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Abstract
Wepresent a topologically trivial nonvacuum solution of the Einstein’sfield equations in curved
spacetimewith stress-energy tensor Type I fluid, satisfying the energy conditions. Themetric admits
closed timelike curves which appear after a certain instant of time, and the spacetime is a four-
dimensional generalization offlatMisner space in curved spacetime.

1. Introduction

There aremany examples of solution to the Einstein’sfield eqautions containing closed timelike curves (CTC)
exist in general relativity. The closed timelike curves are theworldline of a physical observer that loop back on
itself, i.e., an observer could return to his/her own’s past. A closed timelike curve allows time travel, in the sense
that an observer which travels on a trajectory in spacetime along this curve, return to an event which coincides
with the departure. This fact violates the causality condition, opening time travel paradoxes (grandfather
paradox) in classical general relativity. Hawkingmotivated by this proposed aChronology Protection
Conjecture (CPC) [1]which states that the laws of physics will always prevent a spacetime to formCTC.
However, the general proof of the Chronology ProtectionConjecture has not yet existed. Therefore,
constructing such spacetimeswith CTC satisfying the different energy condition cannot be discard/ruled out
easily, because these spacetime satisfied the Einsteinfield equations. Few examples of spacetimeswith CTC are in
[2–6]. Somewell-known vacuum spacetimes (e.g. [7, 8] and references therein) are also admits CTC. TheCTC
spacetimes are categorize in twoway. First one being an eternal timemachine spacetime inwhichCTC either
form everywhere or pre-exist (e.g. [9, 10]). Second one being a timemachine spacetime, where CTC appears
after a certain instant of time in a causally well-behavedmanner (e.g. [7, 8, 11]). However, some known solutions
of the field equationswithCTC are considered unphysical because of their unrealistic or exoticmatter-energy
sourcewhich are violate theweak energy condition (WEC). The timemachinemodels discussed in [12, 13]
violate theWeak energy condition, and themodel [14] violates the strong energy condition (SEC). In addition,
few other solutions of thefield equationswith CTCdoes not admit a partial Cauchy surface (an initial spacelike
hypersurface) (e.g. [15]) and/orCTC come from infinity (e.g. [16, 17]). The non-spherical gravitational collapse
solutions [18–21]with a naked singularity also admits CTC.

In the context of CTC, theMisner spacemetric in 2D is a prime example, where CTC evolve smoothly from
an initial conditions in a causally well-behavedmanner. TheMisner spacemetric in 2D [22] is given by

ds dt d td2 , 1Misn
2 2y y= - - ( )

where t-¥ < < ¥, and theψ coordinate is periodic. TheMisner spacemetric in 2D is aflat space and regular
everywhere. The curves defined by t=t0>0, where t0 is a constant being timelike provided ds2<0 and closed
(periodicity ofψ coordinate), are formed closed timelike curves. Levanony et al [23] generalized thisflatMisner
space in three and four-dimensional flat space. Li [24] constructed aMisner-like anti-de Sitter (AdS)metric in
four-dimensional curved spacetime.

In this article, we attempt to construct a four-dimensional curved spacetime, not necessarily flat space, a
generalization of the 2DMisner space. This curved spacetime is a nonvacuum solution of the field equations
with suitable stress-energy tensor, satisfying the different energy conditions.Moreover, the four-dimensional
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curved spacetime admits CTCwhich appear after a certain instant of time in a causally well-behavedmanner,
andmay represent a timemachine spacetime.

2. A four-dimensional curved spacetime

Weattempt to construct a four-dimensionalmetric in curved spacetime given by

ds e dx dy dt d td2 , 2f x y2 , 2 2 2y y= + - -- ( ) ( )( )

where f (x, y) is an arbitrary function of x, y. Hereψ coordinate is periodic, that is, eachψ is identifiedwith
ψ+ψ0 for a certain parameterψ0>0. The ranges of the other coordinates are t x y, ,-¥ < < ¥. The
metric has signature (−,+,+,+) and the determinant of themetric tensor gμν is

det g e . 3f x y2 ,= - - ( )( )

The non-zero components of the Ricci tensorRμν and the Ricci scalarR are

R R f f R e f f
1

2
, 4xx yy xx yy

f x y
xx yy, ,

,
, ,= = + = +( ) ( ) ( )( )

where comadenotes derivative w. r. t. the argument.
TheKretschmann scalar of the spacetime is

R R e f f . 5f x y
xx yy

2 ,
, ,

2= +mnrs
mnrs ( ) ( )( )

The non-zero components of the Riemann tensor Rmnrs are

R R R R e f f
1

2
, 6xyxy yxyx xyyx yxxy

f x y
xx yy

,
, ,= = - = - = +- ( ) ( )( )

while rest are all vanishes.
For an example, we choose the following function for f (x, y) given by

f x y x y f f,
1

2
, 0. 7xx yy

2 2
, ,= + + >( ) ( ) ( ) ( )

Noted that if one choose the function f x y x y, 1

2
2 2= -( ) ( ), then the presented spacetime represents aflat

space.
For themetric (2), a closed curve of constant t, x, y is spacelike provided ds2>0 for t=t0<0, and null

curve provided ds2=0 for t=t0=0which serve as theChronology horizon. In addition, there are timelike
curves provided ds2<0 for t=t0>0 and being closed (due to periodicity ofψ), formed closed timelike
curves. These timelike closed curves evolve from an initial spacelike t=const<0 hypersurface since
g tt=t<0 and therefore, t is a time coordinate. A hypersurface t=const is spacelike provided g tt<0 for
t=t0<0, timelike provided g tt>0 for t=t0>0, and null provided g tt=0 for t=t0=0.Noted that for
constant x and y, the four-dimensional curved spacetime (2) reduces to theMinser spacemetric in 2D. Since few
components of the Riemann tensor from (6) are non-zero. Therefore, the presentedmetric is a four-
dimensional generalization of theMisner space in curved spacetime, satisfying the energy conditionswhichwe
shall discussed belownext.

2.1. Stress-energy tensor: Type Ifluid
First we construct a set of null tetrad vectors k l m m, , ,( ¯ ) [25] for themetric (2). These are

k l
t

m
e

i m
e

i

0, 0, 0, 1 , 1, 0, 0,
2

,

2
0, 1, , 0 ,

2
0, 1, , 0 , 8

f x y f x y,
2

,
2

= =

= = -

m m

m m

- -

⎜ ⎟⎛
⎝

⎞
⎠( )

( ) ¯ ( ) ( )
( ) ( )

where i 1= - . The set of tetrad vectors are such that themetric tensor for the spacetime (2) can be expressed
as

g k l l k m m m m . 9= - - + +mn m n m n m n m n¯ ¯ ( )

The tetrad vectors (8) are null and orthogonal except that k l 1= -m
m and m m 1=m

m¯ .
Using the tetrad vectors we calculate the fiveWeyl scalars and these are

e f f
1

12
, 0 . 10f x y

xx yy2
,

, , 0 1 3 4Y = - + Y = Y = = Y = Y( ) ( )( )

Thus the presentedmetric is clearly of typeD in the Petrov classification scheme.
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Anorthonormal tetrad frame e e e e e, , ,a 0 1 2 3= { }( ) ( ) ( ) ( ) ( ) in terms of tetrad vectors can be expressed as

i

e u k l e w m m

e m m e v k l

1

2
,

1

2
,

2
,

1

2
, 11

0 1

2 3z

= = + = = +

= =
-

- = = -

( ) ( ¯ )

( ¯ ) ( ) ( )

( ) ( )

( ) ( )

with the normalization conditions

u u v v w w1, 1 . 12z z= - = = =m
m

m
m

m
m

m
m ( )

Therefore, themetric tensor gμν (9) can be expressed as

g u u v v w w . 13z z= - + + +mn m n m n m n m n ( )

The Einstein’sfield equations (taking cosmological termΛ=0) are given by

G T R g R Tor
1

2
, , 0, 1, 2, 3, 14m n= - = =mn mn mn mn mn ( )

whereGμν is the Einstein tensor, andTμν is the stress-energy tensor. Here units are chosen such that c=1 and
8 πG=1. In terms of the Ricci tensor, the field equations can bewritten as

R T g T
1

2
, 15= -mn mn mn ( )

whereT T=m
m is the trace of stress-energy tensor. Considering the stress-energy tensor Type IIfluid (or

radiationfields and null dustfluid) [26–31] given by

T k k p k l l k p g , 16m r= + + + +mn m n m n m n mn( )( ) ( )

whereμ as the radiation energy density, ρ as the null string energy density, and p as the null string pressure.
Forμ=0, the stress-energy tensor (16) corresponds to Type Ifluid. Forμ=0 and p=0, it represents null

string dust [29, 30]. Therefore, we have

T k l l k T T, 2 , 17r r= + = = -mn m n m n m
m( ) ( )

whereT l k T k lr= =mn
m n

mn
m n .

Projecting the stress-energy tensor (17) onto the orthonormal tetrad basis (11), onewillfind that
T e e Ta b a bº m n

mn( )( ) ( ) ( ) takes the following form

T a bdiag , 0, 0, , , 0, 1, 2, 3, 18a b r r= - =( ) ( )( )( )

which belongs to Type Ifluid [26].
Using the tetrad vectors (8), one can easily show that the stress-energy tensor (17) satisfy thefield

equations (15) provided the null string energy-density is

e f f e
1

2

1

2
0. 19f x y

xx yy
x y,

, ,
1
2

2 2r = + = >+( ) ( )( ) ( )

For studying the energy conditions, we consider the four-velocity vectorU for a time-like observer

U u v w , 20a b g d h= + + +m m m m mˆ ˆ ˆ ˆ ( )

where , ,a b gˆ ˆ ˆ and d̂ are arbitrary constants [31]. The timelike four-velocity vectorUμ is subjected to the
condition that

U U 0. 212 2 2 2a b g d= - + + + <m
m ˆ ˆ ˆ ˆ ( )

The stress-energy tensor (17) in terms of the orthonormal tetrad (11) is

T u u v v . 22r= -mn m n m n( ) ( )

The pressureless Type Ifluid (17) satisfy the following energy conditions [25, 26, 31], namely,

(i) theWeak EnergyCondition:T U U 0r >mn
m n .

(ii) the Strong EnergyCondition: T g T U U 01

2
r-  >mn mn

m n( ) .

(iii) the Dominant Energy Condition: T U U 0r >mn
m n , and X T U=m mn

n such that X X 0<m
m

implies 02r > .
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3. Conclusions

A topologically trivial four-dimensional curved spacetime, nonvacuum solution of the Einstein’s field
equations, was presented. The spacetime is free-from curvature singularities, and content null string fluid (or
Type Ifluidwith zero pressure) as thematter-energy source, obeying the different energy conditions. Themetric
is of typeD in the Petrov classification scheme, andmay represent a timemachinemodel in the sense that closed
timelike curves develop at some particularmoment from an initial spacelike hypersurface in a causally well-
behavedmanner. The presentedmetric is a generalization of 2DMisner space in four-dimensional curved
spacetime.
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