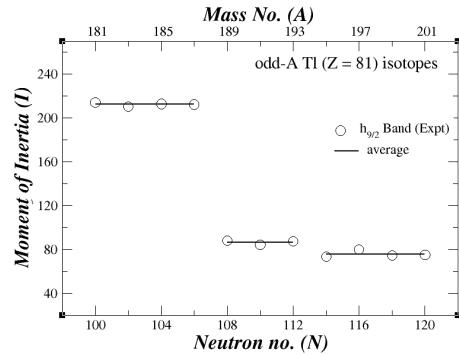


Study of multi-quasiparticle band structures in ^{197}Tl using α beam

G. Mukherjee*, S. Nandi, H. Pai, T. Roy, Md.A. Asgar, A. Dhal, R. Banik, Soumik Bhattacharya, A. Saha, S. S. Alam, S. Bhattacharyya, C. Bhattacharya, Pratap Roy, T.K. Ghosh, S. Kundu, K. Banerjee, T.K. Rana, R. Pandey, S. Manna, A. Sen, S. Pal, S. Mukhopadhyay, D. Pandit, D. Mondal, T. Bhattacharjee, A. Dey, J.K. Meena, A.K. Saha, J.K. Sahoo, R. Mandal Saha, A. Choudhury, and S.R. Banerjee


Variable Energy Cyclotron Centre, I/AF Bidhan Nagar, Kolkata 700064, INDIA

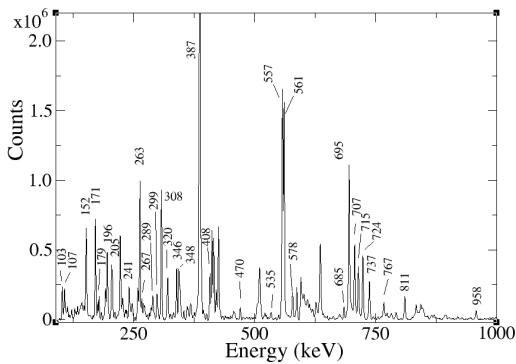
* email: gopal@vecc.gov.in

Introduction

Study of the multi-quasiparticle (qp) states and the band structures built on them in the neutron deficient Tl nuclei in $A \sim 190$ mass region provides useful information on particle-hole interaction in the heavy nuclei. The ground states of the odd- A Tl nuclei are $1/2^+$ [1, 2, 3] corresponding to the proton hole in the $3s_{1/2}$ orbital below the $Z = 82$ spherical shell closure. However, the shape driving high- j $\pi h_{9/2}$ and $\pi i_{13/2}$ orbitals come down in energy with deformation and intrude into the region of proton Fermi level. On the other hand, the high- j $\nu i_{13/2}$ orbital becomes available for neutrons for the neutron number $N < 114$. Therefore, competing shape driving effects of the high- j proton and neutron orbitals and the spherical shell closures play crucial roles for the structure of the high-spin multi-qp states in neutron deficient Tl nuclei in $A = 190$ mass region.

Rotational bands based on the intruder [505]9/2 Nilsson state have been observed in the chain of $^{189-197}\text{Tl}$ isotopes with different types of particle-core couplings [4-8]. The moments of inertia (MoI) of Tl isotopes, deduced by fitting these bands by rotational model formula, are shown in Fig.1. An abrupt change, seen at $N = 108$, is associated with the transformation from decoupled to strongly coupled band. Another small change at $N = 114$ may be associated with the availability of $\nu i_{13/2}$ orbital for neutrons. Data on multi-qp states in these Tl isotopes are scarce. In ^{197}Tl , which falls in the third region in Fig.1 with relatively low MoI, two 3-qp bands are reported [9]. The 2nd (new) one of those, had very low statistics and the coincidence relation was not verified.

Fig.1: Moments of Inertia in Tl isotopes deduced from the observed rotational bands based on $\pi h_{9/2}$ orbital.


In order to investigate the multi-qp band structures we have studied the excited states in ^{197}Tl by gamma ray spectroscopy.

Experimental Details

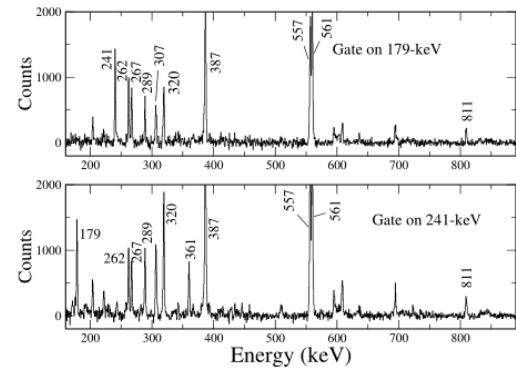
Excited states in ^{197}Tl were populated by the α -induced fusion-evaporation reaction $^{197}\text{Au}(^{4}\text{He}, 4n)^{197}\text{Tl}$ at 50 MeV of beam energy from the K-130 Cyclotron at VECC, Kolkata. The target was a self-supporting 5 mg/cm² gold foil. The emitted rays were detected using the VENUS array consists of 6 Compton-suppressed clover Ge detectors. The detectors were in 6 angles with 2 each at $\pm 30^\circ$ (backward) and $\pm 90^\circ$, other two were at the forward 45° and 55° angles with respect to the beam direction in median plane. A VME data acquisition system was used.

To construct the level scheme, a total $-\gamma$ matrix was made with coincidence time window of ± 25 ns from the prompt peak of RF- TAC and $\gamma-\gamma$ TAC. The matrix contained about 3.4×10^8 $\gamma-\gamma$ coincidence events. DCO and the

polarization (IPDCO) matrices were constructed to assign spin and parity (J^π) of the states from the multipolarity (λ) and the type (E/M) of the emitted γ -rays. The LAMPS and the RADWARE codes were used for the analysis. Fig. 2 shows a total projection spectrum from the γ - γ matrix. All the known γ -rays in ^{197}Tl (marked) including the ones with low statistics in band B3 in Ref. [9] are clearly observed in this spectrum. Several new transitions are also seen in this spectrum most of which belong to ^{197}Tl .

Fig.2: Total projection spectrum from the γ - γ matrix. Known γ -lines of ^{197}Tl are marked.

Results and Discussion


Out of the two 3-qp band-like structures reported in Ref. [9] as B2 (built on $15/2^-$) and B3 (built on $17/2^{(-)}$) the later was produced with low statistics with tentative placement of the levels and their J^π values, as the coincidence relation among the γ -rays could not be established.

The coincidence relation in this band could be established with much better statistics in our work,. The gated spectra with gates put on 179-keV and 241-keV γ -rays belonging to the band B3 in ^{197}Tl are shown in Fig. 3. The bunch of γ -lines belonging to this band along with the other known γ -lines in ^{197}Tl are seen in these spectra which establishes that these γ -rays indeed belong to ^{197}Tl . The 361-keV γ -ray was earlier placed in such a way that it was supposed to be in coincidence with both 179 and 241 keV γ -rays. But it is seen from Fig. 3 that 361-keV is in coincidence with 241-keV but not with 179-keV. This clearly suggests a modification of the band B3. Moreover, a few new transitions in the $\pi\text{th}_{9/2}$

band are also observed indicating band-crossing and 3-qp structure in this band as well.

Summary and Conclusion

γ -ray spectroscopy of ^{197}Tl was performed at VECC using α -beam and the VENUS setup. Proper coincidence relation could be established from the higher γ - γ statistics in this experiment which indicates that a modification of the band B3 is required. The detailed analysis is in progress to establish a correct level scheme and to assign spin and parity of the levels.

Fig. 3 Single gated spectra of ^{197}Tl gated by 179-keV and 241-keV transitions in band B3 [9].

Acknowledgement

The authors gratefully acknowledge the efforts of the cyclotron operators at VECC for providing good α -beam. A.D. acknowledges the financial support of Science and Engineering Research Board, Department of Science and Technology, Govt. of India vide project No. SR/FTP/PS067/2012 dated 10/06/2012.

References

- [1] R.M. Diamond and F.S. Stephens, Nucl. Phys. A **45**, 632 (1963).
- [2] V.T. Gritsyna and H.H. Foster, Nucl. Phys. A **61**, 129 (1965).
- [3] J.O. Newton, et al., Nucl. Phys. A **148**, 593 (1970).
- [4] R.M. Lieder et al., Nucl. Phys. A **299**, 255 (1978).
- [5] A.J. Kreiner et al., Phys. Rev. C **38**, 2674 (1988).
- [6] M.G. Porquet et al., Phys. Rev. C **44**, 2445 (1991).
- [7] W. Reviol et al., Phys. Scr. T **56**, 167 (1995).
- [8] W. Reviol et al., Nucl. Phys. A **548**, 331 (1992).
- [9] H. Pai et al., Phys. Rev. C **88**, 064302 (2013).