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Abstract

In the first part of this thesis we investigate the viability of a class of models for de

Sitter (dS) vacua in string theory, due to Kachru, Kallosh, Linde and Trivedi (KKLT).

We start by explaining why the success or failure of such models is sensitive to a

large number of Planck suppressed operators, and collect circumstantial evidence that

this UV sensitivity cannot be evaded with delicately engineered models such as the

Kallosh-Linde (KL) racetrack due to a generic conflict with the weak gravity conjecture

(WGC) for axions. We take this as motivation to study the KKLT mechanism from a

ten-dimensional point of view. Building on earlier work we show that the form of the

four-dimensional supergravity model as proposed by KKLT is remarkably consistent

with the ten-dimensional perspective with respect to supersymmetry breaking as well

as consistency requirements such as tadpole cancellation conditions. Nevertheless we

point out a generic loss of parametric control over the ten-dimensional geometry in the

interesting regime of 4d parameter space where an uplift to dS is believed to occur.

In the second part we argue for the existence of a new type of ultralight axion in the

type IIB flux landscape of string theory. This axion can be thought of as the integral

of the Ramond-Ramond (RR) two form over a certain two-sphere which is trivial in

homology, and it arises when fluxes stabilize a Calabi-Yau (CY) threefold near a conifold

transition locus in complex structure moduli space. The axion receives a non-trivial

but strongly suppressed potential because its field excursion weakly twists two or more

Klebanov-Strassler (KS) throats against each other. This can be understood as a purely

geometric effect in 10d, but also as misalignment of gaugino condensates in different

field theory sectors that are dual descriptions of the ten-dimensional throat system.

The scalar potential turns out to be periodic while its periodicity can be enhanced with

respect to the natural axion periodicity by a finite monodromy factor allowing its decay

constant to become parametrically super Planckian in many cases. While our model

does not obey the strong form of the weak gravity conjecture we identify an alternative

bound that enforces the generic presence of dominant sub-Planckian harmonics, thus

preventing us from building models of natural inflation using this construction.



Zusammenfassung

Im ersten Teil dieser Arbeit untersuchen wir die Realisierbarkeit einer Klasse von Mo-

dellen für de Sitter (dS) Vakua in der Stringtheorie, vorgeschlagen von Kachru, Kallosh,

Linde und Trivedi (KKLT). Wir beginnen damit, zu erklären, warum der Erfolg oder

Misserfolg solcher Modelle von einer großen Anzahl von Planck-unterdrückten Ope-

ratoren abhängt, und wir finden Indizien dafür, dass diese UV-Empfindlichkeit nicht

mit technisch ausgereifteren Modellen wie dem Kallosh-Linde (KL) racetrack Szena-

rio beseitigt werden kann, aufgrund eines generischen Konflikts mit der Vermutung

über die Gravitation als schwächste Kraft (WGC). Wir betrachten dies als Motivation,

den KKLT-Mechanismus aus zehndimensionaler Sicht zu untersuchen. Aufbauend auf

früheren Arbeiten zeigen wir, dass die von KKLT vorgeschlagene Form des vierdimensio-

nalen Supergravitationsmodells in bemerkenswerter Weise mit der zehndimensionalen

Perspektive übereinstimmt, in Bezug auf das Brechen der Supersymmetrie, sowie den

Anforderungen an Widerspruchsfreiheit wie tadpole-cancellation-Bedingungen. Trotz-

dem weisen wir auf einen generischen Verlust der parametrischen Kontrolle über die

zehndimensionale Geometrie in dem interessanten Bereich des 4d-Parameterraums hin,

wo angenommen wird, dass ein Anstieg nach dS auftritt.

Im zweiten Teil argumentieren wir für die Existenz eines neuen Typs ultraleichter

Axionen in der Typ IIB Flusslandschaft der Stringtheorie. Man kann sich dieses Axion

als das Integral der Ramond-Ramond (RR) Zwei-Form über eine bestimmte, in der

Homologie triviale Zwei-Sphäre vorstellen, und es entsteht, wenn Flüsse eine Calabi-

Yau (CY) Mannigfaltigkeit in der Nähe eines Konifoldübergangslokus im Modulraum

der komplexen Strukturen stabilisieren. Das Axion erhält ein nicht-triviales, aber stark

unterdrücktes Potential, da seine Feldauslenkung zwei oder mehr Klebanov-Strassler

(KS) throats gegeneinander verdreht. Dies kann als ein rein geometrischer Effekt in

10d verstanden werden, aber auch als Fehlausrichtung von Gaugino-Kondensaten in

verschiedenen Feldtheoriesektoren, die eine duale Beschreibung des zehndimensionalen

throat-Systems sind. Das skalare Potential erweist sich als periodisch, während seine

Periodizität in Bezug auf die natürliche Axionperiodizität durch einen endlichen Mono-

dromiefaktor erhöht werden kann, wodurch seine Zerfallskonstante in vielen Fällen pa-

rametrisch super-planckisch wird. Während unser Modell der starken Form der WGC

nicht gehorcht, identifizieren wir eine Bedingung, die die generische Präsenz dominan-

ter subplanckischer Modulierungen erzwingt, sodass wir mit dieser Konstruktion keine

Modelle natürlicher Inflation bauen können.
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Chapter 1

Introduction

1.1 The search for new physics

Symmetries and the quest for unification have perhaps been the most important or-

ganizing principles of elementary particle physics in the twentieth century. All the

particles that have so far been identified have taken their place in the standard model

(SM) of particle physics. The interactions among them are determined by their charges

under the gauge symmetry group GSM = SU(3)×SU(2)×U(1), the gauge coupling con-

stants, the Higgs potential, and the Yukawa couplings. Its remarkable consistency and

completeness as a quantum field theory (QFT) means both a triumph for its inventors

and a challenge for those in search of beyond the SM (BSM) Physics. The discovery of

the Higgs boson [6, 7] marks the end of a long era that perhaps started with the Fermi

theory of the weak interaction. While remarkably consistent at low energies, the Fermi

theory predicts its own breakdown at energies of order 100 GeV. This was correctly

interpreted as a signal for new physics at this mass-scale, and led to the advent of the

Glashow-Salam-Weinberg model of the electro-weak interaction [8–10] and eventually

to the formulation and experimental confirmation of the SM. Unfortunately in practical

terms this series of guaranteed discoveries at energy scales just around the corner has

terminated. The SM contains no coupling constants with negative mass dimension (it

is renormalizable [11]). As a consequence it predicts its own breakdown only at an en-

ergy scale that is fantastically high. The perhaps strongest indication for new physics

beyond the SM (BSM) comes from neutrino oscillation experiments [12–14] indicating

a non-vanishing coefficient of the non-renormalizable Weinberg operator, and from the

fact that the gauge couplings of the standard model meet roughly at the scale of

ΛGUT ∼ 1016GeV . (1.1)

1
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This suggests that the SM gauge group could in the end be embedded into a unified

gauge group (GUT) that breaks spontaneously in the vacuum [15].1

However, so far we have not mentioned gravity. Coupling gravity to the SM yields

an effective field theory (EFT) that is not renormalizable just as Fermi’s theory of

the weak interaction is not. So gravity seems to come to our rescue: The standard

interpretation of an effective field theorist would be that the SM model coupled to

Einstein gravity breaks down at the Planck scale

MP ≡ (8πGN)−1/2 = 2.4 · 1018GeV . (1.2)

At this scale, the scale of quantum gravity, the effective coupling constant that deter-

mines the scattering amplitude between gravitons becomes of order unity. This is not a

scale that we will reach with collider experiments in the near future. Nevertheless it is

the lowest scale we know at which (radically) new physical phenomena are guaranteed

to become relevant. So, while of course there are still many reasons to expect that new

physical degrees of freedom are hidden just around the corner at scales accessible to

future collider experiments, it is justified to ask what kinds of physical phenomena we

can access today or in the near future that are directly or indirectly tied to the scale of

quantum gravity. More so, we will now outline reasons why we should not take the high

scale of quantum gravity as a reason to despair but as an encouragement to work at

the interface between particle physics, cosmology and a beautiful theory called string

theory.

1.2 The expanding universe

Since the time of Edwin Hubble we know that our universe is expanding [16]. In fact,

since only rather recently we know that the expansion is accelerating [17, 18], and the

history of our universe is extremely well described by the standard model of cosmology

called ΛCDM. It consists of the standard model of particle physics coupled to Einstein

gravity and assumes only two further (though very much mysterious) ingredients: The

first is cold dark matter (CDM), a yet unknown type of non-relativistic matter that

couples to ordinary matter only extremely weakly and accounts for about 25% of the

energy of our universe. The second is the notorious cosmological constant (Λ), a homo-

geneous fluid with peculiar equation of state making up 70%. It is a curious fact that

the baryonic matter that we are made of makes up only about 5% of the energy budget

1A single generation of the standard model fermions is obtained from the 10 ⊕ 5̄ of SU(5) under the
breaking pattern SU(5) −→ GSM . Even better, the 16 of SO(10) decomposes into the 10 ⊕ 5 of SU(5) plus
one singlet under SO(10) −→ SU(5). The singlet is a natural candidate for a right handed neutrino required
for the see-saw mechanism to generate neutrino masses in a renormalizable fashion.
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Figure 1.1: The temperature fluctuations in the CMB as seen by Planck 2018. Figure taken
from [19].

of our current universe. With this set of minimal ingredients the ΛCDM model gives

rise to a remarkably plausible history of our universe starting with an extremely hot

and dense phase (the Big Bang) about 13.8 billion years ago. It successfully describes

many eras of the history of the universe: in the very first minutes after the Big Bang

the process of Big Bang nucleosynthesis led to the formation of the light nuclei. Subse-

quently the universe expanded and cooled down until the temperature was low enough

that neutral hydrogen could form efficiently about 380, 000 years after the Big Bang.

This event is called recombination and marks the time at which the universe became

transparent to light. Today we observe the light that was released at this time as the

cosmic microwave background (CMB) (see Figure 1.1) which gives us a (red-shifted)

snapshot of a very young version of our universe. Furthermore, the formation of large

scale structure can be understood to arise from the growth of tiny inhomogeneities in

the early universe, leading to the distribution of galaxies we find today. Finally, the

accelerated expansion of the current universe is attributed to the cosmological constant.

Fortunately for us this picture is hardly complete. The CMB provides us with a

detailed temperature map of a large patch of the universe when it was much smaller

and much hotter. This patch was in fact so large that it contained a large number

of causally disconnected regions. The time since the Big Bang simply did not suffice

to bring them into causal contact. Nevertheless we observe that the temperature was

the same everywhere to one part in 105 and the tiny temperature fluctuations were

correlated on all scales we can observe. This is called the horizon problem. Declaring
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this to be a coincidence is extremely implausible. As the formation of our universe is

not an experiment that we can repeat, implausibility of a proposed cosmological history

is perhaps the best indication for a seriously incomplete understanding that one will

ever get.

A remedy for this serious problem is offered by the theory of inflation. As proposed

long ago by A. Guth, A. Linde, A. Albrecht, P. Steinhardt and others [20–22] our

universe underwent an era of exponential expansion before it was populated by the

matter we know (and the one we don’t know). During this time the energy budget of

our universe was dominated by a slowly evolving dark energy that drove the exponential

expansion much in the same way that a cosmological constant might drive today’s

accelerated expansion. A crucial ingredient is a new (scalar) degree of freedom called

the inflaton that serves as a ’clock’ for the progress of inflation. Its tiny (and correlated)

quantum fluctuations were stretched to very large scales during the time of inflation

and translated into tiny density fluctuations in the early universe as we know it. These

in turn translated into the temperature fluctuations at the time of recombination that

we can observe in the CMB, and served as the seeds for large scale structure formation.

Crucially these fluctuations are tiny and naturally correlated on what appear to be

super-horizon scales at the time of recombination. This beautiful idea not only solves

the problem of implausibility but it also predicts the precise form of the CMB power

spectrum using only two a priori undetermined constants to be fixed by observational

data (or a specific inflationary model).

This simple and successful idea begs the question what were the relevant degrees

of freedom whose quantum fluctuations shaped the form of the CMB? One of the

most interesting questions is whether also gravitational quantum fluctuations played an

important role. Crucially the answer to this question can in principle be inferred from

the polarization (so called B-modes) of the CMB [23–25]. In other words, it is possible

that the quantum fluctuations of the gravitational field are detected in the near future.

Beside this obvious reason for excitement it turns out that such a detection would teach

us quite a lot about the inflationary era itself [26]. First, the scale of inflation would

have to be of order of the scale of grand unification. Second, we would learn that

during the era of inflation the inflaton traversed a distance in field space that is larger

than the Planck scale. From the point of view of effective field theory (EFT) there is

nothing obviously wrong with this. As long as the scalar potential stays small in Planck

units the use of Einstein gravity as an effective field theory is valid. In fact the types of

successful models that a (naive) effective field theorist would write down would all share

the feature of inflationary field excursions much bigger than the Planck scale. It is also

easy to ensure that the flatness of the scalar potential over super-Planckian field ranges
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is not endangered by large quantum corrections. There are really only two problems

with these types of models. First, they are (almost) ruled out by experiment [27].

Second, the predictions of such models are sensitive to a large (or even infinite) number

of Wilson coefficients [28]. These are the coefficients of the expansion of the effective

Lagrangian in terms of operators of increasing mass dimension. As a consequence,

bottom up EFT models of large field inflation are usually not very predictive2: The

number of Wilson coefficients that specify an inflationary model exceed by far the

number of observables that we can extract from CMB data. At least, in writing down

a bottom up model of large field inflation one is far from being agnostic about physics

at the Planck scale. As a consequence, making a choice of EFT model can really lead

to meaningful predictions only if one is able to predict infinitely many relations among

the Wilson coefficients from more fundamental principles. So here we have arrived

at a remarkable and encouraging result: If gravitational wave fluctuations generated

during inflation, called primordial tensor modes, are detected, an infinite number of

Wilson coefficients is constrained. This is getting us rather close to testing physics

at the Planck scale. Conversely, if a theory of quantum gravity predicts that models

of large field inflation cannot exist, we can in principle falsify it observationally via a

detection of primordial tensor modes using CMB data.3

1.3 String theory and the swampland

This is only one of many ideas how a full theory of quantum gravity may severely

constrain the set of low energy EFTs and in particular the set of low energy observables,

thereby acquiring the status of a falsifiable theory. We call the set of EFTs including

gravity that can be realized as a low energy limit of the full quantum gravity the

landscape while the ones that cannot form the complementary set that we call the

swampland [29, 30]. For this concept (the idea of the swampland) to be a useful one,

one has to show that there exist clear boundaries in the space of low energy observables

that divide regions belonging to the landscape from those that belong to the swampland

(see Figure 1.2). We will come back to what types of criteria have been proposed

that could distinguish the landscape from the swampland in section 3.8. While some

criteria (henceforth called lore quantum gravity statements) can be motivated more or

less clearly from (say) black hole physics [31, 32] it is clearly of great interest to have in

hand an actual candidate theory of quantum gravity in order to 1) give further evidence

for or even prove lore quantum gravity statements and 2) collect further constraints

2This does not mean that the theory of inflation is not predictive (it certainly is!).
3The question to what extend such a theory would actually be confirmed by a null detection is a more

subtle one because we do not have so many quantitative theories of quantum gravity to compare.
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Figure 1.2: A cartoon of a 2d subspace of the total parameter space of EFTs coupled to
gravity parameterized by two Wilson coefficients (c1, c2). The landscape (blue) is hoped to
be well separated from the swampland (red).

that cannot be motivated as easily from the bottom-up. The only theory of quantum

gravity that is developed to a sufficient degree that we may begin to address such

questions in principle to a satisfactory quantitative degree is string theory.

String theory is believed to be a unique theory of quantum gravity although to date

there exists no formulation that would make this manifest. In contrast, there exist

five perturbative string theories, that all have ten dimensions of spacetime.4 In each

perturbative string theory the light degrees of freedom can be thought of as vibrating

one-dimensional objects called strings (but there are also heavy solitonic membranes

[34]). Crucially, in the 1990s (the second superstring revolution) it was realized that the

different perturbative string theories should be understood as different weak coupling

limits of the same underlying theory (sometimes called M-theory).

The formulation of these theories and (some of) the relations among them are stan-

dard textbook material found e.g. in [35]. For us it will (mostly) suffice to consider their

ten-dimensional low energy limits. These are ten-dimensional supergravity theories, and

in fact they are the only consistent ten-dimensional ones [36] (at two-derivative level).5

These ten-dimensional theories allow non-trivial gravitational backgrounds where the

total spacetime is a product of a non-compact four-dimensional spacetime and a com-

pact (also called internal) six-dimensional space

M9,1 = M3,1 ×M6 , (1.3)

4To be precise these are the only supersymmetric string theories in ten dimensions. There is also a
somewhat less studied non-supersymmetric one [33].

5In ten dimensions we know for a fact that all consistent low energy effective supergravity theories arise as
a low energy limit of string theory. In other words, if we lived in a supersymmetric ten-dimensional world we
would know almost for certain that string theory is the theory of quantum gravity, without the need to access
high energies.
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so that at low energies (at wavelengths larger than the size of M6) the EFT of pertur-

bations around the background solution is a four-dimensional QFT coupled to grav-

ity. Obtaining lower-dimensional theories from higher-dimensional ones in this way

is called Kaluza-Klein (KK) reduction, compactification, or compactifying the higher-

dimensional theory, and goes back to early ideas by Kaluza and Klein [37, 38]. We

will consider the set of EFTs that arise via compactification of ten-dimensional string

theories.

More precisely we will focus on the so-called flux landscape of type IIB string theory

[39, 40]. It arises by compactifying type IIB string theory on a so called Calabi-Yau

(CY) three-fold6 and turning on higher-dimensional analogues of electric and magnetic

fields (called fluxes) along the internal directions. We focus on this weakly coupled

corner because there it is best understood how a truly enormous set of four-dimensional

low energy EFTs can arise from discrete ten-dimensional data (see Section 3.6). This

degeneracy is in fact so large that some EFT parameters are believed to be tunable to

almost arbitrary precision [41–43]. Due to this existence of an almost continuous set

of four-dimensional EFTs the distinction between the landscape and the swampland is

perhaps most easily addressed. Moreover, the ability to tune many parameters makes

it a particularly interesting arena for model building.

Having stated what is our starting point, let us return to the swampland idea

in general, and accelerated expansion in particular. There is an ongoing community

effort to construct models of (single field) large field inflation in string theory. Despite

the emergence of a set of promising ideas [44–49] so far no model has been established

beyond any reasonable doubt. In fact some authors have taken the persistent difficulties

that appear in construction attempts as evidence that large field inflation is in fact

impossible in string theory [50, 51]. While this may well be true, so far we do not

understand why. We find it useful to simplify the problem by restricting to the perhaps

most promising inflaton candidates. In our opinion these are axions. We will discuss in

more detail what we mean by an axion but for now let us work with the simple minded

definition that these are (pseudo-)scalar fields a(x) that in some well understood limit

develop a shift-symmetry

a(x) −→ a(x) + c , c ∈ R , (1.4)

valid to all orders in the perturbative expansion.

In other words all non-derivative interactions can be suppressed in a very natu-

ral way. It is then feasible in principle that a small computable axion potential can

be generated that could drive the inflationary expansion. Such potentials can be di-

6To be precise half of the spectrum has to be projected out in a way that produces a so called orientifold.
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vided into two classes. The first ones arise naturally (really unavoidably) from non-

perturbative effects such as instantons. Such contributions to the potential preserve

a discrete (gauged) shift symmetry a −→ a + 2πfa. For such potentials to host large

field inflation, the axion decay constant fa must be bigger than the Planck scale. How-

ever, the basic string theory axions seem to all have small decay constants [52]. In

fact there is a class of swampland conjectures that constrains axion decay constants.

These are called the weak gravity conjecture (WGC) in various versions [31].7 In its

simplest form (which has nothing to do with axions) it states that in every consistent

low energy EFT of gravity and electromagnetism (and whatever else) there should exist

at least one light charged particle with mass m and U(1) charge e such that m . eMP .

This conjecture has been extrapolated [31] (and in some cases been shown to extend

[56, 58]) to versions that constrain non-perturbative axion potentials (see Section 3.8.2).

A strong form of this conjecture states that in controlled regimes the most dominant

contributions to the axion potential have small periodicities in Planck units. If this

conjecture is true (in the appropriate strong sense), it implies that large field axion

inflation using non-perturbative axion potentials is impossible.

In principle one might also be able to engineer contributions to the scalar potential

that break the shift symmetry completely but still by a controllable small amount. The

weak gravity conjecture does not readily apply to this case.8 This idea is called axion

monodromy [46, 73] and will play a key role in what follows.

1.4 Outline of thesis

Let us give a brief outline of this thesis. In chapter 2 we introduce some of the relevant

concepts of cosmology surrounding accelerated expansion. Then, in chapter 3 we intro-

duce some of the concepts and technology of string compactifications that will become

relevant later on. We will outline the idea of the swampland of effective field theories

in section 3.8 and explain the basics of stringy moduli stablization, in particular the

famous KKLT model, in section 3.7.

The bulk of this thesis is divided into three chapters: chapter 6 is mostly based

on [2], and devoted to the top-down construction of a class of models of ultralight

axions, with potentially interesting applications to large field inflation and the weak

gravity conjecture for axions. Chapters 4 and 5 are about the question whether there

exist solutions of string theory with a positive cosmological constant, and are based on

[1, 3–5]. We now outline their content in some detail.

7It is by far not clear which version should hold (if any), in particular when many light axions are present.
For discussions about this issue see e.g. [2, 50, 53–71].

8This is not strictly true as a magnetic version does apply but does not preclude large field inflation [72].
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Figure 1.3: The two-throat system embedded into a larger bulk CY. The bulk S2 used to
define the axion field excursion can be thought of as the equator of a three-sphere that reaches
into the two throats.

1.4.1 Is large field inflation possible in string theory?

In chapter 6, following ref. [2], we build on and develop further an idea of [74] in con-

structing explicit models of axion monodromy. We work in the flux landscape of type

IIB string theory, in a regime where fluxes stabilize the shape of the CY (orientifold)

near a so called conifold transition locus in moduli space [40, 41, 75], as reviewed in sec-

tion 3.6. Such a locus can be thought of as a shared singular locus in the moduli spaces

of two topologically distinct CY manifolds [76, 77], in particular the light spectrum

changes across such loci (see section 3.4 for details). Moreover, multiple exponentially

red shifted regions called warped throats [78, 78] are known to develop in this regime

due to backreaction by fluxes [40], as explained in section 3.6.2.

We will argue that the light spectrum on one side of the transition locus contains

light axionic degrees of freedom that we can associate with the light axions on the other

side of the transition locus. The axion mass is a measure of proximity to the transition

locus. Thus, in many cases the EFT arising from such a compactification contains as

light degrees of freedom the moduli of two distinct CY three-folds which might come

as a surprise.

The axion can be thought of as the integral of the Ramond-Ramond (RR) two-form

C2 axion over a bulk CY representative two-sphere of one of the resolution two-cycles

on the resolved side of the conifold transition. As fluxes stabilize the complex structure

moduli onto the deformed side of the transition this sphere is trivial in homology and

best thought of as an equatorial two-sphere of a non-trivial three-sphere that stretches

down into two or more throats, see figure 1.3 for an illustration. By Stokes theorem, a
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non-trivial field excursion of the axion leads to the creation of flux/anti-flux pairs at the

IR ends of the throats [74]. We will explain that a ten-dimensional backreaction effect

sets in that drives the geometry away from complex structure moduli space but allows

the local throats to restore supersymmetry locally. The remaining vacuum energy is

mainly due to the ’twisting’ of the throats against each other and turns out to return

to a periodic one, but with non-trivial finite axion monodromy.

So, somewhat unexpectedly, we are in the position to apply the WGC for axions

to a model of axion monodromy. In fact we find that the conjecture is challenged by

our model. The scalar potential is simply much smaller than one would predict by

naively applying the conjecture. Moreover, the axion decay constant can in many cases

be parametrically super Planckian. Nevertheless, in the cases that we have analyzed

the form of the scalar potential does not admit large field inflation due to generically

dominant short wavelength harmonics in the potential.9

We summarize that due to backreaction effects that are truly ten-dimensional in that

they can not be associated with backreaction on CY moduli, a worked out example

of axion monodromy is presented that returns the scalar potential to a periodic form.

At least generically it is compatible with the general expectation that single field large

field inflation is impossible in string theory, while the standard weak gravity conjecture

is violated parametrically.

1.4.2 Do de Sitter vacua exist in string theory?

In chapters 4 and 5 we consider the present time expansion of the universe. In ΛCDM

it is sourced by a positive cosmological constant, leading to a universe that asymptotes

to a de Sitter (dS) universe, as discussed in section 2.3. However, in string theory it

is notoriously difficult to realize this. It is so difficult that another (perhaps the most

dramatic) swampland conjecture has been put forward, the no-dS conjecture [79–81].

It implies that string theory solutions cannot have a positive cosmological constant.

Depending on what precise form of the conjecture holds [82–88] (if any) this could lead

to an in principle observationally testable prediction of a non-trivial equation of state

of dark energy. But as a first step it is of great interest to settle the question whether

string theory possesses vacua with positive cosmological constant, in other words dS

vacua. Again we focus on the flux landscape of type IIB string theory where some of

the most (but not yet fully) convincing arguments for the existence of de Sitter vacua

in string theory have been made. These are called the Kachru-Kallosh-Linde-Trivedi

(KKLT) [41] mechanism and the large volume scenario (LVS) [75]. Both incorporate

perturbative and non-perturbative corrections to the tree level action in an arguably

9Similar effects have been observed in [71].
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self-consistent way. We proceed as follows.

In chapter 4 we explain, following [3, 5] that due to the universal existence of light

moduli fields the question of existence of 4d de Sitter vacua is UV sensitive in a way

that is very much analogous to the UV sensitivity of large field inflation: It is usually

not a question that can be answered from knowledge of only a few Wilson coefficients

in a 4d effective supergravity theory of the light moduli coupled to sectors with SUSY

breaking states such as gauge theories, but rather requires knowledge of a large or even

infinite number of coefficients of Planck-suppressed operators. Furthermore, we outline

a rather generic way how standard ways of uplifting controlled AdS vacua to de Sitter

vacua, i.e. perturbing the former in a controlled way to produce the latter, could (and

in many instances do) fail: As an effective order parameter for supersymmetry breaking

(the uplift potential) is dialed up, backreaction on the light moduli becomes increasingly

severe, lowering their mass-scale. As the effective 4d vacuum energy approaches zero

from below, the light moduli are destabilized. We call this phenomenon uplift-flattening.

We relate this behavior with well-known no-go theorems against dS solutions that can

be derived in various classical corners of string theory [89–103] from so-called tadpole

cancellation conditions. We also argue that a class of models that could in principle

suppress the UV sensitivity of uplifts parametrically [104] is in generic conflict with the

weak gravity conjecture for axions [4], indicating that the question of de Sitter uplifts is

naturally addressed from a top-down perspective. We take this as motivation to study

in detail the KKLT mechanism from a ten-dimensional perspective.

In chapter 5 we explain how the KKLT mechanism, originally proposed from a four-

dimensional perspective, is lifted to ten-dimensional solutions, following [1, 5, 105–110].

All no-go theorems against the existence of de Sitter vacua in type IIB string theory

that we are aware of are evaded in principle. More so, we argue that the original no-go

statements even can be turned around to confirm the form of the four-dimensional

KKLT model in a non-trivial way [1, 110].10 We take this as evidence that uplift

flattening is suppressed efficiently in this particular model, enforcing its status as one

of the leading candidates for controlled dS vacua in string theory.

In contrast, following [1], we point out that nevertheless the so called warped uplifts

employed in KKLT can at best work marginally due to the generic loss of paramet-

ric control over the ten-dimensional supergravity approximation in the regime of 4d

parameter space where an uplift to dS is believed to occur. This is not related with

uplift flattening, but rather due to parametric control problems encountered already in

the supersymmetric KKLT vacua once the 10d flux geometry has been engineered to

allow for sufficiently small warped uplifts. In the non-marginal regime where the 10d

10Note that the authors of [111] come to the opposite conclusion. We will outline the discrepancy in chapter
5.



12 CHAPTER 1. INTRODUCTION

geometry is parametrically controlled they would lead to run-away solutions only.

It is not obvious if the last point carries over to other uplifting mechanisms. As-

suming it does, we speculate on the physical meaning. One may for instance take it as

evidence for the no-dS conjecture, but there are many other possibilities: For instance,

de Sitter vacua might be marginal phenomena that cannot be obtained from supersym-

metric AdS vacua by a small perturbation, or they might just lie near the interior of

moduli space.

Despite the open questions that remain we are confident that in the near future

at least the viability of the KKLT mechanism for generating de Sitter vacua in string

theory can be settled to a satisfactory degree.

1.5 Conventions

Throughout this thesis we work in units ~ = c = kB = 1, and with ’mostly plus’ metric

conventions η = (−,+, · · · ,+). Ten-dimensional indices are capital roman M,N, ... =

0, ..., 9, four-dimensional ones are greek µ, ν = 0, ..., 3, and internal indices are lower

case roman i, j = 4, ..., 9. Moreover we will often choose to express four-dimensional

quantities in units MP = 1, while ten-dimensional quantities are expressed in units

ls = 1, using the 10d Einstein frame metric. We will sometimes make exceptions of the

latter rule by using the string frame metric instead. The two are related by a dilaton

dependent Weyl rescaling,

GMN |Einstein = e−
φ
2GMN |string . (1.5)

The norm of a (complex) p-form Fp with indices FM1,...,Mp is defined as

|Fp|2 ≡
1

p!
FM1,...,MpF

M1,...,Mp . (1.6)



Chapter 2

Inflation and dark energy

In this section we will give a slightly more detailed account of what we know about

dark energy and the theory of inflation. We will focus on the aspects that will become

relevant in this thesis. As we observe our universe to be homogeneous and isotropic

on very large scales it is appropriate to describe the geometry of the universe with a

Friedmann-Lemaitre-Robertson-Walker (FLRW) metric with line element

ds2 = −dt2 + a(t)2

(
dr2

1− kr2
+ r2dΩ2

S2

)
, (2.1)

where a(t) is the scale factor that encodes the growth of the spatial slices with time

and is conveniently set to one when evaluated today. By isotropy and homogeneity the

spatial slices are fixed to flat space R3 (k = 0), a three-dimensional sphere (k > 0), or

three-dimensional hyperbolic space (k < 0), and k encodes the spatial curvature. With

this ansatz, and in the presence of a homogeneous and isotropic fluid with energy density

ρ and pressure P , Einstein’s equations are solved provided Friedmann’s equations are

solved,

H(t)2 ≡
(
ȧ

a

)2

=
ρ

3M2
P

− k

a2
,

ä

a
= −ρ+ 3P

6M2
P

, (2.2)

where we have introduced the Hubble parameter H(t). It is useful to divide the cos-

mological fluid into four components. On the one hand, non-relativistic matter is

essentially pressure-less P (m) = 0, and dilutes with the volume growth of the spatial

slices, i.e. ρ(m) = ρm0 a
−3. On the other hand, relativistic matter and radiation (in

short radiation) have an approximately trace-less stress energy tensor, so ρ(r) = 3P (r).

On top of the volume dilution relativistic energy is red-shifted by a scale factor, so

ρ(r) = ρ
(r)
0 a−4. Moreover, spatial curvature appears in Friedmann’s equations as a fluid

13
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with pressure P (k) = −1
3
ρ(k), and

ρ(k) ≡ −3M2
Pk

a2
≡ ρ

(k)
0 a−2 . (2.3)

Finally, a cosmological constant (cc) has a stress energy tensor proportional to the

metric, so in particular its energy and pressure are constant over time and satisfy

ρ(cc) = −P (cc). For a positive cosmological constant, the energy density is positive

while the pressure is negative. We can now write Friedmann’s first equation as

H(t)2 = H2
0

(
Ωra−4 + Ωma−3 + Ωka−2 + Ωcc

)
, (2.4)

where H0 ≈ 70km
s

Mpc−1 is the Hubble constant we measure today1 [112], and Ω(r,m,k,cc)

is the fraction of energy density supplied by a given component today. It is a crucial

observational fact [112] that today our universe is approximately flat Ωk < 0.2%, and

a positive cosmological constant (or maybe a slightly different version of dark energy)

plays an important but not yet completely dominating role, Ωcc ∼ 70%. This is inter-

esting because due to the different scaling behaviors of the cosmological components it

means that dark energy will dominate in the future while matter and radiation have

dominated in the past. Curvature however never did and never will play an important

role. This is easy to see: during matter domination which started near the time of re-

combination (arec ∼ 10−3), the relative contribution of curvature to the energy budget

of the universe decreased linearly in the scale factor, while in the preceding radiation

dominated era it even decreased quadratically. So we get that at scale factors a∗ < arec,

Ωk
∗ . 10−2a

rec

a0

( a∗
arec

)2

∼ 10

(
T0

T∗

)2

∼

10−30 T∗ = TeV

10−56 T∗ = ΛGUT ,
(2.5)

using T0 ≈ 2.7K ∼ 2.3×10−4eV. So, in the early universe its contribution to the energy

budget must have been truly minuscule. This is the flatness puzzle of the standard Big

Bang theory. In the early times of the universe radiation dominated the energy budget

of the universe, until it was succeeded by matter at the time of recombination. Only

now, dark energy is taking over. During these three phases the scale factor evolved as

a(t) ∝


t1/2 during radiation domination ,

t2/3 during matter domination ,

eHt , H = const. during domination by a cosmological constant .

(2.6)

1There is actually a > 3σ tension between the one inferred from CMB data [112] and the one from local
redshift measurements [113], see e.g. [114] for a discussion.
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2.1 The horizon problem

An even more severe problem is the horizon problem. This arises as follows. The

maximum co-moving distance that a signal can traverse (the co-moving horizon) in a

time interval [ti, tf ] is given by

max(∆x)|tfti =

∫ tf

ti

dt

a(t)
=

∫ log a(tf )

log a(ti)

d(log a) (aH)−1 , (2.7)

which is the integral of the co-moving Hubble radius (aH)−1 over the logarithm of the

scale factor. (aH)−1 quantifies the co-moving distance that can be traveled within an

e-fold of cosmological expansion. The co-moving horizon gives us the maximal size of a

causally connected region of space at a given time.2 From Friedmann’s second equation

it is apparent that if all sources satisfy the strong energy condition ρ+ 3P ≥ 0, one has

that
d

dt
(aH)−1 > 0 . (2.8)

While a cosmological constant violates the strong energy condition it has only become

relevant rather recently. So within most of the standard cosmological history the co-

moving Hubble radius has grown. One might ask, what is the maximal co-moving

distance that a signal could have traversed between the initial singularity and a given

time t∗, say the time of recombination. It is easy to convince oneself that in the standard

Big Bang cosmology with only standard matter and radiation sources, the integral is

dominated by late times, so that the co-moving horizon at the time of recombination is

of order the co-moving Hubble radius at that time. This is a problem because the CMB

that we measure today is a picture of a large (of the order (aH)−1|now) patch of the

universe at the time of recombination.3 We can compare the co-moving Hubble radius

today with the one at the time of recombination (at red-shift zrec ≡ a−1
rec − 1 ∼ 1100).

It is bigger by a factor of order a
1/2
rec ∼ 33 so one finds that the part of the universe

we observe through the CMB should have consisted of order a
3/2
rec ∼ 3 × 104 causally

disconnected regions at the time of recombination. In other words we would expect

that the signals we receive from two such regions (which correspond to regions in the

sky that are separated by more than a degree) have nothing in common whatsoever.

We observe quite the contrary: On all scales that we can observe the temperature

of the CMB is the same to one part in 105 (see again Figure 1.1). Moreover, the tiny

temperature fluctuations are correlated on all scales. This mystery is called the horizon

2I.e. all pairs of points in the interior have overlapping past light cones.
3This is because when neutral hydrogen atoms formed electric charges where screened and photons could

freely propagate.
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problem and it is far worse than the flatness problem. Declaring it to be a coincidence

amounts to finely tuning a huge number of relations among the CMB observables while

the flatness problem only means tuning one number small.

2.2 Inflation

Inflation solves this problem by postulating an era before radiation domination where

the universe was dominated by an energy that is much like the cosmological constant

today. This idea goes back to A. Guth [20] but its modern version that we will explain

was invented by A. Linde [21], A. Albrecht and P. Steinhardt [22]. Crucially, it is an

era with shrinking Hubble sphere,

d

dt
(aH)−1 < 0 , i.e. ä > 0 . (2.9)

Such an era of accelerated expansion (provided it lasts long enough) allows us to extend

the time between the initial singularity and radiation domination to make all past light-

cones emanating from the CMB patch at the time of recombination intersect before they

hit the initial singularity. One may take eq. (2.9) as the definition of inflation. Note

that it implies that the Hubble rate of expansion varies slowly over a Hubble time,

ε ≡ − Ḣ

H2
< 1 , (2.10)

the ε ≡ 0 limit corresponding precisely to the exponential expansion as sourced by a

cosmological constant. Thus, one might say we are entering a new era of inflation just

now. However, during the early epoch of inflation ε could not have been truly zero as

inflation must have ended after a finite number of e-foldings.

The simplest way to implement this explicitly is to postulate the existence of a

further scalar degree of freedom φ(x) called the inflaton, minimally coupled to gravity.

The relevant terms in the action are

S =

∫
d4x
√−g

(
M2

P

2
R− 1

2
(∂φ)2 − V (φ)

)
, (2.11)

with Ricci scalar R and inflaton potential V (φ). The stress-energy associated with the

scalar field enters Friedman’s equations with energy density and pressure

ρinf =
1

2
φ̇2 + V (φ) , P inf =

1

2
φ̇2 − V (φ) . (2.12)

It is apparent that in the limit of vanishing kinetic energy 1
2
φ̇2 � V (φ) the scalar field
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sector contributes just like a cosmological constant, so this is the ε = 0 limit. Since one

would like inflation to end after a finite time while giving lots of expansion before, one

is drawn to the case ε � 1. Whether or not such a limit can be taken (and sustained

for a sufficient period of time) is of course dictated by the dynamics of the scalar field,

via its equation of motion

φ̈+ 3Hφ̇ = −V ′(φ) . (2.13)

Using this one computes

ε =
1
2
φ̇2

H2M2
P

, and η ≡ ε̇

Hε
= 2

(
ε+

φ̈

Hφ̇

)
, (2.14)

where η measures the relative change in ε over a Hubble time. As expected one has

ε � 1 if the kinetic energy is negligible in comparison with the potential. η is small

if the second derivative term in the scalar equations of motion can be neglected in

comparison with the first derivative term. We really should require it to be small as

otherwise inflation is not prolonged. In this case, the second order differential equation

collapses to a first order one

φ̇ = −MP√
3

V ′(φ)√
V (φ)

, =⇒ ε ≈ 1

2
M2

P

(
V ′(φ)

V (φ)

)2

≡ εV . (2.15)

Clearly we need that the scalar potential satisfies the so-called first slow roll condition

εV � 1. But in order for |η| � 1 to hold as well, we also need that

φ̈

Hφ̇
≈ −ηV + εV � 1 , ηV ≡M2

P

V ′′(φ)

V (φ)
, (2.16)

and hence the scalar potential must also satisfy the second slow roll condition |ηV | � 1.

We conclude that if at some point φ0 in field space the two slow roll conditions are

satisfied the expansion of the universe will be nearly exponential with in particular

a shrinking Hubble sphere. Such an era of inflationary expansion is called slow-roll

inflation. Such a regime is particularly simple to handle computationally because the

scalar field evolution is effectively determined by a first order differential equation. We

can go on and compute the number of e-folds of slow roll inflation that occur in an

interval of field space [φ1, φ2]

N([φ1, φ2]) =

∫
dtH =

∫ φ2

φ1

dφ

MP

1√
2ε
. (2.17)

Crucially, since ε ≈ εV during slow-roll, the number of e-folds of inflation can be
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determined directly from knowledge of the scalar potential. Near a minimum of the

scalar potential, the slow roll conditions are violated and the field starts to oscillate.

Coupling the inflaton to standard model fields will lead to particle production, called

re-heating, thus initiating the standard Big Bang history.

Usually, it is assumed that the scale of inflation Einf ≡ (3H2M2
P )1/4 lies between

the TeV and the GUT scale, so that the universe is reheated to sufficiently high tem-

peratures so that e.g. baryogenesis can proceed.4

In order to solve the horizon problem, the number of e-folds of inflation has to be

large enough. It is simple to estimate this: As (by definition) the co-moving Hubble

radius shrinks during inflation (2.9) the co-moving horizon (2.7) is dominated by the

co-moving Hubble radius at the beginning of inflation. So, the latter must be of order

the co-moving Hubble radius of today so that all the patches of the early universe that

we observe in the CMB today can be causally connected. The number of e-folds of

inflation relate this to the Hubble radius at the end of inflation,

N = log

(
aend
abegin

)
= log

(
(abeginHinf )

−1

(aendHinf )−1

)
> log

(
(a0H0)−1

(aendHinf )−1

)
(2.18)

Assuming for simplicity that between the end of inflation and today the universe was

dominated by radiation a(t) ∼ t1/2, one has H ∼ 1/t ∼ a−2, so we need

N > log
(
a−1
end

)
= log

(
Einf
T0

)
∼

40 Einf ∼ TeV

60 Einf ∼ ΛGUT ,
, (2.19)

in order to solve the horizon problem. As during inflation the relative importance of

curvature drops as e−2N , by comparison with eq. (2.5) one notices that inflation solves

the horizon and flatness problems simultaneously. But, the theory of inflation not

only solves these puzzles but it actually predicts the precise form of the CMB power

spectrum. In order to explain this, we need to consider quantum fluctuations around

the inflationary background solution. In other words, we consider both metric and

scalar perturbations around the FRLW metric and scalar field solution,

gµν(x) = g0
µν(t) + δgµν(x) , φ(x) = φ0(t) + δφ(x) . (2.20)

This parametrization contains a lot of redundancies that should be eliminated by an

appropriate gauge fixing. Intuitively, this goes as follows. First, the value of the scalar

4We do not know how baryogenesis worked but typical models require temperatures at least of order the
TeV scale to operate. See e.g. [115] for a review.
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field5 serves as a measure of how far inflation has progressed. As such, perturbations

δφ(x) can always be gauged away by choice of an appropriately adapted spatial slicing.

In other words, φ(x) is the Goldstone boson of spontaneously broken time translation

invariance [116]. It is ’eaten’ by the metric via a variant of the Higgs mechanism.

Setting δφ = 0 amounts to going to unitary gauge. The physical perturbations are

then all encoded in the metric,

ds2 = −dt2 + a(t)2e2R(t,x)(δij + δgTTij (t, x))dxidxj , (2.21)

where R(t, x) parametrizes the scalar curvature perturbation, while δgTTij (t, x) encodes

the tensor modes.6 Plugging this into the action and expanding to 2nd order, one

obtains a scalar kinetic term

S ⊃M2
P

∫
d4x a3 ε

c2
s

(
Ṙ2 − c2

s

a2
(∂iR)2

)
, (2.22)

where cs is the speed of sound which is trivial in slow-roll inflation, cs = 1. Note that

the curvature perturbation is massless. As ε is approximately constant one may absorb

all pre-factors into the definition of a canonically normalized field v(t, x) and proceed

with standard canonical quantization. As usual, one Fourier expands in terms of spatial

harmonics and obtains time dependent mode functions vk(t) that satisfy the (classical)

Mukhanov-Sasaki equation [117–119]

v̈k + 3Hv̇k +
k2

a2
vk = 0 , (2.23)

where ~k is a co-moving wave vector.7 The physical wave vector ~k/a is time dependent

due to the spatial expansion. This is a classical damped oscillator equation with (time

dependent) frequency ω2
k = k2/a2, and Hubble-friction 3H. During slow-roll inflation

H ≈ const while the oscillator frequency drops according to the usual red-shifting. For

the short wavelength modes with k/a � H the friction term is irrelevant so they will

evolve according to the un-damped oscillator equation. In canonical quantization the

mode functions are promoted to operators v̂k and in the oscillator ground state the

two-point function is

〈v̂kv̂k′〉 = (2π)3|vk|2δ3(k + k′) , with |vk|2 ≡ a−3 1

2ωk
. (2.24)

5We assume that there is only a single one.
6It is trace-less (gTTii = 0) and transverse (∂ig

TT
ij = 0).

7Here we are neglecting the time dependence of ε.
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For wave vectors k/a� H the scale factor varies very little over the oscillation period

of the oscillator so the expansion of the universe does not disturb its ground state (i.e.

the ground state evolves adiabatically). Due to the inflationary expansion the physical

wavelength of a given mode is stretched until horizon crossing,

k/a = H . (2.25)

Once the wavelength is stretched to super horizon scales the amplitude is frozen at the

value it took at horizon crossing,

|vk|2 =
1

2

H2

k3
. (2.26)

By a change in normalization this corresponds to the power spectrum of the curvature

perturbation R(t, x),

〈RkRk′〉 = (2π)3|Rk|2δ3(k + k′) , with |Rk|2 =
1

4k3

H4

M2
P |Ḣ|

. (2.27)

The dimensionless power spectrum is conveniently defined as

∆2
R(k) =

k3

2π2
|Rk|2 =

1

8π2

H4

M2
P |Ḣ|

=
1

8π2

H2

M2
P

1

ε
. (2.28)

In slow roll inflation, all quantities on the r.h. side change slowly over an e-fold of

inflation so the power spectrum is roughly scale-invariant. It is easy to quantify the

departure from exact scale invariance to leading order in the slow roll approximation

from

ns − 1 ≡ ∂ log ∆2
R

∂ log k
= −2ε− η + ... = 2ηV − 6εV + ... , (2.29)

where ns ≈ 1 is the spectral tilt, and we have expressed the r.h. side in terms of

the potential slow roll parameters (εV , ηV ). Crucially, after reheating the curvature

perturbation translated into the tiny temperature perturbations that we observe in the

CMB, and served as the seeds for structure formation. Thus, we actually know it very

well (see Figure 2.1)! It is indeed very well described by an almost scale invariant

spectrum with

∆2
R(k∗) = (2.10± 0.03)× 10−9 , ns = 0.965± 0.004 , (2.30)

at 68% confidence [27]. Here, k∗ is a representative scale (called the Pivot scale) that

is accessed by the Planck satellite. Note that the angular power spectrum does not
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Figure 2.1: The angular power spectrum of the CMB. One notices an overall small tilt,
distorted by acoustic peaks. The blue curve is the theoretical prediction while the red dots
are the measured data points with tiny error bars, and yet remarkably compatible with theory.

look scale invariant at all. The peaks that distort the otherwise almost scale invariant

spectrum are actually predicted by inflation [120]: After the end of inflation the Hubble

sphere started to grow again and one after the other modes that had left the horizon

during the inflationary expansion reentered the horizon and started to oscillate. As all

modes with the same magnitude of the co-moving wave vector started oscillating at the

same time they lead to coherent oscillations in the baryon photon plasma of the early

universe. This effect is predicted to lead precisely to the peaks that we observe which

is the perhaps greatest triumph of the theory of inflation. We should emphasize that

with current CMB measurements we really only probe about 2500 multipole moments.

In other words we observe the earliest about log(2500) ≈ 8 e-folds of inflation of the

ones we can observe in principle (say, the last 40− 60 e-folds). This is due to the fact

that modes that had left the horizon earlier have not yet reentered the horizon while

the ones that left the horizon later we cannot resolve (yet).

Next, it is a straightforward exercise to obtain the power spectrum of the tensor

modes. The result is

∆2
h(k) =

2

π2

H2

M2
P

. (2.31)

Interestingly, the tensor mode power spectrum is a direct measure for the inflationary

Hubble scale H. Moreover, the relative strength of tensor modes is conveniently written
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in terms of the tensor-to-scalar ratio

r(k) ≡ ∆2
h(k)

∆2
R(k)

= 16ε . (2.32)

So far, from measurements of the CMB polarization, r = r(k∗) has been bounded to be

[121]

r ≤ 0.06 , (2.33)

at 95% confidence. As the scalar power spectrum has been measured we can express

the inflationary Hubble scale and the energy scale of inflation in terms of r,

H = 3× 10−5

√
r

0.1
MP , , Einf = 8× 10−3

( r

0.1

)1/4

MP . (2.34)

Thus, for tensor modes to be detectable in principle, inflation must have occured at

the GUT scale, Einf ∼ ΛGUT, and H ∼ 10−5MP [26]. Assuming single field slow roll

inflation it turns out that if tensor modes can be detected we learn about the field

range traversed during the inflationary history. This is due to the famous Lyth bound

[26] which is easily derived: The field range in Planck units traversed in the last N∗

e-folds of inflation is given by

∆φ

MP

=

∫ N∗

0

dN
√

2ε =

∫ N∗

0

dN

√
r(N)

8
. (2.35)

If a non-vanishing tensor-to-scalar ratio was observed, it would have to satisfy r & 10−3.

Assuming slow-roll only in the observed window of ∼ 8 e-folds of inflation, the traversed

field distance would be constrained as

∆φ

MP

& 8

√
r

8
∼ 10−1 . (2.36)

This is an extremely conservative bound as we have only used the e-folds of inflation

that we really have observed. This is an important insight:

Lyth bound [26]: Models of single field inflation that predict observable tensor

modes in the CMB feature Planckian field excursions traversed during inflation.

So under what circumstances can the slow roll conditions be satisfied? Broadly

speaking there two categories of models. The large field models feature simple scalar
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Figure 2.2: Constraints in the ns − r plane with 1σ and 2σ contours according to combined
Planck [27], BICEP+Keck [121] analysis. Figure taken from [27].

potentials. As an example we take the so-called chaotic inflation models

V (φ)
φ�MP−→ V0 ·

(
φ

MP

)p
, (2.37)

for some O(1) asymptotic power p. Although such potentials do not look very flat, due

to the large Hubble friction the slow roll conditions are satisfied at large field values

φ > MP ,

εV =
p2

2

(
MP

φ

)2

, ηV = p(p− 1)

(
MP

φ

)2

. (2.38)

In order to realize at least 60 e-folds of inflation, the initial field excursion must be

bigger than ∼ O(10)
√
p, so these models really feature super-Planckian field excursions

φ�MP . Moreover they predict

ns − 1 ∼ −(2 + p)/120 , r ∼ p/15 . (2.39)

This also means that most of them are ruled out at (more than) 95% confidence by

experiment [27, 121] (see Figure 2.2). In other words, although slow roll inflation is

remarkably consistent with experiment, the types of potentials that one would naively

right down are mostly ruled out experimentally. In contrast, in small field models

most of the inflationary history occurs near a special point in field space around which

the form of the scalar potential has to be finely tuned in order to produce prolonged
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inflation. These types of models typically predict unobservable tensor modes. Finally,

we would like to highlight again the main point:

Theories that cannot host large field inflation are falsifiable. They can be ruled out

by a detection of primordial tensor modes in the CMB.

2.3 Dark energy (the cosmological constant?)

It is the perhaps most shocking experimental result of recent history that a big part of

the energy budget of the universe is supplied by dark energy with an equation of state

compatible with that of a positive cosmological constant [17, 18]. Thus, the expansion

of our universe is accelerating (again). In fact, the mysterious dark energy that seems

to drive this has just about now started to become the dominant contribution to the

energy budget of the universe. The simplest form of dark energy in an effective field

theory of gravity is a positive cosmological constant (cc) Λ. This simply corresponds to

a positive scalar potential V0 ≡M2
PΛ. If dominant, it sources an exponential expansion

a(t) ∝ exp(H0t) , H2
0 ≡ Λ/3 . (2.40)

The FLRW universe with such a scale factor is actually a patch of so-called de-Sitter

space (dS), which is one of only three maximally-symmetric space-times.8

Roughly speaking there are two ways to infer the existence of dark energy. Histor-

ically, it was first inferred from the distance to red-shift relation of so called type IA

supernovae [17, 18] (see Figure 2.3 for the historic data and a modern version). Let

us briefly explain how this works: Measuring the red-shift to distance relation of dis-

tant objects allows us to reconstruct the evolution of the scale factor in the past which

can be compared with theory. However, the distance of a generic source is in general

hard to determine. For so called standard candles the distance can be determined as a

function of spatical curvature because (by definition) they emit their light at a known

luminosity.9 Type IA supernovae are believed to be such standard candles.

8The other two options are anti-de-Sitter space (AdS), corresponding to a negative cc, and Minkowski
space R1,3 with vanishing cc. They are all isotropic in that their isometry algebras contain so(1, 3), completed
by four additional generators that locally look like translations in space and time.

9The energy flux from a distant source is given by

F =
L

4πd2
l

, with dl = a(t∗) ·


sin(
√
kdm)/

√
k k > 0

rm k = 0

sinh(
√
|k|dm)/

√
|k| k < 0 ,

(2.41)

where L is the luminosity, and the metric distance dm is the distance from the source as measured with the
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Figure 2.3: Left: The historical distance to red-shift relation of type IA supernovae adopted
from Perlmutter et al [17]. The results indicated for the first time a positive cosmological
constant. Plotted is the apparent magnitude versus red-shift. Right: Combined modern data
as depicted in [122] (on log scale).

Up until 1998 it would have seemed possible that all of the energy budget of the

universe is supplied by (negative) spatial curvature. As a sizable amount of curvature

is incompatible with the theory of inflation, the detection of dark energy is also a

triumph for inflation. Today, the most accurate measurements of dark energy come

from CMB measurements combined with galaxy surveys10 and supernova data. If one

is just interested in the value of the cosmological constant, assuming validity of ΛCDM,

the CMB gives the answer right away: The relevant scale in the problem is the sound

horizon within the baryon photon fluid around the time of recombination which is

computed from standard model physics. At this time the baryon acoustic oscillations

were frozen (because photons decoupled) and imprinted a distortion into both the CMB

as well as matter density. Then, from the position of the first baryon acoustic peak in

the CMB we learn the angular scale associated to the BAO scale which allows us to

conclude that our universe is spatially flat, i.e. k = 0. We learn that about 70% of the

energy budget must be filled up with whatever is not matter, radiation or curvature,

i.e. by assumption a positive cosmological constant. According to Planck 2018 [112],

Ωcc = 0.685± 0.007 , (2.42)

at 68% confidence. Using the information of spatial flatness the supernova data becomes

three-metric dr2

1−kr2 + r2dΩ2
S2 , and dl is called the luminosity distance. The two powers of the scale factor

(evaluated at emission time t∗) come from the red-shifting of the photon energy and the red-shifted rate of
emission. By measuring F and a(t∗) while knowing L from the theory of supernova explosions one learns
about the distance as a function of spatial curvature k.

10such as the Sloan Digital Sky Survey (SDSS).
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Figure 2.4: Constraints on alternative models of late time expansion using an ansatz w(t) =
w0 + (1− a(t))wa, as depicted in [112]. CMB Physics alone does not constrain the nature of
dark energy very much (purple contours). Only by combining it with BAO and supernovae
data (turquoise contours) the tight bounds can be obtained.

a very powerful tool as it can be used to uniquely reconstruct the scale factor. Even

more data is supplied by galaxy surveys: The imprint of the scale of BAO can be

recovered in sufficiently large samples of galaxies of equal redshift. As this scale is

known (it is our so called standard ruler) we can determine the physical distance of

galaxies of any given redshift, so again we can reconstruct the scale factor.

Putting everything together, alternative models of time-varying dark energy are

constrained (see Figure 2.4). For a time independent equation of state parameter

wde = P de

ρde
we learn that

w = −1.03± 0.03 , (2.43)

at 68% confidence level. This is of course compatible with a cosmological constant

(which has wcc = −1). It is useful to define a cosmological constant as a time inde-

pendent fluid with equation of state parameter −1. Dark energy in principle gives us

another handle on constraining theories of quantum gravity. If de Sitter vacua do not

exist in a candidate theory of quantum gravity, the equation of state parameter would

have to deviate from −1 in all its solutions. If it can be derived by how much it has

to deviate the theory is again falsifiable. How far the bounds have to be tightened of

course depends on the precise properties of the candidate theory of quantum gravity.



Chapter 3

String theory and the landscape

The basic idea of string theory is to resolve the point-like ’fundamental’ objects of QFT

in terms of extended vibrating one-dimensional objects called strings. Historically, it

was discovered almost by accident: First introduced as a theory for the strong interac-

tion [123],1 it was soon realized that it was something profoundly unexpected: A theory

of quantum gravity [124]. We will sketch some of its properties now.2

Scattering between strings is described by the smooth splitting and joining of strings

as depicted in Figure 3.1. As such it is naturally UV-finite due to the delocalized nature

of the interaction ’vertices’.3 Moreover, a propagating massless spin-2 graviton is a

unavoidably part of the spectrum.

The perhaps most fundamental starting point that we have is a definition of string

perturbation theory as a summing prescription over all intermediate worldsheet geome-

tries that connect the in with the out state,

〈out|in〉” = ”

∫ out

in

DhDX · · ·
Vol(G)

eiS[h,X,...] , (3.1)

where XM(ξa) (M = 0, ..., D−1, a = 0, 1) denotes the ambient space embedding of the

worldsheet and h(ξa) is an auxiliary worldsheet metric that upon classical integrating

out becomes the induced worldsheet metric, and S[h,X, ...] is a local worldsheet action.

G denotes the group of local worldsheet symmetries that have to be modded out. The

worldsheet action always contains the bosonic Polyakov action

SP = −Ts
2

∫
Σ

d2σ
√
−h ηMNh

ab∂aX
M∂bX

N . (3.2)

1A meson looks like a spinning (open) string after all: The endpoints are what we now know to be a quark
and anti-quark while the interior of the effective string is the confining flux tube connecting the pair.

2For self-contained introductions to string theory, and string phenomenology see e.g. [28, 35, 125].
3UV finiteness has been shown explicitly to two-loop order [126].

27
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Figure 3.1: A two-to-two string scattering process at one-loop level. The point-like field
theory scattering vertex is effectively smeared out which is key to the UV finiteness of string
theory.

but also fermionic terms. Here,

Ts ≡
1

2πα′
≡ 2π

l2s
, (3.3)

is the string tension, and ls is called the string length.

The only worldsheet theories we know that give rise to consistent (i.e. tachyon-free)

spacetime theories possess some amount of (local) worldsheet supersymmetry. Then, G

is a 2d (local) superconformal group. Turning this intuitive definition into a well defined

one requires gauge fixing à la Faddeev-Popov. After gauge fixing the worldsheet theory

becomes a superconformal field theory (SCFT).

Due to the operator state correspondence the stringy in/out states are created via

the insertion of vertex operators Vi so we can define a perturbative expansion of an

n-point string scattering amplitude An as

An =
∞∑
g=0

(
eφ
)−χ ∫

(DX · · · )V1 · · · Vn e−Sg [X,...]|Σ=Mg,n , (3.4)

where eφ ≡ gs is called the string coupling that controls the perturbation theory,

Sg[X, ...] is the gauge fixed worldsheet action, and at each level in perturbation theory

the worldsheet is fixed to be a Riemann surface with g handles, and n holes, equipped

with an arbitrarily gauge fixed metric h0. χ = 2 − 2g − n is the Euler number. From

the spacetime perspective g is the number of loops.

For consistency of this prescription the CFT should make sense when placed on

arbitrary Riemann surfaces. This gives rise to a number of requirements. First, on a

generic Riemann surface the conformal symmetry is anomalous (the theory is incon-

sistent) unless the dimension of spacetime is critical, D = 10. Additional consistency

requirements arise at tree-level and at one-loop level: Tree-level corresponds to a CFT
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NS-NS R-R Yang-Mills sector

type IIA GMN , BMN , e
φ (C1)M , (C3)MNP -

type IIB GMN , BMN , e
φ C0, (C2)MN , (C4)MNPQ -

type I GMN , e
φ (C2)MN AM in vector of SO(32)

heterotic SO(32) GMN , BMN , e
φ - AM in vector of SO(32)

heterotic E8 × E8 GMN , BMN , e
φ - AM in adjoint of E8 × E8

Figure 3.2: The ten-dimensional bosonic massless spectrum of the five string theories. GMN

is the metric, eφ is the dilaton, and BMN is a two form gauge field called the Kalb-Ramond
or NS two form. The fields Cp are the RR p-form gauge potentials (C4 is constrained to have
self-dual field strength), and AM denotes the Yang-Mills vector fields.

on the sphere, and the operator product expansion is generically not well-defined due to

monodromies that arise when two operators encircle each other. The space-time parti-

tion function at one-loop level involves summation over all inequivalent worldsheet tori

characterized by its complex structure τ modulo Sl(2,Z). For consistency the result

should not depend on our choice of fundamental domain of Sl(2,Z). This requirement

is called modular invariance.

Finally, there should not exist a spacetime tachyon because otherwise the ten-

dimensional spacetime ’vacuum’ decays immediately. All these constraints are satisfied

if the spectrum is truncated by the so-called Gliozzi-Scherk-Olive (GSO) projection

[127]. This leaves us with six ten-dimensional string theories. Two of these are N = 2

supersymmetric in ten dimensions and descend from the same N = (1, 1) worldsheet

theory but with different GSO projection. They are called type IIA and type IIB.

Another one is obtained by further projecting the type IIB theory and allowing also for

open strings. It is an N = 1 supersymmetric theory in ten dimensions called the type I

theory and contains an open string Yang-Mills sector with gauge group SO(32). Three

heterotic theories are obtained by starting from a worldsheet theory with N = (1, 0)

supersymmetry [128]. These give rise to the two ten-dimensional theories with N = 1

supersymmetry, with gauge groups SO(32) and E8 × E8 respectively. Finally there is

a non-supersymmetric one with gauge group O(16)×O(16) [33]. From the low energy

limit of string scattering amplitudes with only massless in/out states one can deduce

the effective 10d spacetime actions of the perturbative string theories. These are pre-

cisely all five ten-dimensional supergravity theories which go by the same names, and a

non-supersymmetric one with large ten-dimensional scalar potential. In Figure 3.2 we

have listed the massless bosonic spectrum of the five supersymmetric string theories.

It is important to note that the ten-dimensional theories enjoy (local) p-form gauge

symmetries associated with the form potentials B and Cp. The ’fundamental’ string is

electrically charged with respect to the NS two form B, while at the perturbative level

nothing is charged under the RR gauge symmetries.
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3.1 String dualities

All ten-dimensional string theories come equipped with a string coupling gs = eφ that

controls the string loop expansion we started with. It is worthwhile noting that we have

not said what we are really expanding but have simply written the prescription to sum

over an infinite number of terms. Clearly, this makes sense only when gs < 1. But even

at small string coupling the expansion is not convergent just as the perturbative expan-

sion in QFT is at most an asymptotic one. So really, we have defined approximation

schemes rather than full theories. It is crucial to appreciate that expectation values

of the ten-dimensional spacetime fields can be thought of as coherent superpositions

of the massless string modes. At least for non-trivial vev’s of the NS-NS fields we can

even write down a generalization of the Polyakov action (called the non-linear σ-model)

that makes this manifest. In particular, the string coupling eφ is really the expectation

value of the dilaton we have listed in Figure 3.2.

As the string coupling is the vev of a 10d field one should be able change its value,

and in particular make it large. But what does this mean? This question led to the

discovery of string dualities in the 1990s that is now called the second superstring

revolution. At the ten-dimensional level there are two strong/weak coupling dualities,

so called S-dualities. First, the type IIB theory is actually self-dual with respect to the

duality group SL(2,Z) which contains S-dualities [129]. Second, the type I theory is

S-dual to the heterotic SO(32) theory [130]. The strong coupling limits of the E8 ×
E8 heterotic string and the type IIA theory are something much more radical and

seem to have nothing to do with strings [130–132]: They can both be thought of

as compactifications of an eleven-dimensional theory called M-theory that has 11d

supergravity as its low-energy limit. The heterotic E8 ×E8 arises via compactification

on an interval S1/Z2, while the type IIA theory corresponds to an ordinary circle

compactification. The strong coupling limits are therefore limits of decompactification.

In all cases, one should not consider gs > 1 as there exists a dual description with string

coupling g̃s ∼ 1/gs < 1.

More dualities arise by compactifying the ten-dimensional theories to lower dimen-

sions. A circle compactification is sufficient to convince oneself that all five string

theories are dual to each other in one way or another: The type IIA theory compacti-

fied on a circle of circumference LIIA is equivalent to the type IIB theory on a circle of

circumference LIIB ≡ l2s/LIIA [133, 134]. This is called T-duality and translates a type

IIA string with KK momentum nKK that winds around the circle w times into a type

IIB string with the roles of nKK and w interchanged, i.e.

(nKK , wwinding)|IIA = (wwinding, nKK)|IIB . (3.5)
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So there is really just one nine-dimensional theory rather than two. For small circle

radii it is more appropriate to change the duality frame so that the light states have a

geometrical meaning rather than a non-local one. This is the first hint that in string

theory it really does not make sense to consider geometrical distances smaller than a

string length just as it does not make sense to consider large string coupling. In fact,

in string theory there are two perturbative expansions, one of which we have hidden so

far. On top of the string loop expansion in gs we also expand in powers of

α′/R2
k , (3.6)

where Rk is a typical curvature length-scale of the background. Roughly speaking this

is because we do not know in general how to determine the effective spacetime action

even at lowest order in the string loop expansion. We can do so order by order in the

α′-expansion. For instance one may expand the non-linear σ model generalization of

the Polyakov action

Sσ =
Ts
2

∫
d2σ
√
−hGMN(X)hab∂aX

M∂bX
N + iTs

∫
B(X) +

φ(X)

4π

∫
d2σ
√
−hR(h) ,

(3.7)

around the point X = 0 by choosing Riemann normal coordinates such that

GMN = ηMN −
1

3
RMPNQ|X=0X

PXQ + ... . (3.8)

The terms in the expansion give rise to interaction terms on the worldsheet that

generically have non-vanishing β functions. These can be evaluated order by order

in worldsheet perturbation theory. The dimensionless coupling constant in this case is

α′RMNPQ, i.e. curvature in string units. For conformal invariance of the worldsheet

theory all β functions are required to vanish which leads to the spacetime equations of

motion, and hence the effective spacetime action. So the α′ expansion is related to the

perturbative expansion of the worldsheet CFT. Thus, when curvatures are of order the

string scale, the worldsheet sigma model is strongly coupled. This is by definition the

regime where the α′ expansion breaks down. For the simple circle compactification of

the type II string we had at our disposal two manifestly equivalent and weakly coupled

(even free) worldsheet descriptions, one for each T-duality frame. This luxury is lost

once we consider compactification manifolds with non-trivial Riemann tensor: At small

compactification volumes of (say) the type IIA string, we do not know how to make

predictions using the type IIA theory but rather should expect that a weakly coupled

type IIB description takes over. For a class of compactifications called Calabi-Yau (CY)

manifolds this phenomenon is rather well understood and is called mirror symmetry
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Figure 3.3: The M-theory star. Type IIB is Sl(2,Z) self-dual, and T-dual to type IIA. Type
I arises via an orientifolding of type IIB and is S-dual to the SO(32) heterotic string, which
in turn is T-dual to the E8 × E8 heterotic string. Its low-energy limit can be viewed as the
compactification of 11d supergravity on an interval. Circle compactification of the same, gives
the low energy limit of type IIA.

[135, 136].

Similarly, T-duality connects also the two heterotic theories upon compactification

on a circle (and turning on Wilson lines that break both gauge groups down to SO(16)×
SO(16)) [137, 138]. These duality transformations are commonly expressed via the M-

theory star (see Figure 3.3). It is clear that we should think about the five string

theories as different weak coupling limits of one mother (M-)theory that is yet to be

defined.

Finally, there exist non-perturbative (in gs) (p+1)-dimensional membranes (solitonic

objects) called Dp-branes which are the electric and magnetic charges associated with

the p-form gauge symmetries. At the level of perturbative string theory these are the

rigid objects on which open strings can end.4 Crucially, one may stack N of these

objects on top of each other to obtain non-abelian gauge sectors that live on the stacks.

Loosely speaking this is because there are N2 possibilities to let the two ends of an

open string end on pairs of branes, and each possibility gives rise to one of the vectors

of the adjoint representation of U(N). With intersecting branes one even obtains bi-

fundamental matter localized on the intersection locus. In type IIA there are Dp branes

with p even while in type IIB p is odd. In the type I theory, there are only D1 and

D5 branes, while in the heterotic theories there are no Dp branes.5 It was famously

shown by J. Polchinski that these must be viewed as dynamical gravitating objects in

4Their tension blows up as gs −→ 0.
5Note that this matches perfectly with the spectrum of RR form potentials in the five theories.
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their own right [34]. To lowest order in the α′ expansion the effective action of a single

p-brane is

Sp = − 2π

lp+1
s

∫
dp+1x e−φ

√
−(gmn + 2πα′Fmn) +

2π

lp+1
s

∫
Cp+1 , (3.9)

where 2πα′Fmn ≡ Bmn+2πα′Fmn, and (gmn, Bmn) are the pullback of the ten-dimensional

metric and NS two-form onto the brane, and F = dA is the gauge field strength that

lives on the brane. The second term is called the Chern-Simons (CS) term and encodes

the fact that Dp branes are electric/magnetic charges with respect to the RR form

gauge symmetries.6 When placed on non-trivial backgrounds Dp branes also carry in-

duced charges with respect to Cq+1 with q < p, due to α′-corrections of the CS term

[139, 140].

3.2 The 10d supergravity approximation

In this thesis we will focus on the type IIB corner of string theory, so let us consider

its ten-dimensional supergravity approximation. The low energy effective action (in

Einstein frame) reads7

SIIB =
2π

l8s

∫
M10

d10x
√
−G

(
R− 1

2

∣∣∣∣ ∂τ

Im(τ)

∣∣∣∣2 − |G3|2
2Im(τ)

− 1

4
|F5|2

)

− 2π

l8s

∫
M10

C4 ∧
iG3 ∧G3

2Im(τ)
+ fermions , (3.10)

to lowest order in the α′ expansion. Here, G3 is the complex three-form G3 ≡ F3−τH3,

and τ is the axio dilaton τ ≡ C0 + ie−φ. The real field-strengths are defined in terms

of the gauge potentials as

H3 = dB2 , F3 = dC2 , F5 = dC4 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3 . (3.11)

Finally, the equations of motion have to be supplemented by the self-duality constraint

F5 = ∗F5. The theory enjoys N = (2, 0) (local and chiral) supersymmetry, and p-form

6For p > 4 the coupling is understood as a magnetic charge w.r.t. C7−p.
7Note that the mass scale 1/ls as measured with the Einstein frame metric GMN corresponds to the

ten-dimensional Planck scale, and not to the string scale.
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gauge invariance

B2 −→ B2 + dΛNS
1 , C2 −→ C2 + dΛRR

1 ,

C4 −→ C4 + dΛRR
3 +

1

2
ΛRR

1 ∧H3 −
1

2
ΛNS

1 ∧ F3 . (3.12)

Moreover, at the classical level it is invariant under the global symmetry Sl(2,R),(
B2

C2

)
−→ Λ

(
B2

C2

)
, τ −→ aτ + b

cτ + d
, with Λ =

(
d c

b a

)
∈ Sl(2,R) . (3.13)

At the quantum level, Sl(2,R) must be broken to Sl(2,Z) as can be seen as follows:

Consider for simplicity a ten-dimensional manifold T 2×S1×M7 whereM7 is an arbitrary

Spin(7) manifold. We may choose a background with non-vanishing field strength

G3 = (M − τK)l2s
dφ′ ∧ dφ′′

(2π)2
∧ dφ

2π
, (3.14)

where φ is the S1 angle and (φ′, φ′′) are the T 2 angles. This is consistent with the

classical equations of motion and Bianchi identities of the three-forms, and integrates

to l2s(M − τK) over T 2× S1. The real numbers (M,K) denote the fluxes on the three-

cycle T 2 × S1. Now we can consider wrapping a fundamental string (or a D1) world

sheet on the T 2 and place at a point in S1×M7. We can ask whether the path integral

of the worldsheet theory is well-defined on such a background, in particular if it is a

single valued function of the S1-position. Due to the CS term in the worldsheet action

the path integral picks up a phase e2πiK as φ −→ φ+ 2π, so it is well-defined if K ∈ Z.

The same is true for the RR flux number M .8 This argument generalizes to the case of

RR and NS fluxes on general cycles, and is really just the Dirac quantization condition

of monopole charges.

But a generic Sl(2,R) transformation takes a consistently quantized pair of flux

numbers to an inconsistent one! Thus, at the quantum level Sl(2,R) must be broken

(at least) down to Sl(2,Z). As Sl(2,Z) is generated by T =

(
1 0

1 1

)
and S =

(
0 1

−1 0

)
,

we see that for C0 = 0, the S-transformation is a strong/weak coupling transformation

that sends gs to g−1
s . As a consequence we should really view Sl(2,Z) as a discrete

gauged symmetry group, or a duality group [142]. Two field configurations related to

one another by such a transformation are just different descriptions of the same physics.

8This argument does not always go through. In 8k+3 dimensions the fermion measure in the path integral
sometimes has a sign ambiguity that must be canceled by Z + 1/2 valued flux quanta [141]. But whenever the
configuration without any fluxes is consistent, the fluxes have to be integers.
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It is interesting to note that the theory contains an axion C0 which transforms like

a Goldstone boson under the one-parameter subgroup

(
1 0

c 1

)
⊂ Sl(2,R) . This is

our first encounter with a shift symmetry. Another way to see that Sl(2,R) is broken

to Sl(2,Z) is to note that there exists a D(−1) brane which is an instanton. In the

euclidean path integral it contributes as e−S−1 = e2πiτ which breaks the axion shift

symmetry down to a discrete one C0 −→ C0 + 1. Viewing it as a gauge symmetry is

necessary because in type IIB there exist D7 branes which are magnetically charged

under C0. This means that upon encircling it, the field configuration undergoes a

monodromy M = T . If Sl(2,Z) were not gauged, a D7 brane would have no right

to exist! At the non-perturbative level, this means that not only must there exist

fundamental strings and D-branes but there must exist (p, q) seven-branes five-branes

and strings. These are simply all the objects that are generated via Sl(2,Z) acting on

the ’known’ objects. This includes the (0, 1) five-brane, the NS5 brane, that so far we

have swept under the rug.9 It is the object magnetically charged under B2. The D3

brane and the D9 brane are the only ones that come in just one version.

Finally it will be useful to keep in mind that the magnetically charged objects under

B2/C2, the NS5 and D5 branes, can play the role of domain walls in effective four-

dimensional theories. Namely, consider M10 = R1,3×T 3
A×T 3

B with a D5 brane wrapped

on T 3
A and spatially extended in the (x1, x2) plane in R3. The Bianchi identity of C2

reads

dF3 = l2sδ(x3 − x0
3)dx3 ∧ δ3(φB − φ0

B)dφB1 ∧ dφB2 ∧ dφB3 , (3.15)

so the RR flux number associated with T 3
B changes by one unit across the 4d domain

wall. In general the D5 wrapped on a three-cycle is a domain wall across which the

flux quantum of F3 on the dual three-cycle changes by one.10

3.3 Calabi-Yau compactifications

We have repeatedly stated that string theory is ten-dimensional, while we have never

observed anything but four dimensions of spacetime. As string theory is a gravitational

theory, this is no need to worry. One may simply try to find non-trivial backgrounds

with 10d spacetimes that factor as M10 = M4 ×M6, i.e. into a four-dimensional one

M4 (say a FRWL universe), times a (possibly time dependent) internal six-dimensional

space M6. The simplest such solutions are torus compactifications M10 = R1,3 × T 6,

9There is also an NS5 brane in the heterotic theories.
10There is a natural duality map between homology classes of p-cycles and d − p cycles due to the non-

degenerate pairing giving by the intersection map Hp(X,Z)×Hd−p(X,Z) −→ Z, where d is the dimension of
the compact manifold, see e.g. chapter three of [143].
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with neither field strengths nor curvature. If we consider energies far below the inverse

torus size, all physics is four-dimensional. While this suffices to establish the existence of

four-dimensional string vacua, these certainly have almost nothing to do with the world

we live in. Toroidal compactification preserves all the 32 supercharges we started with,

so the low energy effective theory is N = 8 supergravity. In order to reduce the amount

of supersymmetry we should try to find less trivial solutions. As a first step, we should

find solutions with non-trivial Riemann tensor, that nevertheless solve Einsteins vacuum

equations RMN = 0. It is actually surprisingly hard to find metrics that do, which are

not tori (in fact no analytical metric is known to date). However, a lot of progress

can be made with an indirect approach. Namely one can try to find manifolds that are

known to admit a Ricci-flat metric, although the explicit metric remains elusive.11 Such

examples are indeed known and they go by the name of Calabi-Yau (CY) threefolds.

First, such manifolds are of course orientable Riemannian manifolds. They are also

complex which means that in each coordinate patch Uα one can find three complex

coordinates z1
(α), z

2
(α), z

3
(α) that parametrize the patch such that on all overlaps Uα ∩

Uβ the transition functions are holomorphic. Moreover, they come equipped with a

hermitian metric gαβ̄ which means that the line element can be brought to the form

ds2 = 2gab̄dz
adzb̄ . (3.16)

From this we can define the Kähler form J as

J ≡ −2igab̄dz
a ∧ dzb̄ , (3.17)

which is everywhere non-vanishing. If this form is closed, dJ = 0, we call our manifold

a Kähler manifold, and locally the metric is determined from a real Kähler potential12,

gab̄ = ∂a∂̄b̄K(z, z̄) . (3.18)

Kähler manifolds have many nice properties13, in particular their curvature form is a

(1, 1)-form valued map TX × TX −→ TX × TX that does not mix holomorphic with

anti-holomorphic components. Therefore, the holonomy group of Kähler manifolds is

contained in U(n) ⊂ SO(2n).

Now we wanted to find solutions with vanishing Ricci tensor, or in other words

11See however ref. [144] for recent progress.
12A Kähler potential is not a function on the manifold. On overlaps of different patches it transforms

according to K −→ K + f(z) + f̄(z̄).
13For a nice introduction to complex geometry see chapter 13 of [145], and for many more details especially

in the context of CY manifolds see [143].
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globally defined metrics with trace-less curvature form

Tr (R) = Rijdx
i ∧ dxj = −2iRab̄dz

a ∧ dzb̄ = 0 . (3.19)

A necessary topological condition for this to be possible is that Tr (R) vanishes in

cohomology, or in other words the first Chern class of the holomorphic tangent bundle14

TX vanishes in cohomology, [c1(X)] = 0. CY manifolds are Kähler manifolds that

satisfy this:

Definition: A Calabi-Yau threefold X is a complex three-dimensional

Kähler manifold with vanishing first Chern class, [c1(X)] = 0.

Given such a manifold with some metric it does not take too much fantasy to imagine

that under continuous changes of the metric a Ricci flat metric can be obtained. At least

there seems to be no topological obstruction against it. The famous Calabi conjecture

[146], proven by Yau [147], asserts that this intuition is correct:

Theorem (Calabi-Yau): Given a Kähler manifold X with vanishing first Chern

class and Kähler form J ′, there exists a unique Kähler form J in the same

cohomology class, [J ] = [J ′], such that the associated hermitian metric is Ricci flat.

It is important to note that a CY manifold equipped with its Ricci flat metric has

holonomy group contained in SU(n) ⊂ U(n) because the trace of the curvature form

vanishes. This means that we can globally define a covariantly constant spinor,15

∇η = 0 . (3.20)

The relevance of this is that when we compactify (say) type IIB supergravity on a CY

three-fold the background is left invariant under SUSY transformations

ε10d
1,2 = (PLε

4d
1,2)⊗ (PLη) + c.c. , (3.21)

for two arbitrary four-dimensional Majorana spinors ε4d1,2. So, eight real supercharges are

preserved corresponding toN = 2 (local) supersymmetry in four dimensions. Moreover,

the spinor can be used to construct an everywhere non-vanishing closed (3, 0) three-

form,

Ωijk ≡ ηTΓijkη , dΩ = 0. (3.22)

14For a holomorphic vector bundle E with connection A, the total Chern class is defined as c(E) =
det
(
1 + iF

2π

)
≡ 1 +

∑n
i=1 ci(E), understood as a formal sum over forms of different degree.

15A spinor transforms in the 4 of SU(4) = Spin(6). To construct the covariantly constant spinor simply
start at some point p and identify the unique one-dimensional subspace that is left invariant upon parallel
transport around any loop, i.e. under SU(3) ⊂ SU(4). Then, extend the definition of this to the whole
threefold via parallel transport.
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The existence of this form of course does not depend on whether we choose the Ricci flat

metric or not, but only on c1(Λ3T ∗X) ∝ c1(TX) = 0. In other words, CY manifolds

are Kähler manifolds with trivial bundle of holomorphic three-forms (the canonical

bundle).16 It is useful to ask that the holonomy group actually is SU(3) in order to

exclude products of lower-dimensional CYs.17

Unfortunately Yau’s proof of the Calabi-conjecture does not teach us how to find the

Ricci-flat metric. This is not as bad as it sounds. Using the tools of algebraic geometry,

many physical properties of CY compactifications can be inferred even without knowing

the explicit metric. Here is an example called the quintic threefold,

Q(P5) ≡
{

[X0 : X1 : X2 : X3 : X4] ∈ P4 : P5(Xi) = 0
}
, (3.23)

where P5 is a degree five homogeneous polynomial in the homogeneous P4 coordinates.

Its first Chern class vanishes because we can cover P4 with five patches Uα = P4\{Xα =

0}, α = 0, ..., 4, and in each of these we can choose local coordinates by setting Xα = 1

and solving one further coordinate as a function of the three remaining ones. In U0 we

can define a closed everywhere non-vanishing three-form18

Ω =
dX1 ∧ dX2 ∧ dX3

∂P5/∂X4

, (3.24)

and analogously in the other patches. It is simple to show that these definitions match

on the overlaps, and the definition is non-singular provided the embedding is non-

singular, i.e. {P5 = 0} ∩ {dP5 = 0} = ∅. Thus the quintic has trivial canonical bundle

and is therefore CY.

Note that we have not said what is the polynomial P5. A parametrization contains

126 complex parameters. Different choices give rise to different complex structures

unless they are related to each other via linear redefinitions of the P4 coordinates. This

gives us a 101 = 126− 25 dimensional complex structure moduli space. Moreover, there

is a canonical metric on P4 called the Fubini-Study metric,

JFS = t
i

2

|X|2(dX ∧ dX)− (XdX) ∧ (XdX)

|X|4 , (3.25)

for some real parameter t. Its restriction to the quintic gives us the Kähler class of

16Strictly speaking the two statements are equivalent only for simply connected CYs. We shall only consider
those that are.

17There are only two such manifolds up to continuous deformations in the complex structure, T 2 × K3
where K3 is the unique CY two-fold and T 6. These preserve twice (four times) as many supercharges in four
dimensions.

18The definition is asymmetric in the Xi but it is easy to convince oneself that changing the rols of the Xi
gives the same form.
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the quintic parameterized by a single real parameter t which measures the physical size

of the CY. We say, the Kähler moduli space is real one-dimensional. In general the

Calabi-Yau moduli space factorizes as Mcomplex structure ×MKähler. Its tangent space is

the space of deformations δgij(x) of the metric that leave the metric Ricci flat modulo

coordinate reparametrizations. Metric perturbations with mixed indices δgab̄ leave the

metric hermitian. Therefore they can be thought of as a perturbation of the Kähler

form J −→ J + δJ which must remain closed. This changes the Kähler class unless δJ

is exact, but the new metric will in general not be Ricci-flat anymore. However, the CY

theorem guarantees that there exists a unique exact form that can be added to make

it Ricci flat again (namely such that δJ is harmonic). So metric perturbations of this

type are counted by the dimension of the Dolbeault cohomology group H1,1

∂̄
(X) where

Hp,q

∂̄
(X) ≡ ∂̄ − closed (p, q)-forms

∂̄ − exact ones
. (3.26)

The real dimH1,1 ≡ h1,1-dimensional moduli space of such deformations is called Kähler

moduli space. In contrast complex structure moduli space corresponds to pure index

metric perturbations δgab = (δgāb̄)
∗. These satisfy the linearized Einstein equations if

the (2, 1) form

χδg = δgād̄g
d̄eΩebcdz̄

ā ∧ dzb ∧ dzc , (3.27)

is harmonic. Thus, the number of such deformations is counted by h2,1, the dimension

of H2,1 (in general, hp,q ≡ dimHp,q). To bring back the metric to hermitian form

requires a change in complex structure, thus the name. The Hodge numbers (h1,1, h2,1)

are the only independent ones19 and the quintic has (h1,1, h2,1) = (1, 101).

3.3.1 Type IIB on CY threefolds

Let us now consider compactifying type IIB supergravity on a Calabi-Yau three-fold.

First, from the 10dmetric we obtain the 4d graviton plus scalar fields associated with the

geometric deformation moduli that parametrize the Kähler class and complex structure

of the CY. Second, the massless spectrum contains the axio dilaton τ = C0 + ie−φ. But

it also contains various axions from the reduction of the p form fields B2, C2, C4. It is

useful to adopt a basis of dual two and four forms (ωi, ω̃j), i, j = 1, ..., h1,1, as well as

three forms (αa, βb), a, b = 1, ..., h2,1 + 1 that satisfy∫
X

ωi ∧ ω̃j = δji ,

∫
X

αa ∧ βb =

∫
Ab
αa = −

∫
Ba
βb = δab , (3.28)

19We have h0,1 = 0 due to simply-connectedness, h3,0 = 1 because Ω is the only holomorphic three-form,
hp,q = hq,p from complex conjugation and hp,q = h3−p,q from wedging/contracting with Ω and Ω̄.
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bosonic components multiplicity

gravity multiplet gµν , AΩ 1
universal hypermultiplet τ = C0 + ie−φ, b0, c0 1
Kähler hypermultiplets ti, ρ

i, bi, ci h1,1

complex structure vector multiplets Za, Aa h2,1

Table 3.1: The bosonic components of the N = 2 multiplets of type IIB on a CY threefold.

where three-forms αa, βb are the Poincaré dual three-forms to the so-called B respec-

tively A-cycles (Bb,Aa) that form a symplectic basis of the third homology group

H3(X,Z). The forms (ωi, ω̃j) are Poincaré dual to an integral basis of four and two-

cycles (Σ̃i,Σ
j) in H4(X,Z) respectively H2(X,Z).

At linear order the p-form fields satisfy equations of motion(
∂2 + ∆∂̄

)
{B2, C2, C4} = 0 , (3.29)

where ∂2 is the four-dimensional Laplacian and ∆∂̄ is the six-dimensional one. There-

fore, the massless 4d fields appear as coefficients in the expansion of form fields in our

basis of harmonic forms,

B2 = B2(x) +
h1,1∑
i=1

bi(x)ωi , C2 = C2(x) +
h1,1∑
i=1

ci(x)ωi (3.30)

C4 =
h1,1∑
i=1

(
ρi(x)ω̃i + ρ′i(x)ωi

)
+

h2,1+1∑
a=1

(
Aa(x) ∧ αa + A′b(x) ∧ βb

)
. (3.31)

From C2 and B2 we get two 4d two-forms B2 and C2 that can be dualized to two axions

(b0, c0). They pair with the axio-dilaton into the universal hypermultiplet. Furthermore,

there are 2h1,1 model-dependent axions bi, ci. Naively, from C4 we get 2h1,1 axions

corresponding to the ρi and the ones dual to the two-forms ρ′i. But since the five form

field strength is required to be self-dual, the two sets of axions must be identified, and

there are in total h1,1 independent C4-axions. The 3h1,1 axions from C2, B2 and C4

combine with the real Kähler moduli ti into the h1,1 Kähler hypermultiplets. Finally,

we have listed 2h2,1 + 2 vectors coming from H3 = H3,0 ⊕ H2,1 ⊕ H1,2 ⊕ H0,3, but

again, half of them have to be identified with the electric-magnetic duals of the other

half to ensure self-duality of F5. The vectors Aa associated with H2,1 combine with

the complex structure moduli into h2,1 vector multiplets, and the remaining vector AΩ

from H3,0 enters the gravitational multiplet. The bosonic field content is summarized in

table 3.1. There is a natural set of h2,1 + 1 complex projective coordinates Za complex
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structure moduli space defined via the A-cycle respectively B-cycle periods

Za ≡
∫
Aa

Ω , Ga(Z) ≡
∫
Ba

Ω . (3.32)

The latter are ’functions’ of the former.20 The canonical metric on complex structure

moduli space is computed from the Kähler potential

Kcs = − log

(
−i
∫
X

Ω ∧ Ω

)
= − log

(
iZaG

a + c.c.
)
, (3.33)

and is called the Weil-Petersson metric. It is in fact the physical field space metric that

one computes by dimensionally reducing the 10d Einstein Hilbert term. From the form

of the Kähler potential one reads off that complex structure moduli space is indeed a

special Kähler manifold MsK with holomorphic pre-potential F(Z) s.t. Ga = ∂ZaF .

The hypermultiplets parametrize a real 4(h1,1 + 1)-dimensional manifold on which

there are three linearly independent complex structures J1, J2, J3 that satisfy the

quaternion algebra (beware, we mean the complex structure of Kähler moduli space,

not of the CY). Roughly speaking these are associated with pairing the real Kähler

modulus with either one of the three axions into a complex coordinate, while pairing

the remaining two into another one. This identifies the moduli space parameterized by

the hypermultiplets as a quaternionic-Kähler manifold MqK . At leading order in the

α′ expansion the physical moduli space factorizes as MCY =MsK ×MqK [148, 149].

3.3.2 The conifold

We have repeatedly stated that no analytical CY metrics are known. This is actually

true only for compact ones. Sometimes, interesting regions in a compact CY are well

approximated by regions of non-compact CYs for which the metric is actually known.

This is particularly interesting when the CY is singular (or ’almost’ singular) at some

locus contained in this region. The perhaps most prominent non-compact CY that

serves for this purpose is the so-called conifold [150]. In a certain sense it arises near

the most generic singularities of CY compactifications. In what sense this is generic

we would like to explain now.

We will focus on algebraic varieties defined as the vanishing locus of a polynomial

P in a toric ambient space such as P4. This is singular if

{P = 0} ∩ {dP = 0} 6= ∅ . (3.34)

20We say ”functions” because they have branch cuts so are not single valued holomorphic functions of the
projective coordinates Za.
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For a generic polynomial this does not occur, but on complex co-dimension one loci

in complex structure moduli space this locus is a set of points. In other words, we

need to tune one polynomial coefficient to make the polynomial vanish quadratically

as opposed to linearly at a point. Locally such a singular embedding can be brought

to the form

Xloc ≈ Xcf ≡
{
z ∈ C4|

4∑
i=1

(zi)2 = 0

}
, (3.35)

which is called the conifold, a node, or an ordinary double point. If we leave the singular

locus in moduli space by a small amount ε� 1 we obtain the deformed (non-singular)

conifold as the vanishing locus of

P =
4∑
i=1

(zi)2 − ε . (3.36)

By an appropriate redefinition of the phases of the coordinates we can choose ε to be

real and positive. This space is actually easy to understand. First, let us note that a

global SO(4) = SU(2)×SU(2) symmetry is manifest from the embedding equation. A

further U(1)R factor that rotates the phases of the zi is restored in the singular limit.

Now, let us split the complex coordinates into real and imaginary part, zi = xi + iyi,

and define a radial coordinate that measures the ’distance’ to the singular point,

ρ2 ≡
4∑
i=1

|zi|2 =
4∑
i=1

(xi)2 + (yi)2 ≡ ~x2 + ~y2 . (3.37)

The definition of our radial coordinate and the vanishing of the defining polynomial

then take the form

1

2
(ρ2 + ε) = ~x2 ,

1

2
(ρ2 − ε) = ~y2 , ~x · ~y = 0 . (3.38)

At fixed radial coordinate, the first equation defines a three-sphere S3, while the second

and third describe a fibration of a two-sphere S2 over the S3. This fibration is actually

trivial, and the angular topology is S3 × S2 so long as ρ2 > ε. The angular geometry

is best thought of as the coset space SU(2)×SU(2)
U(1)

where the U(1) is a diagonal subgroup

of the two SU(2) factors. The global symmetry group is SU(2) × SU(2) × Z2 and in

the limit ε −→ 0 another U(1)R symmetry develops.

Clearly the minimal radius is ρ2 = ε where the S2 degenerates (smoothly), while the

S3 stays at finite size. The deformation parameter ε measures the minimal size of this

S3 at the bottom of the conifold. In fact, we may choose this S3 as one of the A-cycles

and it is straightforward to show that the associated complex structure modulus is
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proportional to the deformation parameter ε. For future reference we record the Ricci

flat metric in the singular limit ε −→ 0,

ds2
cf = dr2 + r2ds2

T 1,1 . (3.39)

It takes the form of a real cone over the Sasaki-Einstein base T 1,1, with another radial

coordinate defined in terms of the one we defined previously as r =
√

3
2
ρ2/3. This metric

respects the full global symmetry group SU(2)×SU(2)×U(1)R×Z2. Note that since

T 1,1 has a two and a three cycle, it possesses harmonic two and three forms (ω2, ω3).

These are invariant under the the global symmetry group of the singular conifold.

3.4 Conifold transitions and black hole condensation

The conifold is the simplest playground for one of the most fascinating phenomena of

CY compactifications in string theory, the possibility of topology changing transitions

between CYs that can be fully described by string theory [76, 77, 151]. First, it is

important to appreciate that perturbative string theory on certain singular spaces such

as orbifolds makes perfect sense. The extended nature of the string essentially means

that it does not ’see’ the point-like singularity in space. The conifold is not of this

type, so naively string theory on the singular conifold does not make sense [151]. For-

tunately, non-perturbative string theory does make sense on the conifold. This was first

understood by A. Strominger [151] who considered the behavior of the gauge kinetic

function of the vector multiplet associated with the conifold A-cycle,

τ = G′(Z) = log(Z)/2πi+ ... , =⇒ 8π2/g2 = log(|Z|−1) + ... . (3.40)

This expression rings a bell: The gauge coupling of a U(1) gauge theory coupled to nf

charged (Weyl-)fermions and ncs complex scalars runs at one-loop according to

8π2

g2(µ)
=

8π2

g2(µUV)
− b log (µUV/µ) , b = −

(
1

3
nf +

1

6
ncs

)
. (3.41)

Below the matter mass-scale m we can integrate out the charged matter so in the IR

the gauge coupling is frozen to

8π2/g2
IR = −b log (µUV/m) + ... (3.42)

In N = 2 gauge theories charged matter comes in hypermultiplets, so for a single one

nf = ncs = 2, and b = −1 (and the one-loop running is exact in perturbation theory).

Thus we reproduce the expression (3.40) if we identify |Z| with the mass scale of a
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single hypermultiplet (H1, H2). Hypermultiplets indeed receive their masses through

a superpotential W (H,Z) = H1ZH2, so their mass scales linearly with the Coulomb

branch coordinate Z. Whatever this hypermultiplet is, its mass should scale linearly

with |Z| and it should be electrically charged. As the gauge field comes from the

dimensional reduction of C4 it must be a D3 brane, wrapped over the A-cycle S3 at

the bottom of the conifold so that it has electric charge equal to one.21 As the volume

of the S3 is set by |Z|, the mass of this object really does satisfy

mD3 = TD3Vol(S3) ∼ |Z|MP , (3.43)

where TD3 is the D3 brane tension. So this picture is remarkably consistent. In an

effective field theory with cut-off ΛUV we must integrate in the charged D3-brane hy-

permultiplet once |Z| . ΛUV/MP , and the physics near the conifold singularity is

smoothed out. Deforming the conifold is the physical process of going on the Coulomb

branch of the U(1) gauge theory.

But there is more: It is crucial that mathematically the conifold can actually be

smoothed in two radically different ways that both (locally) maintain the CY condition

[150]. One is the deformation that we discussed. Another one is called a resolution.

We recall that the singular conifold embedding was smooth everywhere except at the

origin. So let us rewrite the embedding as

T ·
(
U

V

)
= 0 , with T ≡

4∑
i=1

ziσi =

(
z3 + iz4 z1 − iz2

z1 + iz2 −z3 + iz4

)
, (3.44)

and [U : V ] are the homogeneous coordinates of a P1. As by definition of P1 the

two coordinates U, V cannot vanish simultaneously, the matrix T must have a zero

eigenvalue so its determinant must vanish. But detT = −∑4
i=1(zi)2 so we recover the

singular conifold embedding equation. Away from the origin zi 6= 0 we can simply

solve for the P1 coordinates as a function of the zi so there is nothing new. But at the

origin T = 0 and the P1 coordinate [U : V ] is unconstrained. We have replaced the

singular point by a two-sphere (=P1) and one readily checks that the embedding (3.44)

is non-singular (this procedure of replacing a singularity by a P1 is called a blow up).

The size of the S2 is controlled by a real parameter t called the resolution modulus.

We now have two non-singular geometries, the deformed and the resolved conifold that

share a common singular locus in moduli space. For both the explicit CY metric is

known. Passing from one branch to the other through the singular locus is called a

conifold transition. We have described this for the non-compact conifold but compact

21D3 branes wrapped over the B-cycles carry magnetic charge.
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CY manifolds are frequently connected with each other through such transitions. Let us

give the perhaps canonical example of this phenomenon as described in [76]: We start

with a complex five-dimensional toric ambient space P4×P1, and define our three-fold

Xres as the vanishing locus of two polynomials, of weight (4, 1) respectively (1, 1). This

space is CY22 and has (h1,1, h2,1) = (2, 86). Thus both polynomials are linear in the P1

coordinates so we may write (
X Y

P Q

)(
u

v

)
= 0 , (3.45)

where [u : v] parametrize P1, while (X, Y ) and (P,Q) are degree four respectively

linear polynomials in the P4 coordinates. By the same argument that we used in the

non-compact case,

det

(
X Y

P Q

)
= XQ− PY !

= 0 , (3.46)

which is a degree five polynomial in the coordinates of P4. Thus it is a quintic three-fold

obtained via the shrinking the volume of the blow-up P1. The locus where the linear

polynomials vanish, P = Q = 0, is a P2 sublocus of P4. On this sub-locus, the two

quartic polynomials vanish simultaneously at 16 = 4× 4 points, if the polynomials are

chosen generic. These are conifold points. Thus we have described (mathematically)

what it means to pass from the quintic three-fold to a different CY manifold that has

15 fewer complex structure moduli but an additional Kähler modulus. This transition

through the singular locus begs for a physical interpretation. This was given by B.

Greene, D. Morrison and A. Strominger [77]:

As the quintic has 101 complex structure moduli, it is apparent that the singular

locus occurs at co-dimension 15 = 101− 86 in complex structure moduli space. Hence,

there is one homology relation among the 16 vanishing three-cycles γi which reads

16∑
i=1

[γi] = 0 . (3.47)

But it is intuitively obvious that if there are 16 conifold points in the CY there should

also be 16 independent hypermultiplets that become massless at the singular locus

in moduli space. As there are only 15 independent A-cycles we are in the situation

that the U(1)15 gauge theory possesses a Higgs branch parametrized by the four real

22For manifolds defined as vanishing loci of a set of polynomials within a toric ambient space, one computes
the Chern class using the so-called adjunction formula (see e.g. [152]). The vanishing of the first Chern class
constrains the weights of the polynomials under the toric C∗ scalings. The constraints are satisfied for our
examples.
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scalar components of a single hypermultiplet. Going to the Higgs branch is seen as

condensation of the D3 brane hypermultiplets. This picture involves some intriguing

steps: When the deformation S3 is large, the wrapped D3 brane states are solitons with

mass above the KK-scale. For sufficiently small |Z| they enter the four-dimensional

theory as isolated light particle states, and on the Higgs branch they condense to make

up again a geometric modulus, but now of a different geometry than the one we started

with on the deformation side.

The ’radial’ component of this hypermultiplet is of course our resolution modulus

while the other three are the axions defined as integrals of B2, C2 over the resolution

cycle, as well as C4 over the dual four cycle that reaches into the bulk CY. Two of the

newly acquired axions will play a crucial role in chapter 6.

3.5 Orientifolds of the type II string

While CY compactifications of the type II string are a beautiful subject they come with

a phenomenological problem: They describe a world very different from ours. There

are no non-abelian gauge sectors, there is N = 2 unbroken supersymmetry, and many

exactly massless scalar fields. First, we should reduce the amount of supersymmetry,

ideally without loosing too much computational control. String theory offers a way to

do this which is called an orientifold projection (see e.g. chapters 11 and 12 of [125]). In

type IIB string theory, given a manifold that has a discrete Z2 symmetry group R with

even-dimensional fixed point locus, we are allowed to project the degrees of freedom of

our theory onto the sector invariant under

ΩR(−1)FL , (3.48)

where FL denotes left-moving worldsheet fermion number and Ω is worldsheet parity.

This means that the 10d fields {GMN , τ = C0 + ie−φ , C4} are required to be even

under the geometric action, e.g. C4(Ωx) = C4(x), while B2 and C2 are odd. For a

CY three-fold the geometric action should be holomorphic in order to preserve some

amount of supersymmetry. At the level of the zero mode spectrum this means that

within each N = 2 multiplet half of the components are projected out. The orientifold

acts on the cohomology groups and is useful to decompose them into their even and

odd eigenspaces Hp,q ≡ Hp,q
+ ⊕ Hp,q

− . For O7 orientifolds the fixed point locus of the

orientifold is of complex co-dimension one and the massless spectrum is the following:

The N = 2 gravity multiplet loses its vector and the universal hypermultiplet loses

two of its axions b0, c0. The Kähler hypermultiplets are split into h1,1
+ chiral multiplets

with bosonic components (ti, ρ
i) and h1,1

− axion chiral multiplets (bi, ci). The N = 2
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vector multiplets split into h2,1
+ N = 1 vector multiplets and h2,1

− complex structure

chiral multiplets.

As the O7 planes carry negative magnetic charge under C0 (and negative tensions)

we must cancel their charges (and tensions) at least globally by including also a number

of D7 branes. The simplest case is the one where 4 D7 branes lie on top of each O7

plane, yielding non-abelian SO(8) gauge groups. This brings us much closer to a

realistic theory. Generically the seven-brane stacks also carry induced D3 brane charge

which must be canceled by introducing mobile D3 branes.

Ignoring the open string degrees of freedom the effective N = 1 supergravity is

well known. We focus on the case h1,1
+ = 1 with only a single Kähler modulus T , but

arbitrary h1,1
− . The Kähler potential reads [153]

K =− 3 log (F )− log(−i(τ − τ̄))− log

(
−i
∫
CY

Ω ∧ Ω

)
+ const ,

with F ≡ Vol(CY )2/3 = T + T̄ − 3i

4(τ − τ̄)
κ+ij(G − Ḡ)i(G − Ḡ)j , (3.49)

where κ+ij are the triple intersection numbers between the single orientifold even four-

cycle and a pair of orientifold-odd ones, κ+ij ≡
∫
CY

ω̃+ ∧ ω̃i ∧ ω̃j. Here, Gi ≡ ci − τbi
are the h1,1

− complex axions, and the complex overall volume modulus T is defined as

T ≡ Vol(CY )2/3 + iρ+ . (3.50)

At this level the superpotential vanishes to all orders in perturbation theory.

3.6 Fluxes and the landscape

We have reduced the amount of unbroken supersymmetry but we have yet to get rid

of the remaining massless fields and break supersymmetry by a controlled amount.

This is done by adding three-form fluxes on three-cycles. The simplest way to see the

effects of three-form fluxes is by remembering that the D5 brane and the NS5 brane

wrapped over a three-cycle Σ3 are the domain walls over which the F3 respectively H3

flux quanta on the dual cycle Σ̃3 jump by a unit. The four-dimensional tension of such

a D5 brane is

TDW
M3

P

=
2π

l6s
eφ/2

Vol(Σ3)

Vol(CY )3/2
∼ eK/2

∫
Σ3

Ω = eK/2
∫
ωΣ̃3
∧ Ω , (3.51)

where ωΣ̃3
is Poincaré dual to the cycle Σ3. It is a standard result that the change

in the superpotential ∆W across a 1
2
BPS domain wall is related to the tension of the
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domain wall by

TDW = 2eK/2|∆W | . (3.52)

Comparing with (3.51) one finds that the flux superpotential should be given by [154]

W ∼
∫
CY

(F3 − τH3) ∧ Ω =

∫
G3 ∧ Ω , (3.53)

which is called the Gukov-Vafa-Witten (GVW) flux superpotential. Indeed, across a

domain wall of type discussed above F3 changes by an amount ωΣ̃3
so the domain wall

tension comes out right. It was shown in [40] that the F-terms of the complex structure

and the axio-dilaton possess a common solution locus where the three-form fluxes G3

only have components of Hodge type (0, 3)⊕ (2, 1), in other words they are imaginary

self-dual ∗G3 = iG3. It is then useful to define the imaginary-self-dual (ISD) and

imaginary-anti-self-dual (IASD) components G±3 ≡ (∗ ± i)G3. The vanishing of the

(1, 2) and (3, 0) components are h2,1 + 1 complex conditions on the h2,1 + 1 complex

structure moduli and the axio-dilaton so for sufficiently generic three-form fluxes we

expect the solution set to be a set of points in moduli space. In other words the complex

structure moduli and the dilaton are stabilized by fluxes.

3.6.1 The GKP solutions

The four-dimensional flux vacua we have introduced in the preceeding section were

argued to exist from purely four-dimensional considerations. One may rightfully ask

if they actually lift to consistent ten-dimensional ones, and moreover in which regimes

they can be trusted. This is slightly subtle because three-form fluxes carry induced

D3-brane charge due to the Bianchi identity

dF5 = F3 ∧H3 + ρD3 , (3.54)

where ρ3 is the D3-brane charge density carried by localized objects. Since our internal

manifold is compact, the integral over the l.h. side of the Bianchi identity vanishes by

Stokes theorem so the integral of the r.h. side must vanish as well. This constrains

the allowed choices of three-form quanta in terms of the D3 brane charge carried by

localized objects,

l−4
s

(∫
CY

F3 ∧H3

)
+ND3 −

1

4
NO3 +Ninduced = 0 . (3.55)

ND3 denotes the number of D3 branes and we have used that a single O3 plane carries

−1/4 units of D3 brane charge. Moreover we have added the induced D3-charge Ninduced
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on other localized objects such as seven-branes. E.g. a single D7 brane wrapped on

a divisor D with trivial normal bundle carries χ(D)
24

units of induced D3 brane charge,

where χ(D) is the Euler number of the divisor. This is often times negative which means

we have room to add fluxes of positive D3 brane charge. In typical CY orientifolds and

their F-theory generalizations this gives us enough room to place modest amounts of

flux quanta on each three-cycle [42, 152, 155].

Among other things it was shown by S. Giddings, S. Kachru and J. Polchinski

(GKP) [40] that the direct dimensional reduction of the |G3|2 term in the 10d action

indeed matches with the one derived from the GVW superpotential. For validity of this

approximation the ten-dimensional backreaction of the fluxes must be small, which is

the case when

|G+
3 |2

Im(τ)
∼ F3 · ∗H3 ∼ l4s (D3-brane charge density)� typical curvature ∼ 1/L2 . (3.56)

In other words, fluxes are sufficiently dilute to treat their presence as a small pertur-

bation on top of the CY background if the number of D3 brane charge units contained

in any region of size L is smaller than L4/l4s . When the CY is very homogeneous and

isotropic this is just a condition on the overall volume of the CY,

R4
CY � total positive D3 brane charge . (3.57)

It is however important to appreciate that GKP also showed that even when fluxes

are not dilute the ISD condition still solves the ten-dimensional equations of motion

and all the backreaction on the metric and five form fluxes are controlled by a single

function of the CY coordinates called the warp factor e2A. Specifically, the metric and

five-form ansätze are

ds2 = e2Adx2 + e−2Ads2
CY , F5 = (1 + ∗)d(e4A) ∧ d4x , (3.58)

and all equations of motion are solved given a solution to

∇2
CY e

−4A = D3-brane charge density . (3.59)

Changes in the overall volume of the CY correspond to the freedom to add a constant

to any solution of eq. (3.59) [156]. To be precise, given any solution of the metric and

axio-dilaton associated with a non-trivial N = 1 preserving seven-brane background

at tree-level (i.e. an F-theory solution), we can correct this solution by including ISD

three-form fluxes, possibly mobile D3 branes and accounting for the induced negative

D3 brane charge on the seven branes. The only equations that need to be solved are
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the ISD condition (which fixes the complex structure moduli and the dilaton), as well

as the ’electro-static’ warp factor equation (3.59).

3.6.2 Warped throats and exponential hierarchies

A natural question to ask is whether it is possible to find solutions with regions where

the warp factor e2A is exponentially smaller than in others. The answer turns out to be

yes, as shown by GKP, thereby realizing the Randall-Sundrum (RS) mechanism [157]

to generate natural exponential hierarchies. It is easy to convince one-self that the

warp factor naturally runs exponentially whenever D3 brane charge is not dilute. The

famous backreacted solution associated with a stack of N D3 branes placed on a flat

background R6 shows this,

e−4A = 1 +
4πNα′2

r4
, ds2 = e2Adx2 + e−2A(dr2 + r2dΩ2

S5) . (3.60)

Clearly, in the near horizon limit r4 � Nα′2, the metric approaches the form

ds2
nh =

r2

√
4πNα′

dx2 +
√

4πNα′
(
dr2

r2
+ dΩ2

S5

)
= e2kydx2 + dy2 + k−2dΩ2

S5 , (3.61)

which is a patch of AdS5 × S5. Here we have introduced a new radial coordinate

y = k−1 log(kr) that measures physical distances along the ’throat’≡ R × S5, and

k−2 ≡
√

4πNα′. It is apparent that the warp factor now runs exponentially as desired.

Solutions of this type are called warped throats and they offer a remarkable amount of

computational control. It is one of the most celebrated results of the past decades, due

to J. Maldacena, that such ten-dimensional gravitational backgrounds (in their near

horizon limits) are in fact dual to four-dimensional QFTs [158]. We have just given

the simplest of these. For a stack of N D3 branes we know from perturbative string

theory that in the deep infrared the brane degrees of freedom decouple from the bulk

gravitational ones and realize the N = 4 SU(N) super Yang-Mills gauge theory (which

is actually conformal). Its holomorphic gauge coupling is set by the ten-dimensional

axio-dilaton at the point probed by the brane stack. The gauge theory is weakly coupled

when gs � 1 and also the ’t Hooft coupling is small gsN � 1. Beyond these limits the

gauge theory is strongly coupled. But we just saw another way to take the IR limit,

namely going into the near horizon limit of the backreacted supergravity solution. The

size and inverse curvature scale of the string frame metric is L4 ∼ gsNα
′2. So for the

gravitational description to be weakly curved we need to precisely go to the opposite

regime gsN � 1 (but still gs � 1). So we see that the large ’t Hooft coupling limit

of the gauge theory is described by a ten-dimensional string geometry! This is the
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simplest example of the famous AdS/CFT correspondence.

To realize the RS idea the infinite AdS5 × S5 throat must be reduced to finite

length thus breaking the isometry group of AdS5 down to Poincaré4. From the field

theory side this amounts to breaking conformal invariance. But before we get there

let us note that we can replace the flat six-dimensional space we started with by the

singular conifold geometry. Placing the stack of D3 branes at the singular point gives

rise to a near horizon limit supergravity solution AdS5 × T 1,1 which is obtained from

the AdS5 × S5 solution by simply replacing k−4 −→ Vol(T 1,1)
Vol(S5)

k−4 = 27
16
k−4. The ten-

dimensional AdS5 × T 1,1 background is another example of an infinite length throat

but it breaks more supersymmetries than the AdS5 × S5 throat. Its field theory dual

is an N = 1 superconformal SU(N) × SU(N) quiver gauge theory, the conifold or

Klebanov-Witten (KW) gauge theory, with the bifundamental matter coming in the

(2, 1) respectively (1, 2) of the global conifold symmetry group SU(2) × SU(2), and

with a quartic superpotential [159]. The holomorphic gauge couplings (τYM, τ̃YM) of

the two gauge group factors are now set by

τYM + τ̃YM = τ , τYM − τ̃YM = −τ + G/π mod 2(m− nτ) , (3.62)

with a torus valued complex axion G ≡
∫
S2⊂T 1,1 C2− τB2. Here it is understood that τ

and G take values in their appropriate fundamental domain so that both gauge group

factors are weakly coupled.

This theory can be perturbed by adding M RR three-form fluxes on the S3 ⊂ T 1,1

[78, 160], F3 = Mω3, where ω3 is the harmonic three-form of T 1,1. In order to solve the

ISD condition the NS three-forms should be given by (setting C0 = 0)

H3 = −gs ∗ F3 =
3

2π
gsM

dr

r
∧ ω2 , i.e. B2 =

3

2π
gsM (log(r/ls) + const.)ω2 , (3.63)

where ω2 is the harmonic two-form of T 1,1. As the metric is known and the ISD

condition solved, all that remains is to compute the warp factor by integrating (3.59).

The result is

e−4A =
L4

r4

(
log(r/r0) +

1

4

)
+ const. , with L4 =

81

8(2π)4
gsM

2l4s . (3.64)

This is called the Klebanov-Tseytlin (KT) solution [78] and it runs into a singularity

at r . r0. The (non-quantized) five form flux runs as N(r) = 3
2π
gsM

2 log(r/r0). The

logarithmic running of the warp factor is reminiscent of the RG running of a gauge

coupling and indeed, there is a N = 1 gauge theory that is dual to the geometry. It

can be understood as a small perturbation of the gauge group ranks of the conifold
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gauge theory SU(N)× SU(N) −→ SU(N +M)× SU(N), if M � N . The two gauge

couplings run in opposite directions which precisely matches the radial running of the

B2 field and the identification of eq. (3.62). As a consequence one of the two gauge

factors becomes strongly coupled after some RG running. It was realized by I. Klebanov

and M. Strassler (KS) that after an appropriate application of Seiberg duality [161] the

theory is of the same form as the initial one but with N replaced by N −M [162]. The

supergravity dual of this effect is of course the radial running N(r). As a consequence

the gauge theory undergoes repeated steps (cascades) of Seiberg dualities as it flows

to the IR. The KT solution accurately describes the RG flow of the gauge theory only

so long as r � r0, i.e. N � M . At last, only a single SU(M) factor remains which

confines and undergoes gaugino condensation. This effect is actually captured by the

everywhere smooth KS solution which uses the deformed conifold as a starting point

rather than the singular one [162]. It is intuitive that this is the correct starting point

because that KT singularity arises when the S3 is forced to shrink to zero size while

the non-vanishing RR flux really wants to keep it at finite size. We will not need the

precise form of the solution but we note a few important properties.

First, we are actually interested in embedding such a KS throat into a compact CY.

So we should cut-off the throat at some UV value rUV which marks the point where

the details of the CY geometry start to depart from the simple conifold. Note that

while we do not know the precise form of the solution beyond this point, existence of

a smooth interpolation is guaranteed. From the running of the B2 field we learn that

the NS flux on the B-cycle of the throat is set by

K ≡
∫
B
H3 =

∫
S2⊂T 1,1

B2(rUV) =
3

2π
log(rUV/rIR) . (3.65)

This implies that the finite hierarchy induced by the fluxes in the throat is of order

e4AIR−4AUV ∼ r4
IR

r4
UV

∼ exp

(
−8π

3

K

gsM

)
. (3.66)

Even without investigating the detailed from of the KS solution dimensional analysis

gives that the conifold complex structure ε is fixed at value

|ε| ∼ r3
IR

r3
UV

∼ exp

(
−2π

K

gsM

)
. (3.67)

It is important to note that we have been a bit sloppy and assumed that the three-form

flux quanta K are all located within the throat. If the B-cycle reaches only into a single
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Figure 3.4: In ’typical’ flux compactifications there are many warped throats of significant
warping that can be thought of as spikes emanating from the CY orientifold.

throat this is not a bad approximation as long as K � gsM .23 In later chapters we

will be interested also in cases where the NS three-form fluxes are equally distributed

on more than a single throat.

For now we close by noting that the formulas we have extracted from the KS solution

nicely match with the F-term solutions of the GVW superpotential [40]. We call the

conifold complex structure Z, and the B-cycle period G(Z). From monodromy consid-

erations it is known that G(Z) = Z log(Z)−1
2πi

+ holomorphic. The GVW superpotential

reads

W =

∫
(F3 − τH3) ∧ Ω = MG(z)− τKZ +W0 . (3.68)

where W0 encodes Z-independent terms from fluxes on other cycles. Using the Kähler

potential of eq. (3.33) the F -term condition DZW = 0 takes the form

DZW = M

(
logZ

2πi
+O(1)

)
− τK +O(|Z|) . (3.69)

In the regime |Z| � 1 the O(|Z|) corrections can be neglected and the F-term vanishes

for

Z ∼ exp

(
2πi

τK

M

)
=⇒ |Z| ∼ exp

(
2π

K

gsM

)
∼ ε . (3.70)

TheO(|Z|) can be neglected when |Z| � 1, i.e. whenK � gsM . So the 4d supergravity

F-term reproduces the KS formula. As the conifold singularity is the most generic one

it is reasonable to expect that generic flux compactifications come with many warped

throats [42, 163].24 We depict a cartoon of such a compactification in Figure 3.4.

23An O(gsM)� K number of NS flux quanta should sit in the bulk CY to ensure that the ISD condition
is satisfied also there. Here we have assumed that the bulk CY takes a rather generic form.

24Loosely speaking, only when K ∼ gsM for all pairs of flux quanta, or at exponentially large volumes
V � (ND3)3/2|Z|−2 they do not form.
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3.7 Moduli stabilization & de Sitter vacua

3.7.1 The Dine-Seiberg problem

So far we have discussed classes of N = 1 ’quasi’ vacua in which the fate of a sub-sector

of the CY moduli (the Kähler moduli) is generically unknown. They are massless at

tree level but supersymmetry is broken by the flux superpotential. The flatness of the

scalar potential is due to the no-scale structure of the Kähler potential of the Kähler

moduli,

gT
iT̄ j̄∂T iK∂T̄ j̄K = 3 . (3.71)

This structure reflects the fact that in string theory the scalar potential always vanishes

in the decompactification limit Re(T i) −→ +∞. But there is no symmetry principle

that protects the flatness of the scalar potential at subleading order in the inverse

volume expansion (the α′ expansion). For example, the Kähler potential including the

leading α′ correction that cannot be absorbed by a field redefinition, the Becker-Becker-

Haack-Louis (BBHL) correction [164], takes the form

K = −2 log
(
(T + T̄ )3/2 + ξe−3φ/2

)
, (3.72)

with ξ ≡ −χ
2
ζ(3), CY Euler number χ = 2(h1,1 − h2,1) and Riemann ζ-function. This

correction breaks the no-scale structure and leads to a runaway potential for the Kähler

moduli. It is of crucial importance for phenomenological applications of almost any sort

to have in hand a mechanism to stabilize the Kähler moduli, i.e. to generate a controlled

potential with a discrete set of local minima. This program goes under the name of

moduli stabilization.

We have already implicitly stated a generic problem with moduli stabilization: In

string theory at large volumes the scalar potential of the overall volume tends to zero,

while the perturbative α′ expansion is precisely an expansion in inverse volume powers.

So, if the coefficients in this expansion take generic O(1) values the scalar potential is

dominated by the lowest non-vanishing term that falls off towards infinity as an inverse

power law,

V (T + T̄ ) ∝ ±(T + T̄ )−p , p > 0 . (3.73)

If the sign of the leading order correction is positive this leads to a run away behavior

to large volume. If it is negative it drives the theory to strong coupling where different

orders in the perturbative expansion may compete to give rise to a stable minimum.

But in this case a full tower of corrections becomes relevant and generically isn’t com-

putable. This is the Dine-Seiberg problem [165] and leads one to conclude that a generic
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stabilized vacuum of string theory should lie at strong coupling

gs(T + T̄ ) = O(1) . (3.74)

3.7.2 The KKLT proposal

The Dine-Seiberg problem is a generic problem of moduli stabilization but in can be

avoided at the cost of tuning. This is how Kachru, Kallosh, Linde and Trivedi (KKLT)

have proposed to achieve moduli stabilization in a controlled regime [41]. We will

describe their construction now.

As the flux superpotential is exact in perturbation theory it is sensible to neglect

the difficult to access perturbative corrections all together and consider the easier to

determine non-perturbative superpotential corrections. We consider a flux compact-

ification with the dilaton and complex structures integrated out. Moreover we focus

again on the case of a single Kähler modulus T . As there is an exact gauged axion

shift symmetry T −→ T + iZ the non-perturbative superpotential must organize into

a series

W = W0 +
∞∑
n=1

Ane
−2πnT , (3.75)

at least in the absence of monodromy. The one-loop Pfaffians An are in general hard

to compute but a natural assumption is that they take O(1) values as long as the CY

is stabilized at a point in complex structure moduli space where it has only a single

length scale.

Validity of this assumption is actually not as easy to justify as expected. In gen-

eral, the instantons that contribute to the superpotential have precisely two fermion

zero modes, in particular they are 1
2
BPS. If there are more fermionic zero modes, the

superpotential contribution vanishes. The 1
2
BPS instanton associated with the n-th

term in the non-perturbative expansion is a euclidean D3 brane wrapped n times over

a holomorphic representative of the single divisor class D. It was shown by E. Witten

[166] that a necessary condition for exactly two zero modes is that the arithmetic genus

χ(D,OD) ≡ ∑2
i=0(−1)ihi,0 of the divisor D is equal to one. A sufficient condition is

satisfied when h1,0 = h2,0 = 0, i.e. when the divisor is rigid. Strictly speaking the

presence of three-form fluxes might lift additional zero modes so that a superpotential

might nevertheless be generated when χ(D,OD) 6= 1 [167, 168], but we will not consider

this option here. Another option is axion monodromy: The simplest way to achieve it

is by considering a non-abelian seven brane gauge group that wraps D. In the simplest

case, this is a SU(N) gauge theory associated with a stack of N D7 branes. If all

matter can be made massive, the effective field theory at low energies contains a pure
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Figure 3.5: The classical U(1)R symmetry is anomalous since the gaugino λ runs in the above
U(1)RSU(N)2 triangle diagram.

supersymmetric Yang-Mills sector with 4d holomorphic gauge coupling set by

τYM = iT ∼ iVol(D)−
∫
D

C4 . (3.76)

This is easily seen from a direct dimensional reduction of the classical 8d DBI and CS

action. Fortunately, N = 1 pure supersymmetric Yang-Mills is a very well-studied field

theory and at the level of the renormalizable UV Lagrangian the low energy effective

superpotential is known exactly.

The classical theory of pure SU(N) SYM enjoys a U(1)R symmetry that rotates the

phase of the gaugino. However, this symmetry is broken at the quantum level by in-

stantons due to the triangle anomaly depicted in Figure 3.5. Assigning the holomorphic

scale Λ3N = µ3N
UVe

−2πT spurious R-charge 2N the symmetry is restored. If we view the

holomorphic gauge coupling as a dynamical field (as we always do in string theory), we

see that the U(1)R symmetry is broken spontaneously by the expectation value of T .

As T ∼ T + iZ a Z2N ⊂ U(1)R remains unbroken. Assuming that the gauge multiplet

confines and can be integrated out the only low energy superpotential we can write

down that has the correct R-charge is

Weff = cΛ3 , (3.77)

for some coefficient c. By matching this theory with SQCD theories via mass perturba-

tion, allows one to compute the coefficient c via a weakly coupled instanton calculation

in SQCD with N − 1 flavors [169]. The result is c = N , and in particular it is not zero,

indicating that confinement indeed occurs. The non-vanishing superpotential (3.77)

signals a further spontaneous breaking of the R-symmetry group down to Z2, as it has

N solution branches for each given value of Λ3N ∼ e−2πT . Indeed, it measures the

expectation value of the gaugino bilinear [170]

〈λλ〉 ≡ 〈Tr
(
λ̄PLλ

)
〉 = −16π∂FT logZ = −16π∂TWeff (T ) = 32π2Λ3 , (3.78)
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where Z denotes the partition function. In other words the gauge theory has N vacua

distinguished from one another by the phase of the gaugino bilinear. There exist gauge

theory domain walls that interpolate between them [171]. These are of course the

domain walls in the Kaloper-Sorbo description of axion monodromy. Crucially, the

monodromy is finite because after passing N domain walls one is back in the gauge

theory vacuum one started with.

If higher derivative corrections to the UV Yang-Mills action are present (as they

always are in string theory), suppressed by some UV scale MUV, one expects the su-

perpotential to also receive higher order corrections [172]

WF=0 = NΛ3

(
1 +

∞∑
n=1

cn

(
Λ

µUV

)3n
)
. (3.79)

So applying this logic to the case of a stack of seven-branes wrapped on a divisor we

have an effective superpotential (including the constant flux contribution)

W = W0 + ANe−
2π
N
T + ... , (3.80)

where A ≡ M3
UV/M

3
P is assumed to be of order one. Just keeping the first two terms,

and using the tree-level Kähler potential

K = −3 log(T + T̄ ) , (3.81)

one computes the FT -term

DTW = −2πAe−
2π
N
T − 3

T + T̄

(
W0 + ANe−

2π
N
T
)
, (3.82)

In the regime (T + T̄ )� N where the gauge theory is weakly coupled and our formula

should be valid the F-term equation has a solution with

T ≈ N

2π
log(−W0) , (3.83)

which is self-consistent if |W0| � 1. By scanning over the huge set of available flux

vacua one should be able to find solutions with |W0| almost arbitrarily small. So, it is

(almost [173]) unanimously accepted that there exist fully stabilized AdS vacua of the

KKLT type. The vacuum energy at the SUSY minimum of the scalar potential is given

by

VAdS = −3eK |W |2 ≈ − 3

(T + T̄ )3
|W0|2 . (3.84)
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Figure 3.6: In blue: The supersymmetric KKLT potential for parameters NA = 1, 2π
N = 0.1

and W0 = −10−4. In red: The uplifted potential with appropriately fine tuned warp factor
a2

0 ∼ |W0|. There is a dS minimum at t ≡ Re(T ) ≈ 110. The maximal possible uplift occurs
with vacuum energy V ∼ +|VSUSY |. At larger values of a2

0 there is no meta stable minimum
anymore.

We depict the scalar potential with its KKLT minimum in Figure 3.6.

KKLT have also proposed how to generate controlled de Sitter vacua by incorpo-

rating small amounts of meta stable supersymmetry breaking. This idea in general is

called an uplift. One of the most prominent ideas how to accomplish this is by adding

so-called anti-D3 branes into the setup. Locally, these are just D3 branes, but their

worldvolume orientation is such that the supersymmetries preserved by the flux back-

ground (in the limit W0 = 0) are the ones broken by the brane and vice versa. As a

consequence, an anti-brane also carries D3-brane charge of the sign opposite to the one

carried by fluxes. Thus, if we are to compare two configurations, a compactification

with an anti-brane, to one without it, the flux numbers of the two configurations must

be slightly different so that one extra unit of D3 brane charge carried by fluxes can

compensate the negative anti-brane charge. Schematically the scalar potential induced

by such a configuration is

Vuplift ∼ e4A (2T3 + binding energy) , (3.85)

where T3 is the D3 brane tension and the factor of two arises because of the extra unit

of flux induced charge that carries the tension of a single D3 brane due to the ISD

condition. In a generic flux compactification the anti-brane position moduli are stable

if the brane is placed where the warp factor assumes a local minimum. This is precisely

the tip of a warped throat, where indeed the gravitational red-shifting is exponentially

small. It is usually assumed that this is a KS throat.

A set of natural questions comes to mind that have led to quite some controversy in

the past: 1) Is the brane/flux bound state (meta-)stable against mutual annihilation?

2) Is the binding energy sub-leading? The first question has been addressed explicitly
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by Kachru, Pearson and Verlinde (KPV) who find that the only allowed decay channel

is a brane-flux decay where the anti-brane polarizes into an NS5-brane that winds

around the compact three-sphere of the throat thus discharging one unit of NS fluxes

on the B-cycle and leaving behind M − 1 D3 branes [174]. If M & 12, this is a non-

perturbative (i.e. slow) tunneling transition so the anti-brane is meta-stable. This

calculation was done in the approximation where the anti-brane is treated as a probe

of the background flux geometry. Thus, the second question is related to the question

whether or not this ’probe’ approximation is actually valid, so it naturally relates with

the question of meta-stability. This has been discussed extensively in the literature (see

[175–190] for recent literature on this topic) and it is by now widely believed that the

probe approximation is valid, at least for a single anti-brane.

It is of course important to know how the anti-brane vacuum energy depends on the

volume modulus T in order to decide whether or not the volume modulus is destabilized

by the uplift. It is straightforward to compute this in the probe approximation on a

classical GKP background. The result is [191]

Vuplift ∝
a4

0

(T + T̄ )2
, (3.86)

where we have suppressed O(1) coefficients, and a0 ≡ exp
(
−8π

3
K
gsM

)
is the hierarchy

of the compactly embedded KS throat. Using this one finds de Sitter vacua of tunable

positive or negative cosmological constant by making judicious choices of flux quanta

(see Figure 3.6), so that a4
0 ∼ |W0|2.

3.8 The swampland of effective field theories

We would now like to give a brief introduction into some of the ideas that have emerged

over the past decade and which go under the name of the swampland of effective field

theories [29, 30].

In the early days of string theory it was hoped that the theory would produce a more

or less unique supersymmetry breaking vacuum, that could be compared with real world

physics. Although formally speaking this idea is still on the table it is very unlikely that

string theory works like this. We have given a brief account of flux compactifications

in the type IIB corner of the theory, and it is fairly clear that many different vacua

can be generated by using the freedom to dial the flux quantum numbers. At least

in very naive terms it is clear that the number of vacua that can be obtained in this

way is truly enormous. As a typical CY has O(100) distinct three-cycles we should be

able to choose flux numbers in a reasonably bounded range (say O(10)) for each cycle.
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Simple combinatorics then produces estimates for the number of flux vacua such as the

’historical’ number 10500. This is actually a huge underestimate. Somewhat recently,

Taylor and Wang found a CY fourfold25 that produces Nvacua ∼ 10272,000 different vacua

[194]. With this unimaginably large number in mind one might even be tempted to

believe that almost anything goes in string theory. Certainly, Wilson coefficients of the

effective four-dimensional supergravities that describe classes of string vacua should

show some dependence on the choices flux quantum numbers. This perhaps most

clearly seen for the expectation value of the GVW superpotential after integrating

out the dilaton and the complex structure moduli, W0 ≡ 〈WGVW 〉, which sets the

physical mass of the gravitino and so the scale of supersymmetry breaking. It is widely

believed that at least this number can take almost arbitrarily small values down to

|Wminimal
0 | ∼ 1/

√Nvacua [42, 152]. If this were true for all Wilson coefficients it would

be impossible to test string theory observationally without accessing energy scales of

order the string scale.26 In many ways the idea of the swampland is that while some

Wilson coefficients cannot be tightly constrained in string theory, there nevertheless

exist clear boundaries in EFT parameter space that divide the (extremely) densely

populated landscape of string solutions from completely empty regions, the swampland,

that can never be reached by string theory. We may define the landscape as the set

of low energy EFTs coupled to gravity that can be realized in string theory, while the

swampland consists of those that cannot. We have depicted a cartoon of the total space

of EFTs in Figure 1.2. If we can identify clearly cut boundaries that divide the two

sets from each other we have extracted a non-trivial prediction of string theory that

might be relevant for low energy physics. The swampland program is the attempt to

do so, and many swampland conjectures have been put forward. We will describe some

of them shortly. For a more complete introduction to this subject we refer the reader

to ref. [195].

3.8.1 Axions and shift symmetries

Axions will play a major role in this thesis so it is worthwhile describing what we mean

by an axion. Historically the axion was introduced as a pseudo-scalar field a(x) that

couples to QCD via a non-renormalizable interaction,

L ⊂ −f
2
a

2
(∂a)2 +

a(x)

32π2
Tr
(
GµνG̃

µν
)
, (3.87)

25We have not said what is F-theory [192]: It is the generalization of weakly coupled type IIB that enables
one to study general configurations of (p, q) seven-branes. See [193] for a pedagogical introduction.

26This scale could lie anywhere between the TeV scale and the Planck scale.
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with axion decay constant fa. At the classical level the action is invariant under the

continuous shift symmetry

a(x) −→ a(x) + const . (3.88)

This shift symmetry is broken to a discrete one a(x) −→ a(x) + 2π at the non-

perturbative level due to instantons. It was shown by C. Vafa and E. Witten that

the effective potential VQCD(a) induced by QCD instantons has a minimum at a = 0

[196] thus offering a dynamical solution to the strong CP problem of QCD [197].

The axions we are considering are very similar but we do not require them to

couple to QCD. They can be thought of as the integrals of the various stringy p-form

potentials over the different p-cycles of the CY in question. They are also pseudo-

scalars from the 4d perspective and they share the defining feature of a perturbative

shift symmetry. At the N = 2 level these continuous shift symmetries are always exact

in perturbation theory, because only the field strengths enter the equations of motion

rather than the potentials themselves. There always exists an instanton that breaks

the shift symmetry to a discrete one. For the RR p-form axions these are euclidean

D(p − 1) branes wrapped on the corresponding p-cycle, while for the NS 2-form it is

a euclidean string worldsheet that wraps around the associated two-cycle, respectively

a euclidean NS5 brane wrapping the whole CY. In the euclidean path integral they

contribute with a factor

e−(SE+ia(x)) , (3.89)

with euclidean instanton action

SE = 2π


g−1
s Vol(Σp) model dependent RR axions & C0 ,

Vol(Σ2) model dependent B2 axions ,

g−1
s Vol(CY) universal C2 axion ,

g−2
s Vol(CY) universal B2 axion .

(3.90)

Here, cycle volumes are understood to be measured with the string frame metric in

units ls = 1. Clearly these non-perturbative effects again break the continuous shift

symmetries to discrete ones. We will always define the axion decay constant via a

choice of axion normalization such that a shift by 2π is an exact gauge symmetry of

the theory. It can however be broken spontaneously: For example, in type IIB flux

compactifications the discrete shift symmetry contained in Sl(2,Z) also acts on the

three-form fluxes,

C0 −→ C0 + 1 , (H3, F3) −→ (H3, F3 +H3) , (3.91)
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so after applying the shift symmetry the flux quanta have changed and we are in a

different vacuum. Thus it is not obvious why the axion potential V (C0) would have to

come back to itself after it passes once around its fundamental domain continuously.

Indeed, the GVW superpotential depends explicitly on the C0-axion.27 The B2 and

C2 shift symmetries might generically be broken spontaneously as well if five-form flux

quanta were introduced. Since CYs don’t have five-cycles this phenomenon does not

occur in the type IIB flux landscape. The general idea of spontaneously breaking an

axionic shift symmetry is called axion monodromy [46, 73, 198].

It is sometimes useful to dualize the axion to a two form b2. In this language, axion

monodromy can be understood as the gauging of a two form shift symmetry with a

three-form gauge potential C3, as advocated by N. Kaloper and L. Sorbo [198, 199].

The relevant action, due to G. Dvali [200], is

S =

∫
− 1

2λ4
F4 ∧ ∗F4 −

1

2f 2
(db2 − C3) ∧ ∗(db2 − C3) , (3.92)

with four form field strength F4 = dC3. The electrically charged objects under C3 are

domain walls. Dualizing back to an axion and integrating out the four form one obtains

the usual axion kinetic term and a scalar potential

V (a) =
1

2
λ4
(
n+

a

2π

)2

, (3.93)

where n ∈ Z is the four form flux quantum number. The combined transformation

(a, n) −→ (a, n) + (2π,−1) , (3.94)

is a gauge transformation. It is now clear that when a ≥ π there is a non-perturbative

tunneling instability towards nucleating the domain wall that sends n −→ n − 1 and

abruptly lowers the potential.

We would like to emphasize that the defining property of an exact gauged discrete

gauge symmetry is physically equivalent to the existence of cosmic strings which are the

electrically charged objects under b2 [201]. Passing around the string the axion travels

around its fundamental domain once (see Figure 3.7). For the effective four-dimensional

axion C0 this effective string is formed by wrapping a D7 brane once around the CY

manifold, which indeed gives a spatially one-dimensional object in four dimensions, and

a cosmic string analogous to this one exists for every stringy axion. When the gauged

axion shift symmetries are broken spontaneously these strings are required to be the

27Whether or not the discrete shift symmetry is actually broken in this case is a subtle question (see the
end of this section). But it could in principle be broken.



3.8. THE SWAMPLAND OF EFFECTIVE FIELD THEORIES 63

Figure 3.7: Upon encircling a cosmic string of smallest charge (blue) the axion traverses its
fundamental domain once.

boundaries of the (thin) domain walls of the Kaloper-Sorbo description.28 In general we

expect that beyond some critical field excursion this domain wall becomes ’tensionless’.

Near such a point, if it lies in a regime where 4d EFT is valid, the domain wall should

be resolved in terms of a scalar field that either adjusts adiabatically as a function of

the axion vev thus bending down the effective axion potential back to zero, or becomes

tachyonic leading to a fast transition. This can be illustrated by a two field Lagrangian

L = −f
2
a

2
(∂a)2 − f 2

χ

2
(∂χ)2 − λ4

2

( χ
2π
− a

2π

)2

− Λ4 (1− cos(χ)) . (3.95)

If Λ4/f 2
χ � λ4/f 2

a we may integrate out χ and parametrize the IR dynamics using the

single axion a(x). If λ4 < Λ4/(2π)2 we are in the broken phase where the effective

scalar potential Veff(a) has multiple branches. At a critical field excursion

ac =
Λ4

(2π)2λ4
+
π

2
+O

(
λ4

Λ4

)
, (3.96)

the field χ becomes tachyonic and triggers a fast domain wall nucleation process that

lowers the energy. For a � ac we have χ ≈ 2πn thus reproducing the multi-branched

potential of eq. (3.93). This is the broken phase.

In the opposite regime λ4 > Λ4/(2π)2 the heavy field χ adjusts adiabatically χ =

a+O(Λ4/λ4) and the effective potential looks like it is generated by instantons,

V (a) = λ4

∞∑
n=1

cne
−nS(1− cos(na)) , e−S ≡ Λ4

λ4
, cn = {1,−1/4, ...} . (3.97)

28Strictly speaking a domain wall is attached to the string even when the gauged shift symmetry remains
unbroken due to the non-perturbative axion potential. However, in an unbroken phase a low energy observer
that can resolve the axion as a dynamical field will also be able to resolve the effective domain wall as an axion
profile, so the domain wall is ’thick’. In a broken phase this may not be possible.
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Figure 3.8: The effective axion potential in the unbroken (left), critical (middle) and broken
(right) phases. We have plotted the cases Λ4/(2π)2λ4 = {0.5, 1 , 4}. At the critical value
(2π)2λ4 = Λ4 the scalar potential develops distinct branches with finite (meta-)stable ranges.

This is the unbroken phase. We depict both regimes and the critical intermediate one

where branches of the potential ’reconnect’ in Figure 3.8.

Finally, let us note that the way we think about axions is fundamentally perturbative.

We require the continuous shift symmetry of the axion to be exact to all orders in

perturbation theory, so as we pass over loci of strong coupling in moduli space it is not

guaranteed that the dual weakly coupled description that we encounter on the other

side of the locus even possesses anything like an axion. The mere notion of an axion

is thus equally vaguely defined as that of a gauge group in QFT.29 We should think

about it as an emergent weak coupling phenomenon.

3.8.2 The weak gravity conjecture

We would now like to introduce a conjecture that was put forward more than a decade

ago by Arkani-Hamed, Motl, Nicolis and Vafa [31]. It is called the weak gravity conjec-

ture and turns out to be applicable to many weak coupling phenomena such as gauge

theories as well as axions. As such it is relevant in principle for both particle physics and

inflationary cosmology. In its simplest version it is applied to the situation of a U(1)

gauge theory. In such a theory coupled to gravity there exist Reissner-Nordstöm black

holes characterized by their mass and charge (M,Q) subject to an extremality bound

Q .M/MP , in order to avoid naked singularities. Due to Hawking radiation any initial

configuration (Q,M) will evaporate down to extremal ones. But if this is their only

decay channel there exist an infinite finely spaced tower of extremal black hole states la-

beled by their charge Q. As these are macroscopic objects one would expect the charge

and thus mass spacing to be O(1). This is a slightly awkward situation because there

exists an infinity of states that are all absolutely stable while no symmetry principle

forbids their decay. For all we know this possibility is not obviously inconsistent, but

29It happens frequently that a single gauge theory has two complementary weak coupling descriptions that
involve two different gauge groups or even no gauge group at all on one side of the self-dual locus, see e.g.
[202, 203]
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slightly discomforting. In any case, the unease about this was sufficient for the authors

of [31] to conjecture a further decay process: There should exist a light particle of mass

(m, q) with charge to mass ratio bigger than unity, q & m/MP . Then, extremal black

holes can decay via Schwinger pair production. To date it is not fully understood why

really such a conjecture would have to hold (see however [63, 204]), while the strongest

evidence for the conjecture stems from the fact that no fully understood examples seem

to exist in string theory that would violate it.

This conjecture can be generalized to p-form gauge theories, coupled to (p−1)-brane

states, schematically summarized by an action

Sp = −
∫

1

2g2
Fp+1 ∧ ∗Fp+1 − Tp−1

∫
Σ

dpx
√
−gind + µp−1

∫
Σ

Ap , (3.98)

with field strength Fp+1 = dAp, and Tp−1 is the tension, µp−1 is the charge and Σ is the

world volume of the electrically charged object. A special case is the one with p = 0: A

zero-form gauge potential is an axion, and its electrically charged object is an instanton

(the magnetically charged ones are cosmic strings). The ’mass’ is the euclidean action

and the gauge coupling is the inverse axion decay constant.

The weak gravity conjecture applied to the axion case says that there should exist

an instanton with euclidean action SE that induces shift symmetry breaking effects

that preserve a discrete periodicity 2πq such that

SE . qMP/fa . (3.99)

By definition, the axion decay constant is set by requiring q ∈ Z, and with minimal

charge q0 = ±1. If the theory breaks supersymmetry instantons generate contributions

to the scalar potential of the form

Vq,SE(a) = M4
P e
−SE (1− cos(qa)) +O(e−2SE) . (3.100)

For such a contribution to the potential to be calculable and small (i.e. for the dilute

instanton approximation to hold), the euclidean instanton action must be larger than

unity. But this means that the harmonic induced by the WGC fulfilling instantons

oscillates on sub-Planckian distances in field space,

∆φa
MP

∼ fa
qMP

. S−1
E < 1 . (3.101)

This alone does not mean that axion inflation with non-perturbatively generated axion

potentials, i.e. natural inflation, is impossible simply because so far we have not said
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that the WGC fulfilling instanton gives a dominant contribution to the scalar potential.

The strong form of the conjecture asserts that it always does. Then, if true, single field

natural inflation is not possible. The particle version of this form would be that the

lightest charged particle fulfills the WGC (as does the electron). This conjecture has

been extended from its most basic form. For instance, B. Heidenreich, M. Reece and

T. Rudelius have conjectured a sub-lattice WGC which states that on a finite index sub

lattice of the full charge lattice, each site must be filled with an object satisfying the

WGC [64].

3.8.3 The distance conjecture

Another conjecture that is relevant for phenomenology is called the distance conjecture

[30]. It states that as parametrically large super-Planckian geodesic distances d (mea-

sured in Planck units) are traversed in field space, there should exist an infinite tower

of states indexed by some integer n with masses mn that becomes light as

mn(d) ≤ mn(0)e−c d , as d −→∞ , (3.102)

for some O(1) coefficient c. A strong form of this conjecture is that the onset of

this exponential behavior starts at d & O(1) [205]. Part of this statement is easily

understood from simple KK reduction. There always exists a radion R (the volume

modulus) that measures the physical size of the compactification space. Its kinetic term

takes the form

Lkin ∝ −M2
P (∂R)2/R2 , (3.103)

so the canonically normalized field is φR ∝MP log(R/R0). The masses of the tower of

KK modes (there always exists at least a spin 2 tower) scale with an inverse power of R,

so in terms of the canonically normalized field distance the formula (3.102) holds toward

large R, i.e. towards weak coupling. In string theory, we expect to always be able to

continue past strong coupling points into a different weak coupling regime. For simple

circle compactification this is just the decompactification limit of the T-dual theory for

which there exists a KK tower again. From the point of view of the original theory the

tower that comes downs as the small volume locus is approached is seen as a tower of

wrapped extended objects, i.e. winding modes associated to the ’fundamental’ string

or extended solitons such as Dp branes. At least at the level of N = 2 CY moduli

spaces, this conjecture seems to always hold [206, 207] (but an interesting potential

counter example has recently been proposed where flux backreaction is strong and yet

controlled by warped throat solutions [208]).
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dS uplifts: A 4d point of view

In the last section we have introduced the KKLT proposal for generating de Sitter vacua.

Of course many different proposals have followed since KKLT made their proposal (see

e.g. [209] for a review), but many of them are fairly analogous to KKLT: The logic is to

first engineer parametrically controlled AdS vacua, and as a second step perturb them

with a SUSY breaking object such as an anti-brane to lift the vacuum energy above

zero. This general procedure is called a de Sitter uplift. In this section we would like to

comment on the robustness of such constructions in general although for definiteness

we will employ the original KKLT construction.

First, we will devise a short list of options how the KKLT proposal and other ideas

for uplifting could fail (section 4.1, based on [3, 5]). This will be based purely on

four-dimensional EFT logic, and can be divided into two simple possibilities:

(a) The uplift cannot be decoupled from the stabilization sector to a sufficient degree

leading to substantial amounts of backreaction on the Kähler modulus as the

vacuum energy increases. As the vacuum energy approaches zero from below,

backreaction on the volume modulus is sufficiently strong so that the neglect

of perturbative corrections to the scalar potential becomes questionable, or the

internal space decompactifies altogether. We will call this uplift-flattening.

(b) The standard parametrization of uplifts within four-dimensional EFT is correct

but the appropriate values of parameters that would realize a successful uplift to

dS are not available in string theory.

Second, we will give simple concrete examples where such problems actually do arise

(section 4.2). In fact the flattening of the uplift seems to be the physical reason why

there are no-go theorems against dS vacua in the classical corners of string theory [89–

103], so it is tempting to suggest that uplift-flattening is the generic problem that makes
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constructions of de Sitter vacua difficult in string theory. Many of these no-go theo-

rems can be derived by considering higher-dimensional tadpole cancellation conditions.

We will introduce this concept as a computational tool, demonstrate its usefulness

in simple six-dimensional flux compactifications, and relate the no-go theorems with

uplift-flattening. Finally, we will argue that a class of models in which uplift-flattening

could be refuted based purely on four-dimensional EFT arguments are in surprising

tension with the weak gravity conjecture for axions 4.3. This is based on [4].

4.1 Uplifts and decoupling

As promised we will give a brief account of simple reasons why a given uplift idea might

fail from the four-dimensional EFT point of view. Throughout we will employ KKLT

as an example but the general ideas readily carry over also to other types of uplifts.

The 10d warped throat supergravity solution that is used for the uplift is dual to

the Klebanov-Strassler (KS) gauge theory [162], so one should be able to equivalently

describe the anti-brane as a state of the KS gauge theory that breaks supersymmetry

spontaneously rather than explicitly [188]. If this is the case, it has been argued that

at very low energies the only degrees of freedom are the nilpotent goldstino multiplet

S (nilpotency means S2 = 0, for constrained superfields see e.g. [210]) and the volume

modulus T [211–219]. The following Kähler- and superpotential have been proposed,

K = −3 ln(T + T̄ − SS̄) and W = W0 + Ae−aT + a2
0µ

2S . (4.1)

Here, a2
0 parametrizes the strength of supersymmetry breaking and is again identified

with the warp factor at the tip of the throat, while µ is related to the unwarped tension

of the anti-D3 brane as |µ|4 ∼ T3.

In deriving the scalar potential one should treat S as a usual chiral multiplet and

in the end set S = 0. For real parameters W0 and A, the scalar potential reads

V (ρ) =
aAe−aRe(T )

6 Re(T )2

[
Ae−aRe(T )(aRe(T ) + 3) + 3W0 cos (a Im(T ))

]
+ a4

0

|µ|4
12 Re(T )2

.

(4.2)

The reason why this form is expected to be correct comes from taking different limits:

In the limit of vanishing non-perturbative stabilization A −→ 0 one recovers the known

runaway potential that is easily read off of the anti-brane DBI+CS action, while in the

limit µ −→ 0 one recovers the supersymmetric KKLT potential. The corresponding

potential is simply the sum of the (would-be) runaway D3 potential and the (would-be)

supersymmetric KKLT potential.
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Interestingly, within this description of the D3-induced uplift, the potential energy

of the D3 adds on top of the negative potential at the supersymmetric AdS minimum

to good approximation until a maximum uplift of about δV ∼ 2× |VAdS|. Beyond that

we encounter run-away behavior Re(T )→∞.

However, we would like to point out that these limits alone do not uniquely deter-

mine the form of the superpotential. The ambiguity arises from the 4d point of view by

the appearance of a new mass scale due to non-perturbative Kähler moduli stabiliza-

tion, which was zero in the classical dimensional reduction from which the form of the

D3-induced scalar potential was deduced. For example, a superpotential of the form

W = W0 + b · S + A(1 + c · S)e−aT . (4.3)

is fully consistent with the classical limit A −→ 0 and the SUSY restoring limit

(b, c) −→ 0. The special choice c = 0, b = a2
0µ

2 corresponds to the standard KKLT

potential. The other extreme case would be to set b = 0. In this case the SUSY KKLT

vacuum corresponding to c = 0 cannot be uplifted to de Sitter for any value of c. From

this one can see one way how a potential dS uplift proposal might fail:

As the uplift potential (say the IR warp factor)

is dialed up, the volume modulus is pushed to

larger volumes in such a way that it is impossible (4.4)

to reach positive vacuum energy (see Figure 4.1).

There is a discussion in the literature [3, 5, 220, 221] about the question to what extent

a non-suppressed coefficient c would endanger the existence of de Sitter vacua in this

way. So it is worthwhile to expand on what we have said so far. First, only by choosing

a large enough coefficient c (where ‘large enough’ will be made more precise below) one

matches the qualitative behavior described in 4.4.

One may convince oneself that for b = 0 there are no de Sitter vacua and the

coupling proportional to c mediates a large back-reaction on the Kähler modulus T

as the vacuum energy increases. For any given value of c we can turn on the small

coefficient b until eventually one reaches positive vacuum energy and the additional

backreaction on T that comes from turning on b 6= 0 is small. However, if c is large

enough to provide the dominant part of uplifting to zero vacuum energy, such de Sitter

’vacua’ cannot be trusted within a truncation to the leading order Kähler potential.

This is because contributions to the scalar potential from perturbative corrections to the

Kähler potential can no longer be argued to be negligible. The model thus implements

(4.4) within the margin of theoretical error if c is large enough in the sense we now
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describe.

The T -dependent scalar potential around the supersymmetric AdS KKLT vacuum

(b = c = 0) looks rather similar to the potential around the non-supersymmetric

AdS point with c 6= 0. Naively one might believe that both vacua are equally well

controlled. However, perturbative corrections to the scalar potential in the form of

volume suppressed α′ corrections are expected to take the form

δV ∼ eK0|W0|2 ×
1

(T + T̄ )p
, p > 0 , (4.5)

where K0 is the tree level Kähler potential and p = 1/2, 1, 3/2 for corrections arising

at O(α′),O(α′2),O(α′3), respectively.

The vacuum energy of the supersymmetric vacuum is given by

VSUSY = −3eK |W |2 ≈ −3eK0|W0|2 . (4.6)

Therefore, in the large volume regime one may neglect α′ corrections to the scalar

potential expanded around the SUSY vacuum. In contrast, the vacuum energy of the

non-supersymmetric vacuum is parametrized by the value of c. If c is large enough,

one has |VSUSY| � |V���SUSY| ∼ δV and perturbative corrections start to give important

contributions to the scalar potential. We plot both scalar potentials with their margins

of theoretical error in Figure 4.1.

Hence, there is a critical value of c,

ccrit ≡ γA
√
a log(|A/W0|) , (4.7)

with numerical coefficient γ, such that

• for c � ccrit using the b-coupling to provide the missing uplift to zero vacuum is

fully controlled,

• while for c & ccrit any dS minima created by adding the b-coupling are in the

regime |VSUSY| � |V���SUSY| ∼ δV where the scalar potential cannot be reliably

predicted.

Thus the model illustrates the effect of unsuppressed exponential couplings but is by

far not the unique one to do so. It can easily be generalized to a whole class of models

that all exhibit the effect that we are after. One simply starts with the superpotential

of eq. (4.3), transforms the classical warp factor b into the Kähler potential by a field
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Figure 4.1: In blue: the supersymmetric KKLT potential with an uplift by c = 0, b ∼ e2A0

in blue error bars in orange (assuming p = 1
2). Perturbative corrections to the potential are

negligible. In orange: partially uplifted scalar potential in the limit of marginally controlled
uplift from the c-coupling at c = ccrit (and γ ≈ 6), b = 0. Perturbative corrections can no
longer be neglected. In red: uplifted scalar potential in the limit of marginally controlled
uplift from the c-coupling at c = ccrit , and additional b-coupling uplift with 0 < b < e2A0 .
Again, perturbative corrections can not be neglected, and putative dS minima in this regime
are not trustworthy. In all cases we have chosen A = 1, a = 0.1, W0 = −10−4.

redefinition of S as in ref. [222],

K = −3 ln

(
T + T̄ − SS̄

b2

)
(4.8)

and then replaces

b2 → b2 + b(f(T + T̄ )e−aT + c.c.) + g(T + T̄ )e−2aReT , (4.9)

with some power law functions f and g. For the special choice f = c̄ ∈ C, g = |c|2 we

obtain the simple parametrization that was originally proposed.

However, for example, we may instead choose g(T + T̄ ) = g1 · (T + T̄ ), with g1 ∈ R+

and f = 0. One can check that the bound analogous to (4.7) reads

g1 & gcrit ≡ γ′a2A2 , (4.10)

again for some numerical constant γ′. Such a model implements the behavior of (4.4)

in a less contrived way than the one we started with. We hope it has become clear

that there are many ways to write down 4d supergravity models that would reproduce

known supersymmetric or classical limits of KKLT without guaranteeing the existence
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of controlled dS vacua.

Now that we have explained what such unsuppressed exponential couplings could

in principle do, let us comment on the question whether or not we should expect this

correction to be present. Of course it would be rather surprising if the term proportional

to c were completely absent for the following reason. It is well known that if mobile

D3 branes are present, the coefficient of e−aT in the superpotential is a holomorphic

function of their position moduli [105, 223]. Their moduli space is therefore lifted

by the same non-perturbative effects that lead to volume stabilization. If D3-branes

modify the coefficient of the exponential term in the superpotential, one would expect

an D3-brane to do so as well.

This modification is relevant if the coefficient c that multiplies the gaugino con-

densate is not further suppressed by whatever mechanism suppresses the scale of the

classical uplift, in this case warping. In general this is an extra requirement that isn’t

obviously satisfied automatically once the classical uplift energy has been tuned small.

Without a 4d EFT reason that would forbid such a term we should, in the spirit of

Wilsonian effective field theory, consider the option that it is sizable.

The observation that the fate of the uplift depends so heavily on the details of the

moduli potential can be embedded into a more systematic 4d approach towards a de

Sitter uplift: For simplicity let us consider only a single light field φ in the 4d effective

field theory. We may Taylor-expand the scalar potential (before any attempt to uplift

it) around its SUSY AdS (or Minkowski) minimum,

V = V0

(
1 +

∞∑
n=2

cn

(
φ

MP

)n)
, (4.11)

assuming canonical normalization. Including an uplift means adding a further term

δV (φ) to the potential,

V (φ) −→ Ṽ (φ) = V (φ) + δV (φ) . (4.12)

As the uplift breaks supersymmetry it is usually not easy to engineer a lot of structure

into the functional form of the uplift potential, but we really only have good control

over the overall scale ε in

δV (φ) = ε

∞∑
n=0

c̃n

(
φ

MP

)n
, (4.13)

i.e. we should assume that c̃n = O(1). Then, it is easy to see that after the uplift is
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included, the scalar field φ obtains a non-trivial vev

φuplift

MP

≈ − ε

V0

c̃1

c2

+ ... ∼ (c2)−1 ∼ |V0|
m2
φ,0M

2
P

+ ... , (4.14)

which is a good approximation if φ�MP , i.e. when

|V0| � m2
φ,0M

2
P . (4.15)

Here we have inserted the physical mass mφ,0 of the lightest modulus in the supersym-

metric minimum and we have used that for an uplift to dS we need ε & −V0. This

relation is important to keep in mind: Given a supersymmetric model where all moduli

are stabilized in a way that the bound (4.15) is satisfied, success or failure of an uplift

depends only on the ability to find a meta stable SUSY breaking source of overall scale

ε ∼ −V0. In other words, the fate of the uplift depends only on the ability to tune a

single Wilson coefficient, or the uplift is controllable using 4d EFT.

In general, the value of the scalar potential of the uplift is given by

Vuplift = (V0 + ε) + εO
(
|V0|

m2
φ,0M

2
P

)
. (4.16)

So, if the bound (4.15) is violated the fate of the uplift depends on the precise values of

a large (or even infinite) tower of Planck suppressed operators as all the higher order

corrections in (4.16) become important. This UV sensitivity is completely analogous to

the one of large field inflation. This analogy is actually quite sharp: On the one hand,

models that satisfy the bound (4.15) are not UV sensitive but are necessarily tuned

just as the predictions of models of small field inflation depend only on a handful of

Wilson coefficients at the price of tuning. On the other hand, models that violate the

bound are far more generic but UV sensitive just as large field inflation is.

In the simplest examples of moduli stabilization such as KKLT [41], but also the

large volume scenario (LVS) the value of the cosmological constant at the supersym-

metric minimum VAdS is tied to the mass-scale mφ of the lightest modulus

|VAdS| ∼ m2
φM

2
P , (4.17)

and the uplift is UV sensitive. This is precisely the reason why it was possible to write

down bottom-up consistent modifications of KKLT that would prevent the uplift. But

it is important that this does not imply that the uplift really fails! There are in our

opinion (at least) two ways to make progress:
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(a) Investigate the viability of more elaborate schemes of moduli stabilization that

allow to decouple the scales V0 and mφ,0 from one another at the price of tuning.

In section 4.3 we will follow this road, and encounter a generic tension with the

strong form of the weak gravity conjecture for axions.

(b) Pin down the form of the uplift in models such as KKLT using UV input. In

the following sections we will argue that uplift flattening is a generic problem in

higher-dimensional theories and that this problem is the reason why classical no-

go theorems exist in various classical corners of string theory. We will postpone

a discussion of KKLT to chapter 5. We will find that uplift flattening does not

occur in KKLT, but rather that there is a generic difficulty to engineer the right

scale of the uplift potential.

4.2 Higher-dimensional tadpole cancellation

In view of the surprising difficulties that one usually encounters when trying to construct

consistent de Sitter vacua in string theory we find it worthwhile to investigate if the

seemingly conspirative modification of the 4d effective field theory that would prevent

an uplift to de Sitter indeed occurs.

Clearly the cleanest way to do this would be to derive the correct effective field

theory of the volume modulus together with all its SUSY breaking states from first

principles. Due to the obvious difficulty of this approach we will opt for another one.

Instead of deriving the off-shell 4d effective potential we will confront it with 10d tadpole

cancellation constraints. Before turning to the 10d setup we will outline general aspects

of compactifications that will later be relevant and use them to explain the use of tadpole

cancellation constraints and their interpretation. We will use a simple 6d toy model to

develop a physical intuition that we believe is applicable in general.

When a D = 4 + d-dimensional theory is compactified on some d-dimensional inter-

nal manifold the effective 4d potential is easily obtained from the higher-dimensional

Einstein equations. One simply starts with the most general metric ansatz

ds2 = e2A(y)g̃4
µν(x)dxµdxnu + gmn(y)dymdyn , (4.18)

with warp factor e2A, 4d coordinates xµ and internal coordinates ym. The higher-

dimensional Einstein equations read

MD−2

(
RMN −

1

2
gMNR

)
= TMN , (4.19)
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with D-dimensional Planck mass M , and stress energy tensor TMN = − 2√
−G

δSmatter

δGMN .

The effective 4d potential is then determined in terms of the internal curvature Rd and

the higher-dimensional stress energy tensor as

V ·M−4
P = V−2

w Md

∫
ddy
√
ge4A

(
− 1

4MD
T µµ −

1

2M2
Rd

)
, (4.20)

where M is the D-dimensional Planck mass, Vw = Md
∫
ddy
√
ge2A is the warped volume

and M2
P = M2Vw is the 4D Planck mass. Four-dimensional vacua of the higher-

dimensional theory correspond to local minima of this potential which encodes the

value of the cosmological constant as well as the scalar mass-spectrum.

In many instances it is hard to determine this potential in full explicitness but the

possible values it can take are severely constrained due to higher-dimensional tadpole

cancellation conditions. For example, we can take the trace over the D-dimensional

Einstein equations and insert the solution for R back into them. The result is the trace

reversed Einstein equations

MD−2RMN = TMN −
1

D − 2
TgMN . (4.21)

Then, we can trace over the four-dimensional components, and insert the warped ansatz

of eq. (4.18) to obtain

∇̃2A =
1

4
e−2(1+k)AR̃4d −

M−(D−2)

D − 2

(
D − 6

4
T µµ − Tmm

)
, (4.22)

where ∇̃2 is the scalar Laplacian associated with the fiducial metric g̃mn ≡ e2kAgmn,

and k ≡ 4/(D− 6). As the l.h. side is a total derivative, the integral over the compact

internal manifold with measure
√
g̃mn must vanish. Thus, also the integral over the r.h.

side vanishes, giving the tadpole cancellation condition

0
!

=

∫
ddy
√
g

(
e(4k−2)AR̃4d − e4kA4M−(D−2)

D − 2

[
d− 2

4
T µµ − Tmm

])
. (4.23)

It is important to keep in mind this expression holds only at the minimum of the scalar

potential (4.20) [91, 156]. This has several consequences: for example, if a higher-

dimensional source contributes an energy momentum tensor δTMN with

d− 2

4
δT µµ − δTmm < 0 , (4.24)

it does not imply that the 4D cosmological constant decreases when the source is
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included. This is because a critical point of the scalar potential is in general not a

critical point of the combination of the stress energy tensor that enters the tadpole

integrand. Therefore, as an extra source with small stress energy δTMN is added to a

stabilized setup the background stress energy tensor TMN reacts at linear order in the

perturbation rather than only at quadratic order. Although this means that tadpole

bounds have to be interpreted carefully one can derive powerful statements from it.

For example, in the absence of any source violating (4.24) the 4D vacuum energy can

never be positive. Using this, one may show that if one only allows for p-form fluxes

with 1 ≤ p ≤ D− 1 and localized objects of positive tension and co-dimension ≥ 2, de

Sitter solutions are ruled out [90]

This means that in many interesting examples the tadpole bound encodes subtle

back-reaction effects that correspond to the correction terms in (4.16): whenever a

source of positive higher-dimensional energy is turned on that satisfies the condition

(4.24) in a compactification that is (fully) stabilized by sources that also satisfy it, the

higher order corrections in (4.16) must conspire to keep the overall potential energy

negative.

4.2.1 A simple example: Freund-Rubin compactification

We will now demonstrate this behavior using the well known Freund-Rubin compact-

ification. This is a 6D theory compactified on a S2, with the S2 stabilized by 2-form

fluxes [224]. The 6D action is

S6 =
M4

2

∫ (
∗R6 −

1

2
F2 ∧ ∗F2

)
, (4.25)

with a 2-form field-strength F2 = dA1. The equations of motion/Bianchi identity are

RMN =
1

2
FMPFN

P − 1

8
gMN |F2|2 , dF2 = 0 = d ∗ F2 . (4.26)

These admit a solution where the 6D geometry is a product AdS4 × S2 and the S2

is threaded by N units of 2-form flux F2 = N
2q
ω2. Here, ω2 is the volume form of the

S2 normalized to

∫
S2

ω2 = 4π and q is the U(1) charge of the particle that couples

electrically to A1 with smallest charge. The S2 radius is fixed at

L2
0 =

3N2

32q2
, (4.27)
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and in agreement with the tadpole bound (4.23) the 4D vacuum energy reads

V ·M−4
P = −(12πM4L4

0)−1 , (4.28)

and is manifestly negative.

One may try to uplift the four-dimensional vacuum energy by adding a number N3

of three-branes of positive tension T3 smeared over the internal two-sphere. Clearly they

are a source of energy density and therefore the expectation is that they give rise to

an increase of the four-dimensional vacuum energy. However, their stress energy tensor

satisfies (D − 6)T µµ − 4Tmm = 0 and so there is no new contribution to the integrand

of eq. (4.20). Even without knowing the full solution to the 6d equations of motion

we can solve the tadpole bound for the 4d vacuum energy as a function of the a priori

unknown size of the two-sphere:

V ·M−4
P = V−2M2

∫
d2y
√
gS2 (−2|F2|2)

16M2
= − M2L2

0

12πM6L6
1

, (4.29)

where L0 is given in eq. (4.27) and L1 is the adjusted length-scale of the two-sphere.

From eq. (4.29) one follows that no matter how much three-brane tension is added, the

vacuum energy cannot increase beyond zero but at most approaches zero from below. In

this simple 6d case one can of course do better and from the internal Einstein equations

determine L1 as a function of the three-brane tension:

L2
1 = (1− T3)−1 L2

0 , with T3 ≡
N3T3

4πM4
. (4.30)

Plugging this into eq. (4.29) we see that indeed the vacuum energy approaches zero

from below as we increase the three-brane tension T3 −→ 1. The higher order terms

conspire to prevent an uplift to de Sitter. In the limit T3 = 1 the S2 decompactifies.

Note that as predicted by (4.14) the expansion parameter that controls back-reaction

is given by δV/m2
KKM

2
P because the KK-scale is the mass of the lightest degree of

freedom.

One might be concerned that three-branes and two-form fluxes share an intrinsic

property making them unsuitable uplifting ingredients because they appear with the

wrong sign under the integral of (4.23). Of course, if one only included these ingredients

in the compactification de Sitter solutions would be ruled out [90]. But as we now

demonstrate it is enough to include also a positive 6d c.c., or equivalently a five-brane

of tension T5 ≡ T5M
6, for an uplift to de Sitter by three-branes or fluxes to be possible

(see also [225] for related conclusions). In this case the size of the 2-sphere is bounded
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V (l)

l

V (l)

l

Figure 4.2: Left: Scalar potential V (l) for the S2 volume modulus in the case without a 6D
c.c. for n = 25 flux units and different values of the dimensionless three-brane tension T3:
T3 = 0 in blue, T3 = 0.1 in yellow, T3 = 0.21 in green, T3 = 0.4 in red and T3 = 0.6 in purple.
As can be seen, the more energy density, the higher the vacuum energy, but the flattening
prevents the minimum to go above zero. Right: Scalar potential V (l) for the S2 volume
modulus in the case with a 6D c.c. for n = 25 flux units, T5 = 0.004 and different values of
the dimensionless three-brane tension T3: T3 = 0 in blue, T3 = 0.1 in yellow, T3 = 0.21 in
green, T3 = 0.4 in red and T3 = 0.6 in purple. This time it is also possible to find de Sitter
minima once enough three-brane tension has been added.

from above via

l2 ≡ L2M2 =
1− T3

T5

(
1−

√
1− 3

16

T5n2

(1− T3)2

)
≤ 1− T3

T5

, (4.31)

where n ≡ N ·M/q corresponds to the number of two-form flux quanta. When n2 >

n2
max ≡ 16

3
T −1

5 (1 − T3)2 the sphere decompactifies. Thus, in order for the curvature of

the sphere to be sub-planckian we need both a small positive 6d cosmological constant

T5 � 1 as well as a large number of two-form fluxes n. Since the 6d cosmological

constant violates the bound (4.24) dS solutions are now possible. Somewhat amusingly,

even allowing for a positive 6d cosmological constant, lower-dimensional de Sitter vacua

appear only in a very narrow window of parameter space. We give a concrete example

in Figure 4.2.

The scalar potential reads (plotted in Figure 4.2)

V ·M−4
P (l) =

1

16π

[
4T5

l2
+
n2

4l6
− 4(1− T3)

l4

]
. (4.32)

Evidently, the flattening behavior observed for the case with only fluxes and three-

branes does not exhibit any intrinsic feature of branes and fluxes but is merely a

property of the simple scheme of moduli stabilization. By including a positive 6d
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c.c. it was possible to somewhat decouple the lightest modulus mass from the value of

the 4d c.c. such that a small perturbation could uplift it to 4D de Sitter.

Unfortunately, in string theory we never have to our disposal a positive ten-dimensional

cosmological constant which is part of the reason why finding lower-dimensional dS

vacua is hard.1 More so, no-go theorems of the type we have described can be derived

in many circumstances [89–103]. We will soon consider an improved version of the

statement valid for type IIB string theory.

Whenever no-go theorems of this type can be derived, the following situations occur,

(a) Uplifts from AdS fail due to the flattening of the uplift as depicted in Figure 4.2.

(b) Uplifts from Minkowski fail because there is a massless mode that is sent into a

runaway behavior by the uplift.

In both cases, the failure to stabilize moduli with sufficient ’rigidity’ is at the heart

of the problem. This is why the problem of moduli stabilization is a crucial one in

all phenomenological applications of higher-dimensional theories, in particular string

theory.

4.3 Racing through the swampland

The KL racetrack vs the weak gravity conjecture

Before we turn to the tadpole cancellation constraints in KKLT we would like to

remark on a possible relation between the weak gravity conjecture and the difficulty to

uplift to de Sitter [4]. For this purpose we focus on uplift ideas where it can be argued

that the classical uplift can be tuned almost arbitrarily small but there is little control

over the cross couplings between uplift sector and stabilization sector. In this case

substantial uplift flattening would be expected according to what we said in section

4.1. We specifically leave out the anti-brane uplift because we will argue later that

there is no substantial uplift flattening in this case. However, all uplifts via bulk

fields such as complex structure moduli that directly enter the one-loop Pfaffian in the

non-perturbative superpotential would suffer from this problem. In this case, one may

simply accept this and look for more elaborate schemes of moduli stabilization in which

the mass of the lightest modulus can be parametrically decoupled from the depth of

the scalar potential at the supersymmetric starting point. In this case dS uplifts would

be generic as we have explained in the preceeding section. In this section we focus on

1Note that massive type IIA and the SO(16)2 heterotic string have positive vacuum energy, but due to a
dilaton dependence this does not lead to ten-dimensional dS vacua.
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the only scheme of moduli stabilization that we are aware of that accomplishes this

goal. This is a variant of the old racetrack idea and was proposed by Kallosh and Linde

(KL) [104].

The reason why one might expect the WGC to constrain de Sitter uplifts is that

the volume modulus is always accompanied by an axionic partner which in type IIB

string theory can be thought of as the integral of the RR 4-form over the 4-cycle

associated to the volume modulus. Given a stabilization mechanism for the volume

we can hence inquire about the axion potential and whether or not it is consistent

with the WGC. For instance, for the KKLT scenario with a single gaugino condensate

W = W0 + A exp(−aT ), one can easily verify2 that

f/Mp ∼ (aRe(T ))−1 , (4.33)

up to order 1 coefficients. If higher order non-perturbative corrections to the superpo-

tential

δW higher order
n.p. =

∞∑
n=2

Ane
−naT (4.34)

can be ignored we necessarily have aRe(T ) > 1 and hence f is sub-Planckian.3 There-

fore, an axion potential generated via gaugino condensation remains sub-Planckian for

very much the same reason as an instanton generated potential does. We conclude that

the WGC should apply to gaugino condensation.

The KL racetrack scheme of moduli stabilization [104] is defined via the tree level

Kähler potential as given in (3.81) but with a superpotential

W = W0 + AN1 exp(−2πT/N1) +BN2 exp(−2πT/N2) , (4.35)

Usually one assumes that this arises from gaugino condensation for the product gauge

group SU(N1)× SU(N2) with gauge coupling set by the modulus T (and no massless

matter is assumed) [226]. W.l.o.g in the following we take N1 ≥ N2.

Splitting the real and imaginary (axionic) parts of T = t + iφ, the scalar potential

V (t, φ) reads [227]

V (t, φ) =V0(t) + V1(t) cos

(
2π

N1

φ− α
)

+ V2(t) cos

(
2π

N2

φ− β
)

+ V1−2(t) cos

(
2π(N2 −N1)

N1N2

φ− γ
)
, (4.36)

2The Kähler metric reads gTT̄ =
3M2

P
(T+T̄ )2

, so at fixed Re(T ) the canonically normalized axion is φc ∼
MP Im(T )/Re(T ). The factor of a−1 appears because the superpotential is invariant under T −→ T + 2πia−1.

3Such corrections would likely be generated by higher-derivative corrections of the gauge theory [172].
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ϕ

V(ϕ)
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Figure 4.3: We depict the axion potential on a fundamental domain for choices of parameters
(A,B,N1, N2) = (1,−1.1, 100, 99). On the left, we plot the potential at t = 1.6t0 (where t0 is
defined in eq. 4.43) and one notices that the small wavelength oscillations play a dominant
role. On the right we plot the potential for t = t0 where the long wavelength oscillation
dominates. For t = t0 the axion decay constant in Planck units is O(100).

with α ≡ arg(AW0), β ≡ arg(BW0), γ ≡ arg(AB) and coefficient functions

V0(t) =
1

2t2

(
2πN1|A|2

(
1 +

2πt

3N1

)
e
− 4π
N1

t
+ 2πN2|B|2

(
1 +

2πt

3N2

)
e
− 4π
N2

t
)
, (4.37)

V1(t) =2π
|AW0|

2t2
e
− 2π
N1

t
, V2(t) = 2π

|BW0|
2t2

e
− 2π
N2

t
, (4.38)

V1−2(t) =
|AB|
2t2

(
2π(N1 +N2) +

8π2t

3

)
e
−( 2π

N1
+ 2π
N2

)t
. (4.39)

There exist three distinct harmonics for the axion φ with coefficient functions V1, V2 and

V1−2 (see figure 4.3 for a plot of the scalar potential along the axion direction in field

space). The last one sets the axion periodicity to N1N2

N1−N2
so the axion decay constant is

fφ/MP ∼
N1N2

N1 −N2

· 1

t
. (4.40)

This is super-Planckian when N ≡ N1 ≈ N2 and N < t < N2, a regime where the

fractional instanton expansion would seem to be under control. The strong form of

the WGC would require the short wavelength wiggles with amplitudes V1 and V2 to

dominate over the long wavelength harmonic with amplitude V1−2. This has to be true

all the way down to the breakdown of the fractional instanton expansion at t ∼ N .

In order for the KL racetrack to be compatible with this (i.e. V1−2

!

≤ max(V1, V2)) we

would have to demand that

|W0| & min(|A|, |B|) . (4.41)

However, we would find such a strict bound on the flux number W0 very surprising, in

particular because it seems that no such bound can be derived for the single gauge group
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t

V(t)

Figure 4.4: The KL racetrack potential along the radial direction in the limit of (4.42),
with the same choices of parameters as in figure 4.3. One notices a Minkowski minimum at
t = t0 ≈ 150 and a standard KKLT minimum at large values of t.

KKLT model. Moreover, explicit studies of the classical flux superpotential indicate

that the genericity arguments for a small W0 are valid [43].

The phenomenological virtue of this model is that when the parameters A,B,W0 of

the model are tuned to satisfy

−W0 = AN1

(
−A
B

)N2/(N1−N2)

+BN2

(
−A
B

)N1/(N1−N2)

, (4.42)

there exists a SUSY Minkowski minimum at

2πT0 ≡ 2π(t0 + iφ0) =
N1N2

(N1 −N2)
log

(
−B
A

)
, (4.43)

and the mass of the volume modulus is finite (a corresponding minimum exists also

when the relation (4.42) is detuned, but the vacuum will be of Anti-de-Sitter type.).

See figure 4.4 for a plot of the scalar potential in this limit. In order for this minimum

to lie at positive volume it is required that |B| > |A|.
If the tuning of eq. (4.42) holds, one has that

|W0| ≤ |Ae−2πt0/N1|+ |Be−2πt0/N2| . (4.44)

It then follows that if we take |A/B| = O(1) the WGC-type bound (4.41) cannot

possibly be satisfied unless e−2πt0/N & O(1). In other words, the Minkowski racetrack

minimum would lie outside the (naive) validity of the controlled fractional instanton

expansion. As a consequence, if the WGC holds, the racetrack minimum cannot be

used as a controlled starting point for uplifting to de Sitter space, i.e. there is no
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parametricallly controlled de Sitter uplift within the racetrack scheme.

Of course this conclusion can be evaded if hierarchically different values for the

one-loop Pfaffians A,B are chosen [4, 221, 228]. Given that the two seven-brane stacks

have to wrap the same divisor class we do not find it reasonable to expect that this can

be done.

There are of course many ways how this tension could get resolved. The simplest

options would be that

(a) the required gauge theory configurations cannot be engineered in the type IIB

corner of string theory, or

(b) the bound of (4.41) holds, or

(c) the strong form of the WGC does not hold in the axion context.

Interestingly, we will find explicit racetrack type superpotentials in chapter 6 where a

condition on the ranks of the gauge groups involved prevents long wavelength dominant

contributions to the scalar potential. This can be taken as evidence for option (a).

Whichever option holds, we observe an unexpected relation between the ability to

realize parametrically large axion decay constants and parametrically controlled de

Sitter vacua. Success or failure to achieve the former, possibly determines the viability

of the latter.

4.4 Discussion

We would like to give a brief summary of the conclusions we have drawn in this section.

There are, in our opinion, two conceivable mechanisms by which potential uplifts do

de Sitter vacua could fail in principle. The first, we have dubbed uplift flattening: In

the simplest schemes of moduli stabilization it is not possible to engineer a hierarchy

between the depth of the scalar potential in its AdS minimum VAdS, and the mass scale

of the lightest modulus mT , concretely

m2
TM

2
P ∼ |VAdS| . (4.45)

This is true for simple Freund Rubin compactifications as illustrated in section 4.2.1,

but also for the KKLT mechanism.4 In this case, given only the existence and metasta-

bility of (4d-)spacetime filling objects that can perturb the AdS vacuum and raise the

vacuum energy (an uplift), the existence of de Sitter vacua is not guaranteed due to

the possibly significant backreaction of the uplift on the lightest modulus. Significant

4It also holds for the Large volume scenario (LVS) [75].
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uplift flattening means that backreaction is sufficiently strong to preclude the existence

of positive energy solutions in regimes of parametric control over the given perturbative

expansion scheme.

Whether or not this occurs depends on the detailed form of the uplift potential as

a function of the lightest modulus. We have argued in section 4.1 that the form of the

uplift potential is generically hard to compute reliably or even estimate from an EFT

point of view due to its sensitivity to a large number of Planck suppressed operators.

Together with the observation that uplift flattening occurs rather generically in higher-

dimensional setups, we are motivated to investigate whether or not this happens also

in KKLT. Investigating this from a ten-dimensional perspective will be the focus of the

next section.

The obvious way to return the question of the existence of de Sitter uplifts back into

the realm of four-dimensional EFT would be to engineer alternative schemes of moduli

stabilization where the relation (4.45) can be violated parametrically. In section 4.3

we have considered the KL racetrack scheme which is designed to do precisely this,

and have shown that such models are in tension with the weak gravity conjecture for

axions. So, rather surprisingly, we have given circumstantial evidence that realizing

parametrically controlled de Sitter vacua from this line of thought may be difficult for

the same reasons that engineering models of large field inflation is difficult (or even

impossible) in string theory.



Chapter 5

KKLT in ten dimensions

In this section we would like to put the KKLT proposal under scrutiny. We focus on

this model because 1) it is one of the most studied models [105–107], 2) it is consistent

with the general expectation that de Sitter vacua are non-generic and at best meta-

stable [41, 165, 229, 230], and 3) there is evidence that the tuning requirements that

make it non-generic can actually be met [152]. So in many ways the KKLT proposal

offers concrete evidence for the existence of a large landscape of dS solutions in string

theory. This evidence is hard to simply dismiss. Nevertheless, the question whether

or not de Sitter vacua exist in string theory has received renewed attention, in part

due to the recently proposed conjecture that such solutions cannot exist as a matter of

principle [79–81, 231]. Put in the jargon of the field, it has been claimed that all EFTs

coupled to gravity with de Sitter (dS) vacua reside in the swampland.1 This criterium

is referred to as the no-dS conjecture.

The no-dS conjecture is in stark contrast to what an effective field theorist would

conclude from the observational fact that our universe is undergoing accelerated ex-

pansion. Arguably, from her point of view a tiny but positive cosmological constant

would be the simplest and most natural fit to the data, see section 2.3. In particular,

she would conclude that in the far future the geometry of our universe will be well

described by a patch of de Sitter (dS) space.

Some of the evidence for the conjecture comes from the fact that in various classical

corners of string theory there exist no-go theorems against the existence of de Sitter

solutions [89–96, 98, 99, 101–103, 232]. In section 4.2.1 we have related these to the

problem of uplift flattening. Due to the existence of these theorems (and also due to

the Dine Seiberg problem [165]) it seems natural to expect that if any dS solutions

exist at all, they will require a competition between classical and quantum effects that

1For a discussion regarding the form and viability of the conjecture we refer the reader to references [82–88].

85



86 CHAPTER 5. KKLT IN TEN DIMENSIONS

cannot be mapped into a purely classical effect by any duality transformation.2 As we

have explained, the KKLT proposal is one of the most convincing proposals of such a

kind.3

There are two interesting mutually exclusive but as far as we can judge today equally

likely options that we will entertain in the following:

(a) The KKLT proposal withstands sufficiently many lines of attack so that it can

be established beyond reasonable doubt. In this case the no-dS conjecture would

clearly be wrong and the dS landscape of string theory should be continued to be

explored in as many ways as possible.

(b) The KKLT proposal turns out to be inconsistent, and we should focus on devising

new ideas for realizing dS vacua in string theory or alternative ideas of dark energy.

We will do so by considering a ten-dimensional consistency requirement in the form of

a tadpole cancellation very similar to the one of eq. (4.23). This is obtained as follows.

Starting from the 10d Einstein frame action of Type IIB supergravity, and the usual

warped ansatz (4.18) for the ten-dimensional metric and five form one may combine the

trace reversed Einstein equations with the five-form Bianchi identity to obtain [40, 91]

∇̃2Φ− =R̃4d +
e2A

4Im(τ)
|G−3 |2 + e−6A|∂Φ−|2 + e2A∆loc

2π
, (5.1)

where

G±3 ≡ (∗6 ± i)G3 , Φ± ≡ e4A ± α , and ∆loc ≡ 1

4

(
Tmm − T µµ

)loc − T3ρ
loc
3 . (5.2)

Here G3 is the complexified three-form F3 − τH3. Moreover T locMN and T3ρ
loc
3 are the

stress energy tensor and D3-brane charge density of localized objects. We may integrate

this equation over the internal manifold to obtain the tadpole cancellation condition

[40, 91]

0 =

∫
d6y
√
g6

[
e6AR̃4d + e8A ∆

2π
+ |∂Φ−|2

]
, (5.3)

2Whether this intuition is correct remains an open question as there are many proposals for purely classical
meta-stable dS solutions, e.g. supercritical strings [233–235], type IIB string theory compactified on orien-
tifolded products of Riemann surfaces [225], proposals involving combinations of 05 and 07 planes [236], and
more recent work in the context of F-theory [237–239]. On the type IIA side there were studies of dS on
(generalizations of) twisted tori [83, 93, 99, 240]. These proposals should be further scrutinized in the future
as they form possible counter examples against the no-dS conjecture.

3For further dS proposals involving balancing classical and quantum effects, see e.g. [73, 75, 83, 225, 241–
251], and the recent review [209]. For a new perspective on dark energy from F-theory, see [252, 253].
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where

∆ ≡ 2π
|G−3 |2

4Im(τ)
+ ∆loc . (5.4)

From this expression it follows immediately that as long as all localized sources satisfy

∆loc ≥ 0 the unique classical Minkowski solutions of type IIB string theory are the ISD

solutions,

G−3 = ∆loc = R̃4D = Φ− = 0 . (5.5)

Under the same assumption de Sitter solutions are ruled out as well. Therefore, a

necessary condition for realizing 4D de Sitter solutions is that there exists at least one

localized object that satisfies ∆loc < 0.4 This is a remarkably strong condition because

it is the opposite of a BPS bound for D3 branes. In particular sources like D7 branes,

O7 planes (which carry induced D3 brane charge), D3 branes, O3 planes and even

anti-D3 branes are not enough to violate the bound [40].

Another problem is the appearance of eight powers of the warp factor in front of

the contribution from fluxes and localized sources. This means that the stress energy

of all warped uplifts essentially does not contribute to the tadpole. Whatever object

sources the stress energy that would allow the four-dimensional vacuum energy to lift

beyond zero, it must be a bulk effect. This is slightly discouraging because the whole

idea of warped de Sitter uplifts is that some isolated strongly warped supersymmetry

breaking source contributes to the four-dimensional vacuum energy while its effects

on the bulk geometry are under parametric control. In KKLT, the only ISD breaking

source aside from the uplift itself is the physics of gaugino condensation on the stack

of seven-branes. Thus the stress energy induced by gaugino condensation must not

only change significantly, it must even change in sign. This is the tadpole cancellation

problem as formulated in [5]. Whether or not this problem can be solved is still a

subject of discussion. We will argue shortly, based on [1] and in agreement with ref.

[110], that this problem is solved dynamically in KKLT. However, the authors of [111]

disagree with us, and we will explain where the disagreement lies.

Before we get there we must introduce what is known about the ten-dimensional view

on four-dimensional gaugino condensation. A conjectured 10d lift of the KKLT vacua

goes via the by-hand insertion of a non-vanishing C-valued expectation value for the

seven-brane gaugino bilinear 〈λλ〉 6= 0 [106]. This conjecture is supported for instance

by the fact that the non-perturbative superpotential for D3-brane position moduli can

be accurately computed from ten-dimensional supergravity via the insertion of the

gaugino bilinear as a classical source term [106], and the ability to find supersymmetric

4Alternatively one might invoke quantum corrections that cannot be described in 10d.
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backreacted solutions [107]. We will call this the 10d gaugino condensation conjecture.

If this conjecture were true in general, roughly speaking, it would allow to constrain

de Sitter vacua of the KKLT type much via the same tools that are used to exclude

purely classical solutions in [90].

We will explain that while the 10d gaugino condensation conjecture can be argued

to be valid for the supersymmetric KKLT AdS vacua, it will fail to hold once supersym-

metry is broken: there are additional contributions to the 10d tadpole equation that

can be shown to arise from demanding only the consistency of the supersymmetric

KKLT construction and that become relevant only once SUSY is broken. We find it

unlikely that these contributions can be captured by a local 10d action in the above

sense. Moreover, under the assumption that arbitrarily strongly warped regions exist in

the flux compactification, these new contributions can be shown to precisely cancel the

tadpole once SUSY is broken by a warped uplift. In total, we see no reason to expect

the failure of KKLT uplifts from considerations of 10d tadpole cancellation alone. This

can be interpreted as evidence that the problem of uplift-flattening does not occur in

KKLT. In other words, the coefficient c in eq. (4.3) is sufficiently suppressed to play

no role.

We will later contrast this result by arguing that a successful uplift to a dS vacuum

via warped uplifts, and more so to a SUSY breaking AdS vacuum, is highly constrained

by the geometrical consistency requirement that the warped throat used for the uplift

must fit into the bulk CY.5 We will show that the simplest examples with a single Kähler

modulus can hardly satisfy this basic requirement. For the case of many Kähler moduli

we speculate that this problem becomes even more severe unless the compactification

manifold satisfies additional geometrical properties that we believe are highly non-

generic. It would be very interesting to investigate whether such geometries can be

realized in a controlled manner. This is, in our opinion, a good physical motivation to

try to understand in detail the geometriy of CY compactifications beyond topological

data. We will however not pursue this goal in this thesis.

5.1 Non-perturbative D3 brane potentials: Three perspectives

As explained in the introduction of this section we would like to study moduli stabi-

lization and the uplift to de Sitter space from a ten-dimensional point of view. The

classical part is extremely well understood: the Gukov-Vafa-Witten superpotential can

be lifted to the ten-dimensional three-form potential of type IIB supergravity [154] and

the 4d SUSY conditions that determine the three-form fluxes to be of Hodge-type (2, 1)

5Note that the same requirement has been used to constrain inflationary models in [46] and in [230] to
argue that the flux superpotential must be tuned extremely small for the KKLT construction to be consistent.
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lift to the 10d SUSY conditions of B-type [254]. Furthermore the 4d scalar potential

is minimized precisely when the 10d equations of motion are solved by the imaginary

self-dual (ISD) solutions of [40].

An analogous 10d ←→ 4d correspondence of Kähler moduli stabilization is some-

what harder to establish, both conceptually as well as technically:6 the dynamical

origin of the exponential superpotential is the condensation of gaugino bilinears in the

4d Yang Mills gauge theory (or euclidean D3 brane instantons). The scale below which

the condensation occurs is the dynamical scale of the gauge-theory which typically lies

far below the Kaluza-Klein scale. So, how can it be possible even in principle to include

the non-perturbative effects in a higher-dimensional setup? First, there certainly exist

geometrical setups compatible with the correct order of scales: an example is that of

an ‘anisotropic’ Calabi-Yau space in which the four-cycle that the 7-branes wrap is

much smaller than the typical length-scale of the transverse space [106]. In this case

the non-perturbative scale of gaugino condensation can lie far below the Kaluza-Klein

scale of the four-cycle and at the same scale as the transverse Kaluza-Klein scale. An-

other situation of this type corresponds to a compactification space that is equipped

with warped throats of significant warping. In this case the warped Kaluza-Klein scale

lies exponentially below the bulk KK-scale.

There has however been crucial progress in recent years in establishing a far more

general ten-dimensional picture of gaugino condensation [105, 107, 255, 256]. First,

note that if a mobile D3-brane is present, the classical moduli space of the world-

volume scalars is identified with the compactification geometry. In the absence of

non-perturbative effects there is no potential for the world-volume scalars and the

internal geometry can thus be probed at arbitrarily small energies. Thus, even if non-

perturbative effects generate a potential for the world volume scalars one may probe

the (quantum-deformed) internal flux geometry at scales that lie far below the KK-

scale. With this in mind one should be able to effectively describe the SUSY vacua

with non-perturbative Kähler stabilization by the 10D equations of motion, corrected

at order of the value of the gaugino condensate 〈λλ〉.
As there is a controversy surrounding the question how the ten-dimensional lift of

KKLT vacua should be implemented [1, 110, 111] we will now explain in some detail

what kinds of technical problems one encounters and how these are resolved eventually.

Remarkably, as a first step, the following simple prescription advocated by the

authors of [106, 107, 257] captures an important set of physical effects,

(a) Start with the classical type IIB supergravity together with the DBI and CS

actions for localized objects to quadratic order in the worldvolume fermions.

6We thank Arthur Hebecker for discussions concerning this point.
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(b) Solve the 10d equations of motion, assuming a non-vanishing C-valued expectation

value of the fermion bilinear associated with the 7-brane gaugino.

According to this the relevant term in the action is [107]

SD7 ⊇
∫
M10

πδ
(0)
D eφ/2e−4A 〈λ̄λ̄〉

16π2
G3 ∧ ∗Ω + c.c. , (5.6)

and acts as a source for the three-form fluxes. Here, λλ ≡ Tr
(
λ̄PLλ

)
.

Clearly this approach needs to be justified. For this it is useful to consider the

non-perturbative lifting of the D3-brane position moduli space. Recall that in clas-

sical ISD solutions D3 branes can be moved without energy cost. The 4d fields that

parameterize their positions in the internal CY are massless moduli. However, at the

non-perturbative level, this moduli space is generically lifted. This effect can be studied

from three different angles. First, there is the standard 4d perspective. In compact-

ifications with both D7-branes and mobile D3 branes the gauge-kinetic function f of

the D7 brane gauge theory depends on the open-string D3-brane position moduli zi

via one-loop open string threshold corrections which were calculated explicitly e.g. for

a T 4/Z2 × T 2 orientifold of type IIB string theory [223]. Then, at low energies the

non-perturbative superpotential

W ∝ e
2πi
N
f(zi,T ) (5.7)

is a function of the position moduli zi which obtain a non-trivial scalar potential.

Interestingly, the open string calculation of [223] was perfectly matched with a dual

closed string calculation in [105, 255] as follows: the position moduli yiD3 of a mobile

D3 brane treated as a classical localized source in the 10d supergravity enter the electro

static equation for the warp factor

∇2
ye
−4A(y; yD3) ∝ δ6(y − yD3)√

gCY
− ρbackground , (5.8)

where the second term is a background charge that integrates to one. One can then

show that

∇2
yD3
e−4A(y; yD3) ∝ δ6(y − yD3)√

gCY
− 1

Vol(CY )
, (5.9)

in other words the perturbation of the warp factor at some position y induced by a

moving D3 brane does not depend on the form of background charge distribution.

Then, the divisor volume which is identified with the imaginary part of the seven-
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brane gauge kinetic function is

Im(f(yD3)) ∼ Vol(D) =

∫
D

d4y
√
g e−4A(yD3) . (5.10)

Therefore, it acquires a dependence on the position moduli of the D3 branes. This can

be solved explicitly in toroidal setups and reproduces the open string calculation of

[223]. Again, the D3 brane position moduli enter the non-perturbative superpotential

in the 4d EFT7. The closed string computation is particularly useful as it readily

generalizes beyond simple toroidal orientifolds. In particular, for a stack of N D7-

branes with holomorphic embedding equation h(z) = 0, the gauge-kinetic function

f(T, zi) of the D7 gauge theory depends on the volume modulus T as well as the D3

position moduli zi [105]

f(T, z) = iT +
lnh(z)

2πi
. (5.11)

Using this dependence of the gauge-kinetic function f on the D3-brane position moduli

one may determine the 4D non-perturbative superpotential to be

W ∝ e
2πi
N
f = h(z)1/Ne−

2π
N
T . (5.12)

So far, classical 10d physics has been used only to obtain the gauge kinetic function

(5.11) while the generation of a non-trivial potential for the D3-brane moduli is dealt

with entirely within 4d effective field theory. Crucially these two steps could be sepa-

rated because the classical back-reaction of a D3-brane on the classical 10D supergrav-

ity solution is finite. This is clearly not the case for an D3-brane due to the run-away

instability. Thus it is desirable to have in hand a quantum corrected 10d action. The

key points were derived in [106], where the authors analyzed the generation of a non-

trivial classical potential for the position moduli of D3 branes in ISD backgrounds

subject to harmonic non-ISD perturbations. Crucially, it was shown that in conifold

backgrounds every superpotential that can be written down for the position moduli in

the 4d effective field theory can be matched to a non-compact classical 10d supergrav-

ity solution such that the scalar potentials coincide. Hence, the quantum corrected 10d

supergravity that reproduces the correct D3 brane potential is only corrected by terms

that are localized away from the warped throat. Such localized terms are necessary

because the entirely uncorrected type IIB supergravity equations do not admit static

non-ISD perturbations in the compact case due to the global constraints of [40].

It is tempting to identify these localized terms with the terms in the 7-brane action

that are proportional to the gaugino bilinear 〈λλ〉. Indeed, in non-compact examples,

7See also [258, 259] for a derivation using the language of generalized complex geometry.
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the superpotential (5.12) can be encoded in so-called series I three-form flux

(G3)ij̄k̄ ∝ 〈λλ〉∇i∇lRe(lnh(z))glm̄Ω̄m̄j̄k̄ , (5.13)

where Ω is the holomorphic three-form of the Calabi-Yau [106]. This is precisely the

perturbation of three-form fluxes that is sourced by the fermionic bilinear term in the

action (5.6).

5.2 UV ambiguities and their resolution

Guided by the non-trivial consistency check that we just described one would conclude

that the relevant details of non-perturbative volume stabilization are indeed captured

by the classical 10d supergravity action assuming a non-vanishing expectation value of

the gaugino bilinear. However, this prescription is not fully complete which can be seen

from the gravitational backreaction sourced by the action (5.6):

In a compact setup the action (5.6) sources a three-form profile [107]

G3 = Gh
3 + e−φ/2

〈λλ〉
16π2

dX

2π
, X ≡ ∂iΨg

ij̄Ω̄j̄k̄l̄

1

2
dz̄k̄ ∧ dz̄ l̄ , (5.14)

where Ψ is a scalar Green’s function,

∇2Ψ = 2π

(
δ(Σ)− Vol(Σ)

Vol(CY )

)
, and ∂̄X =

1

2
(∇2Ψ)Ω . (5.15)

Here, δ(Σ) is the scalar delta function that localizes on the four-cycle that the 7-branes

wrap, and Gh
3 are the harmonic ISD background fluxes. Note that in a non-compact

setup Ψ is identified with Re log h(zi), where h(zi) = 0 is the holomorphic embedding

equation of the 7-brane divisor [106].

But this implies that the ISD component of G3

GISD
3 ∝ ∂̄X ∝ (∇2Ψ)Ω ⊃ πδ(Σ)Ω , (5.16)

contains a term proportional to δ(Σ)Ω, and plugging this back into the action (5.6)

produces an ill-defined term proportional to δ(0). Clearly this is a short-distance sin-

gularity. With a hard UV cutoff ΛUV, it scales as [5, 260]

Son−shell ∼ |〈λλ〉|2δΣ(0) ∼ |〈λλ〉|2Λ2
UV + finite . (5.17)

Similarly, the contribution of gaugino condensation to the stress energy tensor diverges

in this way. Early attempts to quantify the contribution of gaugino condensation to
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the tadpole cancellation conditions of type IIB supergravity were based on cutting off

divergent integrals of this sort at the string scale. However, this procedure could not

be reconciled with the existence of four-dimensional de Sitter vacua of the KKLT type

[5, 260].

It was then understood in ref. [108, 109] that the action of eq. (5.6) must in fact

be completed to a perfect square. We quote from ref. [110], slightly modified to apply

to the CY threefold case, and adapted to our conventions,

SIIB ⊃ −π
∫
M10

d10x
√
−Geφ

∣∣∣∣G3 − P
(
e−

φ
2 δ(Σ)

〈λλ〉
16π2

Ω

)∣∣∣∣2 , (5.18)

where P (·) projects onto the space of closed forms.8 This result is valid for constant

dilaton. Expanding this to linear order in 〈λλ〉 one recovers the kinetic term of G3 and

the action (5.6) so the equations of motion for G3 are left unaltered. This modification

of the action was motivated by analogies to the heterotic string [108] and shown to be

required by supersymmetry [109]. Since9

P (δ(Σ)Ω) = P

((
1

2π
∇2Ψ +

Vol(Σ)

Vol(CY )

)
Ω

)
=
dX

2π
+

Vol(Σ)

Vol(CY )
Ω , (5.19)

it follows that the on-shell action becomes

Son-shell = −π
∫
M10

d10x
√
−Geφ

(∣∣∣∣Gh
3 − e−

φ
2
〈λλ〉
16π2

Vol(Σ)

Vol(CY )
Ω

∣∣∣∣2 −Gh
3 · (∗6Gh

3)

)
, (5.20)

which is manifestly finite and vanishes in the limit of infinite transverse volume and

ISD harmonic fluxes.10 Upon dimensional reduction to four dimensions, this action can

be compared with the classical four-dimensional N = 1 supergravity action and there

is perfect agreement [108].

5.3 10d vs 4d supersymmetry conditions

Now we would like to perform a further consistency check of the proposed lift of KKLT

to ten dimensions. In ref. [107] it was shown at linear order in the expectation value of

the gaugino condensate that the background sourced by the quantum corrected action

(5.6) maintains supersymmetry in a non-compact setup. Here, following [5], we wish

to comment on a generic obstruction against unbroken supersymmetry in a compactly

8The Hodge decomposition theorem states that every p-form ωp can be uniquely decomposed into a har-
monic, exact and co-exact component, ωp = ωhp + dαp−1 + d†βp+1. P (ωp) ≡ ωhp + dαp−1.

9We have that (∇2Ψ)Ω = 2∂̄X = dX − (∂ − ∂̄)X = dX + 1
8
d†(∂Ψ ∧ Ω).

10The second term comes from the CS term of the 10d action.
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embedded scenario: Away from the location of the divisor Σ, the Hodge type (0, 3)

component of the three-form fluxes as perturbed by the gaugino bilinear read

G3|(0,3) =

(
g0,3 + e−φ/2

〈λλ〉
16π2

∇2Ψ

4π

)
Ω

y/∈Σ
=

(
g0,3 − e−φ/2 〈λλ〉

32π2

Vol(Σ)

Vol(CY )

)
Ω , (5.21)

where g0,3 = const. is the (0, 3) piece of the harmonic background fluxes. This means

that for generic values of g0,3 and the gaugino bilinear, the (0, 3) component of the

three-form fluxes are non-vanishing. This however signals supersymmetry breaking as

gauginos on a probe brane (say a D3 brane) are known to obtain a soft mass term from

such fluxes [261–263]. Thus, a necessary condition for unbroken supersymmetry is that

the classical and the quantum term cancel against each other,

g0,3 !
= e−φ/2

〈λλ〉
32π2

Vol(Σ)

Vol(CY )
. (5.22)

This condition should be understood as a constraint on the value that the gaugino

condensate takes, and can be compared with the four-dimensional F-term equation

of the volume modulus. To facilitate this, first it is necessary to rescale the gaugino

according to λ −→ Vol(CY )3/4λ in order to obtain canonical normalization in four-

dimensional Einstein frame. Second, the flux number W0 that appears in the 4d KKLT

description is given by

W0 = eφ/2
∫
Gharmonic

3 ∧ Ω

||Ω|| = g0,3||Ω||eφ/2 = g0,3eφ/2
√

Vol(CY ) , (5.23)

so the ten-dimensional SUSY condition can be written as

W0
!∼ Vol(CY )Vol(Σ)〈λλ〉 . (5.24)

The four-dimensional F-term equation reads

DTW ∼ −2πAe−2πT/N − 3

T + T̄
W0

!
= 0 , (5.25)

which upon identifying T + T̄ ∼ Vol(Σ), and

〈λλ〉 = 32π2eK/2Ae−2πT/N ∼ Vol(CY )−1Ae−2πT/N , (5.26)
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Figure 5.1: Cartoon of backreaction of supersymmetric gaugino condensation on the ten-
dimensional flux background. The Hodge type (0, 3) background flux (depicted in blue) is
fully localized onto the seven-divisor.

indeed reproduces the ten-dimensional SUSY condition (5.24).11 This means that we

now understand from a ten-dimensional point of view the physical mechanism by which

gaugino condensation can restore the classically broken supersymmetry in the bulk

spacetime: It localizes the (0, 3) component of the three-form fluxes onto the divisor

Σ so that branes probing the fluxed geometry away from the divisor see only fluxes of

Hodge type (2, 1), compatible with unbroken SUSY on their worldvolume (see Figure

5.1), despite the fact that [G3] /∈ H2,1(X,Z).

Once a SUSY breaking source such as an anti-brane in a warped throat is introduced

which pulls on the volume modulus, the relation between W0 and 〈λλ〉 will of course

be detuned. This effect reintroduces a bulk (0, 3) component with strength set by the

amount of SUSY breaking from the uplift that is seen by probe D-brane gauge theories.

5.4 Gaugino bilinears as classical sources?

In the previous sections we have seen that for many purposes it is remarkably consistent

to treat quantum gaugino bilinears as effective classical source terms. We would now

like to estimate the limitations of such a procedure. We consider the microscopic

Lagrangian of 4d N = 1 pure SU(N) Yang-Mills coupled to the Kähler modulus T ,

11In comparing with eq. (3.78) the reader will notice a further factor eK/2. As the superpotential is a
section of a line bundle in supergravity, this factor is introduced to relate the holomorphic superpotential to a
physical scale.
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and the gravity multiplet. Our conventions are as in [145] such that the gauge kinetic

term reads

e−1Lgauge = −1

4
Re(fAB(T ))FA

µνF
µν B + ... , (5.27)

with gauge kinetic function fAB = T
4π
δAB. We consider the tree-level Kähler as in eq.

(3.81) and classical constant flux superpotential W = W0. It is useful to define the

composite glueball field S as

S ≡ δAB〈λ̄APLλB〉
16π

≡ 〈λλ〉
16π

. (5.28)

We focus on the gaugino mass term and quartic gaugino interactions in the four-

dimensional Lagrangian,

Lλ =− 1

16π
(T + T̄ )−1/2W0Tr

(
λ̄PLλ

)
+ h.c.− 1

48

(
T + T̄

4π

)2

|Tr
(
λ̄PLλ

)
|2

+
3

64

(
T + T̄

8π

)2

Tr
(
λ̄γµγ∗λ

)
Tr
(
λ̄γµγ∗λ

)
. (5.29)

It is straightforward to check that the first line matches with the reduction of the 10d

on-shell action. The second line is not yet reproduced by the 10d action as we have not

included non-trivial expectation values for the (pseudo-)vector bilinear, but this is of

no relevance here since we are interested in Lorentz invariant four-dimensional vacua.

Given the manifestly finite, and appropriately ’quantum corrected’ ten-dimensional

action described in section 5.2, the existence of a well-defined ten-dimensional lift of

KKLT can be considered an established fact. One might hope that these vacua are

described perfectly well by choosing an appropriate C-valued expectation value for

the gaugino bilinear and compute the backreaction. While this can be done without

encountering singular behavior, we will now argue that this approach is not the correct

one in general.

First, let us ask (within the 4d supergravity) what is the effective scalar potential

V (T, T̄ , S, S̄) once we insert by hand a non-vanishing expectation value S 6= 0. Due to

Lorentz invariance 〈Tr
(
λ̄γµγ∗λ

)
〉 = 0. Clearly, we obtain

Vmicroscopic(T, T̄ , S, S̄) =
(T + T̄ )2

3
|S|2 +

SW0 + h.c.

(T + T̄ )1/2
. (5.30)

Let us call this the microscopic potential. It is not obvious that this expression is

physically meaningful at all. Really, we should have used the fact that the gauge theory

is gapped, integrated out all of its degrees of freedom and determined the effective scalar



5.5. GRAVITATIONAL BACKREACTION: HOW TO CANCEL A TADPOLE 97

potential for the Kähler modulus. The effective superpotential below the mass scale of

the gauge multiplet is given in eq. (3.80), so the scalar potential is given by the usual

F-term scalar potential

Veffective(T, T̄ ) = eK
(
gT T̄ |DTW |2 − 3|W |2

)
=

1

3(T + T̄ )

(
1 +

3

2πRe(T )
N

)∣∣2πAe−2πT/N
∣∣2 +

2πAe−2πT/NW0 + h.c.

(T + T̄ )2
. (5.31)

This is the physically meaningful low energy effective potential. However, one notices

immediately that in the limit of small ’t Hooft coupling Re(T ) � N , the low energy

effective potential is actually the same as the microscopic potential upon plugging in the

well known value for the gaugino condensate of eq. (3.78) (weighed by a supergravity

normalization factor eK/2)

S = 2πeK/2Ae−2πT/N . (5.32)

So we see that to good approximation the scalar potential is given by (minus) the

classical action evaluated at the correct value of the gaugino bilinear. The strong gauge

dynamics essentially only freezes the gauge degrees of freedom and sets the expectation

value of the gaugino condensate. Up to these effects, the classical action seems to

approximate the low energy effective potential very well. Therefore we expect that the

approximate equality between effective and microscopic potential holds also when the

4d theory is lifted to the full 8d gauge theory on the seven-brane stack embedded into

the 10d bulk. However, at this point we would like to emphasize the fact that

∂TVeffective ≈ ∂TVmicroscopic +
∂S(T )

∂T
∂SVmicroscopic 6= ∂TVmicroscopic , (5.33)

so whenever derivatives of the scalar potential with respect to the Kähler modulus

become relevant, special care is needed. In particular, this implies that all physical

observables that are sensitive to derivatives of the scalar potential cannot be computed

by treating gaugino condensates as local classical source terms in the 10d action. This

is because the definition of T is non-local from the 10d perspective, and S varies expo-

nentially with T . In section 5.5 we will show that V ′(T ) indeed plays a crucial part in

ten-dimensional tadpole cancellation requirements.

5.5 Gravitational backreaction: How to cancel a tadpole

We now wish to determine the contribution of gaugino condensation to the integrand

of the 10d tadpole constraint. In other words we need to compute the stress energy
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tensor of gaugino condensation. Let us first be open minded to what is the precise form

of the D7-brane action that perturbs the GKP background. We only write

SD7[G] =

∫
d4x

∫
d6y
√
−GS̃[g6](x, y) , (5.34)

where S̃ is some yet unspecified space-time dependent functional of the internal metric.

We now restrict ourselves to trivial warping. The internal and external components of

the stress energy tensor of SD7[G] read

TD7
µν = g4

µνS̃[g6](y) , (5.35)

TD7
mn = − 2√

g6

δS[g6]

δgmn6

, with S[g6] ≡
∫
d6y
√
g6S̃[g6] . (5.36)

We are now ready to evaluate the contribution to the tadpole coming from SD7[g].12

We may expand the (inverse) internal metric gmn in a complete set of symmetric two-

tensors {Smni },
gmn =

∑
i

aiS
mn
i , (5.37)

with Fourier coefficients ai. These can for instance be taken as eigen-functions of the

linearized Einstein equations which corresponds to the usual KK-mode expansion. We

take the completeness relation to be∫
CY

d6y
√
g0S

mn
i Sj mn = δij , (5.38)

where g0 is a solution to the 10d equations of motion (before the inclusion of SD7).

Hence, the inverse relation is

ai =

∫
d6y
√
g0 Simng

mn . (5.39)

We can now vary the functional S with respect to the Fourier coefficient ai,

∂S[g]

∂ai
=

∫
d6y

∂gmn(y)

∂ai

δS[g]

δgmn(y)
(5.40)

=

∫
d6y
√
g Smni

1√
g

δS[g]

δgmn
= −1

2

∫
d6y
√
gSmni TD7

mn , (5.41)

12For simplicity we will neglect its dependence on C4, and thus any contributions to ρloc3 . The background
induced D3 brane charge will cancel against the 7-brane tension at order α′2 [40], and contributions from
the non-perturbative stabilization of the C4 axion will vanish as long as the axion is not displaced from its
minimum. We will not consider sources that displace the C4 axion from its SUSY minimum.
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where in the last equality we have implemented the definition of the stress-energy

tensor. We may now choose our complete set of tensors Smni such that Smn0 = gmn0 ,

so that a0 ≡ λ is the Fourier coefficient corresponding to the overall volume modulus.

Moreover, we may consider a one-parameter family of solutions gmn = λgmn0 . Then,

− 1

2
λ
∂S[g]

∂λ
=

∫
d6y
√
g

1

4
Tmm . (5.42)

Furthermore, it is easy to see that

S[g] =

∫
d6y
√
g

1

4
T µµ , (5.43)

so there is a contribution to the tadpole,∫
d6y
√
g∆loc,D7 = −

(
1

2
λ
∂

∂λ
− 1

)
S[g(λ)] . (5.44)

Since we consider static solutions, we should interpret S[g] as a contribution to the 4d

scalar potential from the seven-brane stack. Concretely, let us define the overall volume

of the CY as

t3/2 ≡
∫
d6y
√
g6 , (5.45)

and let t0 be its value for g = g0 (so λ = (t0/t)
1/2). Then, the four-dimensional Einstein

frame metric is

gEµν = (t/t0)3/2g4
µν , (5.46)

and the action SD7 reads

SD7[G] =

∫
d4x
√
−gE

(
t0
t

)3

S[g] . (5.47)

Therefore, the four-dimensional scalar potential is

VD7(t) ≡ −
(
t0
t

)3

S[g(t)] . (5.48)

We may then write the tadpole bound in the simple form

1

4
REM2

P − VD7(t)− 1

2
t∂tVD7(t) = 0 . (5.49)

RE denotes the 4d Ricci scalar of the Einstein frame metric gE. We have used that

M2
P = 4πt

3/2
0 , and that RE = (t0/t)

3/2R4D, and finally that there are no further contri-
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Figure 5.2: A cartoon of the supersymmetric configuration and the ’uplifted’ one. A small
pull on the volume modulus exerted by the uplift triggers a restoring force on the brane stack
of equal strength. This in turn has a significant impact on the gravitational backreaction of
gaugino condensation in the internal directions.

butions to the tadpole. In a general setup, one should replace VD7(t) by the contribution

to the scalar potential that comes from the unwarped part of the compactification.

As a consequence the tadpole is canceled whenever only the seven-branes contribute

to the scalar potential, and if VD7(t) has a minimum. This is because (on a maximally

symmetric background) the 4d Einstein equations reduce to REM2
P = 4VD7(t), while

the equation of motion for the volume modulus are solved when V ′D7(t) = 0.

If the approximate equivalence between the microscopic (5.30) and the effective

scalar potential (5.31) lifts also to ten dimensions there is good reason to believe that

the supersymmetric four-dimensional KKLT vacua can be lifted to solutions of the

ten-dimensional equations of motion, treating the gaugino bilinear as a classical source

term because for such solutions ∂tVD7 = 0. This is the approach followed in [5, 106,

107, 260]. However, once the SUSY minimum is left, there is a qualitatively new

contribution to the tadpole which is proportional to V ′D7(t). This term is interpreted

as the restoring force that non-perturbative seven-brane effects exert on the volume

modulus (see Figure 5.2). As we saw in section 5.1, such terms receive dominant

contributions from derivatives of e−2πT/N with respect to T . We find it very unlikely

that such contributions to the tadpole can be encoded in a local 10d action. Rather,

we believe that the ability to describe KKLT vacua by inserting a local 10d action is
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limited to cases without stress from non-perturbative restoring forces.

We would now like to apply this result to warped uplifts. Strictly speaking we

have not considered warping in the above discussion. But it seems very reasonable

to us that the existence of strongly warped regions does not alter the stress energy

tensor of the seven-brane stack. This is because we assume that it wraps a four-cycle

in the essentially unwarped bulk. A warped uplift is characterized by sub-leading

contributions to the integrand of the tadpole via its stress energy tensor [5]. This is

because such contributions are suppressed by eight powers of the warp factor in the

tadpole constraint (5.3). However, an uplift (if sufficiently small) will affect the solution

in two ways:

(a) It will pull the volume modulus toward larger values, t− tSUSY > 0.

(b) It will raise the vacuum energy.

This must happen in such a way that the 4d Einstein equations as well as the equations

of motion of the t modulus are solved, i.e.

1

4
REM2

P = VD7(t) + Vuplift(t) , 0 = V ′uplift(t) + V ′D7(t) . (5.50)

Plugging this into the tadpole constraint of eq. (5.49) we find that it is canceled

provided that also

V ′uplift(t) = −2

t
Vuplift(t) . (5.51)

This equation is actually satisfied if the warped uplift potential is well approximated

by the classical expression of (3.86).

Thus, we have shown that any seven-brane action that reproduces the KKLT scalar

potential upon dimensional reduction to four dimensions will automatically ensure tad-

pole cancellation upon uplifting by warped SUSY breaking sources. The 10d action

proposed in ref. [108, 109] of course does this. The 4d microscopic potential is approx-

imately equivalent to the true effective potential (as we saw in section 5.4). Thus, by

inserting,

〈λλ〉 ∝ e−2πT [g,C4]/N , with T [g, C4] ≡
∫

Σ

(
d4y
√
gΣ + iC4

)
, (5.52)

in the 10d action [108, 109], one obtains a non-local action SD7[g, C4] that generates

the 4d KKLT scalar potential, the correct potential for D3 brane position moduli as in

[106], and is consistent with tadpole cancellation upon uplifting by warped sources.

The above reasoning is orthogonal to the question whether or not it is actually

possible to generate sufficiently long warped throats and decouple the stabilization
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sector from the uplift sector efficiently. We have assumed that this can be done. Rather

it shows that if these requirements are assumed to be met in a controlled manner, 10d

tadpole cancellation does not indicate an inconsistency of the assumptions that were

made. We will comment on difficulties to actually realize this in section 5.6.

As a side remark we note that the above gives further justification to recent ap-

proaches to tadpole cancellation in 10d calculations where the tadpole is canceled via

the by-hand addition of extra source terms [264]. These terms should really be at-

tributed to the dynamically adjusting restoring force against decompactification that

is generated by the non-local interactions on the D7-branes world volume.

Finally, we comment on the discrepancy between the results of [1, 110] and the ones

of [111]: In [1, 110] the 10d action is varied with respect to the metric after inserting the

exponential relation between the gaugino condensate and the volume modulus, while in

ref. [111] the expectation value of the gaugino condensate is treated as a purely classical

source term. This amounts to neglecting the in our opinion crucial contribution to the

stress energy tensor from the restoring force of the stabilization mechanism which we

have argued to receive dominant contributions from terms proportional to ∂T 〈λλ〉. In

principle it might be consistent to treat the gaugino condensate as an independent field.

But, one would have to start with an off-shell action of 〈λλ〉 and T which involves the

Veneziano-Yankielowicz scalar potential [265] that stabilizes 〈λλ〉 in terms of T . We

think that including this potential in the seven-brane Lagrangian would resolve the

tension between our results and those of ref. [111].

5.6 de Sitter vacua at weak coupling?

In this section we will comment on the question if sufficiently long warped throats

exist so that the KKLT effective field theory can be realized with appropriate values

of parameters. By appropriate we mean that Kähler moduli stabilization occurs at

sufficiently large volume, and the uplift potential is sufficiently small to prevent desta-

bilization. In short, are parametrically small warped uplifts part of the landscape, or

are they in the swampland? Before we start we define small/large uplifts as follows.

A small uplift is one that does not destabilize any of the moduli.

A large uplift is one that is not small. (5.53)

We will refer to a parametrically small uplift as one with parametrically negligible

backreaction on all moduli. The moduli that will be relevant (i.e. the lightest ones) are

the Kähler moduli which we assume to be stabilized non-perturbatively as in KKLT.

Throughout this section we assume that both the flux number W0 in the KKLT
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superpotential (4.1) as well as the infra-red warp factor a2
0 of the KS throat can be

tuned arbitrarily well for all practical purposes. Thus, we will ignore the fact that the

possibly finite number of flux vacua and D3-brane charge cancellation limit the extend

to which this can actually be done [41, 152]. Rather we will ask only for geometrical

consistency of the setup once the volume modulus is stabilized via KKLT and the

warp factor is small enough to prevent decompactification. We will see that this is

surprisingly hard to achieve.13

First, let us briefly recall what are the qualitatively different regimes of values that

the overall volume modulus T can take [40, 91, 156, 266], and argue for a slightly

non-trivial minimum value of the Kähler modulus near which the 10d supergravity

approximation starts to break down. The Einstein frame 10d metric of a one-parameter

family of solutions to the equations of motion takes the form

ds2 =t−1e2Adx2 + α′e−2Ads2
CY , e−4A ≡ e−4A0 + (t− t0) , (5.54)

where t0 ≡
∫
M6

√
gCY e

−4A0 , and e2A0 is some reference solution for the warp factor. The

metric ds2
CY is a CY metric normalized to unit volume (or more generally a solution

coming from F-theory). The variable t is the real modulus of the solution, and at

sufficiently large values (we will make this more precise below) the metric approaches

ds2 −→ t−3/2dx2 + α′t1/2ds2
CY , (5.55)

so in this regime we may identify t3/2 with the compactification volume in units of α′.

In general, recall from section 3.6.1 that for a GKP type solution, the warp factor

is determined by solving a 6d Laplace equation

∇2
CY e

−4A ∝ ρD3 , (5.56)

where ρD3 is the D3 brane charge density as measured using the CY metric gCYmn [156].

Hence, e.g. near a point like (or smeared along a real co-dimension two locus) source

of ND3 units of D3 brane charge the solution takes the form

e−4A ∼

ND3r
−4 + const. near a point-like source

ND3 log(1/r) + const. near a co-dimension two source
, (5.57)

13Note that the results of [106] show that in KKLT setups (at fixed value of |W0|) indefinitely small uplifts
are beyond the regime where the throat is well approximated by the KS solution. This is due to relevant
perturbations of the KS gauge theory that are activated by gaugino condensation in the bulk CY and grow
toward the infrared. However, parametrically small uplifts in the sense of (5.53) are not straightforwardly
excluded by this.
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where r measures the transversal distance to the source (using the dimensionless CY

metric). We are interested in cases where the negative D3 brane charge is effectively

smeared over D7/O7 stacks while the positive charge is stored in the fluxes of a KS

throat (in such a way that the overall D3 brane charge vanishes).14 W.l.o.g. we may

assume that the particular solution e−4A = e−4A0 corresponds to the case where the

overall volume is sufficiently small (and not much smaller) that backreaction from D3

brane charge cannot be neglected anywhere, but the vanishing locus of the inverse warp

factor is still (marginally) aligned with the loci that carry the negative D3 brane charge

(see figure 5.3). If we now use the one-parameter freedom of the GKP solutions to set

e−4A = e−4A0 + (t− t0) , (5.58)

we see that the vanishing locus of e−4A merges into the location of negative D3 brane

charge as we take t− t0 � ND3, while for t− t0 < 0 the vanishing locus quickly moves

into the bulk and the 10d solution becomes pathological.

Moreover by inspecting e.g. the solution near a stack of D3 branes it is easy to see

that t0 & ND3. Therefore, in order for a controlled 10d solution to exist where all the

(would-be) pathological behavior is concentrated close to the seven-brane stacks, we

need t > ND3. In this case the physical volume of the CY is also bigger than N
3/2
D3 and

well approximated by the value of α′3t3/2. This is also the regime where we may think

of warped throats as isolated regions of strong warping embedded into an essentially

trivially warped bulk CY. Note that for an approximately isotropic CY this bound is

identical with the dilute flux limit described in section 3.6.1.

But whenever at least one complex structure modulus z is stabilized near a coni-

fold singularity in complex structure moduli space, |z| � 1, the dilute flux regime

corresponds to far bigger volumes of order [156]

Re(T )� ND3|z|−4/3 , (5.59)

where ND3 is the total D3 brane charge stored in fluxes that thread the A and B cycle

of the conifold (and possibly in mobile D3 branes).

The warped throat regime occurs for a large range of intermediate values

ND3|z|−4/3 � Re(T )� ND3 . (5.60)

For values in this range, at least one warped throat forms with localized significant

backreaction via fluxes that drive the non-trivial warping. The warped throat can

be thought of as an object of size R4
throat ∼ ND3 glued into a much larger bulk CY

14Here, the negatively charged objects are the 1
2
BPS objects with negative (induced) tension.
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Figure 5.3: We plot the schematic form of the inverse warp factor in a flux compactification for
different values of the volume modulus. It diverges as |ND3|r−4 near the position of localized
(or approximately localized) positive D3 brane charge, and as −|ND3| log(1/r′) near the locus
of negative induced D3 brane charge on D7/O7 stacks. r is the transversal distance to the
positive charge while r′ is the transversal distance to the negative charge. The blue curve
corresponds to taking t & ND3 where the vanishing locus of e−4A is marginally aligned with
the D7/O7 loci. The green curve corresponds to the case t � ND3 where the inverse warp
factor vanishes only very close to the seven-brane stacks. The 10d geometric picture is under
parametric control. In the opposite regime t < ND3, shown in red, the singular locus reaches
far into the bulk.
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Figure 5.4: We plot the KKLT uplift as in figure 3.6, but with a shaded area that marks
the region Re(T ) < ND3 where the 10d geometrical setup is beyond control. Left: If (say)
ND3 = 100 can be realized simultaneously with the parameter choices of figure 3.6 the uplifted
vacuum lies in a controlled region and the uplift can be trusted. Right: If ND3 � 100 is
required, the vacuum region cannot be trusted. We find that the scenario on the left is hard
or impossible to realize, while generically we are forced into the scenario displayed on the
right.

that remains unaffected by flux backreaction. Changing the value of Re(T ) essentially

only rescales the bulk CY but leaves the throat unchanged. While flux backreaction is

significant, it is controlled by the KS solution [162] which is smoothly glued into the

bulk CY (see figure 5.5).

This regime ends once we set Re(T ) ∼ ND3 as explained above. We will constrain

KKLT de Sitter uplifts by demanding that the point in field space where (supersym-

metric) Kähler moduli stabilization occurs must not lie in the uncontrolled regime

Re(T ) . ND3 (see figure 5.4). We will find that this constraint can generically not be

met simultaneously with the constraint that the warped uplift does not trigger decom-

pactification.

We would like to emphasize that the arguments that follow are very similar to (and

were inspired by) the ones used in ref. [46, 230]. In particular, in [230] it was argued

that W0 has to be tuned extremely small in order for the KKLT construction to be

able to work. However, we will argue that small uplifts are severly constrained even if

W0 can be tuned arbitrarily small.

5.6.1 Single modulus KKLT

We consider the setup of section 3.7.2, i.e. a type IIB Calabi-Yau orientifold with

only a single Kähler modulus T and with all complex structure moduli integrated out

consistently.

Let us now see if we can make the warped uplift small in the sense defined in (5.53).
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Figure 5.5: We depict a cartoon of a CY that contains a warped throat region. For geometrical
consistency the throat region must be smaller than the overall size of the CY.

In order to suppress backreaction on T we need that Vuplift . |VSUSY | [41]. Comparing

with eq. (3.84) and eq. (3.86) we see that we need α ≡ a4
0

|W0|2 . 1, and as always

|W0|2 � 1. It is useful to define an uplift parameter U as follows,

U ≡ log(|VSUSY |−1)

log (|Vuplift|−1)
≈ log |W0|−2

log a−4
0

= 1 +
log(α)

log(a−4
0 )

, (5.61)

in unitsMP = 1. The uplift is small when U . 1. The interesting regime where an uplift

to de Sitter space might take place corresponds to taking α = O(1), so |U − 1| � 1.

Once U − 1 = O(1) the uplift becomes exponentially uncontrollable, i.e.

α =
(
|W0|−2

)U−1
U � 1 . (5.62)

The results of ref. [106] imply that for control of relevant throat perturbations one

needs U ≥ 3/4, but only slightly bigger values allow to keep those perturbations under

parametric control. We will now explain why only parametrically large values of U

might be possible in a geometrically consistent setup.

This constraint comes from the following requirements. The throat that carries

the SUSY breaking source has to be sufficiently small in circumference that it can fit

into the bulk Calabi-Yau so that it can be well separated from the seven-brane stack

that is responsible for Kähler moduli stabilization (see Figure 5.5). As recalled in the
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introduction of this section it is well-known that the (Einstein frame) size of the throat

is set by its D3-brane charge ND3 as

R4
throat ∼ ND3 = MK , (5.63)

where M and K are the RR and NS-NS flux quanta that stabilize the throat. Thus we

should require that

Re(T )�MK , (5.64)

for validity of the 10d geometric picture.

However, at the KKLT minimum the value of Re(T ) is set by W0 according to eq.

(3.83) while the IR warp factor is set by eq. (3.66). Plugging these formula into the

requirement of eq. (5.64) we obtain

N
!� MK

log |W0|−1
∼ MK

U log a−4
0

∼ gsM
2

U
. (5.65)

This can be turned into a lower bound on the uplift parameter U ,

U � (gsM)2g−1
s

1

N
. (5.66)

Clearly we cannot make U arbitrarily small. More so, it is not clear to us if it can

even be smaller or equal to one as would be required for a controlled uplift. The size of

the IR end of the throat as measured in string units is gsM , so we need gsM � 1 for

control of the α′ expansion, as well as gs � 1 for control of the string loop expansion.

So in order to get U ≈ 1 or smaller, the rank of the seven-brane gauge group really has

to be parametrically large,

N � (gsM)2g−1
s � 1 . (5.67)

There is at least some indication that it is hard to make N arbitrarily large while

maintaining h1,1 = 1. Indeed one of the swampland criteria states that in an EFT

coupled to gravity the number of massless fields cannot be arbitrarily large [267], and in

this case an arbitrarily large N would imply an arbitrarily large number of gluons. This

generic swampland criterium can be checked explicitly in some setups. For example, in

[245] the relation between h1,1 and the largest possible N was investigated numerically

using a subset of the Kreuzer-Skarke database. For h1,1 = 1, the largest possible N was

found to be O(10), while more generally a linear bound of the form

N ≤ O(10)h1,1 , (5.68)
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Figure 5.6: For a subset of the Kreuzer-Skarke database [268], the maximal possible gauge
group rank in perturbative type IIB string theory grows approximately linearly with h1,1.
This argument and the above figure are taken from [245].

was found to be obeyed within the limited example set, see figure 5.6. Of course, it

could be true that much larger values of N exist for h1,1 = 1 that are not contained in

the example set. This possibility forms a potential loophole. We conclude the following.

In single modulus KKLT with N = O(1) and A = O(1), whenever the supersymmetric

starting point lies in a regime of parametric control of the supergravity theory,

Re(T )�MK, all warped uplifts will destabilize the Kähler modulus.

Assuming that the empirical relation of eq. (5.68) holds, the loophole N � 1 is closed.

The obvious remaining loophole is to take h1,1 � 1 which is anyway satisfied by generic

CYs, and/or assuming |A| � 1. We will comment on these options momentarily.

5.6.2 Multi modulus KKLT

The arguments of the previous subsection indicate that it is impossible to realize para-

metrically small uplifts in the case in which the CY orientifold has just one Kähler

modulus, i.e. whenever h1,1
+ = 1.15 One could then try to evade this reasoning, by

considering a case with many Kähler moduli. So, let us now consider the potential

loophole h1,1
+ � 1.

We would like to emphasize immediately that most of the conclusions we draw in

this section are based on assumptions about the geometry of CY manifolds which we

15The argument is not significantly altered for more general but still O(1) values of h1,1
+ .
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believe to hold generically. As such we cannot exclude that non-generic CYs exist for

which our discussion does not apply. We will comment on this possibility at the end of

this section.

Let us consider a number of Kähler moduli {T1, ..., Th1,1
+
}, and KKLT type superpo-

tential

W = W0 +
n∑
i=1

NiAi exp

−2π

Ni

h1,1
+∑
α=1

kαi Tα

 , (5.69)

with some integer-valued n×h1,1
+ charge matrix k. For the Kähler potential in the multi-

modulus case we refer the reader to ref. [153]. Here, we have assumed that there are n

superpotential terms that are generated via various confining gauge theories (Ni > 1)

or euclidean D3 brane instantons (Ni = 1).

The F-term equations read

DTαW = −
n∑
i=1

2πkαi Ai exp

−2π

Ni

h1,1
+∑
β=1

kβi Tβ

− 2vα

V W , (5.70)

where V is the overall volume, and vα is the volume of the two-cycle dual to the four-

cycle Σα. We expect the generic KKLT type solutions to satisfy,

h1,1
+∑
α=1

kαi Re(Tα) ∼ Ni

2π
log(|W0|−1) ∀ i, (5.71)

so that generically the four-cycle volumes are again bounded as,

Re(Tα) .
Nmax

2π
log(|W0|−1) , (5.72)

where Nmax is the maximal available dual Coxeter number. So far, the story is very

similar to the case h1,1
+ = 1, except that we expect to have the freedom to take Nmax �

1, due to the distribution shown in figure 5.6. Again we need to require that the throat

fits into the bulk Calabi-Yau,

MK < V2/3 . (5.73)

Now, we find it reasonable to demand something stronger: The throat must fit into a

region in the bulk Calabi-Yau that is well approximated by a conifold region (or more

generally some cone over a Sasaki-Einstein base). As a consequence we should really

require that zooming into such a region, all the topological structure that the Calabi-

Yau possesses should become invisible. This is because we would like to isolate the

non-perturbative stabilization sector associated with each 4-cycle from the uplift sector
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Figure 5.7: We draw a cartoon of a more complicated CY with h1,1 � 1. We expect that
the rich topological structure of the manifold leaves us less room to place warped throats in
comparison to a simpler CY with h1,1 = 1 with the same overall volume (compare with figure
5.5).

associated to the throat (see Figure 5.7). At large h1,1
+ it is natural to expect that in

generic CY manifolds the amount of such freely available volume where warped throats

can fit scales with the overall volume of the Calabi-Yau, but also that it decreases

monotonically with h1,1
+ . For definiteness let us parameterize this expectation as

R4
available ∝

V2/3

(h1,1
+ )p

, (5.74)

for some undetermined positive coefficient p. It is easy to see that if we implement

the bound on the maximal available dual Coxeter number of eq. (5.68), one obtains a

bound

U � (gsM)2g−1
s (h1,1

+ )p−1 . (5.75)

It is apparent that choosing large values of h1,1
+ will relax the bound only if the freely

available volume scales very weakly with the number of Kähler moduli i.e. p < 1. So we

should ask ourselves how large we expect p to be. Instead of asking what is the maximal

region around a conifold singularity that is well described by the non-compact conifold

solution, it is simpler and arguably less restrictive to ask the following instead. What

is the spherical region of maximal size around a generic point? We may build a chart

Up around a generic point p so that every point in ∂Up is geodesically equidistant from

the center p by a distance Rp. Then, what is the largest possible radius Rp? Roughly

speaking this gives the largest 5-sphere that can be expanded around a generic point.

We do not know how to answer this question for CYs but we expect that generically
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Figure 5.8: On the l.h. side we plot a square intersected by a grid formed of n lines. The
freely available space is of order 1/n2. On the r.h. side we show a more generic intersection
pattern. We expect the freely available size surrounding a generic point to be of the same
order as for the case of a regular grid.

the size Ravailable available for fitting a warped throat would be bounded by this.

Let us now consider a somewhat different but related question. For full moduli

stabilization to occur we expect that each divisor class has a representative that is

wrapped by a seven brane or euclidean D3 brane instanton. Our conifold region should

not be intersected by any of these divisors. In particular none of the triple intersection

points should be contained in the conifold region. So in addition one may ask what

is the largest available 5-sphere that does not contain any of the triple intersection

points. We expect that both types of largest possible spheres will be bounded for

similar reasons.

So let us consider a very simple toy setup where this last question can be easily

addressed: Given a six-dimensional cube of unit volume, let us randomly intersect it

with n real co-dimension 2 planes. Let us call Rx the radius of the largest 5-sphere

centered at a point x that can be drawn without meeting any of the intersecting planes

(see Figure 5.8). Since a generic triplet of planes intersects at a point we expect O(n3)

triple intersection points in the cube, distributed randomly. The largest sphere that

can be fit must in particular not contain any of these points in its interior so one finds

R6
x < O(n−3) for a generic point x. For a cube of overall volume V , this is replaced by

R6
x < O(n−3) · V . (5.76)

Obviously cubes intersected by co-dimension 2 planes are not a good approximation

of CYs with wrapped divisors but it may give us some intuition how intersecting co-

dimension 2 branes limit the available un-intersected volume.

In ref. [269] another likewise related question was posed for CY three-folds and
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Figure 5.9: We depict a cartoon of a CY manifold that would evade our conclusions. There
exists a large topologically trivial area in the interior where a large KS throat can fit. All of
the topological structure is densely aligned around it.

numerical answers were given using the Kreuzer-Skarke database: How large does the

overall volume of the compactification have to be in order to ensure that the α′ expansion

is under marginal control? Numerically, the answer appears to be

Vol(CY ) & (h1,1)7 . (5.77)

Of course it is tempting to interpret this result as the statement that p = 2
3
·7. However,

the above only means that if all the non-trivial curves are required to be bigger than

α′ the overall volume must be large. In principle the CY might nevertheless contain

large empty regions. It would be very interesting to explore how precisely the freely

available volume within a CY scales with the number of Kähler moduli in order to place

the above considerations on a firm footing.

Based on these simplified preliminary observations we find it reasonable to expect

that generically it will be hard to engineer p < 1, while actually proving this to be

impossible is beyond the scope of this thesis. In this case we expect that generic CYs

do not admit sufficiently small de Sitter uplifts even if W0 and the IR warp factor a2
0 can

be tuned at will. Again, we want to stress that non-generic CYs (or CYs at non-generic

points in moduli space) might evade this argument. For a cartoon of how such a CY

could look like, see figure 5.9. It would be very interesting to see if such non-generic

CYs can be engineered for dS uplifts.
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As promised, let us consider the potential loophole of exponentially small/large

coefficient A. It has been explained in ref. [155] that this is indeed possible due to

induced D−1-brane charge or induced D3 brane charge for the case of euclidean D3

brane instantons respectively gaugino condensation on seven branes,

|A| ∼ e
2π
gsN

χ(Σ)
24 . (5.78)

This would change our discussion only if one can find solutions where log(|A/W0|) is

dominated by log(|A|), so that

Re(T ) ∼ N

2π
log(|A|) ∼ χ(Σ)

24gs
(5.79)

This does not seem to be a controlled regime as can for instance be seen by inspecting

the euclidean D3 brane action. To low orders in the α′-expansion it takes the form

SED3 =
2π

gs
( gsReT︸ ︷︷ ︸

tree level

+ (−1)
χ(Σ)

24︸ ︷︷ ︸
O(α′2) correction

+ O(α′3) ) . (5.80)

In the regime of (5.79) we see that the tree-level contribution is of the same order as

the (α′)2 correction, indicating loss of control over the α′ expansion.16

As a final and perhaps most interesting loophole, let us note that the KS throat also

has a dual description in terms of a confining gauge theory [78, 162]. The parameter

gsM sets the ’t Hooft coupling of the last steps of the cascade of Seiberg dualities that

the gauge theory is undergoing. So the regime gsM � 1 is controlled by the gauge

theory side of the correspondence. If the SUSY breaking anti-brane state also exists

in this regime (and remains meta-stable), the bound on the smallness of the uplift

becomes considerably weaker. Even if this holds, it is not obvious whether the uplift

could then be made sufficiently small. We can interpret the r.h. side of the bound

in eq. (5.67) as the ratio between the size of the IR end of the throat R4
IR ∼ (gsM)2

and the characteristic ’size’ of the anti-brane R4
D3
∼ gs. Whenever the latter exceeds

the former we would expect the brane not to be able to sink down all the way to the

bottom of the throat, thus again preventing the uplift potential from becoming small.

Whether or not this (after all geometric) intuition carries over to the small gsM regime

remains to be seen. If these considerations are valid, it seems possible that the r.h. side

of the bound of eq. (5.67) could take O(1) values. In this case, moderately large rank

16This is qualitatively very different to e.g. the KKLT expansion of the superpotential where also the first
two terms in the expansion are of the same order. This is achieved via a fine tuning of the first term so one
does not expect a breakdown of the non-perturbative expansion scheme.
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gauge groups N ∼ 10 may be enough to marginally fulfill all constraints, though never

parametrically.17

5.7 Conclusions

In this chapter we have summarized recent progress made in understanding the ten-

dimensional lift of the four-dimensional KKLT vacua [1, 5, 105–110], with the goal to

confront the de Sitter uplift proposal of KKLT with ten-dimensional tadpole cancel-

lation conditions. First, building on [107] we find that the ten-dimensional and four-

dimensional conditions for unbroken supersymmetry are remarkably consistent with

each other [5]. Second, we find that the de Sitter uplift proposal as made by KKLT is

fully consistent with ten-dimensional tadpole cancellations [1, 110]. We interpret this

as evidence that the coefficient c in eq. (4.3) is suppressed to a sufficient degree that it

can be ignored. Thus, significant uplift flattening does not occur in KKLT.

In contrast to the above partial confirmation of the KKLT proposal, we have pre-

sented a geometric consistency requirement that prevents one from bringing de Sitter

vacua of the KKLT type into regimes of parametric control (from a ten-dimensional

perspective). In the best case, this means that such vacua live in marginally controlled

regimes of the perturbative expansion schemes of string theory, while in the worst case

the construction might not work. Deciding which of the options holds depends in a

subtle way on the detailed geometry of CY compactifications. Much more work in the

spirit of [269] is required to answer this question conclusively.

To conclude, the question whether or not there exist de Sitter vacua in string theory

remains a fascinating fundamental issue. While with currently available tools it is hard

to prove or disprove the existence of such vacua, we are confronted with non-trivial

evidence that such vacua cannot live ’far out’ in moduli space, consistent with but

independent of results such as the ones obtained in ref. [270]. It is thus tempting to

speculate that de Sitter vacua are phenomena that appear in the strongly coupled (or

marginally weakly coupled) interior of stringy moduli spaces, see Figure 5.10. If this

turns out to be correct the quest of understanding stringy de Sitter vacua would require

radical progress in the understanding of non-perturbative string theory (the ’missing

corner’ of [267]).

Another speculative line of thought is that de Sitter vacua could exist in string

theory even in weakly coupled (but tuned) corners, but at least the ones with small

positive cosmological constant cannot be obtained by small perturbations of anti-de

Sitter vacua with small negative vacuum energy, see figure 5.11. This would be a far

17We thank M. Reece for discussions on this point.
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Figure 5.10: A cartoon of the idea that de Sitter vacua all reside near the ’interior’ of stringy
moduli spaces.

Figure 5.11: Speculative cartoon of stringy moduli space (blue) and their cosmological con-
stants. Two vacua with similarly small vacuum energy but with opposite sign are far away
from each other in stringy moduli space, so in particular they are not mapped to each other
by an ’uplift’ or non-perturbative decay process.
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weaker statement than the ones of the no-dS conjecture [79–81], as it would doubt only

the idea of a de Sitter ’uplift’ rather than the existence of de Sitter vacua all-together.

We are hopeful that either it can be shown in the near future that obstacles such as

the one presented in section 5.6 are insurmountable or the existence of de Sitter vacua

of KKLT type will be established beyond reasonable doubt, by making use of the small

but perhaps sufficiently controlled window in parameter space.



118 CHAPTER 5. KKLT IN TEN DIMENSIONS



Chapter 6

Thraxions

New ultralight throat axions
-or-

axion inflation near the conifold transition?

We now wish to switch gears to some extent. From the late time expansion of our

universe we now switch to the inflationary era. More precisely we consider the problem

of large field inflation in string theory. Recall from the introductory section 2.2 that

inflationary models of large field type are the ones with the most exciting observational

signatures: Measurable inflationary tensor modes. Moreover they are the least tuned

ones. We have explained that EFT approaches to large field inflation are not predictive

in the usual sense in that the full inflationary dynamics is not determined by a handful

of Wilson coefficients. After all it would be a bit disappointing if a mechanism would

allow us to detect the quantized graviton, without any sensitivity to the UV completion.

Nevertheless, if we are given models of large field inflation that are well motivated from

string theory they could probably be parameterized by some scalar potential V (φ).

Therefore, even if such a model predicts tensor modes that are then observed, it would

be difficult to convince a skeptic that this is a distinctive prediction of string theory.

After all, large field potentials are the simple ones, so what do they need string theory

for? So perhaps it is in fact much more exciting to be able to rule out the possibility

of large field inflation in string theory. After all, the upper bounds on the tensor to

scalar ratio are already surprisingly low. If there was an inflationary era, as observation

strongly suggests, why would it not be governed by the simple large field potentials, if

not for a deep string theory constraint?

If one could show that large field inflation is not possible in string theory, it would

be natural to expect that the traversed inflationary field distance is as large as it can

be found in the theory because otherwise the scalar potential is unnecessarily tuned.

119
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In our opinion, one of the most intriguing hints that string theory is the right theory

of quantum gravity would be a detection of the tensor to scalar ratio at the level of

rstring ∼ 10−3 , (6.1)

which incidentally is just at the border of what we can hope to detect in the future with

CMB stage 4 [271]. In fact, some authors have conjectured that string theory predicts

this value [51, 272].

However, it is clear that we are nowhere near a consensus that large field inflation

is impossible in string theory. In order to narrow down this complicated question it

is useful (in my opinion) to focus on the most promising inflaton candidates. As the

inflationary scalar potential must remain flat over a super-Planckian range in field space,

it is natural to consider axions as inflatons due to their perturbative shift symmetry.

Realizing a model of axion inflation is all about generating a small monotonic scalar

potential in a controlled way. The simplest idea is the one of natural inflation where

the inflaton potential is of instanton generated type

V (φ) ∼ e−SE(1− cos(φ/f)) . (6.2)

For such a model to realize 60 e-folds of slow roll inflation, super-Planckian decay

constants are required f � MP , and also such models are basically ruled out by

observation. Nevertheless, it is important to study these kinds of potentials because

they might reveal that large field inflation is possible in string theory as a matter of

principle. This possibility is of course challenged by the WGC for axions [31, 54],

which implies that f < MP in the simplest cases. Conversely, by studying these kinds

of models we learn to what extent the WGC holds in string theory.

The most prominent ideas to achieve sufficiently long axion field ranges in string

theory are the following,

• N -flation: A large number N of axions traverses a O(
√
N) enhanced diagonal in

field space [45]. Related with this is the idea of kinetic alignment [273].

• KNP alignment: A potential can be generated that forces the inflationary tra-

jectory to wind around the at least two-dimensional axion fundamental domain

many times [44].

• Axion monodromy: The gauged discrete shift symmetry is broken spontaneously

[46, 198, 274]. We introduced this concept already in section 3.8.1, but its most

important application could be the one of large field inflation.

The major challenge for the first two approaches is to find an axion potential that
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1) forces the inflationary trajectory onto the special long path, and 2) to ensure that

the effective potential along the valley does not oscillate on sub-Planckian scales. If

only the first condition can be satisfied large field inflation cannot be realized but we

nevertheless learn a lot about the structure of stringy EFTs: The (strong form of the)

distance conjecture requires a tower of states to become exponentially light as a super

Planckian geodesic distance is traversed within a low energy EFT [205]. Certainly this

does not occur for axions with non-perturbative harmonic potentials. As a consequence

we would learn that strong forms of the distance conjecture are false. We will report

evidence in this direction shortly.

The most difficult challenges for axion monodromy lie in realizing a setup were

the discrete gauge symmetry is broken to a sufficiently sparse subgroup, and also to

engineer a sufficiently monotonic scalar potential. As we have explained in section 3.8.1

we expect axion monodromy to always be finite, so the three different ideas are not

completely distinct. A general axion model may display aspects of all three ideas.

In this section, we present a new class of ultralight axions which, we believe to be

a generic feature of the type IIB part of the string theory landscape. This idea is an

extension of a proposal made in [74]. Somewhat surprisingly, the mass of this axion is

suppressed to a much further extent than would be predicted by the WGC for axions. In

other words, its scalar potential is far smaller than the scale M4
P exp(−MP/f) of generic

axion potentials. It is therefore justified to identify them as a new class of axions that

has so far not been accounted for in the study of CY flux compactifications.

We consider again type IIB Calabi-Yau orientifolds or F-theory models stabilized by

fluxes and non-perturbative effects such as KKLT. We have explained in section 3.6.2

that Klebanov-Strassler (KS) throats [162] with warp factor a0 � 1 are expected to be

present in an order-one fraction of such models [42, 163, 275]. We recall that this warp

factor is naturally exponentially small,

a3
0 ∼ exp

(
−2π

K

gsM

)
. (6.3)

Before we get to the details we wish to summarize the results in terms of their para-

metric dependencies on the warp factor a0. Naively, the lightest states are then the

glueballs (or warped-throat KK modes) with mass ∼ a0 (in Planck units). However,

our axion is exponentially lighter than this scale with mass of order ∼ a3
0. To be more

precise, this happens at least in all cases where the fluxes stabilize the complex structure

moduli near a conifold transition locus in moduli space, and if orientifold projections

do not interfere with the setup.
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Our axion has a decay constant f ∼ O(1) in the simplest models1, which can be

enhanced by products of flux numbers even to parametrically super-Planckian values

in more general settings. The effective potential is much smaller than the naive ex-

pectation V ∼ exp(−1/f) cos(φ/f) (again in Planck units). We believe that this has

potentially many interesting applications, from the WGC for axions to inflation and

uplifting.

We start with the background solution in section 6.1.1. We consider a Calabi-Yau

with a conifold locus in complex structure moduli space at which multiple three-cycles

degenerate simultaneously. We explain why this is a generic feature of Calabi-Yaus.

Concentrating on the case of two degenerate three-cycles, we introduce separate defor-

mation parameters zi with phases ϕi = arg zi , i = 1, 2, for the two deformed conifold

regions. Crucially, the two conifolds, or more precisely the three-spheres located at

their apices, are related in homology. As a result, the Calabi-Yau condition ensures

that only one complex structure modulus, z = z1 = z2, is present. Perturbations with

z1 6= z2 are massive. We then introduce fluxes stabilizing the complex structure modu-

lus z near the conifold point |z| � 1. The resulting geometry is illustrated in figure 6.1.

One can see that the so-called B-cycle is an S3 which can be thought of as a family

of S2’s. This S2 family reaches into both throats such that the S2’s collapse at the

apices. The corresponding dual A-cycle is an S3 over every point of the double throat

in figure 6.1.

c ∼
∫
S2 C2

ϕ1 ϕ2

S2

rIR , eA|IR ≡ a0 � 1

r , eA(r)

rUV , eA|UV = 1

Figure 6.1: An illustration of the setup of the double throat including the phases ϕi and the
axion c. The phases ϕi describe physical rotations of each throat. We have not drawn the S3

over every point of the double throat.

1Note that despite the fact that strongly warped throats are needed to generate a small scalar potential
for the axion, the decay constant is not suppressed by warping effects. This is because its internal field-
profile is not localized at the bottom of the throats, in contrast to some examples that have appeared in the
literature [276, 277].
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In section 6.2, we introduce the axion c ∼
∫
S2 C2, called thraxion from now on.2 An

excursion of the thraxion generates non-zero opposite values of the RR-field strength F3

at the ends of the two throats. Local backreaction of the resulting energy density then

deforms the two throats independently: While the phase ϕ1 of the local deformation

parameter of one throat is displaced by fluxes, the phase ϕ2 of the other throat is

displaced in the opposite direction by anti-fluxes. This breaks the constraint ϕ1 = ϕ2

coming from the CY condition and the homology relation between the two throats. In

section 6.3, we calculate the potential induced by non-vanishing 10d Ricci curvature

that stabilizes the two deformation parameters against each other. After integrating

out heavy degrees of freedom, the result is an effective potential for the thraxion with

the properties described above and discussed in section 6.4.

Section 6.6 is devoted to the construction of a 4d supergravity model based on a pro-

posed extension of the Gukov-Vafa-Witten (GVW) superpotential [154] that includes

the axion. Besides reproducing the results in 4d supergravity language, we also identify

the saxion partner of the axion. In section 6.6.3 we generalize our results to general

multi throat systems where one or more ultra-light thraxions can appear.

In section 6.7 we explain that our results are very much consistent with the holo-

graphic dictionary applied to the Klebanov-Strassler theory [78, 162]. This is done

by matching the enhancement of the decay constant of our axion
∫
C2 with gaugino

condensation on the gauge theory side. Applications and implications of these results

are the content of section 6.9. This allows us to make the connection to the Kaloper-

Sorbo description of axion monodromy quite explicit, and serves as a consistency check.

Moreover, it indicates that the model can be trusted well into the gauge theory regime

where the throat curvatures are large in string units.

We consider as a semi-explicit example the quintic three-fold stabilized near a coni-

fold transition point. We study the scalar potential for judicious choices of flux quanta.

Interestingly, the overall monodromy enhancement is given by the least common mul-

tiple of all the flux quanta which can easily become parametrically super-Planckian.

However, the presence of sub-Planckian modulations generically prevents successful

slow-roll inflation. The underlying idea is that a large monodromy is generated by

unsynchronized phases (of monodromies of individual throats) drifting away from one

another. We call this mechanism drifting monodromies. It is completely analogous to

the beat phenomenon in accoustics: The interference of harmonics with slightly dif-

ferent small wavelengths leads to large wavelength oscillations, modulated by many

2At this stage it may not be obvious why the name ’axion’ is appropriate. We will justify this in more
detail in later sections. For now let us note that a bulk observer without access to the IR regions of the throats
will not notice the fact that the sphere is trivial in homology. In particular an induced scalar potential from
the IR regions will be suppressed exponentially, so an approximate shift symmetry is manifest.
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smaller ones. For related alternative possibilities of generating large decay constants

see [44, 50, 71, 208, 278–282]3.

Finally we describe a clash with the WGC: The effective Euclidean instanton action

determined from the scale of the effective potential violates the axionic WGC (S .

qMP/feff) parametrically, but instead a weaker inequality holds,

S . (qMP/feff)2 . (6.4)

This is a weaker condition because at fixed control parameter 1/SE < 1 the axion decay

constant is less constrained as in the original WGC. Conversely, at fixed value of the

axion decay constant, the scalar potential can be much smaller than predicted by the

WGC.

We finally consider interesting possibilities for uplifting to de Sitter vacua and draw

our conclusions in section 6.10.

6.1 Thraxion potential from 10d

6.1.1 Geometry and Flux-Background

First we will explain the basic geometric requirements for our discussion to apply. We

will explain why we expect them to be generically met.

First we consider again compactifications of type IIB string theory on a Calabi-

Yau (CY) threefold, which leads to an effective N = 2 supergravity theory in four

dimensions. Now we go to a conifold transition locus in complex structure moduli,

where n three-cycles degenerate to zero volume [150, 283] that satisfy m relations in

homology. We have encountered precisely this setup already in section 3.4: The (N = 2)

U(1)n−m gauge theory associated with the n−m deformation complex structure moduli

has a Higgs branch parametrized by the scalar components of m hypermultiplets that

is properly thought of as the geometric resolution branch. It might come as a surprise

that such an intricate configuration should occur generically, but it is widely believed

that a generic CY threefold is in fact related to other CY threefolds via such conifold

transitions [76, 284]. This subject isn’t closed, but there are large classes of CYs for

which this has been shown [285–290]4. Therefore, a generic CY is believed to have loci

3Note in particular the following two papers: The work of [282] is closely related to ours in making use of
the conifold complex structure modulus z to create super-Planckian decay constants, while on the technical
level the approach is very different. Ref. [208] defines the 5d axion

∫
B2 on the KT background, analogously

to our thraxion. There, the geometric backreaction via the 5d breathing mode allows for monodromy-induced
super-Planckian field ranges to be explored in an anisotropic and inhomogeneous 5d spacetime.

4But note that this does not mean that every conifold singularity (or even a generic one) is also such
a transition point. For example, the mirror quintic threefold at vanishing complex structure has a single
shrunken three-cycle. Hence there is no resolved CY geometry [291].
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in complex structure moduli space where multiple three-cycles Ai degenerate together.

We expand on this in section 6.6. Being related in homology, the number of homology

classes is smaller than the number of collapsing three-cycles. For now we focus on the

case of precisely two cycles A1,2 that degenerate. From the above it immediately follows

that they are related in homology, i.e. [A] ≡ [A1] = [A2]. There is a single symplectic

dual three-cycle B connecting the two singular points. We will call this system a double

conifold. Its complex structure will be denoted by z and the double conifold singularity

develops in the limit |z| → 0.

We introduce the fields z1 and z2 as illustrated in figure 6.1. These fields may be

thought of as ‘local complex structure deformations’ zi =
∫
Ai Ω, with the holomorphic

three-form Ω of the CY, and describe independent local deformations of the manifold

near one of the two apices. Thus, in the vicinity of either conifold region we want to

describe the manifold by embedding it into C4 via

w2
1 + w2

2 + w2
3 + w2

4 = zi , w ∈ C4 . (6.5)

It is easy to see that the homology relation [A1] = [A2] enforces the condition z = z1 =

z2 on complex structure moduli space. This is because the difference A1 − A2 is the

boundary of a 4-chain C. Therefore, one has

z1 − z2 =

∫
A1

Ω−
∫
A2

Ω =

∫
∂C

Ω =

∫
C

dΩ . (6.6)

But on complex structure moduli space one has dΩ = 0, and hence z1 = z2. Never-

theless, we will consider the massive deformations of the manifold such that z1 6= z2,

i.e. deformations away from complex structure moduli space5 so really,

dΩ 6= 0 . (6.7)

It is important to note that the local phases ϕi of zi are the Goldstone bosons of

the spontaneously broken U(1)R symmetry of the conifold [159].6 This symmetry is

approximately restored far away from the tip of either conifold, see figure 6.2. In

the limit of large radial coordinates, r3/ |zi| → ∞, the deformed conifold becomes

indistinguishable from the singular conifold.

Finally, we note that we focus on the simple double throat case only for ease of

exposition. More general multi conifold situations are analyzed in section 6.6. Fur-

thermore, for reasons of tadpole cancellation we are interested in CY threefolds which

5For similar considerations with deformations away from Kähler moduli space, i.e. dJ 6= 0, see ref. [292].
6This is the R-symmetry group of the dual field theory.
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U(1)R U(1)R

����U(1)R ����U(1)R

|z1| |z2|

r

r = 0
r ∼ |zi|ϕ1 ϕ2

Figure 6.2: The double conifold with asymptotic U(1)R symmetric regions.

are orientifolded such that O3/O7-planes arise. This projection should leave the coni-

fold transition intact and preserve the key ingredient of a B-cycle reaching down into

several conifold regions. In the double throat case, this is realized if two originally

present pairs of throats are mapped to each other by the orientifold projection, see

figure 6.3. This is completely analogous to the widely-discussed double-throat system

of the oldest axion-monodromy models, see e.g. [46, 293] (just simpler, since we need

no 2-cycle for the NS5 brane and can hence use standard KS throats). More generally,

F-theory solutions with the analogous geometric properties can be considered. Here

the tadpole cancellation relies on the fourfold Euler number and no orientifolding is

required. Either way, we do not expect that the orientifolding condition or the fourfold

embedding endangers the generality of this setting.

σ

Figure 6.3: A sketch of the the orientifold projection σ. It maps the two originally independent
double throat cycles B and B′ onto one another.
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6.1.2 Fluxes on the double throat and a ’Wilson line’ axion

We now proceed with our geometrical setup by including three-form fluxes on the A
and B cycle of the double throat,

M ≡ 1

(2π)2α′

∫
A1

F3 =
1

(2π)2α′

∫
A2

F3 , K ≡ − 1

(2π)2α′

∫
B
H3 . (6.8)

Note that while there are two distinct three-cycles A1 and A2, their associated flux

quanta are identified with each other as they are equivalent in homology. Using that

the H3-flux splits evenly between the two throats, the complex structure modulus is

now stabilized at a value

|z| ∝ exp

(
−2π

K/2

gsM

)
� 1 . (6.9)

This even splitting of B-cycle flux will later be shown to arise dynamically, but for now

it is enough to recognize that the CY condition z1 = z2 enforces this in the vacuum.

It is straightforward to show that the phase of the complex structure modulus is set

by the RR-3-form flux Q = 1
(2π)2α′

∫
B F3

ϕ = 2π
Q

M
+ const . (6.10)

Locally, we can always set ϕ to 0 by an appropriate redefinition of the angle. Conversely,

without loss of generality, we will choose Q = 0.

As explained in section 3.6.2 backreaction of fluxes leads to the formation of warped

throats (or Klebanov-Strassler throats). Within these, the metric is well approximated

by the Klebanov-Tseytlin solution7 [78] which we recall for convenience,

ds2 = e2Aηµνdx
µdxν + e−2A(dr2 + r2ds2

T 1,1) , e2A ∼ r2

gsMα′
log(r/rIR)−

1
2 , (6.11)

with radial coordinate r and warp factor e2A. The radial coordinate is cut off in the IR

by the Klebanov-Strassler region and in the UV by the gluing into the bulk CY. One

has a0 ≡ eA(rIR) ∼ |z|1/3. As we have explained, in the vicinity of a conifold transition

point a double throat (or even multi throat) forms8, see figure 6.1.

The three-cycle B can be thought of as an S2 fibered over the radial direction of

7Near the bottom of the throat, it has to be replaced by the full Klebanov-Strassler solution [162].
8It may not seem obvious that the units of NS-flux on the B-cycle are split democratically so that each

conifold region is replaced by a warped throat. In fact we will see that there is a light dynamical field that
controls this relative distribution (see Section 6.6). In the vacuum however this field is stabilized such that
fluxes are indeed distributed democratically.
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the conifold [150]. The S2 collapses at the two tips of the deformed conifolds. As

introduced in [74], there exists a 4d mode c(x) on the double throat background that

can be thought of as the integral of the Ramond-Ramond (RR) two form C2 over the S2

as measured far away from the tips of the double throat. This is simple to understand.

Simply choose a representative sphere in between the throats that is homologous to the

shrinking S2s. Let us call it S2
UV. From the local throat geometries one sees that this

is the boundary of three-chains B1 and B2,

∂B1 = −∂B2 = S2
UV , and B ≡ B1 + B2 . (6.12)

These three-chains can be thought of as the local portions of the global three-cycle B
that reach into the respective throats. By Stokes’ theorem, a non-trivial ’Wilson’ line

on the UV sphere satisfies

c ≡ 1

2πα′

∫
S2

C2 =
1

2πα′

∫
∂B1

F3 = − 1

2πα′

∫
∂B2

F3 , (6.13)

so it generates non-quantized pairs of flux and anti-flux on the two respective ends of

the cycle B. If we do not allow the throats to backreact geometrically, the potential

energy at fixed axion field excursion c is minimized if the flux/anti-flux resides at the

bottoms of the throats. By dimensional analysis there is a red-shifted potential,

V (c) =
1

2
m2c2 + ... , with m2 ∼ a4

0 . (6.14)

We will consider the geometrical backreaction that was neglected in [74], and turns out

to be crucial. In the remainder, we will establish the following points:

• The fields z1 and z2 of the two respective throats adjust to the flux/anti-flux pair

in such a way that within the two throats supersymmetry is restored locally.

• This adjustment of z1 and z2 takes us away from the complex structure moduli

space, which is characterized by z1 = z2 (cf. figure 6.4). For z1 6= z2, the CY

condition is broken and a scalar potential is generated. This potential is of the

order |z|2 ∼ a6
0 and receives its dominant contributions from the bulk CY.

• The backreacted scalar potential is periodic in c with periodicity 2πM . Hence,

the naive 2π periodicity of the c-axion is enhanced by a finite factor M . While

this does not allow for a super-Planckian effective axion decay constant f �MP,

approximately Planckian values are possible (see however section 6.9 for a way to

also generate large axion periodicities).
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complex structure moduli space
z = z1 = z2

conifold point

|z| 6= 0

ϕ1 6= ϕ2
ϕ1

ϕ2

complex structure
moduli space

Figure 6.4: Illustration of the z1-z2 deformation space. The complex structure moduli space is
the subspace z1 = z2. We only consider deformations away from z1 = z2 outside the conifold
point.

6.2 Local Backreaction in the Throat

We start by discussing how a single throat reacts locally to a finite field excursion c.

If the outcome would be that supersymmetry is broken badly within the throats, a

description in terms of the GVW superpotential would be questionable. However, we

will show that the throat almost perfectly adjusts to produce a locally supersymmetric

configuration, so we may use the GVW superpotential self-consistently [40, 154] for the

two KS throats. As far as (say) the first local throat is concerned, a non-vanishing field

excursion c cannot be distinguished from additional flux P ≡ c/2π on the local portion

of the B-cycle, say B1
9, see figure 6.5,

c =
1

2πα′

∫
S2

C2 =
1

2πα′

∫
B1

dC2 = 2πP . (6.15)

Considering the first throat with complex structure modulus z1 ≡ |z1|eiϕ1 , the argu-

c 6= 0

ϕ1 ϕ2

−P = − c
πP = c

π

Figure 6.5: Fluxes induced by non-vanishing c are localized at the tips of the throats.

9We will use the term flux also for the non-quantized integral
∫
F3 over some region.
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ments of GKP [40] show that there are SUSY configurations for

ϕ1 = 2π
P

M
= c/M , (6.16)

as in eq. (6.10). Hence, the throat can locally relax the SUSY breaking induced by

the extra RR-flux by adjusting the phase of the deformation parameter z1. However,

the second throat sees the field excursion c as the flux −P = −c/2π on the B-cycle for

which there exists a locally supersymmetric configuration with ϕ2 = −c/M .

Since there is no additional flux that would lead to |z1| 6= |z2|, we now freeze |z| =
|z1| = |z2| at the stabilized value (6.10) for what follows. These two modes decouple

from the discussion at hand, but will become important later when we introduce the

saxion partner of the c-axion.

We can encode the discussion above in a 4d EFT potential. To quadratic order, the

discrepancy between the local fluxes and local deformations induces a potential

Vflux(c, ϕ1, ϕ2) =
1

2
µ4(Mϕ1 − c)2 +

1

2
µ4(Mϕ2 + c)2 , (6.17)

We have µ ∼ a0 since the potential is generated locally near the tip of the throats.

The fact that only the combinations Mϕi ± c appear in the scalar potential can be

derived also via ten-dimensional considerations, see appendix A. The key point is that,

in the local throats, the combined transformation ϕ1,2 −→ ϕ1,2 ± δ, c −→ c + Mδ is

a diffeomorphism acting on the KS solution. Hence, only the invariant combinations

Mϕ1,2∓c can appear in the scalar potentials that are generated locally at the bottom of

the throats. Globally, this is not true of course and we will correct for this momentarily.

The potential derived thus far possesses a flat direction which we parametrize by c.

This flat direction is given by

ϕ1 = −ϕ2 = c/M . (6.18)

This flat direction must of course be lifted due to the fact that we break the CY

condition once we set φ1 6= φ2. We will estimate this effect momentarily.

6.3 The CY Breaking Potential

In the preceding section we have argued that the individual throats react to the field

excursion c by adjusting their local deformation parameters z1 and z2, more specifically

their phases ϕ1 and ϕ2 respectively. Since the corresponding CY has only one complex

structure modulus z ≡ z1 ≡ z2, the mode z1/z2 or rather ϕ1 − ϕ2 must be massive
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already before fluxes are turned on. This eliminates the remaining flat direction in the

potential.

We now choose to parameterize the part of the scalar potential that is due to the

breaking of the CY condition as

VCY-breaking = Λ4(1− cos(ϕ1 − ϕ2)) , (6.19)

with a yet undetermined scale Λ. In writing this we have assumed that the potential is

(a) a function of the difference ϕ1 − ϕ2 only.

(b) It satisfies VCY-breaking(ϕ1 − ϕ2) = VCY-breaking(ϕ1 − ϕ2 + 2π).

(c) The lowest harmonic dominates.

Condition a) must hold because only the local fluxes of the throats stabilize ϕ1,2 individ-

ually and, without the flux potential, the complex structure modulus ϕ = (ϕ1 + ϕ2)/2

should be a flat direction. We expect condition b) to hold because we see no reason for

a monodromy. Condition c) is a rather unimportant assumption that we make for ease

of exposition, but it will be justified in the following.

We now combine the distinct contributions to the scalar potential from fluxes (6.17)

and breaking of the CY condition (6.19). We observe immediately that the scalar

potential looks very much like the simple two-field potential we wrote down in section

3.8.1 to resolve the Kaloper-Sorbo domain wall in terms of a scalar field. Note in

particular the manifest discrete shift symmetry

c −→ c+ 2πM , φ1,2 −→ φ1,2 ± 2π . (6.20)

We find it interesting to note that here we encounter two different layers of possible

axion monodromy. The first layer is not resolved in terms of a scalar field and corre-

sponds to an M -fold extension of the axion field space. We will postpone a discussion

of the domain walls associated with this finite layer of monodromy to section 6.7. The

’domain walls’ associated with the second layer of monodromy are resolved in terms

field profiles of φ1,2. Whether or not this actually leads to a further spontaneous break-

ing of the axionic shift symmetry depends on the hierarchy between the coefficients Λ4

and µ4 as explained in section 3.8.1.

Now, we assume that the we are in the unbroken phase of the second layer of

monodromy, i.e. we integrate out ϕ1,2, assuming Λ4 � µ4 (to be justified below). This

corresponds to imposing (6.18). As in section 3.8.1 the effective potential takes the

form

Veff(c) = Λ4
(
1− cos(2c/M) +O(Λ4/µ4)

)
. (6.21)
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The height of this potential can be estimated using the 10d solution. To do so, we need

to develop a clear picture of how field profiles and 10d geometry change if we displace

c. Recall that c is originally defined by a particular ‘Wilson line’ VEV of C2 in the

UV of the two throats (as well as in the piece of the CY connecting them). Turning

on this VEV and focusing on one throat only, we observe a backreaction of the throat

geometry which maintains SUSY and corresponds to the motion along a flat direction

in 4d field space. This is independently true for the second throat, which backreacts in

the opposite way: ϕ1 = −ϕ2 = c/M .

Now, the crucial point is that the two IR parameters ϕ1,2 must by continuity be the

boundary values of a smooth higher-dimensional field profile that interpolates between

them. We encode this in an effective five-dimensional complex structure field

z(xµ, r) ≡ |z(xµ, r)|eiφ(xµ,r) , (6.22)

that interpolates between z1 = z0e
ic/M and z2 = z0e

−ic/M at the respective ends of

the throats, so we ’integrate out’ the unimportant angular directions of the space T 1,1.

This is illustrated in figure 6.6, which also displays the expected symmetry: The phase

of the solution should be antisymmetric under the exchange of the two throats.10

c/M

−c/M

φ(r)

r
rIR rUV

throat 1 throat 2

Figure 6.6: The expected profile of the 10d/5d mode along the radial direction.

For computational simplicity, we model the transition region between the throats

by a single point, r = rUV.11 In doing so, of course we ignore effects of the unwarped

CY region (accepting an O(1) error). The phase of z(r)/z0 is anti-symmetric under an

exchange of the two throats, while the magnitude is symmetric. We may thus limit our

attention to one of the two throats when computing the energy density associated with

10By a slight abuse of notation we stick with the familiar variable r, although according to our figure this
variable must now be growing as one goes down the second throat.

11In fact, the exact UV geometry and UV fluxes are irrelevant as long as we do not consider perturbative
and non-perturbative corrections [106].
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an excursion of c.

The key point is that, after these preliminaries, we are actually able to estimate this

energy. It is given by the gradient energy of z(r), which accounts precisely for the clash

between the opposite rotations of ϕ1 = c/M and ϕ2 = −c/M . The relevant action for

z = z(xµ, r) is obtained by dimensionally reducing the 10d Ricci scalar to quadratic

order on the warped conifold background:

S[z] =
M8

10d

2

∫
d4x

∫ rUV

rIR

dr

r

(
−|∂rz|2 − e−4A|∂µz|2

)
. (6.23)

Considering the metric (6.11), this form of the 5d action is easily understood. The

metric naturally splits into a 5d part g5d in the external and radial direction and an

angular part ∝ gT 1,1 . The latter contributes the r-dependent terms
√
gT 1,1 ∝ r5e−5A to

the metric determinant. The expectation value of |z(r)|/r3 encodes the degree of U(1)R

symmetry breaking at radius r, compare figure 6.2. As field excursions of the phase of

z(r) are obtained by acting with a U(1)R transformation, any terms in the action that

contain the field are multiplied by the factor |z|2/r6. For |z| = const. this symmetry

breaking is of course due to the deformation at the tip of the conifold.

We now apply the static approximation (i.e. disregard the |∂µz|2 in (6.23)), derive

the equation of motion and solve it for the appropriate boundary conditions z(rIR) =

z0e
±ic/M . This gives

z(r) = z0

(
eic/M − i r

2 − r2
IR

r2
UV − r2

IR

sin(c/M)

)
. (6.24)

Inserting this back into the action (6.23), leads to a 4d potential

V ∼ |z0|2 (1− cos(2c/M)) . (6.25)

More generally, for boundary boundary values (z1, z2) at the respective throat ends,

the field profile is

z(r) = z0,1 +
1

2

r2 − r2
IR

r2
UV − r2

IR

(z2 − z1) , =⇒ V (z1, z2) ∝ |z1 − z2|2 . (6.26)

This beautifully matches the form of our proposed scalar potential (6.21), and in par-

ticular we infer that Λ4 ∼ |z0|2. Finally inserting the stabilized value |z0| ∝ a3
0 [40],

we arrive at Λ4 ∼ a6
0. Our assumption µ4 � Λ4 is now justified a posteriori. It is also

apparent that the effective mass of our ultra-light field is

mc ∼ a3
0 . (6.27)
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Let us justify the use of the static approximation scheme we have employed. Really, we

should have supplemented (6.23) by the kinetic term Skin[c] ∼
∫

d4x (∂µc)
2, imposed

the constraint φ(xµ, rIR) = c(xµ)/M , and determined the mass of the lowest-lying KK

mode of the resulting 5d action. However, it is intuitively clear that the UV-dominated

kinetic term of c is much more important than the warped-down 4d-gradient term

(∂µφ)2 in (6.23). Thus, c is the most inert part of the system and it is an excellent

approximation to assume that the φ profile extremizes just the 5d-gradient-part of the

action. To make this quantiative, one may substitute c on the r.h. side of (6.24) with

the plane wave c = exp(ikx) (with k2 = −m2
c) and check that the resulting (∂µφ)2

contribution from (6.23) is negligible compared to Skin[c].

6.4 Discussion of Results

The information we have gathered can be summarized in an effective Lagrangian12,

L =− 1

2
f 2
ϕ(∂ϕ1)2 − 1

2
f 2
ϕ(∂ϕ2)2 − 1

2
f 2
c (∂c)2

− 1

2
µ4(Mϕ1 − c)2 − 1

2
µ4(Mϕ2 + c)2 − Λ4(1− cos(ϕ1 − ϕ2)) ,

(6.28)

with coefficients

f 2
ϕ ∼ log(a−1

0 )−3/2a2
0 M

2
P , f 2

c ≈
2

9M2
log(a−1

0 )−1 M2
P ,

Λ4 ∼ g2
s

(gsM)4
log(a−1

0 )−7/2a6
0M

4
P , µ4 ∼ g4

s

(gsM)6
log(a−1

0 )−3a4
0 M

4
P .

(6.29)

The above expressions are valid for the special case of the bulk CY having a single

characteristic length-scale, R6
CY ∼ Vol(CY), and where the throats marginally fit into

the bulk, i.e. R4
CY ∼ R4

throat ∼ gsMKα′2. For the general case and a derivation of the

parametric dependencies on flux quanta and gs see appendix D of [2].

When we say that the throats should fit into the throat marginally, we mean that

the geometrical consistency requirements of section 5.6 that were used to constrain

the KKLT construction are approximately saturated. As we are using throats in both

setups this is completely analogous: The bulk CY has an overall size RCY that is set by

a combination of the Kähler moduli, and the throats can be thought of as objects of a

characteristic physical size Rthroat embedded into the bulk CY. This size R4
throat is set

by the local D3 brane charge stored in the fluxes of the throat [40, 162], independently

of the size of the bulk CY. For this to be a geometrically consistent configuration, we

12For ease of exposition we have written down a diagonal kinetic matrix. This is not quite the case but is
not relevant for our discussion. See App. A for details.
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must require RCY > Rthroat. Taking RCY ∼ Rthroat is the case where the throats fit into

the bulk CY only marginally.

Far below the scale a0MP we may integrate out ϕ1,2, to obtain the effective La-

grangian

L′ = −1

2
f 2
c (∂c)2 − Λ4(1− cos(2c/M)) . (6.30)

We would like to highlight the following points,

• Our simplification Rthroat = RS2 = RCY gives the largest possible value for the

decay constant feff = Mfc; any hierarchy Rthroat < RS2 < RCY suppresses its

value. Taking into account logarithmic corrections, the maximal periodicity one

can achieve is O(MP/
√

log a−1
0 ) (see Appendix D of [2]). A large hierarchy a0 � 1

suppresses the periodicity only very mildly. By taking gsM and g−1
s to be large,

the 10d perturbative expansion becomes better controlled without affecting the

axion periodicity. In this sense, our axion can be made approximately Planckian.

• The mass of the axion is O(a3
0) which is parametrically smaller than both the

warped Kaluza-Klein scale (O(a0)), and the estimate of [74], where backreaction

of the local geometry was not taken into account (O(a2
0)). The mass-spectrum is

essentially gapped.

• As pointed out before, the scale of the effective potential is set by the U(1)R

breaking induced by the deformation of the conifold as measured in the UV ∼ |z|2.

Strictly speaking this is not a warp factor suppression, although for moderate CY

volumes |z| and a3
0 are of the same order13.

The following caveats should be noted: The effective Lagrangians (6.28) and (6.30) are

incomplete: We have worked in the regime of classical type IIB solutions so at least

the universal Kähler modulus T is not yet stabilized. Moreover, we have not included

the b-axion that complexifies c. Finally, there is no parametric separation between the

mass scale of the complex structures and the warped Kaluza-Klein scale. Hence, the

Lagrangian (6.28) does not define a useful effective field theory in the Wilsonian sense.

Equation (6.30) however does give rise to a Wilsonian effective Lagrangian once it is

completed by the b-axion and the Kähler modulus T .

6.5 The B2-axion

In the preceding sections we have focused on the ultralight c-axion that can be thought

of as the integral of the RR two-form C2 over a sphere between the two throats. Simi-
13One might for instance be tempted to consider the large volume limit where warping becomes negligible.

In this case the scale of the potential would still be given by |z|2 � 1.
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larly, we can define a b-axion by integrating the NS two-form B2 instead,

b ≡ 1

2πα′

∫
S2

B2 . (6.31)

By the same arguments as before (see (6.15)) a non-vanishing field excursion induces

a pair of H3 flux/anti-flux on the portions of the B-cycle that reach down into the two

throats. Now, in the vacuum the B-cycle is already filled with quantized H3-flux,

K ≡ K1 +K2 ≡
1

(2π)2α′

(∫
B1

H3 +

∫
B2

H3

)
. (6.32)

Here, as in eq. (6.12), B1 and B2 are the three-chains that reach into the respective

throats and are bounded by the sphere between the throats, so that B = B1 + B2.

Clearly the continuous field excursion of the b-axion does not change the quantized flux

integer K. However, by Stokes’ theorem it does change the relative flux distribution,

K1 −→ K1 +
b

2π
, K2 −→ K2 −

b

2π
. (6.33)

By definition, K1 and K2 are the (non-quantized) H3 fluxes that reside in the respective

throats. Again, treating the local throat deformation parameters z1,2 as independent it

is clear that the throats can restore supersymmetry by an appropriate adjustment [40]:

|z1,2| ∼ exp

(
−2π

K1,2

gsM

)
−→ exp

(
−2π

K1,2 ± b/2π
gsM

)
. (6.34)

Thus, the discussion of the previous section applies also to the b-axion if one replaces

the phases of the local deformation parameters by log |zi|, i.e. the boundary values of

the five-dimensional field z(r) depend on the two real axions as

z1 = z0e
ic/M−b/gsM , z2 = z0e

−ic/M+b/gsM . (6.35)

In other words, while the c-axion rotates the throats against each other, the b-axion

makes one throat longer and the other shorter (see figure 6.7). As a consequence the

scalar potential is of order

V (c, b) ∼ |z1 − z2|2 ∼ |z0|2
∣∣∣∣sin(c+ ib/gs

M

)∣∣∣∣2 , (6.36)

which we will confirm in the next section from a 4d supergravity point of view.

For now let us emphasize that both the c and b axion are bulk fields. In particular

a change in their field excursion is not straightforwardly measured by an observer
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b = 0
S2

K
2

B1

K
2

B2

b > 0
S2

K
2 + b

2π

B1

K
2 − b

2π

B2

Figure 6.7: The physical effect of a field excursion ofthe b-axion in the double throat system.
One throat becomes shorter, whereas the other becomes longer.

located somewhere (say) in the middle of either throat. More precisely, in the limit

of an infinitely long KS throat the axion field excursions we consider have no gauge

invariant meaning at all (they decouple). Rather, the axion field excursions can be seen

only from their global embedding into the bulk CY: The c-axion rotates the throats

against each other, whereas the b-axion makes one throat longer and the other shorter

(see Figure 6.7).

In contrast, the local throat theories remain in their supersymmetric ground states.

This is important to keep in mind because there do exist physical axionic field excursions

also in the infinitely long KS throat, superficially similar to the ones we are considering.

By integrating over the angular space T 1,1 the throat theory is reduced to an effective

five-dimensional theory also containing a C2 and a B2 axion. But, these are not light

degrees of freedom. The C2 axion is eaten by a vector via the Stückelberg mechanism14

[294] while the B2 axion receives a mass term from fluxes in the local throats (compare

e.g. [208], and for further details see Appendix A). So, the fact that there are no light

axions in the effective 5d theory is not in conflict with the existence of light 4d axions

in a coupled multi-throat system embedded in a compact bulk CY.

Finally, we find it worthwhile noting that the D3 brane charge stored in throat

fluxes is redistributed from one throat to the other by a non-trivial field excursion of

the b-axion. This is because the local D3 brane charge in the throats is set by the local

fluxes as

ND3|throat 1,2 ≡MK1,2 , (6.37)

and explains the change in size of the throats which is set by the local D3-brane charge

as depicted in Figure 6.7.

14The effective 5d theory contains a U(1) vector field that gauges coordinate reparametrizations along the
orbits of the angular U(1)R isometry of T 1,1. This vector field becomes massive by eating the 5d c-axion.
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6.6 Four-dimensional supergravity completion

So far we have discussed how the c-axion and the b axion backreact on the phases

and magnitudes of the local deformation parameters of the throats. In this section we

propose a completion of the model in the language of 4d supergravity. The C2-axion

pairs with the analogous B2-axion into a complex field G = c− τb.

6.6.1 Counting Moduli Through the Conifold Transition

Throughout section 6.1 we have focused on the case of two S3-cycles related in ho-

mology, i.e. [A1] = [A2]. In general we denote by n the number of collapsing three-

spheres Ai, i = 1, ..., n and by m the number of homology relations between them∑n
i=1 p

I
i [Ai] = 0, I = 1, ...,m.

As we have explained in section 3.4, before the fluxes are turned on and orientifold

projections are imposed the physics near conifold transition loci is governed by the

Greene, Morrison, Strominger gauge theory: There are n−m complex structure moduli

zi that are the scalar components of n −m vector multiplets. The zi parametrize the

Coulomb branch of the gauge theory. Whenever some of the three-cycles shrink to zero

size, charged D3 brane hypermultiplets (Strominger black holes) become massless and

have to be ‘integrated in’ [151]. At the origin of the Coulomb branch there are hence

n massless charged hypermultiplets and n singular nodes have developed in the CY

threefold. There exists an m-dimensional Higgs-branch where the singular nodes are

resolved into m (homologically independent) P1’s [77]. On this branch, the n−m vector

multiplets eat n − m D3-brane hypermultiplets and become massive. Geometrically

speaking this is the resolution of the conifold [76, 150].

In the N = 1 flux compactification that we are considering the tips of the conifolds

become strongly red-shifted. Moreover backreaction of fluxes ensures that even at tiny

complex structure the S3’s stay at finite size so that the Strominger black holes cannot

ever play an important role. However, since the deformed and the resolved conifold

differ only by their strongly red-shifted tip geometries it is natural to expect at least

some remnant of the resolved phase of the conifold theory in the light spectrum. As

outlined in section 6.1 we expect the ‘local complex structures’ to decouple from one

another so that all the n local deformation parameters z1, ..., zn become equally light.

In other words there are m additional light complex geometric modes. Moreover, on the

resolved side of the transition there would be m massless complex axion modes. Since

the obstruction for them to be massless is also localized at the tips of the conifolds

where the would-be two-cycles collapse we also expect m complex light axionic modes



6.6. FOUR-DIMENSIONAL SUPERGRAVITY COMPLETION 139

GI .15 As we will argue in the next section, these modes indeed appear quite naturally

in the discussion of the flux superpotential.

6.6.2 The Thraxion Superpotential

In this section we make a proposal for the 4d supergravity completion of the Lagrangians

(6.28) and (6.30) for a general number of throats n with m homology relations among

the shrinking cycles. Throughout this section we work in units MP = 1.

As a starting point we consider the GVW flux superpotential for a multi conifold

system. All the necessary ingredients are derived in ref. [295] and summarized in Ap-

pendix B. We choose to treat the redundant set of the n complex structure parameters

zi associated with the n vanishing cycles Ai democratically, and impose the m CY

conditions via a set of Lagrange multipliers λI , I = 1, ..,m. The superpotential reads

W (z) =
n∑
i=1

(
Mi

zi
2πi

log(zi) +Mig
i(z)− τKizi

)
+

m∑
I=1

λIP
I +

ˆ̂
W0(z) . (6.38)

The m homology relations among the vanishing cycles
∑n

i=1 p
I
iAi = ∂CI , I = 1, ...,m

lead to the following m CY conditions for the zi ≡
∫
Ai Ω,

0
dΩ=0
=

∫
CI

dΩ =

∫
∂CI

Ω =
n∑
i=1

pIi

∫
Ai

Ω =
n∑
i=1

pIi zi ≡ P I , I = 1, ...,m . (6.39)

In this language, the m CY conditions P I = 0 are equivalent to the F-term equations of

the Lagrange multipliers λI , ∂λIW
!

= 0. For details we refer the reader to appendix B.16

Here, the Mi and Ki are the flux numbers associated to the A- and B-cycle of

the i-th throat, and the holomorphic function
ˆ̂
W0(z) denotes contributions to the flux

superpotential from other cycles. The Mi ∈ Z cannot all be chosen independently but

must comply with the m homology conditions

n∑
i=1

pIiMi = 0 , I = 1, ...,m . (6.40)

15It is natural to conjecture that in the absence of fluxes and orientifolds the additional deformation pa-
rameters pair with the additional axions into N = 2 BPS hypermultiplets, though we will not follow this line
of thought here.

16Note that we restrict ourselves to regions in complex structure moduli space close to the conifold transition
point, where all throats degenerate simultaneously. This might be more restrictive than is needed for our
analysis: If the matrix pIi is block-diagonal, we can separate the multi throat system into smaller multi throats
whose deformations are independent of one another. In this case we can go through a conifold transition
by local degeneration of the throats of a smaller system. Even away from the trivial case of multi throats
factorizing, one might be able to achieve small thraxion masses by ‘freezing’ individual throats with larger
deformation z. Given a multi throat with some large z’s one has to check the thraxion potential as proposed
in this section for flat directions. We leave a more thorough analysis of this possibility for future work.
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The Ki can be chosen independently but there is an m-fold redundancy in their def-

inition because we may transform Ki −→ Ki +
∑

I αIp
I
i for any α ∈ Cm leaving the

superpotential invariant upon imposing the constraint equations.17 Furthermore, there

are n unknown functions gi(z) defined on complex structure moduli space that are

holomorphic near the origin.

The complex structure Kähler potential (3.33) is expanded as

Kcs(zi, z̄i) = − log

(
−i
∫

Ω ∧ Ω

)
= − log

(
igK(z)− igK(z) +

n−m∑
a=1

iz̄aG
a + c.c.

)

= − log

(
igK(z)− igK(z) +

n∑
i=1

[ |zi|2
2π

log(|zi|2) + iz̄ig
i(z)− izigi(z)

])
, (6.41)

where the holomorphic function gK(z) encodes contributions from other cycles. We

would like to stress that despite the fact that we have written the unknown functions

gi, gK and
ˆ̂
W0 as functions of all the zi, i = 1, ..., n, knowledge of the periods of the

various cycles (and the flux quanta) only determines their behavior along complex

structure moduli space and not beyond.

We are now ready to formulate a proposal for the thraxion superpotential. First,

we note the following. By expanding the Lagrange multiplier terms, one may rewrite

the superpotential (6.38) as

W (z) =
n∑
i=1

(
Mi

zi
2πi

log(zi) +Mig
i(z) +

[
−τKi +

m∑
I=1

λIp
I
i

]
zi

)
+

ˆ̂
W0(z) . (6.42)

One observes immediately that the combinations
∑m

I=1 λIp
I
i can be interpreted as an

additional, unquantized contribution to the complex three-form flux G3 = F3− τH3 on

the (local portion B̃i of the) B-cycle of the i-th conifold. But we know that such a flux

is detected by a boundary integral

Ĝi ≡ ci − τbi ≡
1

2πα′

∫
S2|i-th throat

(C2 − τB2) =
1

2πα′

∫
B̃i

(F3 − τH3) (6.43)

over the S2 at the top of the i-th throat. Crucially, the variables Ĝi define axionic field

17The n −m physical H3 flux quantization conditions can be stated as Ka −
∑m
I=1 p

I
aK

n−m+I ∈ Z, a =
1, . . . , n −m. This is because we can always choose the first n −m of the shrinking cycles to correspond to
integral basis elements [A1], ..., [An−m] in homology. The Lagrange constraints can be stated as 0 = P I =∑n−m
a=1 pIaza+zn−m+I , i.e. zn−m+I = −

∑n−m
a=1 pIaza. In the superpotential the terms that multiply z1, ..., zn−m

are given by the above combination of Ki and correspond to the integer flux numbers on the cycles B1, ...,Bn−m.
Alternatively, one may demand the sufficient but not necessary conditions that Ki ∈ Z for i = 1, . . . , n. In
this more restrictive but democratic formulation the i-th throat carries Ki units of flux. We can still reach all
possible integer values for flux numbers on the cycles Ba.
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ϕ1 ϕ2 ϕ3

c1 c2

c3

Figure 6.8: A cartoon of the B-cycle of the triple throat, n = 3 and m = 2. The local c-axion
excursions c1, c2 and c3, ci = Re Ĝi, must be chosen so that no overall flux is generated on B,

i.e. 0
!

= c1 + c2 + c3
18 or rather

∑
i Ĝi = 0.

excursions as measured near the entrance of the i-th throat.

We would like to interpret (a subset of) these as light physical degrees of freedom.

This is motivated by the fact that there are m light axions on the other side of the

conifold transition that correspond to the integrals of C2 − τB2 over the independent

resolution 2-cycles. Indeed, the counting is correct. A consistent axionic field excursion

must not induce any overall flux on any of the global B-cycles (see figure 6.8). There

are hence n−m no-flux conditions, one for each linearly independent B-cycle, leaving

only m physical axions. These can be parametrized as Ĝi =
∑m

I=1 p
I
iGI and we are led

to the following conjecture:

The Lagrange multipliers λI must be promoted to

m light axionic degrees of freedom, λI −→ GI
2π

.

Moreover, the zi are promoted to n physically in-

dependent degrees of freedom.

The normalization factor 2π is chosen such that locally in the i-th throat a shift of

axionic field excursion GI by 2π (or 2πτ) for some I is indistinguishable from an increase

of the F3-flux (respectively H3-flux) on the local portion of the B-cycle of the throat

by an integer amount piI .

Thus, our propoal for the superpotential is

W =
n∑
i=1

(
Mi

zi
2πi

log(zi) +Mig
i(z)− τKizi

)
−

m∑
I=1

GI
2π
P I +

ˆ̂
W0(z) . (6.44)

We find it interesting to note that the axions GI now serve as the stabilizer fields for

the combinations of the local deformation parameters that break the m CY conditions

18Compare this to figure 6.5: The ‘no-flux’ condition in the double throat setup amounts to c1 = −c2. The
two axions c1 and c2 are actually identified, up to a sign due to different orientation of the two-sphere in the
definition. This is why we only had one axion c to begin with in the 10d analysis of section 6.1.
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P I = 0, I = 1, ...,m. This form of the dynamical thraxion superpotential is fairly

unique in that it preserves the set of discrete shift-symmetries

zi −→ zie
2πi
Mi

∑
I ηIp

I
i , GI −→ GI + 2πηI , ∀η ∈ Cm :

∑
I

ηIp
I
i ∈MiZ ∀i . (6.45)

Our proposal for the Kähler potential is

K(GI , ḠĪ , T, T̄ , z, z̄) = K1(GI − ḠĪ , T + T̄ ) +Kcs(z, z̄) , (6.46)

where Kcs is the Kähler potential (6.41) and K1 is the Kähler potential of the m axions

(and Kähler moduli T ) on the other side of the conifold transition as derived in [153],

and quoted in eq. (3.49).

We expect (6.41) and (6.44) to hold even when we break the CY condition P I 6= 0

with the important subtlety that the domain of the holomorphic functions gi, gK and
ˆ̂
W0 must be extended beyond complex structure moduli space. We find it reasonable

to expect that such an extension exists although even full knowledge of the CY periods

would not determine their behavior away from the moduli space. The detailed form

of these functions will be of no importance in what follows. Moreover, we expect that

using the potential K1 gives an excellent approximation because the kinetic term of the

axions is dominated by contributions from the UV where the deformation or resolution

of the conifold plays but a tiny role. Note, that the behavior of the kinetic terms

of the complex structure moduli is dominated by the logarithmic terms in (6.41). In

particular, the functions gi(z) and gK(z) contribute to kinetic terms only at sub-leading

order.

Since we are interested in small zi we Taylor-expand

gi(z) =gi0 +
n∑
j=1

gij1 zj +O(z2) ,
ˆ̂
W (z) = gW,0 +

n∑
i=1

giW,1zi +O(z2) ,

gK(z) =gK,0 +
n∑
i=1

giK,1zi +O(z2) . (6.47)

This should really be understood as a Taylor expansion in n independent variables

zi and makes our conjectured extension of the domain of these functions beyond the

complex structure moduli space manifest.

We absorb all O(z0) terms in the superpotential in the definition Ŵ0 ≡ gW,0 +∑n
i=1Mig

i
0. The coefficients in (6.47) should all be viewed as independent of the flux

quanta that thread the cycles of the multi throat system, and only (gW,0, g
i
W,1) depend

on fluxes on other cycles.
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It is clear that to obtain the effective superpotential for the G-fields we should

integrate out the local deformation parameters. Before we discuss this in full generality

it is instructive to first consider the simplest case of the double throat, i.e. n = 2 and

m = 1. There are two A-cycles A1 and A2 and we choose the homology relation to be

A1 ∼ A2. Hence, there are two deformation parameters z1 and z2 and one axion G.

For ease of exposition we assume that of all the coefficients defined in (6.47), only gW,0

and gK,0 are non-vanishing, in other words, we choose Ŵ0 as well as all non-logarithmic

terms in the Kähler potential to be constant. In doing so we accept an O(1) error in all

expressions, in particular in the resulting superpotential Weff for G. This simplifying

assumption will be dropped when we generalize the discussion to the multi throat case

in section 6.6.3.

We must set M1 = M2 ≡ M due to the homology relation between the shrinking

cycles, and we choose K1 ≡ K/2 ≡ K2 which results in flux K1 + K2 = K on the

B-cycle. All choices of the pair (K1, K2) that satisfy K1 + K2 = K are physically

equivalent to this choice and can be brought back to the symmetric choice via a linear

redefinition of G (compare the discussion below (6.40)). The superpotential takes the

form

W (z1, z2,G) =
2∑
i=1

(
zi

2πi
log(zi)M −

1

2
Kτzi

)
− G

2π
(z1 − z2) + Ŵ0 +O(z2

i ) . (6.48)

First, the F-terms Fzi are given by

DziW = ∂ziW + (∂ziK)W =
log(zi) + 1

2πi
M − K

2
τ ∓ G

2π
+O(zi)

=
M

2πi
(log(zi/z0)∓ iG/M) +O(z0) ,

(6.49)

where

z0 = e−1 exp

(
2πiτ

K/2

M

)
+O

(
e−4π

K/2
gsM

)
= O

(
e−2π

K/2
gsM

)
. (6.50)

As usual, with K/2 > gsM one obtains |z0| � 1 with universal dependence on the flux

numbers. Following section 6.1 we may integrate out the local deformation parameters,

which yields

z1 = z0e
iG/M , z2 = z0e

−iG/M . (6.51)

The effective superpotential for the axion G reads

Weff(G) = 2ε (1− cos(G/M)) +W0 +O(z2
0) ,

with ε ≡M
z0

2πi
, and W0 ≡ Ŵ0 −

z0

πi
M .

(6.52)
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This is the expression we were after. Crucially, it is consistent with the results of

section 6.1: In section 6.8 we will show that V (G, Ḡ) ∝ |∂GW (G)|2. So, if we restrict to

G = c ∈ R, we reproduce the periodic potential (6.21) with all the correct parametric

scaling properties, in particular |ε|2 ∼ |z0|2 ∼ a6
0.

Note that because we have made use of the unwarped Kähler potential we do not

reproduce the correct mass-scale of the local deformation parameters zi. Here, this is of

no importance because all degrees of freedom that are related to strongly warped regions

are integrated out supersymmetrically. In particular, the potential energy induced by a

non-vanishing field excursion of the field G receives its dominant contributions from the

bulk CY where warping plays no role. Because in going from weak to strong warping,

the solutions of the complex structure F-terms are left invariant [154], and because the

zi are parametrically heavier than G even when the appropriate red-shift factors are

introduced in the scalar potential, this procedure is justified.19

We are now ready to expand on the conclusions we have drawn in section 6.1. First

of all, the kinetic term of the full complex field G lives in the bulk. This implies that

the mass2 of G is of order |z0|2 � 1. Since the Kähler potential is independent of Re(G)

a discrete shift-symmetry G −→ G + 2πM is manifest20, while the IR superpotential

breaks the shift-symmetry corresponding to Im(G) completely.

While in principle the target space distance traversed by Im(G) can be made large,

the scalar potential grows exponentially as a function thereof as is common for saxionic

directions in field space. In particular, this direction in field space is of little use for

(slow-roll) inflation. There is a critical field excursion |Im(G)crit| . 3M log(a−1
0 ) beyond

which one side of the double throat is entirely pulled up into the bulk CY, z1 ∼ 1 or

z2 ∼ 1. Near this field excursion we no longer know the form of the potential because

we work to lowest order in |z1|, |z2|. Moreover, there is a tower of warped KK-modes

with masses that scale as

m2
n ∼ n2a2

0 exp (−2|Im(G)|/3M) , (6.53)

where the warp factor a2
0 ∼ |zi|2/3 now depends on Im(G). Since these modes have been

integrated out, the ratio Λ/mG of the cutoff of the G-EFT (i.e. the smallest KK-mass)

over the mass-scale of G, comes down as

Λ/mG ∼ a−2
0 e−

4
3M
|ImG| ≤ a−2

0 exp

(
− φb
MP

)
, (6.54)

19For a recent computation of the warped (i.e. physical) Kähler potential, see ref. [296]
20In an exact no-scale background the scalar potential even has periodicity πM . However, any no-scale

breaking effects will break it to the periodicity of the superpotential.
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at large field excursion, consistent with a distance conjecture [30, 205–207, 272, 297–

299]. Here φb measures the canonical field distance from the origin along the imaginary

G-axis21.

At strong warping the maximal allowed field excursion is |Im(G)max| ∼ 3
2
M log(a−1

0 )

before the 4d EFT description breaks down. Near this field excursion, a large fraction

of the reservoir of fluxes of one of the throats has been transferred to the other one and

the mass scale of the G-field is of the same order as the warped KK-scale of the longer

throat. At this point, contributions to the scalar potential from non-vanishing F -terms

DziW start to play a significant role, or from a 10d point of view, the potential energy

sinks down into the longer throat.

6.6.3 The general multi throat

We now wish to generalize our results to the case of an arbitrary multi-throat. For

general m and n that satisfy n−m > 0 homology relations, there are n local deformation

parameters z1, ..., zn that have to be integrated out. We are left with an effective

supergravity theory of m axions GI . The computational steps are analogous to the

double throat case that was laid out in detail. Hence, we only state the effective axion

superpotential

Weff(GI) = −
n∑
i=1

εie
i
∑m
I=1 p

i
IG
I/Mi + Ŵ0 , (6.55)

and we have defined

εi ≡
Mi

2πi
z0,i(1− 2π ¯̃gi0Ŵ0/(aMi)) , g̃i0 ≡ gi0 − giK,1 , a ≡ −2Im(gK,0) , (6.56)

and

z0,i = e−1 exp

(
−2πi

Mi

(∑
j

Mjg
ji
1 + giW,1 + i ¯̃gi0Ŵ0/a

))
e

2πiK
iτ
Mi +O

(
e
−4π Ki

gsMi

)
.

(6.57)

It is important to note that the z0,i as defined above can in general not be interpreted

as the values of the local deformation in the vacuum. The physical local deformation

parameters are given by

zph,i ≡ z0,i exp

(
i
∑
I

piIGI/Mi

)
, (6.58)

21See appendix D of [2] for the conversion rule between G and the canonical distance in field space φb. At

any point in field space, gGG < M2
P/M

2. Hence, φb =
∫ ImG

0
d ImG′√gGG < ImGMP/M .



146 CHAPTER 6. THRAXIONS

where in the vacuum the GI need not vanish in general.

6.6.4 Comments on the b-axion

In the above supergravity completion we have ‘complexified’ the c-axion by pairing

it with the analogous b-axion. We have outlined the 10d backreaction of the b-axion

already in section 6.5. Now that we have addressed the scalar potential of the b-axion

quantitatively, in this section we would like to comment on a potential worry and how

to resolve it: We recall that the effect of a non-vanishing field excursion of the b-axion

is the creation of a pair of fluxes of the NS field strength H3. Since both throats are

filled up with H3-fluxes already in the vacuum one should think about this process more

properly as a transfer of H3-flux from one throat to the other. Since the magnitudes

of the local deformation parameters (and the associated hierarchy) are set by the ratio

of local H3-flux (on the B-cycle) and F3-flux (on the A-cycle) it is clear that these will

backreact when the H3-fluxes are redistributed, see eq. (6.34).

However, it is also clear that when the local H3-fluxes are changed, the circumference

of the throat at the UV end is affected strongly. This is because it is set by the total

D3-charge that is stored in the throat which is itself proportional to the amount of H3-

flux [162], compare figure 6.7. Hence, naively one might worry that such considerable

change at the UV ends of the throats could lead to a large potential energy. One may

convince one-self that this is not the case as follows. Starting from the supersymmetric

situation we can redistribute a small amount of fluxes from one throat to the other,

so that throat A has δ units of H-flux more than throat B. We can now proceed to

convert the extra fluxes into a number of D3-branes by going through the Kachru-

Pearson-Verlinde (KPV) transition [174]. From the UV perspective this process is only

detected by a change in the throat complex structure which is a tiny perturbation far

from the tip of the throat. Now we are back to an even flux distribution with a number

of mobile D3-branes. These can be moved out of the throat at no cost in energy so

the situation with the mobile branes should be a vacuum again. In other words, the

redistribution of fluxes creates an energy density that is only due to the misalignment

of local deformation parameters and the change of size of the throats at their UV ends

does not generate an extra contribution to the potential. We reiterate that the situation

is analogous to the backreaction of the c-axion with the phases of the local deformation

parameters replaced by the logarithms of their magnitude.

Finally, note that in the Kähler potential (3.49) the b-axion appears explicitly, while

the approximate c-axion shift symmetry is manifest. One might suspect that the small

scale of the b-axion is therefore accidental due to our use of tree level supergravity.

This conclusion would be incorrect: The target space manifold with Kähler metric
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derived from (3.49) is shift symmetric also in the b-direction [300, 301]. In general we

expect both continuous shift symmetries to be preserved to all orders in the perturbative

expansion with explicit breaking only due to the superpotential (6.55). When moreover

non-perturbative Kähler moduli dependent terms are generated in the superpotential

such as the ones considered in [41], the b-axion mass is lifted to the scale of Kähler

moduli stabilization while the c-axion can remain parametrically lighter. We will be

more precise about this in section 6.8

6.7 The axion potential from the KS gauge theory

We have derived the axion potential via a classical computation within 10d SUGRA, and

proposed a 4d SUGRA description that matches it. Since the local throats are believed

to have a dual description in terms of KS gauge theories [162], it is useful to give an

alternative derivation of our results on the gauge theory side of the correspondence.

This will give us a further consistency check and allow us to conclude that the validity

of our results is not endangered as we make the throat curvatures large in string units.

Recall form section 3.6.2 that the KS gauge theory is a SU(N + M) × SU(N) gauge

theory with gauge coupling constants set according to eq. (3.62). The radial running

of the G-field together with τ = const. matches the RG-running of the gauge theory

coupling constants. Throughout this section (and in contrast to the preceding ones) G
takes values in its suitable fundamental domain.

As the KS gauge theory flows to the infrared, it undergoes repeated steps of Seiberg

dualities that reduce the ranks of the gauge groups according to

SU(N0 +M)× SU(N0) −→ SU(N1 +M)× SU(N1)

−→ · · · −→ SU(Nk +M)× SU(Nk) , (6.59)

with Nk ≡ N − kM , k ∈ N. If we start with N = KM , after K steps in the duality

cascade the gauge group is SU(M). Since, roughly speaking, it corresponds to the first

gauge group factor in SU(M) ≡ SU(NK+M)×SU(NK), its holomorphic scale is given

by

Λ3M = µ3M
IR exp (2πiτYM(µIR)) = µ3M

IR exp(iG) , (6.60)

where µIR is the infrared scale of the throat and where we make use of the KS dictionary

τYM ' G/2π. Gaugino condensation leads to an effective ADS-superpotential [162, 169,

265]

Weff(G) = MΛ3 ∼Mµ3
IR exp(2πiτYM/M) ∼Mµ3

UV exp

(
2πi

M

(
τK +

G
2π

))
, (6.61)
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where we have used that the IR-scale is related to the UV-scale by

µ3
IR = µ3

UV exp

(
−2π

K

gsM

)
. (6.62)

The superpotential that we have proposed on the gravity side of the correspondence

(6.55) indeed takes precisely this form,

W ∝
n∑
i=1

MiAi exp

(
2πi

Mi

(
τKi +

Ĝi
2π

))
+ const , (6.63)

with Ĝi =
∑m

I=1 p
i
IGI , and22

Ai ≡
(

1− 2π¯̃gi0
aMi

Ŵ0

)
exp

(
−2πi

Mi

(
n∑
j=1

Mjg
ji
1 + giW,1 + i¯̃gi0Ŵ0/a

))
. (6.64)

From the gauge theory perspective we should interpret the appearance of the constants

gji1 , g
i
W,1, g̃i0 and Ŵ0 as a parameterization of threshold corrections near the UV cutoff.23

Indeed, as they are taken to zero the Ai become unity.

It is now obvious that the M -fold extension of the periodicity of the c-axion is

related to gaugino condensation in the KS gauge theory24 [78, 162, 294, 304]: As usual

there is a U(1)R symmetry that is broken to Z2M by gauge theory instantons. Gaugino

condensation spontaneously breaks Z2M → Z2, so there are M gauge theory vacua. As

we transform c → c + 2π, we move from one gauge theory vacuum to the next, and

the gaugino condensate (which corresponds to the local deformation parameters on the

gravity side) picks up a phase exp(2πi/M). This is as in section 6.2 where we learned

that the M different vacua are reached by dialing the RR flux quanta on the B-cycle

Q = 0, . . . ,M − 1 (see (6.10)).

This point of view is useful for our understanding of how the discrete gauged axion

shift symmetry is broken spontaneously in this case. The domain walls of the Kaloper-

Sorbo description correspond to aligned gauge theory domain walls of either of the two

throat gauge theories, across which the value of the respective gaugino condensates

jump by factors of e±2πi/M . From the supergravity perspective, for a single throat this

is known to be a D5 brane wrapped on the A-cycle S3 at the bottom of the throat

[294]. Therefore, in our case this must be a combination of two D5 branes each one

wrapped (with opposite orientation) on one of the two S3s at the bottom of the throats.

22Note that in (6.55) we have set MP = 1. Therefore we identify µUV ∼MP.
23Of course these are in general functions of all other complex structure moduli that do not control the

infrared regions of the throats and are frozen at a high scale.
24Related observations were made in the non-compact flux-less multi-node setting of [302, 303].



6.8. KÄHLER MODULI STABILIZATION 149

 

bulk Cy
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Figure 6.9: The Kaloper-Sorbo domain wall across which the cI -axion field excursion jumps
by one unit (by one monodromy charge unit). The homology-trivial cycle

∑n
i=1 p

i
IAi ∼ 0 is

wrapped by D5 brane(s). This configuration can be thought of as a set of n D5 branes, parallel
in the non-compact directions, that wrap the internal A-cycles in a combination of zero overall
D5 charge. The corresponding domain wall for the bI axion is obtained by replacing the D5s
by NS5 branes.

For the b-axion it is an NS5 brane instead (see figure 6.9).

6.8 Kähler moduli stabilization

In this section we would like to comment on the question to what extend our results

are modified when no-scale breaking due to Kähler moduli stabilization is introduced.

So far we have proposed a superpotential as a function of the field G,

W (G) = ε (1− cos (G/M)) +W0 . (6.65)

This was argued to appropriately capture the thraxion scalar potential in purely clas-

sical ISD solutions, and in particular we have left out Kähler moduli in our discussion.

First, in order to derive the thraxion scalar potential we do need to consider the Kähler

moduli as they form a ’no-scale’ sector together with the G-axions. Following our con-

jecture of section 6.6 we make use of the type IIB N = 1 O3/O7-orientifold Kähler

potential as derived by Grimm and Louis [153], on the other side of the conifold transi-

tion, denotedM′, where the thraxions would become part of the CY zero mode sector.

We denote by G1, ...,Gh1,1
− +m the h1,1

− + m complex axions, and by T 1, ..., T h
1,1
+ the h1,1

+

Kähler moduli. For simplicity let us set h1,1
− = 0. The Hodge numbers are those ofM.

We specify to the simplest case with h1,1
+ = 1 and use the Kähler potential of (3.49).

Strictly speaking we must allow for at least two Kähler moduli on the other side of the

conifold transition, the universal Kähler modulus and the resolution modulus. Since

the latter is set to zero as we go through the transition, we only keep the universal one.
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The triple intersection number matrix κ+ij is negative definite, and symmetric in

the indices i, j. We define βi ≡ −i(G − Ḡ)i, and raise and lower the indices using the

metric −κ+ij. In the basis of target space vector fields {∂T , ∂Gi} the field space metric,

its inverse and the one-form ∂K take the form

gAB̄ =
3

F 2

(
1 −iαβj̄

iαβi −αFκ+ij̄ + α2βiβj̄

)
AB̄

, gĀB =
F 2

3

(
1 + α

F
βkβ

k i 1
F
βj

−i 1
F
β ī − 1

αF
(κ−1

1 )īj

)ĀB

,

(6.66)

and ∂iK = − 3
F

(1, iβvi)
T
i , where α ≡ 3

4
gs. As usual, the Kähler potential satisfies the

no-scale relations

g−1 · ∂K = −F (1, 0)T , ∂K†g−1∂K = 3 . (6.67)

As a consequence, for a general superpotential W = W (T,G) one obtains

V =eK(|DW |2 − 3|W |2) =
eK0

F 3
(|∂W |2 − 2FRe(W∂TW )) . (6.68)

For the purely classical background, we have W = W (Gi). Hence the potential is given

by

V =
eK0

3αF 2
(−κ−1

+ )ij∂GiW∂GjW
m=1
=

2|ε|2
9M2F 2

(−κ−1
+ )11| sin(G/M)|2 . (6.69)

In the last equality we have set m = 1. For Re(τ) = 0, b = 0 this reduces to the

potential of eq. (6.30). Note that if we freeze the value of the overall CY volume, and

the dilaton, this potential is of the same form as one derived in rigid SUSY with flat

field space metric ∝ (−κ−1
+ )ij. Therefore, it possesses only Minkowski minima.25

Kähler moduli stabilization will distort this scalar potential as the second term on

the r.h. side of (6.68) indicates. Adding a KKLT term NAe−2πT/N to the superpotential

one obtains the following scalar potential

e−K0 · V =
1

3F 2
|2πAe−2πT/N |2(F + α|β|2)− 4ImG

3MF 2
Im
[
2πAe−aT ε̄ sin(G/M)∗

]
+
|ε|2(−κ−1

+ )11

3αM2F 2
| sin(G/M)|2

+
2

F 2
Re
[
2πAe−2πT/N

(
W0 + Ae−aT + ε(1− cos(G/M))

)∗]
. (6.70)

The SUSY critical point is the same as in ordinary KKLT, with G = 0.

This scalar potential has a rather complicated structure in particular due to the

spontaneous breaking of the b-axion shift symmetry due to the presence of the seven-

25Strictly speaking, (pseudo-)moduli spaces of positive energy vacua are also possible [305]. But it is clear
that this situation will not occur in our examples.
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brane stack. In other words, the b-axion will in general be sourced by gaugino conden-

sation. We will neglect this effect now by setting ImG = 0 and focus on the c-axion

dependence of the scalar potential. This is simpler because the c-axion shift symmetry

is preserved by the D7 brane stack. The scalar potential simplifies to become the sum of

the axion-independent KKLT scalar potential and an axion dependent scalar potential

of the schematic form

Vaxion(c) = |z0 sin(c/M)|2 + Re [〈λλ〉z̄0(1− cos(c/M))] . (6.71)

First, as advertised one observes that the axionic shift symmetry is preserved in the limit

z0 −→ 0, but now the non-perturbative volume stabilization effects induce also a term

linear in z0. The appearance of this term can be understood from a ten-dimensional

perspective: In section 6.3 we have considered the effective five-dimensional deformation

field z(r) and seen that a non-trivial field excursion of the axions effectively displaces

the two Dirichlet-type boundary conditions at the IR ends of the throats against each

other. In general, when non-perturbative ISD breaking effects are turned on in the

bulk, this radial mode will be sourced also at the UV end,

S[z] −→ S[z] +
M8

10

2

∫
d4x

∫
dr

r
(JUVz̄ + c.c.) , (6.72)

with JUV = j · rδ(r − rUV). In our case the source j is identified with the gaugino

condensate, j ∼ 〈λλ〉. From the dual KS field theory perspective the presence of such

a source term is interpreted as a relevant deformation of the field theory Lagrangian,

by a certain chiral operator of dimension ∆ = 3, listed in ref. [106].26 The solution

to the equations of motion of z(r) subject to Dirichlet boundary conditions at the IR

ends as given in section 6.3 is now modified by the UV source, and reads

z(r) =
1

4
j(r2 − r2

IR) + z1 +
1

2

r2 − r2
IR

r2
UV − r2

IR

(z2 − z1) . (6.73)

This holds in the first throat. In order to obtain the profile in the second throat, one

simply exchanges z1 ←→ z2. Plugging this back into the action, one obtains a scalar

26More precisely we actually consider perturbations of the conformal Klebanov-Witten theory. The KS
theory is interpreted as a small perturbation of the KW theory due to the logarithmic running of five form
fluxes and the warp factor. As we neglect this logarithmic running also in the throat calculation, a comparison
to the KW theory using the usual AdS/CFT dictionary is appropriate.



152 CHAPTER 6. THRAXIONS

potential

V (c) = |z1 − z2|2 + Re (j̄(z1 + z2)) + const.

= 4|z0|2| sin(c/M)|2 − 2Re(jz̄0)(1− cos(c/M)) + const. (6.74)

This indeed reproduces the form of the c-axion scalar potential as computed from four-

dimensional supergravity (6.71). Similar cross-terms are expected to be generated for

any type of no-scale breaking, be it of perturbative type as generated by the BBHL

correction of eq. (3.72), particularly relevant for moduli stabilization à la LVS [75], or of

non-perturbative type as in KKLT [41]. Indeed, one can show that including the BBHL

correction into the Kähler potential leads to an analogous cross term proportional to

W0. We leave the task of matching the full scalar potential as a function also of the

b-axion for future work.

In the limit |z0| � |j| the axion mass is raised to a value of order

mc

MP

∼ (a0)
3
2 ·
√
mT

MP

, (6.75)

where mT is the scale of Kähler moduli stabilization. While this is a somewhat larger

value than the one encountered in the classical ISD solutions it is still exponentially

smaller than the mass scale of Kähler moduli.

Note that one might worry that already in the classical ISD background such a UV

source term is present. After all the U(1)R symmetry is broken by the bulk. This is

unfounded as can be seen as follows. The general solution z(r) = c1 + c2r
2 contributes

to the local strength of U(1)R breaking in the combination

z(r)/r3 = c1r
−3 + c2r

−1 . (6.76)

The first term is the normalizable perturbation due to the deformation of the conifold.

The latter is activated only in the presence of an appropriate source in the UV. From

the radial scaling we observe that this mode grows toward the infrared. But we know

from the definition of a compactly embedded conifold region that the CY metric does

not possess such a mode. Rather all geometric effects of bulk symmetry breaking fall off

towards the IR end of the conifold. Therefore, this particular mode cannot be activated

in an ISD background, i.e. j|ISD = 0.27

27Questions of this sort have been addressed systematically e.g. in [106, 306]. In general, the KS throat is
known to not admit any supersymmetry breaking but ISD preserving relevant perturbations [306].
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6.9 Applications

6.9.1 Thraxions on the Quintic: Drifting Monodromy

In this section we would like to give an example of a string compactification where a light

thraxion can appear. Along the way we identify concrete setups in which parametrically

super-Planckian racetrack-type axion periodicities are possible. We choose the CY to be

the quintic three-fold as introduced in section 3.3 near its ’classical’ conifold transition

locus described in section 3.4. Recall that there are 16 vanishing three-cycles Ai,
i = 1, ..., 16. Because the solution set lies on a P2 submanifold of P4, there is precisely

one homology relation among them,

16∑
i=1

[Ai] = 0 . (6.77)

Hence, we have a multi throat system with n = 16 and m = 1 so there is one light

axion.

Let us give two examples that differ by choices of flux numbers. In both examples

we set the coefficients Ai defined in (6.64) to unity. Generically we expect these to be

of order one. Inserting O(1) factors below does not change the physical outcome.28

Example 1: A simple thraxion potential

First we dial the flux quanta as

Mi = (−1)i+1M , Ki = (−1)i+1K , (6.78)

with K/gsM � 1. Then we have εi ≡ (−1)i+1ε, and

Weff(G) = −16iε sin 2G/M + Ŵ0 = 16iε(1− cos 2G ′/M) +W0 , (6.79)

with W0 = Ŵ0 − 16ε, G ′ = G − πM/4, and small |ε| ∝ exp(−2πK/gsM). Up to the

numerical pre-factor this is exactly what we found for n = 2 and m = 1.

Example 2: Drifting Monodromy

We now slightly detune the F3 fluxes from one another:

M1 = M , M2 = M + 1 , M3 = −M , M4 = −(M + 1) , (6.80)

28If some coefficients can be tuned parametrically smaller than others, new qualitative features might arise.
We leave an investigation of this possibility to future research.
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and Mi+4 = Mi, with Ki ≡ sign(Mi)|K|, and again K/gsM � 1. In this case

Weff(G) ≈ −8iz0(M sin(G/M) + (M + 1) sin(G/(M + 1))) + Ŵ0 , (6.81)

with z0 ∼ exp 2πiKτ/M . In addition to the previous simplification, we have also

neglected order one prefactors that arise from the fact that the ratios Ki/Mi are not

all exactly equal. Again, this is of no consequences for our purposes.

The superpotential (6.81) is a racetrack -type superpotential for G. The axion peri-

odicity is now given by 2πM(M + 1). Crucially, this implies another M -fold extension

of the axion field range on top of the one already discussed in the simpler examples

of the double throat and the first example of this section. Clearly, one may take this

even further to periodicities such as 2πM · · · (M + 3). Since we still only have to fulfill

the requirement that the throats fit into the bulk CY, this implies the existence of a

simple, concrete and explicit mechanism in string theory that can generate huge super-

Planckian axion periodicities. In general the full periodicity of the superpotential is

given by the least common multiple of the different RR flux numbers Mi. We dub this

mechanism of generating a parametrically large axion monodromy drifting monodromies

since it relies on a frequency drift within a set of several finite-order monodromy ef-

fects. This is related but different from the winding idea, where a constraint forces

the effective axion on a long trajectory in a multi-axion moduli space [44, 278–281].

Here, by contrast, one may think of a single fundamental axion extended by several

small, finite-order monodromy effects. The result of this can still be large as explained

above. The intended outcome, namely to realize an effective large-f axion accepting a

short-wavelength oscillatory potential, is of course the same (see in particular the very

recent analysis of [71]).

The minima of the potential V ∝ |∂GW |2 are located along the slice ImG = 0 where

it takes the form

V (c) ∝ [cos(c/M) + cos(c/(M + 1))]2 , c ≡ ReG ,

∝ cos2

(
2M + 1

2M(M + 1)
c

)
· cos2

(
1

2M(M + 1)
c

)
,

(6.82)

which has 2M + 1 distinct Minkowski vacua (see figure 6.10).

We can now compare this with the results of section 4.35 where we noticed that

generic racetrack type superpotentials are in conflict with the weak gravity conjecture

for axions. In our case, we note that despite the long 2πM(M+1) periodicity the scalar

potential oscillates on shorter wavelengths of order 2πM . This is essentially due to the

rank condition (6.40) which forces us to introduce flux numbers of both signs. We have

not shown in general that suppressing such shorter wavelength oscillations in order to
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V(c)

Figure 6.10: The axion potential of example 2 for the case M = 10. There are sub-Planckian
oscillations within a long super-Planckian envelope.

produce a smooth super-Planckian axion potential is impossible. At this point we only

note that the condition (6.40) presents a severe obstacle towards this. Furthermore

this condition is global in the sense that it need not hold in a non-compact CY where

gravity is decoupled, and swampland criteria are not expected to be applicable.

The examples given above also serve to illustrate that by scanning over flux num-

bers one may obtain a vast number of possible effective superpotentials and axionic

potentials.

6.9.2 A Clash with the Weak Gravity Conjecture

In this section we would like to point out that the axion potential we have derived

clashes with the WGC for axions [31] (see section 3.8.2). We have computed the

axion potential via a classical supergravity calculation. However, one may equally

well associate it to non-perturbative effects in the KS gauge theory (namely gaugino

condensation), as argued in section 6.7. As such, (if true) the weak gravity conjecture

should apply to our construction.

By comparison with an instanton induced scalar potential (3.100), we may associate

an (effective) Euclidean instanton action to each of the leading exponentially suppressed

terms in the axion (super)potential.29

Sieff ≈ 3 log(1/ai0) ≈ 2π
Ki

gsMi

. (6.83)

As computed in appendix D of [2], in the regime where the throats marginally fit

into the bulk CY, the periodicities feff/q
i of the dominant terms in the superpotential

29Taking the correspondence with instantons seriously, these are ( 1
2
BPS-)instantons.
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associated to each throat i = 1, ..., n read

feff/qi ≈
2

3
(riD3)1/2 log(1/ai0)−1/2MP ≈

2

3
(riD3)1/2

(
2π

3

Ki

gsMi

)−1/2

MP , (6.84)

where riD3 = MiK
i/Nflux

D3 is the fraction of the total D3 brane charge of three-form

fluxes which is stored in the i-th throat. Hence,

Sieff · feff/q
i ∼ 2(riD3)1/2

√
log(1/ai0)MP ≈ 2(riD3)1/2

√
2π

3

Ki

gsMi

MP . (6.85)

In the regime a0 � 1 (i.e. Ki � gsMi) the r.h. side is parametrically larger than O(1)

so the objects that generate the relevant terms in the superpotential do not satisfy a

weak gravity conjecture bound.

Of course as is always true in string theory compactifications [52] there does exist

a tower of instantons that satisfies the weak gravity bound (3.99) but generates no

monodromy.30 It is also apparent that these instantons occupy a sub-lattice of the

full charge lattice. This sub-lattice corresponds to all the possible wrapping numbers

of a Euclidean D1 string. However, in our setup this sub-lattice can be made para-

metrically coarse.31 Let us illustrate this with a concrete example: We consider a

variant of the drifting monodromies example given in section 6.9.1, with flux numbers

Mi ∈ {5, 6, 7, 8,−5,−6,−7,−8}. The axion decay constant is enhanced by the least

common multiple of 5, 6, 7, 8 which is 840. The instantons that satisfy (3.99) respect

the periodicity of the axion before monodromy. Thus the possible charges take values in

840Z ⊂ Z. Clearly, a lattice WGC is parametrically violated, while a sub-lattice WGC

[62, 64] (see also [70]) is always satisfied but with parametrically coarse sub-lattice.

Note that generically these instantons only give rise to sub-leading corrections to the

scalar potential (if they contribute at all), compare section 6.9.5.

However, we observe that the n effective instantons that do give the dominant

contribution to the superpotential satisfy a relation

Sieff ≤
4

3
riD3(qiMP/feff)2 , ∀i = 1, ..., n . (6.86)

Together with Sieff > 1, as is required for controlled expansion in powers of e−S
i
eff , this

still implies the existence of short wavelength harmonics in the superpotential. This

motivates a closer look at the full spectrum of our effective instantons to which we now

turn.

30In our case, these are Euclidean D1 strings wrapping representative S2’s in the UV, compare section 6.9.5.
31Hence we seem to realize explicitly the loop hole mentioned in footnote 25 of ref. [64].
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6.9.3 The Spectrum of Effective Instantons

We now set aside the spectrum of instantons that satisfy the WGC but instead ask what

are the properties of the effective instantons that generate the superpotential. We have

written down the most dominant contributions to the superpotential (6.55) and noted

that they satisfy (6.86). This condition is weaker than (3.99) because at fixed control

parameter Sieff

!
> 1 the value of qMP/feff is constrained to be bigger only than

√
Seff

rather than Seff. Nevertheless, as a consequence the dominant effective instantons give

rise to sub-Planckian wavelength oscillations in the scalar potential.

In general it is easy to see that beyond these most dominant effective instantons

there exists a whole Zn lattice worth of these effective instantons32. These correspond

to the higher orders in the |zi|, i = 1, ..., n, that we have neglected in section 6.6.

Therefore, the n dominant effective instantons serve as n basis vectors of the lattice Zn

and a general effective instanton is labeled by an effective charge vector ~k ∈ Zn. The

bound (6.86) for these general effective instantons reads

S
~k
eff ≤

4

3
M2

P

n∑
i=1

|ki| riD3

(
qi

feff

)2

, (6.87)

and the r.h. side defines a (1-)norm on Zn.

The effective instantons can also be embedded into the full one-dimensional charge

lattice Z of the preceding section via ~k 7−→∑n
i=1 k

iqi, although they do not satisfy the

WGC bound (3.99).

Again, this is perhaps best understood using the explicit example given in the

preceding section. The dominant instantons have charges

qi ∈
{
±840

Mi

}
i

=

{
±840

8
,±840

7
,±840

6
,±840

5

}
= {±105,±120,±140,±168} . (6.88)

They induce harmonics in the superpotential with periodicities feff/q
i. Due to the

relation (6.86) precisely these combinations are restricted to be sub-Planckian as long

as Sieff > 1. They can be understood to occupy a coarse 105Z + 120Z + 140Z + 168Z

sub-lattice of Z while the Euclidean D1-instantons satisfying the WGC occupy an even

coarser sub-lattice 840Z ⊂ Z.

6.9.4 Axion Phenomenology

We have identified a string theory axion with remarkable properties. It is parametrically

lighter than the tower of states that is usually associated to strongly warped regions

32We consider general combinations of holomorphic and anti-holomorphic instantons.
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mtower ∝ a0MP. The axion mass can be tuned almost independently of the periodicities

of the dominant oscillations in the scalar potential, since we have m ∝ a3
0MP, while

the oscillation period feff/q of the scalar potential depends only weakly on the warp

factor feff/q ∼MP/
√

log(a−1
0 ). Conversely, the mass scales unusually strongly with the

oscillation wavelength,

m2

M2
P

∝ a6
0 ≈ e−2Seff ≈ exp

(
−α
(
qMP

feff

)2
)
, (6.89)

with α = O(1).

In contrast most other stringy axions usually satisfy the relation [307]

m2

M2
P

∼ exp

(
−αqMP

feff

)
, (6.90)

As such the thraxion assumes a rather special place in the string theory landscape.

This is potentially interesting for axion phenomenology. We refer the reader to [307]

for a range of phenomenological applications for different axion mass scales.

We have to emphasize that at least in the simplest setups our axion is not a generic

inflaton candidate because of the generic presence of dominant sub-Planckian wave-

length modes in the scalar potential, despite the large monodromy enhancement of the

effective axion decay constant.

6.9.5 Uplifting

We would like to briefly comment on some possible scenarios of uplifting to de Sitter

space, using our construction. To actually implement these ideas in concrete models

involves the complicated interplay of different effects. First, uplifting requires as a

precondition, that a full mechanism of Kähler moduli stabilization is in place, and we

have sketched the non-trivial interplay between the CY breaking potential and the no-

scale breaking from Kähler moduli stabilization in section 6.8. Second, as explained in

section 4.1 in order to argue for a successful uplift to de Sitter space, we need very good

control over the ingredients of the uplift. Here, we will only sketch qualitative ideas

how this might work. The following two scenarios are both based on the idea of adding

an oscillating potential of different wavelength to the known thraxion potentials of the

form (6.21) or (6.82).

We wish to look at situations where c-dependent corrections to the Kähler potential

may become relevant. This is certainly the case in the regime |W0| ∼ 1, leading us

to consider LVS-like moduli stabilization [75]. Potentially interesting corrections may
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arise from Euclidean D1-brane instantons that wrap members of the family of two-

spheres that vanish at the tips of the conifold. Since the cycle is trivial in homology

we expect no corrections to the superpotential but at most corrections to the Kähler

potential of the form

δe−K1 ∼ Ce−SDBI−iSCS + c.c. , (6.91)

with C = O(1) and DBI and CS actions

SDBI =
1

gs

Vol(S2)|UV

2πα′
, and SCS =

1

2πα′

∫
S2

(∑
p

Cp

)
∧ eB|2−form = ReG . (6.92)

Here, we have evaluated the DBI action on a representative sphere in the UV, i.e. in

the bulk CY. This is because we expect such a representative to give the dominant

contribution: As explained in App. A, there are different two-spheres at a given radial

coordinate in the throat that are labeled by a U(1) phase and that all share the same

volume. As we scan over this phase, the corresponding integrals of C2 at a given

radial coordinate pass through their fundamental domain. Therefore, integrating over

all Euclidean brane instantons on the two-spheres should cancel all contributions due

to the oscillatory behavior of the correction (6.91). This is consistent with the fact

that after accounting for backreaction of the phases of the throat deformations the C2

field excursion cannot be measured in the local throats. In the analysis of section 6.6,

we extended this result to Re(G), i.e. to C2 − C0B2. In passing towards the UV, our

description of the throat breaks down. In particular, we do not expect the different

sphere representatives to all share the same volume. Thus, we expect non-vanishing

instanton corrections.

Using Vol(S2)|UV & R2
throat ∝ (gsMK)1/2α′, this leads to corrections to the scalar

potential of the form

δV . e
−α

√
KM
gs (1− cos(ReG)) , (6.93)

with α = O(1). Assuming that the exponentially small prefactors of the classical

warping suppressed potential (6.21) (or that of example 1 of section 6.9.1) and the

non-perturbative correction terms are of the same order, it is feasible that additional

local minima appear in the scalar potential that could in principle lift to meta-stable

non-supersymmetric minima, possibly even de Sitter vacua. The exponential terms are

of comparable magnitude when √
K

gsM
&M . (6.94)
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c

V(c)

0

Figure 6.11: The axion potential of figure 6.10 with an additive correction δV (c) ∝ const. +
cos(c/feff) that shares the periodicity of the superpotential.

In F-theory models with large Euler characteristic we do not see an immediate obstacle

to realizing this.

We may turn this around and add large-wavelength corrections to shorter-wavelength

oscillations such as those of the example of drifting monodromies given in section 6.9.1.

On the large scale of feff ∼ MMP there are several Minkowski vacua of the potential

(6.82), compare figure 6.10. It is conceivable that these are uplifted to de Sitter vacua

once further corrections to the potential are taken into account. This might happen

automatically when the no-scale properties of the Kähler potential (3.49) get broken

by perturbative or non-perturbative corrections, since we know that the existence of

Minkowski vacua strongly depends on the cancellation of different terms in the scalar

potential. These scalar potential corrections follow the periodicity of the superpoten-

tial, which is given by the super-Planckian decay constant feff. An optimistic sketch of

this is illustrated in figure 6.11.

However, for both ideas, uplift flattening as discussed in chapter 4 is an obstacle

due to the direct cross-couplings between the F-terms FG and other no-scale breaking

sources from moduli stabilization. We leave a more thorough search for de Sitter vacua

using these uplifting ideas for future research.

6.10 Conclusions

In this chapter we have argued for the generic existence of a new type of ultra light

axion in the flux landscape of type IIB string theory. It is part of the light spectrum

whenever fluxes stabilize a CY orientifold near conifold transition locus in complex

structure moduli space. We have given three independent computations of its scalar

potential that all agree with each other: 1) From the ten-dimensional perspective non-
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vanishing axion field excursions displace the local deformation parameters of distinct

warped throats against each other, forcing them to violate the CY condition, while

supersymmetry in the local throats is almost perfectly restored. The CY breaking

potential was computed from the gradient energy of the ten-dimensional field profile

that interpolates between the mis-aligned throats. 2) A four-dimensional supergravity

formulation was proposed in which the thraxion fields play the roles of the stabilizer

fields whose F-term conditions enforce the CY condition. After integrating out the

geometric modes, one is left with an effective superpotential for the thraxions. The

effective scalar potential computed from this proposal matches the ten-dimensional one.

3) In the field theory dual to the throats a non-perturbative superpotential is generated

from gaugino condensation that matches the one previously proposed, indicating that

the model is equally valid for both large and small throat curvatures.

This is interesting from a fundamental perspective because it exemplifies how the

light spectrum of an N = 1 flux compactification can contain CY zero modes of a pair

of distinct CY manifolds, connected to each other via a conifold transition. As it is

widely believed that stabilization near such loci in CY space occurs rather naturally

[42, 163], this phenomenon in general may play an important role in the phenomenology

of string compactifications. Specifically, we have argued that our axion can easily be

exponentially lighter than Kähler moduli, and the scale of the potential can be far

smaller than the WGC for axions would lead one to expect. We are led to conclude

that the reasons why all models of large field inflation might fail in string theory cannot

be as simple and universal as one might have hoped, while a relation similar to, but

different from, the WGC for axions holds also in our class of models (see eq. (6.86)).

Furthermore, we have presented a mechanism to generate parametrically large ax-

ion decay constants by superimposing slightly detuned harmonics in the superpotential

via judicious choices of flux quanta. While the scalar potential still oscillates on sub-

Planckian scales in field space, it suggests that certain strong forms of the distance

conjecture do not hold universally (see section 3.8.3). In particular, it seems to be

possible to traverse a parametrically super-Planckian distance in the enhanced axion

field space without a tower of light states decreasing their mass exponentially as the

distance is traversed. This is not in conflict with the weaker statement given in sec-

tion 3.8.3 which states that for a given model (i.e. for fixed choices of flux quanta

and other data) it is impossible to traverse arbitrarily large distances in field space

without encountering an exponentially light tower of states. There is no contradiction

simply because the monodromy we encounter is always finite, though it can be made

parametrically large. Similarly, our construction is not in conflict with the sub-lattice

WGC but it is suggested that the populated sub-lattice in instanton charge space can
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be made parametrically sparse.

It would be interesting to generalize our backreaction scheme to more complicated

axion monodromy proposals such as the one of [46]. As F3 fluxes on the A-cycles are

dual to D5 branes wrapped on the resolution two-cycles via the geometric transition

[304], we have implicitly given a fully backreacted example of five-brane axion mon-

odromy, based on the very simplest example of a double KS throat. Interestingly, in

our case, the 5-brane anti-5-brane pair has relaxed to a supersymmetric ground state

without annihilating against each other. The flux-tube that connects the two is su-

persymmetrized by the NS fluxes on the B-cycle, automatically resolving the issue of

brane anti-brane backreaction in the vacuum, as formulated in ref. [308]. Furthermore,

while the conifold transition is the simplest type of geometric transition, it is not the

only one [304]. It would be worthwhile understanding what is the light spectrum near

such transition loci in general.

Finally, we have briefly commented on the possibility to generate de Sitter vacua

using SUSY breaking minima of the thraxion field as the uplift. Generically, uplift

flattening as discussed in section 4.1 poses an obstacle toward realizing this idea, but

it would be interesting to see if de Sitter vacua can be found in our axion landscape

nevertheless. We leave this issue for future research.
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Conclusions and outlook

It is a fascinating and fundamental question whether string theory has solutions that

can describe the accelerated expansion of the universe, in particular the one we observe

today, and the inflationary expansion that observation strongly suggests has happened

in the very early universe [19]. We believe that it is the right time to address this

question in detail, as cosmic microwave background observations are becoming sensitive

enough to rule out wide ranges of models of inflation [27], and the bounds on the

equation of state of dark energy become tight [112]. In this thesis we have focused on

two particular aspects of this problem, the viability of models of de Sitter vacua that are

the leading candidates to describe the late time accelerated expansion of our universe,

and the possibility of large field inflation in the very early universe. Although the

characteristic energy scales of both phenomena can be much lower than the Planck scale,

it is natural to address them in string theory as a UV complete framework. This is due

to the fact that the success or failure of concrete models is sensitive to a large number

of Planck suppressed operators which may mediate significant backreaction effects on

geometric moduli of string theory [3–5]. Moreover, the existence and structure of no-

go theorems against de Sitter vacua in many weakly coupled corners of string theory

suggests that such backreaction effects generically spoil the success of de Sitter uplifts.

In order to make concrete progress we have chosen to focus on the celebrated KKLT

model [41] for de Sitter vacua in string theory. We have argued that this proposal, orig-

inally made partially within the framework of four-dimensional supergravity, survives

many non-trivial ten-dimensional consistency checks. In particular, ten-dimensional

tadpole cancellation conditions are fulfilled exactly [1, 110], indicating that the success

of the model is not threatened by too strong backreaction effects.1 Moreover, the four-

dimensional conditions for unbroken supersymmetry match the ten-dimensional ones

in a natural and intuitive way [5, 309]. However, we have also pointed out that the

1See however ref. [111] that claims the opposite.
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KKLT type de Sitter vacua are always very close or even well within a regime of poor

computational control, where the use of ten-dimensional supergravity as an approxima-

tion to the whole string theory becomes questionable [1]. This is closely related to the

consistency requirement that the physical size of the so-called warped throats employed

to engineer parametrically small uplifts has to be smaller than the overall size of the

compactification space. Thus, we have pointed out a highly vulnerable point in the

KKLT construction to be scrutinized further in the future. In particular, we have ar-

gued that highly non-generic compactifications could in principle evade the problems of

computational control, and it would be interesting to understand if these can actually

be realized in a sufficiently controlled fashion.

In the second part, motivated by the goal to realize large field inflation in string

theory, we have constructed a new class of axion-like particles. These we have argued

that to arise in rather generic classes of string theory solutions, namely the type IIB

flux landscape. The construction displays several interesting features that make it in-

teresting both from the phenomenological as well as the theoretical perspective: the

axion mass is extremely small both in relation to the Planck as well as in relation to

its decay constant. As a consequence, it can be used as a counter example to the weak

gravity conjecture for axions [31], while a similar but different bound is fulfilled that

precludes super-Planckian monotonic regions in the axion potential in all explicit exam-

ples that we have studied. For these examples, this prevents us from building a model

of large field natural inflation on the basis of this idea. Nevertheless, parametrically

super-Planckian effective decay constants are possible to the best of our understanding.

This means that our model can also be used to argue against strong forms [205] of the

swampland distance conjecture [30], because there is no tower of modes that becomes

light as the parametrically super-Planckian axion valley is traversed. These results un-

cover a yet incomplete understanding regarding the quantitative form and validity of

the aforementioned swampland conjectures, while some of their qualitative predictions

seem to be in accord with our findings.

Furthermore, the axions we have identified play a previously unknown role as the

relevant light degrees of freedom that control crucial aspects of the global geometry

of a Calabi-Yau manifold stabilized in close vicinity to a conifold transition locus in

complex structure moduli space: they control the relative length and orientation of

distinct warped throats. Finally, our results are consistent with the gauge gravity

correspondence of warped throats: in the small ’t Hooft coupling regime, the axion

potential can be understood to arise from the misalignment of the gaugino condensates

of several confining gauge groups, while in the opposite regime it is a twisting of two

or more throats against each other.
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We conclude that the phenomenology of string theory solutions in general, and the

swampland program in particular, is one of the most promising roads towards relating

observable phenomena with physics at the Planck scale. It is of crucial importance to

continue to pursue this direction in the future, and it is clear that new phenomena are

waiting to be discovered. We are optimistic that the questions of viability of large field

inflation and de Sitter cosmology in string theory that were pursued in this thesis can

be settled to a sufficient degree of satisfaction in the near future.
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Appendix A

The Axion Potential in the Local

Throat

In the main text we have repeatedly made use of the fact that the C2- and B2-axions c

and b can only enter the scalar potential that is generated in the local throat in certain

combinations with the ‘local complex structure’ of the throat, namely the real and

imaginary part of

M log(z)− iG , (A.1)

where G = c− τb, and z is the ‘local complex structure’. Here, we would like to derive

this without using ‘local flux stabilization’ as in section 6.3 but rather rely only on

asymptotic properties of the KS/KT solution [78, 162]. For simplicity we will set the

RR zero form to zero, i.e. τ = ig−1
s .

We cut off the throat at a radial coordinate rUV and define the b-axion at that value

of the radial coordinate. Since the B2 profile runs along the radial direction [160],

changing b −→ b+ δb can be realized by choosing a different UV-cutoff r′UV. Since the

absolute value of the complex structure is defined in units of the UV-cutoff it scales as

z −→ e−
δb
gsM z . (A.2)

Since this is just a coordinate transformation from the perspective of the local KS

throat, the combination gsM log(|z|) + b cannot appear in the scalar potential that is

generated within the throat. It acquires physical meaning only if the throat is cut off

at fixed, finite rUV.

Similarly, in the limit |z| /r3 → 0 the RR three form takes the form

F3 = 2πα′M
(
g5 + dc/M

)
∧ ωΣ , (A.3)
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where the on-form g5 = dψ+... is defined in [294], and ωΣ is the normalized harmonic 2-

form of T 1,1. The field c(x) transforms like a Goldstone boson under (local) coordinate

transformations [294]

ψ −→ ψ + 2ω(x) , c(x) −→ c(x)− 2Mω(x) . (A.4)

Shifting along this angular direction is an isometry of the asymptotic KS solution (called

U(1)R). Near the IR this is not the case precisely because (by definition) the phase of

the complex structure also transforms like a Goldstone boson,

arg z −→ arg z − 2ω . (A.5)

Again, in the local throat the combination M arg z + c has no physical meaning as

it is eaten via the Higgs mechanism. Only when the throat is glued into the CY

space at finite radial coordinate rUV does the c-axion gain its independent physical

meaning because the U(1)R symmetry is badly broken by the CY geometry. Putting

together the real and imaginary part of G = c − τb, we arrive at the conclusion that

only the combination (A.1) is physical when considering a single throat. A second

degree of freedom only becomes physical by finiteness of the throat, i.e. by breaking

the asymptotic U(1)R symmetry. This also implies that the kinetic terms for the fields

ϕ1,2 stated in (6.28) actually take the form [∂(ϕ1,2± c/M)]2 since they arise from local

throat physics. We have disregarded some unimportant off-diagonal terms in the kinetic

matrix.



Appendix B

Background on Multi Conifolds

In this appendix we discuss preliminaries that are important for section 6.6. In the

derivation of the B-cycle periods we follow Chapter 8 of [295]. We are interested in what

happens when n cycles γi with m homology relations among them shrink at a conifold

point in moduli space. The Picard-Lefschetz formula states that upon encircling a

conifold point in moduli space, a three-cycle δ undergoes the monodromy [77, 310, 311]

δ −→ δ +
n∑
i=1

(δ ∩ γi)γi . (B.1)

Knowing this monodromy transformation is enough to determine that∫
δ

Ω =
1

2πi

n∑
i=1

(δ ∩ γi)
∫
γi

Ω log(

∫
γi

Ω) + single-valued . (B.2)

We may choose n −m of the degenerating cycles as part of the integral A-cycle basis

Ai = γi for i = 1, . . . , n−m, while the remaining m vanishing cycles are integer linear

combinations γi =
∑n−m

a=1 ciaAa for i = n−m+1, . . . , n. By applying (B.1) to the cycles

Ba one arrives at [295]

Ga =

∫
Ba

Ω =
1

2πi
za log(za)+

1

2πi

n∑
i=n−m+1

ciazi log(zi)+ga(z) , a = 1, ..., n−m, (B.3)

where ga(z) are n − m holomorphic functions. We have defined zi ≡
∑n−m

a=1 ciaza for

i = n − m + 1, . . . , n, i.e. zi ≡
∫
γi

Ω when applying (B.1)1. At frozen values of za,

a = n − m + 1, ..., h2,1 + 1 the periods associated to other cycles, Ga =
∫
Ba Ω, with

1When using a local expression for the holomorphic three-form Ω in the vicinity of smoothed conical
singularity described by (6.5) one can calculate

∫
γi

Ω = zi [304]. This identifies the zi defined here with the
local deformation parameter of the i-th throat.
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a = n−m+ 1, ..., h2,1 + 1, are holomorphic in the complex structures that parametrize

the multi conifold deformations, i.e. in the zi, with i = 1, ..., n−m. In what follows we

denote by za only the multi conifold deformation parameters.

We may now evaluate the GVW superpotential W =
∫
M
G3 ∧ Ω where we choose

flux quanta Ma and Ka according to G3 = −∑n−m
a=1 (Maα

a − τKaβa). Using 3.28 one

obtains

W (za) =
n−m∑
a=1

Ma

2πi
za log(za) +

n∑
i=n−m+1

Mi

2πi
zi log(zi)

+
n−m∑
a=1

Mag
a(z)− τ

n−m∑
a=1

Kaza +
ˆ̂
W0(za) , (B.4)

where we have defined Mi ≡
∑n−m

a=1 ciaMa, and the holomorphic function
ˆ̂
W0(za)

parametrizes the contributions from fluxes on other cycles. We may use the za and

zi with i = n−m+ 1, ..., n on the same footing by interpreting our definition of the zi

as m constraint equations

0 = P I ≡
n∑
i=1

pIi zi ≡ zn−m+I −
n−m∑
a=1

cn−m+I
a za , I = 1, ...,m . (B.5)

Here, the m× n matrix pIi is defined as

pIi =

−cn−m+I
i , i = 1, . . . , n−m,

δn−m+I
i , i = n−m+ 1, . . . , n .

(B.6)

We may now write the superpotential as

W (zi) =
n∑
i=1

(
Mi

zi
2πi

log(zi) +Mig
i(z)− τKizi

)
+

m∑
I=1

λIP
I +

ˆ̂
W0(zi) , (B.7)

with m Lagrange multipliers λI . The homology relations are now enforced via the

F-term of the fields λI . In doing so, we have defined gi to be zero for i > n−m.

The F3-flux on γi is given by Mi. By the definition of Mi for i = n−m+ 1, . . . , n,

the flux numbers automatically fulfill
∑n

i=1 p
I
iMi = 0 for all I. In democratic terms,

the n flux numbers Mi must be chosen in compliance with the m homology constraints∑n
i=1 p

I
iMi = 0. The H3-flux on Ba is given by Ka +

∑m
I=1 c

n−m+I
a Kn−m+I , as this is

the coefficient appearing in front of za. In other words the n − m flux quantization

conditions read Ka +
∑m

I=1 c
n−m+I
a Kn−m+I ∈ Z. Note that we may transform Ki →
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Ki+
∑

I αIp
I
i for any α ∈ Cm because the superpotential is left invariant upon imposing

the constraint equations, that is to say, we can undo such a transformation by also

shifting the Lagrange multipliers λI → λI + ταI . Of course, the flux quantization

conditions are invariant under these shifts. Finally, the Kähler potential is given by

Kcs(zi, z̄i) =− log

(
−i
∫

Ω ∧ Ω̄

)
= − log

(
igK(z)− igK(z) +

n−m∑
a=1

iz̄aG
a(z) + c.c.

)
(B.8)

=− log

(
igK(z)− igK(z) +

n∑
i=1

[ |zi|2
2π

log(|zi|2) + iz̄ig
i(z)− izigi(z)

])
,

(B.9)

where gK =
∑h2,1+1

a=n−m+1 zaG
a(z) encodes contributions from other cycles. The gK are

holomorphic in za, a = 1, ..., n − m. Note that despite the democratic formulation,

the Kähler and superpotential are strictly defined only along complex structure moduli

space, where P I = 0. As explained in section 6.6 we propose to extend the domain of

these functions to the deformation space parametrized by all zi by introducing general

Taylor expansions of gi(zi), gK(zi) and
ˆ̂
W0(zi) in (6.47).
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in einem früheren Promotionsverfahren angenommen oder als ungenügend beurteilt.
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