −Q2

j . (3.2.42)

By means of the substitution α1 → 1 − τ4, α2 → τ4τ5 and α3 → τ4(1 − τ5), we

eliminate one integration and the delta function to get a five-fold integral over τi ∈

[0, 1]. Next, we obtain an MB representation using the generalisation of (3.2.38)

1

(
∑m
s=1 Xs)λ

=
1

(2πi)m−1

1

Γ(λ)

(
m−1∏

s=1

∫ +i∞

−i∞
dzs

) ∏m−1
s=1 Xzs

s Γ(−zs)

X
λ+
∑m−1

s=1
zs

m Γ(λ+
∑m−1
s=1 zs)

,

(3.2.43)

which introduces m − 1 MB integration variables zs, where m is the number of

terms in the denominator. At this point, the integrations over the τi’s can be easily

performed by means of the substitution

∫ 1

0
dx xα(1 − x)β =

Γ(α + 1)Γ(β + 1)

Γ(α + β + 2)
. (3.2.44)

We are now left with an integrand that is an analytic function containing powers of

the momentum invariants (−sij)f({zs},ǫ) and Gamma functions Γ(g({zi}, ǫ)), where

f and g are linear combinations of the zs’s and ǫ. In order to perform the MB

integrations, one has to pick appropriate contours, so that for each zs the Γ(· · ·+ zs)

poles are to the left of the contour and the Γ(· · · − zs) poles are to the right.

At this point we use various Mathematica packages to perform a series of operations
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p3

p1

p2

Q1

Q2 Q3

Figure 3.4: The hard diagram corresponding to (3.2.39).

in an automated way to finally obtain a numerical expression at specific kinematic

points. We will briefly summarise the steps followed, while for more details we re-

fer the reader to the references documenting these packages and references therein.

Using the MBresolve package [158], we pick appropriate contours and resolve the

singularity structure of the integrand in ǫ. The latter involves taking residues and

shifting contours, and is essential in order to be able to Laurent expand the integrand

in ǫ. Using the barnesroutines package [157, 158], we apply the Barnes lemmas,

which in general generate more integrals but decrease their dimensionality, lead-

ing to higher precision results. Finally, using the MB package [157] we numerically

integrate at specific Euclidean kinematic points to obtain a numerical expression.

While all manipulations of the integrals and the expansion in ǫ are performed in

Mathematica, the actual numerical integration for each term is performed using the

CUBA routines [159] for multidimensional numerical integration in FORTRAN. The high

number of diagrams, and number of integrals for each diagram, makes the task of

running the FORTRAN integrations ideal for parallel computing.
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Comparison of the Remainder Functions

Four-point Amplitude and Wilson Loop Remainders The remainder func-

tions for the four-point amplitude and Wilson loops are given in (3.2.29) and (3.2.37),

respectively. From these relations, it follows that the difference of remainders is a

constant, x-independent term:

E4 = E4,WL − 3 ζ5 , (3.2.45)

as anticipated in (3.2.26).

We would like to stress that this is a highly nontrivial result since there is no reason

a priori to expect that the four-point remainder on the amplitude and Wilson loop

side, (3.2.29) and (3.2.37) respectively, agree (up to a constant shift). For example,

anomalous dual conformal invariance is known to determine the form of the four-

and five-point Wilson loop only up to O(ǫ0) terms [132], but does not constrain

terms which vanish as ǫ → 0. The expressions we derived for the amplitude and

Wilson loop four-point remainders at O(ǫ) are also pleasingly simple, in that they

only contain standard polylogarithms.

Five-point Amplitude and Wilson Loop Remainders We have numerically

evaluated both the five-point two-loop amplitude and Wilson loop up to O(ǫ) at 25

Euclidean kinematic points, i.e. points in the subspace of the kinematic invariants

with all sij < 0. The choice of these points and the values of the remainder functions

E
(2)
5 , E

(2)
5,WL at O(ǫ) together with the errors reported by the CUBA numerical inte-

gration library [159] appear in Table 3.1, while in Figures 3.5 and 3.6 we plot both
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# (s12, s23, s34, s45, s51) E
(2)
5 E

(2)
5,WL

1 (−1,−1,−1,−1,−1) −8.463173 ± 0.000047 −5.8705280 ± 0.0000068
2 (−1,−1,−2,−1,−1) −8.2350 ± 0.0024 −5.64560 ± 0.00063
3 (−1,−2,−2,−1,−1) −7.7697 ± 0.0026 −5.17647 ± 0.00076
4 (−1,−2,−3,−4,−5) −6.234809 ± 0.000032 −3.642125 ± 0.000018
5 (−1,−1,−3,−1,−1) −8.2525 ± 0.0027 −5.65919 ± 0.00097
6 (−1,−2,−1,−2,−1) −8.142702 ± 0.000023 −5.5500050 ± 0.0000092
7 (−1,−3,−3,−1,−1) −7.6677 ± 0.0034 −5.0784 ± 0.0013
8 (−1,−2,−3,−2,−1) −6.8995 ± 0.0029 −4.31395 ± 0.00093
9 (−1,−3,−2,−5,−4) −6.9977 ± 0.0031 −4.40806 ± 0.00099
10 (−1,−3,−1,−3,−1) −8.2759 ± 0.0025 −5.69086 ± 0.00085
11 (−1,−4,−8,−16,−32) −8.7745 ± 0.0078 −6.1825 ± 0.0051
12 (−1,−8,−4,−32,−16) −11.991985 ± 0.000089 −9.398659 ± 0.000084
13 (−1,−10,−100,−10,−1) −2.914 ± 0.022 −0.300 ± 0.010
14 (−1,−100,−10,−100,−1) −3.237 ± 0.011 −0.6648 ± 0.0028
15 (−1,−1,−100,−1,−1) −12.686 ± 0.014 −10.108 ± 0.010
16 (−1,−100,−1,−100,−1) −14.7067 ± 0.0077 −12.1136 ± 0.0071
17 (−1,−100,−100,−1,−1) −182.32 ± 0.11 −179.722 ± 0.039
18 (−1,−100,−10,−100,−10) −6.3102 ± 0.0062 −3.7281 ± 0.0013

19
(

−1,− 1
4
,− 1

9
,− 1

16
,− 1

25

)
−19.0031 ± 0.0077 −16.4136 ± 0.0021

20
(

−1,− 1
9
,− 1

4
,− 1

25
,− 1

16

)
−15.1839 ± 0.0046 −12.5995 ± 0.0016

21
(

−1,−1,− 1
4
,−1,−1

)
−9.7628 ± 0.0028 −7.17588 ± 0.00079

22
(

−1,− 1
4
,− 1

4
,−1,−1

)
−9.5072 ± 0.0036 −6.9186 ± 0.0014

23
(

−1,− 1
4
,−1,− 1

4
,−1
)

−12.6308 ± 0.0031 −10.04241 ± 0.00083

24
(

−1,− 1
4
,− 1

9
,− 1

4
,−1
)

−11.0200 ± 0.0056 −8.4281 ± 0.0030

25
(

−1,− 1
9
,− 1

4
,− 1

9
,−1
)

−19.1966 ± 0.0070 −16.6095 ± 0.0043

Table 3.1: O(ǫ) five-point remainders for amplitudes (E
(2)
5 ) and Wilson loops (E

(2)
5,WL).
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# (s12, s23, s34, s45, s51) E
(2)
5 − E

(2)
5,WL

|E
(2)
5 − E

(2)
5,WL

+ 5
2
ζ5|/σ

1 (−1,−1,−1,−1,−1) −2.592645 ± 0.000048 6.8
2 (−1,−1,−2,−1,−1) −2.5894 ± 0.0025 1.2
3 (−1,−2,−2,−1,−1) −2.5932 ± 0.0027 0.32
4 (−1,−2,−3,−4,−5) −2.592697 ± 0.000036 10
5 (−1,−1,−3,−1,−1) −2.5933 ± 0.0028 0.35
6 (−1,−2,−1,−2,−1) −2.592697 ± 0.000025 15
7 (−1,−3,−3,−1,−1) −2.5893 ± 0.0036 0.82
8 (−1,−2,−3,−2,−1) −2.5856 ± 0.0030 2.2
9 (−1,−3,−2,−5,−4) −2.5897 ± 0.0032 0.82
10 (−1,−3,−1,−3,−1) −2.5851 ± 0.0026 2.8
11 (−1,−4,−8,−16,−32) −2.5920 ± 0.0093 0.034
12 (−1,−8,−4,−32,−16) −2.59333 ± 0.00012 8.3
13 (−1,−10,−100,−10,−1) −2.614 ± 0.024 0.89
14 (−1,−100,−10,−100,−1) −2.572 ± 0.011 1.9
15 (−1,−1,−100,−1,−1) −2.578 ± 0.017 0.80
16 (−1,−100,−1,−100,−1) −2.593 ± 0.010 0.071
17 (−1,−100,−100,−1,−1) −2.60 ± 0.11 0.039
18 (−1,−100,−10,−100,−10) −2.5820 ± 0.0063 1.6

19
(

−1,− 1
4
,− 1

9
,− 1

16
,− 1

25

)
−2.5894 ± 0.0080 0.36

20
(

−1,− 1
9
,− 1

4
,− 1

25
,− 1

16

)
−2.5844 ± 0.0049 1.6

21
(

−1,−1,− 1
4
,−1,−1

)
−2.5869 ± 0.0029 1.9

22
(

−1,− 1
4
,− 1

4
,−1,−1

)
−2.5886 ± 0.0038 0.96

23
(

−1,− 1
4
,−1,− 1

4
,−1
)

−2.5884 ± 0.0032 1.2

24
(

−1,− 1
4
,− 1

9
,− 1

4
,−1
)

−2.5919 ± 0.0064 0.064

25
(

−1,− 1
9
,− 1

4
,− 1

9
,−1
)

−2.5870 ± 0.0082 0.65

Table 3.2: Difference of the five-point amplitude and Wilson loop two-loop remain-
der functions at O(ǫ), and its distance from −5

2
ζ5 ∼ −2.592319 in units of σ, the

standard deviation reported by the CUBA numerical integration package [159].
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remainders for all kinematic points. We have calculated the difference between the

amplitude and Wilson loop remainders, see Table 3.2 and Figure 3.7. Remarkably,

this difference also appears to be constant (within our numerical precision) as in the

four-point case, and hence we conjecture that

E
(2)
5 = E

(2)
5,WL − 5

2
ζ5 . (3.2.46)

It is also intriguing that the constant difference is fit very well by a simple rational

multiple of ζ5, rather than a linear combination of ζ5 and ζ2ζ3 as would have been

allowed more generally by transcendentality.

In the last column of Table 3.2 we give the distance of our results from this conjecture

in units of their standard deviation.
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Figure 3.5: Remainder functions at O(ǫ) for the amplitude (circle) and the Wilson
loop (square).
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Figure 3.6: Remainder functions at O(ǫ) for the amplitude (circle) and the Wilson
loop (square). In this Figure we have eliminated data point 17 and zoomed in on the
others.

For kinematic points 1, 4 and 6 we have evaluated the remainder functions with even

higher precision, and found agreement with the conjecture to 4 digits. A remark

is in order here. By increasing the precision, the mean value of the difference of

remainders approaches the conjectured value, but we notice that in units of σ it

drifts away from it, hinting at a potential underestimate of the errors. To test

our error estimates we used the remainder functions at O(ǫ0), that are known to

vanish. Our analysis confirmed that, as we increase the desired precision, the actual

precision of the mean value does increase, but on the other hand reported errors

tend to become increasingly underestimated.



126

E 5
-
E 5

,
W
L

æ
æ

æ æ æ æ
æ

æ
æ

æ
æ æ

æ

æ
æ

æ
æ

æ

æ
æ æ æ æ

æ
æ

0 5 10 15 20 25
-2.75

-2.70

-2.65

-2.60

-2.55

-2.50

-2.45

-2.40

Kinematic point

Figure 3.7: Difference of the remainder functions E
(2)
5 − E

(2)
5,WL.



Chapter 4

Scattering Amplitudes in Super

Gravity

4.1 Relations to Super Yang-Mills

4.1.1 KLT Relations

In this section, we will review how tree amplitudes in gravity can be expressed in

terms of tree amplitudes in gauge theory as bilinear combinations, following [239].

The reason is that, by using generalized unitarity, we will be able to chop the gravity

loop amplitudes up into products of gravity trees. Then we can use the gravity-gauge

relations to write everything in terms of products of gauge-theory trees, products

which actually appear in cuts of gauge loop amplitudes. In this way, multi-loop

gauge amplitudes provide the information needed to construct multi-loop gravity

127



128

amplitudes.

The original gravity-gauge tree amplitude relations were found by Kawai, Lewellen

and Tye [240], who recognized that the world-sheet integrands needed to compute

tree-level amplitudes in the closed type II superstring theory were essentially the

square of the integrands appearing in the open-superstring tree amplitudes. KLT

represented the closed-string world-sheet integrals over the complex plane as prod-

ucts of contour integrals, and then deformed the contours until they could be identi-

fied as integrals for open-string amplitudes, thus deriving relations between closed-

and open-string tree amplitudes.

Because the low-energy limit of the perturbative sector of the closed type II super-

string in D = 4 is N = 8 supergravity, and that of the open superstring is N = 4

SYM, as the string tension goes to infinity the KLT relations express any N = 8

supergravity tree amplitude in terms of amplitudes in N = 4 SYM.

The KLT relations for N = 8 supergravity amplitudes are bilinear in the N = 4 SYM

amplitudes, for two complementary reasons: (1) Integrals over the complex plane

naturally break up into pairs of contour integrals, and (2) the N = 8 supergravity

Fock space naturally factors into a product of "left" and "right" N = 4 SYM Fock

spaces,

[N = 8] = [N = 4]L ⊗ [N = 4]R . (4.1.1)

With the definition of the supergravity tree amplitudes Mtree
n as

M
tree
n ({ki}) =

(
κ

2

)n−2

M tree
n (1, 2, . . . , n) , (4.1.2)

where the gravitational coupling κ2 = 32π2GN , the first few KLT relations have the
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form as follows,

M tree
3 (1, 2, 3) = i Atree3 (1, 2, 3)Ãtree3 (1, 2, 3) , (4.1.3)

M tree
4 (1, 2, 3, 4) = −is12 A

tree
4 (1, 2, 3, 4) Ãtree4 (1, 2, 4, 3) , (4.1.4)

M tree
5 (1, 2, 3, 4, 5) = is12s34 A

tree
5 (1, 2, 3, 4, 5)Ãtree5 (2, 1, 4, 3, 5) + P(2, 3) , (4.1.5)

M tree
6 (1, 2, 3, 4, 5, 6) = −is12s45 A

tree
6 (1, 2, 3, 4, 5, 6)

×
[
s35 Ã

tree
6 (2, 1, 5, 3, 4, 6) + (s34 + s35) Ãtree6 (2, 1, 5, 4, 3, 6)

]

+ P(2, 3, 4) , (4.1.6)

where sij ≡ (ki + kj)
2, and "P" indicates a sum over the m! permutations of the m

arguments of P. Here Atreen indicates a tree amplitude for which the external states

are drawn from the left-moving Fock space [N = 4]L in the tensor product (4.1.1),

while Ãtreen denotes an amplitude from the right-moving copy [N = 4]R.

Now we will illustrate how KLT relation can be used to compute N = 8 supergravity

amplitudes from N = 4 SYM amplitudes by a two-loop example.

The full two-loop four-point amplitude in N = 4 SYM is given by

A
(2)
4 = −s12s23A

tree
4

[
CP

1234 s12 I
(2),P
4 (s12, s23) + CNP

1234 s12 I
(2),NP
4 (s12, s23)

+ P(2, 3, 4)
]
, (4.1.7)

where I
(2),(P,NP )
4 are the scalar planar and non-planar double box integrals , and

C
(P,NP )
1234 are color factors constructed from structure constant vertices.

The complete two-loop four-point amplitude in N = 8 supergravity is found simply
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by squaring the prefactors in 4.1.7 (and removing the color factors):

M
(2)
4 = −i(s12s23A

tree
4 )2

[
s2

12 I
(2),P
4 (s12, s23) + s2

12 I
(2),NP
4 (s12, s23) + P(2, 3, 4)

]

= s12s23s13M
tree
4

[
s2

12 I
(2),P
4 (s12, s23) + s2

12 I
(2),NP
4 (s12, s23) + P(2, 3, 4)

]
.

(4.1.8)

4.1.2 BCJ Color Duality

Here we will review a conjectured duality between color and kinematics, discovered

by Bern-Carrasco-Johansson (BCJ) [241]. To understand the proposed duality, we

first rearrange an L-loop amplitude with all particles in the adjoint representation

into the form,

(−i)LAloop
n =

∑

j

∫ L∏

l=1

dDpl
(2π)D

1

Sj

njcj∏
αj
p2
αj

, (4.1.9)

where the sum runs over the set of n-point L-loop diagrams with only cubic vertices,

Sj are the symmetry factors, ci are the color factors and ni are kinematic numerator

factors.

According to the color-kinematics duality proposal of [241], arrangements of the

diagrammatic numerators in 4.1.9 exist such that they satisfy equations in one-to-

one correspondence with the color Jacobi identities. That is, for every color Jacobi

identity we have a relation between kinematic numerators,

ci = cj − ck ⇒ ni = nj − nk . (4.1.10)
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= +lt

pa

pcpb

pd
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pcpb

pdpa

pb

pa

pc

pd
ls

Figure 4.1: A numerator duality relation at three loops. The relation is either for the
color factors or for the diagram numerators.

For example, as illustrated in Fig. 4.1, the numerators of the three displayed dia-

grams satisfy a similar equation as satisfied by the color factors of the diagram.

Perhaps more remarkable than the duality itself, is a related conjecture that once

the gauge-theory amplitudes are arranged into a form satisfying the duality (4.1.10),

corresponding gravity amplitudes can be obtained simply by taking a double copy

of gauge-theory numerator factors [241],

(−i)L+1
M

loop
n =

∑

j

∫ L∏

l=1

dDpl
(2π)D

1

Sj

njνj∏
αj
p2
αj

, (4.1.11)

where the νi represent numerator factors of a second gauge theory amplitude, the

sum runs over the same set of diagrams as in 4.1.9. We suppressed the gravitational

coupling constant in this expression.

This is expected to hold in a large class of gravity theories, including theories that

are the low-energy limits of string theories. It should also hold in pure gravity, but

in this case extra projectors would be required to remove the unwanted states arising

in the direct product of two pure Yang-Mills theories. At tree level (L = 0), this

double-copy property is closely related to the KLT relations between gravity and

gauge theory as mentioned above.
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4.2 Tree Formula for Graviton Scattering

The past several years have witnessed tremendous progress in our understanding

of the mathematical structure of scattering amplitudes, particularly in maximally

supersymmetric theories. It is easy to argue that the seeds of this progress were sown

over two decades ago by the discovery [164, 165] of the stunningly simple formula

(Here in this section we use calligraphic letters A, M to denote superspace amplitudes

with the overall delta-function of supermomentum conservation suppressed.)

A
MHV(1, . . . , n) =

1

〈1 2〉〈2 3〉 · · · 〈n 1〉 (4.2.1)

for the MHV color-ordered subamplitude for n-gluon scattering. The importance of

this formula goes far beyond simply knowing the answer for a certain scattering am-

plitude, which one may or may not be particularly interested in. Rather, the mere

existence of such a simple formula for something which would normally require enor-

mously tedious calculations using traditional Feynman diagram techniques suggests

firstly that the theory must possess some remarkable and deeply hidden mathemat-

ical structure, and secondly that if one actually is interested in knowing the answer

for a certain amplitude it behooves one to discover and understand this structure.

In other words, the formula (4.2.1) is as important psychologically as it is phys-

ically, since it provides strong motivation for digging more deeply into scattering

amplitudes.

Much of the progress on gluon amplitudes can be easily recycled and applied to

graviton amplitudes due ultimately to the KLT relations [166], as mentioned above,

which roughly speaking state that "gravity is Yang-Mills squared".
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There are several indications that maximal supergravity may be an extraordinarily

remarkable theory [168, 169, 170, 171, 172, 173, 174, 175, 176, 177], and possibly

even ultraviolet finite [178, 179, 180, 181, 182, 185], but our feeling is that even at

tree level we are still far from fully unlocking the structure of graviton amplitudes.

The original BGK (Berends, Giele and Kuijf) formula for the n-graviton MHV ampli-

tude [186] is now over 20 years old. For later convenience we review here a different

form due to Mason and Skinner [187], who proved the equivalence of the original

BGK formula to the expression

MMHV
n =

∑

P (1,...,n−3)

1

〈nn−2〉〈n−2n−1〉〈n−1n〉
1

〈1 2〉 · · · 〈n 1〉
n−3∏

k=1

[k|pk+1 + · · · + pn−2|n−1〉
〈k n−1〉 ,

(4.2.2)

where the sum indicates a sum over all (n−3)! permutations of the labels 1, . . . , n−3

and we use the convention

[a|pi + pj + · · · |b〉 = [a i]〈i b〉 + [a j]〈j b〉 + · · · . (4.2.3)

The fact that any closed form expression exists at all for this quantity, the calculation

of which would otherwise be vastly more complicated even than the corresponding

one for n gluons, is an amazing achievement. Nevertheless the formula has some

features which strongly suggest that it is not the end of the story.

First of all, the formula (4.2.2) does not manifest the requisite permutation sym-

metry of an n-graviton superamplitude. Specifically, any superamplitude Mn must

be fully symmetric under all n! permutations of the labels 1, . . . , n of the external

particles, but only an Sn−3 subgroup of this symmetry is manifest in (4.2.2) (several
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formulas which manifest a slightly larger Sn−2 subgroup are known [188, 189]). Of

course one can check, numerically if necessary, that (4.2.2) does in fact have this

symmetry, but it is far from obvious. Moreover, even the Sn−3 symmetry arises in

a somewhat contrived way, via an explicit sum over permutations. Undoubtedly

the summand in (4.2.2) contains redundant information which is washed out by tak-

ing the sum. This situation should be contrasted with that of Yang-Mills theory,

where (4.2.1) is manifestly invariant under the appropriate dihedral symmetry group

(not the full permutation group, due to the color ordering of gluons).

Secondly, one slightly disappointing feature of all previously known MHV formulas

including (4.2.2) is the appearance of “· · · ”, which indicates that a particular cyclic

ordering of the particles must be chosen in order to write the formula, even though

a graviton amplitude ultimately cannot depend on any such ordering since gravitons

do not carry any color labels. This vestigial feature usually traces back to the use of

the KLT relations to calculate graviton amplitudes by recycling gluon amplitudes.

An important feature of graviton amplitudes is that they fall off like 1/z2 as the

supermomenta of any two particles are taking to infinity in a particular complex

direction (see [188, 190, 191, 192, 193, 194, 195] and [173] for the most complete

treatment), unlike in Yang-Mills theory where the falloff is only 1/z [196]. It has

been argued [193] that this exceptionally soft behavior of graviton tree amplitudes

is of direct importance for the remarkable ultraviolet cancellations in supergravity

loop amplitudes [178, 197, 198, 199, 200].

The 1/z2 falloff of (4.2.2) is manifest for each term separately inside the sum over

permutations. Two classes of previously known formulas for the n-graviton MHV
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amplitude are: those like (4.2.2) which manifest the 1/z2 falloff but only Sn−3 sym-

metry, and others (see for example [188, 189]) which have a larger Sn−2 symmetry

but only manifest falloff like 1/z. In the latter class of formulas the stronger 1/z2

behavior arises from delicate and non-obvious cancellations between various terms

in the sum. This is both a feature and a bug. It is a feature because it implies the ex-

istence of linear identities (which have been called bonus relations in [201]) between

individual terms in the sum which have proven useful, for example, in establishing

the equality of various previously known but not obviously equivalent formulas [201].

But it is a bug because it indicates that the Sn−2-invariant formulas contain redun-

dant information distributed amongst the various terms in the sum. The bonus

relations allow one to squeeze this redundant information out of any Sn−2-invariant

formula at the cost of reducing the manifest symmetry to Sn−3.

It is difficult to imagine that it might be possible to improve upon the Parke-Taylor

formula (4.2.1) for the n-gluon MHV amplitude. However, for the reasons just

reviewed, we feel that (4.2.2) cannot be the end of the story for gravity. Ideally

one would like to have a formula for n-graviton scattering that (1) is manifestly

Sn symmetric without the need for introducing an explicit sum over permutations

to impose the symmetry vi et armis; (2) makes no vestigial reference to any cyclic

ordering of the n gravitons, and (3) manifests 1/z2 falloff term by term, making it

unsqueezable by the bonus relations.

In this section we present and prove the "tree formula" (4.2.4) for the MHV scattering

amplitude which addresses the second and third points but only manifests Sn−2

symmetry [2].

There is an ansatz for the MHV graviton amplitude presented in section 6 of [231]
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which upon inspection is immediately seen to share the nice features of the tree

formula. In fact, although terms in the two formulas are arranged in different ways

(labeled tree diagrams versus Young tableaux), it is not difficult to check that their

content is actually identical. Interestingly the formula of [231] was constructed

with the help of “half-soft factors” similar in idea to the “inverse soft limits” which

appeared much more recently in [203]. Our work establishes the validity of the ansatz

conjectured in [231] and demonstrates that it arises naturally in twistor space.

4.2.1 The MHV Tree Formula

Statement of the Tree Formula

Here we introduce a formula for the n-graviton MHV scattering amplitude which

we call the “tree formula” since it consists of a sum of terms, each of which is

conveniently represented by a tree diagram [2]. The tree formula manifests an Sn−2

subgroup of the full permutation group. For the moment we choose to treat particles

n− 1 and n as special. With this arbitrary choice the formula is:

MMHV
n =

1

〈n− 1n〉2

∑

trees


 ∏

edges ab

[a b]

〈a b〉



( ∏

vertices a

(〈a n− 1〉〈a n〉)deg(a)−2

)
. (4.2.4)

To write down an expression for the n-point amplitude one draws all inequivalent

connected tree graphs with vertices labeled 1, 2, . . . , n−2. (It was proven by Cayley

that there are precisely (n − 2)n−4 such diagrams.) For example, one of the 125

labeled tree graphs contributing to the n = 7 graviton amplitude is
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2

5

3 1 4

According to (4.2.4) the value of a diagram is then the product of three factors:

1. an overall factor of 1/〈n−1n〉2,

2. a factor of [a b]/〈a b〉 for each propagator connecting vertices a and b, and

3. a factor of (〈a n−1〉〈a n〉)deg(a)−2 for each vertex a, where deg(a) is the degree

of the vertex (the number of edges attached to it).

An alternate description of the formula may be given by noting that a vertex factor

of 〈a n − 1〉〈a n〉 may be absorbed into each propagator connected to that vertex.

This leads to the equivalent formula

MMHV
n =

1

〈n−1n〉2

(
n−2∏

a=1

1

(〈a n−1〉〈a n〉)2

) ∑

trees

∏

edges ab

[a b]

〈a b〉〈a n−1〉〈b n−1〉〈a n〉〈b n〉.

(4.2.5)

Examples

We will illustrate the tree formula in some examples, having some convincingness by

seeing the formula in action here for small n and by noting that it has the correct

soft limits for all n, as we discuss shortly.
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For each of the trivial cases n = 3, 4 there is only a single tree diagram,

MMHV
3 = 1 =

1

(〈1 2〉〈1 3〉〈2 3〉)2
(4.2.6)

and

MMHV
4 = 1 2 =

[1 2]

〈1 2〉〈1 3〉〈1 4〉〈2 3〉〈2 4〉〈3 4〉2
(4.2.7)

respectively, which immediately reproduce the correct expressions.

For n = 5 there are three tree diagrams

1 2 3 =
[1 2][2 3]

〈1 2〉〈1 4〉〈1 5〉〈2 3〉〈3 4〉〈3 5〉〈4 5〉2

1 3 2 =
[1 3][2 3]

〈1 3〉〈1 4〉〈1 5〉〈2 3〉〈2 4〉〈2 5〉〈4 5〉2

2 1 3 =
[1 2][1 3]

〈1 2〉〈1 3〉〈2 4〉〈2 5〉〈3 4〉〈3 5〉〈4 5〉2

(4.2.8)

which can easily be verified by hand to sum to the correct expression. Agreement

between the tree formula and other known formulas such as (4.2.2) may be checked

numerically for slightly larger values of n by assigning random values to all of the

spinor helicity variables. A simple implementation of the tree formula in the Math-

ematica symbolic computation language is given as follows:

Needs["Combinatorica‘"];

MHV[n_Integer]/;n>4 := 1/ket[n-1,n]^2 1/(Times @@ ((ket[n-1,#] ket[n,#])^2

& /@ Range[n-2])) ((Times @@ (Transpose[#]/.{a___,1,b___,1,c___} :>

prop[Length[{a}]+1,Length[{a,b}]+2])) & /@ IncidenceMatrix /@

CodeToLabeledTree /@ Flatten[Outer[List,Sequence @@

Table[Range[n-2],{n-4}]],n-5]) /. prop[a_,b_] ->
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bra[a,b]/ket[a,b] ket[n-1,a] ket[n-1,b] ket[n,a] ket[n,b];

Here we use the notation ket[a, b] = 〈a b〉 and bra[a, b] = [a b]. The (trivial) cases

n = 3, 4 must be handled separately.

Relation to Other Known Formulas

The MHV tree formula is evidently quite different in form from most other expres-

sions in the literature. In particular, no reference at all is made to any particular

ordering of the particles (there is no vestigial “· · · ”), and the manifest Sn−2 arises

not because of any explicit sum over P (1, . . . , n− 2) but rather from the simple fact

that the collection of labeled tree diagrams has a manifest Sn−2 symmetry. In our

view these facts serve to highlight the essential “gravitiness” of the formula, in con-

trast to expressions such as (4.2.2) which are ultimately recycled from Yang-Mills

theory.

One interesting feature of the MHV tree formula is that it is, in a sense, minimally

non-holomorphic. Graviton MHV amplitudes, unlike their Yang-Mills counterparts,

do not depend only the holomorphic spinor helicity variables λi. The tree formula

packages all of the non-holomorphicity into the [a b] factors associated with propa-

gators in the tree diagrams. Each diagram has a unique collection of propagators

and a correspondingly unique signature of [ ]’s, which only involve n − 2 of the n

labels.

Like the MHV tree formula, the Mason-Skinner formula (4.2.2) (unlike most other

formulas in the literature, including the original BGK formula) has non-holomorphic

dependence on only n− 2 variables. In our labeling of (4.2.2) we see that λ̃n−1 and
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λ̃n do not appear at all. Of course we do not mean to say that M is “independent” of

these two variables since there is a suppressed overall delta function of momentum

conservation δ4(
∑
i λiλ̃i) which one could use to shuffle some λ̃’s into others. Rather

we mean that the tree and MS formulas have the property that all appearance of

two of the λ̃’s has already been completely shuffled out.

It is an illuminating exercise to attempt a direct term-by-term comparison of the

MHV tree formula with the MS formula (4.2.2). For the first non-trivial case n = 5

the MS formula provides the two terms

[2 3][1|p2 + p3|4〉
〈1 2〉〈1 4〉〈1 5〉〈2 3〉〈2 4〉〈3 4〉〈3 5〉〈4 5〉2

− [1 3][2|p1 + p3|4〉
〈1 2〉〈1 3〉〈1 4〉〈2 4〉〈2 5〉〈3 4〉〈3 5〉〈4 5〉2

.

(4.2.9)

If we now expand out the bracket [a|pi + pj |b〉 = [a i]〈i b〉 + [a j]〈j b〉 then we find

four terms: one of them is proportional to [1 2][2 3] and is identical to the first line

in (4.2.8), another proportional to [1 2][1 3] is identical to the last line in (4.2.8). The

remaining two terms are both proportional to [1 3][2 3] and may be combined as

[1 3][2 3] (〈1 3〉〈2 5〉 − 〈1 5〉〈2 3〉)
〈1 2〉〈1 3〉〈1 4〉〈1 5〉〈2 3〉〈2 4〉〈2 5〉〈3 5〉〈4 5〉2

(4.2.10)

which with the help of a Schouten identity we recognize as precisely the second line

in (4.2.8).

And we will give one more final example. Expanding the MS formula for n = 6 into

〈 〉’s and [ ]’s yields a total of 36 terms. For example there are 6 terms proportional
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to the antiholomorphic structure [1 4][2 4][3 4], totalling

[1 4][2 4][3 4]〈4 5〉
〈1 5〉〈2 5〉〈3 5〉〈4 6〉〈5 6〉2


 1

〈1 2〉〈1 6〉〈2 3〉〈3 4〉+
1

〈1 2〉〈1 4〉〈2 3〉〈3 6〉− 1

〈1 3〉〈1 6〉〈2 3〉〈2 4〉

− 1

〈1 3〉〈1 4〉〈2 3〉〈2 6〉 − 1

〈1 2〉〈1 3〉〈2 6〉〈3 4〉 − 1

〈1 2〉〈1 3〉〈2 4〉〈3 6〉


. (4.2.11)

After repeated use of Schouten identities this amazingly collapses to the single term

[1 4][2 4][3 4]〈4 5〉〈4 6〉
〈1 4〉〈1 5〉〈1 6〉〈2 4〉〈2 5〉〈2 6〉〈3 4〉〈3 5〉〈3 6〉〈5 6〉2

=

1 2 3

4

(4.2.12)

We believe that these examples are representative of the general case. Expanding

out all of the brackets in the n-graviton MS formula generates a total of [(n− 3)!]2

terms, but there are only (n − 2)n−4 possible distinct antiholomorphic signatures.

Collecting terms with the same signature and repeatedly applying Schouten identi-

ties should collapse everything into the terms generated by the MHV tree formula.

Note that this is a huge simplification: (n − 2)n−4 is smaller than [(n − 3)!]2 by

a factor that is asymptotically nn. We certainly do not have an explicit proof of

this cancellation; instead we are relying on fact that the MS formula and the tree

formula are separately proven to be correct in order to infer how the story should

go.

To conclude this discussion we should note that we are exploring here only the

structure of the various formulas, not making any claims about the computational

complexity of the MHV tree formula as compared to (4.2.2) or any other known
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formula. No practical implementation of the MS formula would proceed by first

splitting all of the brackets as we have outlined. Indeed a naive counting of the

number of terms, (n− 3)! in (4.2.2) versus (n− 2)n−4 for the tree formula, suggests

that for computational purposes the former is almost certainly the clear winner

despite the conceptual strengths of the latter.

Soft Limit of the Tree Formula

Let us consider for a moment the component amplitude

M(1+, . . . , (n− 2)+, (n− 1)−, n−) = 〈n− 1n〉8MMHV
n (4.2.13)

with particles n − 1 and n having negative helicity. The universal soft factor for

gravitons is [186, 202]

lim
p1→0

M(1+, . . . , (n− 2)+, (n− 1)−, n−)

M(2+, . . . , (n− 2)+, (n− 1)−, n−)
=

n−2∑

i=2

g(i+), g(i+) =
〈i n− 1〉
〈1n− 1〉

〈i n〉
〈1n〉

[1 i]

〈1 i〉 .

(4.2.14)

It is simple to see that the MHV tree formula satisfies this property: the tree

diagrams which do not vanish in the limit p1 → 0 are those in which vertex 1

is connected by a propagator to a single other vertex i. Such diagrams remain

connected when vertex 1 is chopped off, leaving a contribution to the n−1-graviton

amplitude times the indicated factor g(i+).

Thinking about this process in reverse therefore suggests a simple interpretation

of (4.2.14) in terms of tree diagrams—it is a sum over all possible places i where

the vertex 1 may be attached to the n − 1-graviton amplitude. This structure is
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exactly that of the “inverse soft factors” suggested recently in [203], and we have

checked that the MHV tree formula may be built up by recursively applying the

rule proposed there.

4.2.2 The MHV Tree Formula in Twistor Space

Before turning to the formal proof of the tree formula in the next section, here we

work out the link representation of the MHV graviton amplitude in twistor space,

which was one of the steps which led to the discovery of the tree formula. Two

papers [204, 205] have recently constructed versions of the BCF on-shell recursion

relation directly in twistor space variables. We follow the standard notation where

µ, µ̃ are respectively Fourier transform conjugate to the spinor helicity variables λ,

λ̃, and assemble these together with a four-component Grassmann variable η and

its conjugate η̃ into the 4|8-component supertwistor variables

Z =




λ

µ

η



, W =




µ̃

λ̃

η̃



. (4.2.15)

In the approach of [205], in which variables of both chiralities Z and W are used

simultaneously, an apparently important role is played by the link representation

which expresses an amplitude M in the form

M(Zi,WJ) =
∫
dc U(ciJ , λi, λ̃J) exp


i
∑

i,J

ciJZi · WJ


 . (4.2.16)
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Here one splits the n particles into two groups, one of which (labeled by i) one

chooses to represent in Z space and the other of which (labeled by J) one chooses to

represent in W space. The integral runs over all of the aptly-named link variables

ciJ and we refer to the integrand U(ciJ , λi, λ̃J) as the link representation of M. It

was shown in [205] that the BCF on-shell recursion in twistor space involves nothing

more than a simple integral over Z, W variables with a simple (and essentially

unique) measure factor.

The original motivation for our investigation was to explore the structure of link

representations for graviton amplitudes. We will always adopt the convenient con-

vention of expressing an NkMHV amplitude in terms of k+2 Z variables and n−k−2

W variables. The three-particle MHV and MHV amplitudes

UMHV
3 =

|〈1 2〉|
c2

13c
2
23

, UMHV
3 =

|[1 2]|
c2

31c
2
32

(4.2.17)

seed the on-shell recursion, which is then sufficient (in principle) to determine the

link representation for any desired amplitude.

For example, the four-particle amplitude is the sum of two contributing BCF dia-

grams

UMHV
4 =

〈1 2〉[3 4]

c2
13c

2
24c12:34

+
〈1 2〉[3 4]

c2
13c

2
24c14c23

(4.2.18)

where we use the notation

ci1i2:J1J2 = ci1J1ci2J2 − ci1J2ci2J1. (4.2.19)

Remarkably the two terms in (4.2.18) combine nicely into the simple result presented
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already in [205]:

UMHV
4 =

〈1 2〉[3 4]

c13c14c23c24c12:34
. (4.2.20)

This simplification seems trivial at the moment but it is just the tip of an iceberg.

For larger n the enormous simplifications discussed in the previous section, which

are apparently non-trivial in physical space, occur automatically in the link repre-

sentation.

For example the five particle MHV amplitude is the sum of three BCF diagrams,

UMHV
5 =

{
|〈1 2〉|[4 5](c24[3 4] + c25[3 5])

c13c23c14c
2
25c12:34c12:45

+ (3 ↔ 4)

}
+

|〈1 2〉|[3 4](c24[4 5] + c23[3 5])

c13c14c15c23c24c
2
25c12:34

(4.2.21)

which nicely simplifies to

1

|〈1 2〉|U
MHV
5 =

[3 4][4 5]

c13c15c23c25c12:34c12:45
+

[3 5][4 5]

c13c14c23c24c12:35c12:45
+

[3 4][3 5]

c14c15c24c25c12:34c12:35
.

(4.2.22)

This expression already exhibits the structure of the MHV tree formula (except that

here particles 1 and 2 are singled out, and the vertices of the trees are labeled by

{3, 4, 5}).

Subsequent investigations for higher n reveal the general pattern which is as follows.

Returning to the convention where particles n− 1 and n are treated as special, the

link representation for any desired MHV amplitude may be written down by drawing

all tree diagrams with vertices labeled by {1, . . . , n− 2} and then assigning

1. an overall factor of 〈n− 1n〉sign(〈n− 1n〉)n,

2. for each propagator connecting nodes a and b, a factor of [a b]/cn−1,n:a,b,
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3. for each vertex a, a factor of (cn−1,acn,a)
deg(a)−2, where deg(a) is the degree of

the vertex labeled a.

It is readily verified by direct integration over the link variables that these rules are

precisely the link-space representation of the physical space rules for the MHV tree

formula given in the previous section.

4.2.3 Proof of the MHV Tree Formula

Here we present a proof of the MHV tree formula. One way one might attempt to

prove the formula would be to show directly that it satisfies the BCF on-shell recur-

sion relation [196, 209] for gravity [188, 190, 192], but the structure of the formula

is poorly suited for this task. Instead we proceed by considering the usual BCF

deformation of the formula MMHV
n by a complex parameter z and demonstrating

that MMHV
n (z) has the same residue at every pole (and behavior at infinity) as the

similarly deformed graviton amplitude, thereby establishing equality of the two for

all z.

In this section we return to singling out particles 1 and 2, letting the vertices in the

tree diagrams carry the labels {3, . . . , n}. Then the MHV tree formula (4.2.4) can

be written as

MMHV
n = 〈1 2〉6

∑

trees

[ ] · · · [ ]

〈 〉 · · · 〈 〉
n∏

a=3

(〈1 a〉〈2 a〉)deg(a)−2 (4.2.23)

(note that we continue to work with the component amplitude (4.2.13)) where the
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factors [ ] · · · [ ]/〈 〉 · · · 〈 〉 associated with the propagators of a diagram are indepen-

dent of 1 and 2. Let us now make the familiar BCF shift [196]

λ1 → λ1(z) = λ1 − zλ2, λ̃2 → λ̃2(z) = λ̃2 + zλ̃1 (4.2.24)

which leads to the z-deformed MHV tree formula

MMHV
n (z) = 〈1 2〉6

∑

trees

[ ] · · · [ ]

〈 〉 · · · 〈 〉
n∏

a=3

[(〈1 a〉 − z〈2 a〉)〈2 a〉]deg(a)−2 . (4.2.25)

Here we are in a position to observe a nice fact: since each tree diagram is connected,

the degrees satisfy the sum rule

n∑

a=3

(deg(a) − 2) = −2, (4.2.26)

which guarantees that each individual term in (4.2.25) manifestly behaves like 1/z2

at large z. This exceptionally soft behavior of graviton amplitudes is completely

hidden in the usual Feynman diagram expansion.

3

1̂ 2̂

MHV MHV
... +

4

1̂ 2̂

MHV MHV
... + · · · +

n

1̂ 2̂

MHV MHV
...

Figure 4.2: All factorizations contributing to the on-shell recursion relation for
the n-point MHV amplitude. Only the first diagram contributes to the residue at
z = 〈1 3〉/〈2 3〉.

A complex function of a single variable which vanishes at infinity is uniquely deter-

mined by the locations of its poles as well as its residues. Having noted that (4.2.25)
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has the correct behavior at large z, we can conclude the proof of the MHV tree

formula by demonstrating that (4.2.25) has precisely the expected residues at all of

its poles. In order to say what the expected residues are we shall use induction on

n. As discussed above the tree formula is readily verified for sufficiently small n, so

let us assume that it has been established up through n− 1. We can then use BCF

on-shell recursion (whose terms are displayed graphically in 4.2) to determine what

the residues in the deformed n-point amplitude ought to be.

Without loss of generality let us consider just the pole at z = z3 ≡ 〈1 3〉/〈2 3〉.

The only tree diagrams which contribute to the residue at this pole are those with

deg(3) = 1, meaning that the vertex labeled 3 is connected to the rest of the diagram

by a single propagator. Chopping off vertex 3 gives a subdiagram with vertices

labeled {4, . . . , n}. Clearly all diagrams which contribute to this residue can be

generated by first considering the collection of tree diagrams with vertices labeled

{4, . . . , n} and then attaching vertex 3 in all possible ways to the n − 3 vertices of

the subdiagram. We therefore have

MMHV
n (z) ∼ 〈1 2〉6

∑

subdiagrams

[ ] · · · [ ]

〈 〉 · · · 〈 〉

(
n∑

b=4

[3 b]

〈3 b〉〈1̂ b〉〈2 b〉
)

1

〈1̂ 3〉〈2 3〉
n∏

a=4

(
〈1̂ a〉〈2 a〉

)deg(a)−2

(4.2.27)

where ∼ denotes that we have dropped terms which are nonsingular at z = z3, the

sum over b runs over all the places where vertex 3 can be attached to the subdiagram,

and [ ] · · · [ ]/〈 〉 · · · 〈 〉 indicates all edge factors associated the subdiagram, necessarily

independent of 3. Using the Schouten identity we find that 〈1̂ b〉 = 〈1 2〉〈b 3〉/〈2 3〉
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so we have after a couple of simple steps (and using (4.2.26))

MMHV
n (z) ∼ 〈1 2〉6 [1 3]

〈1 3〉 − z〈2 3〉
∑

subdiagrams

[ ] · · · [ ]

〈 〉 · · · 〈 〉
n∏

a=4

(〈2 a〉〈3 a〉)deg(a)−2 . (4.2.28)

On the other hand we know from the on-shell recursion for the n-point amplitude

that the residue at z = z3 comes entirely from the first BCFW diagram in 4.2, whose

value is

MMHV
3 (z3) × 1

P 2(z)
×MMHV

n−1 (z3) (4.2.29)

where

P (z) = p1 + p3 − zλ2λ̃1. (4.2.30)

Assuming the validity of the MHV tree formula for the n − 1-point amplitude on

the right, the expression (4.2.29) evaluates to

[P̂ 3]6

[3 1]2[1 P̂ ]2
× 1

[1 3](〈1 3〉 − z〈2 3〉) × 〈P̂ 2〉6
∑

subdiagrams

[ ] · · · [ ]

〈 〉 · · · 〈 〉
n∏

a=4

(
〈P̂ a〉〈2 a〉

)deg(a)−2

(4.2.31)

where P̂ = P (z3). After simplifying this result with the help of (4.2.30) we find

precise agreement with (4.2.27), thereby completing the proof of the MHV tree

formula.

4.2.4 Discussion and Open Questions

The tree formula introduced in here has several conceptually satisfying features and

almost completely fulfills the wish-list outlined at the beginning. It appears to

be a genuinely gravitational formula, rather than a recycled Yang-Mills result. Is
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it, finally, the end of the story for the the MHV amplitude, as the Parke-Taylor

formula (4.2.1) surely is for the n-gluon MHV amplitude?

Among the wish-list items the MHV tree formula fails only in manifesting the full

Sn symmetry. Of course it is possible that there simply does not exist any natural

more primitive formula which manifests the full symmetry. It is not obvious how one

could go about constructing such a formula, but we can draw some encouragement

and inspiration from the recent paper [210] which demonstrates how to write man-

ifestly dihedral symmetric formulas for NMHV amplitudes in Yang-Mills theory as

certain volume integrals in twistor space. Different ways of dividing the volume into

tetrahedra give rise to apparently different but equivalent formulas for NMHV am-

plitudes. The same goal can apparently also be achieved by writing the amplitude as

a certain contour integral where different choices of contour produce different look-

ing but actually equivalent formulas [211, 212]. Perhaps in gravity even the MHV

amplitude needs to be formulated in a way which is fundamentally symmetric but

which nevertheless requires choosing two of the n gravitons for special treatment.

In Yang-Mills theory the only formula we know of which manifests the full dihe-

dral symmetry for all superamplitudes is the connected prescription [213, 214, 215,

216, 217] which follows from Witten’s formulation of Yang-Mills theory as a twistor

string theory [218]. Perhaps finding fully Sn symmetric formulas for graviton su-

peramplitudes requires the construction of an appropriate twistor string theory for

supergravity, an important question in its own right which has attracted some atten-

tion [187, 219, 220, 221, 222]. An important motivation for Witten’s twistor string

theory was provided by Nair’s observation [223] that the Parke-Taylor formula (4.2.1)
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could be computed as a current algebra correlator in a WZW model. The BGK for-

mula (essentially (4.2.2)) can similarly be related to current correlators and vertex

operators in twistor space [224], but we hope that the new MHV tree formula might

provide a more appropriate starting point for this purpose and perhaps shed some

more light on a twistor-string-like description for supergravity.

Another obvious avenue for future research is to investigate whether any of the

advances made here can be usefully applied to non-MHV amplitudes. Unfortunately

we have not yet found any very nice structure in the link representation for non-MHV

graviton amplitudes. Recently in [226] it was demonstrated how to solve the on-shell

recursion for all tree-level supergraviton amplitudes, following steps very similar to

those which were used to solve the recursion for supersymmetric Yang-Mills [225].

In [226] a crucial role was played by what was called the graviton subamplitude,

which is the summand of an n-particle graviton amplitude inside a sum over (n−2)!

permutations. The decomposition of every amplitude into its subamplitudes allowed

for a very efficient application of the on-shell recursion since the same two legs could

be singled out and shifted at each step in the recursion. Unfortunately there is no

natural notion of a subamplitude for the MHV tree formula, making it very poorly

suited as a starting point for attempting to solve the on-shell recursion. In our view

the fact that the tree formula apparently can neither be easily derived from BCF,

nor usefully used as an input to BCF, suggests the possible existence of some kind

of new rules for the efficient calculation of more general gravity amplitudes.

The arrangement of supergravity amplitudes into ordered subamplitudes also proved

very useful in [227, 228] for the purpose of expressing the coefficients of one-loop su-

pergravity amplitudes in terms of one-loop Yang-Mills coefficients. It would certainly
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be very interesting to see if any of aspects of the MHV tree formula could be useful

for loop amplitudes in supergravity, if at least as input for unitarity sums [229, 230].

4.3 Finiteness of N = 8 Super Gravity

We will discuss briefly the finiteness of N = 8 supergravity in this section, following

the work of [197, 199, 200, 239]. Although a construction of an ultraviolet-finite,

point-like quantum field theory of gravity in four dimensions is unknown, it has

not been shown such a construction is impossible. It is well known that point-like

quantum gravity is non-renormalizable by power counting, due to the dimensionful

nature of Newton’s constant, GN = 1/M2
Pl. So far, the fact that no known symmetry

can fix the divergences leads to the widespread belief of a requirement for new physics

in the ultraviolet limit. String theory cures these divergences by introducing a new

length scale, related to the string tension, at which particles are no longer point-

like. Some open question arise naturally that: Whether a non-point-like theory is

actually necessary for perturbative finiteness? Could a point-like theory of quantum

gravity with enough symmetry have an ultraviolet-finite perturbative expansion?

Are there any imaginable point-like completions for N = 8 supergravity? Maybe

the only completion is string theory; or maybe this cannot happen because of the

impossibility of decoupling non-perturbative string states not present in N = 8

supergravity.

There are many other proposals for making sense of quantum gravity with point-like

particles. For example, the asymptotic safety program proposes that the Einstein

action for gravity flows in the ultraviolet to a nontrivial, Lorentz-invariant fixed
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point. It has also been suggested by Horava that the ultraviolet theory could break

Lorentz invariance.

The on-shell ultraviolet divergences of N = 8 supergravity, i.e. those which cannot

be removed by field redefinitions, can be probed by studying the ultraviolet behavior

of multi-loop on-shell amplitudes for graviton scattering. Such scattering amplitudes

would be very difficult to compute in a conventional framework using Feynman di-

agrams. However, tree amplitudes in gravity can be expressed in terms of tree

amplitudes in gauge theory, by making use of the KLT and BCJ relations [240, 241].

Loop amplitudes can be constructed efficiently from tree amplitudes via generalized

unitarity, particularly in theories with maximal supersymmetry. Using these meth-

ods, the four-graviton amplitude in N = 8 supergravity has been computed at up

to four loops.

In every explicit computation to date, through four loops as mentioned above, the

ultraviolet behavior of N = 8 supergravity has proven to be no worse than that

of N = 4 super-Yang-Mills theory. On the other hand, there are several recent

arguments in favor of the existence of a seven-loop counterterm of the form D8R4

that leads to divergences. This makes the study of finiteness of N = 8 supergravity

is still quite open and interesting with the need of further investigation.

As a reminder, even suppose that N = 8 supergravity turns out to be finite to all

orders in perturbation theory, this result still would not prove that it is a consistent

theory of quantum gravity at the non-perturbative level. There are at least two

reasons to think that it might need a non-perturbative ultraviolet completion [239]:

1. The (likely) L! or worse growth of the coefficients of the order L terms in
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the perturbative expansion, which for fixed-angle scattering, would imply a

non-convergent behavior ∼ L! (s/M2
Pl)

L.

2. The fact that the perturbative series seems to be E7(7) invariant, while the

mass spectrum of black holes is non-invariant.



Chapter 5

Conclusion

In this dissertation, we have studied the scattering amplitudes, especially their sym-

metries and dualities, in the planar limit of N = 4 super Yang-Mills and N = 8

supergravity theories.

Firstly, we study the dual superconformal symmetry in N = 4 SYM. We have classi-

fied all four-point dual conformal Feynman diagrams through four loops. In addition

to the previously known (1, 1, 2, 8) integrals that contribute to the dimensionally-

regulated on-shell amplitude respectively at (1, 2, 3, 4) loops, we find (0, 0, 2, 9) new

dual conformal integrals that vanish on-shell in D = 4−2ǫ but not off-shell in D = 4.

There are also (0, 0, 0, 11) dual conformal diagrams that diverge in four dimensions

even when taken off-shell and therefore do not give rise to true dual conformal in-

tegrals. We then addressed the problem of evaluating new off-shell integrals in four

dimensions. Of the total number (1, 1, 4, 17) of such integrals, explicit results for

155
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(1, 1, 2, 5) have appeared previously in [245, 264]. We find Mellin-Barnes representa-

tions for an additional (0, 0, 2, 8) integrals, including two pairs related by new "magic

identities", and evaluate their infrared singularity structure explicitly. Evaluation of

the remaining (0, 0, 0, 4) integrals I(4)f , I(4)f ′
, I(4)e2′

, and I(4)c′
is left for future work.

Secondly, we investigate the Wilson loops in N = 4 SYM at both strong and weak

coupling, and their duality to MHV gluon scattering amplitudes. To our pleasant

surprise we find that at two loops: the agreement between the n = 4 and the parity-

even part of the n = 5 amplitude and the corresponding Wilson loop continues to

hold at O(ǫ) up to an additive constant which can be absorbed into various struc-

ture functions. Let us emphasize that this is a rather striking result which cannot

reasonably be called a coincidence: at this order in ǫ the amplitudes and Wilson

loops we compute depend on all of the kinematic variables in a highly nontrivial

way, involving polylogarithmic functions of degree 5. It would be very interesting to

continue exploring this miraculous agreement and to understand the reason behind

it. Dual conformal invariance cannot help in this regard since the symmetry is ex-

plicitly broken in dimensional regularization so it cannot say anything about terms

of higher order in ǫ, but of course as mentioned above already at O(ǫ0) there must

be some mechanism beyond dual conformal invariance at work.

Finally, we study the graviton scattering amplitudes in N = 8 supergravity. We

present and prove a formula for the MHV scattering amplitude of n gravitons at

tree level. Some of the more interesting features of the formula, which set it apart as

being significantly different from many more familiar formulas, include the absence

of any vestigial reference to a cyclic ordering of the gravitons—making it in a sense

a truly gravitational formula, rather than a recycled Yang-Mills result, and the fact
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that it simultaneously manifests both Sn−2 symmetry as well as large-z behavior that

is O(1/z2) term-by-term, without relying on delicate cancellations. The formula is

seemingly related to others by an enormous simplification provided by O(nn) iterated

Schouten identities, but our proof relies on a complex analysis argument rather than

such a brute force manipulation. We also find that the formula has a very simple link

representation in twistor space, where cancellations that are non-obvious in physical

space become manifest.



Appendix A

Conventions

We use the two-component spinor formalism as follows.

The dotted and undotted spinor indices are raised and lowered as follows:

ψα = ǫαβψβ , χ̄α̇ = ǫα̇β̇χ̄β̇ ; (A.0.1)

ψα = ǫαβψ
β , χ̄α̇ = ǫα̇β̇χ̄

β̇ (A.0.2)

where the antisymmetric ǫ symbols have the properties:

ǫ12 = ǫ1̇2̇ = −ǫ12 = −ǫ1̇2̇ = 1 , ǫαβǫ
βγ = δγα , ǫα̇β̇ǫ

β̇γ̇ = δγ̇α̇ (A.0.3)

The convention for the contraction of a pair of spinor indices is

ψαλα ≡ 〈ψλ〉 , χ̄α̇ρ̄
α̇ ≡ [χ̄ρ̄] (A.0.4)
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Two-component spinors satisfy the cyclic identity

〈ψλ〉χα + 〈λχ〉ψα + 〈χψ〉λα = 0 (A.0.5)

which simply means that the antisymmetrization over three two-component indices

vanishes identically.

The sigma matrices σµ are defined as follows:

(σµ)αα̇ = (1, ~σ)αα̇ , (σ̃µ)α̇α = ǫα̇β̇ǫαβ(σµ)ββ̇ = (1,−~σ)α̇α (A.0.6)

and have the basic properties:

σµσ̃ν = ηµν − iσµν , σ̃µσν = ηµν − iσ̃µν ,

(σµ)αα̇(σ̃µ)β̇β = 2δβαδ
β̇
α̇ , (σµ)αα̇(σ̃ν)α̇α = 2δνµ , (A.0.7)

σµν = −σνµ , σ̃µν = −σ̃νµ , (σµν)α
α = (σ̃µν)α̇

α̇ = 0

A four-vector xµ can be written as a two-component bispinor:

xαα̇ = xµ(σµ)αα̇ , xα̇α = xµσ̃α̇αµ , xµ =
1

2
xα̇ασµαα̇ (A.0.8)

x2 = xµxµ =
1

2
xα̇αxαα̇ , xαα̇ x

α̇β = x2δβα , xα̇α xαβ̇ = x2δα̇β̇ (A.0.9)

(x−1)αα̇ =
xαα̇
x2

, (x−1)αα̇x
α̇β = δβα , xα̇α(x−1)αβ̇ = δα̇β̇ (A.0.10)
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Some short-hand notations:

〈p|xmnxkl|q〉 = λαp (xmn)αα̇(xkl)
α̇βλq β = −〈q|xklxmn|p〉

〈pxmn|q] = λαp (xmn)αα̇λ̃
α̇
q , etc. (A.0.11)



Appendix B

Conventional and Dual

Superconformal Generators

In this appendix we review the conventional and dual representations of the super-

conformal algebra [127]. We also list here the commutation relations of the algebra

U(2, 2|4) which would be useful to work with.

The Lorentz generators Mαβ, Mα̇β̇ and the SU(4) generators RA
B act canonically

on the remaining generators carrying Lorentz or SU(4) indices. The dilatation D

and hypercharge B act via

[D, J] = dim(J), [B, J] = hyp(J). (B.0.1)
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The non-zero dimensions and hypercharges of the various generators are

dim(P) = 1, dim(Q) = dim(Q) = 1
2
, dim(S) = dim(S) = −1

2

dim(K) = −1, hyp(Q) = hyp(S) = 1
2
, hyp(Q) = hyp(S) = −1

2
. (B.0.2)

The remaining non-trivial commutation relations are,

{QαA,Q
B

α̇ } = δBAPαα̇, {SαA, SBα̇ } = δBAKαα̇,

[Pαα̇, S
A
β ] = ǫα̇β̇Q

A

α̇ , [Kαα̇,QβA] = ǫαβS
A

α̇ ,

[Pαα̇, Sβ̇A] = ǫα̇β̇QαA, [Kαα̇,Qβ̇A] = ǫα̇β̇SαA,

[Kαα̇,P
ββ̇] = δβαδ

β̇
α̇D + Mα

βδβ̇α̇ + Mα̇
β̇δβα,

{QαA, S
B
β } = ǫαβR

B
A + Mαβδ

B
A + ǫαβδ

B
A(D + C),

{QA

α̇ , Sβ̇B} = ǫα̇β̇R
A
B + Mα̇β̇δ

A
B + ǫα̇β̇δ

A
B(D − C). (B.0.3)

For convenience, we will use the following shorthand notation:

∂iαα̇ =
∂

∂xαα̇i
, ∂iαA =

∂

∂θαAi
, ∂iα =

∂

∂λαi
, ∂iα̇ =

∂

∂λ̄α̇i
, ∂iA =

∂

∂ηAi
.

(B.0.4)

Now we will give the generators of the conventional superconformal symmetry, using
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lower case characters:

pαα̇ =
∑
i λ

α
i λ̄

α̇
i , kαα̇ =

∑
i ∂iα∂iα̇,

mα̇β̇ =
∑
i λ̄i(α̇∂iβ̇), mαβ =

∑
i λi(α∂iβ),

d =
∑
i[

1
2
λαi ∂iα + 1

2
λ̄α̇i ∂iα̇ + 2], rAB =

∑
i[η

A
i ∂iB − 1

4
ηCi ∂iC ],

qαA =
∑
i λ

α
i η

A
i , q̄α̇A =

∑
i λ̄

α̇
i ∂iA,

sαA =
∑
i ∂iα∂iA, s̄Aα̇ =

∑
i η

A
i ∂iα̇.

c =
∑

i

[1 + 1
2
λαi ∂iα − 1

2
λ̃α̇i ∂iα̇ − 1

2
ηAi ∂iA] . (B.0.5)

We can construct the generators of dual superconformal transformations by starting

with the standard chiral representation and extending the generators so that they

commute with the constraints,

(xi − xi+1)αα̇ − λi α λ̃i α̇ = 0, (θi − θi+1)Aα − λiαη
A
i = 0. (B.0.6)

By construction they preserve the surface defined by these constraints, which is

where the amplitude has support.
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The generators of dual superconformal symmetry are:

Pαα̇ =
∑

i

∂iαα̇, (B.0.7)

QαA =
∑

i

∂iαA, (B.0.8)

Q
A
α̇ =

∑

i

[θαAi ∂iαα̇ + ηAi ∂iα̇], (B.0.9)

Mαβ =
∑

i

[xi(α
α̇∂iβ)α̇ + θAi(α∂iβ)A + λi(α∂iβ)], (B.0.10)

M α̇β̇ =
∑

i

[xi(α̇
α∂iβ̇)α + λ̄i(α̇∂iβ̇)], (B.0.11)

RA
B =

∑

i

[θαAi ∂iαB + ηAi ∂iB − 1
4
δABθ

αC
i ∂iαC − 1

4
ηCi ∂iC ], (B.0.12)

D =
∑

i

[xαα̇i ∂iαα̇ + 1
2
θαAi ∂iαA + 1

2
λαi ∂iα + 1

2
λ̄α̇i ∂iα̇], (B.0.13)

C =
∑

i

1
2
[λαi ∂iα − λ̄α̇i ∂iα̇ − ηAi ∂iA], (B.0.14)

SAα =
∑

i

[θBiαθ
βA
i ∂iβB − xiα

β̇θβAi ∂ββ̇ − λiαθ
γA
i ∂iγ − xi+1α

β̇ηAi ∂iβ̇ + θBi+1αη
A
i ∂iB],

(B.0.15)

Sα̇A =
∑

i

[xiα̇
β∂iβA + λ̄iα̇∂iA], (B.0.16)

Kαα̇ =
∑

i

[xiα
β̇xiα̇

β∂iββ̇ + xiα̇
βθBiα∂iβB + xiα̇

βλiα∂iβ + xi+1α
β̇λ̄iα̇∂iβ̇ + λ̄iα̇θ

B
i+1α∂iB],

(B.0.17)

and the hypercharge B,

B =
∑

i

1
2
[θαAi ∂iαA + λαi ∂iα − λ̄α̇i ∂iα̇] (B.0.18)

If we restrict the dual generators Q̄, S̄ to the on-shell superspace they become iden-

tical to the conventional generators s̄, q̄.



Appendix C

Details of One-Loop Calculation of

Wilson Loops

In this appendix, we derive a new expression for the all-orders in ǫ one-loop finite

Wilson loop diagrams, and hence also a new expression for the all orders in ǫ (finite

part of the) 2me box function. We also improve a previous expression for use in all

kinematical regimes.

A general one-loop Wilson loop diagram is given by the following integral

Q

p

q

P := Γ(1 + ǫ)eǫγ × Fǫ(s, t, P
2, Q2)

= Γ(1 + ǫ)eǫγ × ∫ 1
0 dτ

∫ 1
0 dσ

u/2

{−[P 2+σ(s−P 2)+τ(t−Q2+στu)]−iε}1+ǫ .

(C.0.1)

Here we have defined s = (p + P )2, t = (p + Q)2 and u = P 2 + Q2 − s − t. The

relation between this Wilson loop diagram and the corresponding 2me box function
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is [130]

finite part of




Q

P

p

q


 = eǫγ

Γ(1 + ǫ)Γ2(1 − ǫ)

Γ(1 − 2ǫ)
× Fǫ(s, t, P

2, Q2) . (C.0.2)

Notice that we have included an infinitesimal negative imaginary part −iε in the

denominator which dictates the analytic properties of the integral. This has the

opposite sign to the one expected from a propagator term in a Wilson loop in

configuration space. On the other hand it has the correct sign for the present

application, namely for the duality with amplitudes [162]. One simple way to deal

with this is simply to add an identical positive imaginary part to all kinematical

invariants

s → s+ iε, t → t+ iε, P 2 → P 2 + iε, Q2 → Q2 + iε . (C.0.3)

We will assume this in the following.

Changing variables to σ′ = σ−(P 2 −t)/u and τ ′ = τ−(P 2 −s)/u and then dropping

the primes, this becomes

Fǫ(s, t, P
2, Q2) =

∫ Q2−s

u

t−P 2

u

dσ
∫ Q2−t

u

s−P 2

u

dτ
u/2

[−(a−1 + στu)]1+ǫ (C.0.4)

= − 1

2ǫ

∫ Q2−s
u

t−P 2

u

dσ

σ

1

[−(a−1 + στu)]ǫ

∣∣∣∣∣

τ=(Q2−t)/u

τ=(s−P 2)/u

, (C.0.5)

where a = u/(P 2Q2−st). Note that the analytic continuation of a implied by (C.0.3)
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is a → a− iε. Now we split the integration into two parts,

∫ Q2−s
u

t−P 2

u

= −
∫ t−P 2

u

0
+
∫ Q2−s

u

0
, (C.0.6)

and rescale the integration variable so that it runs between 0 and 1 in each case. It

is important to split the integral in this way since there is a singularity at σ = 0

which one must be very careful when integrating over. We obtain in this way

Fǫ(s, t, P
2, Q2) =

(−a)ǫ

2ǫ

∫ 1

0

dσ

σ

{
1

[1 − (1 − aP 2)σ]ǫ
+

1

[1 − (1 − aQ2)σ]ǫ

− 1

[1 − (1 − as)σ]ǫ
− 1

[1 − (1 − at)σ]ǫ

}
, (C.0.7)

where a = u/(P 2Q2 − st). Now each of the four terms by itself is divergent (even

for ǫ 6= 0), only the sum gives a finite integral. A straightforward way of regulating

each term individually is to simply subtract 1/σ from each term in the integrand,

thus removing the divergence at σ = 0. We thus have

Fǫ(s, t, P
2, Q2) =

(−a)ǫ

2

[
f(1−aP 2)+f(1−aQ2)−f(1−as)−f(1−at)

]
, (C.0.8)

where

f(x) =
1

ǫ

∫ 1

0
dσ

(1 − xσ)−ǫ − 1

σ
=

1

ǫ

∫ x

0
dσ

(1 − σ)−ǫ − 1

σ
. (C.0.9)

The problem becomes that of finding the integral f(x). It has two equivalent forms,
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both given in terms of hypergeometric functions. The first form is given by

f(x) = x× 3F2(1, 1, 1 + ǫ; 2, 2; x) =
∞∑

n=1

ǫnS1n+1(x) . (C.0.10)

Notice the very simple expansion in terms of Nielsen polylogarithms. The second

form is

f(x) = − 1

ǫ2

[
(−x)−ǫ

2F1(ǫ, ǫ; 1 + ǫ; 1/x) + ǫ log x
]

+ constant , (C.0.11)

where the constant is there to make f(0) = 0, and is not important since it will

cancel in Fǫ.

We thus arrive at two different forms for the Wilson loop diagram. The first form is

Fǫ(s, t, P
2, Q2)

=
(−a)ǫ

2

[
(1 − aP 2)3F2(1, 1, 1 + ǫ; 2, 2; 1 − aP 2) + (1 − aQ2)3F2(1, 1, 1 + ǫ; 2, 2; 1 − aQ2)

− (1 − as)3F2(1, 1, 1 + ǫ; 2, 2; 1 − as) − (1 − at)3F2(1, 1, 1 + ǫ; 2, 2; 1 − at)
]
,

(C.0.12)

and it is manifestly finite. Furthermore, since 3F2(1, 1, 1 + ǫ; 2, 2; x) = Li2(x)/x,

this form directly leads to the expression derived in [163? ] for the finite 2me box

function,

Fǫ=0(s, t, P
2, Q2) =

1

2

[
Li2(1 − aP 2) + Li2(1 − aQ2) − Li2(1 − as) − Li2(1 − at)

]
.

(C.0.13)

We also notice that the simple expansion of (C.0.10) gives a correspondingly simple
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expansion for the Wilson loop diagram in terms of Nielsen polylogarithms.

The more familiar looking second form for the two-mass easy box function is (see

(A.13) of [? ])

Fǫ(s, t, P
2, Q2) = − 1

2ǫ2
×

[ (
a

1 − aP 2

)ǫ
2F1(ǫ, ǫ; 1 + ǫ; 1/(1 − aP 2)) +

(
a

1 − aQ2

)ǫ
2F1(ǫ, ǫ; 1 + ǫ; 1/(1 − aQ2))

−
(

a

1 − as

)ǫ
2F1(ǫ, ǫ; 1 + ǫ; 1/(1 − as)) −

(
a

1 − at

)ǫ
2F1(ǫ, ǫ; 1 + ǫ; 1/(1 − at))

+ ǫ(−a)ǫ
(

log(1 − aP 2) + log(1 − aQ2) − log(1 − as) − log(1 − at)
)]

.

(C.0.14)

This second form was derived in [130? ] except for the last line which is an additional

correction term needed to obtain the correct analytic continuation in all regimes.

The identity

(1 − aP 2)(1 − aQ2)

(1 − as)(1 − at)
= 1 , (C.0.15)

implies that if all the arguments of the logs are positive then this additional term

vanishes, but for example if we have 1−aP 2, 1−aQ2 > 0 and 1−as, 1−at < 0 then the

additional term gives (taking care of the appropriate analytic continuation in (C.0.3))

sgn(a)2πi(−a)ǫ/ǫ. This becomes important when considering this expression at four

and five points in the Euclidean regime.

For applications in this chapter we are interested in taking either one massive leg

massless (for the five-point case) or both massive legs massless (for the four-point

case). Using the first expression for the finite Wilson loop diagram in terms of 3F2
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functions and using that 3F2(1, 1, 1 + ǫ; 2, 2; 1) = −ψ(1−ǫ)−γ
ǫ

= −H−ǫ

ǫ
(where ψ(x) is

the digamma function, γ is Euler’s constant and Hn is the harmonic number of n),

we obtain the four- and five-point one-loop Wilson loop expressions of (3.2.23) and

(3.2.24).

For completeness we also consider the limit with P 2 = Q2 = 0 using the second

expression for the finite diagram (C.0.14), since this and similar expressions have

been used throughout appendix A. When P 2 = Q2 = 0, we have a = 1/s + 1/t,

1 − as = −s/t and 1 − at = −t/s and using

2F1(ǫ, ǫ; 1 + ǫ; 1) = ǫπ csc(ǫπ) , (C.0.16)

we get

Fǫ(s, t, 0, 0) = − 1

2ǫ2
×

[
−
(
u

st

)ǫ ( t
s

)ǫ
2F1(ǫ, ǫ; 1 + ǫ; −t/s) −

(
u

st

)ǫ (s
t

)ǫ
2F1(ǫ, ǫ; 1 + ǫ; −s/t)

+ 2(a)ǫǫπ csc(ǫπ) + ǫ(−a)ǫ
(

− log(1 − as) − log(1 − at)
)]

. (C.0.17)

We wish to know this in the Euclidean regime in which s, t, a < 0. The first line is

then manifestly real, whereas the second gives

2πǫ(−a)ǫe−iǫπ csc(ǫπ) + 2πǫi(−a)ǫ = 2πǫ(−a)ǫ cot(ǫπ) . (C.0.18)

This is the form we will use for the one-loop Wilson loop.



Appendix D

Details of the Two-Loop

Four-Point Wilson Loop to All

Orders in ǫ

In this appendix, we present the results for the separate classes of Wilson loop

diagrams contributing to a four-point loop. In all cases (with the exception of the

"hard" diagram) our results are valid to all orders in the dimensional regularization

parameter ǫ. These expressions are given in terms of hypergeometric functions. We

also expand these up to O(ǫ) with the help of the mathematica packages HPL and

HypExp [160, 161].
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Figure D.1: The two-loop cusp corrections. The second diagram appears with its
mirror image where two of the gluon legs of the three-point vertex are attached to
the other edge; these two diagrams are equal. The blue bubble in the third diagram
represents the gluon self-energy correction calculated in dimensional reduction.

D.1 Two-loop Cusp Diagrams

The total contributions of all diagrams that cross a single cusp (the crossed diagram

across a cusp, the self-energy diagram across the cusp and the vertex across the

cusp, as depicted in Figure D.1) is easily seen to be1

(−s)−2ǫ 1

16ǫ4

[
Γ(1 + 2ǫ)Γ(1 − ǫ)

Γ(1 + ǫ)
− 1

]
. (D.1.1)

Adding the contributions for the four cusps, we obtain

Wcusp =
[
(−s)−2ǫ + (−t)−2ǫ

]
1

8ǫ4

[
Γ(1 + 2ǫ)Γ(1 − ǫ)

Γ(1 + ǫ)
− 1

]
(D.1.2)

=
[
(−s)−2ǫ + (−t)−2ǫ

]

×
[

1

ǫ2
π2

24
− 1

ǫ

ζ3

4
+
π4

80
− ǫ

12

(
π2ζ3 + 9ζ5

)
+ O(ǫ2)

]
. (D.1.3)

1In this and the following formulae, a factor of C is suppressed in each diagram, where C is
defined in (3.2.36).
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p2

p3

p4

p1

Figure D.2: One of the four curtain diagrams. The remaining three are obtained by
cyclic permutations of the momenta.

D.2 The Curtain Diagram

The contribution of all four curtain diagrams is

Wcurtain = (st)−ǫ
(

− 1

2ǫ4

) [
1 − Γ(1 − ǫ)2

Γ(1 − 2ǫ)

]
(D.2.1)

=
[
(−s)−2ǫ + (−t)−2ǫ

] [
− 1

ǫ2
π2

24
− 1

ǫ

ζ3

2
− π4

160
+
π2

48
log2 x

− ǫ
(

− 1

4
ζ3 log2 x+

3

2
ζ5 − π2

12
ζ3

)
+ O(ǫ2)

]
.

D.3 The Factorized Cross Diagram

The factorized cross diagram is given by the product of two finite one-loop Wilson

loop diagrams, expressed each by (3.2.23)

1

2ǫ2

(
st

u

)−ǫ [
x−ǫ

2F1(ǫ, ǫ, 1 + ǫ,−1/x) + xǫ2F1(ǫ, ǫ, 1 + ǫ,−x) − 2πǫ cot(ǫπ)
]
.
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p3

p1

p4p2

Figure D.3: One of the four factorized cross diagram.

The result for the factorized cross is therefore

− 1

8ǫ4

(
st

u

)−2ǫ
[

2F1(ǫ, ǫ; 1 + ǫ; −x)xǫ + 2F1

(
ǫ, ǫ; 1 + ǫ; −1

x

)
x−ǫ − 2πǫ cot(ǫπ)

]2

=
[
(−s)−2ǫ + (−t)−2ǫ

]
×
(
g0 + g−1ǫ+ O(ǫ2)

)
, (D.3.1)

with

g0 = − 1

64

(
log2 x+ π2

)2
, (D.3.2)

g−1 =
1

192

(
log2 x+ π2

)[
log3 x − 6 log(x+ 1) log2 x− 12Li2(−x) log x ,

+ 3π2 log x− 6π2 log(x+ 1) + 12 Li3(−x) − 12ζ3

]
. (D.3.3)
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p1 p1

p3

p2

p3

p4p4 p2

k3 k4

k2 k1 k2

k3 k4

k1

Figure D.4: The Y diagram together with the self-energy diagram. The sum of these
two topologies gives a maximally transcendental contribution.

D.4 The Y Diagram

The diagrams in Figure D.4 correspond to the following contribution to the two-loop

Wilson loop:

WY = − 1

16ǫ

Γ(1 + 2ǫ)

Γ(1 + ǫ)2
u (D.4.1)

×
∫ 1

0
dτ1

∫ 1

0
dτ2

[
2I(z1(τ1), z2(τ2), z2(τ2)) − I(z1(τ1), z2(τ2), k1) − I(z1(τ1), z2(τ2), k2)

]
,

where z1(τ1) = k3 − p3τ1, z2(τ2) = k1 − p1τ2, and

I(z1, z2, z3) =
∫ 1

0
dσ(σ(1 − σ))ǫ

[
− (−z1 + σz2 + (1 − σ)z3)2 + i0

]−1−2ǫ

, (D.4.2)
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where z2, z3 must be light-like. The evaluation of (D.4.1) gives

WY =
(
st

u

)−2ǫ 1

64ǫ4

[
− 2(x+ 1)−2ǫΓ(1 + 2ǫ)Γ(−ǫ+ 1)

Γ(1 + ǫ)

+ 4xǫ
Γ(−ǫ+ 1)2

Γ(−2ǫ+ 1)
2F1(ǫ, 1 + 2ǫ; 1 + ǫ; −x) + x2ǫ

2F1 (2ǫ, 2ǫ; 1 + 2ǫ; −x)

− 4πǫ cot(2πǫ) + Γ(1 + 2ǫ)Γ(−2ǫ+ 1) + x ↔ 1

x

]

We multiply by four to obtain the contribution of all such diagrams. Then the

expansion of this contribution in ǫ begins at O(ǫ−1),

[
(−s)−2ǫ + (−t)−2ǫ

]
×
[
c1

ǫ
+ c0 + c−1ǫ+ O(ǫ2)

]
, (D.4.3)

where

c1 = − 1

48

[
log3 x− 6 log(x+ 1) log2 x− 12Li2(−x) log x+ 3π2 log x)

− 6π2 log(x+ 1 + 12Li3(−x) − 12ζ3

]
, (D.4.4)

c0 =
1

960

[
5 log4 x− 40 log(x+ 1) log3 x+ 120 log2(x+ 1) log2 x+ 10π2 log2 x

− 120π2 log(x+ 1) log x+ 480 log(x+ 1)Li2(−x) log x− 240 Li3(−x) log x

+ 480S1,2(−x) log x− 240ζ3 log x+ 120π2 log2(x+ 1) − 480 log(x+ 1)Li3(−x)

+ 480Li4(−x) − 480S2,2(−x) + 480 log(x+ 1)ζ3 + π4
]
, (D.4.5)
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c−1 =
1

240

[
− 2 log5 x+ 10 log(x+ 1) log4 x+ 10 log2(x+ 1) log3 x+ 20Li2(−x) log3 x

− 5π2 log3 x− 20 log3(x+ 1) log2 x− 30ζ3 log2 x+ 30π2 log2(x+ 1) log x

− 120 log2(x+ 1)Li2(−x) log x+ 120 log(x+ 1)Li3(−x) log x− 120Li4(−x) log x

+ 120S2,2(−x) log(x) − 240 log(x+ 1)S1,2(−x) log x− 240S1,3(−x) log x

+ 120 log(x+ 1)ζ3 log x+ 4π4 log x− 20π2 log3(x+ 1)

− 8π4 log(x+ 1) + 120 log2(x+ 1)Li3(−x)

− 40Li2(−x)Li3(−x) − 240 log(x+ 1)Li4(−x) + 240Li5(−x) + 240 log(x+ 1)S2,2(−x)

+ 40H2,3(−x) + 120H3,2(−x) + 40Li2(−x)S1,2(−x) − 40H2,1,2(−x)

− 120H2,2,1(−x) − 240ζ5 − 120 log2(x+ 1)ζ3 − 30π2ζ3

]
. (D.4.6)

D.5 The Half-Curtain Diagram

We now consider the “half-curtain" diagram, whose contribution to the Wilson loop

p2

p1 k1

p4

k4p3k3

k2

Figure D.5: Diagram of the half-curtain topology.
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is

Whc(x) = − 1

8

∫ 1

0
dσ dρ dτ1

∫ 1

τ1

dτ2
s

(−sστ2)1+ǫ

u

(−sτ1 − tρ− uρτ1)1+ǫ

=
1

8

(
st

u

)−2ǫ

(1 + x)−ǫ
∫ 1

0
dσ
∫ −1/x

1
da
∫ −x

1
db
∫ 1

1−b
1+x

dτ2
1

(στ2)1+ǫ

1

(1 − ab)1+ǫ
,

(D.5.1)

where we have changed variables in the second line to a = 1+uρ/s, and b = 1+uτ1/t.

The evaluation of this diagram and of that with s ↔ t leads to

Whc(x) + Whc(1/x) =
1

8ǫ4

(
st

u

)−2ǫ

×
[
2πǫ cot(2πǫ) − 1

2
x−2ǫ

2F1(2ǫ, 2ǫ; 1 + 2ǫ; −1/x)

− 1

2
x2ǫ

2F1(2ǫ, 2ǫ; 1 + 2ǫ; −x)

+
[
(1 + x)−ǫ + (1 + 1/x)−ǫ

](
x−ǫ

2F1(ǫ, ǫ; 1 + ǫ; −1/x)

+ xǫ 2F1(ǫ, ǫ; 1 + ǫ; −x) − 2πǫ cot(πǫ)
)]

. (D.5.2)

This can be expanded in ǫ using

2F1(ǫ, ǫ; 1 + ǫ; x) = 1 + ǫ2Li2(x) − ǫ3
[
Li3(x) − S12(x)

]

+ ǫ4
[
Li4(x) − S22(x) + S13(x)

]
+ O(ǫ6) , (D.5.3)

The contribution of all diagrams of the half-curtain type is obtained by multiplying

(D.5.2) by a factor of four. One obtains thus

[
(−s)−2ǫ + (−t)−2ǫ

]
×

[
d1

ǫ
+ d0 + d−1ǫ+ O(ǫ2)

]
, (D.5.4)
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where

d1 = 2c1 , (D.5.5)

d0 = −3c0 − 1

64

(
3π2 − log2 x

) (
log2 x+ π2

)
, (D.5.6)

d−1 =
7

2
c−1 (D.5.7)

− 1

96

[
− log5(x) + 6 log(x+ 1) log4 x+ 12Li2(−x) log3(x) − 3π2 log3 x

+ 6π2 log(x+ 1) log2 x− 12Li3(−x) log2 x− 30ζ3 log2 x− 42π2ζ3

]
,

and cj are the coefficients for the Y diagram, given in (D.4.4)–(D.4.6).

D.6 The Cross Diagram

p2

p3

p4

p1

Figure D.6: One of the cross diagrams. As before, the remaining three can be gen-
erated by cyclic permutations of the momentum labels.
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We now consider the cross diagram, whose expression is given by

Wcr(x) = − 1

8

∫ 1

0
dτ1 dσ1

∫ τ1

0
dτ2

∫ σ1

0
τ2

u

(−sσ1 − tτ2 − uσ1τ2)1+ǫ

u

(−sσ2 − tτ1 − uσ2τ1)1+ǫ

= − 1

8

(
st

u

)−2ǫ ∫ 1

−1/x
da1

∫ 1

−x
db1

∫ a1

1
da2

∫ b1

1
db2

1

(1 − a1b2)1+ǫ

1

(1 − a2b1)1+ǫ
,

(D.6.1)

for which we find

Wcr(x) = − 1

8ǫ4

(
st

u

)−2ǫ

{
− 1

4
3F2(2ǫ, 2ǫ, 2ǫ; 1 + 2ǫ, 1 + 2ǫ; −x)x2ǫ

+
Γ(−ǫ+ 1)2

3F2(2ǫ, ǫ, ǫ; 1 + ǫ, 1 + ǫ; −x)xǫ

Γ(−2ǫ+ 1)

+
1

4

[

2F1(ǫ, ǫ; 1 + ǫ; −x)xǫ + 2F1

(
ǫ, ǫ; 1 + ǫ; −1

x

)
x−ǫ

− 2πǫ cot(ǫπ)

]2

− ǫ2π cot(2πǫ) (ψ(2ǫ) + γ) − π2ǫ2 cot(πǫ)2

+
(
x ↔ 1

x

)}
. (D.6.2)

Notice the presence of the one-loop finite diagram squared. Expanding this and

multiplying by a factor of two to account for all diagrams leads to the following

result,

Wcr(x) =
[
(−s)−2ǫ + (−t)−2ǫ

]
×

[
f0 + f−1ǫ+ O(ǫ2)

]
, (D.6.3)
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where

f0 = − 1

192
(π2 + log2 x)2 , (D.6.4)

f−1 = − 1

2880

[
− 3 log5 x+ 30 log(x+ 1) log4 x+ 180Li2(−x) log3 x

− 20π2 log3 x+ 60π2 log(x+ 1) log2 x− 900Li3(−x) log2 x− 540 ζ3 log2 x

+ 180π2Li2(−x) log x+ 2880Li4(−x) log x

− 49π4 log x+ 30π4 log(x+ 1) − 420π2Li3(−x) − 4320 Li5(−x)

+ 4320ζ5 − 1020 π2ζ3

]
. (D.6.5)

D.7 The Hard Diagram

The generic n-point hard diagram topology is depicted in Figure 3.4. In the four-

point case, one diagram is obtained from Figure 3.4 by simply setting Q2 = Q3 = 0,

and Q1 = p4. There are four such diagrams, obtained by cyclic rearrangements of

the momenta. We have evaluated the hard diagrams using Mellin-Barnes, arriving

at the following result:

Whard =
[
(−s)−2ǫ + (−t)−2ǫ

]
×

[
h2

ǫ2
+
h1

ǫ
+ h0 + h−1ǫ+ O(ǫ2)

]
, (D.7.1)
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where

h2 =
π2

48
, (D.7.2)

h1 = −
(
c1 +

ζ3

8

)
, (D.7.3)

h0 =−2c0 − 1

192

(
log2 x+ π2

)2 − 1

48
π2
(
log2 x+ π2

)
+

31

1440
π4 (D.7.4)

h−1 = − 1

480

[
200H2,3(−x) + 600H3,2(−x) − 200H2,1,2(−x) − 600H2,2,1(−x)

+ 200ζ3Li2(−x) − 200Li2(−x)Li3(−x) − 200Li2(−x)Li3(x+ 1) + 1320Li5(−x)

+ 20Li2(−x) log3(x) + 60Li3(−x) log2(x) − 600Li2(−x) log2(x+ 1) log x

− 600Li2(x+ 1) log2(x+ 1) log x+ 100Li2(−x) log(−x) log2(x+ 1)

+ 600Li3(−x) log2(x+ 1) + 20π2Li2(−x) log(x) + 600Li3(−x) log(x+ 1) log(x)

− 600Li4(−x) log(x) + 1200Li4(x+ 1) log x+ 200Li2(−x)Li2(x+ 1) log(x+ 1)

− 1200Li4(−x) log(x+ 1) + 600S2,2(−x) log x+ 1200S2,2(−x) log(x+ 1)

− 240ζ3 log2 x− 600ζ3 log2(x+ 1) − 600ζ3 log(x+ 1) log x− 2 log5 x

+ 5 log(x+ 1) log4 x− 400 log(−x) log3(x+ 1) log x− 100π2 log3(x+ 1)

− 40π2 log(x+ 1) log2 x+ 150π2 log2(x+ 1) logx+ 50 log2(x+ 1) log3 x

− 100 log3(x+ 1) log2 x+ 7π4 log x− 35π4 log(x+ 1) − 1020ζ5 − 320π2ζ3

]
.

(D.7.5)

The analytical evaluation of this diagram up to O(ǫ0) was obtained in [? ]. Our

evaluation of the O(ǫ0) terms agrees precisely with that of [152] (and with [? ]

up to a constant term). The evaluation of the O(ǫ) term is new and has been
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performed numerically. We have then compared the entire Wilson loop expansion

to the analytic expression for the amplitude remainder given in (3.2.29), finding the

relation (3.2.26).
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