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Abstract

Using the canonical formalism, we study the asymptotic symmetries of the
topological 3-dimensional gravity with torsion. In the anti-de Sitter sector, the
symmetries are realized by two independent Virasoro algebras with classical central
charges. In the simple case of the teleparallel vacuum geometry, the central charges
are equal to each other and have the same value as in general relativity, while in
the general Riemann-Cartan geometry, they become different.

Introduction

Three-dimensional (3d) gravity has been used as a theoretical laboratory to
test some of the conceptual problems of both classical and quantum gravity
[1, 2]. One can identify several particularly important achievements in the
development of these ideas. Brown and Henneaux demonstrated that, un-
der suitable asymptotic conditions, the asymptotic symmetry of 3d gravity
has an extremely rich structure, described by two independent canonical
Virasoro algebras with classical central charges [3]. Soon after that, Witten
found that general relativity with a cosmological constant (GRΛ) can be
formulated as a Chern-Simons gauge theory [4]. The equivalence between
gravity and an ordinary gauge theory was crucial for a deeper understand-
ing of quantum gravity. Next, the discovery of the black hole solution by
Bańados, Teitelboim and Zanelli, had a powerful impact on 3d gravity [5].
It turned out that the Virasoro algebra of the asymptotic symmetry plays
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a central role in our understanding of the quantum nature of black hole
[6–11].

Following a widely spread belief that the dynamics of gravity is to be de-
scribed by general relativity, investigations of 3d gravity have been carried
out mostly in the realm of Riemannian geometry. However, since the early
1990s, the possibility of Riemann-Cartan geometry has been also explored
[12–18]; it is a geometry in which both the curvature and the torsion are
present as independent geometric characteristics of spacetime [19, 20]. In
this way, one expects to clarify the influence of geometry on the dynamical
content of spacetime.

Dynamics of a theory is determined not only by its action, but also by
the asymptotic conditions. The dynamical content of asymptotic conditions
is best seen in topological theories, where the non-trivial dynamics is bound
to exist only at the boundary. General action for topological 3d gravity
in Riemann–Cartan spacetime has been proposed by Mielke and Baekler
[12, 13]. This model is our starting point for exploring the structure of 3d
gravity with torsion. In particular, we shall investigate

the existence of the black hole with torsion, and
the asymptotic structure of 3d gravity with torsion.

We restrict ourselves to the anti-de Sitter (AdS) sector of the theory, with
negative effective cosmological constant. For a particular choice of pa-
rameters, the Mielke-Baekler action leads to the teleparallel (Weizenböck)
geometry in vacuum [21, 22, 20], defined by the requirement of vanishing
curvature, which we choose as the simplest framework for studying the
influence of torsion on the spacetime dynamics.

The paper is organized as follows. In Sect. 2 we introduce Riemann–
Cartan spacetime as a general geometric arena for 3d gravity with torsion,
and discuss the teleparallel description of gravity in vacuum. In Sect. 3
we construct the teleparallel black hole solution. Then, in Sect. 4, we in-
troduce the concept of asymptotically AdS configuration, and show that
the related asymptotic symmetry is the same as in general relativity—the
conformal symmetry. In the next section, the gauge structure of the theory
is incorporated into the canonical formalism by investigating the Poisson
bracket algebra of the asymptotic generators. The asymptotic symmetry
is characterized by two independent canonical Virasoro algebras with clas-
sical central charges, the values of which are the same as in Riemannian
spacetime of general relativity. In Sect. 6 we discuss the general case
of Riemann-Cartan geometry, and show that the related classical central
charges are different. Finally, Sect. 7 is devoted to concluding remarks.1

. . .

Concluding remarks

3d gravity with torsion, defined by the Mielke-Baekler action, pos-
sesses the teleparallel black hole solution, a generalization of the Rieman-
nian BTZ black hole.

1For the complete version of the text, see the preprint gr-qc/0412072.
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Assuming the AdS asymptotic conditions, the canonical asymptotic
symmetry is realized by two commuting Virasoro algebras with central
extensions:
− in GRΛ and in the teleparallel theory: c1 = c2 = 3�/2G,
− in Riemann-Cartan theory: c1 �= c2. The implications of this result for
the quantum structure of black hole are to be explored.
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Formulation of Gravitational Teleparallelism in 2+1 Dimensions in Schwinger’s
Time Gauge, Prog. Theor. Phys. 104, 531 (2000).
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