Systematics for the cross-sections of the (n,p), (n,α) and (n,2n) reactions at 14.5 MeV

Namrata Singh¹,* A. Gandhi¹, Aman Sharma¹, Mahesh Choudhary¹, Mahima Upadhyay¹, Sarjeeta Gami¹, Punit Dubey¹, K. Katovsky² and A. Kumar^{1†}

¹Department of Physics, Banaras Hindu University, Varanasi-221005, INDIA

Introduction

For the calculation of (n,p), (n,α) and (n,2n)reaction cross-sections at the 14.5 MeV neutron energy, systematics have been obtained by us using the literature data available on EXFOR library [1]. The obtained formulas have been based on the statistical model, considering the odd-even effect and Q-value dependence. When data is not explicitly measured or inconsistent, in such cases, a systematic approach is used to estimate the neutron-induced reaction crosssection data more precisely [2-9]. Neutroninduced reaction cross-section data are essential for many technical applications in nuclear physics and medical fields [10]. In the present work, semi-empirical formulas for odd-A and even-A have been obtained for the (n,p), (n,α) and (n,2n) reaction cross-sections at 14.5 MeV incident neutron energy and the target mass regions $46 \le A \le 201$, $23 \le A \le 133$ and $45 \le A$ \leq 204 respectively.

Semi-empirical formula for (n,p), (n,α) and (n,2n) reaction cross-section

The reaction cross-sections on the basis of the statistical model can be written as [11]

$$\sigma_{n,j} = \sigma_R(\Gamma_j/\Gamma_n)$$
 $(j = p, \alpha, 2n)$

where, $\sigma_R = \text{reaction}$ cross-section for incident neutrons

 $\Gamma_i = \text{decay width for p, } \alpha$, and 2n emissions

Fitting of the (n,p), (n,α) and (n,2n) reaction cross-sections systematics

For (n,p), (n,α) and (n,2n) reaction crosssections, the obtained relations are fitted using the Legendre least squares method and experimental values for the cross-sections for odd-A and even-A as input data. For both odd-A $\begin{array}{llll} \sigma_{n,p} &=& (1+A^{1/3})^2 & \alpha & exp(\beta(N-Z)/A) \\ \sigma_{n,\alpha} &=& (1+A^{1/3})^2 & \varphi & exp(\Theta(N-Z)/A) \\ \sigma_{n,2n} &=& (1+A^{1/3})^2 \; \rho \; exp(\gamma(N-Z)/A \; + \; \lambda(N-Z)^2/A^2) \\ where \; \alpha, \; \beta, \; \varphi, \; \Theta, \; \rho, \; \gamma \; and \; \lambda \; are \; fitting parameters. \end{array}$

Results and Discussion

TABLE 1: Systematic formulas proposed by us for $(n,p),\,(n,\alpha)$ and (n,2n) reactions

P 1	3.5
Formula	Mass
	Region
$\sigma_{n,p}=10.49(1+A^{1/3})^2 \exp(-15.99(N-Z)/A)$	47≤A≤201
_	(Odd-A)
$\sigma_{n,p} = 52.01(1+A^{1/3})^2 \exp(-3.48(N-Z)/A)$	46≤A≤200
	(Even-A)
$\sigma_{n,\alpha}=21.79(1+A^{1/3})^2 \exp(26.49(N-Z)/A)$	23≤A≤133
	(Odd-A)
$\sigma_{n,\alpha}=18.17(1+A^{1/3})^2 \exp(-23.82(N-Z)/A)$	26≤A≤110
	(Even-A)
$\sigma_{n,2n}=5.58(1+A^{1/3})^2 \exp(22.85(N-Z)/A-$	45≤A≤203
63.51(N-Z) ² /A ²)	(Odd-A)
$\sigma_{n,2n} = 8.93(1+A^{1/3})^2 \exp(8.76(N-Z)/A)$	46≤A≤204
	(Even-A)

It can be concluded from the FIG. 1 (a), (b) and (c) that $\sigma(n,p)$ for even-A, $\sigma(n,\alpha)$ for odd-A and $\sigma(n,2n)$ for even-A are well reproduced by the systematics proposed by us. For odd-A (n,p), even-A (n, α) and odd-A (n,2n), systematic fitting of reaction cross-sections and a comparative study with existing literature systematics proposed by different authors Levkovski [12], Ait-Tahar [13], Doczi et al. [14], Chatterjee et al. [15] etc. will be presented during the conference.

²Department of Electrical Power Engineering, Brno University of Technology, Brno-61600, Czech Republic

 $[\]Gamma_n = \text{decay width for neutrons}$

and even-A nuclides, there is good agreement between the present systematics and the experimental values in $46 \le A \le 201$, $23 \le A \le 133$ and $45 \le A \le 204$ mass region. The cross-section values have been obtained with the help of the following expressions –

^{*}email: namratasingh.jwala@gmail.com

[†]email: ajaytyagi@bhu.ac.in

FIG. 1: Systematic fitting of the even-A (n,p), odd-A (n,α) and even-A (n,2n) reaction cross-sections at 14.5 MeV incident neutron energy.

Acknowledgments

One of the authors (A. Kumar) would like to thank the UGC-DAE Consortium for scientific research [Sanction No. UGC-DAE-CSR-KC/CRS/19/NP03/0913] and Institutions of Eminence (IoE) BHU [Sanction No. 6031] and for the financial support for this work.

References

[1] J. Luo et al., Nucl. Inst. Meth. Phys. Res. Sect. B: Beam Int. Mat. Atoms **266**, 4862 (2008).

[2] A. Gandhi et al., Indian Journal of Physics **93**, 1345 (2019).

[3] A. Gandhi et al., Journal of Radioanalytical and Nuclear Chemistry **322**, 89 (2019).

[4] Namrata Singh et al., Indian Journal of Pure and Applied Physics **54(4)**, 314 (2020).

[5] A. Gandhi et al., European Physical Journal A 57, 1 (2021).

[6] A. Gandhi et al., European Physical Journal plus **136**, 8 (2021).

[7] A. Kumar et al., Journal of Radioanalytical and Nuclear Chemistry **302**, 1043 (2014).

[8] J. R. Vonhoy, A. Kumar et al., EPJ Web of Conferences **66**, 03091(2014).

[9] J. R. Vonhoy, A. Kumar et al., Nuclear Physics A **939**, 121 (2015).

[10] A. Gandhi et al., Physical Review C **102**, 014603 (2020).

[11] B. L. Cohen, Physics Today 25, 77 (1972).

[12] V. N. Levkovski et al., Zh. Eksp. Teor. Fiz. **45**, 305 (1963).

[13] S. Ait-Tahar, Nuclear Physics **13**, 121 (1987).

[14] R. Doczi et al., INDC(HUN)-032, NDS, IAEA (1997).

[15] S. Chatterjee et al., Nuclear Physics A **125**, 593 (1969).