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Abstract. Spontaneous Symmetry Breaking (SSB) is a method to generate mass for all
elementary particles in the Standard Model (SM). Even so, it turns out that the Higgs mass term
in the Higgs potential, which responsible for the SSB, does not scale invariant. Based on this
problem, instead of using SSB from the SM to explain the origin of mass, we erase Higgs's mass
term from the SM Lagrangean and introduce a hidden sector Lagrangean to produce an
alternative way to generate Higgs mass. We use Scalar Bilinear Condensate ineffective theory to
obtain Higgs mass via the Higgs portal and generate the SSB. The hidden sector in this alternative
model is described by an SU(N-A) gauge theory with U(1)3 flavor. In the calculation, we use
the Mean-Field Approximation Lagrangean in obtaining the vacuum of the potential to get a
Higgs mass term in this model.

1. Introduction

Standard Model (SM) in particle physics has been a reference for a model of matter in nature. It started
in 1961 when Sheldon Glashow [1] proposed to unify the electromagnetic and weak interactions. His
project was completed by Weinberg in 1967 and by Abdus Salam independently in 1968 [2,3].
Combined with Quantum Chromodynamics (QCD) for strong interaction, this model has been accepted
as the SM in particle physics. Since the discovery of the Higgs particle in 2012 [4,5], SM has become
more established. Nevertheless, there are several shortcomings of this model and it is also widely
admitted that SM is not the ultimate model for elementary particles. Several shortcomings of this model
are: it does not allow for any finite neutrino mass, it does not have any dark matter candidate, it does not
provide an explanation for the baryon number asymmetry in the Universe. There are also theoretical
shortcomings of the SM: It does not include gravity, it can not explain why the electroweak scale is
seventeen orders of magnitude smaller than the Planck scale, it contains an unnatural Higgs mass term
which is put by hand in the SM Lagrangian. Moreover, the Higgs mass term is the only term in the SM
that breaks scale-invariant.

Considering the last problem mentioned above, in this paper we try to discuss an alternative way to
construct Higgs mass without using a mass term in the SM Lagrangian, thus keeping the theory scale-
invariant. There are basically two types of scenarios to proceed with this problem. The first one relies
on the Coleman-Weinberg (CW) potential [6] which have been studied thoroughly in several papers [7-
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10], and the second one base on non-perturbative effects in a non-abelian group such as dynamical chiral
symmetry breaking [11-13] and gauge-invariant scalar bilinear condensation. In this paper, we will
discuss the second one that uses gauge-invariant scalar bilinear condensation in a strongly interacting
hidden sector to generate Higgs mass term via the Higgs portal term. More precisely, this model assumes
that below a certain energy scale the scalar fields condensate in the form of a scalar bilinear by a non-
perturbative effect of a non-abelian hidden sector. This condensation turns the Higgs portal term into a
Higgs mass term. There have been several comprehensive studies in this approach before [14-17].

We start by introducing the Lagrangian of this extension model and then we will use a self-consistent
mean-field approximation method [18] to get the effective Lagrangian around the vacuum structure of
this theory. The Higgs potential in the effective Lagrangian will contain a Higgs mass term from the
Higgs portal interaction with the hidden sector.

2. Lagrangian of the model
The Lagrangian for the hidden sector of this model-based is assumed to be invariant under the SU(N,)
gauge theory, given by

1 N
Ly = TF® + (ID"S;]1D,S;) — As,,; (S18:)(S1S))

— N, (S18;)(S18i) + Aus, (S]Si)HVH — Apy (HTH)?
where the scalar fields S{* (i = 1,2, -+, N¢ and a = 1,2,:--, N,) are in the fundamental representation of
SU(N.). D, S; = 0S; — igyG,S; is the covariant derivative with G, is the matrix-valued gauge field. The

M)

total Lagrangian of this model is
Lt = Ly + Liy 2)

The second term on the right-hand side is the SM Lagrangian with the absence of the Higgs mass
term, therefore the potential term have form V(¢) = A(¢T¢). Because of this absence, now the total
Lagrangian is scaled invariant. Below certain energy, we assume that the gauge coupling becomes so

strong that the invariant scalar bilinear forms U(1)"f invariant condensate
Nc

(818, = > slse) = fi; 3)

a=1
This non-perturbative condensate breaks scale invariance by scale anomaly, not by order parameter
like in the SM. In this paper, we specify Ny = 3, and for this particular case the effective Lagrangian
can be written as

Lo =[0"8:]18,S: — A1(S]81)(S181) — A2(8]S2)(S1S2) — Aa(S385)(S]Ss)
— M12(8]81)(5155) — Ma(S]51)(S3S5) — Xas(S155) (S5 Ss)
— Xj2(5]82)(S151) — Xi5(S]85)(S451) — N33(S1S5)(S4S2)
+ Mirs, (STS)VHTH — A (HT H)?

It is important to note that the effective Lagrangian is defined above the energy before condensation
takes place. To investigate the vacuum state of this effective Lagrangian, we employ a Self-Consistent
Mean-Field approximation [18]. First, we split the effective Lagrangian into two terms

Leg = Lyvra + L7 (®)

(4)
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where Lyga describe mean-field dynamics and £; is normal ordered which is vanishing in the vacuum
(i.e. (0]£;|0)=0). To obtain the mean-field approximation for this Lagrangian, we define the mean-field
f and ¢ as

i 'T_| a

(0|S¢ Sj|0) - Si SJ‘ - (fij> + tji¢5 (6)
with t® are generators of SU(3) (a = 1,---,8) in the hermitian matrix representation and ¢ introduced
as the excitation of condensate (f;;) (where (f;;) = ;;f and (¢*) = 0). Using Wick theorem

1

STS=:875: + 818, ()
we obtain

Lupa = ([0"Si]78,8:) — MTy(S]S1) — M3y (S5S2) — M3,(S5Ss)

+ASE + X f2 + Asfd + Mafife + Msfifs + Aesfafs

1 1 1
—Xia (—@%S&Sl + =01 519, - —qzslcﬁ)
2
I G ®
Ny (S z 181+ 08515~ 16707 )
(1 1 1.
~Xpy (ﬁ% S3S2 + 5035255 — 563 ¢3+) — A (H'H)?
with
1 1 1
o3} \/5@5 ¢°), ¢ ﬁ(ﬁb ¢°), ¢3 \/5@5 ¢") 9)
and
M2 =2\ f1 + Mafo + Miafs — Agsi H H
M220 = 2)\2f2 + )\12f1 + )\23f3 — )\HSQHTH (10)

M320 - 2)\3.](-3 + )\13f1 + )\23f2 — )\HSSHTH.

3. Potential and Higgs mass
In calculating the effective potential, we have assumed that non-perturbative effect of the gauge theory
will not break the hidden color symmetry and flavor symmetry, which means

(8;)=0 (11)
and

(S]82) = (¢7)/V2=(S1S1) = (¢1)/v2=0

(S]85) = (¢ )/V2=(S1S1) = ($§)/V2=0 (12)

(8353) = (¢5)/V2 = (S]52) = (¢} /V2 =0
We also expand S; around the homogenous background, S; — S; + n;. As well as we integrate out S
around its background field S
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f DfDn]Dn; exp [Crira] = f D ;D] Dn; exp [([ausi]faysi) — M3 (S]S;)
+Xif2 + Mafife + Asfifs + s fofs

1 - 1 1,_
~ Xy (i i+ ot sl - Jore )

2
/ \1[ — ot \{ + ot 1 -+ (13)
- )‘13 (ﬁ‘% 5351 + ﬁﬁﬁg 8153 - 5(«52 («752 )
, (1 1 1,
~ Xy (sa Sla+ ot 15— 16561 )
—Ag(H'H)?]
In the first term, we have
[0#8:]7(8,,5:) =[0*(Si +mi)]T(8,(S: +m:))
=[0"n;|1(8,m;
[Tn](un) - (14)
=" (a,u,nz) |b0undary —7n; 8 i
= —n]0%n,.
and from the second term
—M(8]8) = — M3, (818 +ulSi +miSt +n2) (15)

Third, fourth, fifth, sixth, and tenth terms are still the same, but seventh, eighth, and ninth are vanish
because of the assumption that we have made before. In this integral, terms that are linear in S, vanish
(tadpole diagram) and term that has squared of S are Gaussian integrals so we can integrate it out and it
will not contribute again over Lagrangian. Thus, we arrived at

f D f;Dn) Dr; exp [—ni Bumi — M2 (nins) + X f?

(16)
+Ar2f1fo + Mafifs + Aesfofs — Ag(HVH)?)
and using functional determinant, we have
A :/sz €xXp P\zfzz + /\12f1f2 + )\13f1f3 + )\23f2f3 — /\H(HTH)Q (17)
+N.Indet [6* + M3]] .
To solve this, we use minimal subtraction scheme in the last term
ndet@® + 12 = v (L parzy 42 18
nee o2 e 2 (18)
and then we obtain
I'[S, f, H .
[ VJ; ] = _ Mq,?OSJSi + Nif? + Mafifa+ Mafifs + Aeafafs — A (H'TH)?
(19)

N.M3 (1 3
WO In(ME) + =
t 5m? (e o @°)+2)

which give
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Vumra(fi, H) = — Lls. £, ]
vT
NMS (M2 (20)
=*/\z‘fi2*A12f1f2*)\13f1f3*)\23f2f3+)\H{HTH)2+ ; In 50
32w A%

where the ultraviolet divergence subtracted by Modified Minimal Subtraction (MS) scheme and Ay =
pe=3/% After we got the mean-field approximation potential, the next step is to look for the minimum
value of the potential. To obtain a minimum value of the potential, we look for the solution from the gap
equation

0 0

0= @VMFA = 87HVMFA (21)
From the derivative of f;, we obtain
1 M2
1672(fi) =No(M3) (& +1n 5°> : (22)
2 A%,

with the assumption that A; # 0, 4,5, # 0, 4,3 # 0, and 4,3 # 0. From this equation, we can see that if
(fi) =0, then (Ml-z0 = 0, and we also can not have a negative value on term inside parentheses. Next,
from a derivative of vy, where HTH = v, we obtain

A (HH) =Ags,(fi)- (23)
By substituting this two-equation to mean-field approximation potential in eqg.(21), we obtain the
vacuum equation of potential

N,

(Vmra(f1, fa, f3, H)) = —@<Mi20>2 (24)
From the mean-field approximation potential, Higgs mass term can be obtained by taking derivatives
twice with respect to vy:
02Vupa

ov?

m3 =

(25)

N, i
—hun (HUH) + % X, (HVH) + 20, (HVH) ) s (7).

To obtain Higgs mass value, we must set parameters like A;, 412, 413, 423, Ay, Ays1, Agsz, and N.. From
these parameter, we can get minimum value of f;, f,, f3, vy,and Higgs mass (around 125 GeV).

4. Summary

We have considered SM with a scale-invariant scale term, with no Higgs mass term. The hidden sector
was introduced in the gauge group SU(N,) x U(1)Nr, with Ny = 3. It is shown that the hidden sector
generates a scale in a strongly interacting gauge sector and transmitted to the SM sector via Higgs portal
coupling and create a Higgs mass term via bilinear condensation.
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