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The measurement precision of modern quantum simulators is intrinsically constrained by the limited set
of measurements that can be efficiently implemented on hardware. This fundamental limitation is particularly
severe for quantum algorithms where complex quantum observables are to be precisely evaluated. To achieve pre-
cise estimates with current methods, prohibitively large amounts of sample statistics are required in experiments.
Here, we propose to reduce the measurement overhead by integrating artificial neural networks with quantum
simulation platforms. We show that unsupervised learning of single-qubit data allows the trained networks
to accommodate measurements of complex observables, otherwise costly using traditional postprocessing
techniques. The effectiveness of this hybrid measurement protocol is demonstrated for quantum chemistry
Hamiltonians using both synthetic and experimental data. Neural-network estimators attain high-precision
measurements with a drastic reduction in the amount of sample statistics, without requiring additional quantum
resources.
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I. INTRODUCTION

The measurement process in quantum mechanics has far-
reaching implications, ranging from the fundamental interpre-
tation of quantum theory [1] to the design of quantum hard-
ware [2]. The advent of medium-sized quantum computers
has drawn attention to scalability issues different than control
errors or decoherence, which nonetheless hinder the realiza-
tion of complex quantum algorithms. Coherent and incoherent
noise altering quantum states can be corrected in fault-tolerant
architectures [3]. In contrast, the fluctuations introduced by
a nonideal measurement protocol lead to intrinsic quantum
noise which persists even in a fault-tolerant regime.

The most promising quantum computing platforms, such
as superconducting or ion-trap processors, provide access
to projective single-qubit nondemolition measurements [4,5].
Armed with these simple measurements, one is faced with
a plethora of quantum simulation algorithms which rely on
accurate estimations of specialized observables (e.g., ground
and excited state energies, dipole moment, etc.). For practical
purposes, in order to suppress the uncertainty arising from a
suboptimal measurement apparatus, massive amounts of sam-
ple statistics need to be generated by the quantum device [6].
Complex estimators are then reconstructed through classical
postprocessing of single-qubit data.
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As the measurement precision remains tied to the interface
between the quantum and the classical hardware, it becomes
critical to develop methods capable of extracting more in-
formation from a given measurement dataset [7–12]. Given
this, data-driven algorithms can provide a viable path towards
improved accuracy and scalability in quantum simulation
platforms.

Machine learning has recently shown its flexibility in find-
ing approximate solutions to complex problems in a broad
range of physics [13]. In particular, extensive theoretical work
has demonstrated the potential of artificial neural networks in
the context of quantum many-body physics [14–21]. The same
approach has also been employed to enhance the capabilities
of various quantum simulation platforms [22–27]. With the
increasing stream of quantum data produced in laboratories, it
is natural to expect further synergy between machine learning
and experimental quantum hardware.

In this Rapid Communication, we propose to integrate
neural networks with quantum simulators to increase the
measurement precision of quantum observables. Using unsu-
pervised learning on single-qubit data to learn approximately
the quantum state underlying the hardware, neural networks
can be deployed to generate estimators free of intrinsic quan-
tum noise. This comes at the cost of a systematic bias from
the imperfect quantum state reconstruction. We investigate
the trade-off between these two sources of uncertainty for
measurements of quantum chemistry Hamiltonians, costly
with standard techniques [6]. We show a reduction of various
orders of magnitude in the amount of data required to reach
chemical accuracy for simulated data. For experimental data
produced by a superconducting quantum hardware, we re-
cover energy estimates with a low number of data points. This
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FIG. 1. Measurements on quantum hardware with neural-
network estimators. (a) A quantum circuit prepares a quantum state
�. (b) Single-qubit measurements, consisting of a local rotation Û
and a projective measurement �̂. (c) A neural network is trained on
the output of the measuring apparatus to discover a representation ψλ

of the state � that retrieves the expectation value of a target quantum
observable Ô. (d) The intrinsic measurement uncertainty is traded for
a systematic reconstruction bias, leading to a measurement outcome
distribution with lower variance.

opens up opportunities for quantum simulation on near-term
quantum hardware [28].

II. NEURAL-NETWORK ESTIMATORS

We examine the task of estimating the expectation value
of a generic observable Ô on a quantum state |�〉 prepared
by a quantum computer with N qubits. A direct measure-
ment produces an estimator O ≈ 〈Ô〉 with sample variance
σ 2[O] ≈ 〈Ô2〉 − 〈Ô〉2. This measurement is optimal when
|�〉 is the eigenstate of Ô (i.e., σ 2[O] = 0), but requires
sample statistics from the observable eigenbasis, typically not
available on a quantum computer.

A more flexible measurement protocol can be devised by
considering the expansion of the observable Ô in terms of K
tensor products of Pauli operators

Ô =
K∑

k=1

ckP̂k, P̂k ∈ {1̂, σ̂ x, σ̂ y, σ̂ z}⊗N , (1)

where ck are real coefficients. This decomposition allows one
to estimate the expectation value from independent measure-
ments of each Pauli operator, only requiring single-qubit data.
In contrast to the direct measurement, the final estimator Oqc

suffers an increased uncertainty εqc = √∑
k |ck|2σ 2[Pk]/S,

where σ 2[Pk] is the sample variance of P̂k and S is the number

of measurements (Supplemental Material [29]). The overhead
in sample statistics to reduce this uncertainty becomes partic-
ularly severe for observables with a large number K of Pauli
operators.

We overcome this limitation by deploying unsupervised
machine learning on single-qubit data to obtain an approx-
imate reconstruction of the quantum state |�〉 (Fig. 1). We
call this reconstruction approximate in the sense that, unlike
traditional quantum state tomography [30], we are primarily
interested in the more restricted task of recovering measure-
ment outcomes for the observable Ô. We first parametrize
a generic many-body wave function by an artificial neural
network. In a given reference basis |σ〉 of the many-body
Hilbert space (e.g., |σ〉 = |σ z

1 , . . . , σ z
N 〉, σ z

i = {0, 1}), the neu-
ral network provides a parametric encoding of the amplitudes
ψλ(σ) = 〈σ|ψλ〉 into a set of complex-valued weights λ [16].
Specifically, we implement the restricted Boltzmann machine
(RBM) [31], a physics-inspired generative neural network
currently explored in many areas of condensed matter physics
and quantum information [32,33].

The quantum state reconstruction is carried out by train-
ing the neural network on a dataset D of M single-qubit
projective measurements, obtained from the target quantum
state |�〉 prepared by the hardware.1 Using an extension of
unsupervised learning [20], the network parameters λ are
optimized via gradient descent to minimize the statistical
distance between the probability distribution underlying the
data and the RBM projective measurement probability. We
adopt the standard measure given by the Kullbach-Leibler
divergence

Cλ = − 1

M

∑

σb∈D
ln |ψλ(σb)|2, (2)

where σb is an N-bit string (σ b1
1 , . . . , σ

bN
N ) and b are Pauli

bases (b j = {x, y, z}) drawn uniformly from the set of Pauli
operators P̂k appearing in Eq. (1) (Supplemental Material
[29]). The reconstruction algorithm remains efficient as long
as the number of nondiagonal Pauli matrices appearing in each
single P̂k increases subpolynomially with N .

Once the optimal parameters are selected according to
cross-validation on held-out data, measurements of special-
ized observables can be performed by the neural network [17].
The expectation value of the quantum observable is simply
approximated by the statistical estimator

Oλ = 1

nMC

nMC∑

j=1

〈σ j |Ô|ψλ〉
〈σ j |ψλ〉 , (3)

where {σ1, . . . , σnMC} is a set of nMC configurations drawn
from the probability distribution |ψλ(σ)|2 via Monte Carlo
(MC) sampling. Here lies the critical advantage of the neural-
network estimator: despite that the wave function ψλ(σ) is re-
constructed from single-qubit data generated by the quantum
computer, the measurement it produces is not affected by the
intrinsic quantum noise. This is in fact equivalent to the direct

1Quantum state reconstruction was performed with the NetKet
software [48].
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FIG. 2. Reconstruction of the potential energy surface of the
BeH2 molecule (hartree and angstrom units). We show, for dataset
sizes M = 103 (a) and M = 105 (b), the comparison between the
exact ground-state energy E0 (solid lines) and the energies obtained
with the neural-network estimator (markers). The shaded regions
span one standard deviation for the estimate on the quantum hard-
ware with a standard averaging method using M measurements.
In the insets, we show the deviations δλ = |E0 − Hλ| of the RBM
estimators from the exact energies.

measurement scheme where data is collected in the eigenbasis
of the observable Ô (Supplemental Material [29]).

III. RESULTS

The methods presented can be used to estimate a variety
of observables in quantum simulations of many-body sys-
tems. Here, we specifically consider molecular energies in
electronic structure calculations, using a second-quantized
fermionic Hamiltonian Ĥ . Other observables of interest may
be the molecular dipole moments [34] or the excitation op-
erators relevant in quantum subspace algorithms to compute
excited state energies [35,36].

For these fermionic systems, the number of Pauli op-
erators K in Eq. (1) can grow up to the fourth power in
the number of orbitals considered [37]. The resulting fast
growth in measurement complexity remains a roadblock for
quantum simulations on near-term hardware based on low
depth quantum-classical hybrid algorithms, such as varia-
tional quantum eigensolvers [38].

We generate synthetic measurement datasets, sampling
from the exact ground state of beryllium hydride (BeH2), cal-
culated by exact diagonalization of an N = 6 qubit Hamilto-
nian. The latter is obtained from a second-quantized fermionic
Hamiltonian in the atomic STO-3G basis through a parity
transformation and qubit tapering from molecular symmetries
[38,39]. We train a set of RBMs at different interatomic

FIG. 3. Measurement uncertainty of neural-network estimators for molecular systems. The energy units are hartrees. (a1)–(a3) Statistical
variance in the MC sampling of the neural network as a function of the size M of the training dataset. We compare this with the variance
σ 2[H ]qc = ∑K

k=1 |ck |2σ 2[Pk] arising from independent estimation of each Pauli operator with S = M/K measurements. (b1)–(b3) Energy
measurement distribution on the quantum computer. The red lines bound the chemical accuracy interval E = 1.6 × 10−3—the error in energy
that changes a predicted chemical reaction rate by an order of magnitude at room temperature. The total number of measurements M is set
to 128 000, 1 024 000, and 128 000 for the LiH, BeH2 (STO-3G basis), and H2 (6-31G basis) molecules, respectively. (c1)–(c3) Energy
measurement distribution of the neural-network estimator (histogram), on the same number of measurements used in (b1)–(b3). All estimates
fall within chemical accuracy from the true value E0. (d1)–(d3) Energy errors induced by imperfect state reconstruction. We compare, for
different dataset sizes M, the sample variance of the mean ε2

qc = σ 2[H ]qc/S with the variance of the distribution of the neural-network estimator
	2

λ, calculated from the energy histograms in (c1)–(c3).

022060-3



TORLAI, MAZZOLA, CARLEO, AND MEZZACAPO PHYSICAL REVIEW RESEARCH 2, 022060(R) (2020)

separations R using datasets D of increasing size M, and
perform measurements of the molecular Hamiltonians Hλ.2

We show in Fig. 2 the neural-network estimators over the en-
tire molecular energy surface. Comparing these measurements
with exact energies shows that a relatively good precision
can be achieved with as low as M = 103 (total) measure-
ments [Fig. 2(a)]. For a given number of measurements M,
the neural-network estimator provides better estimates with
respect to the conventional estimator Hqc.

The higher precision of estimators produced by the neural
networks originates from the direct parametrization of the
many-body wave function, eliminating any intrinsic quantum
noise. In turn, the imperfect quantum reconstruction leads
to two additional sources of uncertainty: a MC variance of
statistical nature, and a systematic bias in the expectation
value. In the following, we investigate these noise sources for
the BeH2 molecule, as well as the lithium hydride (LiH) in
STO-3G basis and the hydrogen (H2) molecule in the 6-31G
basis, encoded in N = 4 and N = 8 qubits, respectively (we
consider the geometry at the bond distance). We estimate the
uncertainty of the measurement with the quantum computer
using the exact variance calculated on the ground-state wave
function, with S = M/K measurements per Pauli operator. We
point out that, while qubitwise commuting Pauli operators can
be measured simultaneously, the resulting variance reduction
is about a factor 2 for the molecules considered here [38].

The statistical uncertainty from the MC averaging is given
by ελ =

√
σ 2[H]λ/nMC, where σ 2[H]λ is the variance of Ĥ on

the samples generated by the neural network (Supplemental
Material [29]). Since the target state (i.e., ground state) is an
eigenstate of the observable, a perfect reconstruction would
lead to zero variance. Deviations from the exact ground state
set the amount σ 2[Hλ] > 0 of statistical uncertainty in the
sampling. In Figs. 3(a1)–3(a3), we show the MC variance
for training datasets of increasing size M. Here, we fix the
amount of MC samples to nMC = 105, which is sufficient to
make statistical fluctuations negligible. As expected, the MC
variance decreases as M grows larger and the quality of the re-
construction improves, with significant reduction compared to
the variance σ 2[H]qc obtained from standard postprocessing.

The reconstruction error in the neural-network estimator is
also affected by finite-size deviations in the training dataset.
To understand this contribution, we train a collection of 100
RBMs on independent measurement datasets, and compare
the measurement distribution with the one obtained from
standard averaging [Figs. 3(b1)–3(b3)]. By examining his-
tograms of energies built from separate dataset realizations
[Figs. 3(c1)–3(c3)], we observe that for sufficiently large
M the distribution of the neural-network estimator sharply
peaks and gets close to the exact expectation value, with a
positive offset due to the energy variational principle. For
a quantitative comparison between the two distributions, we
show in Figs. 3(d1)–3(d3) the variance of the mean for the
neural-network estimator ε2

λ (estimated from the histograms).
We observe about two orders of magnitude improvement
over the uncertainty ε2

qc of the standard estimator. Further
systematic errors due to approximate representability have

2Molecular Hamiltonians were obtained with Qiskit Aqua [49].

FIG. 4. Probability of reaching chemical accuracy as a function
of the total number of measurements M for LiH (a), BeH2 (b),
and H2 (c). We compute the probability p(δ < E ) to obtain a final
energy estimate within chemical accuracy from the exact ground-
state energy between. Plotted are probabilities for the neural-network
estimator and the standard one. An upper bound pMax to the latter is
also shown, obtained by setting σ 2[H ]qc = (

∑
k |ck |)2.

been shown to be negligible for molecular systems of larger
sizes [40].

The total uncertainty in the final measurement estimator
is a combination of systematic bias and statistical noise.
We quantify the combined effect by considering the prob-
ability p(δ < E ) that the deviation δ = |E0 − H | from the
ground-state energy E0 is smaller than chemical accuracy E .
The specific value, which depends on thermal fluctuations at
room temperature, is fixed to E = 1.6 × 10−3 Ha. A simple
calculation leads to p(δqc < E ) = erf( E

√
S/2σ 2[H]qc) for

the standard estimator. We evaluate this probability for the
neural-network estimator by independently resampling each
neural-network across the separate training realizations. We
show the results in Fig. 4, where we also include an upper
bound pMax often referenced in literature [6,9]. We observe
drastic improvements up to three orders of magnitude in the
total measurements M required to get to p(δλ < E ) = 1.

Finally, we show estimations of molecular energies with
experimental data obtained in a variational quantum eigen-
solver. We use data from Ref. [41], which consist of samples
from an approximate ground-state preparation of the LiH
molecule on superconducting quantum hardware. In Fig. 5,
we plot the energy profile reconstructed by the neural net-
work, showing a good agreement using only a fraction of
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FIG. 5. Molecular energy (hartrees) of LiH from experimental
data generated by a superconducting quantum processor [41], as a
function of the interatomic distance (angstroms). The inset shows
the variance ε2

qc from subsampling 5 × 103 measurements out of
2.5 × 106 data points, and the corresponding variance 	2

λ obtained
by separate neural-network reconstructions.

the total experimental measurements. Note that decoherence
determines a discrepancy between the reconstructed and the
measured profile, since our RBM makes a pure state assump-
tion, which is not exactly verified experimentally.

To estimate the uncertainty, we train 50 RBMs on separate
datasets obtained by subsampling M = 5 × 103 measurement
data points, out of the original 2.5 × 106 measurements in
[41]. Despite the mixing in the quantum state underlying the
measurements, the uncertainties in the neural-network estima-
tors are systematically lower than the standard measurement
scheme, similarly to what is observed in synthetic data.

IV. CONCLUSIONS

We have introduced a procedure to measure complex ob-
servables in quantum hardware. The approach is based on
approximate quantum state reconstruction tailored to retrieve
a quantum observable of interest. For the particularly demand-
ing case of quantum chemistry applications, we have provided

evidence that neural-network estimators achieve precise mea-
surements with a reduced amount of sample statistics.

An intriguing open question for future research is the
systematic understanding of machine learning–based quan-
tum state reconstruction. For positive wave functions, a fa-
vorable asymptotic reconstruction scaling has been recently
shown [42]. For nonpositive states, such as ground states of
interacting electrons, recent works addressed representability
[40,43,44], while much less is known for the reconstruction
complexity, leaving open prospects for future studies.

For measurement data generated by the experimental hard-
ware, we have also assumed that the quantum state is approx-
imately pure. When decoherence effects substantially corrupt
the state, density-matrix neural-network reconstruction tech-
niques [45,46] could be employed as an alternative to the
algorithm presented here. Generative models other than neural
networks [47] could also be explored in this setup.

Finally, the increased measurement precision with lower
sample complexity makes neural-network estimators a pow-
erful asset in variational quantum simulations of ground
states by hybrid algorithms using low-depth quantum circuits
[38,50]. It is natural to expect integration of generative mod-
els in the feedback loop for the quantum circuit optimiza-
tion. With the ever-increasing size of quantum hardware, we
envision that machine learning will play a fundamental role in
the development of the next generation of quantum technolo-
gies.
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