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Abstract

In the first part of this thesis we investigate the viability of a class of models for de
Sitter (dS) vacua in string theory, due to Kachru, Kallosh, Linde and Trivedi (KKLT).
We start by explaining why the success or failure of such models is sensitive to a
large number of Planck suppressed operators, and collect circumstantial evidence that
this UV sensitivity cannot be evaded with delicately engineered models such as the
Kallosh-Linde (KL) racetrack due to a generic conflict with the weak gravity conjecture
(WGC) for axions. We take this as motivation to study the KKLT mechanism from a
ten-dimensional point of view. Building on earlier work we show that the form of the
four-dimensional supergravity model as proposed by KKLT is remarkably consistent
with the ten-dimensional perspective with respect to supersymmetry breaking as well
as consistency requirements such as tadpole cancellation conditions. Nevertheless we
point out a generic loss of parametric control over the ten-dimensional geometry in the
interesting regime of 4d parameter space where an uplift to dS is believed to occur.

In the second part we argue for the existence of a new type of ultralight axion in the
type IIB flux landscape of string theory. This axion can be thought of as the integral
of the Ramond-Ramond (RR) two form over a certain two-sphere which is trivial in
homology, and it arises when fluxes stabilize a Calabi-Yau (CY) threefold near a conifold
transition locus in complex structure moduli space. The axion receives a non-trivial
but strongly suppressed potential because its field excursion weakly twists two or more
Klebanov-Strassler (KS) throats against each other. This can be understood as a purely
geometric effect in 10d, but also as misalignment of gaugino condensates in different
field theory sectors that are dual descriptions of the ten-dimensional throat system.
The scalar potential turns out to be periodic while its periodicity can be enhanced with
respect to the natural axion periodicity by a finite monodromy factor allowing its decay
constant to become parametrically super Planckian in many cases. While our model
does not obey the strong form of the weak gravity conjecture we identify an alternative
bound that enforces the generic presence of dominant sub-Planckian harmonics, thus
preventing us from building models of natural inflation using this construction.



Zusammenfassung

Im ersten Teil dieser Arbeit untersuchen wir die Realisierbarkeit einer Klasse von Mo-
dellen fiir de Sitter (dS) Vakua in der Stringtheorie, vorgeschlagen von Kachru, Kallosh,
Linde und Trivedi (KKLT). Wir beginnen damit, zu erklaren, warum der Erfolg oder
Misserfolg solcher Modelle von einer grofien Anzahl von Planck-unterdriickten Ope-
ratoren abhéngt, und wir finden Indizien dafiir, dass diese UV-Empfindlichkeit nicht
mit technisch ausgereifteren Modellen wie dem Kallosh-Linde (KL) racetrack Szena-
rio beseitigt werden kann, aufgrund eines generischen Konflikts mit der Vermutung
iiber die Gravitation als schwichste Kraft (WGC). Wir betrachten dies als Motivation,
den KKLT-Mechanismus aus zehndimensionaler Sicht zu untersuchen. Aufbauend auf
fritheren Arbeiten zeigen wir, dass die von KKLT vorgeschlagene Form des vierdimensio-
nalen Supergravitationsmodells in bemerkenswerter Weise mit der zehndimensionalen
Perspektive iibereinstimmt, in Bezug auf das Brechen der Supersymmetrie, sowie den
Anforderungen an Widerspruchsfreiheit wie tadpole-cancellation-Bedingungen. Trotz-
dem weisen wir auf einen generischen Verlust der parametrischen Kontrolle iiber die
zehndimensionale Geometrie in dem interessanten Bereich des 4d-Parameterraums hin,
wo angenommen wird, dass ein Anstieg nach dS auftritt.

Im zweiten Teil argumentieren wir fiir die Existenz eines neuen Typs ultraleichter
Axionen in der Typ IIB Flusslandschaft der Stringtheorie. Man kann sich dieses Axion
als das Integral der Ramond-Ramond (RR) Zwei-Form iiber eine bestimmte, in der
Homologie triviale Zwei-Sphére vorstellen, und es entsteht, wenn Fliisse eine Calabi-
Yau (CY) Mannigfaltigkeit in der Nihe eines Konifoldiibergangslokus im Modulraum
der komplexen Strukturen stabilisieren. Das Axion erhélt ein nicht-triviales, aber stark
unterdriicktes Potential, da seine Feldauslenkung zwei oder mehr Klebanov-Strassler
(KS) throats gegeneinander verdreht. Dies kann als ein rein geometrischer Effekt in
10d verstanden werden, aber auch als Fehlausrichtung von Gaugino-Kondensaten in
verschiedenen Feldtheoriesektoren, die eine duale Beschreibung des zehndimensionalen
throat-Systems sind. Das skalare Potential erweist sich als periodisch, wahrend seine
Periodizitat in Bezug auf die natiirliche Axionperiodizitdt durch einen endlichen Mono-
dromiefaktor erhoht werden kann, wodurch seine Zerfallskonstante in vielen Fillen pa-
rametrisch super-planckisch wird. Wéahrend unser Modell der starken Form der WGC
nicht gehorcht, identifizieren wir eine Bedingung, die die generische Priasenz dominan-
ter subplanckischer Modulierungen erzwingt, sodass wir mit dieser Konstruktion keine
Modelle natiirlicher Inflation bauen kénnen.
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Chapter 1

Introduction

1.1 The search for new physics

Symmetries and the quest for unification have perhaps been the most important or-
ganizing principles of elementary particle physics in the twentieth century. All the
particles that have so far been identified have taken their place in the standard model
(SM) of particle physics. The interactions among them are determined by their charges
under the gauge symmetry group Ggy = SU(3) x SU(2) x U(1), the gauge coupling con-
stants, the Higgs potential, and the Yukawa couplings. Its remarkable consistency and
completeness as a quantum field theory (QFT) means both a triumph for its inventors
and a challenge for those in search of beyond the SM (BSM) Physics. The discovery of
the Higgs boson [6] [7] marks the end of a long era that perhaps started with the Fermi
theory of the weak interaction. While remarkably consistent at low energies, the Fermi
theory predicts its own breakdown at energies of order 100 GeV. This was correctly
interpreted as a signal for new physics at this mass-scale, and led to the advent of the
Glashow-Salam-Weinberg model of the electro-weak interaction [8HI0] and eventually
to the formulation and experimental confirmation of the SM. Unfortunately in practical
terms this series of guaranteed discoveries at energy scales just around the corner has
terminated. The SM contains no coupling constants with negative mass dimension (it
is renormalizable [11]). As a consequence it predicts its own breakdown only at an en-
ergy scale that is fantastically high. The perhaps strongest indication for new physics
beyond the SM (BSM) comes from neutrino oscillation experiments [12-14] indicating
a non-vanishing coefficient of the non-renormalizable Weinberg operator, and from the
fact that the gauge couplings of the standard model meet roughly at the scale of

Acur ~ 10%GeV . (1.1)

1
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This suggests that the SM gauge group could in the end be embedded into a unified
gauge group (GUT) that breaks spontaneously in the vacuum [I5][]

However, so far we have not mentioned gravity. Coupling gravity to the SM yields
an effective field theory (EFT) that is not renormalizable just as Fermi’s theory of
the weak interaction is not. So gravity seems to come to our rescue: The standard
interpretation of an effective field theorist would be that the SM model coupled to
Einstein gravity breaks down at the Planck scale

Mp = (87Gy)"1? =2.4-108GeV . (1.2)

At this scale, the scale of quantum gravity, the effective coupling constant that deter-
mines the scattering amplitude between gravitons becomes of order unity. This is not a
scale that we will reach with collider experiments in the near future. Nevertheless it is
the lowest scale we know at which (radically) new physical phenomena are guaranteed
to become relevant. So, while of course there are still many reasons to expect that new
physical degrees of freedom are hidden just around the corner at scales accessible to
future collider experiments, it is justified to ask what kinds of physical phenomena we
can access today or in the near future that are directly or indirectly tied to the scale of
quantum gravity. More so, we will now outline reasons why we should not take the high
scale of quantum gravity as a reason to despair but as an encouragement to work at
the interface between particle physics, cosmology and a beautiful theory called string
theory.

1.2 The expanding universe

Since the time of Edwin Hubble we know that our universe is expanding [16]. In fact,
since only rather recently we know that the expansion is accelerating [17, [18], and the
history of our universe is extremely well described by the standard model of cosmology
called ACDM. It consists of the standard model of particle physics coupled to Einstein
gravity and assumes only two further (though very much mysterious) ingredients: The
first is cold dark matter (CDM), a yet unknown type of non-relativistic matter that
couples to ordinary matter only extremely weakly and accounts for about 25% of the
energy of our universe. The second is the notorious cosmological constant (A), a homo-
geneous fluid with peculiar equation of state making up 70%. It is a curious fact that
the baryonic matter that we are made of makes up only about 5% of the energy budget

LA single generation of the standard model fermions is obtained from the 10 @ 5 of SU(5) under the
breaking pattern SU(5) — Gsm. Even better, the 16 of SO(10) decomposes into the 10 & 5 of SU(5) plus
one singlet under SO(10) — SU(5). The singlet is a natural candidate for a right handed neutrino required
for the see-saw mechanism to generate neutrino masses in a renormalizable fashion.
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Figure 1.1: The temperature fluctuations in the CMB as seen by Planck 2018. Figure taken

from [19].

of our current universe. With this set of minimal ingredients the ACDM model gives
rise to a remarkably plausible history of our universe starting with an extremely hot
and dense phase (the Big Bang) about 13.8 billion years ago. It successfully describes
many eras of the history of the universe: in the very first minutes after the Big Bang
the process of Big Bang nucleosynthesis led to the formation of the light nuclei. Subse-
quently the universe expanded and cooled down until the temperature was low enough
that neutral hydrogen could form efficiently about 380,000 years after the Big Bang.
This event is called recombination and marks the time at which the universe became
transparent to light. Today we observe the light that was released at this time as the
cosmic microwave background (CMB) (see Figure which gives us a (red-shifted)
snapshot of a very young version of our universe. Furthermore, the formation of large
scale structure can be understood to arise from the growth of tiny inhomogeneities in
the early universe, leading to the distribution of galaxies we find today. Finally, the
accelerated expansion of the current universe is attributed to the cosmological constant.

Fortunately for us this picture is hardly complete. The CMB provides us with a
detailed temperature map of a large patch of the universe when it was much smaller
and much hotter. This patch was in fact so large that it contained a large number
of causally disconnected regions. The time since the Big Bang simply did not suffice
to bring them into causal contact. Nevertheless we observe that the temperature was
the same everywhere to one part in 10° and the tiny temperature fluctuations were
correlated on all scales we can observe. This is called the horizon problem. Declaring
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this to be a coincidence is extremely implausible. As the formation of our universe is
not an experiment that we can repeat, implausibility of a proposed cosmological history
is perhaps the best indication for a seriously incomplete understanding that one will

ever get.

A remedy for this serious problem is offered by the theory of inflation. As proposed
long ago by A. Guth, A. Linde, A. Albrecht, P. Steinhardt and others [20-22] our
universe underwent an era of exponential expansion before it was populated by the
matter we know (and the one we don’t know). During this time the energy budget of
our universe was dominated by a slowly evolving dark energy that drove the exponential
expansion much in the same way that a cosmological constant might drive today’s
accelerated expansion. A crucial ingredient is a new (scalar) degree of freedom called
the inflaton that serves as a ’clock’ for the progress of inflation. Its tiny (and correlated)
quantum fluctuations were stretched to very large scales during the time of inflation
and translated into tiny density fluctuations in the early universe as we know it. These
in turn translated into the temperature fluctuations at the time of recombination that
we can observe in the CMB, and served as the seeds for large scale structure formation.
Crucially these fluctuations are tiny and naturally correlated on what appear to be
super-horizon scales at the time of recombination. This beautiful idea not only solves
the problem of implausibility but it also predicts the precise form of the CMB power
spectrum using only two a priori undetermined constants to be fixed by observational

data (or a specific inflationary model).

This simple and successful idea begs the question what were the relevant degrees
of freedom whose quantum fluctuations shaped the form of the CMB? One of the
most interesting questions is whether also gravitational quantum fluctuations played an
important role. Crucially the answer to this question can in principle be inferred from
the polarization (so called B-modes) of the CMB [23-25]. In other words, it is possible
that the quantum fluctuations of the gravitational field are detected in the near future.
Beside this obvious reason for excitement it turns out that such a detection would teach
us quite a lot about the inflationary era itself [26]. First, the scale of inflation would
have to be of order of the scale of grand unification. Second, we would learn that
during the era of inflation the inflaton traversed a distance in field space that is larger
than the Planck scale. From the point of view of effective field theory (EFT) there is
nothing obviously wrong with this. As long as the scalar potential stays small in Planck
units the use of Einstein gravity as an effective field theory is valid. In fact the types of
successful models that a (naive) effective field theorist would write down would all share
the feature of inflationary field excursions much bigger than the Planck scale. It is also

easy to ensure that the flatness of the scalar potential over super-Planckian field ranges
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is not endangered by large quantum corrections. There are really only two problems
with these types of models. First, they are (almost) ruled out by experiment [27].
Second, the predictions of such models are sensitive to a large (or even infinite) number
of Wilson coefficients [2§]. These are the coefficients of the expansion of the effective
Lagrangian in terms of operators of increasing mass dimension. As a consequence,
bottom up EFT models of large field inflation are usually not very predictive’} The
number of Wilson coefficients that specify an inflationary model exceed by far the
number of observables that we can extract from CMB data. At least, in writing down
a bottom up model of large field inflation one is far from being agnostic about physics
at the Planck scale. As a consequence, making a choice of EFT model can really lead
to meaningful predictions only if one is able to predict infinitely many relations among
the Wilson coefficients from more fundamental principles. So here we have arrived
at a remarkable and encouraging result: If gravitational wave fluctuations generated
during inflation, called primordial tensor modes, are detected, an infinite number of
Wilson coefficients is constrained. This is getting us rather close to testing physics
at the Planck scale. Conversely, if a theory of quantum gravity predicts that models
of large field inflation cannot exist, we can in principle falsify it observationally via a

detection of primordial tensor modes using CMB datal

1.3 String theory and the swampland

This is only one of many ideas how a full theory of quantum gravity may severely
constrain the set of low energy EFTs and in particular the set of low energy observables,
thereby acquiring the status of a falsifiable theory. We call the set of EFTs including
gravity that can be realized as a low energy limit of the full quantum gravity the
landscape while the ones that cannot form the complementary set that we call the
swampland [29, 30]. For this concept (the idea of the swampland) to be a useful one,
one has to show that there exist clear boundaries in the space of low energy observables
that divide regions belonging to the landscape from those that belong to the swampland
(see Figure . We will come back to what types of criteria have been proposed
that could distinguish the landscape from the swampland in section [3.8] While some
criteria (henceforth called lore quantum gravity statements) can be motivated more or
less clearly from (say) black hole physics [311, 82] it is clearly of great interest to have in
hand an actual candidate theory of quantum gravity in order to 1) give further evidence

for or even prove lore quantum gravity statements and 2) collect further constraints

2This does not mean that the theory of inflation is not predictive (it certainly is!).
3The question to what extend such a theory would actually be confirmed by a null detection is a more
subtle one because we do not have so many quantitative theories of quantum gravity to compare.
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Figure 1.2: A cartoon of a 2d subspace of the total parameter space of EFTs coupled to
gravity parameterized by two Wilson coefficients (c1,¢2). The landscape (blue) is hoped to
be well separated from the swampland (red).

that cannot be motivated as easily from the bottom-up. The only theory of quantum
gravity that is developed to a sufficient degree that we may begin to address such
questions in principle to a satisfactory quantitative degree is string theory.

String theory is believed to be a unique theory of quantum gravity although to date
there exists no formulation that would make this manifest. In contrast, there exist
five perturbative string theories, that all have ten dimensions of spacetimeﬁ In each
perturbative string theory the light degrees of freedom can be thought of as vibrating
one-dimensional objects called strings (but there are also heavy solitonic membranes
[34]). Crucially, in the 1990s (the second superstring revolution) it was realized that the
different perturbative string theories should be understood as different weak coupling
limits of the same underlying theory (sometimes called M-theory).

The formulation of these theories and (some of) the relations among them are stan-
dard textbook material found e.g. in [35]. For us it will (mostly) suffice to consider their
ten-dimensional low energy limits. These are ten-dimensional supergravity theories, and
in fact they are the only consistent ten-dimensional ones [36] (at two-derivative level) [
These ten-dimensional theories allow non-trivial gravitational backgrounds where the
total spacetime is a product of a non-compact four-dimensional spacetime and a com-

pact (also called internal) six-dimensional space

My = M3z, x Mg, (1.3)

4To be precise these are the only supersymmetric string theories in ten dimensions. There is also a
somewhat less studied non-supersymmetric one [33].

5In ten dimensions we know for a fact that all consistent low energy effective supergravity theories arise as
a low energy limit of string theory. In other words, if we lived in a supersymmetric ten-dimensional world we
would know almost for certain that string theory is the theory of quantum gravity, without the need to access
high energies.
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so that at low energies (at wavelengths larger than the size of M) the EFT of pertur-
bations around the background solution is a four-dimensional QFT coupled to grav-
ity. Obtaining lower-dimensional theories from higher-dimensional ones in this way
is called Kaluza-Klein (KK) reduction, compactification, or compactifying the higher-
dimensional theory, and goes back to early ideas by Kaluza and Klein [37, 138]. We
will consider the set of EFTs that arise via compactification of ten-dimensional string
theories.

More precisely we will focus on the so-called flux landscape of type IIB string theory
[39, 40]. Tt arises by compactifying type IIB string theory on a so called Calabi-Yau
(CY) three—foldﬁ and turning on higher-dimensional analogues of electric and magnetic
fields (called fluzes) along the internal directions. We focus on this weakly coupled
corner because there it is best understood how a truly enormous set of four-dimensional
low energy EFTs can arise from discrete ten-dimensional data (see Section . This
degeneracy is in fact so large that some EFT parameters are believed to be tunable to
almost arbitrary precision [41H43]. Due to this existence of an almost continuous set
of four-dimensional EFTs the distinction between the landscape and the swampland is
perhaps most easily addressed. Moreover, the ability to tune many parameters makes
it a particularly interesting arena for model building.

Having stated what is our starting point, let us return to the swampland idea
in general, and accelerated expansion in particular. There is an ongoing community
effort to construct models of (single field) large field inflation in string theory. Despite
the emergence of a set of promising ideas [44H49] so far no model has been established
beyond any reasonable doubt. In fact some authors have taken the persistent difficulties
that appear in construction attempts as evidence that large field inflation is in fact
impossible in string theory [50, 5I]. While this may well be true, so far we do not
understand why. We find it useful to simplify the problem by restricting to the perhaps
most promising inflaton candidates. In our opinion these are azions. We will discuss in
more detail what we mean by an axion but for now let us work with the simple minded
definition that these are (pseudo-)scalar fields a(z) that in some well understood limit
develop a shift-symmetry

a(x) — a(x) +¢, c€eR, (1.4)

valid to all orders in the perturbative expansion.

In other words all non-derivative interactions can be suppressed in a very natu-
ral way. It is then feasible in principle that a small computable axion potential can
be generated that could drive the inflationary expansion. Such potentials can be di-

5To be precise half of the spectrum has to be projected out in a way that produces a so called orientifold.
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vided into two classes. The first ones arise naturally (really unavoidably) from non-
perturbative effects such as instantons. Such contributions to the potential preserve
a discrete (gauged) shift symmetry a — a + 27 f,. For such potentials to host large
field inflation, the axion decay constant f, must be bigger than the Planck scale. How-
ever, the basic string theory axions seem to all have small decay constants [52]. In
fact there is a class of swampland conjectures that constrains axion decay constants.
These are called the weak gravity conjecture (WGC) in various versions [3I][] In its
simplest form (which has nothing to do with axions) it states that in every consistent
low energy EFT of gravity and electromagnetism (and whatever else) there should exist
at least one light charged particle with mass m and U(1) charge e such that m < eMp.
This conjecture has been extrapolated [31] (and in some cases been shown to extend
156, 58]) to versions that constrain non-perturbative axion potentials (see Section [3.8.2).
A strong form of this conjecture states that in controlled regimes the most dominant
contributions to the axion potential have small periodicities in Planck units. If this
conjecture is true (in the appropriate strong sense), it implies that large field axion
inflation using non-perturbative axion potentials is impossible.

In principle one might also be able to engineer contributions to the scalar potential
that break the shift symmetry completely but still by a controllable small amount. The
weak gravity conjecture does not readily apply to this caseﬂ This idea is called azion
monodromy 46, [73] and will play a key role in what follows.

1.4 Outline of thesis

Let us give a brief outline of this thesis. In chapter 2| we introduce some of the relevant
concepts of cosmology surrounding accelerated expansion. Then, in chapter |3| we intro-
duce some of the concepts and technology of string compactifications that will become
relevant later on. We will outline the idea of the swampland of effective field theories
in section (3.8 and explain the basics of stringy moduli stablization, in particular the
famous KKLT model, in section [3.7

The bulk of this thesis is divided into three chapters: chapter [0] is mostly based
on [2], and devoted to the top-down construction of a class of models of ultralight
axions, with potentially interesting applications to large field inflation and the weak
gravity conjecture for axions. Chapters |4 and |5| are about the question whether there
exist solutions of string theory with a positive cosmological constant, and are based on
[1, B-5]. We now outline their content in some detail.

Tt is by far not clear which version should hold (if any), in particular when many light axions are present.
For discussions about this issue see e.g. |2, 50, E3H7I].
8This is not strictly true as a magnetic version does apply but does not preclude large field inflation [72].
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Figure 1.3: The two-throat system embedded into a larger bulk CY. The bulk S? used to
define the axion field excursion can be thought of as the equator of a three-sphere that reaches
into the two throats.

1.4.1 Is large field inflation possible in string theory?

In chapter [6] following ref. [2], we build on and develop further an idea of [74] in con-
structing explicit models of axion monodromy. We work in the flux landscape of type
IIB string theory, in a regime where fluxes stabilize the shape of the CY (orientifold)
near a so called conifold transition locus in moduli space [40, 41}, [75], as reviewed in sec-
tion [3.6] Such a locus can be thought of as a shared singular locus in the moduli spaces
of two topologically distinct CY manifolds 76 [77], in particular the light spectrum
changes across such loci (see section for details). Moreover, multiple ezponentially
red shifted regions called warped throats [78, [78] are known to develop in this regime
due to backreaction by fluxes [40], as explained in section [3.6.2]

We will argue that the light spectrum on one side of the transition locus contains
light axionic degrees of freedom that we can associate with the light axions on the other
side of the transition locus. The axion mass is a measure of proximity to the transition
locus. Thus, in many cases the EFT arising from such a compactification contains as
light degrees of freedom the moduli of two distinct CY three-folds which might come
as a surprise.

The axion can be thought of as the integral of the Ramond-Ramond (RR) two-form
(U5 axion over a bulk CY representative two-sphere of one of the resolution two-cycles
on the resolved side of the conifold transition. As fluxes stabilize the complex structure
moduli onto the deformed side of the transition this sphere is trivial in homology and
best thought of as an equatorial two-sphere of a non-trivial three-sphere that stretches

down into two or more throats, see figure for an illustration. By Stokes theorem, a
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non-trivial field excursion of the axion leads to the creation of flux/anti-flux pairs at the
IR ends of the throats [74]. We will explain that a ten-dimensional backreaction effect
sets in that drives the geometry away from complex structure moduli space but allows
the local throats to restore supersymmetry locally. The remaining vacuum energy is
mainly due to the twisting’ of the throats against each other and turns out to return
to a periodic one, but with non-trivial finite axion monodromy.

So, somewhat unexpectedly, we are in the position to apply the WGC for axions
to a model of axion monodromy. In fact we find that the conjecture is challenged by
our model. The scalar potential is simply much smaller than one would predict by
naively applying the conjecture. Moreover, the axion decay constant can in many cases
be parametrically super Planckian. Nevertheless, in the cases that we have analyzed
the form of the scalar potential does not admit large field inflation due to generically
dominant short wavelength harmonics in the potential [

We summarize that due to backreaction effects that are truly ten-dimensional in that
they can not be associated with backreaction on CY moduli, a worked out example
of axion monodromy is presented that returns the scalar potential to a periodic form.
At least generically it is compatible with the general expectation that single field large
field inflation is impossible in string theory, while the standard weak gravity conjecture
is violated parametrically.

1.4.2 Do de Sitter vacua exist in string theory?

In chapters [ and [5] we consider the present time expansion of the universe. In ACDM
it is sourced by a positive cosmological constant, leading to a universe that asymptotes
to a de Sitter (dS) universe, as discussed in section 2.3 However, in string theory it
is notoriously difficult to realize this. It is so difficult that another (perhaps the most
dramatic) swampland conjecture has been put forward, the no-dS conjecture [79-81].
It implies that string theory solutions cannot have a positive cosmological constant.
Depending on what precise form of the conjecture holds [82H88] (if any) this could lead
to an in principle observationally testable prediction of a non-trivial equation of state
of dark energy. But as a first step it is of great interest to settle the question whether
string theory possesses vacua with positive cosmological constant, in other words dS
vacua. Again we focus on the flux landscape of type IIB string theory where some of
the most (but not yet fully) convincing arguments for the existence of de Sitter vacua
in string theory have been made. These are called the Kachru-Kallosh-Linde-Trivedi
(KKLT) [41] mechanism and the large volume scenario (LVS) [75]. Both incorporate
perturbative and non-perturbative corrections to the tree level action in an arguably

9Similar effects have been observed in [71].
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self-consistent way. We proceed as follows.

In chapter 4| we explain, following [3| 5] that due to the universal existence of light
moduli fields the question of existence of 4d de Sitter vacua is UV sensitive in a way
that is very much analogous to the UV sensitivity of large field inflation: It is usually
not a question that can be answered from knowledge of only a few Wilson coefficients
in a 4d effective supergravity theory of the light moduli coupled to sectors with SUSY
breaking states such as gauge theories, but rather requires knowledge of a large or even
infinite number of coefficients of Planck-suppressed operators. Furthermore, we outline
a rather generic way how standard ways of uplifting controlled AdS vacua to de Sitter
vacua, i.e. perturbing the former in a controlled way to produce the latter, could (and
in many instances do) fail: As an effective order parameter for supersymmetry breaking
(the uplift potential) is dialed up, backreaction on the light moduli becomes increasingly
severe, lowering their mass-scale. As the effective 4d vacuum energy approaches zero
from below, the light moduli are destabilized. We call this phenomenon uplift-flattening.
We relate this behavior with well-known no-go theorems against dS solutions that can
be derived in various classical corners of string theory [§9HI03] from so-called tadpole
cancellation conditions. We also argue that a class of models that could in principle
suppress the UV sensitivity of uplifts parametrically [I04] is in generic conflict with the
weak gravity conjecture for axions [4], indicating that the question of de Sitter uplifts is
naturally addressed from a top-down perspective. We take this as motivation to study
in detail the KKLT mechanism from a ten-dimensional perspective.

In chapter [5| we explain how the KKLT mechanism, originally proposed from a four-
dimensional perspective, is lifted to ten-dimensional solutions, following [1I, 5, LO5HIT0].
All no-go theorems against the existence of de Sitter vacua in type IIB string theory
that we are aware of are evaded in principle. More so, we argue that the original no-go
statements even can be turned around to confirm the form of the four-dimensional
KKLT model in a non-trivial way [II, 110] H We take this as evidence that uplift
flattening is suppressed efficiently in this particular model, enforcing its status as one
of the leading candidates for controlled dS vacua in string theory.

In contrast, following [I], we point out that nevertheless the so called warped uplifts
employed in KKLT can at best work marginally due to the generic loss of paramet-
ric control over the ten-dimensional supergravity approximation in the regime of 4d
parameter space where an uplift to dS is believed to occur. This is not related with
uplift flattening, but rather due to parametric control problems encountered already in
the supersymmetric KKLT vacua once the 10d flux geometry has been engineered to
allow for sufficiently small warped uplifts. In the non-marginal regime where the 10d

"Note that the authors of [ITI] come to the opposite conclusion. We will outline the discrepancy in chapter

Bt
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geometry is parametrically controlled they would lead to run-away solutions only.

It is not obvious if the last point carries over to other uplifting mechanisms. As-
suming it does, we speculate on the physical meaning. One may for instance take it as
evidence for the no-dS conjecture, but there are many other possibilities: For instance,
de Sitter vacua might be marginal phenomena that cannot be obtained from supersym-
metric AdS vacua by a small perturbation, or they might just lie near the interior of
moduli space.

Despite the open questions that remain we are confident that in the near future
at least the viability of the KKLT mechanism for generating de Sitter vacua in string

theory can be settled to a satisfactory degree.

1.5 Conventions

Throughout this thesis we work in units A = ¢ = kg = 1, and with 'mostly plus’ metric
conventions n = (—,+,--- ,+). Ten-dimensional indices are capital roman M, N, ... =
0,...,9, four-dimensional ones are greek pu,v = 0,...,3, and internal indices are lower
case roman 7, = 4,...,9. Moreover we will often choose to express four-dimensional
quantities in units Mp = 1, while ten-dimensional quantities are expressed in units
ls = 1, using the 10d Finstein frame metric. We will sometimes make exceptions of the
latter rule by using the string frame metric instead. The two are related by a dilaton

dependent Weyl rescaling,

_9
GMN|Einstein =e 2 GMN’string . (15)

The norm of a (complex) p-form F), with indices Fyy,,.. a, is defined as

1——
|E,|* = EFMLM,MPFM“"MP . (1.6)



Chapter 2

Inflation and dark energy

In this section we will give a slightly more detailed account of what we know about
dark energy and the theory of inflation. We will focus on the aspects that will become
relevant in this thesis. As we observe our universe to be homogeneous and isotropic
on very large scales it is appropriate to describe the geometry of the universe with a

Friedmann-Lemaitre-Robertson-Walker (FLRW) metric with line element

2

1 —kr?

ds®> = —dt* + a(t)? ( + TQdQ?gz) : (2.1)
where a(t) is the scale factor that encodes the growth of the spatial slices with time
and is conveniently set to one when evaluated today. By isotropy and homogeneity the
spatial slices are fixed to flat space R® (k = 0), a three-dimensional sphere (k > 0), or
three-dimensional hyperbolic space (k < 0), and k encodes the spatial curvature. With
this ansatz, and in the presence of a homogeneous and isotropic fluid with energy density
p and pressure P, Einstein’s equations are solved provided Friedmann’s equations are

solved,
. 2 .
a p k a p+ 3P
HtQE — — __’ —:——7 2.2
(t) (a) 3IME a? a 6M2 (22)
where we have introduced the Hubble parameter H(¢). It is useful to divide the cos-
mological fluid into four components. On the one hand, non-relativistic matter is
essentially pressure-less P = 0, and dilutes with the volume growth of the spatial

slices, i.e. p™ = ppra=.

On the other hand, relativistic matter and radiation (in
short radiation) have an approximately trace-less stress energy tensor, so p{") = 3P,
On top of the volume dilution relativistic energy is red-shifted by a scale factor, so

pl) = pg’)a*‘l. Moreover, spatial curvature appears in Friedmann’s equations as a fluid

13
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with pressure P*) = —%p(k), and

P\ = o =P 4 (2.3)

Finally, a cosmological constant (cc) has a stress energy tensor proportional to the
metric, so in particular its energy and pressure are constant over time and satisfy
ple) = — Pl For a positive cosmological constant, the energy density is positive

while the pressure is negative. We can now write Friedmann’s first equation as
H(t)* = H} (Q’"cf4 + Qa3+ QFa™? + Qcc) , (2.4)

where Hy ~ 70%“11\/Ipc_1 is the Hubble constant we measure toda [112], and Qrm-k.ce)
is the fraction of energy density supplied by a given component today. It is a crucial
observational fact [I12] that today our universe is approximately flat Q% < 0.2%, and
a positive cosmological constant (or maybe a slightly different version of dark energy)
plays an important but not yet completely dominating role, Q° ~ 70%. This is inter-
esting because due to the different scaling behaviors of the cosmological components it
means that dark energy will dominate in the future while matter and radiation have
dominated in the past. Curvature however never did and never will play an important
role. This is easy to see: during matter domination which started near the time of re-
combination (a"¢ ~ 1073), the relative contribution of curvature to the energy budget
of the universe decreased linearly in the scale factor, while in the preceding radiation
dominated era it even decreased quadratically. So we get that at scale factors a, < a"*¢,

rec . 2 T 2 10_30 T* = TeV
aF < 10722 (f) ~ 10 (TO) ~e (2.5)
* 10 T, = Acur,

using Ty ~ 2.7K ~ 2.3x107%eV. So, in the early universe its contribution to the energy
budget must have been truly minuscule. This is the flatness puzzle of the standard Big
Bang theory. In the early times of the universe radiation dominated the energy budget
of the universe, until it was succeeded by matter at the time of recombination. Only
now, dark energy is taking over. During these three phases the scale factor evolved as

t/2 during radiation domination ,
a(t) o< § t2/3 during matter domination , (2.6)

ef* ' H = const. during domination by a cosmological constant .

!There is actually a > 3¢ tension between the one inferred from CMB data [I12] and the one from local
redshift measurements [113], see e.g. [114] for a discussion.
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2.1 The horizon problem

An even more severe problem is the horizon problem. This arises as follows. The
maximum co-moving distance that a signal can traverse (the co-moving horizon) in a

time interval [t;,¢] is given by

. ty dt loga(ty) .
max(Az)|! = / s /1 Ao @) (2.7)
t; ogal(t;

which is the integral of the co-moving Hubble radius (aH)™' over the logarithm of the
scale factor. (aH)™!' quantifies the co-moving distance that can be traveled within an
e-fold of cosmological expansion. The co-moving horizon gives us the maximal size of a
causally connected region of space at a given timeE] From Friedmann’s second equation
it is apparent that if all sources satisfy the strong energy condition p+3P > 0, one has
that

%(aH)—l > 0. (2.8)
While a cosmological constant violates the strong energy condition it has only become
relevant rather recently. So within most of the standard cosmological history the co-
moving Hubble radius has grown. One might ask, what is the maximal co-moving
distance that a signal could have traversed between the initial singularity and a given
time t*, say the time of recombination. It is easy to convince oneself that in the standard
Big Bang cosmology with only standard matter and radiation sources, the integral is
dominated by late times, so that the co-moving horizon at the time of recombination is
of order the co-moving Hubble radius at that time. This is a problem because the CMB
that we measure today is a picture of a large (of the order (aH) !|,) patch of the
universe at the time of recombination.ﬁ] We can compare the co-moving Hubble radius
today with the one at the time of recombination (at red-shift z,... = a, .l — 1 ~ 1100).
It is bigger by a factor of order arl? ~ 33 so one finds that the part of the universe
we observe through the CMB should have consisted of order a2 ~ 3 x 104 causally
disconnected regions at the time of recombination. In other words we would expect
that the signals we receive from two such regions (which correspond to regions in the
sky that are separated by more than a degree) have nothing in common whatsoever.
We observe quite the contrary: On all scales that we can observe the temperature
of the CMB is the same to one part in 105 (see again Figure . Moreover, the tiny

temperature fluctuations are correlated on all scales. This mystery is called the horizon

2I.e. all pairs of points in the interior have overlapping past light cones.
3This is because when neutral hydrogen atoms formed electric charges where screened and photons could
freely propagate.
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problem and it is far worse than the flatness problem. Declaring it to be a coincidence
amounts to finely tuning a huge number of relations among the CMB observables while

the flatness problem only means tuning one number small.

2.2 Inflation

Inflation solves this problem by postulating an era before radiation domination where
the universe was dominated by an energy that is much like the cosmological constant
today. This idea goes back to A. Guth [20] but its modern version that we will explain
was invented by A. Linde [2I], A. Albrecht and P. Steinhardt [22]. Crucially, it is an
era with shrinking Hubble sphere,

d

dt(aH) <0, ie da>0. (2.9)

Such an era of accelerated expansion (provided it lasts long enough) allows us to extend
the time between the initial singularity and radiation domination to make all past light-
cones emanating from the CMB patch at the time of recombination intersect before they
hit the initial singularity. One may take eq. as the definition of inflation. Note
that it implies that the Hubble rate of expansion varies slowly over a Hubble time,

H
€=—1n <1, (2.10)
the ¢ = 0 limit corresponding precisely to the exponential expansion as sourced by a
cosmological constant. Thus, one might say we are entering a new era of inflation just
now. However, during the early epoch of inflation € could not have been truly zero as
inflation must have ended after a finite number of e-foldings.
The simplest way to implement this explicitly is to postulate the existence of a
further scalar degree of freedom ¢(z) called the inflaton, minimally coupled to gravity.
The relevant terms in the action are

5= [dwy=g ( Mg~ ooy - (d))), (2.11)

with Ricci scalar R and inflaton potential V' (¢). The stress-energy associated with the

scalar field enters Friedman’s equations with energy density and pressure
p = cb +V(g), P™= 5(/52 — V(o). (2.12)

It is apparent that in the limit of vanishing kinetic energy %qbQ < V(¢) the scalar field
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sector contributes just like a cosmological constant, so this is the e = 0 limit. Since one
would like inflation to end after a finite time while giving lots of expansion before, one
is drawn to the case ¢ < 1. Whether or not such a limit can be taken (and sustained
for a sufficient period of time) is of course dictated by the dynamics of the scalar field,

via its equation of motion

b+3H)=—-V'"(9). (2.13)
Using this one computes
Lig _ .
4 € ¢
= 2T __ =_— =2 — 2.14
€ H2M12;. , and n i €+ Ho , ( )

where n measures the relative change in € over a Hubble time. As expected one has
e < 1 if the kinetic energy is negligible in comparison with the potential. 7 is small
if the second derivative term in the scalar equations of motion can be neglected in
comparison with the first derivative term. We really should require it to be small as
otherwise inflation is not prolonged. In this case, the second order differential equation

collapses to a first order one

i Mp V'(9) L (V@Y _,
VRV 7 R 2MP<V<¢>) = (2.15)

Clearly we need that the scalar potential satisfies the so-called first slow roll condition
ey < 1. But in order for |n| < 1 to hold as well, we also need that

V'(9)
(¢)

and hence the scalar potential must also satisfy the second slow roll condition |ny| < 1.

Ry ey <1, ny =Mp (2.16)

Hé

We conclude that if at some point ¢q in field space the two slow roll conditions are
satisfied the expansion of the universe will be nearly exponential with in particular
a shrinking Hubble sphere. Such an era of inflationary expansion is called slow-roll
inflation. Such a regime is particularly simple to handle computationally because the
scalar field evolution is effectively determined by a first order differential equation. We
can go on and compute the number of e-folds of slow roll inflation that occur in an
interval of field space [¢1, ¢o]

P2
N((on.oal) = [ et = [ | j;—d)%z_ (2.17)

Crucially, since € = €y during slow-roll, the number of e-folds of inflation can be
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determined directly from knowledge of the scalar potential. Near a minimum of the
scalar potential, the slow roll conditions are violated and the field starts to oscillate.
Coupling the inflaton to standard model fields will lead to particle production, called
re-heating, thus initiating the standard Big Bang history.

Usually, it is assumed that the scale of inflation Ej,; = (3H*M32)Y/* lies between
the TeV and the GUT scale, so that the universe is reheated to sufficiently high tem-
peratures so that e.g. baryogenesis can proceedﬁ

In order to solve the horizon problem, the number of e-folds of inflation has to be
large enough. It is simple to estimate this: As (by definition) the co-moving Hubble
radius shrinks during inflation the co-moving horizon is dominated by the
co-moving Hubble radius at the beginning of inflation. So, the latter must be of order
the co-moving Hubble radius of today so that all the patches of the early universe that
we observe in the CMB today can be causally connected. The number of e-folds of
inflation relate this to the Hubble radius at the end of inflation,

Aend (abeginHinf)_l) ( (CLOHO)_l )
N =1lo =log| ———m— ] >log| —————— 2.18
8 (abegin> 8 ( (@endHinf)il 8 (@endHinf)il ( )

Assuming for simplicity that between the end of inflation and today the universe was

dominated by radiation a(t) ~ t'/2, one has H ~ 1/t ~ a~2, so we need

N > log (a.)) = log (—f) ~ ! , (2.19)
60 FEins ~ Agur,

in order to solve the horizon problem. As during inflation the relative importance of
curvature drops as e~ 2V, by comparison with eq. one notices that inflation solves
the horizon and flatness problems simultaneously. But, the theory of inflation not
only solves these puzzles but it actually predicts the precise form of the CMB power
spectrum. In order to explain this, we need to consider quantum fluctuations around
the inflationary background solution. In other words, we consider both metric and
scalar perturbations around the FRLW metric and scalar field solution,

G () = g, (t) + 0 (), () = ¢°(t) + 69(x) . (2.20)

This parametrization contains a lot of redundancies that should be eliminated by an
appropriate gauge fixing. Intuitively, this goes as follows. First, the value of the scalar

“We do not know how baryogenesis worked but typical models require temperatures at least of order the
TeV scale to operate. See e.g. [115] for a review.
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ﬁeldﬂ serves as a measure of how far inflation has progressed. As such, perturbations
d¢(x) can always be gauged away by choice of an appropriately adapted spatial slicing.
In other words, ¢(z) is the Goldstone boson of spontaneously broken time translation
invariance [I16]. It is ’eaten’ by the metric via a variant of the Higgs mechanism.
Setting 6¢ = 0 amounts to going to unitary gauge. The physical perturbations are
then all encoded in the metric,

ds® = —dt* + a(t)* R0 (6 + 0glT (¢, ) da'da? (2.21)

where R (¢, z) parametrizes the scalar curvature perturbation, while ¢ ggT(t, x) encodes
the tensor modesﬁ Plugging this into the action and expanding to 2nd order, one
obtains a scalar kinetic term

S5 M%/d% < (7'32 - 2—%(@72)2) , (2.22)
where ¢, is the speed of sound which is trivial in slow-roll inflation, ¢, = 1. Note that
the curvature perturbation is massless. As € is approximately constant one may absorb
all pre-factors into the definition of a canonically normalized field v(t,z) and proceed
with standard canonical quantization. As usual, one Fourier expands in terms of spatial
harmonics and obtains time dependent mode functions v (t) that satisfy the (classical)
Mukhanov-Sasaki equation [I17-119]

k2
vy + SHvU, + Uk = 0, (2.23)
a

where k is a co-moving wave Vector. The physical wave vector k /a is time dependent
due to the spatial expansion. This is a classical damped oscillator equation with (time
dependent) frequency w? = k*/a?, and Hubble-friction 3H. During slow-roll inflation
H =~ const while the oscillator frequency drops according to the usual red-shifting. For
the short wavelength modes with k/a > H the friction term is irrelevant so they will
evolve according to the un-damped oscillator equation. In canonical quantization the
mode functions are promoted to operators v, and in the oscillator ground state the
two-point function is

3 1

(pO) = 27?283 (k + k'), with  |o]* = a?—

2.24
oo (2.24)

5We assume that there is only a single one.
°Tt is trace-less (g = 0) and transverse (9;g;;” = 0).
"Here we are neglecting the time dependence of e.
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For wave vectors k/a > H the scale factor varies very little over the oscillation period
of the oscillator so the expansion of the universe does not disturb its ground state (i.e.
the ground state evolves adiabatically). Due to the inflationary expansion the physical
wavelength of a given mode is stretched until horizon crossing,

kja=H. (2.25)

Once the wavelength is stretched to super horizon scales the amplitude is frozen at the
value it took at horizon crossing,

log|? = (2.26)

2 k3
By a change in normalization this corresponds to the power spectrum of the curvature
perturbation R(¢,x),

1 H?

RiRi) = (27)%| Re|*0°(k + K ith |Rp*=——n. 2.27
(ReRy) = (2m)°|Ry[76"(k + k'), with  [Ry] Yy (2.27)
The dimensionless power spectrum is conveniently defined as
k3 2 1 H? 1 H?*1

A% (k) " (2.28)

~ ot 872 M2|H|  Sm2Mpe
In slow roll inflation, all quantities on the r.h. side change slowly over an e-fold of
inflation so the power spectrum is roughly scale-invariant. It is easy to quantify the
departure from exact scale invariance to leading order in the slow roll approximation
from

_ OJlog A%

ns—lzaTgk:—2€_77+...:27]V—6€V+..., (229)

where n, ~ 1 is the spectral tilt, and we have expressed the r.h. side in terms of
the potential slow roll parameters (ey,ny). Crucially, after reheating the curvature
perturbation translated into the tiny temperature perturbations that we observe in the
CMB, and served as the seeds for structure formation. Thus, we actually know it very
well (see Figure ! It is indeed very well described by an almost scale invariant
spectrum with

AZ (k) = (210 £0.03) x 107°,  n, = 0.965 % 0.004, (2.30)

at 68% confidence [27]. Here, k. is a representative scale (called the Pivot scale) that
is accessed by the Planck satellite. Note that the angular power spectrum does not
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Figure 2.1: The angular power spectrum of the CMB. One notices an overall small tilt,
distorted by acoustic peaks. The blue curve is the theoretical prediction while the red dots
are the measured data points with tiny error bars, and yet remarkably compatible with theory.

look scale invariant at all. The peaks that distort the otherwise almost scale invariant
spectrum are actually predicted by inflation [120]: After the end of inflation the Hubble
sphere started to grow again and one after the other modes that had left the horizon
during the inflationary expansion reentered the horizon and started to oscillate. As all
modes with the same magnitude of the co-moving wave vector started oscillating at the
same time they lead to coherent oscillations in the baryon photon plasma of the early
universe. This effect is predicted to lead precisely to the peaks that we observe which
is the perhaps greatest triumph of the theory of inflation. We should emphasize that
with current CMB measurements we really only probe about 2500 multipole moments.
In other words we observe the earliest about log(2500) ~ 8 e-folds of inflation of the
ones we can observe in principle (say, the last 40 — 60 e-folds). This is due to the fact
that modes that had left the horizon earlier have not yet reentered the horizon while
the ones that left the horizon later we cannot resolve (yet).

Next, it is a straightforward exercise to obtain the power spectrum of the tensor

modes. The result is

2 H?

A(k) = =—. (2.31)
h 72 M3

Interestingly, the tensor mode power spectrum is a direct measure for the inflationary

Hubble scale H. Moreover, the relative strength of tensor modes is conveniently written
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in terms of the tensor-to-scalar ratio

A (k)
AR (k)

r(k) = = 16e. (2.32)

So far, from measurements of the CMB polarization, r = r(k,) has been bounded to be
[121]
r <0.06, (2.33)

at 95% confidence. As the scalar power spectrum has been measured we can express
the inflationary Hubble scale and the energy scale of inflation in terms of r,

1/4
H=3x107%, /O—ZMP,, Finp =8 x 1073 (J—1> Mp. (2.34)

Thus, for tensor modes to be detectable in principle, inflation must have occured at
the GUT scale, Ejp ~ Agur, and H ~ 107°Mp [26]. Assuming single field slow roll
inflation it turns out that if tensor modes can be detected we learn about the field
range traversed during the inflationary history. This is due to the famous Lyth bound
[26] which is easily derived: The field range in Planck units traversed in the last N,
e-folds of inflation is given by

Agzﬁ_ N. B N. \/W
Tl dN\/i_/O AN\ =5 (2.35)

If a non-vanishing tensor-to-scalar ratio was observed, it would have to satisfy r > 1073,
Assuming slow-roll only in the observed window of ~ 8 e-folds of inflation, the traversed
field distance would be constrained as

A¢ r

—= > 8-~ 107", 2.36

28 (2:36)
This is an extremely conservative bound as we have only used the e-folds of inflation
that we really have observed. This is an important insight:

Lyth bound [26]: Models of single field inflation that predict observable tensor

modes in the CMB feature Planckian field excursions traversed during inflation.

So under what circumstances can the slow roll conditions be satisfied? Broadly

speaking there two categories of models. The large field models feature simple scalar
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Figure 2.2: Constraints in the ns — r plane with 1o and 2¢ contours according to combined
Planck [27], BICEP+Keck [121] analysis. Figure taken from [27].

potentials. As an example we take the so-called chaotic inflation models

V(o) 2% v ( ¢ )

ST (2.37)

for some O(1) asymptotic power p. Although such potentials do not look very flat, due
to the large Hubble friction the slow roll conditions are satisfied at large field values

¢ > Mp,
p* [ Mp\? Mp\?
v () e ()

In order to realize at least 60 e-folds of inflation, the initial field excursion must be

(2.38)

bigger than ~ O(10),/p, so these models really feature super-Planckian field excursions
¢ > Mp. Moreover they predict

ne—1~—(24p)/120, r~p/l5. (2.39)

This also means that most of them are ruled out at (more than) 95% confidence by
experiment [27, 121] (see Figure .2). In other words, although slow roll inflation is
remarkably consistent with experiment, the types of potentials that one would naively
right down are mostly ruled out experimentally. In contrast, in small field models
most of the inflationary history occurs near a special point in field space around which

the form of the scalar potential has to be finely tuned in order to produce prolonged
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inflation. These types of models typically predict unobservable tensor modes. Finally,
we would like to highlight again the main point:

Theories that cannot host large field inflation are falsifiable. They can be ruled out
by a detection of primordial tensor modes in the CMB.

2.3 Dark energy (the cosmological constant?)

It is the perhaps most shocking experimental result of recent history that a big part of
the energy budget of the universe is supplied by dark energy with an equation of state
compatible with that of a positive cosmological constant [I7, [I8]. Thus, the expansion
of our universe is accelerating (again). In fact, the mysterious dark energy that seems
to drive this has just about now started to become the dominant contribution to the
energy budget of the universe. The simplest form of dark energy in an effective field
theory of gravity is a positive cosmological constant (cc) A. This simply corresponds to

a positive scalar potential V; = M2A. If dominant, it sources an exponential expansion
a(t) oc exp(Hot), Hi=A/3. (2.40)

The FLRW universe with such a scale factor is actually a patch of so-called de-Sitter
space (dS), which is one of only three mazimally-symmetric space—timesﬁ

Roughly speaking there are two ways to infer the existence of dark energy. Histor-
ically, it was first inferred from the distance to red-shift relation of so called type TA
supernovae [17, 18] (see Figure for the historic data and a modern version). Let
us briefly explain how this works: Measuring the red-shift to distance relation of dis-
tant objects allows us to reconstruct the evolution of the scale factor in the past which
can be compared with theory. However, the distance of a generic source is in general
hard to determine. For so called standard candles the distance can be determined as a
function of spatical curvature because (by definition) they emit their light at a known

luminosity’] Type IA supernovae are believed to be such standard candles.

8The other two options are anti-de-Sitter space (AdS), corresponding to a negative cc, and Minkowski
space R with vanishing cc. They are all isotropic in that their isometry algebras contain so(1, 3), completed
by four additional generators that locally look like translations in space and time.

9The energy flux from a distant source is given by

I sin(Vkdn)/VEk k>0
F= Tnd? with dy=a(ts) -7 k=0 (2.41)

sinh(/|k|dm)/\/k] k<0,

where L is the luminosity, and the metric distance d,, is the distance from the source as measured with the
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Figure 2.3: Left: The historical distance to red-shift relation of type A supernovae adopted
from Perlmutter et al [I7]. The results indicated for the first time a positive cosmological
constant. Plotted is the apparent magnitude versus red-shift. Right: Combined modern data
as depicted in [122] (on log scale).

Up until 1998 it would have seemed possible that all of the energy budget of the
universe is supplied by (negative) spatial curvature. As a sizable amount of curvature
is incompatible with the theory of inflation, the detection of dark energy is also a
triumph for inflation. Today, the most accurate measurements of dark energy come
from CMB measurements combined with galaxy surveyﬂ and supernova data. If one
is just interested in the value of the cosmological constant, assuming validity of ACDM,
the CMB gives the answer right away: The relevant scale in the problem is the sound
horizon within the baryon photon fluid around the time of recombination which is
computed from standard model physics. At this time the baryon acoustic oscillations
were frozen (because photons decoupled) and imprinted a distortion into both the CMB
as well as matter density. Then, from the position of the first baryon acoustic peak in
the CMB we learn the angular scale associated to the BAO scale which allows us to
conclude that our universe is spatially flat, i.e. & = 0. We learn that about 70% of the
energy budget must be filled up with whatever is not matter, radiation or curvature,

i.e. by assumption a positive cosmological constant. According to Planck 2018 [112],
Qe = 0.685 £ 0.007, (2.42)

at 68% confidence. Using the information of spatial flatness the supernova data becomes

three-metric 15;;2 + 7”2dQQSQ, and d; is called the luminosity distance. The two powers of the scale factor

(evaluated at emission time ¢.) come from the red-shifting of the photon energy and the red-shifted rate of
emission. By measuring F' and a(t.) while knowing L from the theory of supernova explosions one learns
about the distance as a function of spatial curvature k.

such as the Sloan Digital Sky Survey (SDSS).
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Figure 2.4: Constraints on alternative models of late time expansion using an ansatz w(t) =
wo + (1 — a(t))w,, as depicted in [I12]. CMB Physics alone does not constrain the nature of
dark energy very much (purple contours). Only by combining it with BAO and supernovae
data (turquoise contours) the tight bounds can be obtained.

a very powerful tool as it can be used to uniquely reconstruct the scale factor. Even
more data is supplied by galaxy surveys: The imprint of the scale of BAO can be
recovered in sufficiently large samples of galaxies of equal redshift. As this scale is
known (it is our so called standard ruler) we can determine the physical distance of
galaxies of any given redshift, so again we can reconstruct the scale factor.

Putting everything together, alternative models of time-varying dark energy are
constrained (see Figure . For a time independent equation of state parameter

de
we = 1; — we learn that

w=—1.03+0.03, (2.43)

at 68% confidence level. This is of course compatible with a cosmological constant
(which has w® = —1). It is useful to define a cosmological constant as a time inde-
pendent fluid with equation of state parameter —1. Dark energy in principle gives us
another handle on constraining theories of quantum gravity. If de Sitter vacua do not
exist in a candidate theory of quantum gravity, the equation of state parameter would
have to deviate from —1 in all its solutions. If it can be derived by how much it has
to deviate the theory is again falsifiable. How far the bounds have to be tightened of
course depends on the precise properties of the candidate theory of quantum gravity.



Chapter 3
String theory and the landscape

The basic idea of string theory is to resolve the point-like ’fundamental’ objects of QFT
in terms of extended vibrating one-dimensional objects called strings. Historically, it
was discovered almost by accident: First introduced as a theory for the strong interac-
tion [123],E] it was soon realized that it was something profoundly unexpected: A theory
of quantum gravity [124]. We will sketch some of its properties now[]

Scattering between strings is described by the smooth splitting and joining of strings
as depicted in Figure[3.1} As such it is naturally UV-finite due to the delocalized nature
of the interaction ’vertices’F| Moreover, a propagating massless spin-2 graviton is a
unavoidably part of the spectrum.

The perhaps most fundamental starting point that we have is a definition of string
perturbation theory as a summing prescription over all intermediate worldsheet geome-
tries that connect the in with the out state,

, [ DhDX--- iS[h, X,
iSIhX
o Vol(G) ’

9

(out|in)” = (3.1)
where X/ (€%) (M =0,...,D—1,a=0,1) denotes the ambient space embedding of the
worldsheet and h(£%) is an auxiliary worldsheet metric that upon classical integrating
out becomes the induced worldsheet metric, and S|h, X, ...] is a local worldsheet action.
G denotes the group of local worldsheet symmetries that have to be modded out. The

worldsheet action always contains the bosonic Polyakov action

T
Sp = 9 / o/ —=hnunh® 9, XM 9, XN . (3:2)
>

LA meson looks like a spinning (open) string after all: The endpoints are what we now know to be a quark
and anti-quark while the interior of the effective string is the confining flux tube connecting the pair.

2For self-contained introductions to string theory, and string phenomenology see e.g. [28, B35, 125].

3UV finiteness has been shown explicitly to two-loop order [126].

27
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Figure 3.1: A two-to-two string scattering process at one-loop level. The point-like field
theory scattering vertex is effectively smeared out which is key to the UV finiteness of string
theory.

but also fermionic terms. Here,

12
=T (3.3)

T
2 12

is the string tension, and [, is called the string length.

The only worldsheet theories we know that give rise to consistent (i.e. tachyon-free)
spacetime theories possess some amount of (local) worldsheet supersymmetry. Then, G
is a 2d (local) superconformal group. Turning this intuitive definition into a well defined
one requires gauge fixing a la Faddeev-Popov. After gauge fixing the worldsheet theory
becomes a superconformal field theory (SCFT).

Due to the operator state correspondence the stringy in/out states are created via
the insertion of vertex operators V; so we can define a perturbative expansion of an
n-point string scattering amplitude A4,, as

An:Z / (DX - )Vy - Ve ooy (3.4)

9=

where e = g, is called the string coupling that controls the perturbation theory,
Syl X, ...] is the gauge fixed worldsheet action, and at each level in perturbation theory
the worldsheet is fixed to be a Riemann surface with g handles, and n holes, equipped
with an arbitrarily gauge fixed metric R°. ¥ = 2 — 2¢g — n is the Euler number. From
the spacetime perspective g is the number of loops.

For consistency of this prescription the CFT should make sense when placed on
arbitrary Riemann surfaces. This gives rise to a number of requirements. First, on a
generic Riemann surface the conformal symmetry is anomalous (the theory is incon-
sistent) unless the dimension of spacetime is critical, D = 10. Additional consistency

requirements arise at tree-level and at one-loop level: Tree-level corresponds to a CFT
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NS-NS R-R Yang-Mills sector
type IIA Gun, Bun,e® (C1)m, (C3)mnp -
type I1B Gun, Bun,e? | Co, (Co)mn, (Ca)mnpg -
type I Gun, e (Co) N Ajs in vector of SO(32)
heterotic SO(32) | Gy, Bun, e® - Aps in vector of SO(32)
heterotic Fg x Es | Gun, Bun,e® - Ajs in adjoint of Eg x Eg

Figure 3.2: The ten-dimensional bosonic massless spectrum of the five string theories. Gy
is the metric, e? is the dilaton, and By is a two form gauge field called the Kalb-Ramond
or NS two form. The fields C, are the RR p-form gauge potentials (Cy is constrained to have
self-dual field strength), and Ays denotes the Yang-Mills vector fields.

on the sphere, and the operator product expansion is generically not well-defined due to
monodromies that arise when two operators encircle each other. The space-time parti-
tion function at one-loop level involves summation over all inequivalent worldsheet tori
characterized by its complex structure 7 modulo Si(2,Z). For consistency the result
should not depend on our choice of fundamental domain of SI(2,Z). This requirement
is called modular invariance.

Finally, there should not exist a spacetime tachyon because otherwise the ten-
dimensional spacetime 'vacuum’ decays immediately. All these constraints are satisfied
if the spectrum is truncated by the so-called Gliozzi-Scherk-Olive (GSO) projection
[127]. This leaves us with six ten-dimensional string theories. Two of these are N' = 2
supersymmetric in ten dimensions and descend from the same N = (1,1) worldsheet
theory but with different GSO projection. They are called type ITA and type IIB.
Another one is obtained by further projecting the type IIB theory and allowing also for
open strings. It is an N' = 1 supersymmetric theory in ten dimensions called the type I
theory and contains an open string Yang-Mills sector with gauge group SO(32). Three
heterotic theories are obtained by starting from a worldsheet theory with NV = (1,0)
supersymmetry [128]. These give rise to the two ten-dimensional theories with N/ = 1
supersymmetry, with gauge groups SO(32) and FEg x Eg respectively. Finally there is
a non-supersymmetric one with gauge group O(16)xO(16) [33]. From the low energy
limit of string scattering amplitudes with only massless in/out states one can deduce
the effective 10d spacetime actions of the perturbative string theories. These are pre-
cisely all five ten-dimensional supergravity theories which go by the same names, and a
non-supersymmetric one with large ten-dimensional scalar potential. In Figure we
have listed the massless bosonic spectrum of the five supersymmetric string theories.

It is important to note that the ten-dimensional theories enjoy (local) p-form gauge
symmetries associated with the form potentials B and C,. The fundamental’ string is
electrically charged with respect to the NS two form B, while at the perturbative level
nothing is charged under the RR gauge symmetries.
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3.1 String dualities

All ten-dimensional string theories come equipped with a string coupling g; = e that
controls the string loop expansion we started with. It is worthwhile noting that we have
not said what we are really expanding but have simply written the prescription to sum
over an infinite number of terms. Clearly, this makes sense only when g, < 1. But even
at small string coupling the expansion is not convergent just as the perturbative expan-
sion in QFT is at most an asymptotic one. So really, we have defined approximation
schemes rather than full theories. It is crucial to appreciate that expectation values
of the ten-dimensional spacetime fields can be thought of as coherent superpositions
of the massless string modes. At least for non-trivial vev’s of the NS-NS fields we can
even write down a generalization of the Polyakov action (called the non-linear o-model)
that makes this manifest. In particular, the string coupling e? is really the expectation
value of the dilaton we have listed in Figure

As the string coupling is the vev of a 10d field one should be able change its value,
and in particular make it large. But what does this mean? This question led to the
discovery of string dualities in the 1990s that is now called the second superstring
revolution. At the ten-dimensional level there are two strong/weak coupling dualities,
so called S-dualities. First, the type IIB theory is actually self-dual with respect to the
duality group SL(2,Z) which contains S-dualities [129]. Second, the type I theory is
S-dual to the heterotic SO(32) theory [130]. The strong coupling limits of the Fg x
Eg heterotic string and the type IIA theory are something much more radical and
seem to have nothing to do with strings [I30HI32]: They can both be thought of
as compactifications of an eleven-dimensional theory called M-theory that has 11d
supergravity as its low-energy limit. The heterotic Fg x Eg arises via compactification
on an interval S'/Z,, while the type ITA theory corresponds to an ordinary circle
compactification. The strong coupling limits are therefore limits of decompactification.
In all cases, one should not consider g5 > 1 as there exists a dual description with string
coupling g5 ~ 1/gs < 1.

More dualities arise by compactifying the ten-dimensional theories to lower dimen-
sions. A circle compactification is sufficient to convince oneself that all five string
theories are dual to each other in one way or another: The type ITA theory compacti-
fied on a circle of circumference L4 is equivalent to the type IIB theory on a circle of
circumference Li;p = 12/ Lrr4 [133,[134]. This is called T-duality and translates a type
ITA string with KK momentum ngx that winds around the circle w times into a type
IIB string with the roles of nxx and w interchanged, i.e.

(nKKy wwinding)|IIA = (wwindinga nKK)|HBo (3-5)
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So there is really just one nine-dimensional theory rather than two. For small circle
radii it is more appropriate to change the duality frame so that the light states have a
geometrical meaning rather than a non-local one. This is the first hint that in string
theory it really does not make sense to consider geometrical distances smaller than a
string length just as it does not make sense to consider large string coupling. In fact,
in string theory there are two perturbative expansions, one of which we have hidden so

far. On top of the string loop expansion in g; we also expand in powers of
o' /R, (3.6)

where Ry is a typical curvature length-scale of the background. Roughly speaking this
is because we do not know in general how to determine the effective spacetime action
even at lowest order in the string loop expansion. We can do so order by order in the
o' -expansion. For instance one may expand the non-linear ¢ model generalization of

the Polyakov action

S, = % / oy —h Grn(X)h9,X M9, XN + T, / B(x) + 28 / dov/~hR(h),

47
(3.7)
around the point X = 0 by choosing Riemann normal coordinates such that
GMN =MNMN — gRMPNQ|X:0X X —+ ... (38)

The terms in the expansion give rise to interaction terms on the worldsheet that
generically have non-vanishing g functions. These can be evaluated order by order
in worldsheet perturbation theory. The dimensionless coupling constant in this case is
o' Rynpg, 1.e. curvature in string units. For conformal invariance of the worldsheet
theory all S functions are required to vanish which leads to the spacetime equations of
motion, and hence the effective spacetime action. So the o/ expansion is related to the
perturbative expansion of the worldsheet CF'T. Thus, when curvatures are of order the
string scale, the worldsheet sigma model is strongly coupled. This is by definition the
regime where the o expansion breaks down. For the simple circle compactification of
the type II string we had at our disposal two manifestly equivalent and weakly coupled
(even free) worldsheet descriptions, one for each T-duality frame. This luxury is lost
once we consider compactification manifolds with non-trivial Riemann tensor: At small
compactification volumes of (say) the type IIA string, we do not know how to make
predictions using the type ITA theory but rather should expect that a weakly coupled
type IIB description takes over. For a class of compactifications called Calabi-Yau (CY)
manifolds this phenomenon is rather well understood and is called mirror symmetry
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Figure 3.3: The M-theory star. Type IIB is Si(2,Z) self-dual, and T-dual to type ITA. Type
I arises via an orientifolding of type IIB and is S-dual to the SO(32) heterotic string, which
in turn is T-dual to the Eg x Eg heterotic string. Its low-energy limit can be viewed as the
compactification of 11d supergravity on an interval. Circle compactification of the same, gives
the low energy limit of type ITA.

[135], 136].

Similarly, T-duality connects also the two heterotic theories upon compactification
on a circle (and turning on Wilson lines that break both gauge groups down to SO(16) x
SO(16)) [137, 138]. These duality transformations are commonly expressed via the M-
theory star (see Figure [3.3). It is clear that we should think about the five string
theories as different weak coupling limits of one mother (M-)theory that is yet to be
defined.

Finally, there exist non-perturbative (in gs) (p+1)-dimensional membranes (solitonic
objects) called Dp-branes which are the electric and magnetic charges associated with
the p-form gauge symmetries. At the level of perturbative string theory these are the
rigid objects on which open strings can endﬁ Crucially, one may stack N of these
objects on top of each other to obtain non-abelian gauge sectors that live on the stacks.
Loosely speaking this is because there are N? possibilities to let the two ends of an
open string end on pairs of branes, and each possibility gives rise to one of the vectors
of the adjoint representation of U(NN). With intersecting branes one even obtains bi-
fundamental matter localized on the intersection locus. In type ITA there are Dp branes
with p even while in type IIB p is odd. In the type I theory, there are only D1 and
D5 branes, while in the heterotic theories there are no Dp branesﬁ It was famously

shown by J. Polchinski that these must be viewed as dynamical gravitating objects in

4Their tension blows up as g — 0.
®Note that this matches perfectly with the spectrum of RR form potentials in the five theories.
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their own right [34]. To lowest order in the o’ expansion the effective action of a single
p-brane is

o B 27
Sp — _lp+1 /dp+1x€ ¢\/_(gmn + QWOélfmn) + F / Cp+1 ) (39)

where 27/ Fy = B +27a! Fr, and (gin, Bin) are the pullback of the ten-dimensional
metric and NS two-form onto the brane, and F' = dA is the gauge field strength that
lives on the brane. The second term is called the Chern-Simons (CS) term and encodes
the fact that Dp branes are electric/magnetic charges with respect to the RR form
gauge symmetriesﬁ When placed on non-trivial backgrounds Dp branes also carry in-
duced charges with respect to C,41 with ¢ < p, due to a/-corrections of the CS term
[139, [140].

3.2 The 10d supergravity approximation

In this thesis we will focus on the type IIB corner of string theory, so let us consider
its ten-dimensional supergravity approximation. The low energy effective action (in
Einstein frame) read’|

o 1 ar |° |G 1
_T Doev/—Cl o2 _ _ L2
S1p & Jan, WG (R 2 ‘Im(T) 2Im(7) 4| 5
27 ZG3 VAN G_g .
- /Mm Cy N DIm(r) + fermions, (3.10)

to lowest order in the o/ expansion. Here, G5 is the complex three-form G35 = Fs3— 7 Haj,
and 7 is the axio dilaton 7 = Cj + ie~?. The real field-strengths are defined in terms

of the gauge potentials as

1 1
HgZdBQ, FgZdOQ, F5:d04—502/\H3+§BQ/\F3 (311)

Finally, the equations of motion have to be supplemented by the self-duality constraint

F5 = %F5. The theory enjoys N' = (2,0) (local and chiral) supersymmetry, and p-form

SFor p > 4 the coupling is understood as a magnetic charge w.r.t. Cr_p.
"Note that the mass scale 1/l, as measured with the Einstein frame metric Gay corresponds to the
ten-dimensional Planck scale, and not to the string scale.
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gauge invariance

B, —>B2+dAiVS7 C’Q—>CQ+dA?R7

1 1
Cy — Cy + dAFR + §A§R A Hy — §A§VS AF;. (3.12)

Moreover, at the classical level it is invariant under the global symmetry Si(2,R),

B2 BQ a7’+b . B d c
<C’2> — A <02> , T —> rd with A = (b a) € SI(2,R).  (3.13)

At the quantum level, SI(2,R) must be broken to Sl(2,Z) as can be seen as follows:
Consider for simplicity a ten-dimensional manifold 7% x S* x M; where Mj is an arbitrary

Spin(7) manifold. We may choose a background with non-vanishing field strength

d¢,Ad¢/, @

_ _ 2
Gg = (M TK)ZS (271_)2 o s

(3.14)
where ¢ is the S angle and (¢, ¢”) are the T? angles. This is consistent with the
classical equations of motion and Bianchi identities of the three-forms, and integrates
to I2(M — 1K) over T? x S'. The real numbers (M, K') denote the fluzes on the three-
cycle T? x S'. Now we can consider wrapping a fundamental string (or a D1) world
sheet on the 72 and place at a point in S' x M;. We can ask whether the path integral
of the worldsheet theory is well-defined on such a background, in particular if it is a
single valued function of the S'-position. Due to the CS term in the worldsheet action
the path integral picks up a phase e*™ as ¢ — ¢ + 2, so it is well-defined if K € Z.
The same is true for the RR flux number M E| This argument generalizes to the case of
RR and NS fluxes on general cycles, and is really just the Dirac quantization condition
of monopole charges.

But a generic SI(2,R) transformation takes a consistently quantized pair of flux
numbers to an inconsistent one! Thus, at the quantum level SI(2,R) must be broken

-1 0
we see that for Cy = 0, the S-transformation is a strong/weak coupling transformation

1 1
(at least) down to SI1(2,Z). As SI(2,Z) is generated by T' = (1 (1)) and S = ( 0 ) :

that sends gs to g;'. As a consequence we should really view SI(2,Z) as a discrete
gauged symmetry group, or a duality group [142]. Two field configurations related to
one another by such a transformation are just different descriptions of the same physics.

8This argument does not always go through. In 8k +3 dimensions the fermion measure in the path integral
sometimes has a sign ambiguity that must be canceled by Z + 1/2 valued flux quanta [I41]. But whenever the
configuration without any fluxes is consistent, the fluxes have to be integers.
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It is interesting to note that the theory contains an azion Cj which transforms like
10
a Goldstone boson under the one-parameter subgroup ( ) C Si(2,R) . This is
c

our first encounter with a shift symmetry. Another way to see that SI(2,R) is broken
to SI(2,Z) is to note that there exists a D(—1) brane which is an instanton. In the
euclidean path integral it contributes as e™*-! = e*™" which breaks the axion shift
symmetry down to a discrete one Cy — Cp + 1. Viewing it as a gauge symmetry is
necessary because in type IIB there exist D7 branes which are magnetically charged
under Cy. This means that upon encircling it, the field configuration undergoes a
monodromy M = T. If SI(2,Z) were not gauged, a D7 brane would have no right
to exist! At the non-perturbative level, this means that not only must there exist
fundamental strings and D-branes but there must exist (p, ¢) seven-branes five-branes
and strings. These are simply all the objects that are generated via S1(2,Z) acting on
the ’known’ objects. This includes the (0, 1) five-brane, the NS5 brane, that so far we
have swept under the rugﬂ It is the object magnetically charged under Bs;. The D3
brane and the D9 brane are the only ones that come in just one version.

Finally it will be useful to keep in mind that the magnetically charged objects under
By/C5, the NS5 and D5 branes, can play the role of domain walls in effective four-
dimensional theories. Namely, consider M;y = RY x T3 x T with a D5 brane wrapped
on T4 and spatially extended in the (z',2?) plane in R3. The Bianchi identity of Cs
reads

Al = 125(x3 — 23)d2® A 83 (o — ¢%)doP A dopf A def (3.15)

so the RR flux number associated with T changes by one unit across the 4d domain
wall. In general the D5 wrapped on a three-cycle is a domain wall across which the

flux quantum of Fj on the dual three-cycle changes by one.m

3.3 Calabi-Yau compactifications

We have repeatedly stated that string theory is ten-dimensional, while we have never
observed anything but four dimensions of spacetime. As string theory is a gravitational
theory, this is no need to worry. One may simply try to find non-trivial backgrounds
with 10d spacetimes that factor as My = My X Mg, i.e. into a four-dimensional one
M, (say a FRWL universe), times a (possibly time dependent) internal six-dimensional

space Mg. The simplest such solutions are torus compactifications My = RY3 x T,

9There is also an NS5 brane in the heterotic theories.

OThere is a natural duality map between homology classes of p-cycles and d — p cycles due to the non-
degenerate pairing giving by the intersection map Hy(X,Z) x Hqg_p(X,Z) — Z, where d is the dimension of
the compact manifold, see e.g. chapter three of [143].
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with neither field strengths nor curvature. If we consider energies far below the inverse
torus size, all physics is four-dimensional. While this suffices to establish the existence of
four-dimensional string vacua, these certainly have almost nothing to do with the world
we live in. Toroidal compactification preserves all the 32 supercharges we started with,
so the low energy effective theory is N' = 8 supergravity. In order to reduce the amount
of supersymmetry we should try to find less trivial solutions. As a first step, we should
find solutions with non-trivial Riemann tensor, that nevertheless solve Einsteins vacuum
equations Ry, ny = 0. It is actually surprisingly hard to find metrics that do, which are
not tori (in fact no analytical metric is known to date). However, a lot of progress
can be made with an indirect approach. Namely one can try to find manifolds that are
known to admit a Ricci-flat metric, although the explicit metric remains elusive[’’] Such
examples are indeed known and they go by the name of Calabi-Yau (CY) threefolds.
First, such manifolds are of course orientable Riemannian manifolds. They are also
complex which means that in each coordinate patch U, one can find three complex
coordinates z(la), z(za),z?a) that parametrize the patch such that on all overlaps U, N
Up the transition functions are holomorphic. Moreover, they come equipped with a

hermitian metric g,5 which means that the line element can be brought to the form
ds? = 2g,5d2"dz" . (3.16)
From this we can define the Kdhler form J as
J = —2igpdz" A dZ, (3.17)

which is everywhere non-vanishing. If this form is closed, dJ = 0, we call our manifold

a Kdhler manifold, and locally the metric is determined from a real Kdhler potential™}
9ab = OuOpK (2,2) . (3.18)

Kahler manifolds have many nice properties{r_g], in particular their curvature form is a
(1,1)-form valued map TX x TX — TX x TX that does not mix holomorphic with
anti-holomorphic components. Therefore, the holonomy group of Kahler manifolds is
contained in U(n) C SO(2n).

Now we wanted to find solutions with vanishing Ricci tensor, or in other words

'1See however ref. [T44] for recent progress.

12A Kihler potential is not a function on the manifold. On overlaps of different patches it transforms
according to K — K + f(2) + f(2).

13For a nice introduction to complex geometry see chapter 13 of [145], and for many more details especially
in the context of CY manifolds see [143].
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globally defined metrics with trace-less curvature form
Tr (R) = Ryjda’ A da? = —2iR3dz" Adz" = 0. (3.19)

A necessary topological condition for this to be possible is that Tr(R) vanishes in
cohomology, or in other words the first Chern class of the holomorphic tangent bundle@
TX vanishes in cohomology, [c;(X)] = 0. CY manifolds are Ké&hler manifolds that
satisfy this:

Definition: A Calabi- Yau threefold X is a complex three-dimensional
Kihler manifold with vanishing first Chern class, [c1(X)] = 0.

Given such a manifold with some metric it does not take too much fantasy to imagine
that under continuous changes of the metric a Ricci flat metric can be obtained. At least
there seems to be no topological obstruction against it. The famous Calabi conjecture
[146], proven by Yau [147], asserts that this intuition is correct:

Theorem (Calabi-Yau): Given a Kihler manifold X with vanishing first Chern
class and Kdhler form J', there exists a unique Kdahler form J in the same
cohomology class, [J] = [J'], such that the associated hermitian metric is Ricci flat.

It is important to note that a CY manifold equipped with its Ricci flat metric has
holonomy group contained in SU(n) C U(n) because the trace of the curvature form
vanishes. This means that we can globally define a covariantly constant spinorﬁ

Vn=0. (3.20)

The relevance of this is that when we compactify (say) type IIB supergravity on a CY
three-fold the background is left invariant under SUSY transformations

e%?zd = (PLGidQ) ® (Prn) + c.c., (3.21)

for two arbitrary four-dimensional Majorana spinors e‘llfiz. So, eight real supercharges are
preserved corresponding to N' = 2 (local) supersymmetry in four dimensions. Moreover,
the spinor can be used to construct an everywhere non-vanishing closed (3,0) three-

form,
Qi =n"Tijpn, dQ=0. (3.22)

HMFor a holomorphic vector bundle E with connection A, the total Chern class is defined as c(E) =
det (14 £) =1+ 3" | ¢;(E), understood as a formal sum over forms of different degree.

15 A spinor transforms in the 4 of SU(4) = Spin(6). To construct the covariantly constant spinor simply
start at some point p and identify the unique one-dimensional subspace that is left invariant upon parallel
transport around any loop, i.e. under SU(3) C SU(4). Then, extend the definition of this to the whole
threefold via parallel transport.
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The existence of this form of course does not depend on whether we choose the Ricci flat
metric or not, but only on ¢;(A3T*X)  ¢;(TX) = 0. In other words, CY manifolds
are Kéhler manifolds with trivial bundle of holomorphic three-forms (the canonical
bundle)[™¥ Tt is useful to ask that the holonomy group actually is SU(3) in order to
exclude products of lower-dimensional CYS.E

Unfortunately Yau’s proof of the Calabi-conjecture does not teach us how to find the
Ricci-flat metric. This is not as bad as it sounds. Using the tools of algebraic geometry,
many physical properties of CY compactifications can be inferred even without knowing

the explicit metric. Here is an example called the quintic threefold,
Q(Ps) ={[Xo: X1:Xo: X3: Xy] €P*: B5(X;) =0}, (3.23)

where P; is a degree five homogeneous polynomial in the homogeneous P* coordinates.
Its first Chern class vanishes because we can cover P? with five patches U, = P*\{X, =
0}, =0, ...,4, and in each of these we can choose local coordinates by setting X, = 1
and solving one further coordinate as a function of the three remaining ones. In Uy we
can define a closed everywhere non-vanishing three—form@

q _ X1 AdX5 N dXy
- OPRJ0Xy,

(3.24)

and analogously in the other patches. It is simple to show that these definitions match
on the overlaps, and the definition is non-singular provided the embedding is non-
singular, i.e. {P5; =0} N{dPs; =0} = (). Thus the quintic has trivial canonical bundle
and is therefore CY.

Note that we have not said what is the polynomial P5. A parametrization contains
126 complex parameters. Different choices give rise to different complex structures
unless they are related to each other via linear redefinitions of the P coordinates. This
gives us a 101 = 126 — 25 dimensional complez structure moduli space. Moreover, there

is a canonical metric on P* called the Fubini-Study metric,

i | X[P(dX A dX) = (XdX) A (XdX)
2 | X ’

Jpsg =t (3.25)

for some real parameter t. Its restriction to the quintic gives us the Kahler class of

16Strictly speaking the two statements are equivalent only for simply connected CYs. We shall only consider
those that are.

" There are only two such manifolds up to continuous deformations in the complex structure, T2 x K3
where K3 is the unique CY two-fold and 7. These preserve twice (four times) as many supercharges in four
dimensions.

18The definition is asymmetric in the X; but it is easy to convince oneself that changing the rols of the X;
gives the same form.
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the quintic parameterized by a single real parameter ¢ which measures the physical size
of the CY. We say, the Kdahler moduli space is real one-dimensional. In general the
Calabi-Yau moduli space factorizes as M complex structure X MKanier- Its tangent space is
the space of deformations dg;;(x) of the metric that leave the metric Ricci flat modulo
coordinate reparametrizations. Metric perturbations with mixed indices dg,; leave the
metric hermitian. Therefore they can be thought of as a perturbation of the Kéahler
form J — J + 0J which must remain closed. This changes the Kéahler class unless 6./
is exact, but the new metric will in general not be Ricci-flat anymore. However, the CY
theorem guarantees that there exists a unique exact form that can be added to make
it Ricci flat again (namely such that 6. is harmonic). So metric perturbations of this
type are counted by the dimension of the Dolbeault cohomology group H é’l(X ) where

_ d — closed (p, q)-forms

0 — exact ones (3.26)
The real dim H*! = h'!-dimensional moduli space of such deformations is called Kdhler
modult space. In contrast complex structure moduli space corresponds to pure index
metric perturbations dg,, = (0gz;)*. These satisfy the linearized Einstein equations if
the (2,1) form

Xog = 89a39™ Qepedz® A d2® A dz° (3.27)

is harmonic. Thus, the number of such deformations is counted by h?!, the dimension
of H*! (in general, h?? = dimH??). To bring back the metric to hermitian form
requires a change in complex structure, thus the name. The Hodge numbers (h*', h®!)
are the only independent oned™| and the quintic has (h*!, h?!) = (1,101).

3.3.1 Type IIB on CY threefolds

Let us now consider compactifying type IIB supergravity on a Calabi-Yau three-fold.
First, from the 10d metric we obtain the 4d graviton plus scalar fields associated with the
geometric deformation moduli that parametrize the Kéahler class and complex structure
of the CY. Second, the massless spectrum contains the axio dilaton 7 = Cy +ie~?. But
it also contains various azions from the reduction of the p form fields By, Cs, Cy. 1t is
useful to adopt a basis of dual two and four forms (w',®;), 4,7 = 1,..., A", as well as
three forms (o, 3), a,b =1, ..., h*! + 1 that satisfy

/wiwjzag, /a“/\ﬁb:/a“:— By = 6%, (3.28)
X X AP Ba

19We have h%' = 0 due to simply-connectedness, h>° = 1 because (2 is the only holomorphic three-form,
hP'? = h%P from complex conjugation and h?*? = h37~P¢ from wedging/contracting with Q and Q.
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‘ bosonic components ‘ multiplicity

gravity multiplet > Ag 1

universal hypermultiplet 7= Cy +ie ?, by, co 1
Kéhler hypermultiplets ti, pt bs, i hi!
complex structure vector multiplets Za, Aqg h?!

Table 3.1: The bosonic components of the A/ = 2 multiplets of type IIB on a CY threefold.

where three-forms a®, 8, are the Poincaré dual three-forms to the so-called B respec-
tively A-cycles (B, A%) that form a symplectic basis of the third homology group
H3(X,Z). The forms (w',w;) are Poincaré dual to an integral basis of four and two-
cycles (3, %7) in Hy(X,Z) respectively Hy(X,Z).

At linear order the p-form fields satisfy equations of motion
(0% + Ag) {Ba, C2, Cs} = 0, (3.29)

where 0% is the four-dimensional Laplacian and Aj is the six-dimensional one. There-
fore, the massless 4d fields appear as coefficients in the expansion of form fields in our

basis of harmonic forms,

Rl plil

By = By(x) + Z bi(z)w', Cy=Cox)+ Z ci(z)w' (3.30)
RL1 . h271+1 .

Ci=>Y_ (P(@)@ + pi(x)w’) + D (Aalz) A+ Az) A By) - (3.31)
i=1 a=1

From C5 and By we get two 4d two-forms B, and Cy that can be dualized to two axions
(bo, ¢p). They pair with the axio-dilaton into the universal hypermultiplet. Furthermore,
there are 2h'! model-dependent axions b;,c;. Naively, from C; we get 2h'?! axions
corresponding to the p* and the ones dual to the two-forms p/. But since the five form
field strength is required to be self-dual, the two sets of axions must be identified, and
there are in total h'! independent C,-axions. The 3h'! axions from C,, By and Cy
combine with the real Kahler moduli #* into the h! Kéhler hypermultiplets. Finally,
we have listed 2h*! + 2 vectors coming from H?® = H3° @ H*' @ HY? @ H3, but
again, half of them have to be identified with the electric-magnetic duals of the other
half to ensure self-duality of F5. The vectors A, associated with H*! combine with
the complex structure moduli into h*! vector multiplets, and the remaining vector Aq
from H3Y enters the gravitational multiplet. The bosonic field content is summarized in
table There is a natural set of h*! + 1 complex projective coordinates Z, complex
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structure moduli space defined via the A-cycle respectively B-cycle periods

ZaE/aQ’ G“(Z)E/ Q. (3.32)

The latter are "functions’ of the former?] The canonical metric on complex structure
moduli space is computed from the Kahler potential

Ko = —log (_i / 0 m) — log (iZ,G" + c.c) | (3.33)
X

and is called the Weil-Petersson metric. It is in fact the physical field space metric that
one computes by dimensionally reducing the 10d Einstein Hilbert term. From the form
of the Kahler potential one reads off that complex structure moduli space is indeed a
special Kdhler manifold Mg with holomorphic pre-potential F(Z) s.t. G* = 0z, F.
The hypermultiplets parametrize a real 4(h'! + 1)-dimensional manifold on which
there are three linearly independent complex structures J!,.J2 J3 that satisfy the
quaternion algebra (beware, we mean the complex structure of Kéhler moduli space,
not of the CY). Roughly speaking these are associated with pairing the real Kéhler
modulus with either one of the three axions into a complex coordinate, while pairing
the remaining two into another one. This identifies the moduli space parameterized by
the hypermultiplets as a quaternionic-Kdhler manifold M k. At leading order in the
o/ expansion the physical moduli space factorizes as Mey = Mg x My [148, 149].

3.3.2 The conifold

We have repeatedly stated that no analytical CY metrics are known. This is actually
true only for compact ones. Sometimes, interesting regions in a compact CY are well
approximated by regions of non-compact CYs for which the metric is actually known.
This is particularly interesting when the CY is singular (or ’almost’ singular) at some
locus contained in this region. The perhaps most prominent non-compact CY that
serves for this purpose is the so-called conifold [I50]. In a certain sense it arises near
the most generic singularities of CY compactifications. In what sense this is generic
we would like to explain now.

We will focus on algebraic varieties defined as the vanishing locus of a polynomial

P in a toric ambient space such as P*. This is singular if

(P=0}N{dP =0} #0. (3.34)

20We say ”functions” because they have branch cuts so are not single valued holomorphic functions of the
projective coordinates Z,.
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For a generic polynomial this does not occur, but on complex co-dimension one loci
in complex structure moduli space this locus is a set of points. In other words, we
need to tune one polynomial coefficient to make the polynomial vanish quadratically

as opposed to linearly at a point. Locally such a singular embedding can be brought

4
Xipe = Xop = {z € CY| Z(zi)2 = 0} , (3.35)
=1

which is called the conifold, a node, or an ordinary double point. If we leave the singular

to the form

locus in moduli space by a small amount € < 1 we obtain the deformed (non-singular)

conifold as the vanishing locus of

P= Z(zif —€. (3.36)

By an appropriate redefinition of the phases of the coordinates we can choose € to be
real and positive. This space is actually easy to understand. First, let us note that a
global SO(4) = SU(2) x SU(2) symmetry is manifest from the embedding equation. A
further U(1)g factor that rotates the phases of the z° is restored in the singular limit.
Now, let us split the complex coordinates into real and imaginary part, z* = z* 4 iy,

and define a radial coordinate that measures the ’distance’ to the singular point,

4 4
Z 2= (@) + () =+ i (3.37)
=1 =1

The definition of our radial coordinate and the vanishing of the defining polynomial
then take the form

1 i 1 oL
S =, (o=, T7=0. (3.38)

At fixed radial coordinate, the first equation defines a three-sphere S2, while the second
and third describe a fibration of a two-sphere S? over the S3. This fibration is actually
trivial, and the angular topology is S x S? so long as p? > €. The angular geometry
is best thought of as the coset space % where the U(1) is a diagonal subgroup
of the two SU(2) factors. The global symmetry group is SU(2) x SU(2) x Zy and in
the limit ¢ — 0 another U(1)g symmetry develops.

Clearly the minimal radius is p? = € where the S? degenerates (smoothly), while the
S3 stays at finite size. The deformation parameter e measures the minimal size of this
S3 at the bottom of the conifold. In fact, we may choose this S® as one of the A-cycles

and it is straightforward to show that the associated complex structure modulus is
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proportional to the deformation parameter €. For future reference we record the Ricci
flat metric in the singular limit e — 0,

dsZ; = dr® 4+ rdsi.. . (3.39)

It takes the form of a real cone over the Sasaki-Einstein base TV, with another radial
coordinate defined in terms of the one we defined previously as r = \/g p?/3. This metric
respects the full global symmetry group SU(2) x SU(2) x U(1)g X Z,. Note that since
T™! has a two and a three cycle, it possesses harmonic two and three forms (ws,ws).
These are invariant under the the global symmetry group of the singular conifold.

3.4 Conifold transitions and black hole condensation

The conifold is the simplest playground for one of the most fascinating phenomena of
CY compactifications in string theory, the possibility of topology changing transitions
between CYs that can be fully described by string theory [76l [77, I51]. First, it is
important to appreciate that perturbative string theory on certain singular spaces such
as orbifolds makes perfect sense. The extended nature of the string essentially means
that it does not ’see’ the point-like singularity in space. The conifold is not of this
type, so naively string theory on the singular conifold does not make sense [I51]. For-
tunately, non-perturbative string theory does make sense on the conifold. This was first
understood by A. Strominger [I51] who considered the behavior of the gauge kinetic

function of the vector multiplet associated with the conifold A-cycle,
T=G'"(Z)=1og(2)/2mi+ ..., = 8r%/¢> =log(|Z]™") + ... (3.40)

This expression rings a bell: The gauge coupling of a U(1) gauge theory coupled to ns
charged (Weyl-)fermions and n.s complex scalars runs at one-loop according to
872 872

1 1
7%(n) - Plwy) blog (puv/p) , b=— (§nf + éncs) , (3.41)

Below the matter mass-scale m we can integrate out the charged matter so in the IR
the gauge coupling is frozen to

872 /gin = —blog (uuv/m) + ... (3.42)

In N' = 2 gauge theories charged matter comes in hypermultiplets, so for a single one
ny = ne = 2, and b = —1 (and the one-loop running is exact in perturbation theory).

Thus we reproduce the expression (3.40) if we identify |Z| with the mass scale of a
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single hypermultiplet (H;, Hy). Hypermultiplets indeed receive their masses through
a superpotential W (H,Z) = HyZH,, so their mass scales linearly with the Coulomb
branch coordinate Z. Whatever this hypermultiplet is, its mass should scale linearly
with |Z| and it should be electrically charged. As the gauge field comes from the
dimensional reduction of C, it must be a D3 brane, wrapped over the A-cycle S® at
the bottom of the conifold so that it has electric charge equal to oneF_r] As the volume
of the S? is set by |Z|, the mass of this object really does satisfy

mps = TD3V01(33) ~ |Z| ]\4]37 (343)

where Tps is the D3 brane tension. So this picture is remarkably consistent. In an
effective field theory with cut-off Ayy we must integrate in the charged D3-brane hy-
permultiplet once |Z| < Ayy/Mp, and the physics near the conifold singularity is
smoothed out. Deforming the conifold is the physical process of going on the Coulomb
branch of the U(1) gauge theory.

But there is more: It is crucial that mathematically the conifold can actually be
smoothed in two radically different ways that both (locally) maintain the CY condition
[150]. One is the deformation that we discussed. Another one is called a resolution.
We recall that the singular conifold embedding was smooth everywhere except at the
origin. So let us rewrite the embedding as

4 ) )
U . . 23+ 124 21 — 129
T- =0, th T = ‘o, = , 3.44
(V) wi g o ( ) ( )

21+ 129 —23+ 12

and [U : V] are the homogeneous coordinates of a P'. As by definition of P! the
two coordinates U,V cannot vanish simultaneously, the matrix 7" must have a zero
cigenvalue so its determinant must vanish. But det T = — 37 (2))? so we recover the
singular conifold embedding equation. Away from the origin z* # 0 we can simply
solve for the P! coordinates as a function of the z* so there is nothing new. But at the
origin 7' = 0 and the P! coordinate [U : V] is unconstrained. We have replaced the
singular point by a two-sphere (=P!) and one readily checks that the embedding
is non-singular (this procedure of replacing a singularity by a P! is called a blow up).
The size of the S? is controlled by a real parameter ¢ called the resolution modulus.
We now have two non-singular geometries, the deformed and the resolved conifold that
share a common singular locus in moduli space. For both the explicit CY metric is
known. Passing from one branch to the other through the singular locus is called a

conifold transition. We have described this for the non-compact conifold but compact

21 D3 branes wrapped over the B-cycles carry magnetic charge.
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CY manifolds are frequently connected with each other through such transitions. Let us
give the perhaps canonical example of this phenomenon as described in [76]: We start
with a complex five-dimensional toric ambient space P* x P!, and define our three-fold
X,es as the vanishing locus of two polynomials, of weight (4, 1) respectively (1,1). This
space is CYP? and has (h!', h*!) = (2,86). Thus both polynomials are linear in the P!

coordinates so we may write
X Y
“1=o, (3.45)
P Q v

where [u : v] parametrize P!, while (X,Y) and (P, Q) are degree four respectively
linear polynomials in the P* coordinates. By the same argument that we used in the

non-compact case,

XY !
det (P Q) =XQ—-PY =0, (3.46)

which is a degree five polynomial in the coordinates of P*. Thus it is a quintic three-fold
obtained via the shrinking the volume of the blow-up P!. The locus where the linear
polynomials vanish, P = Q = 0, is a P? sublocus of P*. On this sub-locus, the two
quartic polynomials vanish simultaneously at 16 = 4 x 4 points, if the polynomials are
chosen generic. These are conifold points. Thus we have described (mathematically)
what it means to pass from the quintic three-fold to a different CY manifold that has
15 fewer complex structure moduli but an additional Kahler modulus. This transition
through the singular locus begs for a physical interpretation. This was given by B.
Greene, D. Morrison and A. Strominger [77]:

As the quintic has 101 complex structure moduli, it is apparent that the singular
locus occurs at co-dimension 15 = 101 — 86 in complex structure moduli space. Hence,
there is one homology relation among the 16 vanishing three-cycles 7* which reads

16

Y ] =0. (3.47)
i=1
But it is intuitively obvious that if there are 16 conifold points in the CY there should
also be 16 independent hypermultiplets that become massless at the singular locus
in moduli space. As there are only 15 independent A-cycles we are in the situation
that the U(1)' gauge theory possesses a Higgs branch parametrized by the four real

22For manifolds defined as vanishing loci of a set of polynomials within a toric ambient space, one computes
the Chern class using the so-called adjunction formula (see e.g. [152]). The vanishing of the first Chern class
constrains the weights of the polynomials under the toric C* scalings. The constraints are satisfied for our
examples.
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scalar components of a single hypermultiplet. Going to the Higgs branch is seen as
condensation of the D3 brane hypermultiplets. This picture involves some intriguing
steps: When the deformation S? is large, the wrapped D3 brane states are solitons with
mass above the KK-scale. For sufficiently small |Z]| they enter the four-dimensional
theory as isolated light particle states, and on the Higgs branch they condense to make
up again a geometric modulus, but now of a different geometry than the one we started
with on the deformation side.

The ’'radial” component of this hypermultiplet is of course our resolution modulus
while the other three are the axions defined as integrals of Bs, Cy over the resolution
cycle, as well as Cy over the dual four cycle that reaches into the bulk CY. Two of the
newly acquired axions will play a crucial role in chapter [6]

3.5 Orientifolds of the type II string

While CY compactifications of the type II string are a beautiful subject they come with
a phenomenological problem: They describe a world very different from ours. There
are no non-abelian gauge sectors, there is N’ = 2 unbroken supersymmetry, and many
exactly massless scalar fields. First, we should reduce the amount of supersymmetry,
ideally without loosing too much computational control. String theory offers a way to
do this which is called an orientifold projection (see e.g. chapters 11 and 12 of [125]). In
type IIB string theory, given a manifold that has a discrete Z, symmetry group R with
even-dimensional fixed point locus, we are allowed to project the degrees of freedom of

our theory onto the sector invariant under
QR(—1)f* (3.48)

where F7, denotes left-moving worldsheet fermion number and 2 is worldsheet parity.
This means that the 10d fields {Gyn,7 = Co + ie ?, C4} are required to be even
under the geometric action, e.g. Cy(Qz) = Cy(z), while By and Cy are odd. For a
CY three-fold the geometric action should be holomorphic in order to preserve some
amount of supersymmetry. At the level of the zero mode spectrum this means that
within each N' = 2 multiplet half of the components are projected out. The orientifold
acts on the cohomology groups and is useful to decompose them into their even and
odd eigenspaces H?? = HY @ H”?. For O7 orientifolds the fixed point locus of the
orientifold is of complex co-dimension one and the massless spectrum is the following:
The N = 2 gravity multiplet loses its vector and the universal hypermultiplet loses
two of its axions by, ¢y. The Kéahler hypermultiplets are split into hi’l chiral multiplets
with bosonic components (¢;, p') and h"" axion chiral multiplets (b;, ¢;). The N = 2
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vector multiplets split into hi’l N = 1 vector multiplets and h*' complex structure
chiral multiplets.

As the O7 planes carry negative magnetic charge under Cy (and negative tensions)
we must cancel their charges (and tensions) at least globally by including also a number
of D7 branes. The simplest case is the one where 4 D7 branes lie on top of each O7
plane, yielding non-abelian SO(8) gauge groups. This brings us much closer to a
realistic theory. Generically the seven-brane stacks also carry induced D3 brane charge
which must be canceled by introducing mobile D3 branes.

Ignoring the open string degrees of freedom the effective NV = 1 supergravity is
well known. We focus on the case hil = 1 with only a single Kahler modulus T', but
arbitrary h"'. The Kihler potential reads [153]

K =—3log (F) —log(—i(t — 7)) — log <—z/ QA ﬁ) + const ,
oy

_ 3 _ _
with F=Vol(CY)* =T+ T — M—Z)mj(g ~G)(G—-G),  (3.49)
T—T
where x,; are the triple intersection numbers between the single orientifold even four-
cycle and a pair of orientifold-odd ones, kyj = [y @+ A @; A @;. Here, G' = ¢ — 7V’
are the A" complex axions, and the complex overall volume modulus T is defined as

T = Vol(CY)?? +ip™. (3.50)

At this level the superpotential vanishes to all orders in perturbation theory.

3.6 Fluxes and the landscape

We have reduced the amount of unbroken supersymmetry but we have yet to get rid
of the remaining massless fields and break supersymmetry by a controlled amount.
This is done by adding three-form fluxes on three-cycles. The simplest way to see the
effects of three-form fluxes is by remembering that the D5 brane and the NS5 brane
wrapped over a three-cycle >3 are the domain walls over which the F3 respectively Hj
flux quanta on the dual cycle 3 jump by a unit. The four-dimensional tension of such
a D5 brane is

TDW 27T ¢/2 VO].(EZ}) K/Q/ K 2/
MG T T Volloy)pr T O L T et (3:51)

where ws_ is Poincaré dual to the cycle Y3. It is a standard result that the change

in the superpotential AW across a %BPS domain wall is related to the tension of the
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domain wall by
Tpw = 2e572|AW| . (3.52)

Comparing with (3.51)) one finds that the fluz superpotential should be given by [154]

W~ (Fg—TH?,)AQ:/Gg/\Q, (3.53)
cy
which is called the Gukov-Vafa-Witten (GVW) flux superpotential. Indeed, across a
domain wall of type discussed above F3 changes by an amount wg, so the domain wall
tension comes out right. It was shown in [40] that the F-terms of the complex structure
and the axio-dilaton possess a common solution locus where the three-form fluxes G
only have components of Hodge type (0,3) @ (2, 1), in other words they are imaginary
self-dual *G3 = iG3. It is then useful to define the imaginary-self-dual (ISD) and
imaginary-anti-self-dual (IASD) components G5 = (x & i)G3. The vanishing of the
(1,2) and (3,0) components are h*! + 1 complex conditions on the h*»! + 1 complex
structure moduli and the axio-dilaton so for sufficiently generic three-form fluxes we
expect the solution set to be a set of points in moduli space. In other words the complex

structure moduli and the dilaton are stabilized by fluxes.

3.6.1 The GKP solutions

The four-dimensional flux vacua we have introduced in the preceeding section were
argued to exist from purely four-dimensional considerations. One may rightfully ask
if they actually lift to consistent ten-dimensional ones, and moreover in which regimes
they can be trusted. This is slightly subtle because three-form fluxes carry induced
D3-brane charge due to the Bianchi identity

dF5 = Fg/\H3—|—pD3, (354)

where p3 is the D3-brane charge density carried by localized objects. Since our internal
manifold is compact, the integral over the l.h. side of the Bianchi identity vanishes by
Stokes theorem so the integral of the r.h. side must vanish as well. This constrains
the allowed choices of three-form quanta in terms of the D3 brane charge carried by
localized objects,

1
It (/ VWA H3) + Np3s — —Nos + Ninduced = 0. (3.55)
cy 4

Nps denotes the number of D3 branes and we have used that a single O3 plane carries
—1/4 units of D3 brane charge. Moreover we have added the induced D3-charge Nipguced
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on other localized objects such as seven-branes. E.g. a single D7 brane wrapped on
a divisor D with trivial normal bundle carries % units of induced D3 brane charge,
where x(D) is the Euler number of the divisor. This is often times negative which means
we have room to add fluxes of positive D3 brane charge. In typical CY orientifolds and
their F-theory generalizations this gives us enough room to place modest amounts of

flux quanta on each three-cycle [42] 152, 155].

Among other things it was shown by S. Giddings, S. Kachru and J. Polchinski
(GKP) [40] that the direct dimensional reduction of the |G3|? term in the 10d action
indeed matches with the one derived from the GVW superpotential. For validity of this
approximation the ten-dimensional backreaction of the fluxes must be small, which is
the case when

G5 |?

Tm(7) ~ F3-xH;z ~ [? (D3-brane charge density) < typical curvature ~ 1/L*. (3.56)
m(7

In other words, fluxes are sufficiently dilute to treat their presence as a small pertur-
bation on top of the CY background if the number of D3 brane charge units contained
in any region of size L is smaller than L*/I2. When the CY is very homogeneous and
isotropic this is just a condition on the overall volume of the CY,

Ry > total positive D3 brane charge . (3.57)

It is however important to appreciate that GKP also showed that even when fluxes
are not dilute the ISD condition still solves the ten-dimensional equations of motion
and all the backreaction on the metric and five form fluxes are controlled by a single
function of the CY coordinates called the warp factor e*4. Specifically, the metric and

five-form ansétze are
ds? = e*Ada® + e sy, Fs = (1 +#)d(e**) Ad'z, (3.58)
and all equations of motion are solved given a solution to
V%, e = D3-brane charge density . (3.59)

Changes in the overall volume of the CY correspond to the freedom to add a constant
to any solution of eq. [156]. To be precise, given any solution of the metric and
axio-dilaton associated with a non-trivial N = 1 preserving seven-brane background
at tree-level (i.e. an F-theory solution), we can correct this solution by including ISD
three-form fluxes, possibly mobile D3 branes and accounting for the induced negative

D3 brane charge on the seven branes. The only equations that need to be solved are
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the ISD condition (which fixes the complex structure moduli and the dilaton), as well
as the ’electro-static’ warp factor equation (3.59)).

3.6.2 Warped throats and exponential hierarchies

A natural question to ask is whether it is possible to find solutions with regions where
the warp factor €4 is exponentially smaller than in others. The answer turns out to be
yes, as shown by GKP, thereby realizing the Randall-Sundrum (RS) mechanism [157]
to generate natural exponential hierarchies. It is easy to convince one-self that the
warp factor naturally runs exponentially whenever D3 brane charge is not dilute. The
famous backreacted solution associated with a stack of N D3 branes placed on a flat
background R® shows this,

4t N 12

—, ds’ = *Ada® + e (dr? 4 r?d0%s) . (3.60)
,

Clearly, in the near horizon limit 7* < No'?, the metric approaches the form

r? dr? _
8 = e+ VIR (U 4 008 ) = et dy? s, (30)

which is a patch of AdS® x S5 Here we have introduced a new radial coordinate
y = k7llog(kr) that measures physical distances along the 'throat’= R x S%, and
k=2 =+\/4xN«'. It is apparent that the warp factor now runs exponentially as desired.
Solutions of this type are called warped throats and they offer a remarkable amount of
computational control. It is one of the most celebrated results of the past decades, due
to J. Maldacena, that such ten-dimensional gravitational backgrounds (in their near
horizon limits) are in fact dual to four-dimensional QFTs [I58]. We have just given
the simplest of these. For a stack of N D3 branes we know from perturbative string
theory that in the deep infrared the brane degrees of freedom decouple from the bulk
gravitational ones and realize the N' = 4 SU(N) super Yang-Mills gauge theory (which
is actually conformal). Its holomorphic gauge coupling is set by the ten-dimensional
axio-dilaton at the point probed by the brane stack. The gauge theory is weakly coupled
when g, < 1 and also the 't Hooft coupling is small g;N < 1. Beyond these limits the
gauge theory is strongly coupled. But we just saw another way to take the IR limit,
namely going into the near horizon limit of the backreacted supergravity solution. The
size and inverse curvature scale of the string frame metric is L* ~ g,No'?. So for the
gravitational description to be weakly curved we need to precisely go to the opposite
regime gsN > 1 (but still g; < 1). So we see that the large 't Hooft coupling limit
of the gauge theory is described by a ten-dimensional string geometry! This is the
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simplest example of the famous AdS/CFT correspondence.

To realize the RS idea the infinite AdSs x S® throat must be reduced to finite
length thus breaking the isometry group of AdSs; down to Poincaré,. From the field
theory side this amounts to breaking conformal invariance. But before we get there
let us note that we can replace the flat six-dimensional space we started with by the
singular conifold geometry. Placing the stack of D3 branes at the singular point gives
rise to a near horizon limit supergravity solution AdSs x T*! which is obtained from
the AdS; x S° solution by simply replacing k~* — ALkt = ZLk~4 The ten-
dimensional AdSs x TH! background is another example of an infinite length throat

but it breaks more supersymmetries than the AdSs x S° throat. Its field theory dual
is an N/ = 1 superconformal SU(N) x SU(N) quiver gauge theory, the conifold or
Klebanov-Witten (KW) gauge theory, with the bifundamental matter coming in the
(2,1) respectively (1,2) of the global conifold symmetry group SU(2) x SU(2), and
with a quartic superpotential [I59]. The holomorphic gauge couplings (7ym, Tym) of
the two gauge group factors are now set by

YM+TYM =T, Tym—7Tym = —7+G/m mod 2(m —n1), (3.62)

with a torus valued complex axion G = f s2cri Cy — 7By. Here it is understood that 7
and G take values in their appropriate fundamental domain so that both gauge group

factors are weakly coupled.

This theory can be perturbed by adding M RR three-form fluxes on the S3 c T!
[78, 160], F3 = Mws, where ws is the harmonic three-form of T™!. In order to solve the
ISD condition the NS three-forms should be given by (setting Cy = 0)

3 dr ) 3
Hy = —gsx F3 = —gM— Nwy, ie. By=—g.M (log(r/ls)+ const.)ws, (3.63)
27 T 2
where w, is the harmonic two-form of 7%!'. As the metric is known and the ISD
condition solved, all that remains is to compute the warp factor by integrating (3.59)).
The result is

4
—4A_L

1 81
e =— <log(r/7’0) + Zl) +const., with L*=
r

8(2m)*

g M1, (3.64)

This is called the Klebanov-Tseytlin (KT) solution [78] and it runs into a singularity

at r < ro. The (non-quantized) five form flux runs as N(r) = 2g,M?log(r/ro). The

logarithmic running of the warp factor is reminiscent of the RG running of a gauge
coupling and indeed, there is a N/ = 1 gauge theory that is dual to the geometry. It

can be understood as a small perturbation of the gauge group ranks of the conifold
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gauge theory SU(N) x SU(N) — SU(N + M) x SU(N), if M < N. The two gauge
couplings run in opposite directions which precisely matches the radial running of the
By field and the identification of eq. . As a consequence one of the two gauge
factors becomes strongly coupled after some RG running. It was realized by I. Klebanov
and M. Strassler (KS) that after an appropriate application of Seiberg duality [161] the
theory is of the same form as the initial one but with N replaced by N — M [162]. The
supergravity dual of this effect is of course the radial running N(r). As a consequence
the gauge theory undergoes repeated steps (cascades) of Seiberg dualities as it flows
to the IR. The KT solution accurately describes the RG flow of the gauge theory only
so long as r > rg, i.e. N > M. At last, only a single SU(M) factor remains which
confines and undergoes gaugino condensation. This effect is actually captured by the
everywhere smooth KS solution which uses the deformed conifold as a starting point
rather than the singular one [I62]. It is intuitive that this is the correct starting point
because that KT singularity arises when the S? is forced to shrink to zero size while
the non-vanishing RR flux really wants to keep it at finite size. We will not need the
precise form of the solution but we note a few important properties.

First, we are actually interested in embedding such a KS throat into a compact CY.
So we should cut-off the throat at some UV value ryy which marks the point where
the details of the CY geometry start to depart from the simple conifold. Note that
while we do not know the precise form of the solution beyond this point, existence of
a smooth interpolation is guaranteed. From the running of the B, field we learn that
the NS flux on the B-cycle of the throat is set by

3
K= / Hy = / By(ryy) = - log(ruv/TR) - (3.65)
B S2cT1l m

This implies that the finite hierarchy induced by the fluxes in the throat is of order

4
4A[R —4A IR 8r K
e IR Uuv o r4 ~ exp <_?gsM) . (366)

Even without investigating the detailed from of the KS solution dimensional analysis
gives that the conifold complex structure e is fixed at value

3
TR K )
€| ~ = ~exp | —27 . 3.67
el ey ( gs M (3.67)

It is important to note that we have been a bit sloppy and assumed that the three-form
flux quanta K are all located within the throat. If the B-cycle reaches only into a single
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Figure 3.4: In ’typical’ flux compactifications there are many warped throats of significant
warping that can be thought of as spikes emanating from the CY orientifold.

throat this is not a bad approximation as long as K > g, M @ In later chapters we
will be interested also in cases where the NS three-form fluxes are equally distributed
on more than a single throat.

For now we close by noting that the formulas we have extracted from the KS solution
nicely match with the F-term solutions of the GVW superpotential [40]. We call the
conifold complex structure Z, and the B-cycle period G(Z). From monodromy consid-
erations it is known that G(Z) = Z % + holomorphic. The GVW superpotential
reads

W= / (Fy— 7Hy) AQ = MG(2) — 7K 7 + Wy . (3.68)

where W encodes Z-independent terms from fluxes on other cycles. Using the Kahler
potential of eq. (3.33]) the F-term condition DzW = 0 takes the form

D,W =M <k;g.z + 0(1)> — K +0(Z)). (3.69)

™

In the regime |Z] < 1 the O(]Z|) corrections can be neglected and the F-term vanishes
for

K K
Z ~ exp <27ri7-ﬁ> — |Z]| ~exp (27rg M) ~ €. (3.70)

The O(|Z]) can be neglected when |Z| < 1, 1i.e. when K > g;M. So the 4d supergravity
F-term reproduces the KS formula. As the conifold singularity is the most generic one
it is reasonable to expect that generic flux compactifications come with many warped
throats [42] [163] @ We depict a cartoon of such a compactification in Figure .

2 An O(gs M) < K number of NS flux quanta should sit in the bulk CY to ensure that the ISD condition
is satisfied also there. Here we have assumed that the bulk CY takes a rather generic form.

#Loosely speaking, only when K ~ gsM for all pairs of flux quanta, or at exponentially large volumes
V < (Np3)*?|Z|~2 they do not form.
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3.7 Moduli stabilization & de Sitter vacua

3.7.1 The Dine-Seiberg problem

So far we have discussed classes of N’ = 1 'quasi’ vacua in which the fate of a sub-sector
of the CY moduli (the Kdhler moduli) is generically unknown. They are massless at
tree level but supersymmetry is broken by the flux superpotential. The flatness of the
scalar potential is due to the no-scale structure of the Kahler potential of the Kéhler

moduli, )
"0 KomK =3. (3.71)

This structure reflects the fact that in string theory the scalar potential always vanishes
in the decompactification limit Re(7") — +o0o. But there is no symmetry principle
that protects the flatness of the scalar potential at subleading order in the inverse
volume expansion (the o/ expansion). For example, the Kéhler potential including the
leading o/ correction that cannot be absorbed by a field redefinition, the Becker-Becker-
Haack-Louis (BBHL) correction [164], takes the form

K = —2log (T +T)*? + £e7%/%) | (3.72)

with £ = —%¢(3), CY Euler number x = 2(h"' — h*') and Riemann {-function. This
correction breaks the no-scale structure and leads to a runaway potential for the Kéhler
moduli. It is of crucial importance for phenomenological applications of almost any sort
to have in hand a mechanism to stabilize the Kahler moduli, i.e. to generate a controlled
potential with a discrete set of local minima. This program goes under the name of

moduli stabilization.

We have already implicitly stated a generic problem with moduli stabilization: In
string theory at large volumes the scalar potential of the overall volume tends to zero,
while the perturbative o/ expansion is precisely an expansion in inverse volume powers.
So, if the coefficients in this expansion take generic O(1) values the scalar potential is
dominated by the lowest non-vanishing term that falls off towards infinity as an inverse

power law,
VIT+T)x £H(T+T)?, p>0. (3.73)

If the sign of the leading order correction is positive this leads to a run away behavior
to large volume. If it is negative it drives the theory to strong coupling where different
orders in the perturbative expansion may compete to give rise to a stable minimum.
But in this case a full tower of corrections becomes relevant and generically isn’t com-
putable. This is the Dine-Seiberg problem [165] and leads one to conclude that a generic
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stabilized vacuum of string theory should lie at strong coupling

gs(T+7T17)=0(1). (3.74)

3.7.2 The KKLT proposal

The Dine-Seiberg problem is a generic problem of moduli stabilization but in can be
avoided at the cost of tuning. This is how Kachru, Kallosh, Linde and Trivedi (KKLT)
have proposed to achieve moduli stabilization in a controlled regime [41]. We will
describe their construction now.

As the flux superpotential is exact in perturbation theory it is sensible to neglect
the difficult to access perturbative corrections all together and consider the easier to
determine non-perturbative superpotential corrections. We consider a flux compact-
ification with the dilaton and complex structures integrated out. Moreover we focus
again on the case of a single Kahler modulus 7. As there is an exact gauged axion
shift symmetry 7" — T+ iZ the non-perturbative superpotential must organize into
a series -

W=Wo+ Y A7, (3.75)
n=1
at least in the absence of monodromy. The one-loop Pfaffians A, are in general hard
to compute but a natural assumption is that they take O(1) values as long as the CY
is stabilized at a point in complex structure moduli space where it has only a single
length scale.

Validity of this assumption is actually not as easy to justify as expected. In gen-
eral, the instantons that contribute to the superpotential have precisely two fermion
zero modes, in particular they are %BPS. If there are more fermionic zero modes, the
superpotential contribution vanishes. The %BPS instanton associated with the n-th
term in the non-perturbative expansion is a euclidean D3 brane wrapped n times over
a holomorphic representative of the single divisor class D. It was shown by E. Witten
[166] that a necessary condition for exactly two zero modes is that the arithmetic genus
x(D,0p) = 32 (—1)'h*° of the divisor D is equal to one. A sufficient condition is
satisfied when h'? = h?° = 0, i.e. when the divisor is rigid. Strictly speaking the
presence of three-form fluxes might lift additional zero modes so that a superpotential
might nevertheless be generated when x(D, Op) # 1 [167, [168], but we will not consider
this option here. Another option is axion monodromy: The simplest way to achieve it
is by considering a non-abelian seven brane gauge group that wraps D. In the simplest
case, this is a SU(NN) gauge theory associated with a stack of N D7 branes. If all

matter can be made massive, the effective field theory at low energies contains a pure



56 CHAPTER 3. STRING THEORY AND THE LANDSCAPE

Figure 3.5: The classical U(1)r symmetry is anomalous since the gaugino A runs in the above
U(1)rSU(N)? triangle diagram.

supersymmetric Yang-Mills sector with 4d holomorphic gauge coupling set by

D
This is easily seen from a direct dimensional reduction of the classical 8d DBI and CS
action. Fortunately, N' = 1 pure supersymmetric Yang-Mills is a very well-studied field
theory and at the level of the renormalizable UV Lagrangian the low energy effective

superpotential is known exactly.

The classical theory of pure SU(N) SYM enjoys a U(1)r symmetry that rotates the
phase of the gaugino. However, this symmetry is broken at the quantum level by in-
stantons due to the triangle anomaly depicted in Figure[3.5 Assigning the holomorphic

27T spurious R-charge 2N the symmetry is restored. If we view the

scale A3N = 2l e~
holomorphic gauge coupling as a dynamical field (as we always do in string theory), we
see that the U(1)g symmetry is broken spontaneously by the expectation value of 7.
AsT ~ T +iZ a Zyy C U(1)g remains unbroken. Assuming that the gauge multiplet
confines and can be integrated out the only low energy superpotential we can write

down that has the correct R-charge is
Weff = CAS, (377)

for some coefficient ¢. By matching this theory with SQCD theories via mass perturba-
tion, allows one to compute the coefficient ¢ via a weakly coupled instanton calculation
in SQCD with N — 1 flavors [169]. The result is ¢ = NV, and in particular it is not zero,
indicating that confinement indeed occurs. The non-vanishing superpotential
signals a further spontaneous breaking of the R-symmetry group down to Zs, as it has

—27T

N solution branches for each given value of AN ~ e Indeed, it measures the

expectation value of the gaugino bilinear [170]

(AN) = (Tr (APLN)) = —1670p, log Z = —16m0rWeps(T) = 320°A% (3.78)
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where Z denotes the partition function. In other words the gauge theory has N vacua
distinguished from one another by the phase of the gaugino bilinear. There exist gauge
theory domain walls that interpolate between them [I71]. These are of course the
domain walls in the Kaloper-Sorbo description of axion monodromy. Crucially, the
monodromy is finite because after passing N domain walls one is back in the gauge

theory vacuum one started with.

If higher derivative corrections to the UV Yang-Mills action are present (as they
always are in string theory), suppressed by some UV scale Myy, one expects the su-
perpotential to also receive higher order corrections [172]

We_o = NA? <1 + icn <i>3n) : (3.79)

Huv

So applying this logic to the case of a stack of seven-branes wrapped on a divisor we
have an effective superpotential (including the constant flux contribution)

W =W,+ANe 87 + .., (3.80)

where A = M,,/M} is assumed to be of order one. Just keeping the first two terms,

and using the tree-level Kahler potential

K = -3log(T+T), (3.81)
one computes the Fp-term
27 3 27
DeW = —27AeFT — (W AN —*T) 3.82
T TAe N AL + e N, ( )

In the regime (T'+T) > N where the gauge theory is weakly coupled and our formula
should be valid the F-term equation has a solution with

N
T ~ o log(—Wy) , (3.83)

which is self-consistent if |Wy| < 1. By scanning over the huge set of available flux
vacua one should be able to find solutions with |W;| almost arbitrarily small. So, it is
(almost [I73]) unanimously accepted that there exist fully stabilized AdS vacua of the
KKLT type. The vacuum energy at the SUSY minimum of the scalar potential is given
by

3
VAdS = _36K|W|2 ~ —m|WO|2 . (384)
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V(1)

120 150 180
t
Figure 3.6: In blue: The supersymmetric KKLT potential for parameters NA = 1, QW” =0.1
and Wy = —10~%. In red: The uplifted potential with appropriately fine tuned warp factor
ag ~ |Wp|. There is a dS minimum at ¢ = Re(T) ~ 110. The maximal possible uplift occurs
with vacuum energy V ~ +|Vgygy|. At larger values of a% there is no meta stable minimum
anymore.

We depict the scalar potential with its KKLT minimum in Figure |3.6]

KKLT have also proposed how to generate controlled de Sitter vacua by incorpo-
rating small amounts of meta stable supersymmetry breaking. This idea in general is
called an uplift. One of the most prominent ideas how to accomplish this is by adding
so-called anti-D3 branes into the setup. Locally, these are just D3 branes, but their
worldvolume orientation is such that the supersymmetries preserved by the flux back-
ground (in the limit W, = 0) are the ones broken by the brane and vice versa. As a
consequence, an anti-brane also carries D3-brane charge of the sign opposite to the one
carried by fluxes. Thus, if we are to compare two configurations, a compactification
with an anti-brane, to one without it, the flux numbers of the two configurations must
be slightly different so that one extra unit of D3 brane charge carried by fluxes can
compensate the negative anti-brane charge. Schematically the scalar potential induced

by such a configuration is
Vaplifs ~ et (2735 + binding energy) , (3.85)

where T3 is the D3 brane tension and the factor of two arises because of the extra unit
of flux induced charge that carries the tension of a single D3 brane due to the ISD
condition. In a generic flux compactification the anti-brane position moduli are stable
if the brane is placed where the warp factor assumes a local minimum. This is precisely
the tip of a warped throat, where indeed the gravitational red-shifting is exponentially
small. It is usually assumed that this is a KS throat.

A set of natural questions comes to mind that have led to quite some controversy in
the past: 1) Is the brane/flux bound state (meta-)stable against mutual annihilation?
2) Is the binding energy sub-leading? The first question has been addressed explicitly
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by Kachru, Pearson and Verlinde (KPV) who find that the only allowed decay channel
is a brane-flux decay where the anti-brane polarizes into an NS5-brane that winds
around the compact three-sphere of the throat thus discharging one unit of NS fluxes
on the B-cycle and leaving behind M — 1 D3 branes [174]. If M = 12, this is a non-
perturbative (i.e. slow) tunneling transition so the anti-brane is meta-stable. This
calculation was done in the approximation where the anti-brane is treated as a probe
of the background flux geometry. Thus, the second question is related to the question
whether or not this 'probe’ approximation is actually valid, so it naturally relates with
the question of meta-stability. This has been discussed extensively in the literature (see
[T75HI90] for recent literature on this topic) and it is by now widely believed that the
probe approximation is valid, at least for a single anti-brane.

It is of course important to know how the anti-brane vacuum energy depends on the
volume modulus 7" in order to decide whether or not the volume modulus is destabilized
by the uplift. It is straightforward to compute this in the probe approximation on a
classical GKP background. The result is [191]

4
a

Viplift ¢ ————=—, 3.86

plift X (T T T)2 ( )

where we have suppressed O(1) coefficients, and ag = exp (—%g%l) is the hierarchy

of the compactly embedded KS throat. Using this one finds de Sitter vacua of tunable
positive or negative cosmological constant by making judicious choices of flux quanta
(see Figure [3.6)), so that aj ~ |W;|.

3.8 The swampland of effective field theories

We would now like to give a brief introduction into some of the ideas that have emerged
over the past decade and which go under the name of the swampland of effective field
theories [29, [30].

In the early days of string theory it was hoped that the theory would produce a more
or less unique supersymmetry breaking vacuum, that could be compared with real world
physics. Although formally speaking this idea is still on the table it is very unlikely that
string theory works like this. We have given a brief account of flux compactifications
in the type IIB corner of the theory, and it is fairly clear that many different vacua
can be generated by using the freedom to dial the flux quantum numbers. At least
in very naive terms it is clear that the number of vacua that can be obtained in this
way is truly enormous. As a typical CY has O(100) distinct three-cycles we should be

able to choose flux numbers in a reasonably bounded range (say O(10)) for each cycle.
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Simple combinatorics then produces estimates for the number of flux vacua such as the
"historical’ number 10°°°. This is actually a huge underestimate. Somewhat recently,
Taylor and Wang found a CY fourfoldﬁ] that produces Nyacua ~ 1027209 different vacua
[194]. With this unimaginably large number in mind one might even be tempted to
believe that almost anything goes in string theory. Certainly, Wilson coefficients of the
effective four-dimensional supergravities that describe classes of string vacua should
show some dependence on the choices flux quantum numbers. This perhaps most
clearly seen for the expectation value of the GVW superpotential after integrating
out the dilaton and the complex structure moduli, Wy = (Wgyw), which sets the
physical mass of the gravitino and so the scale of supersymmetry breaking. It is widely
believed that at least this number can take almost arbitrarily small values down to
|Wminimal| o1 /\ /N aena [42) 152]. If this were true for all Wilson coefficients it would
be impossible to test string theory observationally without accessing energy scales of
order the string scale.[f] In many ways the idea of the swampland is that while some
Wilson coefficients cannot be tightly constrained in string theory, there nevertheless
exist clear boundaries in EFT parameter space that divide the (extremely) densely
populated landscape of string solutions from completely empty regions, the swampland,
that can never be reached by string theory. We may define the landscape as the set
of low energy EFTs coupled to gravity that can be realized in string theory, while the
swampland consists of those that cannot. We have depicted a cartoon of the total space
of EFTs in Figure If we can identify clearly cut boundaries that divide the two
sets from each other we have extracted a non-trivial prediction of string theory that
might be relevant for low energy physics. The swampland program is the attempt to
do so, and many swampland conjectures have been put forward. We will describe some
of them shortly. For a more complete introduction to this subject we refer the reader
to ref. [195].

3.8.1 Axions and shift symmetries

Axions will play a major role in this thesis so it is worthwhile describing what we mean
by an axion. Historically the axion was introduced as a pseudo-scalar field a(x) that
couples to QCD via a non-renormalizable interaction,

fg 2 a(l’) aIn
£ ¢~ (0a) + 5T (GWG ) , (3.87)

Z5We have not said what is F-theory [192]: It is the generalization of weakly coupled type IIB that enables
one to study general configurations of (p, q) seven-branes. See [I93| for a pedagogical introduction.
26This scale could lie anywhere between the TeV scale and the Planck scale.
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with axion decay constant f,. At the classical level the action is invariant under the
continuous shift symmetry
a(x) — a(x) + const . (3.88)

This shift symmetry is broken to a discrete one a(z) — a(x) 4+ 27 at the non-
perturbative level due to instantons. It was shown by C. Vafa and E. Witten that
the effective potential Vgep(a) induced by QCD instantons has a minimum at a = 0
[196] thus offering a dynamical solution to the strong CP problem of QCD [197].

The axions we are considering are very similar but we do not require them to
couple to QCD. They can be thought of as the integrals of the various stringy p-form
potentials over the different p-cycles of the CY in question. They are also pseudo-
scalars from the 4d perspective and they share the defining feature of a perturbative
shift symmetry. At the N' = 2 level these continuous shift symmetries are always exact
in perturbation theory, because only the field strengths enter the equations of motion
rather than the potentials themselves. There always exists an instanton that breaks
the shift symmetry to a discrete one. For the RR p-form axions these are euclidean
D(p — 1) branes wrapped on the corresponding p-cycle, while for the NS 2-form it is
a euclidean string worldsheet that wraps around the associated two-cycle, respectively
a euclidean NS5 brane wrapping the whole CY. In the euclidean path integral they
contribute with a factor

e~ (Sp+ia(z)) 7 (3.89)
with euclidean instanton action
g;*Vol(32,) model dependent RR axions & Cp,
Vol model dependent B, axions,
Sp = 2 d VOHER) P 2o (3.90)
g;*Vol(CY) universal Cy axion,
g-*Vol(CY) universal By axion.

Here, cycle volumes are understood to be measured with the string frame metric in
units [, = 1. Clearly these non-perturbative effects again break the continuous shift
symmetries to discrete ones. We will always define the axion decay constant via a
choice of axion normalization such that a shift by 27 is an exact gauge symmetry of
the theory. It can however be broken spontaneously: For example, in type IIB flux
compactifications the discrete shift symmetry contained in Si(2,Z) also acts on the
three-form fluxes,

C() —)C[)‘I'l, <H3,F3) — (Hg,F3+H3), (391)
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so after applying the shift symmetry the flux quanta have changed and we are in a
different vacuum. Thus it is not obvious why the axion potential V' (Cy) would have to
come back to itself after it passes once around its fundamental domain continuously.
Indeed, the GVW superpotential depends explicitly on the C’O—axionm The By and
C5 shift symmetries might generically be broken spontaneously as well if five-form flux
quanta were introduced. Since CYs don’t have five-cycles this phenomenon does not
occur in the type IIB flux landscape. The general idea of spontaneously breaking an

axionic shift symmetry is called azion monodromy [46, [73] 19§].

It is sometimes useful to dualize the axion to a two form by. In this language, axion
monodromy can be understood as the gauging of a two form shift symmetry with a
three-form gauge potential Cj, as advocated by N. Kaloper and L. Sorbo [198| 199].
The relevant action, due to G. Dvali [200], is
s—/ L B A%Ey = —(dby — Cy) A #(dby — Cy) (3.92)
= oAt 15 72 2 3 2 3) .
with four form field strength F; = dC3. The electrically charged objects under Cj are
domain walls. Dualizing back to an axion and integrating out the four form one obtains
the usual axion kinetic term and a scalar potential

V(a) = %* (n + %)2 , (3.93)

where n € Z is the four form flux quantum number. The combined transformation
(a,n) — (a,n) + (27, —1), (3.94)

is a gauge transformation. It is now clear that when a > 7 there is a non-perturbative
tunneling instability towards nucleating the domain wall that sends n — n — 1 and
abruptly lowers the potential.

We would like to emphasize that the defining property of an exact gauged discrete
gauge symmetry is physically equivalent to the existence of cosmic strings which are the
electrically charged objects under by [201]. Passing around the string the axion travels
around its fundamental domain once (see Figure[3.7)). For the effective four-dimensional
axion Cj this effective string is formed by wrapping a D7 brane once around the CY
manifold, which indeed gives a spatially one-dimensional object in four dimensions, and
a cosmic string analogous to this one exists for every stringy axion. When the gauged
axion shift symmetries are broken spontaneously these strings are required to be the

2TWhether or not the discrete shift symmetry is actually broken in this case is a subtle question (see the
end of this section). But it could in principle be broken.
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Figure 3.7: Upon encircling a cosmic string of smallest charge (blue) the axion traverses its
fundamental domain once.

boundaries of the (thin) domain walls of the Kaloper-Sorbo description@ In general we
expect that beyond some critical field excursion this domain wall becomes ’tensionless’.
Near such a point, if it lies in a regime where 4d EFT is valid, the domain wall should
be resolved in terms of a scalar field that either adjusts adiabatically as a function of
the axion vev thus bending down the effective axion potential back to zero, or becomes

tachyonic leading to a fast transition. This can be illustrated by a two field Lagrangian

J. : 2 f A X a\?
L£=—Tr@a)2 — X 2——(———) A1 - . 3.95
2 (@a)* ~ 200~ 5 (25— 55) — A (1~ cos(x)) (3.95)
If A%/ f§ > M/ f2 we may integrate out y and parametrize the IR dynamics using the
single axion a(x). If A* < A*/(27)? we are in the broken phase where the effective
scalar potential Vog(a) has multiple branches. At a critical field excursion
A? 7 A
c=———+-—+0(= ], 3.96
%= ment T2 T (A4) (3.96)
the field x becomes tachyonic and triggers a fast domain wall nucleation process that
lowers the energy. For a < a. we have y = 27n thus reproducing the multi-branched
potential of eq. (3.93]). This is the broken phase.
In the opposite regime A\* > A*/(27)? the heavy field x adjusts adiabatically y =
a+ O(A*/\?) and the effective potential looks like it is generated by instantons,

V(a) = )\4ch6_"5(1 —cos(na)), e ¥ =—, c,={1,-1/4,..}. (3.97)

ZStrictly speaking a domain wall is attached to the string even when the gauged shift symmetry remains
unbroken due to the non-perturbative axion potential. However, in an unbroken phase a low energy observer
that can resolve the axion as a dynamical field will also be able to resolve the effective domain wall as an axion
profile, so the domain wall is ’thick’. In a broken phase this may not be possible.
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Figure 3.8: The effective axion potential in the unbroken (left), critical (middle) and broken
(right) phases. We have plotted the cases A*/(27)2A* = {0.5, 1,4}. At the critical value
(27)2A* = A* the scalar potential develops distinct branches with finite (meta-)stable ranges.

a

This is the unbroken phase. We depict both regimes and the critical intermediate one
where branches of the potential 'reconnect’” in Figure [3.8]

Finally, let us note that the way we think about axions is fundamentally perturbative.
We require the continuous shift symmetry of the axion to be exact to all orders in
perturbation theory, so as we pass over loci of strong coupling in moduli space it is not
guaranteed that the dual weakly coupled description that we encounter on the other
side of the locus even possesses anything like an axion. The mere notion of an axion
is thus equally vaguely defined as that of a gauge group in QFT.@ We should think
about it as an emergent weak coupling phenomenon.

3.8.2 The weak gravity conjecture

We would now like to introduce a conjecture that was put forward more than a decade
ago by Arkani-Hamed, Motl, Nicolis and Vafa [31]. It is called the weak gravity conjec-
ture and turns out to be applicable to many weak coupling phenomena such as gauge
theories as well as axions. As such it is relevant in principle for both particle physics and
inflationary cosmology. In its simplest version it is applied to the situation of a U(1)
gauge theory. In such a theory coupled to gravity there exist Reissner-Nordstom black
holes characterized by their mass and charge (M, Q) subject to an extremality bound
Q < M/Mp, in order to avoid naked singularities. Due to Hawking radiation any initial
configuration (@, M) will evaporate down to extremal ones. But if this is their only
decay channel there exist an infinite finely spaced tower of extremal black hole states la-
beled by their charge ). As these are macroscopic objects one would expect the charge
and thus mass spacing to be O(1). This is a slightly awkward situation because there
exists an infinity of states that are all absolutely stable while no symmetry principle

forbids their decay. For all we know this possibility is not obviously inconsistent, but

29Tt happens frequently that a single gauge theory has two complementary weak coupling descriptions that
involve two different gauge groups or even no gauge group at all on one side of the self-dual locus, see e.g.
[202), 203]
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slightly discomforting. In any case, the unease about this was sufficient for the authors
of [31] to conjecture a further decay process: There should exist a light particle of mass
(m, q) with charge to mass ratio bigger than unity, ¢ 2 m/Mp. Then, extremal black
holes can decay via Schwinger pair production. To date it is not fully understood why
really such a conjecture would have to hold (see however [63], 204]), while the strongest
evidence for the conjecture stems from the fact that no fully understood examples seem

to exist in string theory that would violate it.

This conjecture can be generalized to p-form gauge theories, coupled to (p—1)-brane
states, schematically summarized by an action

Sy =— / Q—;FPH A*F,q — Tp_l/zdpx\/ —gind + ,up_l/EAp, (3.98)
with field strength F,; = dA,, and T},_; is the tension, j,_; is the charge and X is the
world volume of the electrically charged object. A special case is the one with p = 0: A
zero-form gauge potential is an axion, and its electrically charged object is an instanton
(the magnetically charged ones are cosmic strings). The 'mass’ is the euclidean action
and the gauge coupling is the inverse axion decay constant.

The weak gravity conjecture applied to the axion case says that there should exist
an instanton with euclidean action Sg that induces shift symmetry breaking effects

that preserve a discrete periodicity 27q such that
Sp S aMp/ fa- (3.99)

By definition, the axion decay constant is set by requiring ¢ € Z, and with minimal
charge qo = £1. If the theory breaks supersymmetry instantons generate contributions
to the scalar potential of the form

Vose(a) = Mpe 2 (1 — cos(qa)) + O(e 7). (3.100)

For such a contribution to the potential to be calculable and small (i.e. for the dilute
instanton approximation to hold), the euclidean instanton action must be larger than
unity. But this means that the harmonic induced by the WGC fulfilling instantons
oscillates on sub-Planckian distances in field space,

A¢ f

T - S <L 3.101

i i, S0 (3.101)

This alone does not mean that axion inflation with non-perturbatively generated axion

potentials, i.e. natural inflation, is impossible simply because so far we have not said
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that the WGC fulfilling instanton gives a dominant contribution to the scalar potential.
The strong form of the conjecture asserts that it always does. Then, if true, single field
natural inflation is not possible. The particle version of this form would be that the
lightest charged particle fulfills the WGC (as does the electron). This conjecture has
been extended from its most basic form. For instance, B. Heidenreich, M. Reece and
T. Rudelius have conjectured a sub-lattice WGC which states that on a finite index sub
lattice of the full charge lattice, each site must be filled with an object satisfying the
WGC [64].

3.8.3 The distance conjecture

Another conjecture that is relevant for phenomenology is called the distance conjecture
[30]. Tt states that as parametrically large super-Planckian geodesic distances d (mea-
sured in Planck units) are traversed in field space, there should exist an infinite tower
of states indexed by some integer n with masses m,, that becomes light as

mp(d) < my,(0)e™%, asd — oo, (3.102)

for some O(1) coefficient c¢. A strong form of this conjecture is that the onset of
this exponential behavior starts at d 2 O(1) [205]. Part of this statement is easily
understood from simple KK reduction. There always exists a radion R (the volume
modulus) that measures the physical size of the compactification space. Its kinetic term
takes the form

Liin < —M2%(OR)?/R?, (3.103)

so the canonically normalized field is ¢x o< Mplog(R/Ry). The masses of the tower of
KK modes (there always exists at least a spin 2 tower) scale with an inverse power of R,
so in terms of the canonically normalized field distance the formula holds toward
large R, i.e. towards weak coupling. In string theory, we expect to always be able to
continue past strong coupling points into a different weak coupling regime. For simple
circle compactification this is just the decompactification limit of the T-dual theory for
which there exists a KK tower again. From the point of view of the original theory the
tower that comes downs as the small volume locus is approached is seen as a tower of
wrapped extended objects, i.e. winding modes associated to the 'fundamental’” string
or extended solitons such as Dp branes. At least at the level of N = 2 CY moduli
spaces, this conjecture seems to always hold [206 207] (but an interesting potential
counter example has recently been proposed where flux backreaction is strong and yet
controlled by warped throat solutions [208]).



Chapter 4

dS uplifts: A 4d point of view

In the last section we have introduced the KKLT proposal for generating de Sitter vacua.
Of course many different proposals have followed since KKLT made their proposal (see
e.g. [209] for a review), but many of them are fairly analogous to KKLT: The logic is to
first engineer parametrically controlled AdS vacua, and as a second step perturb them
with a SUSY breaking object such as an anti-brane to lift the vacuum energy above
zero. This general procedure is called a de Sitter uplift. In this section we would like to
comment on the robustness of such constructions in general although for definiteness
we will employ the original KKLT construction.

First, we will devise a short list of options how the KKLT proposal and other ideas
for uplifting could fail (section 4.1, based on [3, 5]). This will be based purely on

four-dimensional EFT logic, and can be divided into two simple possibilities:

(a) The uplift cannot be decoupled from the stabilization sector to a sufficient degree
leading to substantial amounts of backreaction on the Kahler modulus as the
vacuum energy increases. As the vacuum energy approaches zero from below,
backreaction on the volume modulus is sufficiently strong so that the neglect
of perturbative corrections to the scalar potential becomes questionable, or the
internal space decompactifies altogether. We will call this uplift-flattening.

(b) The standard parametrization of uplifts within four-dimensional EFT is correct
but the appropriate values of parameters that would realize a successful uplift to
dS are not available in string theory.

Second, we will give simple concrete examples where such problems actually do arise
(section . In fact the flattening of the uplift seems to be the physical reason why
there are no-go theorems against dS vacua in the classical corners of string theory [89-
103], so it is tempting to suggest that uplift-flattening is the generic problem that makes

67
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constructions of de Sitter vacua difficult in string theory. Many of these no-go theo-
rems can be derived by considering higher-dimensional tadpole cancellation conditions.
We will introduce this concept as a computational tool, demonstrate its usefulness
in simple six-dimensional flux compactifications, and relate the no-go theorems with
uplift-flattening. Finally, we will argue that a class of models in which uplift-flattening
could be refuted based purely on four-dimensional EFT arguments are in surprising
tension with the weak gravity conjecture for axions This is based on [4].

4.1 Uplifts and decoupling

As promised we will give a brief account of simple reasons why a given uplift idea might
fail from the four-dimensional EFT point of view. Throughout we will employ KKLT
as an example but the general ideas readily carry over also to other types of uplifts.

The 10d warped throat supergravity solution that is used for the uplift is dual to
the Klebanov-Strassler (KS) gauge theory [162], so one should be able to equivalently
describe the anti-brane as a state of the KS gauge theory that breaks supersymmetry
spontaneously rather than explicitly [I88]. If this is the case, it has been argued that
at very low energies the only degrees of freedom are the nilpotent goldstino multiplet
S (nilpotency means S? = 0, for constrained superfields see e.g. [210]) and the volume
modulus 7' [21TH219]. The following Kéahler- and superpotential have been proposed,

K=-3In(T+T~-S85) and W =W, + Ae " +adu’S. (4.1)

Here, a3 parametrizes the strength of supersymmetry breaking and is again identified
with the warp factor at the tip of the throat, while y is related to the unwarped tension
of the anti-D3 brane as |u|* ~ T3.

In deriving the scalar potential one should treat S as a usual chiral multiplet and

in the end set S = 0. For real parameters W, and A, the scalar potential reads

aAe? Re(T)

- —aRe(T) 4 ’/1’4
6 Re(T)? [Ae (aRe(T) + 3) 4+ 3Wy cos (aIm(T))] + ag »

Re(T)2"
(4.2)
The reason why this form is expected to be correct comes from taking different limits:

Vip) =

In the limit of vanishing non-perturbative stabilization A — 0 one recovers the known
runaway potential that is easily read off of the anti-brane DBI+CS action, while in the
limit © — 0 one recovers the supersymmetric KKLT potential. The corresponding
potential is simply the sum of the (would-be) runaway D3 potential and the (would-be)
supersymmetric KKLT potential.
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Interestingly, within this description of the D3-induced uplift, the potential energy
of the D3 adds on top of the negative potential at the supersymmetric AdS minimum
to good approximation until a maximum uplift of about 6V ~ 2 x [V44s|. Beyond that
we encounter run-away behavior Re(7T") — oo.

However, we would like to point out that these limits alone do not uniquely deter-
mine the form of the superpotential. The ambiguity arises from the 4d point of view by
the appearance of a new mass scale due to non-perturbative Kéahler moduli stabiliza-
tion, which was zero in the classical dimensional reduction from which the form of the

D3-induced scalar potential was deduced. For example, a superpotential of the form
W=Wy+b-S+A(l+c-S)e . (4.3)

is fully consistent with the classical limit A — 0 and the SUSY restoring limit
(b,c) — 0. The special choice ¢ = 0, b = aZu? corresponds to the standard KKLT
potential. The other extreme case would be to set b = 0. In this case the SUSY KKLT
vacuum corresponding to ¢ = 0 cannot be uplifted to de Sitter for any value of ¢. From
this one can see one way how a potential dS uplift proposal might fail:

As the uplift potential (say the IR warp factor)
15 dialed up, the volume modulus is pushed to
larger volumes in such a way that it is impossible (4.4)

to reach positive vacuum energy (see Figure .

There is a discussion in the literature [3] 5], 220l 221] about the question to what extent
a non-suppressed coefficient ¢ would endanger the existence of de Sitter vacua in this
way. So it is worthwhile to expand on what we have said so far. First, only by choosing
a large enough coefficient ¢ (where ‘large enough’ will be made more precise below) one
matches the qualitative behavior described in [4.4]

One may convince oneself that for b = 0 there are no de Sitter vacua and the
coupling proportional to ¢ mediates a large back-reaction on the Kahler modulus T
as the vacuum energy increases. For any given value of ¢ we can turn on the small
coefficient b until eventually one reaches positive vacuum energy and the additional
backreaction on T that comes from turning on b # 0 is small. However, if ¢ is large
enough to provide the dominant part of uplifting to zero vacuum energy, such de Sitter
'vacua’ cannot be trusted within a truncation to the leading order Kahler potential.
This is because contributions to the scalar potential from perturbative corrections to the
Kahler potential can no longer be argued to be negligible. The model thus implements

(4.4) within the margin of theoretical error if ¢ is large enough in the sense we now
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describe.

The T-dependent scalar potential around the supersymmetric AdS KKLT vacuum
(b = ¢ = 0) looks rather similar to the potential around the non-supersymmetric
AdS point with ¢ # 0. Naively one might believe that both vacua are equally well
controlled. However, perturbative corrections to the scalar potential in the form of
volume suppressed o corrections are expected to take the form

1
OV ~ B2 x ———— >0 4.5
€ | 0| X (T—I—T)p, p ) ( )

where K is the tree level Kéahler potential and p = 1/2,1,3/2 for corrections arising
at O(a), O(a’?), O(a’®), respectively.

The vacuum energy of the supersymmetric vacuum is given by
Vsusy = =3¢ |[W[* = =3¢/ [W|*. (4.6)

Therefore, in the large volume regime one may neglect o corrections to the scalar
potential expanded around the SUSY vacuum. In contrast, the vacuum energy of the
non-supersymmetric vacuum is parametrized by the value of c¢. If ¢ is large enough,
one has |Vsusy| > |Vsusy| ~ 0V and perturbative corrections start to give important
contributions to the scalar potential. We plot both scalar potentials with their margins

of theoretical error in Figure 4.1|

Hence, there is a critical value of c,

Corit = 1AV alog([A]W]) (4.7)

with numerical coefficient 7, such that

e for ¢ < ¢ using the b-coupling to provide the missing uplift to zero vacuum is

fully controlled,

e while for ¢ 2 ¢, any dS minima created by adding the b-coupling are in the

regime |Vsusy| > |Vsusy| ~ dV where the scalar potential cannot be reliably
predicted.

Thus the model illustrates the effect of unsuppressed exponential couplings but is by
far not the unique one to do so. It can easily be generalized to a whole class of models
that all exhibit the effect that we are after. One simply starts with the superpotential
of eq. , transforms the classical warp factor b into the Kahler potential by a field
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Figure 4.1: In blue: the supersymmetric KKLT potential with an uplift by ¢ = 0, b ~ e240
in blue error bars in orange (assuming p = %) Perturbative corrections to the potential are
negligible. In orange: partially uplifted scalar potential in the limit of marginally controlled
uplift from the c-coupling at ¢ = ¢ (and v = 6), b = 0. Perturbative corrections can no
longer be neglected. In red: uplifted scalar potential in the limit of marginally controlled
uplift from the c-coupling at ¢ = ¢ , and additional b-coupling uplift with 0 < b < 240,
Again, perturbative corrections can not be neglected, and putative dS minima in this regime
are not trustworthy. In all cases we have chosen A =1, a = 0.1, Wy = —10~%.

redefinition of S as in ref. [222],

_ S
and then replaces
V=0 +b(f(T+T)e ™ +cc)+g(T+T)e BT (4.9)

with some power law functions f and g. For the special choice f = ¢ € C, g = |c|* we
obtain the simple parametrization that was originally proposed.

However, for example, we may instead choose g(T+T) = g, - (T +T), with g; € R,
and f = 0. One can check that the bound analogous to (4.7]) reads

91 2 Gerit = 7'a* A%, (4.10)
again for some numerical constant 7/. Such a model implements the behavior of (|4.4])
in a less contrived way than the one we started with. We hope it has become clear
that there are many ways to write down 4d supergravity models that would reproduce

known supersymmetric or classical limits of KKLT without guaranteeing the existence



72 CHAPTER 4. DS UPLIFTS: A 4D POINT OF VIEW

of controlled dS vacua.

Now that we have explained what such unsuppressed exponential couplings could
in principle do, let us comment on the question whether or not we should expect this
correction to be present. Of course it would be rather surprising if the term proportional
to ¢ were completely absent for the following reason. It is well known that if mobile

—2T" in the superpotential is a holomorphic

D3 branes are present, the coefficient of e
function of their position moduli [I05, 223]. Their moduli space is therefore lifted
by the same non-perturbative effects that lead to volume stabilization. If D3-branes
modify the coefficient of the exponential term in the superpotential, one would expect

an D3-brane to do so as well.

This modification is relevant if the coefficient ¢ that multiplies the gaugino con-
densate is not further suppressed by whatever mechanism suppresses the scale of the
classical uplift, in this case warping. In general this is an extra requirement that isn’t
obviously satisfied automatically once the classical uplift energy has been tuned small.
Without a 4d EFT reason that would forbid such a term we should, in the spirit of
Wilsonian effective field theory, consider the option that it is sizable.

The observation that the fate of the uplift depends so heavily on the details of the
moduli potential can be embedded into a more systematic 4d approach towards a de
Sitter uplift: For simplicity let us consider only a single light field ¢ in the 4d effective
field theory. We may Taylor-expand the scalar potential (before any attempt to uplift
it) around its SUSY AdS (or Minkowski) minimum,

o0 (b n
= 1 — 4.11
v Vo<+n§;cn(MP , (4.11)
assuming canonical normalization. Including an uplift means adding a further term
0V (¢) to the potential,

V(9) — V(9) = V(9) +V(e). (4.12)

As the uplift breaks supersymmetry it is usually not easy to engineer a lot of structure
into the functional form of the uplift potential, but we really only have good control

over the overall scale € in
3V (¢) = eién 2 : (4.13)
n=0 MP

i.e. we should assume that ¢, = O(1). Then, it is easy to see that after the uplift is
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included, the scalar field ¢ obtains a non-trivial vev

[Vl

¢uplift —~ €

N——— .~ (o) s+ 4.14
Mp Vo ¢ (c2) m2 M2 (4.14)

which is a good approximation if ¢ < Mp, i.e. when
Vol < md oM. (4.15)

Here we have inserted the physical mass mg g of the lightest modulus in the supersym-
metric minimum and we have used that for an uplift to dS we need ¢ = —V;. This
relation is important to keep in mind: Given a supersymmetric model where all moduli
are stabilized in a way that the bound is satisfied, success or failure of an uplift
depends only on the ability to find a meta stable SUSY breaking source of overall scale
e ~ —Vj. In other words, the fate of the uplift depends only on the ability to tune a

single Wilson coefficient, or the uplift is controllable using 4d EFT.

In general, the value of the scalar potential of the uplift is given by

Vol
%plift = (VE) + E) +eO0 (m) . (416)
So, if the bound is violated the fate of the uplift depends on the precise values of
a large (or even infinite) tower of Planck suppressed operators as all the higher order
corrections in become important. This UV sensitivity is completely analogous to
the one of large field inflation. This analogy is actually quite sharp: On the one hand,
models that satisfy the bound are not UV sensitive but are necessarily tuned
just as the predictions of models of small field inflation depend only on a handful of
Wilson coefficients at the price of tuning. On the other hand, models that violate the
bound are far more generic but UV sensitive just as large field inflation is.

In the simplest examples of moduli stabilization such as KKLT [4], but also the
large volume scenario (LVS) the value of the cosmological constant at the supersym-
metric minimum Vy4g is tied to the mass-scale my of the lightest modulus

[Vaas| ~ mi Mg, (4.17)

and the uplift is UV sensitive. This is precisely the reason why it was possible to write
down bottom-up consistent modifications of KKLT that would prevent the uplift. But
it is important that this does not imply that the uplift really fails! There are in our

opinion (at least) two ways to make progress:
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(a) Investigate the viability of more elaborate schemes of moduli stabilization that
allow to decouple the scales V) and mg( from one another at the price of tuning.
In section we will follow this road, and encounter a generic tension with the
strong form of the weak gravity conjecture for axions.

(b) Pin down the form of the uplift in models such as KKLT using UV input. In
the following sections we will argue that uplift flattening is a generic problem in
higher-dimensional theories and that this problem is the reason why classical no-
go theorems exist in various classical corners of string theory. We will postpone
a discussion of KKLT to chapter 5, We will find that uplift flattening does not
occur in KKLT, but rather that there is a generic difficulty to engineer the right
scale of the uplift potential.

4.2 Higher-dimensional tadpole cancellation

In view of the surprising difficulties that one usually encounters when trying to construct
consistent de Sitter vacua in string theory we find it worthwhile to investigate if the
seemingly conspirative modification of the 4d effective field theory that would prevent
an uplift to de Sitter indeed occurs.

Clearly the cleanest way to do this would be to derive the correct effective field
theory of the volume modulus together with all its SUSY breaking states from first
principles. Due to the obvious difficulty of this approach we will opt for another one.
Instead of deriving the off-shell 4d effective potential we will confront it with 10d tadpole
cancellation constraints. Before turning to the 10d setup we will outline general aspects
of compactifications that will later be relevant and use them to explain the use of tadpole
cancellation constraints and their interpretation. We will use a simple 6d toy model to
develop a physical intuition that we believe is applicable in general.

When a D = 4 4 d-dimensional theory is compactified on some d-dimensional inter-
nal manifold the effective 4d potential is easily obtained from the higher-dimensional
Einstein equations. One simply starts with the most general metric ansatz

ds* = e“(y)gfw(x)dx“dx”“ + G (y)dy™dy™ (4.18)

with warp factor €24, 4d coordinates x# and internal coordinates y™. The higher-

dimensional Einstein equations read

1
MP2 (RMN — §gMNR> =Tun, (4.19)
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. . . matter
with D-dimensional Planck mass M, and stress energy tensor Thn = _\/%%'

The effective 4d potential is then determined in terms of the internal curvature R4 and

the higher-dimensional stress energy tensor as

1 1
VMt = VwQMd/ddy\/geux (_4M—DT’7 - P Rd> , (4.20)

where M is the D-dimensional Planck mass, V,, = M? [ d%y,/ge*# is the warped volume
and ME = M?V, is the 4D Planck mass. Four-dimensional vacua of the higher-
dimensional theory correspond to local minima of this potential which encodes the

value of the cosmological constant as well as the scalar mass-spectrum.

In many instances it is hard to determine this potential in full explicitness but the
possible values it can take are severely constrained due to higher-dimensional tadpole
cancellation conditions. For example, we can take the trace over the D-dimensional
Einstein equations and insert the solution for R back into them. The result is the trace

reversed Einstein equations

1
MDiQRMN - TMN - ngMN . (421)

Then, we can trace over the four-dimensional components, and insert the warped ansatz

of eq. (4.18) to obtain

~ 1 ~
v2A _ 1_16—2(1+k’)AR4d .

~(0-2) /D _
]\é — (D4 6T;; - T,;z}) , (4.22)

where V2 is the scalar Laplacian associated with the fiducial metric Gmn = €24 gmm,
and k =4/(D — 6). As the Lh. side is a total derivative, the integral over the compact
internal manifold with measure /g,,, must vanish. Thus, also the integral over the r.h.

side vanishes, giving the tadpole cancellation condition

. 4M~P=2) T —2
Oé/ddy\/g (e(4k—2)AR4d—e4kA 55 { 7 T[j—TnTD- (4.23)

It is important to keep in mind this expression holds only at the minimum of the scalar
potential (4.20) [91, 156]. This has several consequences: for example, if a higher-
dimensional source contributes an energy momentum tensor 67,y with

d—2 -
— 0T} Ty <0, (4.24)

it does mot imply that the 4D cosmological constant decreases when the source is
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included. This is because a critical point of the scalar potential is in general not a
critical point of the combination of the stress energy tensor that enters the tadpole
integrand. Therefore, as an extra source with small stress energy 07,y is added to a
stabilized setup the background stress energy tensor T,y reacts at linear order in the
perturbation rather than only at quadratic order. Although this means that tadpole
bounds have to be interpreted carefully one can derive powerful statements from it.
For example, in the absence of any source violating the 4D vacuum energy can
never be positive. Using this, one may show that if one only allows for p-form fluxes
with 1 < p < D — 1 and localized objects of positive tension and co-dimension > 2, de

Sitter solutions are ruled out [90]

This means that in many interesting examples the tadpole bound encodes subtle
back-reaction effects that correspond to the correction terms in (4.16)): whenever a
source of positive higher-dimensional energy is turned on that satisfies the condition
(4.24) in a compactification that is (fully) stabilized by sources that also satisfy it, the
higher order corrections in (4.16)) must conspire to keep the overall potential energy

negative.

4.2.1 A simple example: Freund-Rubin compactification

We will now demonstrate this behavior using the well known Freund-Rubin compact-
ification. This is a 6D theory compactified on a S?, with the S? stabilized by 2-form
fluxes [224]. The 6D action is

M* 1
56 = 7/ (*RG — §F2 VAN *FQ) s (425)
with a 2-form field-strength F, = dA;. The equations of motion/Bianchi identity are
1 p 1 9
Ryn = EFMPFN - ggMN|F2| , dFy=0=dxF,. (4.26)

These admit a solution where the 6D geometry is a product AdS; x S? and the S?
is threaded by N units of 2-form flux F, = 2—]\2w2. Here, w is the volume form of the
S? normalized to / wy = 47 and ¢ is the U(1) charge of the particle that couples

52
electrically to A; with smallest charge. The S? radius is fixed at

(4.27)
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and in agreement with the tadpole bound the 4D vacuum energy reads

V- Myt = —(12rM*Ly) ™, (4.28)
and is manifestly negative.

One may try to uplift the four-dimensional vacuum energy by adding a number N3
of three-branes of positive tension 73 smeared over the internal two-sphere. Clearly they
are a source of energy density and therefore the expectation is that they give rise to
an increase of the four-dimensional vacuum energy. However, their stress energy tensor
satisfies (D — 6)T} — 4T, = 0 and so there is no new contribution to the integrand
of eq. . Even without knowing the full solution to the 6d equations of motion
we can solve the tadpole bound for the 4d vacuum energy as a function of the a priori
unknown size of the two-sphere:

_ _ —2|Fy|?) M?L2
V-M4:V2M2/d2 Ve ARD ML 4.29
P IVI TG 127 MO LS (4.29)
where Lg is given in eq. (4.27) and L; is the adjusted length-scale of the two-sphere.
From eq. (4.29) one follows that no matter how much three-brane tension is added, the
vacuum energy cannot increase beyond zero but at most approaches zero from below. In
this simple 6d case one can of course do better and from the internal Einstein equations

determine L; as a function of the three-brane tension:

N3Ts

LP=(1-T3)""1% with T3= TR

(4.30)

Plugging this into eq. we see that indeed the vacuum energy approaches zero
from below as we increase the three-brane tension 73 — 1. The higher order terms
conspire to prevent an uplift to de Sitter. In the limit 73 = 1 the S? decompactifies.
Note that as predicted by the expansion parameter that controls back-reaction
is given by 6V/m3 M3 because the KK-scale is the mass of the lightest degree of
freedom.

One might be concerned that three-branes and two-form fluxes share an intrinsic
property making them unsuitable uplifting ingredients because they appear with the
wrong sign under the integral of . Of course, if one only included these ingredients
in the compactification de Sitter solutions would be ruled out [90]. But as we now
demonstrate it is enough to include also a positive 6d c.c., or equivalently a five-brane
of tension Ty = T; M9, for an uplift to de Sitter by three-branes or fluzes to be possible

(see also [225] for related conclusions). In this case the size of the 2-sphere is bounded



78 CHAPTER 4. DS UPLIFTS: A 4D POINT OF VIEW

140 V)

Figure 4.2: Left: Scalar potential V(1) for the S? volume modulus in the case without a 6D
c.c. for n = 25 flux units and different values of the dimensionless three-brane tension 7s:
T3 = 0 in blue, 73 = 0.1 in yellow, 73 = 0.21 in green, 73 = 0.4 in red and 73 = 0.6 in purple.
As can be seen, the more energy density, the higher the vacuum energy, but the flattening
prevents the minimum to go above zero. Right: Scalar potential V(I) for the S? volume
modulus in the case with a 6D c.c. for n = 25 flux units, 75 = 0.004 and different values of
the dimensionless three-brane tension 73: 73 = 0 in blue, 73 = 0.1 in yellow, 73 = 0.21 in
green, T3 = 0.4 in red and 73 = 0.6 in purple. This time it is also possible to find de Sitter
minima once enough three-brane tension has been added.

from above via

_ 2 _
ZQEL2M2:1 7},(1_\/1_373—77,>§1 757 (4.31)

7Ts 16 (1 —T3) 7Ts

where n = N - M/q corresponds to the number of two-form flux quanta. When n? >

2 _ 16
maxr — 3

the sphere to be sub-planckian we need both a small positive 6d cosmological constant

n 7: (1 — T3)? the sphere decompactifies. Thus, in order for the curvature of
Ts < 1 as well as a large number of two-form fluxes n. Since the 6d cosmological
constant violates the bound (4.24]) dS solutions are now possible. Somewhat amusingly,
even allowing for a positive 6d cosmological constant, lower-dimensional de Sitter vacua

appear only in a very narrow window of parameter space. We give a concrete example
in Figure [4.2

The scalar potential reads (plotted in Figure
1 [475 n*  4(1—T3)

b - (4.32)

—4 o
V- My (l>_16_7r 2 ys 14

Evidently, the flattening behavior observed for the case with only fluxes and three-
branes does not exhibit any intrinsic feature of branes and fluxes but is merely a

property of the simple scheme of moduli stabilization. By including a positive 6d
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c.c. it was possible to somewhat decouple the lightest modulus mass from the value of
the 4d c.c. such that a small perturbation could uplift it to 4D de Sitter.

Unfortunately, in string theory we never have to our disposal a positive ten-dimensional
cosmological constant which is part of the reason why finding lower-dimensional dS
vacua is hard.r'_-] More so, no-go theorems of the type we have described can be derived
in many circumstances [89-103]. We will soon consider an improved version of the
statement valid for type IIB string theory.

Whenever no-go theorems of this type can be derived, the following situations occur,
(a) Uplifts from AdS fail due to the flattening of the uplift as depicted in Figure [4.2]

(b) Uplifts from Minkowski fail because there is a massless mode that is sent into a
runaway behavior by the uplift.

In both cases, the failure to stabilize moduli with sufficient 'rigidity’ is at the heart
of the problem. This is why the problem of moduli stabilization is a crucial one in
all phenomenological applications of higher-dimensional theories, in particular string

theory.

4.3 Racing through the swampland
The KL racetrack vs the weak gravity conjecture

Before we turn to the tadpole cancellation constraints in KKLT we would like to
remark on a possible relation between the weak gravity conjecture and the difficulty to
uplift to de Sitter [4]. For this purpose we focus on uplift ideas where it can be argued
that the classical uplift can be tuned almost arbitrarily small but there is little control
over the cross couplings between uplift sector and stabilization sector. In this case
substantial uplift flattening would be expected according to what we said in section
4.1l We specifically leave out the anti-brane uplift because we will argue later that
there is no substantial uplift flattening in this case. However, all uplifts via bulk
fields such as complex structure moduli that directly enter the one-loop Pfaffian in the
non-perturbative superpotential would suffer from this problem. In this case, one may
simply accept this and look for more elaborate schemes of moduli stabilization in which
the mass of the lightest modulus can be parametrically decoupled from the depth of
the scalar potential at the supersymmetric starting point. In this case dS uplifts would
be generic as we have explained in the preceeding section. In this section we focus on

!Note that massive type ITA and the SO(16)? heterotic string have positive vacuum energy, but due to a
dilaton dependence this does not lead to ten-dimensional dS vacua.
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the only scheme of moduli stabilization that we are aware of that accomplishes this
goal. This is a variant of the old racetrack idea and was proposed by Kallosh and Linde
(KL) [104].

The reason why one might expect the WGC to constrain de Sitter uplifts is that
the volume modulus is always accompanied by an axionic partner which in type IIB
string theory can be thought of as the integral of the RR 4-form over the 4-cycle
associated to the volume modulus. Given a stabilization mechanism for the volume
we can hence inquire about the axion potential and whether or not it is consistent
with the WGC. For instance, for the KKLT scenario with a single gaugino condensate
W =Wy + Aexp(—aT), one can easily verifyf| that

f/M, ~ (aRe(T))". (4.33)

up to order 1 coefficients. If higher order non-perturbative corrections to the superpo-

tential

5Wr?ipg_her order — Z AneinaT (434)
n=2

can be ignored we necessarily have aRe(T") > 1 and hence f is sub—Planckianﬂ There-
fore, an axion potential generated via gaugino condensation remains sub-Planckian for
very much the same reason as an instanton generated potential does. We conclude that
the WGC should apply to gaugino condensation.

The KL racetrack scheme of moduli stabilization [104] is defined via the tree level
Kahler potential as given in but with a superpotential

W = Wy + AN, exp(—27T/Ny) + BNy exp(—27nT/Ns) , (4.35)

Usually one assumes that this arises from gaugino condensation for the product gauge
group SU(N;y) x SU(Ns) with gauge coupling set by the modulus 7' (and no massless
matter is assumed) [226]. W.l.o.g in the following we take N; > No.

Splitting the real and imaginary (axionic) parts of 7' =t + i¢, the scalar potential
V(t, ¢) reads [227]

V(t.0) =hlt) + Viltycos (570~ ) + Talt)cos (370 - 6)

1

27T(N2 - Nl)
+ Vi_s(t)cos | ————2L0) — 4.36
2The Kéhler metric reads gr7 = %, so at fixed Re(T) the canonically normalized axion is ¢. ~

MpIm(T)/Re(T). The factor of a~' appears because the superpotential is invariant under T — T 4 2mia~'.

3Such corrections would likely be generated by higher-derivative corrections of the gauge theory [172].
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V(¢) V(¢)

¢ ¢

Figure 4.3: We depict the axion potential on a fundamental domain for choices of parameters
(A, B, N1, Ny) = (1,—1.1,100,99). On the left, we plot the potential at t = 1.6ty (where tg is
defined in eq. and one notices that the small wavelength oscillations play a dominant
role. On the right we plot the potential for ¢ = ¢y where the long wavelength oscillation
dominates. For ¢t = ¢ the axion decay constant in Planck units is O(100).

with a = arg(AW,), 8 = arg(BW,), v = arg(AB) and coefficient functions

%(t) :2—t2<27TN1’A‘ (1 + 3—]\[1) e M+ QWNQ‘B’ <1 + 3_]\[2> e N2 ) , (437)
|AW(]| _2m |BWO‘ _2n
Vl(t) :27r2—t2 e ™' ) V2<t> = 27T2—t2 e ! , (4.38)
AB 82t _(2my2n
Viea(t) =22 (o, 4 ) + o R0 (139

There exist three distinct harmonics for the axion ¢ with coefficient functions V4, V5 and
Vi (see figure for a plot of the scalar potential along the axion direction in field

space). The last one sets the axion periodicity to ]\]X 1_]\][\2,2 so the axion decay constant is
NNy, 1

Mp~ ——>— - —. 4.40

ol Mp ~ 524 (4.40)

This is super-Planckian when N = N; ~ N, and N < t < N2, a regime where the

fractional instanton expansion would seem to be under control. The strong form of

the WGC would require the short wavelength wiggles with amplitudes V; and V; to

dominate over the long wavelength harmonic with amplitude V;_5. This has to be true

all the way down to the breakdown of the fractional instanton expansion at t ~ N.
|

In order for the KL racetrack to be compatible with this (i.e. Vj_o < max(V1,V3)) we
would have to demand that
[Wo| 2 min(|Al,[B]). (4.41)

However, we would find such a strict bound on the flux number W very surprising, in

particular because it seems that no such bound can be derived for the single gauge group
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V(t)

t

Figure 4.4: The KL racetrack potential along the radial direction in the limit of (4.42),
with the same choices of parameters as in figure One notices a Minkowski minimum at
t = tg =~ 150 and a standard KKLT minimum at large values of .

KKLT model. Moreover, explicit studies of the classical flux superpotential indicate
that the genericity arguments for a small W, are valid [43].

The phenomenological virtue of this model is that when the parameters A, B, Wy of
the model are tuned to satisfy

A NQ/(Nl—NQ) A Nl/(Nl_N2)
there exists a SUSY Minkowski minimum at
. N1 Ny B
27Ty = 27 (t = ——" 1] - 4.43
Ty = 2elt +ido) = 5 oaslog (<5 ) (1.43)

and the mass of the volume modulus is finite (a corresponding minimum exists also
when the relation (4.42)) is detuned, but the vacuum will be of Anti-de-Sitter type.).
See figure [4.4] for a plot of the scalar potential in this limit. In order for this minimum
to lie at positive volume it is required that |B| > |A|.

If the tuning of eq. (4.42)) holds, one has that
[Wo| < |Aemo/N1| 4| Bem2mio/N2| | (4.44)

It then follows that if we take |A/B| = O(1) the WGC-type bound cannot
possibly be satisfied unless e=2™0/¥ > O(1). In other words, the Minkowski racetrack
minimum would lie outside the (naive) validity of the controlled fractional instanton
expansion. As a consequence, if the WGC holds, the racetrack minimum cannot be

used as a controlled starting point for uplifting to de Sitter space, i.e. there is no
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parametricallly controlled de Sitter uplift within the racetrack scheme.

Of course this conclusion can be evaded if hierarchically different values for the
one-loop Pfaffians A, B are chosen [4], 221], 228]. Given that the two seven-brane stacks
have to wrap the same divisor class we do not find it reasonable to expect that this can
be done.

There are of course many ways how this tension could get resolved. The simplest
options would be that

(a) the required gauge theory configurations cannot be engineered in the type 11B
corner of string theory, or

(b) the bound of (4.41)) holds, or

(c) the strong form of the WGC does not hold in the axion context.

Interestingly, we will find explicit racetrack type superpotentials in chapter [6] where a
condition on the ranks of the gauge groups involved prevents long wavelength dominant
contributions to the scalar potential. This can be taken as evidence for option (a).

Whichever option holds, we observe an unexpected relation between the ability to
realize parametrically large axion decay constants and parametrically controlled de
Sitter vacua. Success or failure to achieve the former, possibly determines the viability
of the latter.

4.4 Discussion

We would like to give a brief summary of the conclusions we have drawn in this section.
There are, in our opinion, two conceivable mechanisms by which potential uplifts do
de Sitter vacua could fail in principle. The first, we have dubbed uplift flattening: In
the simplest schemes of moduli stabilization it is not possible to engineer a hierarchy
between the depth of the scalar potential in its AdS minimum V49, and the mass scale
of the lightest modulus my, concretely

This is true for simple Freund Rubin compactifications as illustrated in section [£.2.1],
but also for the KKLT mechanism[] In this case, given only the existence and metasta-
bility of (4d-)spacetime filling objects that can perturb the AdS vacuum and raise the
vacuum energy (an uplift), the existence of de Sitter vacua is not guaranteed due to

the possibly significant backreaction of the uplift on the lightest modulus. Significant

“It also holds for the Large volume scenario (LVS) [75].
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uplift flattening means that backreaction is sufficiently strong to preclude the existence
of positive energy solutions in regimes of parametric control over the given perturbative
expansion scheme.

Whether or not this occurs depends on the detailed form of the uplift potential as
a function of the lightest modulus. We have argued in section that the form of the
uplift potential is generically hard to compute reliably or even estimate from an EFT
point of view due to its sensitivity to a large number of Planck suppressed operators.
Together with the observation that uplift flattening occurs rather generically in higher-
dimensional setups, we are motivated to investigate whether or not this happens also
in KKLT. Investigating this from a ten-dimensional perspective will be the focus of the
next section.

The obvious way to return the question of the existence of de Sitter uplifts back into
the realm of four-dimensional EF'T would be to engineer alternative schemes of moduli
stabilization where the relation can be violated parametrically. In section
we have considered the KL racetrack scheme which is designed to do precisely this,
and have shown that such models are in tension with the weak gravity conjecture for
axions. So, rather surprisingly, we have given circumstantial evidence that realizing
parametrically controlled de Sitter vacua from this line of thought may be difficult for
the same reasons that engineering models of large field inflation is difficult (or even

impossible) in string theory.



Chapter 5

KKLT in ten dimensions

In this section we would like to put the KKLT proposal under scrutiny. We focus on
this model because 1) it is one of the most studied models [I05H107], 2) it is consistent
with the general expectation that de Sitter vacua are non-generic and at best meta-
stable [41] [165] 229 230], and 3) there is evidence that the tuning requirements that
make it non-generic can actually be met [152]. So in many ways the KKLT proposal
offers concrete evidence for the existence of a large landscape of dS solutions in string
theory. This evidence is hard to simply dismiss. Nevertheless, the question whether
or not de Sitter vacua exist in string theory has received renewed attention, in part
due to the recently proposed conjecture that such solutions cannot exist as a matter of
principle [T9-K81) 231]. Put in the jargon of the field, it has been claimed that all EFTs
coupled to gravity with de Sitter (dS) vacua reside in the swampland.[] This criterium

is referred to as the no-dS conjecture.

The no-dS conjecture is in stark contrast to what an effective field theorist would
conclude from the observational fact that our universe is undergoing accelerated ex-
pansion. Arguably, from her point of view a tiny but positive cosmological constant
would be the simplest and most natural fit to the data, see section [2.3] In particular,
she would conclude that in the far future the geometry of our universe will be well
described by a patch of de Sitter (dS) space.

Some of the evidence for the conjecture comes from the fact that in various classical
corners of string theory there exist no-go theorems against the existence of de Sitter
solutions [89H96], 98], 99| T0THI03], 232]. In section we have related these to the
problem of uplift flattening. Due to the existence of these theorems (and also due to
the Dine Seiberg problem [165]) it seems natural to expect that if any dS solutions
exist at all, they will require a competition between classical and quantum effects that

!For a discussion regarding the form and viability of the conjecture we refer the reader to references [82-88].

85
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cannot be mapped into a purely classical effect by any duality transformation.ﬂ As we
have explained, the KKLT proposal is one of the most convincing proposals of such a
kind Pl

There are two interesting mutually exclusive but as far as we can judge today equally
likely options that we will entertain in the following:

(a) The KKLT proposal withstands sufficiently many lines of attack so that it can
be established beyond reasonable doubt. In this case the no-dS conjecture would
clearly be wrong and the dS landscape of string theory should be continued to be
explored in as many ways as possible.

(b) The KKLT proposal turns out to be inconsistent, and we should focus on devising

new ideas for realizing dS vacua in string theory or alternative ideas of dark energy.

We will do so by considering a ten-dimensional consistency requirement in the form of

a tadpole cancellation very similar to the one of eq. . This is obtained as follows.

Starting from the 10d Einstein frame action of Type IIB supergravity, and the usual

warped ansatz for the ten-dimensional metric and five form one may combine the

trace reversed Einstein equations with the five-form Bianchi identity to obtain [40, [O1]
24 loc

. - A
25— — e A2 —641 92 242 5.1

where

. c 1 m loc
G =(x¢+1)Gs, dF=e""+a, and A= 1 (T —1)"™ — Tspyc.  (5.2)
Here Gj is the complexified three-form F3 — 7Hz. Moreover Ti9%% and T3p° are the
stress energy tensor and D3-brane charge density of localized objects. We may integrate

this equation over the internal manifold to obtain the tadpole cancellation condition
[40, 91]

- A
0= /cl(iy\/g6 {BGARM + BSA% + 1007 , (5.3)

2Whether this intuition is correct remains an open question as there are many proposals for purely classical
meta-stable dS solutions, e.g. supercritical strings [233H235], type IIB string theory compactified on orien-
tifolded products of Riemann surfaces [225], proposals involving combinations of 05 and 07 planes [236], and
more recent work in the context of F-theory [237H239]. On the type IIA side there were studies of dS on
(generalizations of) twisted tori [83] 93] [99] 240]. These proposals should be further scrutinized in the future
as they form possible counter examples against the no-dS conjecture.

3For further dS proposals involving balancing classical and quantum effects, see e.g. [73} [75, B3] 225] 2411
251], and the recent review [209]. For a new perspective on dark energy from F-theory, see [252] 253].
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where

Azszﬂi+Am. (5.4)
4Im(T)

From this expression it follows immediately that as long as all localized sources satisfy
A > () the unique classical Minkowski solutions of type IIB string theory are the ISD
solutions,

s =Al*=R;p =3 =0. (5.5)

Under the same assumption de Sitter solutions are ruled out as well. Therefore, a
necessary condition for realizing 4D de Sitter solutions is that there exists at least one
localized object that satisfies Al¢ < 0 This is a remarkably strong condition because
it is the opposite of a BPS bound for D3 branes. In particular sources like D7 branes,
O7 planes (which carry induced D3 brane charge), D3 branes, O3 planes and even
anti-D3 branes are not enough to violate the bound [40].

Another problem is the appearance of eight powers of the warp factor in front of
the contribution from fluxes and localized sources. This means that the stress energy
of all warped uplifts essentially does not contribute to the tadpole. Whatever object
sources the stress energy that would allow the four-dimensional vacuum energy to lift
beyond zero, it must be a bulk effect. This is slightly discouraging because the whole
idea of warped de Sitter uplifts is that some isolated strongly warped supersymmetry
breaking source contributes to the four-dimensional vacuum energy while its effects
on the bulk geometry are under parametric control. In KKLT, the only ISD breaking
source aside from the uplift itself is the physics of gaugino condensation on the stack
of seven-branes. Thus the stress energy induced by gaugino condensation must not
only change significantly, it must even change in sign. This is the tadpole cancellation
problem as formulated in [5]. Whether or not this problem can be solved is still a
subject of discussion. We will argue shortly, based on [I] and in agreement with ref.
[110], that this problem is solved dynamically in KKLT. However, the authors of [111]
disagree with us, and we will explain where the disagreement lies.

Before we get there we must introduce what is known about the ten-dimensional view
on four-dimensional gaugino condensation. A conjectured 10d lift of the KKLT vacua
goes via the by-hand insertion of a non-vanishing C-valued expectation value for the
seven-brane gaugino bilinear (A\) # 0 [106]. This conjecture is supported for instance
by the fact that the non-perturbative superpotential for D3-brane position moduli can
be accurately computed from ten-dimensional supergravity via the insertion of the
gaugino bilinear as a classical source term [106], and the ability to find supersymmetric

4 Alternatively one might invoke quantum corrections that cannot be described in 10d.
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backreacted solutions [107]. We will call this the 10d gaugino condensation conjecture.
If this conjecture were true in general, roughly speaking, it would allow to constrain
de Sitter vacua of the KKLT type much via the same tools that are used to exclude
purely classical solutions in [90].

We will explain that while the 10d gaugino condensation conjecture can be argued
to be valid for the supersymmetric KKLT AdS vacua, it will fail to hold once supersym-
metry is broken: there are additional contributions to the 10d tadpole equation that
can be shown to arise from demanding only the consistency of the supersymmetric
KKLT construction and that become relevant only once SUSY is broken. We find it
unlikely that these contributions can be captured by a local 10d action in the above
sense. Moreover, under the assumption that arbitrarily strongly warped regions exist in
the flux compactification, these new contributions can be shown to precisely cancel the
tadpole once SUSY is broken by a warped uplift. In total, we see no reason to expect
the failure of KKLT uplifts from considerations of 10d tadpole cancellation alone. This
can be interpreted as evidence that the problem of uplift-flattening does not occur in
KKLT. In other words, the coefficient ¢ in eq. is sufficiently suppressed to play
no role.

We will later contrast this result by arguing that a successful uplift to a dS vacuum
via warped uplifts, and more so to a SUSY breaking AdS vacuum, is highly constrained
by the geometrical consistency requirement that the warped throat used for the uplift
must fit into the bulk CY | We will show that the simplest examples with a single Kéhler
modulus can hardly satisfy this basic requirement. For the case of many Kéahler moduli
we speculate that this problem becomes even more severe unless the compactification
manifold satisfies additional geometrical properties that we believe are highly non-
generic. It would be very interesting to investigate whether such geometries can be
realized in a controlled manner. This is, in our opinion, a good physical motivation to
try to understand in detail the geometriy of CY compactifications beyond topological
data. We will however not pursue this goal in this thesis.

5.1 Non-perturbative D3 brane potentials: Three perspectives

As explained in the introduction of this section we would like to study moduli stabi-
lization and the uplift to de Sitter space from a ten-dimensional point of view. The
classical part is extremely well understood: the Gukov-Vafa-Witten superpotential can
be lifted to the ten-dimensional three-form potential of type IIB supergravity [154] and
the 4d SUSY conditions that determine the three-form fluxes to be of Hodge-type (2, 1)

®Note that the same requirement has been used to constrain inflationary models in [46] and in [230] to
argue that the flux superpotential must be tuned extremely small for the KKLT construction to be consistent.
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lift to the 10d SUSY conditions of B-type [254]. Furthermore the 4d scalar potential
is minimized precisely when the 10d equations of motion are solved by the imaginary
self-dual (ISD) solutions of [40].

An analogous 10d <— 4d correspondence of Kéhler moduli stabilization is some-
what harder to establish, both conceptually as well as technicallyff| the dynamical
origin of the exponential superpotential is the condensation of gaugino bilinears in the
4d Yang Mills gauge theory (or euclidean D3 brane instantons). The scale below which
the condensation occurs is the dynamical scale of the gauge-theory which typically lies
far below the Kaluza-Klein scale. So, how can it be possible even in principle to include
the non-perturbative effects in a higher-dimensional setup? First, there certainly exist
geometrical setups compatible with the correct order of scales: an example is that of
an ‘anisotropic’ Calabi-Yau space in which the four-cycle that the 7-branes wrap is
much smaller than the typical length-scale of the transverse space [106]. In this case
the non-perturbative scale of gaugino condensation can lie far below the Kaluza-Klein
scale of the four-cycle and at the same scale as the transverse Kaluza-Klein scale. An-
other situation of this type corresponds to a compactification space that is equipped
with warped throats of significant warping. In this case the warped Kaluza-Klein scale
lies exponentially below the bulk KK-scale.

There has however been crucial progress in recent years in establishing a far more
general ten-dimensional picture of gaugino condensation [105], 107, 255, 256]. First,
note that if a mobile D3-brane is present, the classical moduli space of the world-
volume scalars is identified with the compactification geometry. In the absence of
non-perturbative effects there is no potential for the world-volume scalars and the
internal geometry can thus be probed at arbitrarily small energies. Thus, even if non-
perturbative effects generate a potential for the world volume scalars one may probe
the (quantum-deformed) internal flux geometry at scales that lie far below the KK-
scale. With this in mind one should be able to effectively describe the SUSY vacua
with non-perturbative Kahler stabilization by the 10D equations of motion, corrected
at order of the value of the gaugino condensate (A\).

As there is a controversy surrounding the question how the ten-dimensional lift of
KKLT vacua should be implemented [Il, 110, 111] we will now explain in some detail
what kinds of technical problems one encounters and how these are resolved eventually.

Remarkably, as a first step, the following simple prescription advocated by the
authors of [106], 107, 257] captures an important set of physical effects,

(a) Start with the classical type IIB supergravity together with the DBI and CS
actions for localized objects to quadratic order in the worldvolume fermions.

SWe thank Arthur Hebecker for discussions concerning this point.
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(b) Solve the 10d equations of motion, assuming a non-vanishing C-valued expectation
value of the fermion bilinear associated with the 7-brane gaugino.

According to this the relevant term in the action is [107]

A
Spr 2 /M Wég)e‘ﬁﬂe‘m% G AN xQ+c.c., (5.6)
10

and acts as a source for the three-form fluxes. Here, AX = Tr (S\PL)\).

Clearly this approach needs to be justified. For this it is useful to consider the
non-perturbative lifting of the D3-brane position moduli space. Recall that in clas-
sical ISD solutions D3 branes can be moved without energy cost. The 4d fields that
parameterize their positions in the internal CY are massless moduli. However, at the
non-perturbative level, this moduli space is generically lifted. This effect can be studied
from three different angles. First, there is the standard 4d perspective. In compact-
ifications with both D7-branes and mobile D3 branes the gauge-kinetic function f of
the D7 brane gauge theory depends on the open-string D3-brane position moduli 2*
via one-loop open string threshold corrections which were calculated explicitly e.g. for
a T%/Zy x T? orientifold of type IIB string theory [223]. Then, at low energies the
non-perturbative superpotential

W o v /GHT) (5.7)

is a function of the position moduli z* which obtain a non-trivial scalar potential.

Interestingly, the open string calculation of [223] was perfectly matched with a dual
closed string calculation in [105, 255] as follows: the position moduli y%, of a mobile
D3 brane treated as a classical localized source in the 10d supergravity enter the electro
static equation for the warp factor

- 0°(y — yps3
VZe 4A<y; yDg) 0.8 ¥ — Phbackground » (58)
gecy
where the second term is a background charge that integrates to one. One can then

show that 56< ) .
V2 Ay Y —Yp3)

(5.9)

in other words the perturbation of the warp factor at some position y induced by a

moving D3 brane does not depend on the form of background charge distribution.

Then, the divisor volume which is identified with the imaginary part of the seven-
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brane gauge kinetic function is

I ((yp3)) ~ Vol(D) = /D dy/G e (ys). (5.10)

Therefore, it acquires a dependence on the position moduli of the D3 branes. This can
be solved explicitly in toroidal setups and reproduces the open string calculation of
[223]. Again, the D3 brane position moduli enter the non-perturbative superpotential
in the 4d EFTE] The closed string computation is particularly useful as it readily
generalizes beyond simple toroidal orientifolds. In particular, for a stack of N D7-
branes with holomorphic embedding equation h(z) = 0, the gauge-kinetic function
f(T,2") of the DT gauge theory depends on the volume modulus 7" as well as the D3

position moduli 2* [105]
Inh(z)
T, z)=1il+—. 5.11
Using this dependence of the gauge-kinetic function f on the D3-brane position moduli

one may determine the 4D non-perturbative superpotential to be
Woxer! = h(z)l/Ne_%rT. (5.12)

So far, classical 10d physics has been used only to obtain the gauge kinetic function
(5.11) while the generation of a non-trivial potential for the D3-brane moduli is dealt
with entirely within 4d effective field theory. Crucially these two steps could be sepa-
rated because the classical back-reaction of a D3-brane on the classical 10D supergrav-
ity solution is finite. This is clearly not the case for an D3-brane due to the run-away
instability. Thus it is desirable to have in hand a quantum corrected 10d action. The
key points were derived in [106], where the authors analyzed the generation of a non-
trivial classical potential for the position moduli of D3 branes in ISD backgrounds
subject to harmonic non-ISD perturbations. Crucially, it was shown that in conifold
backgrounds every superpotential that can be written down for the position moduli in
the 4d effective field theory can be matched to a non-compact classical 10d supergrav-
ity solution such that the scalar potentials coincide. Hence, the quantum corrected 10d
supergravity that reproduces the correct D3 brane potential is only corrected by terms
that are localized away from the warped throat. Such localized terms are necessary
because the entirely uncorrected type IIB supergravity equations do not admit static
non-ISD perturbations in the compact case due to the global constraints of [40].

It is tempting to identify these localized terms with the terms in the 7-brane action
that are proportional to the gaugino bilinear (A)). Indeed, in non-compact examples,

"See also [258, 259] for a derivation using the language of generalized complex geometry.
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the superpotential (5.12)) can be encoded in so-called series I three-form flux
(G3)i55 < (AN) ViV Re(In h(z))glmﬂmﬁ; , (5.13)

where  is the holomorphic three-form of the Calabi-Yau [106]. This is precisely the
perturbation of three-form fluxes that is sourced by the fermionic bilinear term in the
action ([5.6)).

5.2 UV ambiguities and their resolution

Guided by the non-trivial consistency check that we just described one would conclude
that the relevant details of non-perturbative volume stabilization are indeed captured
by the classical 10d supergravity action assuming a non-vanishing expectation value of
the gaugino bilinear. However, this prescription is not fully complete which can be seen
from the gravitational backreaction sourced by the action :

In a compact setup the action sources a three-form profile [107]

_4sa (AN dX _ P r
where VU is a scalar Green’s function,
Vol(%) - 1 —
2 =2 ¥)— —— X = (V2 )Q. 1
\Y% s (5( ) VOI(CY)) , and 0O 2(V ) (5.15)

Here, §(X) is the scalar delta function that localizes on the four-cycle that the 7-branes
wrap, and G5 are the harmonic ISD background fluxes. Note that in a non-compact
setup W is identified with Relog h(z'), where h(z") = 0 is the holomorphic embedding
equation of the 7-brane divisor [106].

But this implies that the ISD component of G

GPP o 0X o« (V2U)Q D 76(2)Q, (5.16)

contains a term proportional to §(X)Q, and plugging this back into the action (5.6)
produces an ill-defined term proportional to §(0). Clearly this is a short-distance sin-
gularity. With a hard UV cutoff Ayy, it scales as [5l, 260]

Som—shett ~ [ AN 25 (0) ~ [(AN) A2 + finite. (5.17)

Similarly, the contribution of gaugino condensation to the stress energy tensor diverges

in this way. Early attempts to quantify the contribution of gaugino condensation to
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the tadpole cancellation conditions of type IIB supergravity were based on cutting off
divergent integrals of this sort at the string scale. However, this procedure could not
be reconciled with the existence of four-dimensional de Sitter vacua of the KKLT type
[5], 260].

It was then understood in ref. [I08], [109] that the action of eq. must in fact
be completed to a perfect square. We quote from ref. [I10], slightly modified to apply
to the CY threefold case, and adapted to our conventions,

Gs— P (e3om) g
(¢t 5229)

1672

2

, (5.18)

SHB D) —7T/ dlol‘\/ —G6¢
Mio

where P(-) projects onto the space of closed formsff| This result is valid for constant
dilaton. Expanding this to linear order in (A\) one recovers the kinetic term of G5 and
the action so the equations of motion for G5 are left unaltered. This modification
of the action was motivated by analogies to the heterotic string [108] and shown to be
required by supersymmetry [109]. Sincd’]

— 1 Vol(2) \ = dX  Vol(¥) =
PO(X)Q) =P — VU 4+ ——— Q) =— 4+ —""0 1
(O ((QWV +V01(CY)> > 27 +V01(CY) ’ (5.19)
it follows that the on-shell action becomes
_o (AN VolI(%) 52
1672 Vol(CY)

Son—shell = _ﬂ-/ dloz \Z _G6¢ Glg -
Mo

—G%-(*GG_@) , (5.20)

which is manifestly finite and vanishes in the limit of infinite transverse volume and
ISD harmonic fluxes[Y] Upon dimensional reduction to four dimensions, this action can
be compared with the classical four-dimensional N' = 1 supergravity action and there

is perfect agreement [108].

5.3 10d vs 4d supersymmetry conditions

Now we would like to perform a further consistency check of the proposed lift of KKLT
to ten dimensions. In ref. [107] it was shown at linear order in the expectation value of
the gaugino condensate that the background sourced by the quantum corrected action
maintains supersymmetry in a non-compact setup. Here, following [5], we wish
to comment on a generic obstruction against unbroken supersymmetry in a compactly

8The Hodge decomposition theorem states that every p-form w, can be uniquely decomposed into a har-
monic, exact and co-exact component, w, = wy + dap—1 + d' Bpr1. Plwp) = wh + dog,—1.

"We have that (V>¥)Q = 20X = dX — (0 — 9)X = dX + 1d' (0¥ A Q).

0The second term comes from the CS term of the 10d action.
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embedded scenario: Away from the location of the divisor X, the Hodge type (0, 3)
component of the three-form fluxes as perturbed by the gaugino bilinear read

MV_Q‘I’) Qe (go,3 _ e %/2 (AA) Vol(X)

Gl (03 o a2 WA Q. (521
3los) (g T 6m2 an 3272 Vol(CY) ) (5:21)

where ¢%3 = const. is the (0, 3) piece of the harmonic background fluxes. This means

%3 and the gaugino bilinear, the (0,3) component of the

that for generic values of g
three-form fluxes are non-vanishing. This however signals supersymmetry breaking as
gauginos on a probe brane (say a D3 brane) are known to obtain a soft mass term from
such fluxes [261H263]. Thus, a necessary condition for unbroken supersymmetry is that

the classical and the quantum term cancel against each other,

03 L —¢/2<)‘)‘> Vol(¥) 99
9T R2mEVol(CY) (522)

This condition should be understood as a constraint on the value that the gaugino
condensate takes, and can be compared with the four-dimensional F-term equation
of the volume modulus. To facilitate this, first it is necessary to rescale the gaugino
according to A — Vol(C'Y)**X in order to obtain canonical normalization in four-
dimensional Einstein frame. Second, the flux number W, that appears in the 4d KKLT
description is given by

GharmoniC/\Q
Wy = o2 L = IRl = MR TRICY), (529

so the ten-dimensional SUSY condition can be written as
Wo ~ Vol(CY)Vol(E)(AN) . (5.24)

The four-dimensional F-term equation reads

3
DWW ~ —21 Ae~ 2 TIN — o =0, (5.25)

which upon identifying T+ T ~ Vol(X), and

(N = 32726572 42 TIN  Nol(CY)~ Ae™ 2T/ | (5.26)
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Figure 5.1: Cartoon of backreaction of supersymmetric gaugino condensation on the ten-
dimensional flux background. The Hodge type (0,3) background flux (depicted in blue) is
fully localized onto the seven-divisor.

indeed reproduces the ten-dimensional SUSY condition E This means that we
now understand from a ten-dimensional point of view the physical mechanism by which
gaugino condensation can restore the classically broken supersymmetry in the bulk
spacetime: It localizes the (0,3) component of the three-form fluxes onto the divisor
> so that branes probing the fluxed geometry away from the divisor see only fluxes of
Hodge type (2,1), compatible with unbroken SUSY on their worldvolume (see Figure
[.1), despite the fact that [Gs] ¢ H>'(X,Z).

Once a SUSY breaking source such as an anti-brane in a warped throat is introduced
which pulls on the volume modulus, the relation between Wy and (A\) will of course
be detuned. This effect reintroduces a bulk (0,3) component with strength set by the
amount of SUSY breaking from the uplift that is seen by probe D-brane gauge theories.

5.4 Gaugino bilinears as classical sources?

In the previous sections we have seen that for many purposes it is remarkably consistent
to treat quantum gaugino bilinears as effective classical source terms. We would now
like to estimate the limitations of such a procedure. We consider the microscopic
Lagrangian of 4d N' = 1 pure SU(N) Yang-Mills coupled to the Kéhler modulus T,

110 comparing with eq. (3.78)) the reader will notice a further factor e’/2. As the superpotential is a
section of a line bundle in supergravity, this factor is introduced to relate the holomorphic superpotential to a
physical scale.
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and the gravity multiplet. Our conventions are as in [I45] such that the gauge kinetic
term reads

1
e L yauge = —ZRe(fAB(T))F,fVF“”B + ..., (5.27)

with gauge kinetic function fap = %5 AB- We consider the tree-level Kahler as in eq.
(3.81) and classical constant flux superpotential W = Wj. It is useful to define the
composite glueball field S as

Sap(MPLABY  (AN)

S 167 16m

(5.28)

We focus on the gaugino mass term and quartic gaugino interactions in the four-

dimensional Lagrangian,

1 e 1 (T+T\’ <
Ly =— 16_7T(T+T) Y2 T (APLA) + h.c. — = ( . ) ITr (APLA) |2
3 (T+T\*, . - .
i (8—7r> Tr (Ay,7:A) Tr (A ) (5.29)

It is straightforward to check that the first line matches with the reduction of the 10d
on-shell action. The second line is not yet reproduced by the 10d action as we have not
included non-trivial expectation values for the (pseudo-)vector bilinear, but this is of

no relevance here since we are interested in Lorentz invariant four-dimensional vacua.

Given the manifestly finite, and appropriately 'quantum corrected’ ten-dimensional
action described in section [5.2] the existence of a well-defined ten-dimensional lift of
KKLT can be considered an established fact. One might hope that these vacua are
described perfectly well by choosing an appropriate C-valued expectation value for
the gaugino bilinear and compute the backreaction. While this can be done without
encountering singular behavior, we will now argue that this approach is not the correct

one in general.

First, let us ask (within the 4d supergravity) what is the effective scalar potential
V(T,T,S,S) once we insert by hand a non-vanishing expectation value S # 0. Due to
Lorentz invariance (Tr (Ay#7.A)) = 0. Clearly, we obtain

SWy + h.c.

_ o (T+T)

2
Vmicroscopic(Ta Ta Sa S) = 3 ‘S|2 + (530)
Let us call this the microscopic potential. It is not obvious that this expression is
physically meaningful at all. Really, we should have used the fact that the gauge theory

is gapped, integrated out all of its degrees of freedom and determined the effective scalar
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potential for the Kahler modulus. The effective superpotential below the mass scale of
the gauge multiplet is given in eq. (3.80]), so the scalar potential is given by the usual

F-term scalar potential

%ﬂective(T7 T) = GK (gTTlDTI/V|2 - 3|W|2>

21 Ae= 2" T/INTY, + h.c.
(T +T)2

) |27 Ae 3TN 4 (5.31)

3
—m(+rw

N

This is the physically meaningful low energy effective potential. However, one notices
immediately that in the limit of small 't Hooft coupling Re(7') > N, the low energy
effective potential is actually the same as the microscopic potential upon plugging in the
well known value for the gaugino condensate of eq. (weighed by a supergravity
normalization factor e*/2)

S = 2mek/2 Ae=2 TN (5.32)

So we see that to good approximation the scalar potential is given by (minus) the
classical action evaluated at the correct value of the gaugino bilinear. The strong gauge
dynamics essentially only freezes the gauge degrees of freedom and sets the expectation
value of the gaugino condensate. Up to these effects, the classical action seems to
approximate the low energy effective potential very well. Therefore we expect that the
approximate equality between effective and microscopic potential holds also when the
4d theory is lifted to the full 8d gauge theory on the seven-brane stack embedded into
the 10d bulk. However, at this point we would like to emphasize the fact that

aS(T)

oT aS‘/microscopic 7é aT‘/microscopic ) (533)

aT‘/:eﬂective ~ aT‘/microscopic +

so whenever derivatives of the scalar potential with respect to the Kéahler modulus
become relevant, special care is needed. In particular, this implies that all physical
observables that are sensitive to derivatives of the scalar potential cannot be computed
by treating gaugino condensates as local classical source terms in the 10d action. This
is because the definition of 7" is non-local from the 10d perspective, and S varies expo-
nentially with 7. In section [5.5| we will show that V’(7T") indeed plays a crucial part in

ten-dimensional tadpole cancellation requirements.

5.5 Gravitational backreaction: How to cancel a tadpole

We now wish to determine the contribution of gaugino condensation to the integrand

of the 10d tadpole constraint. In other words we need to compute the stress energy



98 CHAPTER 5. KKLT IN TEN DIMENSIONS

tensor of gaugino condensation. Let us first be open minded to what is the precise form
of the D7-brane action that perturbs the GKP background. We only write

S$PT(G) = / d's / 0y~ CSlgil(z. ) (5.34)

where S is some yet unspecified space-time dependent functional of the internal metric.
We now restrict ourselves to trivial warping. The internal and external components of
the stress energy tensor of SP7[G] read

T = 93,5196 (y) , (5.35)
2 58 . .
Tnlfg = __\/% 5g[£2] . with  Slgs] = /de\/%S[gﬁ} . (5.36)
6

We are now ready to evaluate the contribution to the tadpole coming from SP7[g][?]
We may expand the (inverse) internal metric ¢™" in a complete set of symmetric two-
tensors {S/""},

g => @S, (5.37)

with Fourier coefficients a;. These can for instance be taken as eigen-functions of the
linearized Einstein equations which corresponds to the usual KK-mode expansion. We
take the completeness relation to be

| msSim =5, (5.38)
cYy

where go is a solution to the 10d equations of motion (before the inclusion of Spr).
Hence, the inverse relation is

a; = /de\/go Simng™ . (5.39)
We can now vary the functional S with respect to the Fourier coefficient a;,

OS[gl [ 6 99" (y) 0S[g]
a—ai‘/ Y Gar sgm(y)

(5.40)

168 1
Z/dﬁy\/ﬁs?mﬁ—ég% = —g/d%\/ﬁs{”"ﬂfﬁ, (5.41)

12For simplicity we will neglect its dependence on Cj, and thus any contributions to p5°. The background
induced D3 brane charge will cancel against the 7-brane tension at order «'? [40], and contributions from
the non-perturbative stabilization of the C4 axion will vanish as long as the axion is not displaced from its
minimum. We will not consider sources that displace the Cy axion from its SUSY minimum.
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where in the last equality we have implemented the definition of the stress-energy
tensor. We may now choose our complete set of tensors S™" such that S5 = g¢{™",
so that ag = A is the Fourier coefficient corresponding to the overall volume modulus.

Moreover, we may consider a one-parameter family of solutions ¢"" = Ag{"". Then,

; a‘;;] _/d6 f : (5.42)

Furthermore, it is easy to see that

Slal = [ a1, (5.43)

so there is a contribution to the tadpole,

/ dSy\/gAl=PT = — (2)\(% - 1) Slg(V)]. (5.44)

Since we consider static solutions, we should interpret S[g] as a contribution to the 4d
scalar potential from the seven-brane stack. Concretely, let us define the overall volume
of the CY as

32 = / dSy\/96 , (5.45)

and let ¢, be its value for g = go (so A = (to/t)*/?). Then, the four-dimensional Einstein

frame metric is
g = (t/t0)* gy, (5.46)

and the action SP7 reads
P\ 3
SPG) = [ dz/—gF (70) Slg] . (5.47)

Therefore, the four-dimensional scalar potential is

to

Vorlt) = - (4

t

3
) Slg(t)]. (5.48)
We may then write the tadpole bound in the simple form

ZR Mz — Vpr(t) — étﬁtvm(t) =0. (5.49)

RF denotes the 4d Ricci scalar of the Einstein frame metric ¢g®. We have used that
M2 = 4nt¥? and that R = (to/t)*?Ryp, and finally that there are no further contri-



100 CHAPTER 5. KKLT IN TEN DIMENSIONS

o

Dt

D7 i
! !

Jmn (g_slror:mﬁ - O }mn "ﬁSJW"“jOC V‘D,?(é)# O

{OFCL «‘rurcc

D?

Figure 5.2: A cartoon of the supersymmetric configuration and the ’uplifted’ one. A small
pull on the volume modulus exerted by the uplift triggers a restoring force on the brane stack
of equal strength. This in turn has a significant impact on the gravitational backreaction of
gaugino condensation in the internal directions.

butions to the tadpole. In a general setup, one should replace Vp7(t) by the contribution
to the scalar potential that comes from the unwarped part of the compactification.

As a consequence the tadpole is canceled whenever only the seven-branes contribute
to the scalar potential, and if Vp7(¢) has a minimum. This is because (on a maximally
symmetric background) the 4d Einstein equations reduce to REM2 = 4Vp;(t), while
the equation of motion for the volume modulus are solved when V/,,(t) = 0.

If the approximate equivalence between the microscopic and the effective
scalar potential lifts also to ten dimensions there is good reason to believe that
the supersymmetric four-dimensional KKLT vacua can be lifted to solutions of the
ten-dimensional equations of motion, treating the gaugino bilinear as a classical source
term because for such solutions 9;Vp; = 0. This is the approach followed in [5, 106,
107, 260]. However, once the SUSY minimum is left, there is a qualitatively new
contribution to the tadpole which is proportional to V},(¢). This term is interpreted
as the restoring force that non-perturbative seven-brane effects exert on the volume
modulus (see Figure . As we saw in section , such terms receive dominant

27T/N with respect to T. We find it very unlikely

contributions from derivatives of e~
that such contributions to the tadpole can be encoded in a local 10d action. Rather,

we believe that the ability to describe KKLT vacua by inserting a local 10d action is
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limited to cases without stress from non-perturbative restoring forces.

We would now like to apply this result to warped uplifts. Strictly speaking we
have not considered warping in the above discussion. But it seems very reasonable
to us that the existence of strongly warped regions does not alter the stress energy
tensor of the seven-brane stack. This is because we assume that it wraps a four-cycle
in the essentially unwarped bulk. A warped uplift is characterized by sub-leading
contributions to the integrand of the tadpole via its stress energy tensor [5]. This is
because such contributions are suppressed by eight powers of the warp factor in the
tadpole constraint . However, an uplift (if sufficiently small) will affect the solution

in two ways:
(a) It will pull the volume modulus toward larger values, t — tsysy > 0.
(b) It will raise the vacuum energy.

This must happen in such a way that the 4d Einstein equations as well as the equations
of motion of the ¢ modulus are solved, i.e.

1
TRIME = Vor(t) + Vagiige(t) » 0 = Vipuiga(8) + Vi (1) (5.50)

Plugging this into the tadpole constraint of eq. (5.49) we find that it is canceled

provided that also
2
ptife(t) = _Evuplift(t) - (5.51)

This equation is actually satisfied if the warped uplift potential is well approximated
by the classical expression of .

Thus, we have shown that any seven-brane action that reproduces the KKLT scalar
potential upon dimensional reduction to four dimensions will automatically ensure tad-
pole cancellation upon uplifting by warped SUSY breaking sources. The 10d action
proposed in ref. [108] [109] of course does this. The 4d microscopic potential is approx-
imately equivalent to the true effective potential (as we saw in section . Thus, by

inserting,
(M) o e 2 TGN - with Tg, Cy] = / (d*yy/gs +iCy) | (5.52)
by

in the 10d action [108] [109], one obtains a non-local action Spr(g, Cy] that generates

the 4d KKLT scalar potential, the correct potential for D3 brane position moduli as in

[106], and is consistent with tadpole cancellation upon uplifting by warped sources.
The above reasoning is orthogonal to the question whether or not it is actually

possible to generate sufficiently long warped throats and decouple the stabilization
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sector from the uplift sector efficiently. We have assumed that this can be done. Rather
it shows that if these requirements are assumed to be met in a controlled manner, 10d
tadpole cancellation does not indicate an inconsistency of the assumptions that were
made. We will comment on difficulties to actually realize this in section [5.6]

As a side remark we note that the above gives further justification to recent ap-
proaches to tadpole cancellation in 10d calculations where the tadpole is canceled via
the by-hand addition of extra source terms [264]. These terms should really be at-
tributed to the dynamically adjusting restoring force against decompactification that
is generated by the non-local interactions on the D7-branes world volume.

Finally, we comment on the discrepancy between the results of [I, 110] and the ones
of [111]: In [1,110] the 10d action is varied with respect to the metric after inserting the
exponential relation between the gaugino condensate and the volume modulus, while in
ref. [I11] the expectation value of the gaugino condensate is treated as a purely classical
source term. This amounts to neglecting the in our opinion crucial contribution to the
stress energy tensor from the restoring force of the stabilization mechanism which we
have argued to receive dominant contributions from terms proportional to d7(A\). In
principle it might be consistent to treat the gaugino condensate as an independent field.
But, one would have to start with an off-shell action of (A\) and 7" which involves the
Veneziano-Yankielowicz scalar potential [265] that stabilizes (A\) in terms of T. We
think that including this potential in the seven-brane Lagrangian would resolve the

tension between our results and those of ref. [I11].

5.6 de Sitter vacua at weak coupling?

In this section we will comment on the question if sufficiently long warped throats
exist so that the KKLT effective field theory can be realized with appropriate values
of parameters. By appropriate we mean that Kahler moduli stabilization occurs at
sufficiently large volume, and the uplift potential is sufficiently small to prevent desta-
bilization. In short, are parametrically small warped uplifts part of the landscape, or

are they in the swampland? Before we start we define small/large uplifts as follows.

A small uplift is one that does not destabilize any of the moduli.

A large uplift is one that is not small. (5.53)

We will refer to a parametrically small uplift as one with parametrically negligible

backreaction on all moduli. The moduli that will be relevant (i.e. the lightest ones) are

the Kahler moduli which we assume to be stabilized non-perturbatively as in KKLT.
Throughout this section we assume that both the flux number W in the KKLT
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superpotential as well as the infra-red warp factor a2 of the KS throat can be
tuned arbitrarily well for all practical purposes. Thus, we will ignore the fact that the
possibly finite number of flux vacua and D3-brane charge cancellation limit the extend
to which this can actually be done [41] 152]. Rather we will ask only for geometrical
consistency of the setup once the volume modulus is stabilized via KKLT and the
warp factor is small enough to prevent decompactification. We will see that this is
surprisingly hard to achieve.lﬂ

First, let us briefly recall what are the qualitatively different regimes of values that
the overall volume modulus 7" can take [40, 01, 156, 266], and argue for a slightly
non-trivial minimum value of the K&hler modulus near which the 10d supergravity
approximation starts to break down. The Einstein frame 10d metric of a one-parameter
family of solutions to the equations of motion takes the form

ds? =t7'e*Ada® + o/e sty , e M =MoL (t—ty), (5.54)

where to = [ M Vove 0 and e*4 is some reference solution for the warp factor. The
metric dsZy is a CY metric normalized to unit volume (or more generally a solution
coming from F-theory). The variable ¢ is the real modulus of the solution, and at
sufficiently large values (we will make this more precise below) the metric approaches

ds? — t732da® + o/t%ds2,, (5.55)

so in this regime we may identify ¢*/? with the compactification volume in units of o/.

In general, recall from section that for a GKP type solution, the warp factor
is determined by solving a 6d Laplace equation

Viye o pps, (5.56)

where pps is the D3 brane charge density as measured using the CY metric ¢ [156].
Hence, e.g. near a point like (or smeared along a real co-dimension two locus) source

of Np3 units of D3 brane charge the solution takes the form

Npsr—* + const. near a point-like source
T P , (5.57)

Npslog(1/r) + const. near a co-dimension two source

13Note that the results of [I06] show that in KKLT setups (at fixed value of |Wy|) indefinitely small uplifts
are beyond the regime where the throat is well approximated by the KS solution. This is due to relevant
perturbations of the KS gauge theory that are activated by gaugino condensation in the bulk CY and grow
toward the infrared. However, parametrically small uplifts in the sense of are not straightforwardly
excluded by this.
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where r measures the transversal distance to the source (using the dimensionless CY
metric). We are interested in cases where the negative D3 brane charge is effectively
smeared over D7/O7 stacks while the positive charge is stored in the fluxes of a KS
throat (in such a way that the overall D3 brane charge Vanishes)ﬁ W.l.o.g. we may

44 — =440 corresponds to the case where the

assume that the particular solution e~
overall volume is sufficiently small (and not much smaller) that backreaction from D3
brane charge cannot be neglected anywhere, but the vanishing locus of the inverse warp
factor is still (marginally) aligned with the loci that carry the negative D3 brane charge

(see figure . If we now use the one-parameter freedom of the GKP solutions to set
et =M 1 (1 — 1), (5.58)

we see that the vanishing locus of e~*4 merges into the location of negative D3 brane
charge as we take t — ty > Nps, while for t — ty < 0 the vanishing locus quickly moves
into the bulk and the 10d solution becomes pathological.

Moreover by inspecting e.g. the solution near a stack of D3 branes it is easy to see
that tg = Nps. Therefore, in order for a controlled 10d solution to exist where all the
(would-be) pathological behavior is concentrated close to the seven-brane stacks, we
need ¢t > Nps. In this case the physical volume of the CY is also bigger than N?)/; and

¢3/2 This is also the regime where we may think

well approximated by the value of «
of warped throats as isolated regions of strong warping embedded into an essentially
trivially warped bulk CY. Note that for an approximately isotropic CY this bound is
identical with the dilute flux limit described in section [3.6.1l

But whenever at least one complex structure modulus z is stabilized near a coni-
fold singularity in complex structure moduli space, |z| < 1, the dilute flux regime

corresponds to far bigger volumes of order [156]
Re(T) > Nps|z| =43, (5.59)

where Np;3 is the total D3 brane charge stored in fluxes that thread the A and B cycle
of the conifold (and possibly in mobile D3 branes).

The warped throat regime occurs for a large range of intermediate values
Nps|z| ™3 > Re(T) > Nps. (5.60)

For values in this range, at least one warped throat forms with localized significant
backreaction via fluxes that drive the non-trivial warping. The warped throat can
be thought of as an object of size R} ... ~ Nps glued into a much larger bulk CY

“Here, the negatively charged objects are the %BPS objects with negative (induced) tension.
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Figure 5.3: We plot the schematic form of the inverse warp factor in a flux compactification for
different values of the volume modulus. It diverges as |Nps3|r~* near the position of localized
(or approximately localized) positive D3 brane charge, and as —|Nps|log(1/r’) near the locus
of negative induced D3 brane charge on D7/07 stacks. r is the transversal distance to the
positive charge while 7’ is the transversal distance to the negative charge. The blue curve
corresponds to taking ¢t > Nps where the vanishing locus of e~*4 is marginally aligned with
the D7/O7 loci. The green curve corresponds to the case ¢ > Np3 where the inverse warp
factor vanishes only very close to the seven-brane stacks. The 10d geometric picture is under
parametric control. In the opposite regime t < Nps, shown in red, the singular locus reaches

far into the bulk.
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V(1)
V(t)

120 150 180 120 150 180
t t

Figure 5.4: We plot the KKLT uplift as in figure but with a shaded area that marks
the region Re(T) < Nps3 where the 10d geometrical setup is beyond control. Left: If (say)
Nps = 100 can be realized simultaneously with the parameter choices of figure [3.6] the uplifted
vacuum lies in a controlled region and the uplift can be trusted. Right: If Np3 > 100 is
required, the vacuum region cannot be trusted. We find that the scenario on the left is hard
or impossible to realize, while generically we are forced into the scenario displayed on the
right.

that remains unaffected by flux backreaction. Changing the value of Re(T) essentially
only rescales the bulk CY but leaves the throat unchanged. While flux backreaction is
significant, it is controlled by the KS solution [162] which is smoothly glued into the
bulk CY (see figure [5.5)).

This regime ends once we set Re(T') ~ Nps as explained above. We will constrain
KKLT de Sitter uplifts by demanding that the point in field space where (supersym-
metric) Kéahler moduli stabilization occurs must not lie in the uncontrolled regime
Re(T) < Nps (see figure [5.4). We will find that this constraint can generically not be
met simultaneously with the constraint that the warped uplift does not trigger decom-
pactification.

We would like to emphasize that the arguments that follow are very similar to (and
were inspired by) the ones used in ref. [46], 230]. In particular, in [230] it was argued
that Wy has to be tuned extremely small in order for the KKLT construction to be
able to work. However, we will argue that small uplifts are severly constrained even if
Wy can be tuned arbitrarily small.

5.6.1 Single modulus KKLT

We consider the setup of section [3.7.2] i.e. a type IIB Calabi-Yau orientifold with
only a single Kahler modulus 7" and with all complex structure moduli integrated out
consistently.

Let us now see if we can make the warped uplift small in the sense defined in .
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Figure 5.5: We depict a cartoon of a CY that contains a warped throat region. For geometrical
consistency the throat region must be smaller than the overall size of the CY.

In order to suppress backreaction on T we need that Viyire S [Vsvsy| [41]. Comparing

with eq. (3.84) and eq. (3.86) we see that we need o = %‘2 < 1, and as always
|Wo|? < 1. Tt is useful to define an uplift parameter U as follows,

log(|Vsusy|™) _ log|[Wo|™* L+ log(a)

U ~ - T AN\
log (|Vuptige| ™) log ag” log(ag™®)

(5.61)

in units Mp = 1. The uplift is small when U < 1. The interesting regime where an uplift
to de Sitter space might take place corresponds to taking a = O(1), so |[U — 1| < 1.
Once U — 1 = O(1) the uplift becomes exponentially uncontrollable, i.e.

a= (W) 7T >1. (5.62)

The results of ref. [106] imply that for control of relevant throat perturbations one
needs U > 3/4, but only slightly bigger values allow to keep those perturbations under
parametric control. We will now explain why only parametrically large values of U

might be possible in a geometrically consistent setup.

This constraint comes from the following requirements. The throat that carries
the SUSY breaking source has to be sufficiently small in circumference that it can fit
into the bulk Calabi-Yau so that it can be well separated from the seven-brane stack
that is responsible for Kéhler moduli stabilization (see Figure . As recalled in the
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introduction of this section it is well-known that the (Einstein frame) size of the throat
is set by its D3-brane charge Nps as

throat ~ ND3 = MKa (563)

where M and K are the RR and NS-NS flux quanta that stabilize the throat. Thus we
should require that
Re(T) > MK, (5.64)

for validity of the 10d geometric picture.

However, at the KKLT minimum the value of Re(T") is set by Wy according to eq.
(3.83) while the IR warp factor is set by eq. (3.66]). Plugging these formula into the

requirement of eq. ([5.64)) we obtain

. MK MK g M?

N > ~ ~ 5.65
log [Wo|~!  Ulogay* U (5.65)
This can be turned into a lower bound on the uplift parameter U,
2 11
U>(9:M)°g," + - (5.66)

Clearly we cannot make U arbitrarily small. More so, it is not clear to us if it can
even be smaller or equal to one as would be required for a controlled uplift. The size of
the IR end of the throat as measured in string units is g,M, so we need g;M > 1 for
control of the o/ expansion, as well as g, < 1 for control of the string loop expansion.
So in order to get U ~ 1 or smaller, the rank of the seven-brane gauge group really has
to be parametrically large,

N> (gsM)%g; > 1. (5.67)

There is at least some indication that it is hard to make N arbitrarily large while
maintaining h''' = 1. Indeed one of the swampland criteria states that in an EFT
coupled to gravity the number of massless fields cannot be arbitrarily large [267], and in
this case an arbitrarily large N would imply an arbitrarily large number of gluons. This
generic swampland criterium can be checked explicitly in some setups. For example, in
[245] the relation between h'! and the largest possible N was investigated numerically
using a subset of the Kreuzer-Skarke database. For h''! = 1, the largest possible N was
found to be O(10), while more generally a linear bound of the form

N < O(10)h"!, (5.68)
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200

Figure 5.6: For a subset of the Kreuzer-Skarke database [268], the maximal possible gauge
group rank in perturbative type IIB string theory grows approximately linearly with Al
This argument and the above figure are taken from [245].

was found to be obeyed within the limited example set, see figure Of course, it
could be true that much larger values of N exist for h%! = 1 that are not contained in
the example set. This possibility forms a potential loophole. We conclude the following.

In single modulus KKLT with N = O(1) and A = O(1), whenever the supersymmetric
starting point lies in a regime of parametric control of the supergravity theory,

Re(T) > MK, all warped uplifts will destabilize the Kdhler modulus.

Assuming that the empirical relation of eq. ([5.68]) holds, the loophole N > 1 is closed.
The obvious remaining loophole is to take h'* > 1 which is anyway satisfied by generic

CYs, and/or assuming |A| > 1. We will comment on these options momentarily.

5.6.2 Multi modulus KKLT

The arguments of the previous subsection indicate that it is impossible to realize para-
metrically small uplifts in the case in which the CY orientifold has just one Kahler
modulus, i.e. whenever hil = 1 One could then try to evade this reasoning, by
considering a case with many Kéahler moduli. So, let us now consider the potential
loophole A" > 1.

We would like to emphasize immediately that most of the conclusions we draw in
this section are based on assumptions about the geometry of CY manifolds which we

15The argument is not significantly altered for more general but still O(1) values of hi_’l.
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believe to hold generically. As such we cannot exclude that non-generic CYs exist for
which our discussion does not apply. We will comment on this possibility at the end of
this section.

Let us consider a number of Kéhler moduli {77, ..., Thil}, and KKLT type superpo-

tential
1,1
hy

= 2
W=Wo+ Y NAexp —% Skt | (5.69)
Y a=1

=1

with some integer-valued n x hi’l charge matrix k. For the Kahler potential in the multi-
modulus case we refer the reader to ref. [I53]. Here, we have assumed that there are n
superpotential terms that are generated via various confining gauge theories (N; > 1)
or euclidean D3 brane instantons (IV; = 1).

The F-term equations read

hl,l
n 2 + 2 o
Dy, W ==Y 2k A exp —% ST | - %W, (5.70)

=1 =1

where V is the overall volume, and v® is the volume of the two-cycle dual to the four-
cycle 3¢, We expect the generic KKLT type solutions to satisty,

1,1
hy

N; _ .
Zk;’Re(Ta)N%logﬂWM B v, (5.71)

a=1

so that generically the four-cycle volumes are again bounded as,

Nmaa:
Re(T)) < —mee

< 2 log Wyl ), (572

where N,,.. is the maximal available dual Coxeter number. So far, the story is very
similar to the case h}r’l = 1, except that we expect to have the freedom to take N, ., >
1, due to the distribution shown in figure 5.6} Again we need to require that the throat
fits into the bulk Calabi-Yau,

MK < V3. (5.73)

Now, we find it reasonable to demand something stronger: The throat must fit into a
region in the bulk Calabi-Yau that is well approximated by a conifold region (or more
generally some cone over a Sasaki-Einstein base). As a consequence we should really
require that zooming into such a region, all the topological structure that the Calabi-
Yau possesses should become invisible. This is because we would like to isolate the

non-perturbative stabilization sector associated with each 4-cycle from the uplift sector
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Figure 5.7: We draw a cartoon of a more complicated CY with A% > 1. We expect that
the rich topological structure of the manifold leaves us less room to place warped throats in
comparison to a simpler CY with h"! = 1 with the same overall volume (compare with figure

53).

associated to the throat (see Figure . At large h}r’l it is natural to expect that in
generic CY manifolds the amount of such freely available volume where warped throats
can fit scales with the overall volume of the Calabi-Yau, but also that it decreases
monotonically with hi’l. For definiteness let us parameterize this expectation as

V2/3

Ravallable (h_li_’l)p )

(5.74)

for some undetermined positive coefficient p. It is easy to see that if we implement
the bound on the maximal available dual Coxeter number of eq. , one obtains a
bound

U > (g:M)*g;" (RYPL. (5.75)

It is apparent that choosing large values of hi’l will relax the bound only if the freely
available volume scales very weakly with the number of Kahler modulii.e. p < 1. So we
should ask ourselves how large we expect p to be. Instead of asking what is the maximal
region around a conifold singularity that is well described by the non-compact conifold
solution, it is simpler and arguably less restrictive to ask the following instead. What
is the spherical region of mazimal size around a generic point? We may build a chart
U, around a generic point p so that every point in OU, is geodesically equidistant from
the center p by a distance R,. Then, what is the largest possible radius R,? Roughly
speaking this gives the largest 5-sphere that can be expanded around a generic point.

We do not know how to answer this question for CYs but we expect that generically
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Figure 5.8: On the 1.h. side we plot a square intersected by a grid formed of n lines. The
freely available space is of order 1/n2. On the r.h. side we show a more generic intersection
pattern. We expect the freely available size surrounding a generic point to be of the same
order as for the case of a regular grid.

the size Ruyqiane available for fitting a warped throat would be bounded by this.

Let us now consider a somewhat different but related question. For full moduli
stabilization to occur we expect that each divisor class has a representative that is
wrapped by a seven brane or euclidean D3 brane instanton. Our conifold region should
not be intersected by any of these divisors. In particular none of the triple intersection
points should be contained in the conifold region. So in addition one may ask what
is the largest available 5-sphere that does not contain any of the triple intersection
points. We expect that both types of largest possible spheres will be bounded for
similar reasons.

So let us consider a very simple toy setup where this last question can be easily
addressed: Given a six-dimensional cube of unit volume, let us randomly intersect it
with n real co-dimension 2 planes. Let us call R, the radius of the largest 5-sphere
centered at a point x that can be drawn without meeting any of the intersecting planes
(see Figure . Since a generic triplet of planes intersects at a point we expect O(n?)
triple intersection points in the cube, distributed randomly. The largest sphere that
can be fit must in particular not contain any of these points in its interior so one finds

RS < O(n™3) for a generic point x. For a cube of overall volume V, this is replaced by
R <O(n™3)-V. (5.76)

Obviously cubes intersected by co-dimension 2 planes are not a good approximation
of CYs with wrapped divisors but it may give us some intuition how intersecting co-

dimension 2 branes limit the available un-intersected volume.

In ref. [269] another likewise related question was posed for CY three-folds and
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Figure 5.9: We depict a cartoon of a CY manifold that would evade our conclusions. There
exists a large topologically trivial area in the interior where a large KS throat can fit. All of
the topological structure is densely aligned around it.

numerical answers were given using the Kreuzer-Skarke database: How large does the
overall volume of the compactification have to be in order to ensure that the o/ expansion

is under marginal control? Numerically, the answer appears to be
Vol(CY) > (RHH)7. (5.77)

Of course it is tempting to interpret this result as the statement that p = §~7. However,
the above only means that if all the non-trivial curves are required to be bigger than
o' the overall volume must be large. In principle the CY might nevertheless contain
large empty regions. It would be very interesting to explore how precisely the freely
available volume within a CY scales with the number of Kéhler moduli in order to place

the above considerations on a firm footing.

Based on these simplified preliminary observations we find it reasonable to expect
that generically it will be hard to engineer p < 1, while actually proving this to be
impossible is beyond the scope of this thesis. In this case we expect that generic CYs
do not admit sufficiently small de Sitter uplifts even if W and the IR warp factor aZ can
be tuned at will. Again, we want to stress that non-generic CYs (or CYs at non-generic
points in moduli space) might evade this argument. For a cartoon of how such a CY
could look like, see figure [5.9] It would be very interesting to see if such non-generic
CYs can be engineered for dS uplifts.
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As promised, let us consider the potential loophole of exponentially small/large
coefficient A. It has been explained in ref. [I55] that this is indeed possible due to
induced D_;-brane charge or induced D3 brane charge for the case of euclidean D3

brane instantons respectively gaugino condensation on seven branes,

2r x(¥)

|A| ~ esen 2t (5.78)

This would change our discussion only if one can find solutions where log(|A/Wp|) is
dominated by log(]A|), so that

xX(X)
244,

RBCT)AJé%logﬂfH)AJ (5.79)

This does not seem to be a controlled regime as can for instance be seen by inspecting
the euclidean D3 brane action. To low orders in the o/-expansion it takes the form

2 >
&mziwﬁww-pm%f +O®?). (5.80)
Ys tree level —

O(a'?) correction

In the regime of (5.79)) we see that the tree-level contribution is of the same order as
the (a')? correction, indicating loss of control over the o’ expansion[TY|

As a final and perhaps most interesting loophole, let us note that the KS throat also
has a dual description in terms of a confining gauge theory [78, 162]. The parameter
gsM sets the 't Hooft coupling of the last steps of the cascade of Seiberg dualities that
the gauge theory is undergoing. So the regime g,M < 1 is controlled by the gauge
theory side of the correspondence. If the SUSY breaking anti-brane state also exists
in this regime (and remains meta-stable), the bound on the smallness of the uplift
becomes considerably weaker. Even if this holds, it is not obvious whether the uplift
could then be made sufficiently small. We can interpret the r.h. side of the bound
in eq. (5.67) as the ratio between the size of the IR end of the throat Riz ~ (gsM)?
and the characteristic ’size’ of the anti-brane II€4D—3 ~ gs. Whenever the latter exceeds
the former we would expect the brane not to be able to sink down all the way to the
bottom of the throat, thus again preventing the uplift potential from becoming small.
Whether or not this (after all geometric) intuition carries over to the small g, M regime
remains to be seen. If these considerations are valid, it seems possible that the r.h. side
of the bound of eq. could take O(1) values. In this case, moderately large rank

16This is qualitatively very different to e.g. the KKLT expansion of the superpotential where also the first
two terms in the expansion are of the same order. This is achieved via a fine tuning of the first term so one
does not expect a breakdown of the non-perturbative expansion scheme.
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gauge groups N ~ 10 may be enough to marginally fulfill all constraints, though never
parametrically.m

5.7 Conclusions

In this chapter we have summarized recent progress made in understanding the ten-
dimensional lift of the four-dimensional KKLT vacua [I}, B, T05HIT0], with the goal to
confront the de Sitter uplift proposal of KKLT with ten-dimensional tadpole cancel-
lation conditions. First, building on [I07] we find that the ten-dimensional and four-
dimensional conditions for unbroken supersymmetry are remarkably consistent with
each other [5]. Second, we find that the de Sitter uplift proposal as made by KKLT is
fully consistent with ten-dimensional tadpole cancellations [Il, [110]. We interpret this
as evidence that the coefficient ¢ in eq. is suppressed to a sufficient degree that it
can be ignored. Thus, significant uplift flattening does not occur in KKLT.

In contrast to the above partial confirmation of the KKLT proposal, we have pre-
sented a geometric consistency requirement that prevents one from bringing de Sitter
vacua of the KKLT type into regimes of parametric control (from a ten-dimensional
perspective). In the best case, this means that such vacua live in marginally controlled
regimes of the perturbative expansion schemes of string theory, while in the worst case
the construction might not work. Deciding which of the options holds depends in a
subtle way on the detailed geometry of CY compactifications. Much more work in the
spirit of [269] is required to answer this question conclusively.

To conclude, the question whether or not there exist de Sitter vacua in string theory
remains a fascinating fundamental issue. While with currently available tools it is hard
to prove or disprove the existence of such vacua, we are confronted with non-trivial
evidence that such vacua cannot live 'far out’ in moduli space, consistent with but
independent of results such as the ones obtained in ref. [270]. It is thus tempting to
speculate that de Sitter vacua are phenomena that appear in the strongly coupled (or
marginally weakly coupled) interior of stringy moduli spaces, see Figure . If this
turns out to be correct the quest of understanding stringy de Sitter vacua would require
radical progress in the understanding of non-perturbative string theory (the 'missing
corner’ of [267]).

Another speculative line of thought is that de Sitter vacua could exist in string
theory even in weakly coupled (but tuned) corners, but at least the ones with small
positive cosmological constant cannot be obtained by small perturbations of anti-de

Sitter vacua with small negative vacuum energy, see figure [5.11 This would be a far

1"We thank M. Reece for discussions on this point.
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Figure 5.10: A cartoon of the idea that de Sitter vacua all reside near the 'interior’ of stringy
moduli spaces.

Figure 5.11: Speculative cartoon of stringy moduli space (blue) and their cosmological con-
stants. Two vacua with similarly small vacuum energy but with opposite sign are far away
from each other in stringy moduli space, so in particular they are not mapped to each other
by an ’uplift’ or non-perturbative decay process.
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weaker statement than the ones of the no-dS conjecture [T9-81], as it would doubt only
the idea of a de Sitter 'uplift’ rather than the existence of de Sitter vacua all-together.

We are hopeful that either it can be shown in the near future that obstacles such as
the one presented in section 5.6/ are insurmountable or the existence of de Sitter vacua
of KKLT type will be established beyond reasonable doubt, by making use of the small
but perhaps sufficiently controlled window in parameter space.
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Chapter 6

Thraxions

New ultralight throat axions
_0”"_
axion inflation near the conifold transition?

We now wish to switch gears to some extent. From the late time expansion of our
universe we now switch to the inflationary era. More precisely we consider the problem
of large field inflation in string theory. Recall from the introductory section that
inflationary models of large field type are the ones with the most exciting observational
signatures: Measurable inflationary tensor modes. Moreover they are the least tuned
ones. We have explained that EFT approaches to large field inflation are not predictive
in the usual sense in that the full inflationary dynamics is not determined by a handful
of Wilson coefficients. After all it would be a bit disappointing if a mechanism would
allow us to detect the quantized graviton, without any sensitivity to the UV completion.
Nevertheless, if we are given models of large field inflation that are well motivated from
string theory they could probably be parameterized by some scalar potential V().
Therefore, even if such a model predicts tensor modes that are then observed, it would
be difficult to convince a skeptic that this is a distinctive prediction of string theory.
After all, large field potentials are the simple ones, so what do they need string theory
for? So perhaps it is in fact much more exciting to be able to rule out the possibility
of large field inflation in string theory. After all, the upper bounds on the tensor to
scalar ratio are already surprisingly low. If there was an inflationary era, as observation
strongly suggests, why would it not be governed by the simple large field potentials, if
not for a deep string theory constraint?

If one could show that large field inflation is not possible in string theory, it would
be natural to expect that the traversed inflationary field distance is as large as it can

be found in the theory because otherwise the scalar potential is unnecessarily tuned.
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In our opinion, one of the most intriguing hints that string theory is the right theory
of quantum gravity would be a detection of the tensor to scalar ratio at the level of

Tstring ™ 10737 (61)

which incidentally is just at the border of what we can hope to detect in the future with
CMB stage 4 [271]. In fact, some authors have conjectured that string theory predicts
this value [51], 272].

However, it is clear that we are nowhere near a consensus that large field inflation
is impossible in string theory. In order to narrow down this complicated question it
is useful (in my opinion) to focus on the most promising inflaton candidates. As the
inflationary scalar potential must remain flat over a super-Planckian range in field space,
it is natural to consider axions as inflatons due to their perturbative shift symmetry.
Realizing a model of axion inflation is all about generating a small monotonic scalar
potential in a controlled way. The simplest idea is the one of natural inflation where
the inflaton potential is of instanton generated type

V() ~ e (1 — cos(¢/f)). (6.2)

For such a model to realize 60 e-folds of slow roll inflation, super-Planckian decay
constants are required f > Mp, and also such models are basically ruled out by
observation. Nevertheless, it is important to study these kinds of potentials because
they might reveal that large field inflation is possible in string theory as a matter of
principle. This possibility is of course challenged by the WGC for axions [31], [54],
which implies that f < Mp in the simplest cases. Conversely, by studying these kinds
of models we learn to what extent the WGC holds in string theory.

The most prominent ideas to achieve sufficiently long axion field ranges in string
theory are the following,

e N-flation: A large number N of axions traverses a @(v/N) enhanced diagonal in
field space [45]. Related with this is the idea of kinetic alignment [273].

e KNP alignment: A potential can be generated that forces the inflationary tra-
jectory to wind around the at least two-dimensional axion fundamental domain

many times [44].

e Axion monodromy: The gauged discrete shift symmetry is broken spontaneously
[46], 198, 274]. We introduced this concept already in section [3.8.1} but its most
important application could be the one of large field inflation.

The major challenge for the first two approaches is to find an axion potential that
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1) forces the inflationary trajectory onto the special long path, and 2) to ensure that
the effective potential along the valley does not oscillate on sub-Planckian scales. If
only the first condition can be satisfied large field inflation cannot be realized but we
nevertheless learn a lot about the structure of stringy EFTs: The (strong form of the)
distance conjecture requires a tower of states to become exponentially light as a super
Planckian geodesic distance is traversed within a low energy EFT [205]. Certainly this
does not occur for axions with non-perturbative harmonic potentials. As a consequence
we would learn that strong forms of the distance conjecture are false. We will report

evidence in this direction shortly.

The most difficult challenges for axion monodromy lie in realizing a setup were
the discrete gauge symmetry is broken to a sufficiently sparse subgroup, and also to
engineer a sufficiently monotonic scalar potential. As we have explained in section
we expect axion monodromy to always be finite, so the three different ideas are not

completely distinct. A general axion model may display aspects of all three ideas.

In this section, we present a new class of ultralight axions which, we believe to be
a generic feature of the type IIB part of the string theory landscape. This idea is an
extension of a proposal made in [74]. Somewhat surprisingly, the mass of this axion is
suppressed to a much further extent than would be predicted by the WGC for axions. In
other words, its scalar potential is far smaller than the scale M7 exp(—Mp/f) of generic
axion potentials. It is therefore justified to identify them as a new class of axions that
has so far not been accounted for in the study of CY flux compactifications.

We consider again type IIB Calabi-Yau orientifolds or F-theory models stabilized by
fluxes and non-perturbative effects such as KKLT. We have explained in section [3.6.2]
that Klebanov-Strassler (KS) throats [162] with warp factor ap < 1 are expected to be
present in an order-one fraction of such models [42], 163], 275]. We recall that this warp
factor is naturally exponentially small,

3 K
ag ~ exp <—27rgsM> . (6.3)
Before we get to the details we wish to summarize the results in terms of their para-
metric dependencies on the warp factor ag. Naively, the lightest states are then the
glueballs (or warped-throat KK modes) with mass ~ aq (in Planck units). However,
our axion is exponentially lighter than this scale with mass of order ~ a3. To be more
precise, this happens at least in all cases where the fluxes stabilize the complex structure
moduli near a conifold transition locus in moduli space, and if orientifold projections

do not interfere with the setup.
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Our axion has a decay constant f ~ O(1) in the simplest modeldT} which can be
enhanced by products of flux numbers even to parametrically super-Planckian values
in more general settings. The effective potential is much smaller than the naive ex-
pectation V' ~ exp(—1/f) cos(¢/f) (again in Planck units). We believe that this has
potentially many interesting applications, from the WGC for axions to inflation and
uplifting.

We start with the background solution in section We consider a Calabi-Yau
with a conifold locus in complex structure moduli space at which multiple three-cycles
degenerate simultaneously. We explain why this is a generic feature of Calabi-Yaus.
Concentrating on the case of two degenerate three-cycles, we introduce separate defor-
mation parameters z; with phases ¢; = arg z;, © = 1,2, for the two deformed conifold
regions. Crucially, the two conifolds, or more precisely the three-spheres located at
their apices, are related in homology. As a result, the Calabi-Yau condition ensures
that only one complex structure modulus, z = z; = 29, is present. Perturbations with
21 # 2z are massive. We then introduce fluxes stabilizing the complex structure modu-
lus 2z near the conifold point |z| < 1. The resulting geometry is illustrated in figure [6.1]
One can see that the so-called B-cycle is an S® which can be thought of as a family
of S?’s. This S? family reaches into both throats such that the S?’s collapse at the
apices. The corresponding dual A-cycle is an S? over every point of the double throat

in figure [6.1]

e~ fs2 Cy Aoy, eltluv =1

A
Lrg, eflr=a <1

Figure 6.1: An illustration of the setup of the double throat including the phases ¢; and the
axion c. The phases ¢; describe physical rotations of each throat. We have not drawn the S3
over every point of the double throat.

!'Note that despite the fact that strongly warped throats are needed to generate a small scalar potential
for the axion, the decay constant is not suppressed by warping effects. This is because its internal field-
profile is not localized at the bottom of the throats, in contrast to some examples that have appeared in the
literature [276, 277].
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In section we introduce the axion ¢ ~ |, 52 Ca, called thrazion from now on.E| An
excursion of the thraxion generates non-zero opposite values of the RR-field strength F3
at the ends of the two throats. Local backreaction of the resulting energy density then
deforms the two throats independently: While the phase ¢; of the local deformation
parameter of one throat is displaced by fluxes, the phase ¢, of the other throat is
displaced in the opposite direction by anti-fluxes. This breaks the constraint ; = 9
coming from the CY condition and the homology relation between the two throats. In
section 6.3 we calculate the potential induced by non-vanishing 10d Ricci curvature
that stabilizes the two deformation parameters against each other. After integrating
out heavy degrees of freedom, the result is an effective potential for the thraxion with
the properties described above and discussed in section [6.4]

Section is devoted to the construction of a 4d supergravity model based on a pro-
posed extension of the Gukov-Vafa-Witten (GVW) superpotential [154] that includes
the axion. Besides reproducing the results in 4d supergravity language, we also identify
the saxion partner of the axion. In section [6.6.3] we generalize our results to general
multi throat systems where one or more ultra-light thraxions can appear.

In section |6.7| we explain that our results are very much consistent with the holo-
graphic dictionary applied to the Klebanov-Strassler theory [78, 162]. This is done
by matching the enhancement of the decay constant of our axion [ C, with gaugino
condensation on the gauge theory side. Applications and implications of these results
are the content of section [6.9} This allows us to make the connection to the Kaloper-
Sorbo description of axion monodromy quite explicit, and serves as a consistency check.
Moreover, it indicates that the model can be trusted well into the gauge theory regime

where the throat curvatures are large in string units.

We consider as a semi-explicit example the quintic three-fold stabilized near a coni-
fold transition point. We study the scalar potential for judicious choices of flux quanta.
Interestingly, the overall monodromy enhancement is given by the least common mul-
tiple of all the flux quanta which can easily become parametrically super-Planckian.
However, the presence of sub-Planckian modulations generically prevents successful
slow-roll inflation. The underlying idea is that a large monodromy is generated by
unsynchronized phases (of monodromies of individual throats) drifting away from one
another. We call this mechanism drifting monodromies. 1t is completely analogous to
the beat phenomenon in accoustics: The interference of harmonics with slightly dif-

ferent small wavelengths leads to large wavelength oscillations, modulated by many

2At this stage it may not be obvious why the name ’axion’ is appropriate. We will justify this in more
detail in later sections. For now let us note that a bulk observer without access to the IR regions of the throats
will not notice the fact that the sphere is trivial in homology. In particular an induced scalar potential from
the IR regions will be suppressed exponentially, so an approximate shift symmetry is manifest.
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smaller ones. For related alternative possibilities of generating large decay constants
see [44, 50, [71], 208, 278 282

Finally we describe a clash with the WGC: The effective Euclidean instanton action
determined from the scale of the effective potential violates the axionic WGC (S <

qMp / for) parametrically, but instead a weaker inequality holds,

S < (gMp/ fer)®. (6.4)

This is a weaker condition because at fixed control parameter 1/Sg < 1 the axion decay
constant is less constrained as in the original WGC. Conversely, at fixed value of the
axion decay constant, the scalar potential can be much smaller than predicted by the
WGC.

We finally consider interesting possibilities for uplifting to de Sitter vacua and draw
our conclusions in section [6.10l

6.1 Thraxion potential from 10d

6.1.1 Geometry and Flux-Background

First we will explain the basic geometric requirements for our discussion to apply. We
will explain why we expect them to be generically met.

First we consider again compactifications of type IIB string theory on a Calabi-
Yau (CY) threefold, which leads to an effective N/ = 2 supergravity theory in four
dimensions. Now we go to a conifold transition locus in complex structure moduli,
where n three-cycles degenerate to zero volume [I50} 283] that satisfy m relations in
homology. We have encountered precisely this setup already in section : The (N = 2)
U(1)"~™ gauge theory associated with the n—m deformation complex structure moduli
has a Higgs branch parametrized by the scalar components of m hypermultiplets that
is properly thought of as the geometric resolution branch. It might come as a surprise
that such an intricate configuration should occur generically, but it is widely believed
that a generic CY threefold is in fact related to other CY threefolds via such conifold
transitions 76, 284]. This subject isn’t closed, but there are large classes of CYs for
which this has been shown [285—290]|ﬂ Therefore, a generic CY is believed to have loci

%Note in particular the following two papers: The work of [287] is closely related to ours in making use of
the conifold complex structure modulus z to create super-Planckian decay constants, while on the technical
level the approach is very different. Ref. [208] defines the 5d axion f Bz on the KT background, analogously
to our thraxion. There, the geometric backreaction via the 5d breathing mode allows for monodromy-induced
super-Planckian field ranges to be explored in an anisotropic and inhomogeneous 5d spacetime.

4But note that this does not mean that every conifold singularity (or even a generic one) is also such
a transition point. For example, the mirror quintic threefold at vanishing complex structure has a single
shrunken three-cycle. Hence there is no resolved CY geometry [291].
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in complex structure moduli space where multiple three-cycles A; degenerate together.
We expand on this in section [6.6] Being related in homology, the number of homology
classes is smaller than the number of collapsing three-cycles. For now we focus on the
case of precisely two cycles A; 5 that degenerate. From the above it immediately follows
that they are related in homology, i.e. [A] = [A;] = [As]. There is a single symplectic
dual three-cycle B connecting the two singular points. We will call this system a double
conifold. Tts complex structure will be denoted by z and the double conifold singularity
develops in the limit |z| — 0.

We introduce the fields z; and 2z, as illustrated in figure [6.1. These fields may be
thought of as ‘local complex structure deformations’ z; = [ A, ), with the holomorphic
three-form €2 of the CY, and describe independent local deformations of the manifold
near one of the two apices. Thus, in the vicinity of either conifold region we want to

describe the manifold by embedding it into C* via
w? +wi +ws +wi =z, weCh (6.5)

It is easy to see that the homology relation [A;] = [As] enforces the condition z = z; =
29 on complex structure moduli space. This is because the difference A; — A, is the
boundary of a 4-chain C. Therefore, one has

Al Az oc C

But on complex structure moduli space one has df2 = 0, and hence z; = 2z3. Never-
theless, we will consider the massive deformations of the manifold such that z; # zs,

i.e. deformations away from complex structure moduli spac&ﬂ so really,
dQ#£0. (6.7)

It is important to note that the local phases ¢; of z; are the Goldstone bosons of
the spontaneously broken U(1)g symmetry of the conifold [159]H This symmetry is
approximately restored far away from the tip of either conifold, see figure [6.2] In
the limit of large radial coordinates, r®/|z;| — oo, the deformed conifold becomes
indistinguishable from the singular conifold.

Finally, we note that we focus on the simple double throat case only for ease of
exposition. More general multi conifold situations are analyzed in section [6.6] Fur-

thermore, for reasons of tadpole cancellation we are interested in CY threefolds which

SFor similar considerations with deformations away from Kihler moduli space, i.e. dJ # 0, see ref. [292)].
5This is the R-symmetry group of the dual field theory.
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r
T~ |zl
r=20

Figure 6.2: The double conifold with asymptotic U(1)r symmetric regions.

are orientifolded such that O3/O7-planes arise. This projection should leave the coni-
fold transition intact and preserve the key ingredient of a B-cycle reaching down into
several conifold regions. In the double throat case, this is realized if two originally
present pairs of throats are mapped to each other by the orientifold projection, see
figure [6.3] This is completely analogous to the widely-discussed double-throat system
of the oldest axion-monodromy models, see e.g. |46, 293] (just simpler, since we need
no 2-cycle for the NS5 brane and can hence use standard KS throats). More generally,
F-theory solutions with the analogous geometric properties can be considered. Here
the tadpole cancellation relies on the fourfold Euler number and no orientifolding is
required. Either way, we do not expect that the orientifolding condition or the fourfold
embedding endangers the generality of this setting.

Figure 6.3: A sketch of the the orientifold projection o. It maps the two originally independent
double throat cycles B and B’ onto one another.
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6.1.2 Fluxes on the double throat and a *Wilson line’ axion

We now proceed with our geometrical setup by including three-form fluxes on the A
and B cycle of the double throat,

1 1 1
M _— Fo=— F. K=——— H,. 6.8
(22 /A RO TSERY /,4 > <2w>2o//8 ’ (68)

Note that while there are two distinct three-cycles A; and Aj,, their associated flux

quanta are identified with each other as they are equivalent in homology. Using that
the Hs-flux splits evenly between the two throats, the complex structure modulus is

now stabilized at a value

K/2
—2 < 1. 6.9
|z o< exp ( WgsM> (6.9)
This even splitting of B-cycle flux will later be shown to arise dynamically, but for now
it is enough to recognize that the CY condition z; = 25 enforces this in the vacuum.

It is straightforward to show that the phase of the complex structure modulus is set
by the RR-3-form flux Q = (; J5 Fs

2m)2a’
p = QW% + const . (6.10)

Locally, we can always set ¢ to 0 by an appropriate redefinition of the angle. Conversely,
without loss of generality, we will choose ) = 0.

As explained in section backreaction of fluxes leads to the formation of warped
throats (or Klebanov-Strassler throats). Within these, the metric is well approximated
by the Klebanov-Tseytlin solution] [78] which we recall for convenience,

2

ds? = e**n,, dotde” + e 2A(dr? + rPdsti), et~ ]7;4 p log(T/rlR)_% ,  (6.11)
gslax

with radial coordinate r and warp factor e?4. The radial coordinate is cut off in the IR
by the Klebanov-Strassler region and in the UV by the gluing into the bulk CY. One
has ag = e ~ |2|'/3. As we have explained, in the vicinity of a conifold transition
point a double throat (or even multi throat) formﬂ see figure .

The three-cycle B can be thought of as an S? fibered over the radial direction of

"Near the bottom of the throat, it has to be replaced by the full Klebanov-Strassler solution [T62].

81t may not seem obvious that the units of NS-flux on the B-cycle are split democratically so that each
conifold region is replaced by a warped throat. In fact we will see that there is a light dynamical field that
controls this relative distribution (see Section [6.6). In the vacuum however this field is stabilized such that
fluxes are indeed distributed democratically.
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the conifold [I50]. The S? collapses at the two tips of the deformed conifolds. As
introduced in [74], there exists a 4d mode ¢(z) on the double throat background that
can be thought of as the integral of the Ramond-Ramond (RR) two form Cy over the S?
as measured far away from the tips of the double throat. This is simple to understand.
Simply choose a representative sphere in between the throats that is homologous to the
shrinking S?s. Let us call it S3. From the local throat geometries one sees that this
is the boundary of three-chains B; and Bs,

881 = —382 = S%V) and B = Bl + BQ . (612)

These three-chains can be thought of as the local portions of the global three-cycle B
that reach into the respective throats. By Stokes’ theorem, a non-trivial "Wilson’ line
on the UV sphere satisfies

1 1 1
= Cy = F3=— F 6.13
= oa /Sz 7 ool /861 ’ 2ma! /332 5 (6.13)

so it generates non-quantized pairs of flux and anti-flux on the two respective ends of

the cycle B. If we do not allow the throats to backreact geometrically, the potential
energy at fixed axion field excursion ¢ is minimized if the flux/anti-flux resides at the

bottoms of the throats. By dimensional analysis there is a red-shifted potential,

1
V(e) = §m202 +..., with m?~ag. (6.14)
We will consider the geometrical backreaction that was neglected in [74], and turns out

to be crucial. In the remainder, we will establish the following points:

e The fields z; and z; of the two respective throats adjust to the flux/anti-flux pair

in such a way that within the two throats supersymmetry is restored locally.

e This adjustment of z; and 2z, takes us away from the complex structure moduli
space, which is characterized by z; = 2 (cf. figure . For z; # z, the CY
condition is broken and a scalar potential is generated. This potential is of the
order |z|? ~ a$ and receives its dominant contributions from the bulk CY.

e The backreacted scalar potential is periodic in ¢ with periodicity 27 M. Hence,
the naive 27 periodicity of the c-axion is enhanced by a finite factor M. While
this does not allow for a super-Planckian effective axion decay constant f > Mp,
approximately Planckian values are possible (see however section for a way to
also generate large axion periodicities).
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complex structure

P17 P2 conifold point o1 < moduli space
{
2| #0
complex structure moduli space V2

Z =21 =22

Figure 6.4: Illustration of the z;-zo deformation space. The complex structure moduli space is
the subspace z; = z2. We only consider deformations away from z; = 2o outside the conifold
point.

6.2 Local Backreaction in the Throat

We start by discussing how a single throat reacts locally to a finite field excursion c.
If the outcome would be that supersymmetry is broken badly within the throats, a
description in terms of the GVW superpotential would be questionable. However, we
will show that the throat almost perfectly adjusts to produce a locally supersymmetric
configuration, so we may use the GVW superpotential self-consistently [40], [154] for the
two KS throats. As far as (say) the first local throat is concerned, a non-vanishing field

excursion ¢ cannot be distinguished from additional flux P = ¢/27 on the local portion
of the B-cycle, say Blﬂ see figure ,

1 1
= Cy = dCy =27P. 6.15
‘ 2mad /Sz 7 ona! /61 2 : ( )

Considering the first throat with complex structure modulus z; = |2]e*!, the argu-

c#0

e
Il

e

~N—— ~N—
¥1 ©2

Figure 6.5: Fluxes induced by non-vanishing c¢ are localized at the tips of the throats.

9We will use the term flux also for the non-quantized integral [ Fs over some region.
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ments of GKP [40] show that there are SUSY configurations for
P
01 = QWM =c/M, (6.16)

as in eq. . Hence, the throat can locally relax the SUSY breaking induced by
the extra RR-flux by adjusting the phase of the deformation parameter z;. However,
the second throat sees the field excursion ¢ as the flux —P = —¢/27 on the B-cycle for
which there exists a locally supersymmetric configuration with po = —c/M.

Since there is no additional flux that would lead to |z1| # |22/, we now freeze |z| =
|z1] = |22| at the stabilized value for what follows. These two modes decouple
from the discussion at hand, but will become important later when we introduce the
saxion partner of the c-axion.

We can encode the discussion above in a 4d EFT potential. To quadratic order, the
discrepancy between the local fluxes and local deformations induces a potential

1 1
thx(ca ©1, 902) = 5#4(M901 - 6)2 + 5#4(M902 + 6)2 ) (617)

We have p ~ aq since the potential is generated locally near the tip of the throats.

The fact that only the combinations My; + ¢ appear in the scalar potential can be
derived also via ten-dimensional considerations, see appendix [A]l The key point is that,
in the local throats, the combined transformation ¢;9 — @12 0, ¢ — ¢+ MJ is
a diffeomorphism acting on the KS solution. Hence, only the invariant combinations
M1 2F ¢ can appear in the scalar potentials that are generated locally at the bottom of
the throats. Globally, this is not true of course and we will correct for this momentarily.

The potential derived thus far possesses a flat direction which we parametrize by c.
This flat direction is given by

1= —pa=c/M. (6.18)

This flat direction must of course be lifted due to the fact that we break the CY

condition once we set ¢; # ¢o. We will estimate this effect momentarily.

6.3 The CY Breaking Potential

In the preceding section we have argued that the individual throats react to the field
excursion ¢ by adjusting their local deformation parameters z; and zy, more specifically
their phases 1 and (s, respectively. Since the corresponding CY has only one complex

structure modulus z = z; = zy, the mode 2;/25 or rather p; — s must be massive
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already before fluxes are turned on. This eliminates the remaining flat direction in the
potential.

We now choose to parameterize the part of the scalar potential that is due to the
breaking of the CY condition as

VCY—breaking = A4(1 - COS(Spl - @2)) ) (619>

with a yet undetermined scale A. In writing this we have assumed that the potential is

(a) a function of the difference ¢ — o only.

(b) It satisfies Veoy-preaking (91 — ¥2) = Voy-breaking (01 — @2 + 27).
(¢) The lowest harmonic dominates.

Condition a) must hold because only the local fluxes of the throats stabilize ¢ » individ-
ually and, without the flux potential, the complex structure modulus ¢ = (p; + p2)/2
should be a flat direction. We expect condition b) to hold because we see no reason for
a monodromy. Condition c) is a rather unimportant assumption that we make for ease
of exposition, but it will be justified in the following.

We now combine the distinct contributions to the scalar potential from fluxes
and breaking of the CY condition (6.19). We observe immediately that the scalar
potential looks very much like the simple two-field potential we wrote down in section
to resolve the Kaloper-Sorbo domain wall in terms of a scalar field. Note in
particular the manifest discrete shift symmetry

c—r Cc+ 27TM, ¢172 — ¢172 + 27. (620)

We find it interesting to note that here we encounter two different layers of possible
axion monodromy. The first layer is not resolved in terms of a scalar field and corre-
sponds to an M-fold extension of the axion field space. We will postpone a discussion
of the domain walls associated with this finite layer of monodromy to section [6.7. The
"domain walls’ associated with the second layer of monodromy are resolved in terms
field profiles of ¢; o. Whether or not this actually leads to a further spontaneous break-
ing of the axionic shift symmetry depends on the hierarchy between the coefficients A*
and p! as explained in section [3.8.1]

Now, we assume that the we are in the unbroken phase of the second layer of
monodromy, i.e. we integrate out ¢; o, assuming A* < p* (to be justified below). This
corresponds to imposing . As in section the effective potential takes the
form

Ve(c) = A* (1 — cos(2¢/M) + O(A* /")) . (6.21)
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The height of this potential can be estimated using the 10d solution. To do so, we need
to develop a clear picture of how field profiles and 10d geometry change if we displace
c. Recall that c is originally defined by a particular ‘Wilson line” VEV of C in the
UV of the two throats (as well as in the piece of the CY connecting them). Turning
on this VEV and focusing on one throat only, we observe a backreaction of the throat
geometry which maintains SUSY and corresponds to the motion along a flat direction
in 4d field space. This is independently true for the second throat, which backreacts in
the opposite way: ¢ = —ps = ¢/M.

Now, the crucial point is that the two IR parameters ¢; o must by continuity be the
boundary values of a smooth higher-dimensional field profile that interpolates between

them. We encode this in an effective five-dimensional complex structure field

2(xh, 1) = |2(at, r)|et@nn) (6.22)

that interpolates between z; = 20 and zy = zge /M at the respective ends of

the throats, so we ’integrate out’ the unimportant angular directions of the space T
This is illustrated in figure which also displays the expected symmetry: The phase
of the solution should be antisymmetric under the exchange of the two throatsﬂ

¢(r)
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\
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throat 1 throat 2
Figure 6.6: The expected profile of the 10d/5d mode along the radial direction.

For computational simplicity, we model the transition region between the throats
by a single point, r = rUVE In doing so, of course we ignore effects of the unwarped
CY region (accepting an O(1) error). The phase of z(r)/z is anti-symmetric under an
exchange of the two throats, while the magnitude is symmetric. We may thus limit our

attention to one of the two throats when computing the energy density associated with

0By a slight abuse of notation we stick with the familiar variable r, although according to our figure this
variable must now be growing as one goes down the second throat.

11n fact, the exact UV geometry and UV fluxes are irrelevant as long as we do not consider perturbative
and non-perturbative corrections [106].
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an excursion of c.

The key point is that, after these preliminaries, we are actually able to estimate this
energy. It is given by the gradient energy of z(r), which accounts precisely for the clash
between the opposite rotations of p; = ¢/M and ¢y = —c/M. The relevant action for
z = z(z",r) is obtained by dimensionally reducing the 10d Ricci scalar to quadratic
order on the warped conifold background:

MS OV dr B
S[z] = Tlod/d‘lx/ — (—10,2* — e *8,2]) (6.23)
TIR

Considering the metric , this form of the 5d action is easily understood. The
metric naturally splits into a 5d part gsq in the external and radial direction and an
angular part o< gpi1. The latter contributes the r-dependent terms /grir o< r’e =54 to
the metric determinant. The expectation value of |z(r)|/r? encodes the degree of U(1)g
symmetry breaking at radius r, compare figure[6.2] As field excursions of the phase of
z(r) are obtained by acting with a U(1)g transformation, any terms in the action that
contain the field are multiplied by the factor |z|?/rS. For |z| = const. this symmetry

breaking is of course due to the deformation at the tip of the conifold.

We now apply the static approximation (i.e. disregard the [d,z|? in (6.23)), derive
the equation of motion and solve it for the appropriate boundary conditions z(rr) =

20eT /M This gives

2
Tov — TR

ic/M _ ; r? =ik
2(r) =z | e —im——-sin(c/M) | . (6.24)
Inserting this back into the action (6.23]), leads to a 4d potential
V ~ |20 (1 = cos(2¢/M)) . (6.25)

More generally, for boundary boundary values (z1, 22) at the respective throat ends,
the field profile is

1 r2—r?
2(r) = 201 + —2—11;(22 —2z1), = V(z1,22) x |z1 — 22|2 ) (6.26)
2rgv — R

This beautifully matches the form of our proposed scalar potential , and in par-
ticular we infer that A* ~ |z|?>. Finally inserting the stabilized value |zo| oc ad [40],
we arrive at A* ~ aS. Our assumption p* > A* is now justified a posteriori. It is also
apparent that the effective mass of our ultra-light field is

me ~ ay. (6.27)
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Let us justify the use of the static approximation scheme we have employed. Really, we
should have supplemented by the kinetic term Syin[c] ~ [ d*z (9,c)?, imposed
the constraint ¢(a#*,rig) = c(a*)/M, and determined the mass of the lowest-lying KK
mode of the resulting 5d action. However, it is intuitively clear that the UV-dominated
kinetic term of ¢ is much more important than the warped-down 4d-gradient term
(0,9)? in . Thus, ¢ is the most inert part of the system and it is an excellent
approximation to assume that the ¢ profile extremizes just the 5d-gradient-part of the
action. To make this quantiative, one may substitute ¢ on the r.h. side of with
the plane wave ¢ = exp(ikz) (with k* = —m?2) and check that the resulting (9,¢)
contribution from is negligible compared to S, |[c].

6.4 Discussion of Results

The information we have gathered can be summarized in an effective Lagrangian@,

L= LfA00) — 510p2) — A0

1, 1, \ (6.28)
— §u (Mpy — 0)2 — §u (Mps + 6)2 — A (1 — cos(p1 — ¥2)),
with coefficients
1\ 2 i\
f2 ~ log(ag")™?af M, f2 ~ ——=log(ay ') Mz,
oM (6.29)
2 4 )
Js —1\=7/2 63 4 4 9s —1\—3 4 g4
A~ log(a 12aS M2 TR log(a ag Mp .
(gsM)4 ( 0 ) 0P (gsM)ﬁ ( 0 ) 0 P

The above expressions are valid for the special case of the bulk CY having a single
characteristic length-scale, RSy ~ Vol(CY), and where the throats marginally fit into
the bulk, i.e. Riy ~ R 0. ~ 9sMKa'?. For the general case and a derivation of the
parametric dependencies on flux quanta and g5 see appendix D of [2].

When we say that the throats should fit into the throat marginally, we mean that
the geometrical consistency requirements of section that were used to constrain
the KKLT construction are approximately saturated. As we are using throats in both
setups this is completely analogous: The bulk CY has an overall size R¢y that is set by
a combination of the Kahler moduli, and the throats can be thought of as objects of a
characteristic physical size Rinroat €mbedded into the bulk CY. This size throat is set
by the local D3 brane charge stored in the fluxes of the throat [40, [162], independently
of the size of the bulk CY. For this to be a geometrically consistent configuration, we

12For ease of exposition we have written down a diagonal kinetic matrix. This is not quite the case but is
not relevant for our discussion. See App. El for details.
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must require Roy > Riproat- 1aking Roy ~ Rinroat 1S the case where the throats fit into
the bulk CY only marginally.

Far below the scale apMp we may integrate out ¢, to obtain the effective La-
grangian

1
L= —§f02(86)2 — A*(1 — cos(2¢/M)) . (6.30)
We would like to highlight the following points,

e Our simplification Ripeat = Rg2 = Ry gives the largest possible value for the
decay constant fop = M f.; any hierarchy Ripoat < Rg2 < Rcy suppresses its
value. Taking into account logarithmic corrections, the maximal periodicity one
can achieve is O(Mp/+/logay ') (see Appendix D of [2]). A large hierarchy ag < 1
suppresses the periodicity only very mildly. By taking g;M and g;' to be large,
the 10d perturbative expansion becomes better controlled without affecting the
axion periodicity. In this sense, our axion can be made approximately Planckian.

e The mass of the axion is O(a}) which is parametrically smaller than both the
warped Kaluza-Klein scale (O(ap)), and the estimate of [74], where backreaction
of the local geometry was not taken into account (O(a?2)). The mass-spectrum is
essentially gapped.

e As pointed out before, the scale of the effective potential is set by the U(1)g
breaking induced by the deformation of the conifold as measured in the UV ~ |Z|2
Strictly speaking this is not a warp factor suppression, although for moderate CY

volumes |z| and a are of the same ordeﬂ

The following caveats should be noted: The effective Lagrangians (6.28)) and ((6.30)) are

incomplete: We have worked in the regime of classical type IIB solutions so at least
the universal Kahler modulus 7" is not yet stabilized. Moreover, we have not included
the b-axion that complexifies c. Finally, there is no parametric separation between the
mass scale of the complex structures and the warped Kaluza-Klein scale. Hence, the
Lagrangian does not define a useful effective field theory in the Wilsonian sense.
Equation however does give rise to a Wilsonian effective Lagrangian once it is
completed by the b-axion and the Kéahler modulus 7'.

6.5 The Bs-axion

In the preceding sections we have focused on the ultralight c-axion that can be thought

of as the integral of the RR two-form C5 over a sphere between the two throats. Simi-

130ne might for instance be tempted to consider the large volume limit where warping becomes negligible.
In this case the scale of the potential would still be given by |z|? < 1.
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larly, we can define a b-axion by integrating the NS two-form B, instead,

1
b= B . 6.31
2o /32 2 ( )

By the same arguments as before (see ((6.15))) a non-vanishing field excursion induces

a pair of H3 flux/anti-flux on the portions of the B-cycle that reach down into the two
throats. Now, in the vacuum the B-cycle is already filled with quantized Hs-flux,

1
K=K +Ky=-—7— H. Hs | . 6.32
0= g ([, ) 052

Here, as in eq. (6.12)), B; and B, are the three-chains that reach into the respective
throats and are bounded by the sphere between the throats, so that B = B; + Bs.
Clearly the continuous field excursion of the b-axion does not change the quantized flux

integer K. However, by Stokes’ theorem it does change the relative flux distribution,

b b
K1—>K1+—, Ky — Ky — —. (633)
2 2

By definition, K; and K, are the (non-quantized) Hj fluxes that reside in the respective
throats. Again, treating the local throat deformation parameters z; » as independent it

is clear that the throats can restore supersymmetry by an appropriate adjustment [40]:

K Ki,+b/2
2121 ~ exp (_%g M)  exp (—zﬁwg—M/”). (6.34)

Thus, the discussion of the previous section applies also to the b-axion if one replaces
the phases of the local deformation parameters by log |z, i.e. the boundary values of
the five-dimensional field z(r) depend on the two real axions as

2 = Zoeic/be/gsM’ 2o = Zoefic/M+b/gsM . (635)
In other words, while the c-axion rotates the throats against each other, the b-axion
makes one throat longer and the other shorter (see figure 6.7)). As a consequence the
scalar potential is of order

V(Ca b) ~ |21 - 22|2 ~ |Zo|2

. [c+ib/gs 2
S1n (T) ‘ s (636)

which we will confirm in the next section from a 4d supergravity point of view.

For now let us emphasize that both the ¢ and b axion are bulk fields. In particular

a change in their field excursion is not straightforwardly measured by an observer
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3=

Figure 6.7: The physical effect of a field excursion ofthe b-axion in the double throat system.
One throat becomes shorter, whereas the other becomes longer.

located somewhere (say) in the middle of either throat. More precisely, in the limit
of an infinitely long KS throat the axion field excursions we consider have no gauge
invariant meaning at all (they decouple). Rather, the axion field excursions can be seen
only from their global embedding into the bulk CY: The c-axion rotates the throats
against each other, whereas the b-axion makes one throat longer and the other shorter

(see Figure [6.7).

In contrast, the local throat theories remain in their supersymmetric ground states.
This is important to keep in mind because there do exist physical axionic field excursions
also in the infinitely long KS throat, superficially similar to the ones we are considering.
By integrating over the angular space 75! the throat theory is reduced to an effective
five-dimensional theory also containing a Cy and a By axion. But, these are not light
degrees of freedom. The C'; axion is eaten by a vector via the Stiickelberg mechanismlﬂ
[294] while the B, axion receives a mass term from fluxes in the local throats (compare
e.g. [208], and for further details see Appendix . So, the fact that there are no light
axions in the effective 5d theory is not in conflict with the existence of light 4d axions
in a coupled multi-throat system embedded in a compact bulk CY.

Finally, we find it worthwhile noting that the D3 brane charge stored in throat
fluxes is redistributed from one throat to the other by a non-trivial field excursion of
the b-axion. This is because the local D3 brane charge in the throats is set by the local
fluxes as

Np3lthroat 1,2 = MK 2, (6.37)

and explains the change in size of the throats which is set by the local D3-brane charge
as depicted in Figure [6.7]

4The effective 5d theory contains a U(1) vector field that gauges coordinate reparametrizations along the
orbits of the angular U(1)g isometry of T**. This vector field becomes massive by eating the 5d c-axion.
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6.6 Four-dimensional supergravity completion

So far we have discussed how the c-axion and the b axion backreact on the phases
and magnitudes of the local deformation parameters of the throats. In this section we
propose a completion of the model in the language of 4d supergravity. The Cs-axion
pairs with the analogous Bs-axion into a complex field G = ¢ — 7b.

6.6.1 Counting Moduli Through the Conifold Transition

Throughout section we have focused on the case of two S3-cycles related in ho-
mology, i.e. [A!] = [A?%. In general we denote by n the number of collapsing three-
spheres A, i = 1,...,n and by m the number of homology relations between them
S piA]=0,1=1,..,m.

As we have explained in section [3.4] before the fluxes are turned on and orientifold
projections are imposed the physics near conifold transition loci is governed by the
Greene, Morrison, Strominger gauge theory: There are n—m complex structure moduli
2" that are the scalar components of n — m vector multiplets. The 2! parametrize the
Coulomb branch of the gauge theory. Whenever some of the three-cycles shrink to zero
size, charged D3 brane hypermultiplets (Strominger black holes) become massless and
have to be ‘integrated in’ [I51]. At the origin of the Coulomb branch there are hence
n massless charged hypermultiplets and n singular nodes have developed in the CY
threefold. There exists an m-dimensional Higgs-branch where the singular nodes are
resolved into m (homologically independent) P'’s [77]. On this branch, the n—m vector
multiplets eat n — m D3-brane hypermultiplets and become massive. Geometrically
speaking this is the resolution of the conifold [76], 150].

In the A/ = 1 flux compactification that we are considering the tips of the conifolds
become strongly red-shifted. Moreover backreaction of fluxes ensures that even at tiny
complex structure the S3’s stay at finite size so that the Strominger black holes cannot
ever play an important role. However, since the deformed and the resolved conifold
differ only by their strongly red-shifted tip geometries it is natural to expect at least
some remnant of the resolved phase of the conifold theory in the light spectrum. As
outlined in section we expect the ‘local complex structures’ to decouple from one
another so that all the n local deformation parameters z1, ..., 2z, become equally light.
In other words there are m additional light complex geometric modes. Moreover, on the
resolved side of the transition there would be m massless complex axion modes. Since
the obstruction for them to be massless is also localized at the tips of the conifolds

where the would-be two-cycles collapse we also expect m complex light axionic modes
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G’ E As we will argue in the next section, these modes indeed appear quite naturally
in the discussion of the flux superpotential.

6.6.2 The Thraxion Superpotential

In this section we make a proposal for the 4d supergravity completion of the Lagrangians

(6.28) and (6.30) for a general number of throats n with m homology relations among

the shrinking cycles. Throughout this section we work in units Mp = 1.

As a starting point we consider the GVW flux superpotential for a multi conifold
system. All the necessary ingredients are derived in ref. [295] and summarized in Ap-
pendix Bl We choose to treat the redundant set of the n complex structure parameters
2; associated with the n vanishing cycles A° democratically, and impose the m CY
conditions via a set of Lagrange multipliers A\;, I = 1,..,m. The superpotential reads

W(z) = Z <M1% log(z) + Mig'(z) — TKiZi) + Z AP+ ﬁfg(z) : (6.38)

=1 I=1

The m homology relations among the vanishing cycles Y " pf A" = 9C', [ =1,...m
lead to the following m CY conditions for the z; = [ s

on;O/ dQ:/ Q:Zp{/ Q:prziEPI, I=1,...m. (6.39)
¢t oct i=1 ! i=1

In this language, the m CY conditions P! = 0 are equivalent to the F-term equations of
the Lagrange multipliers A7, Oy, W < 0. For details we refer the reader to appendix

Here, the M; and K° are the flux numbers associated to the A- and B-cycle of
the ¢-th throat, and the holomorphic function Wg(z) denotes contributions to the flux
superpotential from other cycles. The M; € Z cannot all be chosen independently but
must comply with the m homology conditions

d piMi=0, I=1,..m. (6.40)
=1

151t is natural to conjecture that in the absence of fluxes and orientifolds the additional deformation pa-
rameters pair with the additional axions into A/ = 2 BPS hypermultiplets, though we will not follow this line
of thought here.

16Note that we restrict ourselves to regions in complex structure moduli space close to the conifold transition
point, where all throats degenerate simultaneously. This might be more restrictive than is needed for our
analysis: If the matrix p! is block-diagonal, we can separate the multi throat system into smaller multi throats
whose deformations are independent of one another. In this case we can go through a conifold transition
by local degeneration of the throats of a smaller system. Even away from the trivial case of multi throats
factorizing, one might be able to achieve small thraxion masses by ‘freezing’ individual throats with larger
deformation z. Given a multi throat with some large z’s one has to check the thraxion potential as proposed
in this section for flat directions. We leave a more thorough analysis of this possibility for future work.
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The K* can be chosen independently but there is an m-fold redundancy in their def-
inition because we may transform K' — K"+ Y, a;p! for any o € C™ leaving the
superpotential invariant upon imposing the constraint equations.ﬂ Furthermore, there
are n unknown functions ¢'(z) defined on complex structure moduli space that are
holomorphic near the origin.

The complex structure Kéhler potential (3.33)) is expanded as
Ke(2i,zi) = —log (—’L/Q /\ﬁ) = —log (ng(z) —igK(2) + Z 12,G* + c.c.)
a=1

= —log (zg;(( —igk(2) + Z [ log(|zi]?) +iZig' (2) — zz,W]) : (6.41)

where the holomorphic function gk (z) encodes contributions from other cycles. We
would like to stress that despite the fact that we have written the unknown functions
g%, gk and Wy as functions of all the z;, i = 1,....n, knowledge of the periods of the
various cycles (and the flux quanta) only determines their behavior along complex
structure moduli space and not beyond.

We are now ready to formulate a proposal for the thraxion superpotential. First,
we note the following. By expanding the Lagrange multiplier terms, one may rewrite

the superpotential (6.38]) as

—TK' + i Aip)

I=1

W(z) = Z <M1% log(z;) + Mig'(2) +

i=1

One observes immediately that the combinations Y ;- A\;p! can be interpreted as an
additional, unquantized contribution to the complex three-form flux G3 = F5 — 7H3 on
the (local portion B of the) B-cycle of the i-th conifold. But we know that such a flux
is detected by a boundary integral

1 1
(02 B TB2> - 2o/

Gi =

27T0z

(Fy— THy) (6.43)

52 |i-th throat

over the S? at the top of the i-th throat. Crucially, the variables G, define axionic field

""The n — m physical Hs flux quantization conditions can be stated as K* — >_7"  pl K" ™" € Z a =

1,...,n —m. This is because we can always choose the first n — m of the shrinking cycles to correspond to
integral basis elements [.Al] ., [A""™] in homology. The Lagrange constraints can be stated as 0 = pl =
ST phzat Znemtt, 1€ Znomir = — >z 7" phza. In the superpotential the terms that multiply 21, ..., Zn—m
are given by the above combination of K* and correspond to the integer flux numbers on the cycles B, ... Bn_m.
Alternatively, one may demand the sufficient but not necessary conditions that K* € Z for i = 1,...,n. In

this more restrictive but democratic formulation the i-th throat carries K*® units of flux. We can still reach all
possible integer values for flux numbers on the cycles B,.



6.6. FOUR-DIMENSIONAL SUPERGRAVITY COMPLETION 141

Figure 6.8: A cartoon of the B-cycle of the triple throat, n = 3 and m = 2. The local c-axion
excursions ¢y, ¢ and cs, ¢; = Re G;, must be chosen so that no overall flux is generated on B,

| A~
ie.0=c +co+ 03 or rather ), G" = 0.

excursions as measured near the entrance of the i-th throat.

We would like to interpret (a subset of) these as light physical degrees of freedom.
This is motivated by the fact that there are m light axions on the other side of the
conifold transition that correspond to the integrals of Cy — 7By over the independent
resolution 2-cycles. Indeed, the counting is correct. A consistent axionic field excursion
must not induce any overall flux on any of the global B-cycles (see figure [6.8)). There
are hence n — m no-flur conditions, one for each linearly independent B-cycle, leaving
only m physical axions. These can be parametrized as Gi = ST piGr and we are led

to the following conjecture:

The Lagrange multipliers \; must be promoted to

gr
2m”

Moreover, the z* are promoted to n physically in-

m light axionic degrees of freedom, A\ —

dependent degrees of freedom.

The normalization factor 27 is chosen such that locally in the i-th throat a shift of
axionic field excursion Gy by 27 (or 277) for some [ is indistinguishable from an increase
of the Fj3-flux (respectively Hj-flux) on the local portion of the B-cycle of the throat
by an integer amount p.

Thus, our propoal for the superpotential is

W= Z ( -—log (z:) + Myg' () — Kizi> — Z &PI + V%(z). (6.44)

We find it interesting to note that the axions G! now serve as the stabilizer fields for
the combinations of the local deformation parameters that break the m CY conditions

18Compare this to figure The ‘no-flux’ condition in the double throat setup amounts to ¢; = —ca. The
two axions ¢; and co are actually identified, up to a sign due to different orientation of the two-sphere in the
definition. This is why we only had one axion ¢ to begin with in the 10d analysis of section
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Pl =0, 1 =1,...,m. This form of the dynamical thraxion superpotential is fairly
unique in that it preserves the set of discrete shift-symmetries

i ze ST G Gt 2y, Ve C Y ppl € MZ Vi, (6.45)
I

Our proposal for the Kahler potential is
K(gI7 gfa T7 Tv <, 2) - Kl(gf - gf’ T+ T) + KCS(Za 2) ) (646)

where K is the Kéhler potential (6.41)) and K is the K&hler potential of the m axions
(and Kéhler moduli T") on the other side of the conifold transition as derived in [153],

and quoted in eq. (3.49)).
We expect ((6.41]) and (6.44)) to hold even when we break the CY condition P! # 0
with the important subtlety that the domain of the holomorphic functions g', g and

W, must be extended beyond complex structure moduli space. We find it reasonable
to expect that such an extension exists although even full knowledge of the CY periods
would not determine their behavior away from the moduli space. The detailed form
of these functions will be of no importance in what follows. Moreover, we expect that
using the potential K, gives an excellent approximation because the kinetic term of the
axions is dominated by contributions from the UV where the deformation or resolution
of the conifold plays but a tiny role. Note, that the behavior of the kinetic terms
of the complex structure moduli is dominated by the logarithmic terms in . In
particular, the functions ¢’(z) and gx(z2) contribute to kinetic terms only at sub-leading
order.

Since we are interested in small z; we Taylor-expand

9'(2) =g5 + Zgijzj +0(z%), W(z)=gwo+ ZQ%/VJ% +0(2%),

j=1 i=1

9k (2) =gro+ Y _ gk12+ O(2%). (6.47)
i=1

This should really be understood as a Taylor expansion in n independent variables
z; and makes our conjectured extension of the domain of these functions beyond the

complex structure moduli space manifest.
We absorb all O(z°) terms in the superpotential in the definition W, = gwo +
S M;gh. The coefficients in (6.47) should all be viewed as independent of the flux
quanta that thread the cycles of the multi throat system, and only (gw.o, 9€V, 1) depend

on fluxes on other cycles.
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It is clear that to obtain the effective superpotential for the G-fields we should
integrate out the local deformation parameters. Before we discuss this in full generality
it is instructive to first consider the simplest case of the double throat, i.e. n = 2 and
m = 1. There are two A-cycles A' and A? and we choose the homology relation to be
Al ~ A2, Hence, there are two deformation parameters z; and 2z, and one axion G.
For ease of exposition we assume that of all the coefficients defined in , only gwo
and g are non-vanishing, in other words, we choose Wy as well as all non-logarithmic
terms in the Ké&hler potential to be constant. In doing so we accept an O(1) error in all
expressions, in particular in the resulting superpotential Wg for G. This simplifying

assumption will be dropped when we generalize the discussion to the multi throat case

n section [6.6.3l

We must set M; = My = M due to the homology relation between the shrinking
cycles, and we choose K!' = K/2 = K? which results in flux K! + K? = K on the
B-cycle. All choices of the pair (K', K?) that satisfy K' + K? = K are physically
equivalent to this choice and can be brought back to the symmetric choice via a linear
redefinition of G (compare the discussion below ((6.40))). The superpotential takes the

form
2 1 G A )
W(z1,29,G Z — log z)M — éKTZZ' - %(zl —2)+Wo+0(z2). (6.48)
i=1

First, the F-terms F), are given by

log(z;) + 1 K g

D, W =0, W+ (0, K)W = M- —17F —+0(z)

21 2 2
", ‘ (6.49)
=5 (log(zi/20) FiG/M) + O(20),
i
where /2
R | . —47rgséw . —2#52\3
20 =€ "~ exp (27?@7’ A ) +0 ( ) =0 (e ) : (6.50)

As usual, with K/2 > g,M one obtains |zp| < 1 with universal dependence on the flux
numbers. Following section we may integrate out the local deformation parameters,
which yields

iG/M

21 = 2p€ 2 = zge 9M (6.51)

The effective superpotential for the axion G reads

Wer(G) = 2¢ (1 — cos(G/M)) + Wy + O(23) ,
with e—M—, and Wy =Wy — 22M .

211 Yy’

(6.52)
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This is the expression we were after. Crucially, it is consistent with the results of
section [6.1} In section [6.8) we will show that V (G, G) o [9gW (G)[?. So, if we restrict to
G = ¢ € R, we reproduce the periodic potential with all the correct parametric
scaling properties, in particular |e|* ~ |z|* ~ ag.

Note that because we have made use of the unwarped Kéahler potential we do not
reproduce the correct mass-scale of the local deformation parameters z;. Here, this is of
no importance because all degrees of freedom that are related to strongly warped regions
are integrated out supersymmetrically. In particular, the potential energy induced by a
non-vanishing field excursion of the field G receives its dominant contributions from the
bulk CY where warping plays no role. Because in going from weak to strong warping,
the solutions of the complex structure F-terms are left invariant [154], and because the
z; are parametrically heavier than G even when the appropriate red-shift factors are
introduced in the scalar potential, this procedure is justiﬁed@

We are now ready to expand on the conclusions we have drawn in section [6.1} First
of all, the kinetic term of the full complex field G lives in the bulk. This implies that
the mass? of G is of order |zy|? < 1. Since the Kihler potential is independent of Re(G)
a discrete shift-symmetry G — G + 27 M is manifes@, while the IR superpotential
breaks the shift-symmetry corresponding to Im(G) completely.

While in principle the target space distance traversed by Im(G) can be made large,
the scalar potential grows exponentially as a function thereof as is common for saxionic
directions in field space. In particular, this direction in field space is of little use for
(slow-roll) inflation. There is a critical field excursion [Im(G)ai| < 3M log(ag ') beyond
which one side of the double throat is entirely pulled up into the bulk CY, z; ~ 1 or
z9 ~ 1. Near this field excursion we no longer know the form of the potential because
we work to lowest order in |z1],|22]. Moreover, there is a tower of warped KK-modes

with masses that scale as

mZ ~ n?ad exp (—2|Im(G)|/3M) , (6.53)

where the warp factor a3 ~ |2;*® now depends on Im(G). Since these modes have been
integrated out, the ratio A/mg of the cutoff of the G-EFT (i.e. the smallest KK-mass)

over the mass-scale of G, comes down as

A/mg ~ aaQe’ﬁumg‘ < ag?exp (—ﬂ> , (6.54)
Mp

9For a recent computation of the warped (i.e. physical) Kahler potential, see ref. [296]
20Tn an exact no-scale background the scalar potential even has periodicity #M. However, any no-scale
breaking effects will break it to the periodicity of the superpotential.
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at large field excursion, consistent with a distance conjecture [30, 205207, 272, 297+
299]. Here ¢, measures the canonical field distance from the origin along the imaginary
g-axiﬂ.

At strong warping the maximal allowed field excursion is [Im(G)max| ~ 2M log(ay )
before the 4d EFT description breaks down. Near this field excursion, a large fraction
of the reservoir of fluxes of one of the throats has been transferred to the other one and
the mass scale of the G-field is of the same order as the warped KK-scale of the longer
throat. At this point, contributions to the scalar potential from non-vanishing F-terms
D, W start to play a significant role, or from a 10d point of view, the potential energy
sinks down into the longer throat.

6.6.3 The general multi throat

We now wish to generalize our results to the case of an arbitrary multi-throat. For
general m and n that satisfy n—m > 0 homology relations, there are n local deformation
parameters zi, ..., 7, that have to be integrated out. We are left with an effective
supergravity theory of m axions G/. The computational steps are analogous to the
double throat case that was laid out in detail. Hence, we only state the effective axion

superpotential
Wer(G') = = el Ziapid M iy (6.55)
i=1
and we have defined
M AT Y i i i
€ = %Zo,i(l —2mgsWo/(aby)),  Go = 95 — 91> @ = —2Im(gkyo), (6.56)
and
- 2mi i i S i KT <
ZO,i = e 1exp (— MZ’ (Z Mjg{ +gm1 —I—ngWO/a>> 62 M; 4 O (6 4 gsMi) .
j

(6.57)
It is important to note that the 2, as defined above can in general not be interpreted
as the values of the local deformation in the vacuum. The physical local deformation
parameters are given by

Zph,i = Z0,i €XP (Z ZP?QI/Mz) ; (6.58)
I

21See appendix D of [2] for the conversion rule between G and the canonical distance in field space ¢p. At
any point in field space, ggg < M3 /M?. Hence, ¢, = fOImg dIm G’ /G55 < ImGMp /M.
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where in the vacuum the G! need not vanish in general.

6.6.4 Comments on the b-axion

In the above supergravity completion we have ‘complexified’ the c-axion by pairing
it with the analogous b-axion. We have outlined the 10d backreaction of the b-axion
already in section [6.5] Now that we have addressed the scalar potential of the b-axion
quantitatively, in this section we would like to comment on a potential worry and how
to resolve it: We recall that the effect of a non-vanishing field excursion of the b-axion
is the creation of a pair of fluxes of the NS field strength Hj. Since both throats are
filled up with Hs-fluxes already in the vacuum one should think about this process more
properly as a transfer of H3-flux from one throat to the other. Since the magnitudes
of the local deformation parameters (and the associated hierarchy) are set by the ratio
of local Hs-flux (on the B-cycle) and F3-flux (on the A-cycle) it is clear that these will
backreact when the Hj-fluxes are redistributed, see eq. .

However, it is also clear that when the local Hs-fluxes are changed, the circumference
of the throat at the UV end is affected strongly. This is because it is set by the total
D3-charge that is stored in the throat which is itself proportional to the amount of Hs-
flux [162], compare figure Hence, naively one might worry that such considerable
change at the UV ends of the throats could lead to a large potential energy. One may
convince one-self that this is not the case as follows. Starting from the supersymmetric
situation we can redistribute a small amount of fluxes from one throat to the other,
so that throat A has ¢ units of H-flux more than throat B. We can now proceed to
convert the extra fluxes into a number of D3-branes by going through the Kachru-
Pearson-Verlinde (KPV) transition [I74]. From the UV perspective this process is only
detected by a change in the throat complex structure which is a tiny perturbation far
from the tip of the throat. Now we are back to an even flux distribution with a number
of mobile D3-branes. These can be moved out of the throat at no cost in energy so
the situation with the mobile branes should be a vacuum again. In other words, the
redistribution of fluxes creates an energy density that is only due to the misalignment
of local deformation parameters and the change of size of the throats at their UV ends
does not generate an extra contribution to the potential. We reiterate that the situation
is analogous to the backreaction of the c-axion with the phases of the local deformation
parameters replaced by the logarithms of their magnitude.

Finally, note that in the Kahler potential the b-axion appears explicitly, while
the approximate c-axion shift symmetry is manifest. One might suspect that the small
scale of the b-axion is therefore accidental due to our use of tree level supergravity.

This conclusion would be incorrect: The target space manifold with Kéahler metric
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derived from is shift symmetric also in the b-direction [300, [301]. In general we
expect both continuous shift symmetries to be preserved to all orders in the perturbative
expansion with explicit breaking only due to the superpotential . When moreover
non-perturbative Kahler moduli dependent terms are generated in the superpotential
such as the ones considered in [41], the b-axion mass is lifted to the scale of Kéhler
moduli stabilization while the c-axion can remain parametrically lighter. We will be
more precise about this in section

6.7 The axion potential from the KS gauge theory

We have derived the axion potential via a classical computation within 10d SUGRA, and
proposed a 4d SUGRA description that matches it. Since the local throats are believed
to have a dual description in terms of KS gauge theories [162], it is useful to give an
alternative derivation of our results on the gauge theory side of the correspondence.
This will give us a further consistency check and allow us to conclude that the validity
of our results is not endangered as we make the throat curvatures large in string units.
Recall form section that the KS gauge theory is a SU(N + M) x SU(N) gauge
theory with gauge coupling constants set according to eq. . The radial running
of the G-field together with 7 = const. matches the RG-running of the gauge theory
coupling constants. Throughout this section (and in contrast to the preceding ones) G
takes values in its suitable fundamental domain.

As the KS gauge theory flows to the infrared, it undergoes repeated steps of Seiberg
dualities that reduce the ranks of the gauge groups according to

SU(Ny + M) x SU(N,y) — SU(Ny + M) x SU(N)
oo — SU(Ng + M) x SU(N,) , (6.59)

with Ny, = N — kM, k € N. If we start with N = KM, after K steps in the duality
cascade the gauge group is SU(M). Since, roughly speaking, it corresponds to the first
gauge group factor in SU(M) = SU(Ng + M) x SU(Ng), its holomorphic scale is given
by

N = gt exp (2mitym () = pig' exp(ig) (6.60)
where pg is the infrared scale of the throat and where we make use of the KS dictionary

Tym =~ G/2m. Gaugino condensation leads to an effective ADS-superpotential [162], 169,
265]

o
Wer(G) = MA® ~ My exp(2mitym/M) ~ M i, exp (% (TK + 2£>) , (6.61)
m
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where we have used that the IR-scale is related to the UV-scale by

K
3= ud -2 . 6.62
Hir = Huv exp( Wgs M) ( )

The superpotential that we have proposed on the gravity side of the correspondence

(6.55)) indeed takes precisely this form,

n 2 . ' 54
W Z M;A; exp (]\7/7 (TKl + 2%)) + const , (6.63)

=1

with G = ST gl an
_ 27@8 % 2mi - ji i 2RY)
Ai=(1- . Wo |exp | — i Z Mg + gy, +iggWo/a : (6.64)
1 KA jzl

From the gauge theory perspective we should interpret the appearance of the constants

g{i, g%,V’ 1> g and W as a parameterization of threshold corrections near the UV cutoff
Indeed, as they are taken to zero the A; become unity.

It is now obvious that the M-fold extension of the periodicity of the c-axion is
related to gaugino condensation in the KS gauge theory@ [78, 162 294, 304]: As usual
there is a U(1)g symmetry that is broken to Z,), by gauge theory instantons. Gaugino
condensation spontaneously breaks Zyy; — Z5, so there are M gauge theory vacua. As
we transform ¢ — ¢ + 27, we move from one gauge theory vacuum to the next, and
the gaugino condensate (which corresponds to the local deformation parameters on the
gravity side) picks up a phase exp(2mi/M). This is as in section |6.2| where we learned
that the M different vacua are reached by dialing the RR flux quanta on the B-cycle
Q=0,...,M —1 (see (6.10)).

This point of view is useful for our understanding of how the discrete gauged axion
shift symmetry is broken spontaneously in this case. The domain walls of the Kaloper-
Sorbo description correspond to aligned gauge theory domain walls of either of the two
throat gauge theories, across which the value of the respective gaugino condensates
jump by factors of e*2™/M From the supergravity perspective, for a single throat this
is known to be a D5 brane wrapped on the A-cycle S® at the bottom of the throat
[294]. Therefore, in our case this must be a combination of two D5 branes each one
wrapped (with opposite orientation) on one of the two S3s at the bottom of the throats.

22Note that in we have set Mp = 1. Therefore we identify puv ~ Mp.

Z30f course these are in general functions of all other complex structure moduli that do not control the
infrared regions of the throats and are frozen at a high scale.

24Related observations were made in the non-compact flux-less multi-node setting of [302, B03].



6.8. KAHLER MODULI STABILIZATION 149
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Figure 6.9: The Kaloper-Sorbo domain wall across which the ¢/-axion field excursion jumps
by one unit (by one monodromy charge unit). The homology-trivial cycle 1, ptA; ~ 0 is
wrapped by D5 brane(s). This configuration can be thought of as a set of n D5 branes, parallel
in the non-compact directions, that wrap the internal A-cycles in a combination of zero overall
D5 charge. The corresponding domain wall for the b’ axion is obtained by replacing the D5s
by NS5 branes.

For the b-axion it is an NS5 brane instead (see figure [6.9)).

6.8 Kahler moduli stabilization

In this section we would like to comment on the question to what extend our results
are modified when no-scale breaking due to Kahler moduli stabilization is introduced.

So far we have proposed a superpotential as a function of the field G,
W(G) =€e(l —cos(G/M))+ W,. (6.65)

This was argued to appropriately capture the thraxion scalar potential in purely clas-
sical ISD solutions, and in particular we have left out Kahler moduli in our discussion.
First, in order to derive the thraxion scalar potential we do need to consider the Kahler
moduli as they form a 'no-scale’ sector together with the G-axions. Following our con-
jecture of section we make use of the type IIB N = 1 03/OT-orientifold Kahler
potential as derived by Grimm and Louis [153], on the other side of the conifold transi-
tion, denoted M’, where the thraxions would become part of the CY zero mode sector.
We denote by G!, ..., GhE' M the B 1 m complex axions, and by TH, ..., ThY the At
Kahler moduli. For simplicity let us set A~' = 0. The Hodge numbers are those of M.

We specify to the simplest case with hi’l = 1 and use the Kéhler potential of .
Strictly speaking we must allow for at least two Kahler moduli on the other side of the
conifold transition, the universal Kéhler modulus and the resolution modulus. Since

the latter is set to zero as we go through the transition, we only keep the universal one.
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The triple intersection number matrix x,,; is negative definite, and symmetric in
the indices 4,j. We define ' = —i(G — G), and raise and lower the indices using the
metric —k;;. In the basis of target space vector fields {07, Jgi } the field space metric,
its inverse and the one-form 0K take the form

, AB
gas=— |} ~iaf; gn_ P (145800 s
F2 \iaB —aFk;+a?B;5; AB 3 —i% —ap (R )Y

(6.66)
where a = %gs. As usual, the Kahler potential satisfies the

and O, K = —2(1,ifv;)]

no-scale relations

70

10K = —F(1,0)", 0K'g7'oK =3. (6.67)
As a consequence, for a general superpotential W = W (T, G) one obtains

Ko .
:eK(\DW|2 —3|W ) = GF—?)(|0V[/'\2 — 2FRe(WorW)). (6.68)

For the purely classical background, we have W = W (G?). Hence the potential is given
by

e —1\ij m=1 2|€|2 —1\11 2

= W(—/{+ ) 8giW8g7'W = W(—I{+ ) |Sln(g/M)| . (669)
In the last equality we have set m = 1. For Re(r) = 0, b = 0 this reduces to the
potential of eq. (6.30). Note that if we freeze the value of the overall CY volume, and

the dilaton, this potential is of the same form as one derived in rigid SUSY with flat

field space metric o (—/{Il)ij. Therefore, it possesses only Minkowski minima >

Kahler moduli stabilization will distort this scalar potential as the second term on
the r.h. side of (6.68) indicates. Adding a KKLT term N Ae=2"T/N to the superpotential
one obtains the following scalar potential

_ 4Im G CuT
Ko | 27T /N |2 aT *
e V = 3F2|27TA6 I>(F + a|B]?) — 3MF21m [2mAe” " Esin(G/M)*]
H;TITZ|SIH<Q/M I’
+ ﬁRe (27 Ae™ 2TIN (W + Ae™ T + €(1 —COS(Q/M)))*} : (6.70)

The SUSY critical point is the same as in ordinary KKLT, with G = 0.

This scalar potential has a rather complicated structure in particular due to the
spontaneous breaking of the b-axion shift symmetry due to the presence of the seven-

#Gtrictly speaking, (pseudo-)moduli spaces of positive energy vacua are also possible [305]. But it is clear
that this situation will not occur in our examples.
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brane stack. In other words, the b-axion will in general be sourced by gaugino conden-
sation. We will neglect this effect now by setting ImG = 0 and focus on the c-axion
dependence of the scalar potential. This is simpler because the c-axion shift symmetry
is preserved by the D7 brane stack. The scalar potential simplifies to become the sum of
the axion-independent KKLT scalar potential and an axion dependent scalar potential

of the schematic form
Viion(€) = |20 sin(c/M)|> + Re [(AN) 2 (1 — cos(c/M))] . (6.71)

First, as advertised one observes that the axionic shift symmetry is preserved in the limit
2o — 0, but now the non-perturbative volume stabilization effects induce also a term
linear in z5. The appearance of this term can be understood from a ten-dimensional
perspective: In section[6.3|we have considered the effective five-dimensional deformation
field z(r) and seen that a non-trivial field excursion of the axions effectively displaces
the two Dirichlet-type boundary conditions at the IR ends of the throats against each
other. In general, when non-perturbative ISD breaking effects are turned on in the
bulk, this radial mode will be sourced also at the UV end,

S[z] —> S[2] +M7180 / iz / %(JUVHC.C.) , (6.72)

with Jyy = 7 - 78(r — ryy). In our case the source j is identified with the gaugino
condensate, j ~ (A\). From the dual KS field theory perspective the presence of such
a source term is interpreted as a relevant deformation of the field theory Lagrangian,
by a certain chiral operator of dimension A = 3, listed in ref. [106] The solution
to the equations of motion of z(r) subject to Dirichlet boundary conditions at the IR

ends as given in section is now modified by the UV source, and reads

Ll Lot —ri 6.73
2(7’)—43( TIR)+21+2TQ — (22 — 21) - (6.73)
Uuv IR

This holds in the first throat. In order to obtain the profile in the second throat, one
simply exchanges z; «— 29. Plugging this back into the action, one obtains a scalar

ZMore precisely we actually consider perturbations of the conformal Klebanov-Witten theory. The KS
theory is interpreted as a small perturbation of the KW theory due to the logarithmic running of five form
fluxes and the warp factor. As we neglect this logarithmic running also in the throat calculation, a comparison
to the KW theory using the usual AdS/CFT dictionary is appropriate.
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potential

V(c) = |21 — 2> + Re (j(z1 + 22)) + const.
= 4|z|?| sin(c/M)|* — 2Re(jZ)(1 — cos(c/M)) + const. (6.74)

This indeed reproduces the form of the c-axion scalar potential as computed from four-
dimensional supergravity . Similar cross-terms are expected to be generated for
any type of no-scale breaking, be it of perturbative type as generated by the BBHL
correction of eq. , particularly relevant for moduli stabilization a la LVS [75], or of
non-perturbative type as in KKLT [41]. Indeed, one can show that including the BBHL
correction into the Kahler potential leads to an analogous cross term proportional to
Wy. We leave the task of matching the full scalar potential as a function also of the

b-axion for future work.

In the limit |29 < |j] the axion mass is raised to a value of order

me
Mp

(NI

mr (6.75)

~ (a()) MP Y

where mp is the scale of Kéhler moduli stabilization. While this is a somewhat larger
value than the one encountered in the classical ISD solutions it is still exponentially
smaller than the mass scale of Kahler moduli.

Note that one might worry that already in the classical ISD background such a UV
source term is present. After all the U(1)r symmetry is broken by the bulk. This is
unfounded as can be seen as follows. The general solution z(r) = ¢; + cor? contributes
to the local strength of U(1)g breaking in the combination

2(r)/r® = cir P 4 er . (6.76)

The first term is the normalizable perturbation due to the deformation of the conifold.
The latter is activated only in the presence of an appropriate source in the UV. From
the radial scaling we observe that this mode grows toward the infrared. But we know
from the definition of a compactly embedded conifold region that the CY metric does
not possess such a mode. Rather all geometric effects of bulk symmetry breaking fall off
towards the IR end of the conifold. Therefore, this particular mode cannot be activated
in an ISD background, i.e. jlisp = 0]

2TQuestions of this sort have been addressed systematically e.g. in [106, [306]. In general, the KS throat is
known to not admit any supersymmetry breaking but ISD preserving relevant perturbations [306].
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6.9 Applications

6.9.1 Thraxions on the Quintic: Drifting Monodromy

In this section we would like to give an example of a string compactification where a light
thraxion can appear. Along the way we identify concrete setups in which parametrically
super-Planckian racetrack-type axion periodicities are possible. We choose the CY to be
the quintic three-fold as introduced in section [3.3| near its 'classical’” conifold transition
locus described in section . Recall that there are 16 vanishing three-cycles A’
i =1,...,16. Because the solution set lies on a P? submanifold of P*, there is precisely

one homology relation among them,

16

> AT =0. (6.77)

i=1

Hence, we have a multi throat system with n = 16 and m = 1 so there is one light
axion.

Let us give two examples that differ by choices of flux numbers. In both examples
we set the coefficients A; defined in to unity. Generically we expect these to be

of order one. Inserting O(1) factors below does not change the physical outcomeF_gI

Example 1: A simple thraxion potential

First we dial the flux quanta as
M; = (—=1)"M, K =(-1)"K, (6.78)
with K/gsM > 1. Then we have ¢; = (—1)"e, and
Wei(G) = —16iesin 2G /M + Wy = 16ie(1 — cos 2G' /M) + Wy, (6.79)

~

with Wy = Wy — 16¢, G’ = G — M /4, and small |¢| x exp(—27K/gsM). Up to the
numerical pre-factor this is exactly what we found for n = 2 and m = 1.

Example 2: Drifting Monodromy

We now slightly detune the Fj fluxes from one another:

My=M, My=M+1, My=-M, My=—(M+1), (6.80)

281f some coefficients can be tuned parametrically smaller than others, new qualitative features might arise.
We leave an investigation of this possibility to future research.
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and M;,4 = M;, with K’ = sign(M;)| K|, and again K/g,M > 1. In this case
Wet(G) = —8izo(M sin(G/M) + (M + 1)sin(G/(M + 1))) + WO, (6.81)

with zg ~ exp2miK7/M. In addition to the previous simplification, we have also
neglected order one prefactors that arise from the fact that the ratios K*/M; are not
all exactly equal. Again, this is of no consequences for our purposes.

The superpotential is a racetrack-type superpotential for G. The axion peri-
odicity is now given by 2w M (M + 1). Crucially, this implies another M-fold extension
of the axion field range on top of the one already discussed in the simpler examples
of the double throat and the first example of this section. Clearly, one may take this
even further to periodicities such as 27 M - - - (M + 3). Since we still only have to fulfill
the requirement that the throats fit into the bulk CY, this implies the existence of a
simple, concrete and explicit mechanism in string theory that can generate huge super-
Planckian axion periodicities. In general the full periodicity of the superpotential is
given by the least common multiple of the different RR flux numbers M;. We dub this
mechanism of generating a parametrically large axion monodromy drifting monodromies
since it relies on a frequency drift within a set of several finite-order monodromy ef-
fects. This is related but different from the winding idea, where a constraint forces
the effective axion on a long trajectory in a multi-axion moduli space [44], 278-281].
Here, by contrast, one may think of a single fundamental axion extended by several
small, finite-order monodromy effects. The result of this can still be large as explained
above. The intended outcome, namely to realize an effective large-f axion accepting a
short-wavelength oscillatory potential, is of course the same (see in particular the very
recent analysis of [71]).

The minima of the potential V o |9gW|?* are located along the slice Im G = 0 where
it takes the form

V(e) o [cos(c/M) + cos(c/(M +1))]*, ¢=RegG,

L[ 2M+1 ) 1 (6.82)
X COS 2M(M—|—1)C COS 2M(M—{—1)C s

which has 2M + 1 distinct Minkowski vacua (see figure [6.10)).

We can now compare this with the results of section [4.35] where we noticed that
generic racetrack type superpotentials are in conflict with the weak gravity conjecture
for axions. In our case, we note that despite the long 2w M (M + 1) periodicity the scalar
potential oscillates on shorter wavelengths of order 2n M. This is essentially due to the
rank condition (6.40)) which forces us to introduce flux numbers of both signs. We have

not shown in general that suppressing such shorter wavelength oscillations in order to
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Figure 6.10: The axion potential of example 2 for the case M = 10. There are sub-Planckian
oscillations within a long super-Planckian envelope.

produce a smooth super-Planckian axion potential is impossible. At this point we only
note that the condition presents a severe obstacle towards this. Furthermore
this condition is global in the sense that it need not hold in a non-compact CY where
gravity is decoupled, and swampland criteria are not expected to be applicable.

The examples given above also serve to illustrate that by scanning over flux num-
bers one may obtain a vast number of possible effective superpotentials and axionic
potentials.

6.9.2 A Clash with the Weak Gravity Conjecture

In this section we would like to point out that the axion potential we have derived
clashes with the WGC for axions [31] (see section [3.8.2). We have computed the
axion potential via a classical supergravity calculation. However, one may equally
well associate it to non-perturbative effects in the KS gauge theory (namely gaugino
condensation), as argued in section . As such, (if true) the weak gravity conjecture
should apply to our construction.

By comparison with an instanton induced scalar potential , we may associate
an (effective) Euclidean instanton action to each of the leading exponentially suppressed
terms in the axion (super)potential ]

Ki
gsMi '

Sie ~ 3log(1/al) ~ 2m (6.83)

As computed in appendix D of [2], in the regime where the throats marginally fit
into the bulk CY, the periodicities fef/q' of the dominant terms in the superpotential

2Taking the correspondence with instantons seriously, these are (%BPS—)instantons.
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associated to each throat ¢ = 1,...,n read

2 . . 2 . o K1\
Fol e 30 2 os( /a0t = S0 (5 ) e (o)
where 1, = M;K*/Ni* is the fraction of the total D3 brane charge of three-form
fluxes which is stored in the ¢-th throat. Hence,

21 K¢
3 gsMi

Sea - Josr/d' ~ 2(rbs)'/*\/log(1/ah) Mp ~ 2(rpys)"? Mp . (6.85)
In the regime ag < 1 (i.e. K' > g,M;) the r.h. side is parametrically larger than O(1)
so the objects that generate the relevant terms in the superpotential do not satisfy a
weak gravity conjecture bound.

Of course as is always true in string theory compactifications [52] there does exist
a tower of instantons that satisfies the weak gravity bound but generates no
monodromy.m It is also apparent that these instantons occupy a sub-lattice of the
full charge lattice. This sub-lattice corresponds to all the possible wrapping numbers
of a Euclidean D1 string. However, in our setup this sub-lattice can be made para-
metrically coarseﬂ Let us illustrate this with a concrete example: We consider a
variant of the drifting monodromies example given in section [6.9.1] with flux numbers
M; € {5,6,7,8,—5,—6,—7,—8}. The axion decay constant is enhanced by the least
common multiple of 5,6,7,8 which is 840. The instantons that satisfy respect
the periodicity of the axion before monodromy. Thus the possible charges take values in
840Z C Z. Clearly, a lattice WGC is parametrically violated, while a sub-lattice WGC
[62], 64] (see also [70]) is always satisfied but with parametrically coarse sub-lattice.
Note that generically these instantons only give rise to sub-leading corrections to the
scalar potential (if they contribute at all), compare section .

However, we observe that the n effective instantons that do give the dominant

contribution to the superpotential satisfy a relation
i 4 2 -
Sett < grm(q Mp/fer)”, Vi=1,..n. (6.86)

Together with S’; > 1, as is required for controlled expansion in powers of e~ S, this
still implies the existence of short wavelength harmonics in the superpotential. This
motivates a closer look at the full spectrum of our effective instantons to which we now

turn.

39Tn our case, these are Euclidean D1 strings wrapping representative S2’s in the UV, compare sectionm
31Hence we seem to realize explicitly the loop hole mentioned in footnote 25 of ref. [64].
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6.9.3 The Spectrum of Effective Instantons

We now set aside the spectrum of instantons that satisfy the WGC but instead ask what
are the properties of the effective instantons that generate the superpotential. We have
written down the most dominant contributions to the superpotential and noted
that they satisfy . This condition is weaker than because at fixed control

parameter S’z ; 1 the value of ¢Mp/f.q is constrained to be bigger only than v/Seg
rather than S.g. Nevertheless, as a consequence the dominant effective instantons give
rise to sub-Planckian wavelength oscillations in the scalar potential.

In general it is easy to see that beyond these most dominant effective instantons
there exists a whole Z" lattice worth of these effective instantong®?} These correspond
to the higher orders in the |z]|, i = 1,...,n, that we have neglected in section .
Therefore, the n dominant effective instantons serve as n basis vectors of the lattice Z"

and a general effective instanton is labeled by an effective charge vector k € Z". The
bound (6.86]) for these general effective instantons reads

. 4 n o ql 2
Sh< gMEY Wb (1) (6.7
i=1 ¢

and the r.h. side defines a (1-)norm on Z".

The effective instantons can also be embedded into the full one-dimensional charge
lattice Z of the preceding section via ks S k'q', although they do not satisfy the
WGC bound .

Again, this is perhaps best understood using the explicit example given in the

preceding section. The dominant instantons have charges

; 840 840 840 840 | 840
q € {i v }Z = {i?,iT,i?,i?} = {£105,+120, 140, £168} . (6.88)
They induce harmonics in the superpotential with periodicities feg/q'. Due to the
relation (6.86[) precisely these combinations are restricted to be sub-Planckian as long
as S’y > 1. They can be understood to occupy a coarse 105Z + 120Z + 140Z + 168Z
sub-lattice of Z while the Euclidean D1-instantons satisfying the WGC occupy an even
coarser sub-lattice 840Z C Z.

6.9.4 Axion Phenomenology

We have identified a string theory axion with remarkable properties. It is parametrically
lighter than the tower of states that is usually associated to strongly warped regions

32We consider general combinations of holomorphic and anti-holomorphic instantons.
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Myiower X agMp. The axion mass can be tuned almost independently of the periodicities
of the dominant oscillations in the scalar potential, since we have m o a3Mp, while
the oscillation period feg/q of the scalar potential depends only weakly on the warp
factor for/q ~ Mp/+/log(ay’). Conversely, the mass scales unusually strongly with the

oscillation wavelength,

2 M, 2
%1% o ad ~ e 2% x5 exp (—a (qfeﬂp> : (6.89)
with a = O(1).
In contrast most other stringy axions usually satisfy the relation [307]
i e ()
— ~exp | —a , 6.90

As such the thraxion assumes a rather special place in the string theory landscape.
This is potentially interesting for axion phenomenology. We refer the reader to [307]
for a range of phenomenological applications for different axion mass scales.

We have to emphasize that at least in the simplest setups our axion is not a generic
inflaton candidate because of the generic presence of dominant sub-Planckian wave-
length modes in the scalar potential, despite the large monodromy enhancement of the
effective axion decay constant.

6.9.5 Uplifting

We would like to briefly comment on some possible scenarios of uplifting to de Sitter
space, using our construction. To actually implement these ideas in concrete models
involves the complicated interplay of different effects. First, uplifting requires as a
precondition, that a full mechanism of Kéhler moduli stabilization is in place, and we
have sketched the non-trivial interplay between the CY breaking potential and the no-
scale breaking from Kéhler moduli stabilization in section [6.8] Second, as explained in
section in order to argue for a successful uplift to de Sitter space, we need very good
control over the ingredients of the uplift. Here, we will only sketch qualitative ideas
how this might work. The following two scenarios are both based on the idea of adding
an oscillating potential of different wavelength to the known thraxion potentials of the
form or .

We wish to look at situations where c-dependent corrections to the Kahler potential
may become relevant. This is certainly the case in the regime |[Wy| ~ 1, leading us

to consider LVS-like moduli stabilization [75]. Potentially interesting corrections may
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arise from Euclidean D1-brane instantons that wrap members of the family of two-
spheres that vanish at the tips of the conifold. Since the cycle is trivial in homology
we expect no corrections to the superpotential but at most corrections to the Kahler

potential of the form
Se K1 ~ CemSpBriSes 4o (6.91)

with C = O(1) and DBI and CS actions

2
Spp1 = gi% and  Sgs — 2730/ /S 2 <Zp: Cp> AeBls tom = ReG. (6.92)
Here, we have evaluated the DBI action on a representative sphere in the UV, i.e. in
the bulk CY. This is because we expect such a representative to give the dominant
contribution: As explained in App. [A] there are different two-spheres at a given radial
coordinate in the throat that are labeled by a U(1) phase and that all share the same
volume. As we scan over this phase, the corresponding integrals of C5 at a given
radial coordinate pass through their fundamental domain. Therefore, integrating over
all Euclidean brane instantons on the two-spheres should cancel all contributions due
to the oscillatory behavior of the correction ([6.91)). This is consistent with the fact
that after accounting for backreaction of the phases of the throat deformations the Cy
field excursion cannot be measured in the local throats. In the analysis of section [6.6]
we extended this result to Re(G), i.e. to Cy — Cy By. In passing towards the UV, our
description of the throat breaks down. In particular, we do not expect the different
sphere representatives to all share the same volume. Thus, we expect non-vanishing

instanton corrections.

Using Vol(S?)|yy 2 B2, X (9sMK)Y2a/| this leads to corrections to the scalar
potential of the form

NS e_a\/%(l —cos(ReG)), (6.93)

with @ = O(1). Assuming that the exponentially small prefactors of the classical
warping suppressed potential (or that of example 1 of section and the
non-perturbative correction terms are of the same order, it is feasible that additional
local minima appear in the scalar potential that could in principle lift to meta-stable

non-supersymmetric minima, possibly even de Sitter vacua. The exponential terms are

K
> M. 94
Voar 2 (6.94)

of comparable magnitude when
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V(c)

0 C

Figure 6.11: The axion potential of figure with an additive correction 0V (¢) o const. +
cos(c/ fefr) that shares the periodicity of the superpotential.

In F-theory models with large Euler characteristic we do not see an immediate obstacle
to realizing this.

We may turn this around and add large-wavelength corrections to shorter-wavelength
oscillations such as those of the example of drifting monodromies given in section [6.9.1}
On the large scale of fog ~ M Mp there are several Minkowski vacua of the potential
, compare figure . It is conceivable that these are uplifted to de Sitter vacua
once further corrections to the potential are taken into account. This might happen
automatically when the no-scale properties of the Kéhler potential get broken
by perturbative or non-perturbative corrections, since we know that the existence of
Minkowski vacua strongly depends on the cancellation of different terms in the scalar
potential. These scalar potential corrections follow the periodicity of the superpoten-
tial, which is given by the super-Planckian decay constant f.s. An optimistic sketch of
this is illustrated in figure |6.11

However, for both ideas, uplift flattening as discussed in chapter 4] is an obstacle
due to the direct cross-couplings between the F-terms Fg and other no-scale breaking
sources from moduli stabilization. We leave a more thorough search for de Sitter vacua

using these uplifting ideas for future research.

6.10 Conclusions

In this chapter we have argued for the generic existence of a new type of ultra light
axion in the flux landscape of type IIB string theory. It is part of the light spectrum
whenever fluxes stabilize a CY orientifold near conifold transition locus in complex
structure moduli space. We have given three independent computations of its scalar

potential that all agree with each other: 1) From the ten-dimensional perspective non-
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vanishing axion field excursions displace the local deformation parameters of distinct
warped throats against each other, forcing them to violate the CY condition, while
supersymmetry in the local throats is almost perfectly restored. The CY breaking
potential was computed from the gradient energy of the ten-dimensional field profile
that interpolates between the mis-aligned throats. 2) A four-dimensional supergravity
formulation was proposed in which the thraxion fields play the roles of the stabilizer
fields whose F-term conditions enforce the CY condition. After integrating out the
geometric modes, one is left with an effective superpotential for the thraxions. The
effective scalar potential computed from this proposal matches the ten-dimensional one.
3) In the field theory dual to the throats a non-perturbative superpotential is generated
from gaugino condensation that matches the one previously proposed, indicating that

the model is equally valid for both large and small throat curvatures.

This is interesting from a fundamental perspective because it exemplifies how the
light spectrum of an A/ = 1 flux compactification can contain CY zero modes of a pair
of distinct CY manifolds, connected to each other via a conifold transition. As it is
widely believed that stabilization near such loci in CY space occurs rather naturally
[42, [163], this phenomenon in general may play an important role in the phenomenology
of string compactifications. Specifically, we have argued that our axion can easily be
exponentially lighter than Kéahler moduli, and the scale of the potential can be far
smaller than the WGC for axions would lead one to expect. We are led to conclude
that the reasons why all models of large field inflation might fail in string theory cannot

be as simple and universal as one might have hoped, while a relation similar to, but

different from, the WGC for axions holds also in our class of models (see eq. (/6.86])).

Furthermore, we have presented a mechanism to generate parametrically large ax-
ion decay constants by superimposing slightly detuned harmonics in the superpotential
via judicious choices of flux quanta. While the scalar potential still oscillates on sub-
Planckian scales in field space, it suggests that certain strong forms of the distance
conjecture do not hold universally (see section (3.8.3). In particular, it seems to be
possible to traverse a parametrically super-Planckian distance in the enhanced axion
field space without a tower of light states decreasing their mass exponentially as the
distance is traversed. This is not in conflict with the weaker statement given in sec-
tion which states that for a given model (i.e. for fixed choices of flux quanta
and other data) it is impossible to traverse arbitrarily large distances in field space
without encountering an exponentially light tower of states. There is no contradiction
simply because the monodromy we encounter is always finite, though it can be made
parametrically large. Similarly, our construction is not in conflict with the sub-lattice
WGC but it is suggested that the populated sub-lattice in instanton charge space can
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be made parametrically sparse.

It would be interesting to generalize our backreaction scheme to more complicated
axion monodromy proposals such as the one of [46]. As F3 fluxes on the A-cycles are
dual to D5 branes wrapped on the resolution two-cycles via the geometric transition
[304], we have implicitly given a fully backreacted example of five-brane axion mon-
odromy, based on the very simplest example of a double KS throat. Interestingly, in
our case, the 5-brane anti-5-brane pair has relaxed to a supersymmetric ground state
without annihilating against each other. The flux-tube that connects the two is su-
persymmetrized by the NS fluxes on the B-cycle, automatically resolving the issue of
brane anti-brane backreaction in the vacuum, as formulated in ref. [308]. Furthermore,
while the conifold transition is the simplest type of geometric transition, it is not the
only one [304]. It would be worthwhile understanding what is the light spectrum near
such transition loci in general.

Finally, we have briefly commented on the possibility to generate de Sitter vacua
using SUSY breaking minima of the thraxion field as the uplift. Generically, uplift
flattening as discussed in section poses an obstacle toward realizing this idea, but
it would be interesting to see if de Sitter vacua can be found in our axion landscape

nevertheless. We leave this issue for future research.
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Conclusions and outlook

It is a fascinating and fundamental question whether string theory has solutions that
can describe the accelerated expansion of the universe, in particular the one we observe
today, and the inflationary expansion that observation strongly suggests has happened
in the very early universe [19]. We believe that it is the right time to address this
question in detail, as cosmic microwave background observations are becoming sensitive
enough to rule out wide ranges of models of inflation [27], and the bounds on the
equation of state of dark energy become tight [I12]. In this thesis we have focused on
two particular aspects of this problem, the viability of models of de Sitter vacua that are
the leading candidates to describe the late time accelerated expansion of our universe,
and the possibility of large field inflation in the very early universe. Although the
characteristic energy scales of both phenomena can be much lower than the Planck scale,
it is natural to address them in string theory as a UV complete framework. This is due
to the fact that the success or failure of concrete models is sensitive to a large number
of Planck suppressed operators which may mediate significant backreaction effects on
geometric moduli of string theory [3-5]. Moreover, the existence and structure of no-
go theorems against de Sitter vacua in many weakly coupled corners of string theory
suggests that such backreaction effects generically spoil the success of de Sitter uplifts.

In order to make concrete progress we have chosen to focus on the celebrated KKLT
model [41] for de Sitter vacua in string theory. We have argued that this proposal, orig-
inally made partially within the framework of four-dimensional supergravity, survives
many non-trivial ten-dimensional consistency checks. In particular, ten-dimensional
tadpole cancellation conditions are fulfilled exactly [1, [110], indicating that the success
of the model is not threatened by too strong backreaction effects[] Moreover, the four-
dimensional conditions for unbroken supersymmetry match the ten-dimensional ones

in a natural and intuitive way [0, B09]. However, we have also pointed out that the

!See however ref. [T11] that claims the opposite.

163



164 CHAPTER 7. CONCLUSIONS AND OUTLOOK

KKLT type de Sitter vacua are always very close or even well within a regime of poor
computational control, where the use of ten-dimensional supergravity as an approxima-
tion to the whole string theory becomes questionable [I]. This is closely related to the
consistency requirement that the physical size of the so-called warped throats employed
to engineer parametrically small uplifts has to be smaller than the overall size of the
compactification space. Thus, we have pointed out a highly vulnerable point in the
KKLT construction to be scrutinized further in the future. In particular, we have ar-
gued that highly non-generic compactifications could in principle evade the problems of
computational control, and it would be interesting to understand if these can actually

be realized in a sufficiently controlled fashion.

In the second part, motivated by the goal to realize large field inflation in string
theory, we have constructed a new class of axion-like particles. These we have argued
that to arise in rather generic classes of string theory solutions, namely the type IIB
flux landscape. The construction displays several interesting features that make it in-
teresting both from the phenomenological as well as the theoretical perspective: the
axion mass is extremely small both in relation to the Planck as well as in relation to
its decay constant. As a consequence, it can be used as a counter example to the weak
gravity conjecture for axions [31], while a similar but different bound is fulfilled that
precludes super-Planckian monotonic regions in the axion potential in all explicit exam-
ples that we have studied. For these examples, this prevents us from building a model
of large field natural inflation on the basis of this idea. Nevertheless, parametrically
super-Planckian effective decay constants are possible to the best of our understanding.
This means that our model can also be used to argue against strong forms [205] of the
swampland distance conjecture [30], because there is no tower of modes that becomes
light as the parametrically super-Planckian axion valley is traversed. These results un-
cover a yet incomplete understanding regarding the quantitative form and validity of
the aforementioned swampland conjectures, while some of their qualitative predictions

seem to be in accord with our findings.

Furthermore, the axions we have identified play a previously unknown role as the
relevant light degrees of freedom that control crucial aspects of the global geometry
of a Calabi-Yau manifold stabilized in close vicinity to a conifold transition locus in
complex structure moduli space: they control the relative length and orientation of
distinct warped throats. Finally, our results are consistent with the gauge gravity
correspondence of warped throats: in the small 't Hooft coupling regime, the axion
potential can be understood to arise from the misalignment of the gaugino condensates
of several confining gauge groups, while in the opposite regime it is a twisting of two

or more throats against each other.
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We conclude that the phenomenology of string theory solutions in general, and the
swampland program in particular, is one of the most promising roads towards relating
observable phenomena with physics at the Planck scale. It is of crucial importance to
continue to pursue this direction in the future, and it is clear that new phenomena are
waiting to be discovered. We are optimistic that the questions of viability of large field
inflation and de Sitter cosmology in string theory that were pursued in this thesis can

be settled to a sufficient degree of satisfaction in the near future.
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Appendix A

The Axion Potential in the Local
Throat

In the main text we have repeatedly made use of the fact that the Cs- and Bs-axions ¢
and b can only enter the scalar potential that is generated in the local throat in certain
combinations with the ‘local complex structure’ of the throat, namely the real and
imaginary part of

Mlog(z) —iG, (A1)

where G = ¢ — 7b, and z is the ‘local complex structure’. Here, we would like to derive
this without using ‘local flux stabilization’ as in section but rather rely only on
asymptotic properties of the KS/KT solution [78, [162]. For simplicity we will set the

RR zero form to zero, i.e. T = ig; '

We cut off the throat at a radial coordinate ryv and define the b-axion at that value
of the radial coordinate. Since the By profile runs along the radial direction [160],
changing b — b+ 0b can be realized by choosing a different UV-cutoff 7. Since the
absolute value of the complex structure is defined in units of the UV-cutoff it scales as

éb
z—>e Mz, (A.2)

Since this is just a coordinate transformation from the perspective of the local KS
throat, the combination g,M log(|z|) + b cannot appear in the scalar potential that is
generated within the throat. It acquires physical meaning only if the throat is cut off

at fixed, finite ryy.

Similarly, in the limit |z| /73 — 0 the RR three form takes the form
Fy =2ma' M (¢° + de/M) Aws, (A.3)
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where the on-form ¢° = di)+ ... is defined in [294], and wy, is the normalized harmonic 2-
form of T%1. The field ¢(z) transforms like a Goldstone boson under (local) coordinate
transformations [294]

Y — Y +2w(x), c(r) — c(r)—2Mw(x). (A.4)

Shifting along this angular direction is an isometry of the asymptotic KS solution (called
U(1)gr). Near the IR this is not the case precisely because (by definition) the phase of
the complex structure also transforms like a Goldstone boson,

argz — argz — 2w. (A.5)

Again, in the local throat the combination M argz + ¢ has no physical meaning as
it is eaten via the Higgs mechanism. Only when the throat is glued into the CY
space at finite radial coordinate ryy does the c-axion gain its independent physical
meaning because the U(1)r symmetry is badly broken by the CY geometry. Putting
together the real and imaginary part of G = ¢ — 7b, we arrive at the conclusion that
only the combination is physical when considering a single throat. A second
degree of freedom only becomes physical by finiteness of the throat, i.e. by breaking
the asymptotic U(1)r symmetry. This also implies that the kinetic terms for the fields
1.2 stated in actually take the form [0(¢; 2 £ ¢/M)]? since they arise from local
throat physics. We have disregarded some unimportant off-diagonal terms in the kinetic

matrix.



Appendix B

Background on Multi Conifolds

In this appendix we discuss preliminaries that are important for section In the
derivation of the B-cycle periods we follow Chapter 8 of [295]. We are interested in what
happens when n cycles 7 with m homology relations among them shrink at a conifold
point in moduli space. The Picard-Lefschetz formula states that upon encircling a
conifold point in moduli space, a three-cycle § undergoes the monodromy [77), 310} B11]

§— 6+ (N9 (B.1)
=1

Knowing this monodromy transformation is enough to determine that

n

/5 Q-1 > (6ny) / 9 log( / Q) + single-valued . (B.2)

271 i1 v A

We may choose n — m of the degenerating cycles as part of the integral A-cycle basis

Al =~"fori =1,...,n —m, while the remaining m vanishing cycles are integer linear
combinations 7' = Y """ ¢t A* for i = n—m~+1,...,n. By applying (B.I) to the cycles

B, one arrives at [295]

n

1 1 ;
6= [ 0= g og(an) 5 30 chalos(al gD, a= L, (B

where ¢%(z) are n — m holomorphic functions. We have defined z; = Y """ ¢\ z, for

i=n—m-+1,...,n, e z = fvi Q when applying E| At frozen values of 29,
a=mn-—m+1,.,h%" +1 the periods associated to other cycles, G* = [, Q, with

"When using a local expression for the holomorphic three-form € in the vicinity of smoothed conical
singularity described by (6.5)) one can calculate fﬂ/i Q = z; [304]. This identifies the z; defined here with the
local deformation parameter of the i-th throat.
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a=n—m-+1,.., h*» +1, are holomorphic in the complex structures that parametrize
the multi conifold deformations, i.e. in the 2%, with i = 1, ...,n — m. In what follows we

denote by z* only the multi conifold deformation parameters.

We may now evaluate the GVW superpotential W = [ o G A 2 where we choose
flux quanta M, and K according to Gz = — Y _"(M,a® — TKf,). Using one
obtains

n—m n

M, M;
W(za) = Z %Za IOg(za) + Z 2711 Zi IOg(Zz)
a=1 i=n—m-+1
+ > Mag®(z) =7 Y K% + Wo(za) , (B.4)
a=1 a=1

where we have defined M; = Y'_7" ¢, M,, and the holomorphic function Wp(z,)
parametrizes the contributions from fluxes on other cycles. We may use the z, and
z; with 2 =n—m+1,...,n on the same footing by interpreting our definition of the z;

as m constraint equations
n n—m
O_PI_ 1 — n—m-+1 I=1 B.5
= = DiZi = Zn—mal — cr Za s =1,...m. (B.5)
i=1 a=1

Here, the m x n matrix p! is defined as

—mt =1, .. n—m,

1 i ’ :
st i=n—m+1,...,n.
We may now write the superpotential as
a 2; , , o A
W (z) = (MZ-—Z,I O+ Mygi(z) — 7K ) AP+ Wo(z), B.7
(2) ; 5= log(i) + Mig'(2) — 7K'z +; P+ Wolz),  (BY)

with m Lagrange multipliers A;. The homology relations are now enforced via the
F-term of the fields \;. In doing so, we have defined ¢’ to be zero for i > n — m.

The F3-flux on +% is given by M;. By the definition of M; fori =n—m +1,... n,
the flux numbers automatically fulfill Y  p/M; = 0 for all I. In democratic terms,
the n flux numbers M; must be chosen in compliance with the m homology constraints
St pfM; = 0. The Hz-flux on B, is given by K + > 7., ci=mH Kn=m+ | as this is
the coefficient appearing in front of z,. In other words the n — m flux quantization
conditions read K+ Y 7., ci-mH gn=m+l ¢ 7 Note that we may transform K' —
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K'+>", asp! for any o € C™ because the superpotential is left invariant upon imposing
the constraint equations, that is to say, we can undo such a transformation by also
shifting the Lagrange multipliers A! — M + 7af. Of course, the flux quantization

conditions are invariant under these shifts. Finally, the Kahler potential is given by

Kes(2i,Z;) = —log (—Z/Q A Q) = —log (igK(z) —igr(2) + gizaG“(z) + c.c.)

(B.8)
= —log (ng(z) —igk(2) + Z {% log(|zi|*) +izg'(2) — 22,9%2)]) ,
(B.9)

_ 2141 — va . .
where g = >, " 1 ZsG"(2) encodes contributions from other cycles. The g are

holomorphic in z,, a = 1,...,n — m. Note that despite the democratic formulation,
the Kahler and superpotential are strictly defined only along complex structure moduli
space, where P! = 0. As explained in section we propose to extend the domain of

these functions to the deformation space parametrized by all z; by introducing general

Taylor expansions of ¢%(z), gx(z) and Wy(z) in (6.47).
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