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Abstract. Spontaneous Symmetry Breaking (SSB) is a method to generate mass for all 

elementary particles in the Standard Model (SM). Even so, it turns out that the Higgs mass term 

in the Higgs potential, which responsible for the SSB, does not scale invariant.  Based on this 

problem, instead of using SSB from the SM to explain the origin of mass, we erase Higgs's mass 

term from the SM Lagrangean and introduce a hidden sector Lagrangean to produce an 

alternative way to generate Higgs mass. We use Scalar Bilinear Condensate ineffective theory to 

obtain Higgs mass via the Higgs portal and generate the SSB. The hidden sector in this alternative 

model is described by an 𝑆𝑈(𝑁𝐶𝐴) gauge theory with 𝑈(1)3 flavor. In the calculation, we use 

the Mean-Field Approximation Lagrangean in obtaining the vacuum of the potential to get a 

Higgs mass term in this model.   

1. Introduction 

Standard Model (SM) in particle physics has been a reference for a model of matter in nature. It started 

in 1961 when Sheldon Glashow [1] proposed to unify the electromagnetic and weak interactions. His 

project was completed by Weinberg in 1967 and by Abdus Salam independently in 1968 [2,3]. 

Combined with Quantum Chromodynamics (QCD) for strong interaction, this model has been accepted 

as the SM in particle physics. Since the discovery of the Higgs particle in 2012 [4,5], SM has become 

more established. Nevertheless, there are several shortcomings of this model and it is also widely 

admitted that SM is not the ultimate model for elementary particles. Several shortcomings of this model 

are: it does not allow for any finite neutrino mass, it does not have any dark matter candidate, it does not 

provide an explanation for the baryon number asymmetry in the Universe. There are also theoretical 

shortcomings of the SM: It does not include gravity, it can not explain why the electroweak scale is 

seventeen orders of magnitude smaller than the Planck scale, it contains an unnatural Higgs mass term 

which is put by hand in the SM Lagrangian. Moreover, the Higgs mass term is the only term in the SM 

that breaks scale-invariant. 

Considering the last problem mentioned above, in this paper we try to discuss an alternative way to 

construct Higgs mass without using a mass term in the SM Lagrangian, thus keeping the theory scale-

invariant. There are basically two types of scenarios to proceed with this problem. The first one relies 

on the Coleman-Weinberg (CW) potential [6] which have been studied thoroughly in several papers [7-
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10], and the second one base on non-perturbative effects in a non-abelian group such as dynamical chiral 

symmetry breaking [11-13] and gauge-invariant scalar bilinear condensation.  In this paper, we will 

discuss the second one that uses gauge-invariant scalar bilinear condensation in a strongly interacting 

hidden sector to generate Higgs mass term via the Higgs portal term. More precisely, this model assumes 

that below a certain energy scale  the scalar fields condensate in the form of a scalar bilinear by a non-

perturbative effect of a non-abelian hidden sector. This condensation turns the Higgs portal term into a 

Higgs mass term.  There have been several comprehensive studies in this approach before [14-17]. 

We start by introducing the Lagrangian of this extension model and then we will use a self-consistent 

mean-field approximation method [18] to get the effective Lagrangian around the vacuum structure of 

this theory.  The Higgs potential in the effective Lagrangian will contain a Higgs mass term from the 

Higgs portal interaction with the hidden sector.   

2. Lagrangian of the model 

The Lagrangian for the hidden sector of this model-based is assumed to be invariant under the 𝑆𝑈(𝑁𝑐)  
gauge theory, given by 

 

(1) 

where the scalar fields 𝑆𝑖
𝑎 (𝑖 = 1,2,⋯ ,𝑁𝑓 and 𝑎 = 1,2,⋯ ,𝑁𝑐) are in the fundamental representation of 

𝑆𝑈(𝑁𝑐). 𝐷𝜇𝑆𝑖 = 𝜕𝑆𝑖 − 𝑖𝑔𝐻𝐺𝜇𝑆𝑖 is the covariant derivative with 𝐺𝜇 is the matrix-valued gauge field. The 

total Lagrangian of this model is 

 
(2) 

The second term on the right-hand side is the SM Lagrangian with the absence of the Higgs mass 

term, therefore the potential term have form 𝑉(𝜙) = 𝜆(𝜙†𝜙). Because of this absence, now the total 

Lagrangian is scaled invariant. Below certain energy, we assume that the gauge coupling becomes so 

strong that the invariant scalar bilinear forms 𝑈(1)𝑁𝑓 invariant condensate 

 

(3) 

This non-perturbative condensate breaks scale invariance by scale anomaly, not by order parameter 

like in the SM. In this paper, we specify 𝑁𝑓 = 3, and for this particular case the effective Lagrangian 

can be written as   

 

(4) 

It is important to note that the effective Lagrangian is defined above the energy before condensation 

takes place. To investigate the vacuum state of this effective Lagrangian, we employ a Self-Consistent 

Mean-Field approximation [18]. First, we split the effective Lagrangian into two terms 

 
(5) 



ISNPINSA 2019

Journal of Physics: Conference Series 1524 (2020) 012099

IOP Publishing

doi:10.1088/1742-6596/1524/1/012099

3

 

 

 

 

 

 

where ℒMFA describe mean-field dynamics and ℒ𝐼  is normal ordered which is vanishing in the vacuum 

(i.e. 〈0|ℒ𝐼|0〉=0). To obtain the mean-field approximation for this Lagrangian, we define the mean-field 

𝑓 and 𝜙 as 

 

 

(6) 

with 𝑡𝑎 are generators of 𝑆𝑈(3) (𝑎 = 1,⋯ ,8) in the hermitian matrix representation and 𝜙 introduced 

as the excitation of condensate 〈𝑓𝑖𝑗〉 (where 〈𝑓𝑖𝑗〉 = 𝛿𝑖𝑗𝑓 and 〈𝜙𝑎〉 = 0). Using Wick theorem 

 
(7) 

we obtain 

 

(8) 

with 

 

(9) 

and 

 

(10) 

 

3. Potential and Higgs mass 

In calculating the effective potential, we have assumed that non-perturbative effect of the gauge theory 

will not break the hidden color symmetry and flavor symmetry, which means 

 
(11) 

and 

 

(12) 

We also expand 𝑆𝑖 around the homogenous background, 𝑆𝑖 ⟶ 𝑆𝑖̅ + 𝜂𝑖. As well as we integrate out 𝑆 

around its background field 𝑆̅ 
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(13) 

In the first term, we have 

 

(14) 

and from the second term 

 
(15) 

Third, fourth, fifth, sixth, and tenth terms are still the same, but seventh, eighth, and ninth are vanish 

because of the assumption that we have made before. In this integral, terms that are linear in 𝑆, vanish 

(tadpole diagram) and term that has squared of 𝑆 are Gaussian integrals so we can integrate it out and it 

will not contribute again over Lagrangian. Thus, we arrived at 

 

(16) 

and using functional determinant, we have 

 

(17) 

To solve this, we use minimal subtraction scheme in the last term  

 

(18) 

and then we obtain 

 

(19) 

which give 
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(20) 

where the ultraviolet divergence subtracted by Modified Minimal Subtraction (MS̅̅ ̅̅ ) scheme and Λ𝐻 =

𝜇𝑒−3/4.  After we got the mean-field approximation potential, the next step is to look for the minimum 

value of the potential. To obtain a minimum value of the potential, we look for the solution from the gap 

equation 

 

(21) 

From the derivative of 𝑓𝑖, we obtain 

 

(22) 

with the assumption that 𝜆𝑖 ≠ 0, 𝜆12 ≠ 0, 𝜆13 ≠ 0, and  𝜆23 ≠ 0. From this equation, we can see that if 

〈𝑓𝑖〉 = 0, then 〈𝑀𝑖0
2 〉 = 0, and we also can not have a negative value on term inside parentheses. Next, 

from a derivative of 𝑣𝐻, where 𝐻†𝐻 = 1

2
𝑣𝐻
2 , we obtain 

 
(23) 

By substituting this two-equation to mean-field approximation potential in eq.(21), we obtain the 

vacuum equation of potential 

 
(24) 

From the mean-field approximation potential, Higgs mass term can be obtained by taking derivatives 

twice with respect to 𝑣𝐻: 

 

(25) 

To obtain Higgs mass value, we must set parameters like 𝜆𝑖, 𝜆12, 𝜆13, 𝜆23, 𝜆𝐻, 𝜆𝐻𝑆1, 𝜆𝐻𝑆2, and 𝑁𝑐. From 

these parameter, we can get minimum value of 𝑓1, 𝑓2, 𝑓3, 𝑣𝐻,and Higgs mass (around 125 GeV).  

4. Summary 

We have considered SM with a scale-invariant scale term, with no Higgs mass term. The hidden sector 

was introduced in the  gauge group 𝑆𝑈(𝑁𝑐) × 𝑈(1)𝑁𝑓, with 𝑁𝑓 = 3. It is shown that the hidden sector 

generates a scale in a strongly interacting gauge sector and transmitted to the SM sector via Higgs portal 

coupling and create a Higgs mass term via bilinear condensation.  
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