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Zusammenfassung

Die theoretischen Grundlagen des bis heute mit großer Präzision bestätigten Standard-

Modells der Teilchenphysik wurden bereits in den sechziger und frühen siebziger Jahren
des letzten Jahrhunderts gelegt. Ein großer Erfolg war unter anderem die Vorhersage
einer dritten Quark-Generation auf Grundlage von beobachteten, CP-verletzenden
Zerfällen von Kaonen durch Kobayashi und Maskawa [1].

Während das leichtere Quark dieser dritten Generation, das b-Quark, bereits
wenige Jahre später nachgewiesen werden konnte [2], gestaltete sich die Suche nach
dem Top-Quark schwieriger. Es wurde erst nach jahrzehntelanger Suche 1995 an
den Detektoren CDF und DØ am Tevatron-Beschleuniger entdeckt [3, 4], einem
Proton-Antiproton-Beschleuniger mit einer Schwerpunktsenergie von damals 1.8 TeV.

Aufgrund seiner hohen Masse von über 170 GeV/c2 ist die Rate von Top-Quark-
Ereignissen am Tevatron gering, und eine genaue Untersuchung aller Eigenschaften
ist schwierig. Während die Messung der Top-Quark-Masse über viele Jahre verbessert
wurde und mit einer inzwischen erreichten relativen Unsicherheit von weniger als
1% [5] als Präzisionsmessung gilt, konnte die vom Standard-Modell vorhergesagte
Produktion einzelner Top-Quarks erst vor wenigen Monaten mit ausreichend hoher
statistischer Signifikanz nachgewiesen werden, um von einer „Entdeckung“ zu
sprechen [6].

Die hohe Masse des Top-Quarks hat Anlass zur Spekulation gegeben, ob es
womöglich eine besondere Rolle bei der elektroschwachen Symmetriebrechung
spielt. Einige derartige Theorien sagen schwere Eichbosonen voraus, die bevorzugt
in Top-Quark-Paare zerfallen, etwa das Z′-Teilchen im Topcolor-Modell [7]. Es
gibt jedoch auch andere Theorien jenseits des Standard-Modells, die zusätzliche
Produktionsmechanismen für tt̄-Ereignisse im Bereich hoher invarianter tt̄-Massen
vorhersagen, etwa Modelle mit Axigluonen [8].

Die Experimente am Large Hadron Collider am CERN eröffnen die Möglichkeit,
derartige Theorien für einen großen, bisher nicht zugänglichen Parameterbereich zu
testen.

Diese Arbeit beschäftigt sich mit der Suche nach schweren Resonanzen am CMS-
Detektor (Compact Muon Solenoid), die in Top-Quark-Paare zerfallen. In solch einem
Fall tragen die Top-Quarks einen hohen Impuls und deren Zerfallsprodukte werden
im Detektor oftmals nicht als getrennte Objekte rekonstruiert. Die üblicherweise
verwendeten Techniken zur Selektion und Rekonstruktion von tt̄-Ereignissen setzen
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dies jedoch voraus. Daher ist die Entwicklung einer neuen Ereignis-Selektion und
-Rekonstruktion für derartige Ereignisse erforderlich.

Zwar gibt es bereits einige sehr interessante Studien zur Selektion und Rekonstruk-
tion solch hochenergetischer Top-Quarks [9, 10], jedoch sind dies fast ausschließlich
Studien auf Generator-Ebene ohne realistische Detektorsimulation oder Berücksichti-
gung von Untergrundprozessen.

Das Ziel der vorliegenden Arbeit ist es, diese Lücke zu schließen. Dazu wird der
„µ+Jets“-Zerfallskanal von Top-Quark-Paaren – d. h. der Fall, dass eines der Top-
Quarks in ein Myon, ein Neutrino und ein b-Quark und das andere rein hadronisch
zerfällt – für hohe invariante Massen des tt̄-Systems untersucht.

Das Szenario, das in dieser Arbeit genauer untersucht wird, entspricht mit einer
integrierten Luminosität von 200 pb−1 bei einer Schwerpunktsenergie von 10 TeV
etwa dem, was man nach dem ersten Jahr Datennahme erwarten kann. Da nicht
ganz klar ist, mit welcher Genauigkeit der Detektor und die Simulation verstanden
sein werden, wurden möglichst einfache Methoden entwickelt.
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Abbildung 1: Spektrum der rekonstruierten Masse des Top-Quark-Paar-Systems,
nach der Ereignis-Selektion. Die eingezeichneten Resonanzen Z′ haben Massen
von 1, 2 und 3 TeV/c2 und eine natürliche Breite von jeweils 1 % der Masse. Die
angenommenen Wirkungsquerschnitte, σ(pp → Z′ → tt̄) = 10 pb, sind rein
illustrativ, sie entsprechen keinem bestimmten Modell.

Die Ereignis-Selektion basiert auf Schnitten einiger weniger kinematischer Vari-
ablen. Dabei wird sowohl die hohe Energie der Top-Quarks als auch die hohe
Masse desselben ausgenutzt. Ersteres hat zur Folge, dass die rekonstruierten Jets
eine hohe Energie besitzen, Letzteres schlägt sich in einem vergleichsweise hohen
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Transversalimpuls des Myons in Bezug auf das b-Quark nieder. Die neu entwick-
elte Ereignis-Selektion ist dabei für hohe tt̄-Massen um ein Vielfaches besser als
die Anwendung einer tt̄-Ereignis-Selektion wie sie für Standard-Modell-tt̄-Studien
verwendet wird, die vor allem für relativ kleine tt̄-Massen geeignet ist.

Mit Rekonstruktion eines tt̄-Ereignisses ist in diesem Zusammenhang die Bestim-
mung der jeweiligen Top-Quark-Viererimpulse und damit auch die Bestimmung
der invarianten Masse des tt̄-Systems gemeint. Dazu wird die bereits erwähnte
Eigenschaft von Zerfällen hochenergetischer Top-Quarks, nämlich dass die Zerfalls-
produkte einen kleinen Winkelabstand im Detektor haben, ausgenutzt.
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Abbildung 2: Die erwarteten oberen Grenzen für σ(pp → Z′) × BR(Z′ → tt̄) für
ein 95%-Konfidenzniveau. einer integrierten Luminosität von L = 200 pb−1 und
einer Proton-Proton-Schwerpunktsenergie von 10 TeV.

Nach der Rekonstruktion und Ereignis-Selektion erwartet man eine Verteilung der
rekonstruierten Masse wie in Abbildung 1 zu sehen. Erwartete Untergründe sind
ausgefüllt, während mögliche schmale Resonanzen Z′ für verschiedene Massen als
Linie eingezeichnet sind. Die verwendeten Wirkungsquerschnitte von 10 pb sind
willkürlich gewählt und entsprechen keinem bestimmten Modell.

Um die Ergebnisse der Studien zur Selektion und Rekonstruktion zu quantifizieren,
wurden obere Grenzen für den Wirkungsquerschnitt von schmalen Resonanzen Z′

bestimmt. Um diese Grenzen zu bestimmen, wird mit einem Daten-Modell und dem
Bayestheorem eine Posterior-Verteilung für die Parameter des Modells bestimmt.
Diese Parameter enthalten unter anderem den Wirkungsquerschnitt für Z′. Das
95%-Quantil der Marginalverteilung des Posteriors in dem Parameter ist dann die
gesuchte obere Grenze. Die Bestimmung dieses Quantils erfordert eine numerische
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Integration in einem hochdimensionalen Raum. Dazu wurde ein effizientes Verfahren
implementiert, das auf Markov-Ketten beruht.

Das Daten-Modell beruht in weiten Teilen auf Monte-Carlo-Simulation. Um
von einer verzerrten Modellierung unabhängiger zu sein, wurde für den beson-
ders anfälligen QCD-Untergrund ein Verfahren entwickelt, das weitgehend daten-
basiert ist. Außerdem wurden viele systematische Unsicherheiten, etwa die theo-
retischen Unsicherheiten der Wirkungsquerschnitte, der Hadronisierung und der
Jet-Energie-Rekonstruktion berücksichtigt. Die erwarteten oberen Grenzen, die mit
den Markov-Ketten unter Berücksichtigung dieser systematischen Unsicherheiten
bestimmt wurden, sind in Abbildung 2 zu sehen. Die erwarteten Grenzen liegen
in der Größenordnung einiger Picobarn, für hohe Massen auch darunter. Schon
nach einem Jahr Datennahme ist es somit möglich, Modelle auszuschließen, die
einen Zusatzbeitrag dieser Größenordnung zum tt̄-Massenspektrum vorhersagen.
Im Massenbereich von 1 TeV/c2 liegt die erwartete Ausschlussgrenze auch nur wenig
über dem Wirkungsquerschnitt des Topcolor-Z′. Mit weiteren Verbesserungen der
Ereignis-Selektion oder durch eine Kombination der Ergebnisse mit verwandten
Analysen [11] oder der Einbeziehung des Elektron-Kanals kommt ein Ausschluss des
Topcolor-Z′ in diesem Massenbereich in Reichweite.

Axigluonen hingegen besitzen einen höheren Wirkungsquerschnitt, und eine
Verbesserung der gegenwärtigen indirekten Massengrenze von 0.9 TeV/c2 [12] bei
95 % Konfidenz durch direkte Suche erscheint bereits nach dem ersten Jahr Daten-
nahme möglich.
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Introduction

The top quark, discovered 1995 at the Tevatron [3, 4], has the largest mass of all
known fundamental particles. With a mass close to the scale of electroweak symmetry
breaking (EWSB), it plays a special role in many alternative EWSB theories. Some
models predict a heavy resonance which can decay to top quark pairs. If the
resonance has an invariant mass of the order of 1 TeV or above, the top quarks from
its decay will have large momenta and the decay products of the top quarks will be
close in the detector. In this case, the selection and reconstruction applied in standard
model tt̄ analyses, which assume large angular separation of the decay products,
will not yield optimal results.

Therefore, new techniques have to be developed to select and reconstruct tt̄ events
with high mtt̄. While there are interesting generator studies for this problem [9, 10],
there are only very few studies assuming a realistic detector and realistic back-
grounds.

The aim of this thesis is to fill this gap. Reconstruction and selection techniques are
developed for the µ+jets channel, where one top quark decays to a muon, a neutrino
and a b quark and the other top quark decays to three quarks.

The studies are based on simulations of the CMS detector (Compact Muon
Solenoid) at the Large Hadron Collider (LHC). The assumed integrated luminosity
of L = 200 pb−1 and the center-of-mass energy of 10 TeV correspond approximately
(to current knowledge) to the first year of data taking. As it is not clear how well
the detector and the Monte-Carlo simulations will be understood at that time, the
methods for selection and reconstruction are kept at a simple level.

The event selection is based on cuts on few kinematic variables. The chosen
variables reflect the properties of a high-energy tt̄ event in which the decay products
are not separated in the detector but might overlap. The transverse momenta of the
decay products are typically large as well as their relative transverse momenta.

Similar properties are exploited in the event reconstruction which aims to estimate
the four-momenta of the two top quarks.

After selection and reconstruction, the spectrum of the invariant mass of the tt̄

system is analyzed for narrow resonances Z′. The limits are derived with a frequentist
and a purely Bayesian method. Systematic uncertainties are accounted for with a
Bayesian approach in both cases. For the Bayesian analysis, an efficient Markov chain
Monte-Carlo integration was implemented. In order to be more independent from



2 List of Figures

Monte-Carlo simulations for the challenging QCD background, a data-based QCD
model was developed.

The thesis is structured as follows. The first chapter briefly reviews the theoretical
framework and introduces models with heavy resonances decaying in a top quark
pair. The second chapter gives an overview of the LHC and the CMS detector. In
the third chapter, the reconstruction of physics object and tt̄ events is discussed.
The fourth chapter shows that new selection methods are required for high mass
resonances, possible cut variables and results of a cut optimization are discussed. In
the last chapter, it is shown how selected and reconstructed events can be used to
determine upper limits on the cross section of a narrow resonance Z′ and how the
QCD model will be extracted from data.



1 Theory Overview

The standard model of particle physics is the most accurate and complete model
describing elementary particles and their interactions. The formal framework of this
theory, the particles and interactions are reviewed in this chapter. Also, processes
important for the present studies, namely top quark pair production and decay as
well as tt̄ production beyond standard model processes, are discussed.

The overview presented in this chapter is not a general introduction to quantum
field theory or the standard model. Rather, it tries to review some of the important
concepts for readers already familiar with the subject. This implies that there is a
lack of completeness of the presented arguments. For a more complete introduction,
there are many textbooks available, for example [13] and [14].

Before going into details, a short remark on the relevance of the standard model is
in order. The necessary formalism and the standard model were already developed
in the sixties and seventies of the last century, at a time when the experimentally
accessible energies were some orders of magnitude below the ones directly available
today. A very remarkable milestone in the development of the standard model was
the prediction of a third generation of quarks by Kobayashi and Maskawa [1]. Their
prediction was based on the observation of CP violation in rare kaon decays. It
can be seen as a major success for the theory to make a prediction of unknown
particles based on rare decays because this requires a deep understanding and
correct application of the underlying principles of the theory in order to connect such
seemingly unrelated topics.

Since then, a huge number of experiments were conducted in order to either
measure its parameters to high precision or to show the existence of physics beyond

the standard model. Until today, there is no convincing measurement which proves
the standard model wrong.1 While this is a great success for the standard model, it
is also unsatisfactory because any physics beyond the standard model could point to
a more complete model. The standard model itself cannot be the last word because
it does not account for gravitation, Dark Matter or CP violation strong enough to
explain the matter-antimatter imbalance in the universe.

1Apart from neutrino masses. But those can be incorporated into the standard model without
challenging the validity of the rest of the theory.
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1.1 Theoretical Framework: Quantum Field Theory

The standard model can be seen as an instance of a broad range of theories which
are all formulated in the language of a quantized field theory and are based on the
same principles:

• A quantum field theory is completely described by its Lagrangian density.
Writing the theory as a Lagrangian density instead of a total Lagrangian ensures
the locality of the theory.

• The Langrangian must be invariant under Lorentz transformations and transla-
tions (Poincaré invariance).

• The theory has to fulfil microcausality (which is closely linked to locality) which
states that physical observables at space-like separated points must commute,
i. e. physical quantities at space-like separated points must be independent.

• The spectrum of the Hamiltonian (i. e. the energy) has to be bounded from
below.

Another principle which is not as basic as the ones just mentioned is the one
of renormalizability. Demanding renormalizability means that the theory should be
valid up to a given scale Λ and corrections for physics at an energy scale E satisfying
E ≪ Λ should be of order E/Λ.

A further principle is the anything goes principle: if a term can be added to the
Lagrangian without introducing more degrees of freedom and respecting all other
principles (including renormalizability), it must be added to the Lagrangian.

1.1.1 Action Principle

As in classical physics, the principle of least action can be used. It states that a system
described by the Lagrangian L evolves from its initial to its final state such that the
action S, defined as

S =

∫

L(t)dt

is minimal. As in classical physics, differential equations for the fields follow from
that requirement (the Euler-Lagrange equations or “equations of motion”).

Therefore, the fundamental entity of any quantum field theory is the Lagrangian
density L with

L =

∫

d4
x L.
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1.1.2 Canonical Form of the Lagrangian

The most general possible Lagrangian for a theory with N real Lorentz-scalar fields
which satisfies all principles stated above is

L = −
1
2
Aij∂µφi∂µφj −

1
2
Bijφ

iφj − C,

where the matrices A and B are hermitian and positive definite and C is not observ-
able and can be set to zero.

A and B can be diagonalized by redefining the fields φi using a linear trans-
formation, yielding the fields ϕi. In canonical form, the most general Lagrangian
is

L = −
1
2
∂µϕi∂µϕi −

1
2
m2

i

(

ϕi
)2

where the interpretation of mi as mass of the particle ϕi can be checked by the
equations of motion yielding the usual relativistic energy-momentum relation (note
that  h = c = 1 is used throughout).

1.1.3 Fermion Fields

The Lie algebra of the Lorentz group consists of three generators for rotation, Ji, and
three generators for boost, Ki, satisfying the commutation relations

[Ji, Jj] =iǫijkJk

[Ji, Kj] =iǫijkKk

[Ki, Kj] = − iǫijkJk.

It is locally isomorphic to SU(2) × SU(2), which can be seen by introducing the
operators

Li =
1
2
(Ji + iKi), Ri =

1
2
(Ji − iKi) (1.1)

satisfying

[Li, Lj] =iǫijkLk

[Ri, Rj] =iǫijkRk

[Li, Rj] =0.

The representation used for transforming fields under the Lorentz group used so
far was (0, 0).

Studying other possible irreducible representations of the Lorentz group leads to
other types of particles. Particles transforming as (1

2 , 1
2) are vector particles. The only
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other two representations needed for theories satisfying the principles stated above
are the spinor representations.

The most simple non-trivial matrix representation satisfying the commutation
relation of SU(2) are the matrices σi/2 where the σi are known as Pauli matrices.

Using σi/2 as representation for the Li and 0 as representation for the Ri (in
equation 1.1), those operators act on two fields typically written as two components
of a single field called left-handed Weyl spinor ΨL. Switching representations (i. e. 0 for
the Li and σi/2 for the Ri) yields a right-handed Weyl spinor ΨR.

As the Lagrangian density has to be a Lorentz-scalar, fields have to be multiplied
such that the combination transforms as (0, 0).

In the formulation of the standard model, the Majorana notation for spinors is used.
It is a single, four component field ΨM defined as

ΨM =

(

ΨL

iσ2ΨL

)

.

The two lower components iσ2ΨL transform like a right-handed Weyl spinor.

1.1.4 Interactions

New particle fields can be added to the Lagrangian density, as long as the principles
above are satisfied. However, it is useful to have a recipe which automatically ensures
that they are satisfied. The recipe of choice is using local gauge invariance which is
presented here. It has the advantage that relatively little input is required. On the
other side, it is not the most general approach.

Using local gauge invariance to introduce interactions, a new local gauge symmetry
group is postulated and interacting particles are arranged in multiplets transforming
under non-trivial representations of this group. To satisfy the gauge symmetry, one
massless field is required for each generator of the group.

Example for Local Gauge Invariance: QED As an example, take the Lagrangian
for a spin 1

2 particle Ψ,
L = Ψ̄(iγµ∂µ − m)Ψ (1.2)

and postulate local U(1) invariance. For a local U(1) transformation with the local
phase −qλ(x), Ψ should transform non-trivially as

Ψ(x) → e−iqλ(x)Ψ(x).

If using that in equation 1.2 L is not invariant; rather

L → L + q(∂µλ)Ψ̄γµΨ.
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Because local gauge invariance must hold (as postulated), everything must be done
to ensure invariance of L. This can be achieved by introducing a new vector field Aµ

transforming as

Aµ → Aµ + ∂µλ

and adding the term

−(qΨ̄γµΨ)Aµ

to the Lagrangian.
The total Lagrangian

L = Ψ̄(iγµ(∂µ − iqAµ) − m)Ψ

is now invariant under local U(1) transformations.
Because of the anything goes principle, a kinematic term for Aµ has to be added,

LAµ-kin = −
1
4
FµνFµν = −

1
4
(∂µAν − ∂νAµ)(∂µAν − ∂νAµ).

Problems with Local Gauge Invariance Note that no mass term for Aµ can be added
without violating local gauge invariance. Thus, introducing interactions through
local gauge invariance leads to massless gauge fields. Experimentally however, the
interaction particles W and Z have mass. One has two choices:

1. Give up the local gauge invariance as construction principle for interactions
(note that this principle does not appear in the list of principles given above).

2. Find a way to explain the masses of W and Z consistent with local gauge
invariance.

The standard model is formulated using the second alternative using the Higgs

mechanism which provides an explanation for gauge boson masses consistent with
local gauge invariance (see section 1.2.1). If predictions made with this assumptions
are true (for example, if the Higgs particle exists), that would be a strong indication
that local gauge invariance actually is more than a convenient way to introduce
interactions.

1.1.5 Feynman Graphs

At a hadron collider, the major question to theory are (differential) cross sections of a
given initial state α and final state β. This question can be addressed by perturbative
calculations.
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For an initial state α and final state β, the cross section dσ(α → β) is (by virtue of
Fermi’s Golden Rule):2

dσ(α → β) ∝ |Mαβ|2(2π)4δ(pα − pβ)dβ. (1.3)

The delta function ensures energy and momentum conservation. The formula
holds for a defined point in phase space for both initial and final states. To get the
total cross section of a process, one has to integrate the formula over the final state
phase space.

Mαβ is the matrix element of the initial and final state of the process and can
be interpreted as the transition probability of a system from state α to state β.
Therefore, it can be evaluated using the time evolution of the system. As the initial
and final states are non-interacting (they are separated particles), time evolution
can be evaluated from −∞ to ∞. As in quantum mechanics, time evolution can be
written as the time ordered exponential (or Dyson series):

Mαβ = 〈β|T exp
(

−i

∫

d4
xH(§)

)

|α〉,

where H is the Hamiltonian density and T exp denotes the formal exponential series
where the terms H(x) are time-ordered.

Approximate evaluating this expression is done through expansion of the expo-
nential, truncating the series at some (low) order of the coupling constants. As H

consists of products of creation and annihilation operators, this expansion yields a
sum of matrix elements of products of creation and annihilation operators.

Using Wick’s theorem, one can rewrite the product as a sum of terms of creation
and annihilation operators in normal order. Those individual terms can be visualized
by Feynman graphs. The Feynman rules determine the translation between a Feynman
graph and the corresponding term of the matrix element.

1.2 The Standard Model of Particle Physics

The particles of the standard model can be divided into gauge bosons of the interac-
tions and the “matter” part (fermions). The Higgs particle fits neither of those and
plays a special role.

The matter particles interact via the electromagnetic, weak and strong interactions.
The corresponding gauge groups are UY(1), SUL(2) and SUC(3) where the Y is the
weak hypercharge, L indicates that only left-handed fermions carry this charge and C

stands for color.
2The factor neglected depends on the relative velocities of the incident particles.
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name symbol SU(2)L SUC(3) y(for UY(1))

left-handed leptons PLLm 1 2 −1
2

right-handed charged leptons PREm 1 1 −1
left-handed quarks PLQm 3 1 +1

6
right-handed up-type quarks PRUm 3 1 +2

3
left-handed down-type quarks PLDm 3 1 −1

3

Table 1.1: The particles of the standard model and the representation under
the gauge groups. The dimension of the representations is given in bold face, for
example 1 is the trivial representation, 3 the 3-dimensional representation. For the
weak hypercharge y, the fields transform under λ(x) like Ψ(x) → exp(iλ(x)y)Ψ(x).
More explanation in the main text.

Those interactions are associated to in total 12 gauge bosons: Bµ, 3 Wa
µ and 8 Gα

µ.
The matter fields of the standard model can be classified according to their interac-

tions, i. e. the transformation representation for the three gauge groups. In table 1.1,
the standard model particles are given in this classification.

There, the weak lepton duplet Lm consists of a left-handed neutrino Majorana
spinor as first component and the left-handed charged lepton Majorana spinor as
second component: Lm = (νm, Em). Accordingly, the weak quark duplet Qm is
Qm = (Um, Dm) The index m denotes the generation running from 1 to 3. Um, Dm

and Em are the right-handed up-type quarks, down-type quarks and charged leptons,
respectively.

The most general Lagrangian with this particle contents and with those gauge
groups is

Lfg = −
1
4
Gα

µνGαµν −
1
4
Wa

µνWaµν −
1
4
BµνBµν −

g2
3Θ3

64π2
ǫµνλρGαµνGαλρ

−
g2

2Θ2

64π2
ǫµνλρWaµνWaλρ −

g2
1Θ1

64π2
ǫµνλρBµνBλρ

−
1
2
L̄m/DLm −

1
2
Ēm/DEm −

1
2
Q̄m/DQm

−
1
2
Ūm/DUm −

1
2
D̄m/DDm

in which the gauge field-strengths are given by

Gα
µν = ∂µGα

ν − ∂νGα
µ + g3f

α
βγGβ

µGγ
ν

Wa
µν = ∂µWa

ν − ∂νWa
µ + g2ǫabcW

b
µWc

ν

Bµν = ∂µBν − ∂νBµ.
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The fαβγ and ǫabc are the structure constants of the gauge groups SUC(3) and
SUL(2). The terms involving these give rise to Feynman rules with vertices of 3 and
4 gauge bosons.

The coupling constants g1, g2 and g3 are for the UY(1), the SUL(2) and strong
interactions.3 The notation for the gauge-covariant derivatives /D is a bit sloppy: its
actual meaning depends on the field they are applied to and follow from the gauge
transformation properties listed in the table above. For example, for the weak quark
duplet Qm (which takes part in all three interactions):

Dµ =
1
2
∂µ +

(

−
i

2
g3G

α
µλα −

i

2
g2W

a
µτa −

i

6
g1Bµ

)

PL + h. c.

The parameters Θ1 and Θ2 are physically not observable. So up to now, there are
only four free parameters in the Lagrangian: g1, g2, g3 and Θ3.

While it is worth noting that this Lagrangian already includes all the matter and
interaction particles, it is also important to note that there are no mass terms, neither
for the gauge bosons nor for the fermions. They cannot be added directly because
this would violate gauge invariance. How to deal with this shortcoming is explained
in the next section.

1.2.1 Higgs Mechanism

The interaction fields introduced by the gauge principle are massless. However,
experiments have shown mW 6= 0 6= mZ. Simply adding a mass term to the standard
model Lagrangian would not keep local gauge symmetry. So either one has to give
up the principle of local gauge symmetry or a way has to be found to include masses
without violating this principle. As the local gauge invariance has proven a very
useful concept, the latter way is the one pursued in the standard model.

A set of possibilities to achieve that is the existence of a field interacting with the
gauge bosons to give mass to. In the ground state of the system, this field shall have
a non-zero expectation value.4 In order to apply perturbation theory, fields have to
be rewritten such that the ground state corresponds to the field configuration where
all fields are vanishing. The coupling of Z to that field is then a quadratic term of Z

in the Lagrangain, a mass term for Z.

3Through symmetry breaking, linear combinations of g1 and g2 appear as electromagnetic and weak
coupling constants.

4If written manifestly gauge-invariant, i. e. the gauge group representation for the field is a linear
transformation of the field multiplet.
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This mechanism is called spontaneous symmetry breaking. Note, however, that the
Lagrangian still has the full gauge symmetry. The only thing that is “special” about
this case is that there is no parameterization of the fields such that both (1) the gauge
symmetry transformations are linear transformations of field multiplets and (2) the
ground state is the state in which all fields are vanishing.

The minimal way to implement this is to postulate a weak doublet of scalar complex
fields, the Higgs doublet φ. Introducing the Higgs doublet adds four degrees of
freedom, but three of them have already been observed as they correspond to the
masses of W+, W− and Z.

The Higgs mechanism is minimal in the sense that it only adds one degree of
freedom not yet observed. The non-zero vacuum expectation value for the Higgs
field is achieved by the Higgs potential

LHiggs pot. = λ(φ†φ − µ2/2λ)2.

The minimum of the field is not at zero but at v = µ2/λ.
As was already noted at the end of the last section, also fermion masses are not

gauge invariant and are now explained by the Higgs mechanism. After rewriting
fields about the vacuum expectation value v, only one real field, H remains from the
Higgs doublet and the Higgs sector of the standard model is:

LHiggs = −
1
2
∂µH∂µH − λv2H2 − λvH3 −

λ

4
H4

−
1
8
g2

2(v + H)2
(

W1
µ − iW2

µ

)2

−
1
8
(v + H)2(−g2W

3
µ + g1Bµ)2

−
1√
2
(v + H)(fmnĒmPREn + h. c.)

−
1√
2
(v + H)(gmnŪmPRUn + h. c.)

−
1√
2
(v + H)(hmnD̄mPRDn + h. c.).

(1.4)

From this Lagrangian, the Higgs mass parameter can be determined as mH = 2λv2.
Redefining the fields such that the mass matrices fmn, gmn and hmn are diagonal,

the fermion masses are given by

m =
v√
2
c

where c is the coupling to the Higgs (the diagonal entries after mass matrix diago-
nalization).
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Diagonalizing the mass matrix for the W fields leads to the fields

W±
µ =

1√
2
(W1

µ ∓ iW2
µ)

with the mass

mW =
g2

2v
2

4
.

As g2 and mW are known from experiment, the numerical value of v can be deter-
mined; it is v = 246 GeV.

It can further be shown that W3
µ and B mix to what is known as photon and Z

described by the mixing angle ΘW (Weinberg angle). The electromagnetic coupling
constant (that is, the absolute value of the electron charge) is given by e = g1 cos ΘW =

g2 sin ΘW .
The total standard model Lagrangian is

LSM = Lfg + LHiggs.

Given the gauge symmetries and particle contents, LSM is the most general La-
grangian density compatible with the principles formulated in section 1.1.

1.2.2 Particle Masses

The matrices appearing in the last three lines of equation 1.4 give rise to fermion
masses. They can be diagonalized as mentioned in section 1.1.2. Given the Dirac
spinors

em ≡PLEm + PREm (1.5)

um ≡PLDm + PRDm (1.6)

dm ≡PLUm + PRUm (1.7)

the mass terms can be written as

Lfermion-mass = −
1√
2
v(fmēmem + gmūmum + hmd̄mdm).

Note that there are no masses for neutrinos in the standard model. To account
for experimental evidence which strongly points to neutrino masses, they can be
included if one adds right-handed neutrinos. Without adding neutrino mass terms,
the Higgs part has 15 parameters (ten masses, the Higgs self-coupling and four
parameters for the Kobayashi-Maskawa matrix).
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1.2.3 Kobayashi-Maskawa Matrix

The freedom to redefine fields was exploited in the last section to diagonalize the
matrix of fermion-Higgs couplings (mass matrix). There is no reason for the fields in
the weak quark duplets to be the same.5 If redefining the fields such that the mass
matrix is diagonal (this can be done redefining down-type quark fields only), the
charged-current part coupling to quarks can be written as

Lcc = i
g2

2
√

2

(

W+
µ Vmnūmγµ(1 + γ5)d

′
n + W−

µ (V†)mnd̄′
mγµ(1 + γ5)un

)

(1.8)

where m and n are generation indices and Vmn is the Kobayashi-Maskawa matrix
(also called Cabbibo-Kobayashi-Maskawa matrix). This matrix is a unitary 3 × 3 matrix.
Not all its parameters are physically significant because all but one of the complex
phases can be absorbed in a redefinition of the quark field phases. This leaves four
parameters: three angles and one complex phase.

Via processes where dominant matrix elements contain couplings between a W-
boson and a quark, the matrix elements Vmn can be measured. Also, it is the complex
phase of this matrix which is responsible for the CP violation in the weak sector.6

The precise measurement of those matrix elements is another major experimental
challenge for the standard model (for example, non-unitarity of V would be an
indication of a fourth quark generation).

1.3 Full Events at Hadron Colliders

In the setting of a hadron collider, some more specific remarks are in order.
As the LHC is a proton-proton collider, one has to deal with the fact that neither

the initial state particles, nor all final state particles are really elementary particles in
the sense of the theory. Rather, as initial state particles, all quarks and gluons (called
partons in this context) can appear as initial state particles of a matrix element.

To describe proton contents, one introduces parton density functions (pdf) for each
parton type in the proton. A pdf for a particular parton is a function of a scale q2

and the momentum fraction x: a(q2, x). x is the momentum fraction of the proton
the parton carries, measured in the lab frame. At a fixed scale q2, the pdf a(q2, x)

can be interpreted as the probability density in x that a probe of virtuality q2 finds a
parton of momentum fraction x.

5For the leptons, this can be achieved by redefining neutrino fields only. This is possible for vanishing
neutrino masses. If including neutrino masses, a corresponding mixing matrix for the lepton sector
is needed.

6Since CP was discovered not to be an exact symmetry of nature, the smallness of the CP-violating
parameter in the strong sector, Θ3, is a puzzle.
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The parton density functions are closely connected to the structure functions which
naturally arise in the most general formulation of hadronic cross sections. While in
principle, it should be possible to derive the pdfs ab initio from the standard model
Lagrangian, there was so far no success in doing so because this includes intrinsically
non-perturbative kinematic regions.

However, one can use perturbation theory to derive equations which connect
the pdfs at two different scales: the DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi [15]) equations. Therefore, it is sufficient to measure the pdf at only one scale,
using subsequently the DGLAP equations for all other scales.

Introducing pdfs as separate concept of the matrix element of the hard process is
called factorization ansatz.

In the factorization approximation, the cross section of a reaction pp → X can be
written as

σpp→X =

∫

dxadxbfa(xa, µ2
F)fb(xb, µ2

F)
(

σ̂0(µ
2
F) + αs(µ

2
R)σ̂1(µ

2
F) + . . .

)

ab→X
. (1.9)

Here, f are the pdfs for a and b, respectively. µF is the factorization scale and µR is the
renormalization scale for the running coupling constant αS. σ̂0, σ̂1,. . . are the leading
order, next-to-leading order cross sections. Formally, the cross section is invariant
under change of µR and µF, if one includes all perturbative orders. For calculations,
concrete values for µR and µF have to be chosen. They should be of the same order
as the momentum transfer in the hard process, for resonances for example, one often
chooses the mass of the resonance for both µR and µF. Deviations due to different
values of µR and µF express the uncertainty from perturbation theory and have to be
included as systematic uncertainties if using those values.

As depicted in figure 1.1, the description of full events invloves several steps:
1. Describing the parton density function at the factorization scale µF. As described

above, this is done by numerically solving the DGLAP equations. The algorithm
applied is basically the same as for parton shower evolution (see 3.) and
consists of iteratively splitting the partons according to the perturbative splitting
functions describing the processes G → GG, G → qq̄ and q → qG. This gives
rise to additional final state partons, the “initial state radiation”.

2. The hard interaction involving two initial state particles from step 1 yielding a
small number of final state particles.

3. Shower evolution of the final state partons from step 2, yielding more and more
partons with decreasing virtuality. This step is treated perturbatively by numer-
ical Monte-Carlo integration the DGLAP equations.

4. Hadronization: As the shower evolution is based on perturbative QCD which
breaks down at scales of order ΛQCD ≈ 200MeV, it cannot used to describe
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Figure 1.1: Illustration of the steps describing events at hadron colliders [16].

how confinement mechanisms turn partons into hadrons. There are several
phenomenological models to describe this process, like the Lund string model
used in the Pythia event generator [17] or a cluster fragmentation model in
Herwig++ [18]. The parameters of those models are tuned to data.

5. Most hadrons of the previous step are unstable and decay via the strong or
electromagnetic interaction. Known decay modes and branching ratios and
decay models where the hadrons decay according to the available phase space
are used. This yields “stable” particles which reach the detector. This includes
hadrons like pions, kaons, protons and neutrons and leptons from the hard
interaction or decays such as muons, electrons and neutrinos.

6. Interaction of the proton remnants which is called the underlying event. This is
also described by phenomenological models tuned to available data. It usually
adds additional soft hadrons to the final state.

7. For a given proton-proton bunch crossing, more than one inelastic scattering can
occur. This is called multiple interaction. As the 2 → 2-processes with soft final
state particles have by far the largest cross section, those additional interactions
are referred to as “minimum bias collisions” and typically only add soft hadrons
to the final state.
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Figure 1.2: The leading order Feynman graphs for tt̄ production at a hadron
collider. Top quark pairs are produced via qq̄ initial state (left) or GG initial state
(center and right).

1.4 tt̄ Production and Decay in the Standard Model

Top quarks can be produced either as pair of top and anti-top (tt̄) via the strong
interaction or as single top quarks via the electroweak interaction. The tt̄ cross
section is about 2.5 times larger than the single top cross section. More importantly,
tt̄ events can be selected with much higher purity and efficiency than single top
events.7 Therefore, previous studies of top quark properties mostly focus on the tt̄

channel which is discussed in this section.
Top-quark pair production at a hadron collider can be divided according to its

initial state into the “production channels” GG and qq̄ (see figure 1.2). The next-
to-leading order cross section for top-quark pair production for mt = 171 GeV at√

s = 10 TeV using the CTEQ6.5 PDF set is [19]

σtt̄ =
(

414+36
−38(scales)+20

−18(pdf)
)

pb.

The central value is determined with renormalization and factorization scales at
µR = µF = mt. The scale uncertainty is the largest deviation from the central value if
varying µR and µF independently with the constraints

1
2
mt 6 µF 6 2mt

1
2
mt 6 µR 6 2mt

1
2
µR 6 µF 6 2µR.

The PDF uncertainties are evaluated with the scales set to their central values
varying the PDF according to the errors provided by the collaboration which provides
the PDF. They roughly represent a 90 % confidence level.

The tt̄ cross section as a function of the invariant mass of the top pair system,
mtt̄, is shown in figure 1.3. To illustrate how additional resonances can alter this
spectrum, the spectrum is given for different graviton models. The standard model

7In fact, a good selection of single top events is so difficult that the 5σ discovery of the single top
process has succeeded only very recently [6].
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Figure 1.3: Spectrum of the invariant mass of the tt̄ system for pp → tt̄ including
s-channel gravitons in the RS model. The mass of the first Kaluza-Klein mode is
set to m1 = 600 GeV, the lines represent different values for κ/M̄pl [20].

tt̄ production cross section has its largest cross section just above the production
threshold at 2mt and is steeply falling.

At the LHC, the GG production channel accounts for approximately 84 % of the
overall tt̄ cross section at 10 TeV center-of-mass energy [12]. This ratio decreases for
high mtt̄, as the parton density function for gluons is falling for larger x faster than
the pdf for quarks.

Top-quark decay is only possible via flavor change and therefore always includes
radiating a W boson while the top quark line changes flavor into a down-type quark
(see figure 1.4). Because of the large KM matrix element Vtb, this will be a b quark
in nearly 100 % of the cases.

The W boson in turn can decay in either a quark-antiquark pair (hadronic decay) or
in a charged lepton and neutrino (leptonic decay).

Unlike other heavy flavor decays, the W boson in this decay is on-shell because
of the large top mass. For the same reason, there is a large phase space which
implies a short lifetime for the top quark of τt ≈ 5 · 10−25 s [21]. The time scale for
hadronization is given by 1/ΛQCD ≈ 7 · 10−24 s (for ΛQCD = 100 MeV).8 Therefore, the
top quark decays without hadronization allowing measurements of decay properties
not possible with other quarks, such as the W-boson helicity [22].

8Calculating hadronization scale by using the time interval of light propagation through a meson
with experimental meson radii of ≈ 1fm yields the same conclusions.
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Figure 1.4: Top quark decay to a b quark and a W boson. The W boson decays
either to qq̄′ or a charged lepton and the corresponding neutrino (lνl).

Top-quark-pair decays can be divided into three classes according to the W-boson
decays: [21]

• fully hadronic decay where both W bosons decay to qq̄′ (46.2 %),
• semi-leptonic decay where one W boson decays to qq̄′ and the other to a charged

lepton and a neutrino (43.5 %),
• fully leptonic decay where both W bosons decay to a charged lepton and a

neutrino (10.3 %).
The lepton channels are further divided by the lepton flavor into the e, µ and τ

channels. As the detector signatures of e and µ are much clearer than for τ (which
decays before reaching the detector and often decays hadronically), most results for
the “lepton” channels do not use τ.

In the studies presented here, only the semi-leptonic decay to a µ is considered.
This channel has a branching ratio of 14.5 % and is called “muon+jets”.

1.5 Beyond Standard Model Contributions to tt̄ Production

The top quark is unique in its large mass and (equivalently) large coupling to
the Higgs particle. Indirect limits can be put on the Higgs mass with precision
measurements of mW and mt [23]. Furthermore, Higgs production with gluon-gluon
fusion via a top quark loop is the dominant production process at the LHC [24].

In the introduction of the Higgs mechanism in section 1.2.1, it was mentioned that
the Higgs can be seen as an example of theories for mass generation compatible
with local gauge invariance. So even if there is no Higgs mechanism in nature, the
large top mass implies a large coupling to the new sector. Not surprisingly, the top
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quark plays a special role in some alternative mechanisms of electroweak symmetry
breaking.

Model-Independent Search In the present studies, a model-independent search for
heavy resonances to tt̄ is performed, i. e. no specific model which would explain this
resonance is assumed. Rather, the tt̄ spectrum is searched for structure not explained
by the standard model. The origin of the resonance could be an additional broken
U(1) symmetry which couples mainly to top quarks, scalar (Higgs-like) bosons,
heavy gluons or resonances arising in models with extra dimensions such as Rundall-
Sundrum [25] and ADD models [26]. for an overview and specific references, see
[20]. If a new resonance decays only into quarks or gluons, the tt̄ channel is the most
sensitive as the huge irreducible dijet background limits the sensitivity in other final
states.

The general case of a new resonance decaying to tt̄ can be introduced by adding
an additional, minimal effective term for this resonance X to the standard model
Lagrangian. By specifying all its couplings to the fermions and gauge bosons, all
other properties like cross section and decay modes follow automatically.

This approach was implemented in the event generator MadGraph/MadEvent as
the package topBSM [20]. With this package, it is possible to specify the spin, whether
it couples to gluons and parity (vector and axial-vector coefficients of the coupling).
Most properties affect production cross section and angular distributions of the final
state tt̄ pair but have very little impact on the general search strategy developed
here.9

1.5.1 Topcolor Z′

Limits can be cited both as mass-dependent upper limit or as limit on the mass of
the resonance X. The latter is only possible if one has chosen a specific model which
predicts cross sections for the resonance.

As benchmark for searches for resonances with tt̄ final state, the topcolor Z′ [7]
has been chosen for Tevatron (in proton-antiproton collisions with

√
s = 1.96 TeV).

For easier comparison, when citing mass limits, we use cross sections predicted by
that model [27].

The topcolor Z′ arises in an alternative model of electroweak symmetry breaking.
In this model the gauge group for QCD (SUC(3)) is embedded into a larger group,
for example SU1(3) × SU2(3) with couplings h1 and h2 respectively and h2 ≫ h1.

9Of course, this will change if and when a resonance is discovered and all its properties are to be
determined.
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Figure 1.5: Leading order topcolor pp → Z′ → tt̄ cross sections for the LHC at√
s = 10 TeV [29]. The currently excluded mass range for Z′

t is mZ′ < 760 GeV at
95 % confidence level [28].

The first gauge group couples only to the first two, the second group only to the
third generation of quarks. As no extra gluon-like particles have been observed,
symmetry has to be broken to the one observed in the standard model, SUC(3). Both
the breaking of this new symmetry as well as electroweak symmetry breaking is
achieved by a tt̄ “condensate”.

To explain the mass differences and prevent formation of bb̄ condensate, an
additional mechanism is needed. One possibility is the introduction of the topcolor
Z′, Z′

t.
The cross section times branching ratio in tt̄ predicted for the LHC for different

masses of Z′
t can be seen in figure 1.5.

With the higher center-of-mass energy available at the LHC, the current 95 % C. L.
lower limit on mZ′

t
of mZ′

t
> 760 GeV [28] mass could be improved with an amount

of data equivalent to about the first year of running.



2 The CMS Detector at the LHC

This chapter gives a short introduction to the Large Hadron Collider (LHC) and the
Compact Muon Solenoid detector (CMS). For a more complete overview, see [30] for
LHC and [31], [32] and [33] for CMS.

Figure 2.1: Overall view of the LHC with the four major detectors [34].

2.1 The Large Hadron Collider

The Large Hadron Collider is the world’s largest particle collider located at CERN1

near Geneva at the Franco-Swiss border (see figure 2.1). It is designed to collide
protons at an unprecedented center-of-mass energy of 14 TeV or lead ions at a
center-of-mass energy of 5.5 TeV/nucleon.

The LHC consists of a ring-shaped tunnel of 27 km circumference about 100 m
below the surface where more than one thousand magnets are installed to bend the
proton beams around the ring. Four major experiments are installed on the ring:

1European Organization for Nuclear Research (french: Conseil Européen pour la Recherche Nu-
cléaire)
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the general-purpose detectors ATLAS and CMS, and the special-purpose detectors
ALICE2 and LHCb3.

One major question addressed with the two general-purpose detectors ATLAS
and CMS is the existence of the Higgs particle or, more generally, the nature of the
electroweak symmetry breaking. Another major question is the existence of new
particles with masses at the TeV scale. LHC might be the first collider to produce
such particles. A popular theory which can be either discovered or excluded (for
many parameter sets, at least) is supersymmetry (SUSY) which postulates a (broken)
symmetry between bosons and fermions. It predicts many new particles with masses
at the TeV scale. There are also many other searches for physics beyond the standard
model possible which will cover a much larger parameter space than before. For
example, searches for a fourth quark generation (called b′ and t′) or for W and Z like
particles with a much higher mass (W′ and Z′).

Apart from the center-of-mass energy, the luminosity L is the most important
quantity to measure the performance of a collider. For a given process with cross
section σ, the number of events per second is given by

N = Lσ.

L is given by4

L =
fnN2

A

where f is the beam revolution frequency, n is the number of bunches per beam, N

is the number of particles per bunch and A is the geometrical cross section of the
beams at the interaction point. The design luminosity for the LHC is 1034 cm−2s−1.
The event rates for different processes can be seen in figure 2.2.

The use of protons for both particle beams allows a higher luminosity than for a
proton-antiproton design as used by Tevatron because it is very difficult to produce
anti-protons in sufficient quantities. The two counter-rotating proton beams require
opposite magnetic fields. As the LHC tunnel5 is too small for two separate rings
of magnets, the LHC uses twin magnets consisting of two sets of coils but sharing
the mechanical structure and cooling system. For an energy of 7 TeV per beam, a

2A Large Ion Collider Experiment, mainly addressing the physics of very dense, strongly interacting
matter [35].

3It is dedicated to precision measurements of CP violation and and rare b-meson decays [36].
4Note that this formula is a simplification: it does not take into account the finite crossing angle of

the beams and assumes that the area of the beams is well-defined.
5The tunnel was originally built for LEP, the Large Electron-Positron Collider which collided electrons

and positrons at a center-of-mass energy between 90 GeV at startup in 1989 and 209 GeV just before
shutdown in 2000. A review of its main results can be found in [38].
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Figure 2.2: Next-to-leading order cross sections for different processes for proton-
antiproton (for

√
s < 4 TeV) or proton-proton collisions (for

√
s > 4 TeV) [37]. The

LHC design luminosity is 1034 cm−2s−1, so it is a factor ten higher than what
is given in the figure. From the plot one can see that for example the Higgs
boson cross section is several orders of magnitude below the total cross section.
Important background processes for tt̄-production like W-boson and Z-boson
production have comparably large cross sections. So from this plot alone one can
conclude that developing criteria for selecting the interesting events is extremely
important.
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Figure 2.3: Schematic overview of the LHC and adjoint accelerators [39]. The
accelerator chain to fill the LHC is Linac 2 – Booster – PS – SPS.

magnetic dipole field of 8.33 T is required. In total, 1 232 dipole magnets are installed.
The ability to produce and reliably operate such a strong magnetic field is the current
limitation for the beam energy. Protons are arranged into 2 808 bunches per beam;
each bunch consists of about 1.1 · 1011 protons.

In the LHC, the protons are accelerated by radio frequency cavities which increase
the proton energy by 0.5 MeV/turn. Thus, it takes about 20 minutes to ramp up the beam
from its injection energy of 450 GeV to the design energy of 7 TeV. The acceleration
up to the injection energy is provided by the chain of accelerators (see figure 2.3)
Linac 2 – Proton Synchrotron Booster (PBS) – Proton Synchrotron (PS) – Super Proton
Synchrotron (SPS). For a full fill of LHC, multiple cycles of those accelerators are
needed, yielding a theoretical minimal filling time of around 70 minutes. Experience
from other accelerators has shown that actual filling times are about factor 6 higher
than this minimum, so an according estimate for the LHC would be 7 hours.
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Current Status After promising first beam at September 10th 2008, a major incident
just 9 days later delayed first collisions by presumably one year.6

A superconducting electrical connection between two magnets developed a re-
sistance leading to an electrical arc. This heated the liquid helium, building up
more pressure than the installed release valves could handle. The subsequent burst
severely damaged several magnets. The affected sectors have to be warmed up, and
53 magnets had to be replaced. At the same time, devices for sensitive electrical
measurements are installed in order to detect similar resistances early so that coun-
termeasures can be taken quickly. Also, new helium release valves are installed to
prevent the damage in a similar incident.

In superconducting magnets, a cable can undergo a transition from superconduct-
ing to the resistive state. If the heat released from the cable cannot be absorbed
quickly enough, the whole magnet is affected and becomes resistive. This is known
as quench. By repeated (intentional) quenching, a magnet can be trained. During those
quenches, the cables rearrange into a more stable position such that after training,
higher magnetic fields can be reached [41].

Training the magnets in the LHC has shown that it takes a long time before reaching
a stable operation for the magnetic field strength required at the high design beam
energy of 7 TeV. Therefore, for the first run, a beam energy of 5 TeV is used instead.
This first run is planned to last about one year and will yield an integrated luminosity
of about 200 pb−1. Therefore, the present studies use throughout a scenario with√

s = 10 TeV and L = 200 pb−1.

2.2 The CMS detector

The Compact Muon Solenoid detector is shown in figure 2.4. It is 22 m long, has a
diameter of 15 m and weights about 12 500 t. It is “compact” when compared to the
other general-purpose detector at LHC (ATLAS) which has about twice the volume
and half the weight of CMS [42].

As general-purpose detector, a high angular coverage is important in order to
identify and measure a large phase space of final state particles escaping the beam
pipe. Such detectors are known as “4π detectors”. In order to achieve that, CMS
consists of a cylindrical barrel whose symmetry axis is the beam pipe, and two
endcaps.

The superconducting solenoid installed between the hadron calorimeter and muon
system (see figure 2.4) produces a very homogeneous magnetic field of 3.8 T in the

6At time of writing, the most recent schedule available is the one from the Chamonix workshop. It
foresees first beam at the end of September 2009 and first collisions about four weeks later.[40]
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Electromagnetic Calorimeter (2.2.2)
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Figure 2.4: The CMS detector at the LHC [33]. It is divided into the central barrel
and two endcaps. It is 22 m long and has a diameter of 15 m. The subdetectors
are explained in the respective sections given in the legend.

whole tracker volume. This allows a momentum measurement of charged particles
by measuring the bending radius of its trajectory.

The main detector requirements were defined as follows:
• good muon identification over a large range of momenta and angles;
• good reconstruction efficiency and momentum resolution for charged particles

in the inner tracker;
• good electromagnetic energy resolution, good diphoton and dielectron mass

resolution with high angular coverage and efficient photon and lepton isolation
at high luminosities;

• good missing-transverse-energy and dijet-mass resolution.
These requirements are implemented by different specialized subdetectors which

are arranged concentrically around the beam line. Before going into the details of
the individual subdetectors, the interactions of various high-energy particles passing
through matter are reviewed. Figure 2.5 shows a cut through the CMS detector and
some particles passing the sub-detectors:

• Electrons leave a track in the inner tracker and interact mainly by radiating
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Figure 2.5: Slice of CMS showing the sub-detectors and interacting particles [33]:
Muons are the only type of detectable particle reaching the muon system installed
as outmost system; electrons and photons shower mainly in the electromagnetic
calorimeter and hadrons in the hadron calorimeter. Charged particles leave a
track in the inner silicon tracker.

high-energy photons (bremsstrahlung) which in turn mainly produce electron-
positron pairs. This leads to a cascade of secondary particles of decreasing
energy (“electromagnetic shower”).

• Photons do not have a track. In the calorimeter, they behave similar to electrons.
• Muons leave a track in the inner tracker. Energy loss due to bremsstrahlung

is much lower as for electrons, so they loose only very little energy in the
calorimeters. While all other types of particles are absorbed in the calorimeters,
muons reach the outer parts of the detector which are therefore used to identify
muons.

• Charged hadrons (mainly pions, kaons and protons; usually in jets) leave a
track in the tracker and produce through strong interaction with nuclei in the
material a shower in the electromagnetic and hadron calorimeters. Hadron
showers are typically much longer than electromagnetic showers originating
from electrons and photons. Therefore, most of the energy is deposited in the
hadron calorimeter.

• Neutral hadrons (mainly neutrons, kaons; usually in jets) leave no track in the
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tracker. Like charged hadrons, they produce a hadron shower mainly in the
hadron calorimeter.

• Neutrinos do not interact with any detector component. They can be identified
indirectly by using momentum conservation in the transverse (x-y) plane: the
sum of momenta of all final state particles must be zero. Any deviation is
interpreted as the sum of the transverse momenta of neutrinos (or other non-
interacting particles).

With pattern recognition algorithms, it is possible to analyze the low-level detector
response yielding high-level physics objects such as electrons, muons and jets (see
chapter 3).

Reconstructing τ-leptons and b mesons (in b-jets) is more difficult because they
decay before reaching the detector. Analyzing patterns produced by their decay
products, identification is still possible but performance is not as good as for electrons,
muons or jets. As those objects are not used in this analysis, their reconstruction is
not discussed.

The high event rate at the LHC is another major factor in the design of CMS. The
total inelastic cross section is expected to be about 100 mb. The collision frequency
of the proton bunches is 40 MHz. At the LHC design luminosity, there will be on
average around 1000 particles per proton-proton interaction and about 20 interactions
per bunch crossing. Processing the event data for each bunch crossing would require
handling an enormous amount of data of about 20 TB per second7. This is neither
technically possible nor is it required from a physics point of view. Therefore,
interesting events are filtered on-line with a trigger.

The coordinate system of CMS is defined as follows: the origin is at the nominal
collision point, the x-axis points to the center of the LHC ring, the y-axis points
vertically upwards. Thus, the z-axis points along the beam direction such that the
(x, y, z)-axes are a right-handed coordinate system. The polar angle Θ is measured
from the z-axis, the pseudorapidity is defined as η = − ln tan Θ

2 .

2.2.1 CMS Tracker

Coming from the interaction point, the first layer a particle passes is the tracker [43].
Its task is to measure the tracks of the charged particles. From the curvature of the
track and the magnetic field of 3.8 T produced by the solenoid, one can derive the
sign of the charge and the momentum of the particle. The hits in the tracker can also

7The actual value of this figure depends on the assumptions. The 20 TB/s is calculated given the
bunch crossing rate of 40 MHz and the size of a (already zero-suppressed) RAW event data record
of 0.5 MB.



2.2 The CMS detector 29

TEC+TEC-

TOB

TOB

TIB

TIB

TID

TIDTID

TID

PIXEL

-2600 -2200 -1800 -1400 -1000 -600 -200 200 600 1000 1400 1800 2200 2600
-1200

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

1200

z (mm)

r (mm)

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5

1.7

1.9

2.1

2.3

2.5-2.5

-2.3

-2.1

-1.9

-1.7

-1.5 -1.3 -1.1 -0.9 -0.7 -0.5 -0.3 -0.1 0.1

η

Figure 2.6: Schematic cross section through the CMS tracker [31]. Each line
represents a detector module, double lines indicate back-to-back modules which
deliver stereo hits.

be used to reconstruct primary and secondary vertices of an event (see section 3.1
and section 3.2).

The high particle flux will cause high radiation damage. The tracker has to be
designed such that it is operational nonetheless for about 10 years. The high collision
rate demands for a high timing resolution and fast response. This requires a high
power density of about 60 kW for the whole tracker volume and adequate cooling to
the working temperature of the detectors of −10◦C. However, this is in conflict with
the aim of keeping the material in the tracker to a minimum in order to avoid any
particle interaction beyond the electronic excitation in the silicon detectors.

Tracker elements are installed in a large tracker support tube and aligned to
±0.5 mm. Using event tracks for alignment, the true position of the tracker elements
can be determined to high precision allowing measurements of the impact parameter
with a precision of up to 10 µm for high-pT particles. Resolution is limited by multiple
scattering for low pT and by pixel-size and alignment for high pT .

A schematic drawing of the tracker is shown in figure 2.6. It consists of 1 440 pixel
and over 15 000 strip detector modules with an active area of about 200 m2. It covers
the pseudorapidity range |η| < 2.5.

Pixel Tracker In order to keep the occupancy8 at the few percent level, pixel
detectors have to be used at the innermost layers. There are three cylindrical pixel

8The occupancy is the fraction of responding channels for an event.
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layers (BPix) at radii of 4.4, 7.3 and 10.2 cm and two endcaps at |z| = 34.5 cm and
|z| = 46.5 cm (FPix). The pixel size is 100 × 150 µm2, the total number of pixels being
about 66 million with an area of about 1 m2. The pixels cover the full pseudorapidity
range of the tracker.

For each charged particle, the pixel detector delivers three high precision space
points.

One read-out chip controls a group of 52 × 80 pixels. Read-out is carried out only
if a Level-1 trigger has fired. This implements the mentioned requirement for data
reduction at a very early stage.

Silicon Strip Tracker The region between r = 20 cm and r = 116 cm is instrumented
by silicon strips. The silicon strip tracker consists of an inner and an outer part.

The Tracker Inner Barrel (TIB) consists of four layers, complemented by three disk
layers at each end (Tracker Inner Disks — TID). The strips in the barrel are aligned
along the beam axis and radial in the disks. TIB/TID delivers up to four r − φ

measurements per track. With a strip pitch of about 100 µm (different for inner and
outer layers), it reaches a single point resolution of about 30 µm.

The TIB is surrounded by the Tracker Outer Barrel (TOB) which consists of 6 layers
and extends to r = 116 cm. It provides additional six r − φ measurements with point
resolutions of about 50 µm (a higher precision of 35 µm is achieved by smaller strip
pitches in the two outer layers).

Beyond the z range of the TOB (|z| 6 118 cm), the Tracker EndCaps (TEC+ and
TEC−, where the sign denotes the location along the z axis) cover the region 124 cm 6

|z| 6 282 cm. Each TEC consists of nine disks providing up to nine φ measurements
per trajectory.

As can be seen in figure 2.6, there are stereo modules in each part of the strip
tracker. Those stereo modules carry a second module which is mounted back-to-back
with a stereo angle of 100 mrad. This provides measurement of the second coordinate
(z in the barrel and r in the disks). The measurement of this additional coordinate
has a lower resolution raging from 230 µm for the TIB to 530 µm for the TOB.

2.2.2 Electromagnetic Calorimeter

The electromagnetic calorimeter (ECAL) [44] is a homogeneous calorimeter made
of almost 70 000 lead tungstate (PbWO4) crystals. Lead tungstate is a high density
material (8.3 g/cm3) transparent for visible light. It has a short scintillation decay time:
80% of the light is emitted in the 25 ns LHC bunch crossing interval. The high density
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Figure 2.7: Schematic cross section through the CMS electromagnetic calorimeter
(ECAL).[31]

is correlated to a short radiation length9 of 0.89 cm and a small Molière radius10 of
2.2 cm. The blue-green scintillation light (4.5 photoelectrons per MeV) are collected
by photodetectors attached to each of the crystals.

The ECAL layout can be seen in figure 2.7. In the barrel region (|η| < 1.479), there
are 360 crystals along φ and (2 × 85) crystals along η. The crystal cross section
corresponds to about 0.0174 × 0.0174 in η × φ or 22 × 22 mm2 at the inner face of
the crystal and 26 × 26 mm2 at the outer crystal face. Crystal length is 230 mm,
corresponding to about 26 radiation lengths. The inner faces of the crystals are at
r = 129 cm. The crystals are separated by a structure of thin walls made of aluminum
facing the crystals and two layers of glass fiber-oxy resin.

The endcaps (EE) cover the pseudorapidity range 1.479 < |η| < 3.0. They start at
around |z| = 315 cm. Crystals are grouped into mechanical units of 5 × 5 crystals
(supercrystals). The crystals and supercrystals are arranged in a rectangular x − y

9The radiation length is both (a) the length a high-energy electron looses all but 1/e by
bremsstrahlung and (b) 7

9 of the mean free path for e+e− pair production for high-energy photons.
Therefore, it is the appropriate scale to describe high-energy electromagnetic cascades [21].

10RM being the Molière radius, a cylinder with radius RM contains 90% of the shower energy; about
99% of the energy is contained in a cylinder with radius 3.5RM [21]. Thus, the Molière radius is
the transverse scale of electromagnetic showers.
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grid. The inner faces have a cross section of 28.6 × 28.6 mm2, the cross section of the
outer faces is 30 × 30 mm2. Each endcap is divided into two halves, or Dees.

Preshower Detector The preshower detector is a detector to identify neutral pions
in the endcaps within 1.653 < |η| < 2.6. It also supports the correct identification of
electrons and improves position resolution for photons and electrons. The preshower
is a sampling calorimeter with two alternating types of layers: lead layers initiate
showers from incoming high-energy electrons and photons while layers of silicon
strips measure the deposited energy. The preshower is 20 cm thick consisting of a
lead layer which is 2 radiation lengths thick (2X0) followed by the first sensor layer,
and another lead layer of thickness 1X0 before reaching the second sensor plane.
Thus, about 90% of incident photons produce a e+e− pair before reaching the second
sensor layer.

The energy resolution of the ECAL is given by different contributions: a stochastic
term S which scales like

√
E, a noise term N with a scaling of E and a constant term

C. The total resolution σ for an energy deposit E is thus given by

(σ

E

)2
=

(

S√
E

)2

+

(

N

E

)2

+ C2.

In test beam experiments conducted in 2004 with electrons, the resolution effects were
found as expected and the parameters for the formula above explicitly measured (for
an energy measurement with 3 × 3 crystals):

(σ

E

)2
=

(

0.028√
E

)2

+

(

0.12
E

)2

+ (0.003)2

where E is the unitless numerical value of the energy if measured in GeV. For example,
an electron with E = 120 GeV can be measured with a relative energy resolution
better than 0.45%.

2.2.3 Hadron Calorimeter

The CMS hadron calorimeter (HCAL) [45] is used to measure the energy of hadron
jets. It is also important for measuring the missing transverse energy, 6ET (which is
calculated using information from the ECAL and HCAL). As can be seen in figure 2.8,
it consists of the hadron barrel (HB), endcap (HE), outer (HO) and forward (HF)
calorimeters. All parts of the HCAL except the HO are restricted by the outer extent
of the ECAL (r = 1.77 m) and the inner extent of the magnetic coil (r = 2.95 m).
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Figure 2.8: Scheme of the CMS hadron calorimeter (HCAL) consisting of the
barrel (HB), endcap (HE), outer (HO) and forward (HF) calorimeters. The
outer (red-magenta) parts belong to the muon system. The lines indicate the
pseudorapidity η [31].

The hadron calorimeter barrel (HB) covers the pseudorapidity range |η| < 1.3.
The barrel is divided at z = 0 into two half-barrels. Each half-barrel consists of 18
identical azimuthal wedges, each of them segmented into four sectors yielding a
segmentation along φ of ∆φ = 0.087. Along η, the scintillator is divided in 16 sectors
resulting in the same segmentation as φ of ∆η = 0.087. The wedges are composed of
alternating layers of absorber and scintillator. The absorber layers are about 50 mm
thick and made of a composition of 70% Cu and 30% Zn (brass) with a density of
8.53 g/cm3. The radiation length X0 is about 1.5 cm and the nuclear interaction length
λI = 16.4 cm. The total absorber thickness at η = 0 is 5.8 · λI increasing to 10.6 · λI at
|η| = 1.3; the ECAL adds about 1.1 · λI of material.

The hadron calorimeter endcaps (HE) cover the pseudorapidity range 1.3 < |η| < 3.
They were designed to minimize the dead region between HB and HE. In the HE
region, the total absorber thickness is about 10 · λI, including the ECAL.

The forward calorimeter (HF) covers the region 2.9 < |η| < 5.2. It has mainly be
designed to withstand the large particle fluxes in this region. The signal is generated
by Cherenkov light, so it is mostly sensitive to the charged component of the hadron
showers. It has a coarser segmentation than the other parts of 0.175 × 0.175 in η − φ.
Information of the HF can be used to measure real-time luminosity.
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In the central pseudorapidity region, the combined stopping power of ECAL and
HCAL is not sufficient. Therefore, in the range |η| < 1.3, the outer calorimeter (HO) is
installed to catch tails of hadron showers, using the solenoid coil as absorber material.
It consists of five rings along the z axis at r = 4.07 m. At η = 0, HB has the minimal
absorber depth. Therefore, an additional absorber in the form of a 19.5 cm thick iron
ring is installed. In this way, the minimal absorber thickness is extended to 11.8 · λI,
except at the barrel-endcap boundary region.

2.2.4 Muon System

The muon system plays a central role in CMS. It is used for triggering, muon
identification and measurement. As can be seen in figure 2.9, it consists of three
detector types: drift tubes cover the central region, cathode strip chambers cover the
outer regions. To control uncertainties, an independent and fast-responding system
of resistive plate chambers is installed.
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Figure 2.9: Scheme of the CMS muon system.[32] It consists of three types of
detectors: drift tubes (DT), resistive plate chambers (RPC), and cathode strip
chambers (CSC).

The barrel muon detector consists of four layers of drift tube chambers (DT)
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arranged cylindrically around the beam line. Muons with |η| < 0.8 cross all four
layers, muons with |η| < 1.2 at least one. The space between the drift tube chambers
is occupied by the yoke-iron which gives rise to a 2 T magnetic field (see figure 2.5).
Each chamber is made of three superlayers and each superlayer consists of four
layers of drift tubes. The wires in the outer superlayers are parallel to the beam
line and provide an r − φ measurement for each track. In the inner superlayer,
wires are perpendicular to the beam line and thus provide a measurement of z (this
third superlayer is not present at the outermost chambers which only consist of two
superlayers). The resolution of a single wire is about 300 µm in r − φ. Combination
of the eight φ measurements leads to a precision of about 100 µm, a figure less than
or comparable to the effects of multiple scattering up to pT ≈ 200 GeV.

The endcap muon system consists of four layers of cathode strip chambers (CSC).
Muons with 1.2 < |η| < 2.4 cross three or four CSC layers. In the barrel-endcap
overlap range of 0.9 < |η| < 1.2 muons are detected by both DTs and CSCs. The CSCs
are multiwire proportional chambers where 6 anode wire planes are interleaved with
7 cathode panels. The panels are segmented into strips along φ while wires run
approximately perpendicular to the strips. The radial position of the wires provide a
measurement for r while the induced charges on the strips provide a measurement
for φ.

The resistive plate chambers (RPCs) have a time resolution much better than the
LHC bunch crossing time of 25 ns but a worse space resolution compared to DTs and
CSCs. The signal from RPCs can be used to unambiguously identify the relevant
bunch crossing to which a track is to be associated and provide some position
information in the overlap region where there are fewer measurements from the
other systems. The CSCs cover a pseudorapidity region of |η| < 1.6.

If measuring the muon momentum with the muon system only, the relative
resolution is about 9% for the central η region and pT < 200 GeV. It is limited by
multiple scattering. At pT = 1 TeV, the momentum resolution varies between 15%
and 40%, depending on |η|. Combining information from the muon system with
information from the inner tracker improves the momentum resolution substantially
and yields resolutions of around 1% or better for central muons with pT < 100 GeV
and resolutions between 5% and 10% for pT = 1 TeV, depending on |η|.

2.2.5 Trigger

The task of the trigger system is to reduce the event rate to a manageable level.
Because of the high bunch crossing frequency of 40 MHz, event filtering has to
be done at a very early stage in order to reduce the data rate from the detector.
Therefore, the first trigger level (Level-1 or L1 Trigger) is implemented in hardware.
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Figure 2.10: Architecture of the L1 Trigger of CMS [31].

However, it has only very limited capabilities of combining information of different
detector elements. Therefore, a second trigger step, the High-Level Trigger (HLT) is
introduced which is implemented in software and run on usual computer hardware
and uses similar or same algorithms as are used for full event reconstruction.

The L1 Trigger architecture is shown in figure 2.10. At the bottom, the Local
Triggers based on energy deposits in calorimeter trigger towers and hit patterns in
muon chambers are produced. These trigger primitives are propagated to the regional
triggers which combine the information of several trigger primitives to calorimeter
and muon objects. They are passed to the global muon and calorimeter triggers
which rank the muon and calorimeter objects and pass the highest-rated objects to
the Global Trigger, the top entity of the L1 Trigger hierarchy. It decides whether to
read out and pass the event to the High-Level Trigger (HLT) or to reject the event.

The L1 Trigger output rate will be about 50 kHz, while HLT output rate will be
about 150 Hz.

2.2.6 Computing and Software

More Information about computing in CMS can be found in [46].
The computing centers used to reconstruct and analyze the data are distributed

around the world. They are organized in three layers (Tier-0, Tier-1 and Tier-2) which
provide different resources and services.

To better understand the roles of the different Tier layers, one has to know the
different data format in which an event is represented:

1. The RAW data format saves the “raw” detector information (e.g. individual
pixel hits).
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2. The RECO format contains all reconstructed objects (see chapter 3). It is too
large for frequent transfers and contains much more information than most
analyses will need.

3. AOD (“Analysis Object Data”) contains a subset of RECO sufficient for most
analyses.

More recently, there are plans that all high-level analyses should be based on yet
another format provided by Physics Analysis Toolkit (PAT) which uses data from AOD
as input. It does some data processing common to most analyses and conversion in
the own format.

Those data formats and the reconstruction algorithms are implemented in the CMS
software framework (CMSSW). It has a very modular approach and is based on the
event data model (EDM) which treats every event independently.

The Tier-0 center is located at only one site, CERN. It accepts RAW data from
the detector and does a first calibration and reconstruction. Based on immutable
trigger information, events are divided into primary datasets, archived at the Tier-0
and distributed to at least one Tier-1 center such that each event is saved at least
twice.

There are currently eight Tier-1 centers. They receive data from the Tier-0 and
provide archiving of the RAW data. They also provide extensive CPU power for
re-reconstruction, calibration, AOD extraction and other common processing steps.
The Tier-1 centers redistribute the events to the smaller Tier-2 centers.

The numerous Tier-2 centers provide CPU and storage resources for the individual
analyses, such as the one presented here. From the perspective of a user doing an
analysis, the part of the workflow which involves those computing resources can be
summarized as follows:11

1. Identify the datasets needed for the study. That comprises all signal and
background processes for Monte-Carlo, and the primary dataset/trigger for
data. Most Monte-Carlo datasets are produced centrally and reside on one
or more Tier-2 centers. Information about the available datasets and the Tier-
2 centers at which they reside can be found in the multiple sources. For
example, the Dataset Bookkeeping System (DBS) can be used. Detailed data on
parameters for Monte-Carlo generated data is often not available in DBS. In this
case, information is collected on a CMS TWIKI page (for example [47], [48]), or
on a website recommended by the Physics Analysis Group, such as [49].

2. Write a CMSSW module which runs on AOD (or PAT) format and already do a
first selection of events (“pre-selection”). This modules writes the pre-selected

11There are many different possibilities of how to organize an analysis. The one discussed here is the
one used for the present studies.
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events to an output file.
3. Send the program which runs the module to the grid (“grid job”). As events are

treated independently, parallelization is trivial: one only has to send multiple
grid jobs such that each job processes a subset of events and merge the results
afterwards. Splitting data processing in more than one job also increases robust-
ness: one failed job does not affect others. The splitting and job submission
is done with a user frontend such as CRAB, the official CMS program for this
task. Due to major issues with earlier versions of CARB, an alternative tool
has been developed in Karlsruhe, grid-control. Job debugging is difficult as job
submission is a black-box operation: the grid job is sent and the job output
can only be retrieved only after some hours, sometimes days. Managing data
samples and running grid jobs is the single most time consuming overhead for
a CMSSW physics analysis which is based on data from the grid.

4. Copy the output data to a local machine.
5. Analyze the data. Typically, the first step is to do some cross checks and

applying a tighter selection. The rest is very analysis specific.
Of course, those steps are iterated many times.
As CMSSW changes frequently, it has proven useful to use an own data format,

beginning as output of step 2. This way, the analysis code in step 5 can be used
unchanged even for major changes in CMSSW. Only the “data retrieval module” of
step 2 has to be adapted to the new software release. There are more advantages
such as a smaller event data format and therefore faster copying and processing.12

However, there are some disadvantages using this approach as well: If the same
data is to be shared among different users at the analysis level, they either have to
agree on one format or resort to one of the official formats RECO/AOD/PAT.

12If processing time is bound by IO operations and not by CPU power. This is the case for many
analysis steps.
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In the previous chapter, the CMS detector and its sub-detectors were discussed. On
the raw detector response of a muon for example, algorithms are applied to combine
individual hits in the muon chambers to track segments and further to tracks which
are then linked to information from the calorimeters and the inner tracker. This
yields an estimate for the momentum of the muon and parameters for the muon’s
track. Such reconstruction is done for other physics-objects like electrons, jets, and
missing transverse energy, 6ET .

In this chapter, track and vertex reconstruction is discussed, followed by reconstruc-
tion algorithms for muons, electrons, jets and 6ET . Finally, reconstruction techniques
specific for top quark physics are discussed, namely top jet reconstruction and tt̄

event reconstruction.

3.1 Tracks

Charged particles from the interaction region leave hits in the tracker. To reconstruct
the trajectories or tracks of those particles is the purpose of the reconstruction algo-
rithm presented here [32]. It is divided in 5 steps which will be discussed in more
detail below:

1. Hit reconstruction from strip and pixel information
2. Seed generation
3. Track building
4. Ambiguity resolution
5. Final track fit

Hit reconstruction The hit reconstruction for strips starts with gain-calibrated and
zero-suppressed strip data. It uses strips with a signal-to-noise ratio S/N with
S/N > 3 as seed and clusters adjacent strips if they fulfil S/N > 2. A cluster is only
kept, if its total S/N exceeds 5. For each cluster, its position, including the error, is
determined.

For pixel hit reconstruction, pixels with S/N > 5 are used and clustered with
adjacent pixels if they have S/N > 5. It is kept if the total S/N exceeds 10.1. Pixel
cluster position and error are determined.
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The reconstruction efficiency for hits can be determined using Monte-Carlo and is
above 99.5 %. The fraction of ghost hits (hits reconstructed that were not simulated)
is less than 0.01 %. Those values can also be checked with data-driven methods
and studies are already ongoing to use data from cosmic muons for tracker and
Monte-Carlo validation [50, 51].

Seed generation Seeds are used as starting point for the trajectory building. They
are first estimates for the five track parameters, including errors. Without further
constraints, three hits are needed for each estimate. Using the reconstructed vertices
as constraint on the track parameters, two hits are sufficient.

Track building Starting with the seeds, tracks are built iteratively by propagating
the track to the next layer, including effects of multiple scattering and energy loss
in the material. In the region predicted by the extrapolation, hits are searched and
the track parameters are re-estimated using the new hit information with a Kalman
filter [52]. If more than one hit can be found, a trajectory candidate is created for
each compatible hit. If no hit is found in the current layer, an “invalid hit” is inserted
in the track and the extrapolation continues to the next layer.

In order to avoid biases and exponential growth of track candidates, the tracks
are grown in parallel and the list of tracks is truncated after each layer using their
normalized χ2 and number of invalid hits.

The algorithm can be tuned to limit CPU time consumption. For example, in the
default configuration, no track candidates with invalid hits in two consecutive layers
are considered. Also, during HLT, pattern recognition can stop after five or six hits,
even if there are much more in order to save CPU time.

Ambiguity resolution In the algorithm described above, more than one candidate
can be found for only one seed or the same track can be reconstructed starting at
different seeds. Therefore, a track is removed if there is a “better” track which shares
at least 50% of the hits. A track is “better” if it has more hits; if the tracks have the
same number of hits, only the track with smaller χ2 is kept.

Final track fit The Kalman filter used in the track building step updates track
estimation using only the current estimation and the new hit; in this sense, it is
“local”. A global fit which is performed in this step gives a better estimate for the
track parameters.
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3.2 Vertices

Vertex reconstruction [32] is done in two steps: grouping tracks into vertex candidates,
vertex finding, and finding the best estimate for vertex parameters, given the tracks
associated to the vertex, vertex fitting. Which vertex finding algorithm is used,
depends on the physics use case and the requirements.

For HLT, a fast vertex finding algorithm is needed. Similarly to track seed find-
ing, pixel hits are clustered into groups of three, pixel triplets, and treated as track
candidates, tracklets. After estimation of the tracklets’ parameters, they are clustered
based on their z coordinate at the point of closest approach to the beam line (z0). The
clustered tracks are then used to perform the vertex fit. The vertex with the highest
sum p2

T of associated tracklets is tagged as the primary vertex.
For higher accuracy, fully reconstructed tracks can be used to find the primary

vertex. Tracks are preselected to have a transverse impact parameter compatible with
the beam line, and pT > 1.5 GeV. They are then clustered according to z0, rejecting
incompatible tracks. The clusters are fitted to get the vertex parameters.

Primary vertex resolution depends on the tracker alignment and physics process.
For a perfectly aligned tracker and tt̄ events, the resolution is 13 µm for the x

coordinate and 18 µm for the z coordinate.

3.3 Muons

For details of the muon reconstruction, please refer to [53].
As discussed in section 2.2 and figure 2.5, muons leave hits in the tracker, almost

no energy in the calorimeters and are the only particles typically passing the muon
system. There are several strategies to identify and reconstruct muons:

1. Using information from the muon system only yields so-called standalone muons.
2. Using tracker information for reconstruction and hits in the muon system only

for identification yields tracker muons.
3. Combining the information from both tracker and muon system to perform the

reconstruction and identification yields global muons.
Before reconstructing those objects, a so-called “local reconstruction” is performed

which produces a track segment for each DT and CSC chamber.

Standalone muon reconstruction The standalone reconstruction uses the informa-
tion of all three muon systems, DT, CSC and RPC (see section 2.2.4).

Tracks are built using different steps, similar to those used for track reconstruction
in the inner tracker:
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1. Seed generation
2. Track building
3. Track cleaning (or ambiguity resolution)
4. Final track fit
The track segments from local reconstruction are used as track seeds. For track

building, the current track state is propagated to the next layer and updated with
information from the new track segment. Muon propagation takes into account
muon energy loss, multiple scattering and the (non-uniform) magnetic field. If no
track segment is found, it is further extrapolated to the next layer. The lower quality
of track pairs sharing a large fraction of hits is removed in the track cleaning step.
As final step, the Kalman filter is applied backwards and the track is extrapolated to
the interaction region.

Global muon reconstruction The global muon reconstruction uses the standalone
muons and the tracks from the inner tracker as input.

For each standalone muon, a “region of interest” for tracks is defined in order
to reduce the set of track candidates. It is a rectangular region in η-φ-space. The
parameters of the region of interest are derived from the primary vertex and the
parameters from standalone muon reconstruction.

In order to match the standalone track to one inner track, the two tracks are
propagated to a common surface where the track parameters are compared. Which
surface to choose depends on the dominant errors, for both, the track parameters for
the tracks and the errors made by track propagation. It is chosen differently for low
and high pT muons. Possible choices are the outer surface of the tracker, the inner
surface of the muon system or somewhere in between.

After propagation to a common surface, track parameters of the two tracks are
compared. For the best matching tracker tracks, a global fit of the hits in the tracker
and the muon system is performed. If more than one tracker track was chosen, only
the fit with the best global χ2 is retained such that for each reconstructed standalone
muon, there is at most one reconstructed global muon.

Tracker muons The algorithms presented so far all start at the muon system and
therefore rely on reconstructed track segments in the muon chambers. To identify
muons with a low number of hits in the muon system (for example, low pT muons),
a complementary approach has been developed, starting with tracker tracks and
searching for compatible hits or individual track segments in the muon chambers.
In this case, no global track fit is performed but the momentum is taken from the
tracker track.



3.4 Electrons 43

The muon candidate is propagated to the muon chambers and the crossed cham-
bers are recorded. This list can be compared with the list of standalone muon track
segments and based on that, some criteria can be defined for muon identification.

There are some additional steps performed for all reconstructed muons which are
useful for better muon identification. For example, the muon track is propagated
through the ECAL and HCAL and the energy deposited in the ECAL crystals and
HCAL towers is recorded.

In many analyses, including this one, it is important to correctly identify prompt

muons, i. e. muons from the hard interaction, in contrast to muons from the decay
of b-mesons or kaons and pions. As those non-prompt muons are accompanied by
nearby hadronic activity, the energy deposited in a cone around the muon track is
usually much larger for this type of muons. This property is called isolation.

The isolation algorithm sums up all energy deposited in the ECAL and HCAL and
all tracks’ momenta within a cone of ∆R 6 0.3 in the η − φ plane around the muon
track. A small inner cone called “veto cone” is excluded to prevent using energy
deposited by the muon itself. The radius of this vecto cone is ∆R 6 0.07 for the ECAL
and ∆R 6 0.1 for the HCAL.

The V+jets group of CMS proposes a muon selection based on a study of muon
identification [54] for prompt muons as follows:[55]

1. Use global muons where the global track fit has χ2/ndof < 10.
2. The transverse impact parameter d0 with respect to the beamspot has to fulfil

|d0| < 0.2 mm.
3. The number of hits in the tracker has to be > 11.
4. The energy deposited in the veto cone has to be < 6 GeV in the HCAL and

< 4 GeV in the ECAL.
5. For the isolation energies determined as described above in the cone ∆R 6 0.3

(isohcal and isoecal, for the sum track momenta isotrack) compute the “combined
relative isolation” as

CombRelIso :=
isohcal + isoecal + isoecal

pT

. (3.1)

The cut on CombRelIso is analysis dependent, a typical cut is CombRelIso > 0.1.
For this analysis, a modified muon identification is used, as discussed in section 4.2.

3.4 Electrons

As electrons do not play a central role in the present studies, electron reconstruc-
tion [32, 56] is reviewed only briefly.
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Electron reconstruction uses information from the inner tracker and the ECAL.
Direct energy measurement of an electron with the ECAL is complicated by the fact
that an electron traversing the inner tracking system radiates bremsstrahlung. The
amount of tracker material varies from 0.4 to over 1.6 radiation lengths, depending
on |η| (see figure 3.1). About 35% of the electrons radiate more than 70% of their
initial energy in the inner tracker. The bremsstrahlung photons deposit their energy
in the ECAL. However, their direction in φ does not coincide with the electron φ

direction because the electron trajectory is bent by the magnetic field.
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Figure 3.1: Tracker material budget in units of the radiation length X0 [31].

Electron Candidate Generation To collect both, the main electron shower and the
bremsstrahlung photons spread in φ, dedicated clustering algorithms are applied to
hits in ECAL crystals, yielding so-called superclusters.

Using the reconstructed superclusters, a dedicated track finding algorithm, in-
volving a Gaussian sum filter (GSF) is used [57]. The Kalman filter usually used for
track reconstruction works well for Gaussian noise contribution to the track state.
The current track state is given by the track parameters and their errors which are
assumed to be Gaussian. As bremsstrahlung leads to highly non-Gaussian tails in
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the position prediction for the electron for the next layer, a better approach in this
case is to use sums of Gaussians as the error model for the track state.

The track finding algorithm also proceeds in the five steps outlined in section 3.1
but uses different algorithms for seed generation, track building and final track fit.
Seeds consisting of two pixel hits are generated by using the supercluster energy and
direction information which is propagated backwards to the innermost layers where
two matching pixel hits are searched. Track building and final backward fitting is
similar as for general tracks described in section 3.1 but with a different energy loss
model and using the GSF.

Electron Identification Once electron candidates have been found as described,
additional cuts are applied to reject pions or other fakes. At start-up, simple cut-
based identification criteria are used as they are relatively simple to understand and
check in data. Depending on the analysis, an identification with high purity and low
efficiency or with high efficiency and low purity might be preferred.

An identification widely used for start-up scenarios for the high purity use case
applies the following cuts:

1. H/E < 0.015 (for the barrel region) or H/E < 0.018 (in the endcap region) where
H is the energy in the HCAL and E the energy in the ECAL;

2. ∆η < 0.0025 (barrel) or ∆η < 0.0040 (endcap), and
3. ∆φ < 0.02 (both barrel and endcap), where ∆η and ∆φ are the distance in η

and φ between the electron track extrapolated to the ECAL and the position of
the supercluster;

4. σηη < 0.0092 (barrel) or σηη < 0.025 (endcap), where σηη is the η-width of the
5 × 5 crystal matrix [58].

This identification is sometimes called “tight Fixed Threshold Identification”. The
cut values are different for the barrel (|η| 6 1.479) and endcap region as the ECAL
layout changes significantly.

Other methods for electron identification exist, such as classifying the electron
candidates into different categories and applying category-dependent cuts [32]. Also,
more complex approaches exist, which are based on multivariate techniques such as
likelihood [59] and artificial neural networks [60].

3.5 Jets

Jet reconstruction aims to identify the narrow cone of hadrons from quark or gluon
hadronization (see section 1.3). Ultimately, jet reconstruction aims to deliver an
estimate of the four-vectors of the final state quarks and gluons of the hard interaction.
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In this sense, they try to “reverse” the hadronization and detector response to get
information of the hard matrix element as depicted in figure 3.2.
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Figure 3.2: The goal of the jet reconstruction is to “reverse” the hadronization
in order to measure the momenta of quarks and gluons [61]. This depicts the
reverse of figure 1.1.

Jet algorithms are formulated such that they can be applied to any set of four-
vectors, pseudo-particles, as input. The advantage of this abstract definition is that
the same algorithm can be run on simulated partons, stable generated particles
after hadronization and decay, as well as detector objects like calorimeter hits. This
allows for a comparison between jets without introducing artefacts by using different
algorithms. The output of a jet algorithm are the jets, i. e. a set of disjoint subsets of
the input set.

An obvious desirable property of a jet algorithm is a good performance in the
original goal of estimating the quark and gluon momenta for a large kinematic region.
Two non-trivial desired properties of a jet algorithm are:
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• It should be infrared-save: given a fixed input collection, an additional soft four-
vector in the input should not change the number of jets. This requirement is
motivated by the large probability of additional soft “infrared” gluon emissions
in a hadron shower, and the possibility of additional soft contributions from the
underlying event.

• It should be collinear save: splitting a four-vector in the input into two adjacent
four-vectors (which add up to the original one) should yield the same jet
clustering. This ensures that an additional collinear splitting in the shower
(G → GG or G → qq̄) does not alter the jet clustering result.

3.5.1 Cone Algorithms

The iterative cone algorithm [62] is an instance of broad range of cone algorithms.
Jets produced by such algorithms contain all pseudo-particles in a cone of fixed size
in the η-φ plane.1

The configuration parameter for this cone algorithm is the cone radius in the η-φ
plane, R0 and a seed threshold ET ,0.

The algorithm finds stable cones in the event. “Stable” means that the jet axis
(a four-vector) conincides with the sum of the four-vectors of its constituents. It
starts with the pseudo-particle which has the largest ET above the threshold ET ,0 as
an initial estimate (“seed”) for a cone axis ~a0. Then, a new estimate for the cone
axis, ~an+1 is calculated by taking the sum of the momenta of all pseudo-particles
in the cone centered around ~an with radius R0. This step is repeated until the axis
converges. The pseudo-particles contained in this cone are removed from the input
collection and the procedure is repeated until no seeds are left.

Jets constructed this way consist of all particles in the cone around its central axis.
However, it might happen that after removing the pseudo-particles from the first jet,
a nearby jet is found whose cone overlaps with the cone from the first jet. In this case,
the jet shape of the second jet in η − φ is not a disk but the difference of two disks.

The algorithm has the advantage that it is very simple and fast. Therefore, it is
used in the High Level Trigger in CMS [62]. However, if seeds are defined via a
threshold, it is neither collinear-save nor infrared-save.

To see the non-infrared-safety, consider an event with two pseudo-particles. One
can find a configuration in which there are three stable cones in this event: the
two cones containing only one particle each and a cone containing both particles.
Furthermore, there are configurations for which a cone algorithm only finds the two
jet consisting of one particle. Now, if there is an additional (soft) particle between the

1As two jets must not contain the same pseudo-particle, this is not exactly true as will be discussed
below in more detail.
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two hard particles, this additional particle can serve as seed and the third jet is found.
Therefore, algorithms for which such an example is found, are not infrared-save.

One approach to fix this behavior is to seach for all stable cones in the event (for
the event discussed, that would include all three jets). Once all stable cones are
found, a split-merge procedure is run on those jets which ensures that the jets do
not share pseudo-particles. If choosing the split-merge procedure carefully, such an
algorithm is infrared-save and collienar-save. [63]

The main problem remaining is finding provably all stable cones in the event. This
is non-trivial as the algorithms have to run on large input sets and straight-forward
solutions have exponential runtime behavior.

One idea is to insert a seed between each pair of particles. While this works for the
example discussed, this algorithm known as “midpoint cone algorithm” [64] is not
infrared-save either. Attempts to extend this idea to more than two points to restore
infrared-savety have failed [63].

In the present studies, the SIScone algorithm (seedless infrared-save cone algorithm)
is used. It provably finds all stable cones in the events with a runtime behavior in
O(N2) for N input particles and applies an appropriate split-merge procedure. [63]

3.5.2 Cambride-Aachen Algorithm

Besides cone algorithms, there is another class of algorithms, sequential clustering

algorithms. They all follow the same scheme:
1. Find two pseudo-particles a, b with minimal distance d(a, b). If the minimal

distance is larger than a cutoff d0, all remaining pseudo-particles are the jets
and the algorithm has terminated.

2. Otherwise, replace the pseudo-particles a and b by one with momentum p =

pa + pb.
3. Go to step 1.
The only configuration parameter for such jet algorithms is the cutoff distance d0.

The definition of the distance d leads to different jet algorithms.
The distance used in the jet algorithm should be invariant under boosts in z-

direction and rotation about the z-axis. Otherwise, two processes connected by a
Lorentz transformation on the parton-level would be reconstructed differently.2 The
Euclidean distance in the η − φ plane does not fulfil this requirement. Rather, the
quantity rapidity y is introduced which is defined as

y =
1
2

ln
(

E + pz

E − pz

)

.

2For boosts along or rotations around the x and y-axes, an invariance is not necessary because they
do not transform a process into another possible process.
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Differences in y are invariant under boosts in z-direction. The rapidity y coincides
with the pseudorapidity η for particles with zero mass.

The simplest choice is to use the distance in the y − φ plane which fulfils the
requirements just mentioned:

dyφ(a, b) =
√

(φa − φb)2 + (ya − yb)2.

This is called the Cambridge-Aachen jet algorithm.
Other well-known distance definitions are

d(a, b) = min(p
2p
T ,a, p2p

T ,b)dyφ(a, b)

which yield the kT algorithm for p = 1 and the anti-kT algorithm for p = −1.
In each iteration, the Cambridge-Aachen algorithm combines two four-vectors to

one. Reversing this combination can be used to find substructure of the jet. As will
be discussed in section 3.6, this has interesting applications.

3.5.3 Input Sets for Jet Algorithms

Jets are determined by the jet algorithm and the type of the input pseudo-particles.
At CMS, calorimeter towers, particle flow objects, or generated particles are used as
input objects.

Calorimeter Towers [32] are constructed from hits in the electromagnetic calorime-
ters and hadron calorimeters. As the hadron calorimeter has a much coarser segmen-
tation than the electromagnetic calorimeter, corresponding ECAL cells are added to
match the HCAL geometry. This yields 4 176 calorimeter towers which are used as
input for the jet algorithm. The resulting jets are called CaloJets.

Particle Flow [65] builds a single list of reconstructed particles including photons,
neutral hadrons and charged hadrons. To achieve optimal resolution, the reconstruc-
tion combines information from the tracker and the calorimeters. Jets produced with
particle flow objects as input are called PFJets. They have better energy resolution
than jets built from calorimeter towers, especially for low jet energies [66].

Generated Particles (usually all generated stable particles) can be used in Monte-
Carlo studies and for comparison with reconstructed jets. Those jets are called
GenJets.
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3.5.4 Jet Energy Corrections

For a fixed true jet energy and direction, the energy recorded in the calorimeters
depends on the electromagnetic fraction of the jet, because the calorimeter response3 R

is different for the electromagnetic and hadronic part of the shower. Such calorimeter
behavior is known as “non-compensating”. Moreover, even if considering only one
type of particle, the calorimeter response depends on the energy of the particle.

Therefore, jets built from calorimeter towers have to be corrected for the calorimeter
response R. They are corrected by scaling the four-momentum with a single correction
factor. The correction is factorized into sequentially applied steps to account for
different physics effects and dependences of the response function:[67]

1. The level 1 or offset corrections [68] to account for “pile-up” (energy from
additional pp-interactions) and electronic noise.

2. After the level 2 or relative jet energy correction, the response R is flat in η. This
correction factor is derived by comparing jet response with arbitrary η with
jets in the central region. This correction can be derived from data using dijet

balance, i. e. the fact that in a 2 → 2 QCD process the two jets should have equal
pT [69].

3. The goal of the level 3 or absolute correction is to make jet response R flat
versus the true jet pT . The true jet pT is defined using a matching GenJet for
Monte-Carlo studies and via Z+jet pT -balance [70, 71] or γ+jet pT -balance [72]
in data.

4. Level 4,5, 6, and 7 corrections correct for effects of the electromagnetic fraction
(4), the flavor dependence of the response (5), the underlying event (6), and
a correction to estimate not the GenJet pT as was done so far, but rather the
parton pT for the originating parton of the hard process (7). Those corrections
are not used in the present studies.

Instead of applying jet energy corrections based on calorimeter information only, it
is also possible to use information from the tracker. This possibility of improving the
jet energy resolution by using tracker information for jet energy correction is studied
for CMS and is known as the jet plus tracks algorithm [73].

Jets built from particle-flow objects do need no or only little correction because the
input objects for the jet algorithm have already been calibrated [65].

3.5.5 Missing Transverse Energy

For details of 6~ET reconstruction, refer to [74].

3The response R is defined as the ratio of the measured and the true energy. The “jet response” is
the corresponding ratio for pT .
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As the initial particles in a hard interaction have no transverse momenta, the
sum of all final state particles’ ~pT must vanish. The calorimeter has a high angular
coverage and captures almost all energy of the final state particles. Neutrinos leave
the detector undetected. Therefore, the residual to zero transverse momentum is
the sum of the neutrinos’ ~pT and other weakly interacting particles. This residual is
called missing ET , or 6~ET .

Using calorimeter information, 6~ET can be reconstructed as

6~ET = −

N∑

i=1

Ei sin Θi(cos φix̂ + sin φiŷ)

where the sum runs over all calorimeter towers. Θi and φi are the coordinates of the
calorimeter towers, and x̂ and ŷ are the unit vectors in x and y direction.

As jets are corrected for the calorimeter response, this must also be taken into
account for reconstruction of missing energy. Missing energy is corrected for jet
energy scale by

6~ET

corr
= 6~ET −

Njets∑

i=1

~p corr
T ,i − ~p raw

T ,i . (3.2)

pT ,i denotes the jet pT before or after applying the jet correction. As jets with
pT < 10 GeV have a large correction uncertaintya and are not used for 6~ET correction.
Energy deposition in the electromagnetic calorimeter by electrons is well measured
and does not have to be corrected. However, jet clustering can also cluster energy
depositions from electrons. This would lead to spurious corrections of 6~ET . Therefore,
jets above a given electromagnetic fraction are excluded in equation 3.2.

Muons escape the detector leaving only very little energy in the calorimeters.
Therefore, 6~ET also has to be corrected for the muons in the event by subtracting all
muons’ ~pT from 6~ET and adding the energy deposited in calorimeter towers.

The corrections for jet energy scale and muons are called Type-1 corrections. So-
called Type-2 corrections account for pile-up and out-of-cone effects. It is also possible
to include tracker information for 6ET calculation. As for jets, algorithms exist to make
use of the tracker information to improve 6ET resolution [75]. Another approach is to
use particle flow objects instead of calorimeter towers to reconstruct 6ET which has
shown to improve the resolution compared to calorimeter based 6ET for low energies
[65].

In the current studies, calorimeter-based 6ET with Type-1 corrections is used.
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Figure 3.3: The ∆R distance between the b-quark and a light quark (left) and
between the two light quarks from the W-boson decay (right) for the hadronically
decaying top quark.

3.6 Boosted Top Jet Reconstruction

If a particle with high energy decays into hadrons, those decay products still carry a
large component of the original direction of the decaying particle. While all decay
products might end up in a single reconstructed jet, calorimeter resolution might
still be sufficient to resolve a substructure of the jet originating from the individual
decay products. This is only possible if the decay products are separated enough to
be resolvable by the calorimeter. The ∆R distance between the decay products of a
particle with mass m and transverse momentum pT is of the order m/pT . For CMS
calorimeter resolution of ∆η = ∆φ = 0.087 (see section 2.2.3), and a top quark as
decaying particle, this means that pT up to about 2 TeV could be resolved. Of course,
this is only a rough estimate as it assumes a constant ∆R and requires to identify
large energy depositions in two adjacent calorimeter towers as substructure. For a
more complete picture, see figure 3.3 which shows the ∆R distribution between the
decay products of a hadronically decaying top quark.

The search for this substructure can be achieved by reversing the sequential
clustering of the Cambridge-Aachen jet algorithm (section 3.5.2) yielding “subjets” of
the original jet.

This idea can be applied for different analysis. For example, it can be used to
search for high-pT Higgs bosons decaying to a b-quark pair [76].

Here, an algorithm is presented which aims to reconstruct hadronically decaying
top quarks with a high boost [10]. This algorithm was implemented in the CMSSW
framework where it is called CATopTag Algorithm [77]. This is the algorithm described
here.

The general idea is to use the cluster sequence of a sequential clustering algorithm
to find “subjets” from the decay products of the top quark. In the case of a top quark,
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three subjets are expected: a b-subjet and two subjets from the W-boson decay.
The algorithm proceeds as follows:
1. Cluster the input particles with the Cambridge-Aachen algorithm with the

distance cutoff d0 = 0.8. Those are called “hard jets”.
2. Require that the hard jets are hard and central: pT > 250 GeV and |y| < 2.5.
3. Reverse the clustering steps of the Cambridge-Aachen algorithm as follows:

a) Decompose the hard jet in two constituents which both fulfil pcluster
T >

δp × pT , with δp = 0.05. This pT requirement rejects soft subjets which are
not expected in the signal. If reversing the first clustering step does not yield
two subclusters fulfilling this criterion, the de-clustering is repeated for the
harder of the two subclusters. This is iterated until a valid decomposition
is found or proven to be impossible.

b) Decompose the two clusters from the previous steps again, by using the
same algorithm applied to the two clusters as the “hard jets”.

This declustering yields between 0 and 4 “subjets”.
4. To allow for an interpretation of the subjets as the decay products of the top

quarks, the jet is required to have at least three subjets. In case of four subjets, the
subjet with lowest pT is interpreted as additional soft radiation. The following
kinematic cuts are applied:

a) The invariant mass of the jet of the hard jet must be consistent with the top
mass: 100 GeV < mhard jet < 250 GeV.

b) The invariant dijet masses built with the three subjets with largest pT must
fulfil mdijet > 50 GeV for all three possible combinations.

The original algorithm [10] uses the scalar sum of the transverse energy in the
event, ET , as first estimate of the top quark pT . For higher pT , the decay products
are expected to be closer in ∆R. Therefore, the parameters d0 and δp of the top jet
algorithm are chosen dependent on this ET .

In the implementation of this algorithm in CMSSW, this ET -dependent choice of
parameters is the default configuration [78]. The event’s ET is calculated by summing
all calorimeter towers. While this is adequate for the all-hadronic decay channel, it
does not account for the muon and the neutrino ( 6ET ) in the muon+jets channel and
makes a direct comparison for different channels more difficult.

Therefore, it was suggested to change this dependence for an easier application of
this algorithm on the muon+jets channel. As shown by the authors of the implemen-
tation of this algorithm [77], choosing the fixed values d=0.8 and δp = 0.05 still yield
a high efficiency and therefore, those values are now generally used. As can be seen
in figure 3.4, the efficiency is about 40 % for high pT of the top quark.

This algorithm can be applied to other sequential cluster algorithms such as kT

and anti-kT . However, decomposition of those jets yields subjets which are closer to
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Figure 3.4: The top jet reconstruction efficiency as function of the generated top
quark pT . For this figure, all Z′ and standard model tt̄ in the semileptonic µ decay
channel were used, after applying the loose pre-selection. The samples and the
selection are discussed in more detail in section 4.1 and section 4.2, respectively.
The efficiency plotted here is defined as the number of events with one tagged
top jet divided by all events, as function of the generated top-quark pT of the
hadronically decaying top quark.

the axis of the hard jet in ∆R and leads to worse discrimination for the dijet mass
criterion [77].

For the present studies, the algorithm is applied as described to Cambridge-Aachen
jets built from calorimeter towers. It is used only for the event selection discussed in
section 4.5. For the rest of the analysis, SIScone jets built from calorimeter towers are
used.

One problem that arises both for the top jets but also for the SIScone jets in the
context of boosted top-quark jets are jet energy corrections. The relative and absolute
corrections are derived from QCD dijet samples which mainly contain jets from light
quarks or gluons. Therefore, they are not applicable to jets originating from top
quarks. One might be tempted to correct the found “subjets” because they originate
either from a b-quark or from a light quark from the W-boson decay. However,
as those subjets are closely merged, it is conceptually not possible to assign the
constituents of a subjet to a single parton from the top-quark decay. But this is
necessary for the mere concept of a jet correction whose aim is to give an estimate
for the original parton four-momentum. Therefore, one should not attempt to correct
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the subjets.
Rather, the goal is to estimate the original top-quark momentum only. A correction

of this type is conceptually well-defined.Such jet corrections are not officially available
in CMS.

To see the effect of jet energy correction for the case that the decay products of
the top quark end up in a single jet, events are studied where all decay products of
a hadronically decaying top quark have ∆R < 0.3 to one reconstructed SIScone jet.
The resulting jet response (uncorrected and with standard corrections) can be seen in
figure 3.5. To create the plot, bins in top quark pT are created such that there are at
least 400 entries in each bin. For each bin, the median jet pT is divided by the top
quark pT to get the response.

As can be seen, applying standard corrections is better than using uncorrected
jets. But even with jet energy corrections, the true top quark pT is underestimated.
This is due to (a) energy deposits of the b and light quarks outside the cone and (b)
the fact that the applied jet corrections were defined to correct a reconstructed jet
pT to the pT of the matching GenJet, not a correction on parton level what would
be needed here and (c) the neutrino involved in the b meson decay. The latter is
connected to a well-known feature of jet energy corrections: as they are derived
on a QCD sample which mainly consists of jets originating from gluons, they do
not correctly estimate the pT for other jets. So this problem always arises if the
flavor composition under study does not represent the flavor composition of the
sample the jet energy corrections were derived for. This difference is accounted for
in higher-level jet energy scale corrections (see section 3.5.4).

3.7 tt̄ Event Reconstruction

The goal of the tt̄ event reconstruction is to estimate the four-vectors of the two top
quarks. This allows to determine mtt̄ but also the measurement of other quantities
such as |ηt| − |ηt̄|. This quantity has a symmetrical distribution around zero in the
standard model. Any asymmetry would be a pointer to new physics as discussed
in [79].

In the following, mtt̄ will denote the true mass of the system, while Mtt̄ refers to
the reconstructed mass of the tt̄ system.

The algorithm for tt̄ reconstruction presented here consist of two steps: For each
event

1. build a list of hypothesis and
2. select a hypothesis from the list

where “hypothesis” refers to a mapping of the top quark decay products to re-
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Figure 3.5: Response for high-pT , hadronically decaying top quarks. The recon-
structed jet’s pT versus the true top quark pT is shown. Jets are SIScone jets with
cone radius ∆R = 0.5 which match the decay products of a top quark. Jet energy
corrections considered are level-2 and level-3 corrections.

constructed objects.4 Each hypothesis thus also gives values for the top quark
four-momenta and other kinematic variables.

The criteria to select one hypothesis from the list are derived on Monte-Carlo sim-
ulations where the correct hypothesis can be defined by matching the reconstructed
objects to the generated objects. The properties of this correct hypothesis can then be
used for hypothesis selection.

Other tt̄ reconstruction methods use the known masses for the top quark and the
W-boson to correct mismeasured jets via a kinematic fit where the four-vectors of the
reconstructed objects are scaled to fulfil the mass constraints.

The cross section for tt̄ production in the standard model is high for low mtt̄. In
this region, the top quarks can be assumed to be in rest and their decay products
will be well separated in the detector. To select events in the muon+jets channel, one
usually demands four jets with large pT , an energetic, isolated muon, and missing

4 While this map as defined refers to all six tt̄ decay products, this is not necessary for the
reconstruction of the top quark four-momenta: in this case, association on the level of the two top
quarks is sufficient.
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transverse energy from the neutrino.

3.7.1 Neutrino Reconstruction

6~ET is interpreted as the x and y components of the neutrino momentum. The z

component of the neutrino cannot be determined because the initial boost of the
parton system is not known. As the neutrino originates from the decay W → µν,
the following equations hold (assuming massless ν, µ and that the W was exactly
“on-shell”):

p2
ν = p2

µ = 0

m2
W = (pν + pµ)2.

Re-arranging these equations yields a quadratic equation for pν,z. This equation
has either zero, one or two real solutions. The case of exactly one solution has almost
zero probability but is straight-forward. For the other cases, several strategies exist.

In the case of no real solution, one could take the real part of the complex solutions.
Another method is to interpret this as a mismeasurement of 6ET and rescale 6ET

by a factor as close to unity as possible such that there is a real solution. Both
methods have been used during the studies presented here. However, the difference
in reconstruction performance turned out to be negligible. Therefore, the simpler of
the two methods — taking the real part — was chosen.

In case of two solutions, there are also several strategies:
1. take the pν,z closer to 0. That reflects the observation that the decay products of

tt̄ events are central, i. e. η ≈ 0.
2. take the pν,z which is closer to the lepton. This is plausible if one assumes that

the decaying W-boson has a boost.
3. Defer the decision and make hypotheses with both solutions.
4. There are other possibilities: The procedure for selecting the neutrino solution

could depend on some additional information about the two solutions, for
example |pν,z,1 − pν,z,2|. In such scenarios, Monte-Carlo information is used to
tune the selection procedure.

In the present studies, option 3. is chosen, i. e. both neutrino solutions enter the list
of hypotheses.

3.7.2 tt̄ Reconstruction

The list of hypotheses consists of all assignments of jets to the decaying top quarks.
That is, each jet is either assigned to the leptonically decaying top quark, to the
hadronically decaying top quark or none of them. The top quark four-momentum
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is then simply the sum of the four-momenta of the assigned decay products in the
particular hypothesis. For N jets, this yields 3N different hypotheses. This number is
doubled if there are two solutions for the neutrino z component. Hypotheses where
no jet is assigned to one of the top quarks are thrown away.

The highest-pT jet assigned to each top quark is labelled “b-jet”. However, it does
not matter much whether it really is the b-jet or not.

As shown in figure 3.3, the decay products of the top quarks are close together in
the detector. This can be used for hypothesis selection by defining the quantity C for
each hypothesis which is defined as the sum of ∆R of the top quarks and their decay
products:

C := ∆R(pt,µ, pµ) + ∆R(pt,µ, pν) + ∆R(pt,µ, pb,µ)

where pt,µ is the four-vector of the muonically decaying top quark, pb,µ is momentum
of the b-jet of the muonically decaying top quark.

The value of C is the same for all hypotheses which only differ on the side of the
hadronically decaying top quarks. Therefore, an additional rule has to be stated. For
now, the hypothesis with the lowest C is selected where all other jets are assigned to
the hadronically decaying top quark.

The result of the event reconstruction can be seen in figure 3.6.

Optimizing Hypothesis Selection Since the definition of C does not distinguish
between hypotheses which differ only in the jet assignment of the hadronically
decaying top quark, the modified quantity C′ is introduced, defined as

C′ := C − f1∆R(pt,µ, pt,h) − f2Mtt̄

where f1 and f2 are positive constants to be determined. Taking the hypothesis with
minimal C′ will favor hypotheses with larger separation of tt̄ and higher Mtt̄.

The constants f1 and f2 can be chosen such that the peak of the reconstructed
Mtt̄ distribution has smaller width and is shifted towards the correct value. For
example, studied values are f1 = 0.5 and f2 = (0, 0.001, 0.005) (for 2, 3, or more jets
respectively).

In order to choose optimal values for f1 and f2, a measure of the performance
for the reconstruction is needed. The influence of background is neglected in the
following discussion, as it contributes a continuum in the Mtt̄ spectrum which is not
changed very much by the reconstruction technique.

A possible criterion for optimizing the reconstruction would be minimizing the
variance of the reconstructed Mtt̄ distribution. This seems reasonable, because the
generated mass distribution has a very small width, so the width of the reconstructed
Mtt̄ distribution gives an estimate of the reconstruction resolution.
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Figure 3.6: Distribution for the generated mass (top) and reconstructed mass
(central and bottom) of the tt̄ system. The reconstruction uses the hypothesis
with smallest C. The central plot was created on a sample with a loose pre-
selection (section 4.2), the bottom plot with the final selection (section 4.4.3).
As can be seen, the selection has a major impact on the resolution of the mass
reconstruction.



60 3 Reconstruction

 / GeV
Z’

m
0 1000 2000 3000

 /
 G

eV
tt

 M
∆

0

100

200

300
final selection

pre-selection

 / GeV
Z’

m
0 1000 2000 3000

 /
 G

eV
tt

 M
∆

0

100

200

300
final selection

pre-selection

Figure 3.7: Resolution of the reconstruction. The width of a Gaussian fitted
to the reconstructed Mtt̄ distribution is shown versus the true Z′ mass. The
left plot uses a hypothesis selection with minimal C, the right one with C′.
The pre-selection and final selection are defined in section 4.2 and section 4.4.3,
respectively.

However, using the hypothesis selection for which the Mtt̄ distribution variance is
smaller, does not yield optimal limits on the Z′ cross section (for the method of deter-
mining limits, see chapter 5). This can be better understood, if one realizes that the
limit determination is similar to a fit which is driven mainly by the number of events
in the “peak region” while minimizing the variance of the whole Mtt̄ distribution
primarily affects the tails of this distribution as they contribute quadratically to the
variance. However, for events in the tails, there is often a better, but rarely a good
hypothesis which would contribute to the peak region. Optimizing the Mtt̄ variance
therefore leads to smaller tails in the Mtt̄ distribution, but the peak region remains
largely unaffected.

To circumvent this problem, one could optimize not the width of the whole Mtt̄

distribution but rather the width of the peak. The peak region can be defined by as
µ̂ ± 1.5σ̂ where µ̂ and σ̂ are the values from a Gaussian which is fitted in the same
region (of course, this has to be done iteratively). This was done for the resolution
plots in figure 3.7. As can be seen, hypothesis selection with C instead of C′ yields a
better resolution. As the definition of C is simpler, using C is the preferred method
for reconstruction.

Note, however, that the performance of hypothesis selection depends on the jet
definition: for the plots shown here, a jet definition was used which requires jet
pT > 50 GeV. If relaxing this requirement to lower pT values, the picture changes.
Similarly, the selection has major impact on the resolution, as was already shown in
figure 3.6.

However, the impact of the event selection on the final result is much larger than
differences between C and C′ for hypothesis selection. Therefore, more work was
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done for optimizing the event selection which is discussed in the next chapter. In the
following, the hypothesis selection is always done with C.





4 Event Selection

In this chapter, Monte-Carlo event generation for signal and background processes
is discussed in section 4.1. In section 4.2, a loose pre-selection as reference point is
defined and the definitions for the physics objects used in this study are reviewed.
In section 4.3, a typical selection for a tt̄ event topology as expected for standard
model tt̄ production is applied. It will be shown that the selection efficiency degrades
substantially for high mtt̄. In section 4.4, a selection for high mtt̄ and its optimization
is discussed. Finally, section 4.5 briefly discusses the possibility of a selection based
on the boosted top jet reconstruction introduced in section 3.6.

4.1 Event Generation and Simulation

As discussed in section 1.3, events at hadron colliders are modelled in separate
steps. The integration in equation 1.9 is carried out by choosing values for xa and xb

according to their parton distribution functions which take the role of a density for
the integral. A random final state is chosen according to the final state phase space
(dβ in equation 1.3). The matrix element for this process is evaluated yielding one
generated event with a concrete set of final state particles with defined four-momenta.
This process is called “event generation”.

The final state partons then undergo showering, hadronization, and decay as
depicted in figure 1.1. As generation of hard events and simulation of the shower are
relatively independent, they can be carried out by different tools:

• MadEvent [80] is an event generator which uses MadGraph [81] to calculate all
tree-level Feynman graphs for given initial and final state particles. MadGraph
calculates the Feynman graphs using Feynman rules which can be specified by
the user. Therefore, physics beyond the standard model can be included easily.
For example, the Z′ processes used in the present studies have been generated
using the MadGraph package topBSM [20].

• Pythia [17] is both a tool for event generation and for simulation of shower,
hadronization and decay. The shower simulation of all Monte-Carlo samples
used for the present studies have been made with Pythia.

So far, event generation, hadronization and decay is covered. For each event, the
output consists of a set of leptons and stable hadrons. Those particles are passed to
the CMS detector simulation which is based on Geant4 [82], a toolkit for the detailed



64 4 Event Selection

simulation of the passage of particles through matter, accounting for a large number
of different interactions and effects. This type of detector simulation is called full
simulation.

For some processes, several million events have to be generated in order to reliably
estimate the number of events passing a selection. As processing a single event with
Geant is a very time-consuming process, an alternative tool is implemented known
as fast simulation [32]. Instead of detailed simulation of the individual particles
interacting with the detector, the detector response is parameterized for all particles
using the full simulation. This parameterization can then be applied efficiently to
other simulated events.

The result of both the full and the fast simulation are low-level detector objects
such as energy deposits in calorimeter cells which can be used as input for the
reconstruction algorithms discussed in chapter 3. In some cases like tracks or muons,
the fast simulation directly produces reconstructed higher-level objects.

As the different samples, each containing a certain process, have very different
cross sections and are produced in different quantities, they have to be re-weighted
to a common integrated luminosity L. For a process with cross section σ where a
filter is applied with filter efficiency f, the correspoding weight w is

w =
Lσf

N

where N is the number of events passing the filter. The combination σf is called
effective cross section. The weight is a direct measure of the available Monte-Carlo
statistics: a unity event weight means that as many events are available as Monte-
Carlo sample as are expected in data for the assumed luminosity. For most analysis,
an event weight much smaller than one is desirable. Otherwise, the Monte-Carlo
sample itself is affected by a statistical error as large as or even larger than the
statistical fluctuations expected in data.

The cross sections for the processes discussed in the following sections are leading-
order results obtained from the generators, unless otherwise noted. For a next-to-
leading cross-section σNLO, the so-called K-factor is defined as

K =
σNLO

σLO
.

In general, the K-factor is a function of the momenta of the final state particles.
However, for many cases, taking a constant K-factor is a satisfactory approximation
and all generated events are scaled by the K-factor to obtain approximate NLO
results.
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As discussed in section 1.4, the present studies concentrate on the muon+jets decay
channel of tt̄ events from high mass resonances. The expected signal signature is a
high-pT muon and at least two jets. In the following sections, background processes
with a similar signature are discussed.

4.1.1 QCD Background

At a hadron collider, “QCD processes” dominated by Feynman graphs with strong
interaction vertices only, have the largest cross section. In those events, there is no
lepton in the final state of the hard scattering. However, even in QCD processes,
reconstructed muons can appear:

1. By heavy flavor decay: bb̄ or cc̄ production leads to mesons which can decay to
µ + X.

2. By decays in flight: π± and kaons in any hadron shower can decay in the detector
volume to µ + X. The µ produces a track in the muon system which is matched
to some nearby inner track (for example, the π± track).

3. By punch-through: a high-energy shower can reach the muon system. Those
hits might be combined to tracks and matched to an inner track, produced by
charged hadrons from the punched-through jet.

The third possibility is extremely rare for global muon reconstruction. Therefore,
simulating those is difficult and would require a very good understanding of the
detector, including unusual detector effects.

The first two cases have been simulated in the QCD Monte-Carlo sample used for
the present studies. The generation starts with the Pythia event generator producing
“minimum bias” events, consisting of all 2 → 2 processes with q, q̄ and G as initial
and final state particles.

Pythia generates the events, simulates the shower, hadronization, and decay
of unstable particles. For a usual Monte-Carlo production, only very short-lived
particles which cannot reach the detector are decayed. For this sample, Pythia

is configured to simulate also the decay of long-living kaons and pions within a
cylinder around the beam axis with a radius of 1.5 m and length of 6 m. Only events
with at least one muon within |η| < 2.5 and pT > 5 GeV are passed to the detector
simulation.

As the cross section for the simulated 2 → 2 processes dramatically increases for
low ŝ, a generator level filter is applied. Otherwise, a huge number of Monte-Carlo
events would be necessary to have enough statistics after the event selection which
does not select events with low ŝ. Therefore, QCD events are produced for different
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sub-sample cross section (pb) generated events weight

p̂T > 50 GeV 280 000 7 382 989 7.59
p̂T > 150 GeV 5 000 1 300 477 0.77
p̂T > 250 GeV 700 1 094 551 0.128
p̂T > 350 GeV 112 1 143 532 0.020

Table 4.1: Number of produced µ-enriched QCD events, i. e. event with at least
one generated µ with pT > 5 GeV and |η| < 2.5, for the different sub-samples and
their respective effective leading-order cross section. The event weight is given
for a luminosity of L = 200 pb−1.

ranges of p̂T defined as

p̂2
T =

t̂û

ŝ

with the Mandelstam variables in the parton system ŝ, t̂ and û. The Mandelstam
variables are defined for 2 → 2 processes as

s =(p1 + p2)
2 = (p3 + p4)

2

t =(p1 − p3)
2 = (p2 − p4)

2

u =(p1 − p4)
2 = (p2 − p3)

2,

where p1 and p2 are the momenta of the initial state particles, and the p3 and p4 the
momenta of the final state particles.

In case of filtering on generator level, the event selection has to ensure that events
failing those filters on generator level would not have been selected.

The generated QCD samples and event numbers are summarized in table 4.1.
The samples have overlapping p̂T ranges. To avoid double counting, this overlap is
removed by applying a filter using the Monte-Carlo information about p̂T .

4.1.2 Electroweak Backgrounds

Apart from QCD, the most important backgrounds are processes with a muon in
the final state of the hard scattering. This is only possible for events with a Z, γ, or
W boson as part of the hard process. Examples of contributing tree-level Feynman
graphs are shown in figure 4.1.

The “W+jets” and “Z+jets” background samples were generated with MadGraph
and MadEvent. As discussed in section 4.1.2, there are processes with no or only
one hard parton in the final state. Such events will not pass the event selection.
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Figure 4.1: Examples of processes with a W or Z boson decaying to one or two
muons. The process on the upper left contains no hard parton as final state
particle. Therefore, there will be no reconstructed jet and this event will not
pass the event selection which cuts on at least two hard jets. The other processes
contain more and more hard partons in the final state.

However, they have the largest cross section. Therefore, most of events in a “W+jets”
Monte-Carlo sample do not pass the event selection and the number of remaining
events is very low even for large samples containing 10 million simulated W+jets
events, the size of the centrally produced W+jets sample.

Therefore, a sample with the tenfold number of events has been used. This sample
has been processed by the fast detector simulation.

The number of generated events and cross sections are summarized in table 4.2.
For W+jets, the cross section was calculated by scaling the leading-order cross section
from MadGraph by the K-factor of K = 1.14 given in [83].

Only events where the Z or W boson decays to leptons were generated. For
processes with a Z-boson, the matrix elements containing a virtual photon have to be
included in the calculation. As the cross section for this Z/γ∗+jets process is very
large for small ml+l− , a generator-level cut of ml+l− > 50 GeV is applied.
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sample cross section (pb) generated events weight

W+jets, W → lν 40 000 (NLO) 101 467 739 0.079
Z+jets, Z → l+l− 3 700 (LO) 9 964 055 0.074

Table 4.2: The cross sections of the W+jets and Z+jets background samples,
processed with the fast simulation. The weight is given for L = 200 pb−1. The
cross section for W+jets includes the K-factor of K = 1.14, the Z+jets cross section
is leading order. In the generated events, the Z or W boson decays always to
leptons. For Z+jets, a cut on the dilepton-mass of m(l+l−) > 50 GeV has been
applied.

sample NLO cross section (pb) generated events weight K-factor

t-channel, t → lνb 41.6 281 756 0.081 1.12
tW-channel, all modes 29.0 169 048 0.030 1.06
tt̄, all modes 414.0 1 028 304 0.034 1.29

Table 4.3: Generated tt̄ and single top events. For the calculation of the K-factors,
refer to [84, 85, 19]. The t-channel sample only contains leptonically decaying
W-bosons, while the other samples include all decay modes. The event weight
assumes L = 200 pb−1.

4.1.3 Top-Quark Backgrounds

The last category of background processes considered for this studies are processes
with top quarks in the final state. tt̄ production in the standard model has already
been discussed in section 1.4. Feynman graphs for single top production are shown
in figure 4.2.

Apart from the processes shown in figure 4.2, single top quarks can be produced in
the s-channel, qq̄′ → W+ → tb̄, and the charge conjugated process for t̄ production.
This process has a cross section times branching ratio in leptons of about 1.6 pb.
(This cross section was obtained by scaling the LO generator result with the K-factor
derived in [84].) Compared to the other single top backgrounds, it is negligible and
was therefore not included in this studies.

4.1.4 Signal

The signal process used in the present studies is the production of a massive gauge-
boson like particle, Z′. The leading order Feynman graph of the production and
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Figure 4.2: Feynman graphs for single top production: (a) t-channel, (b) in
association with a W-boson, “tW-channel”.

decay of Z′ is shown in figure 4.3.
In order to study the experimental resolution of the tt̄ reconstruction, Monte-Carlo

samples for Z′ resonances decaying in tt̄ have been produced for mZ′ = 1, 2 and
3 TeV. The width of the Z′ was set to 1 % of the mass. As shown in figure 3.7,
this is well below the detector resolution. Therefore, it is easy to compare different
reconstruction methods for tt̄ as the natural width and detector effects do not have
to be unfolded.

Details on the sample sizes are given in table 4.4. As the search concentrates on
the tt̄ decay channel, all cross sections given for Z′ are denoted σB to indicate that
the value includes the branching ratio in tt̄, i. e. σB = σ(Z′) × BR(Z′ → tt̄).

4.2 Object Definition and Pre-Selection

As generator-level filters have been applied on some of the generated Monte-Carlo
samples, a first selection has to be done to ensure a consistent sample which can be
used as reference point for comparisons of further cuts. Also, this pre-selection step
ensures that the event reconstruction as discussed in section 3.7 is possible for all
events.

The objects definition used for this and the following selections is:
• Jets are SIScone jets built from calorimeter towers with relative (level-2) and
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Figure 4.3: The leading order Feynman graph for Z′ production and decay in tt̄.

Z′ mass in TeV decay mode generated events

1 fully leptonic 49 000
1 semi-leptonic 65 000
1 fully hadronic 49 000

2 fully leptonic 25 000
2 semi-leptonic 25 000
2 fuly hadronic 25 000

3 fully leptonic 20 000
3 semi-leptonic 50 000
3 fully hadronic 8 000

Table 4.4: Number of generated events for the Z′ samples which are used as
signal for this study. The width is set to 1 % of the mass for all samples. Unlike
the notation used otherwise, “lepton” includes the τ lepton in this case.

absolute (level-3) jet energy corrections applied. A jet is required to have
pT > 50 GeVand |η| < 2.4. The pT requirement is motivated by the hard pT

spectrum of the signal. In the chosen η range, the tracker is available and could
be used for b-tagging in future studies. Moreover, for high |η|, the background
contribution rises much more than the signal contribution.

• Muons are defined with a pT > 10 GeV and |η| < 2.1. Additionally, some cuts
on identification are required which loosely follow the V+jets recommendation
discussed at the end of section 3.3: all global muons with

– a global track fit with χ2/ndof < 10,
– a transverse impact parameter d0 < 0.2 mm, and
– the number of valid hits in the tracker n > 11
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process expected events efficiency

QCD 4.98 · 106 0.087
W+jets 18.5 · 103 0.0023
Z+jets 3 122 0.0017
single top 1 264 0.089
tt̄, semileptonic µ 8 214 0.68
tt̄, other 8 113 0.11

Z′, mZ′ = 1 TeV, semileptonic µ 238 0.80
Z′, mZ′ = 2 TeV, semileptonic µ 250 0.84
Z′, mZ′ = 3 TeV, semileptonic µ 253 0.85

Z′, mZ′ = 1 TeV, other 323 0.19
Z′, mZ′ = 2 TeV, other 412 0.24
Z′, mZ′ = 3 TeV, other 460 0.27

Table 4.5: Number of expected events after the pre-selection for L = 200 pb−1.
The efficiency is calculated with respect to the generated number of events. For
Z′, an arbitrary cross section of σB = 10 pb was used. For tt̄ final state, the events
are split into semileptonic µ decay channel and all other decay channels. For
single top, the numbers for t-channel and tW were added.

are used. Note that neither a cut on the deposited energy in the veto cone, nor
the isolation requirement is applied here because for signal, the muon is often
close to a jet.

• Electrons are defined by the “tight” cuts as discussed in section 3.4 with |η| < 2.5
and pT > 10 GeV.

• Leptons in the sense of this analysis are only electrons and muons.
• 6ET is based on calorimeter towers and is corrected for jet energy scale and

muons as discussed in section 3.5.5.

The pre-selection requires at least two jets and that the lepton with largest pT is a
muon.

After this pre-selection, the expected number of events for each process is listed in
table 4.5. Selected events with tt̄ in the final state not decaying to muon+jets come
mainly from the dilepton channel. The cut efficiency in the table is calculated with
respect to the unselected sample, so some care has to be taken if interpreting those
numbers as generator level cuts have been applied, as discussed above.
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4.3 Selection for Low mtt̄

In the standard model, the cross section for tt̄ production as a function of mtt̄ has
its largest value just above its turn-on at 2mt (see figure 3.6). Therefore, the top
quarks can be assumed to be in rest in the lab frame. As discussed in 1.4, each of
the top quarks decays to three fermions. As the top quarks are at rest, they decay
isotropically and the decay products will typically have a large angular separation
and will be reconstructed as separate objects.

An example of a typical selection for standard model tt̄ in the muon+jets decay
channel is

• require at least four jets. The pT cut in the jet definition for the third and fourth
jet is relaxed to pT > 30 GeV, while for the two leading jets, pT > 50 GeV is
required.

• require exactly one isolated muon and no isolated electron with pT > 20 GeV.
Lepton isolation is defined as CombRelIso < 0.1 with the definition of the
combined relative isolation CombRelIso from equation 3.1.

The event yields after applying those additional cuts are given in table 4.6. As can
be seen, the selection yields a good signal-to-background ratio for standard model tt̄

of about 2/1. However, the selection efficiency for Z′ degrades for large mZ′ .
A stack plot showing the expected number of events after applying this selection

versus the reconstructed invariant tt̄ mass, Mtt̄, is shown in figure 4.4. As expected,
the background is quite low for high values of mZ′ . As it is hard to judge or compare
the sensitivity from this plot, the significances are given in table 4.7.

4.4 Selection for High mtt̄

As shown in the previous section, the selection efficiency decreases for high mtt̄.
This is due to the changing event topology and jets begin to merge for high mtt̄,
which was shown in figure 3.3.

The decay products of a high-mass resonance will have large transverse momenta.
On the other hand, backgrounds have the largest cross section for relatively small
energy and pT scales. This feature of the signal can be seen in different variables
which are shown in figure 4.5:

• The large transverse momentum of the leading jet and the second jet (jets are
sorted by pT ).

• Large missing transverse energy, 6ET .
• The HT variable, which is defined as the scalar sum of the transverse momenta

of all jets, leptons, and 6ET , according to the object definition.
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process expected events efficiency

QCD 245 4.8 · 10−5

W+jets 1 373 0.074
Z+jets 156 0.050
single top 147 0.12
tt̄, semileptonic µ 3 236 0.39
tt̄, other 617 0.08

Z′, mZ′ = 1 TeV, semileptonic µ 96 0.40
Z′, mZ′ = 2 TeV, semileptonic µ 77 0.31
Z′, mZ′ = 3 TeV, semileptonic µ 55 0.22

Z′, mZ′ = 1 TeV, other 26 0.08
Z′, mZ′ = 2 TeV, other 27 0.07
Z′, mZ′ = 3 TeV, other 22 0.05

Table 4.6: Number of expected events for L = 200 pb−1 after applying the event
selection as described in section 4.3. The cut efficiency is calculated with respect
to the pre-selection. The cross section for Z′ is σB = 10 pb.

mZ′ in TeV S B S/
√

B

1 86 ± 1.1 1269 ± 10 2.3
2 59 ± 1.4 76 ± 3 6.5
3 32 ± 0.8 8.4 ± 1.3 10.1

Table 4.7: The significances S/
√

B for the events with a Mtt̄ reconstructed mass
in the window mZ′ ± 300 GeV after applying the selection for σB = 10 pb. The
calculation of the significance and the error is discussed in section 4.4.1.
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Figure 4.4: Reconstructed invariant mass of the tt̄ system, after applying the
event selection for a standard model topology as described in section 4.3. As
cross section for Z′, σB = 100 pb was used in this plot. Note that the other plots
always use σB = 10 pb, therefore Z′ is indicated with “×10”. The reconstruction
is based on the hypothesis with minimal C as discussed in section 3.7.2.

• HT ,lep, the “leptonic HT ” is a variation of HT and defined as the scalar sum of
6ET and the leading µ.

Another important class of event variables for selection are variables associated to
the muon. As discussed in section 3.3 and section 4.1.1, muon properties are quite
different for QCD events and signal events. Some variables are shown in figure 4.6:

• The combined relative isolation, as used in the standard model selection.
• The ∆R of the muon to the nearest jet, where the “nearest jet” is defined via ∆R.
• The transverse momentum of the muon with respect to the axis of the nearest

jet, pT ,rel.
• The invariant mass of the muon and the nearest jet, Mµ,j.
• The variable zµ was studied on generator level by [9] which suggest to use it

for identifying boosted tops. It is defined as

zµ =
Eµ

Eµ + Eb

,

where Eb is the hadronic energy in the vincinity of the muon (here, the nearest
jet is used). This variable is shown as an example of a variable which has shown
very good separation power on generator level but is not very useful as cut
variable after reconstruction.1

1However, “hadronic energy” in the cited paper is defined differently, by running the kT jet algorithm
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For the last three observables, the nearest jet is interpreted as the hadron decay
product of a heavy flavor decay, or the other hadrons of a jet in case of a decay-in-
flight. The ∆R, pT ,rel and Mµ,j should be small for QCD and large for signal. In the
definition of “nearest jet” the jet pT cut is relaxed to pT > 30 GeV. Otherwise, the
nearest jet is in many cases not the hadronic energy associated with muon production
for QCD.

While these muon-associated variables are a good handle against QCD, W+jets and
Z+jets events contain muons from the hard process. Those muons are not correlated
with jet activity. Therefore, those variables do not separate those backgrounds from
the signal.

For this analysis, all the observables above and many more have been studied. The
final selection makes use of the following cut variables:

• pT of the leading jet,
• A combined cut on ∆R(µ, j) and pT ,rel(µ, j), and
• HT ,lep.
The choice of these variables is not only based on their separation power of signal

and background, but also the ability to use this selection cuts for modelling QCD
from data (see section 5.2) and the possibility to combine the obtained results with
other groups using a similar selection.

Once a set of variables has been chosen, the actual cut values have to be optimized.
A full optimization which is based on the final analysis (see chapter 5) is too time
consuming to be feasible. Instead, the significance of a counting experiment is
optimized.

4.4.1 Cut Optimization

The significance of a counting experiment is given by s = S/
√

B, where S is the
expected number of signal events and B the expected number of background events.
If B is affected by a systematical error ∆B, the significance becomes

s =
S

√

(∆B)2 + B
. (4.1)

The cuts are optimized for this significance using the number of signal and
background events in a specified region of Mtt̄, not the whole Mtt̄ range. This
allows to optimize the cut for different mZ′ separately and to compare the obtained
value with the final selection which aims to have a good significance for a large range
of mtt̄.

with the muon as jet constituent.
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Figure 4.5: Different observables for signal and backgrounds which could be
used for signal selection. On the left, the shapes of the variable is shown. On the
right, the cut efficiency as function of the cut value is shown. For the definition
of the variables, see main text.
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Figure 4.6: Distributions (left) and cut efficiencies (right) for different observables
for the muon.
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Directly maximizing the significance as a function of the cut values is a problem
for many minimization algorithms, as they use numerical derivatives of the objective
function, for example the widely used Migrad routine in the Minuit minimization
system [86]. Numerical derivatives are computed by evaluating the function in
nearby values. However, the number of signal and background events as function
of the cut values are non-continuous functions and the numerical derivatives will
either evaluate to zero, if the step did not modify the set of selected events, or change
the number of selected events even for infinitesimal changes of a cut value. Even
for minimization algorithms not using numerical derivatives, an objective function
constant in the neighborhood of some points can be a problem.

The solution can be seen easily if the cut procedure is formulated more generally
as a re-weighting procedure where events are re-weighted by a factor between 0 and
1. For cut values c1, . . . cn which cut on variables ~v = (v1, . . . vn), the weight factor for
a cut is given by2

w~c(~v) =

n∏

i=1

Θ(vi − ci) (4.2)

where Θ is the Heaviside step function. Now, Θ can be replaced by a smooth function
f, provided f behaves similarly, i. e. f is monotonically increasing, f(−∞) = 0 and
f(+∞) = 1. Then, the weight is re-defined as

w~c(~v) =

n∏

i=1

f(vi − ci). (4.3)

A function fulfilling those requirements is

f(x) =
1
2
(1 + tanh(x/b)) (4.4)

with b > 0. For b → 0, the Θ function is reproduced. Therefore, one has to choose
values for b which are not too small in order to get the desired numerical advantages.
For each dimension, b can have a different value, so equation 4.2 becomes

w~c(~v) =

n∏

i=1

1
2

(

1 + tanh
(

vi − ci

bi

))

. (4.5)

In order to obtain a smooth behavior for S/
√

B as a function of ~c, it is enough to
choose values for the bi which are in the order of the distance of two events in this
variable.

2Without loss of generality, only cuts which cut away the low region for each variable vi are
considered.
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However, if choosing bi appropriately, w can also be interpreted as the probability

that an event with measured variable values ~̂v passes the selection. This would
allow calculating efficiency errors for a selection. To see how this can be done,
the measurement ~̂v of the variable ~v is interpreted as the most probable value of a
posterior probability density in the variable space, p

~̂v(~v). The factorized approach
in equation 4.3 is equivalent with the assumption that this density factorizes in ~v.
Moreover, it is assumed that

p
~̂v(~v) = p0(~v − ~̂v) =: p(~v − ~̂v),

i. e. the posterior for measurements ~̂v and ~̂v′ are connected by a translation. This is
equivalent to choosing values for bi which are independent of ~̂v.

To determine a sensible interpretation for bi, consider the one-dimensional case.
If the measurement of the variable v̂ implies a posterior probability p(v − v̂), the
probability that the event passes the cut with a cut value c is

wc(v̂) =

∫∞

c

p(v − v̂) dv. (4.6)

And it follows
dwc

dv̂
(v̂) = p(c − v̂).

On the other hand (from equation 4.3)

dwc

dv̂
(v̂) = f′(v̂ − c).

Using f introduced in equation 4.4, the corresponding posterior probability density
is

p(c − v̂) = f′(v̂ − c) =
1

2b

d
dx

tanh(x)
∣

∣

x= v̂−c
b

=
1

2b
sech2 v̂ − c

b
.

The standard deviation σ of this distribution is3

σ =
π

2
√

3
· b.

This can be used to determine the value for the bi given the error on this variable as
standard deviation σi.

The errors modelled by this approach is the systematic uncertainty. However, those
uncertainties will usually not factorize for different variables. This dependence could

3Of course, one could also take a Gaussian distribution for the error model. However, this would
require a large number of numerical evaluations of the error function. The evaluation of tanh is
much faster, and was therefore chosen as f.
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be accounted for by generalizing this approach. However, as the results of a cut
optimization typically do not change very much for different values of the bi, and
the significance is a rough estimate anyway, such a generalization is not worthwhile.

As σi is the systematic uncertainty for the variable vi, the significance s from
equation 4.1 can be used as objective function for the optimization. The number of
selected background events B is given by the sum of the cut probabilities,

B =

Nbkg∑

k=1

w(~v(k)) =

Nbkg∑

k=1

n∏

i=1

f(v
(k)

i − ci),

where the sum runs over all background events, and the variables of event k are ~v(k).
Using the usual Gaussian error propagation in linear approximation, the error on B

due to the uncertainty in ~v
(k)

i is

(∆B)2 =

Nbkg∑

k=1

n∑

i=1

(

w(~v(k))

f(v
(k)

i − ci)
f′(v

(k)

i − ci)

)2

σ2
i. (4.7)

For the particular choice of f as in equation 4.4, straight-forward numerical evalu-
ation of f′(x)/f(x) is unstable for large negative values of x as both numerator and
denominator go to zero. This can be handled by appropriate cut-offs.

Another important point to address is the lack of Monte-Carlo statistics. This can
lead to cuts where no events are selected at all of a certain Monte-Carlo sample. As
discussed in section 4.4.3, a possible solution is to assume that one Monte-Carlo
event passed and interpret the background event yield as an upper limit.

To take this into account, (∆B)2 from equation 4.7 is modified by adding (∆BMC)2,
which accounts for the error from limited Monte-Carlo statistics:

(∆BMC)2 = nMC +
1

nMC + 1
, (4.8)

where nMC is the number of events passing the selection. In case of large nMC, this
is the usual poisson error. In case no event passes the selection, the error is one
Monte-Carlo event. This is done for each Monte-Carlo sample seperately; of course,
B and ∆B have to be weighted with the corresponding event weight for this sample.

Multiple Signal Scenarios In the present studies, the selection should be as indepen-
dent as possible of the invariant tt̄ mass, mtt̄. However, this goal is hardly achievable
with a common cut-based selection as the event topology changes with mtt̄. Of
course, it would be possible to optimize selections independently for different mtt̄,
maybe even based on different observables. However, it would then be necessary
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to have a working data-based QCD model (see section 5.2) for each mass point that
was optimized. While this might be achievable in principle, it seems better to wait
until it can be shown which methods work with real data before adding so much
complexity to the analysis.

So the question is how to optimize the selection for a large mtt̄ interval of mtt̄, say,
the range of available Z′ samples 1 TeV . mtt̄ . 3 TeV.

Taking simply a mixture of all three Z′ samples with equal weight and optimizing
S/

√
B does not lead to satisfactory results, as the significance would be dominated

by the sample with mZ′ = 3 TeV. Giving the samples with higher mZ′ lower weights
still might yield undesirable results, as it is not guaranteed that the optimization
simply cuts away a whole sample.

Of course, the sensitivity is always better if optimizing for a specific mtt̄ instead of
a large mtt̄ interval. So after optimizing the selection for the mtt̄ interval, a natural
question is to quantify the loss of sensitivity of this optimization, compared to an
optimization for a specific mtt̄.

In the following, s(mZ′ , c) denotes a measure of the sensitivity for discovering Z′

with mass mZ′ , given the selection cuts c.
To address both, the optimization for a mtt̄ interval and quantifying the loss of

sensitivity, following algorithm seems suitable:
1. Optimize the cuts for all mZ′ individually. This yields a set of optimal cut

values ĉ(mZ′) and the maximum significance for each Z′ mass, ŝ(mZ′) :=

s(mZ′ , ĉ(mZ′)).
2. Define the relative significance r(c) of a cut c as

r(c, mZ′) =
s(mZ′ , c)
ŝ(mZ′)

. (4.9)

It compares the sensitivity of the cut c to the optimal cut optimized for the
individual sample. Now, search for the cut c which maximizes the minimum

relative significance, i. e. the cut which maximizes l(c), defined as

l(c) = min
Z′

r(c, mZ′), (4.10)

where Z′ runs over all three Z′ samples.
The second step yields both, a cut that can be used for an mtt̄ interval and a

quantification of how much significance degrades by applying a global cut instead of
optimizing individually for each mZ′ .

4.4.2 Cut Optimization Results

The optimization is run on the same variables as the final selection discussed in
section 4.4.3. For the optimization, uncertainties for the variables have to be chosen.
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The uncertainties for jet pT , 6ET and HT ,lep are dominated by jet energy scale uncer-
tainty. This is assumed to be 10 % (see section 5.4). Therefore, values corresponding
to about 10 % for the resulting cuts are chosen. An error corresponding to about 10 %
was also chosen for the other cut variables. However, the total error is dominated by
Monte-Carlo statistics and the assumed uncertainty has only insignificant impact on
the optimization result. Therefore, no attempt to determine more accurate errors was
made.

The variables are (with the assumed systematic uncertainty in paranthesis):
1. the primary lepton’s transverse momentum, pT ,µ (3 GeV)
2. the leading jet’s transverse momentum, pT ,lead (30 GeV)
3. HT ,lep (30 GeV)
4. a “2D-cut” on ∆R(µ, j) (0.05) and pT ,rel(µ, j) (3 GeV) which only retains events

where the muon has a value above some threshold in at least one of those
variables, and

5. a Z veto: a cut on the invariant mass of two leptons of same flavor and opposite
charge where the mass is in a window around the Z mass of 91.2 GeV.

The Z veto cut was fixed to a window width of 10 GeV in order to reduce the number
of free variables in the fit. An optimization of this cut shows that this is always
close to the optimal value, independent of other cuts. The cut of the lepton pT was
fixed to 20 GeV to have a save margin from the used muon trigger (see section 4.4.3).
Optimizing it simultaneously with the other cut variables always yielded the lowest
allowed value.

The cut values of the optimization are shown in table 4.8. As expected, the selection
imposes higher cuts on pT and HT ,lep for large mZ′ . The resulting expected signal
and background events are given in table 4.9.

After optimization of the individual samples, an optimization for all mZ′ is carried
out by maximizing the minimum relative significance as discussed in the previous
section, using the minimum relative significance defined in equation 4.10 as opti-
mization criterion. This “global” optimization yields a relative significance of 0.74
for all three mZ′ .

For comparison, the significance of the final selection is given in table 4.10.

4.4.3 Final Selection

The variables which are used in the selection are listed in the previous section. The
final selection applies following cuts in addition to the pre-selection:

• pT ,µ > 25 GeV,
• pT ,lead > 260 GeV,
• HT ,lep > 200 GeV,
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mZ′ in TeV HT ,lep in GeV pT ,lead in GeV 2D-cut (∆R, pT ,rel in GeV)

1 166 282 (0.40, 35.0)

2 185 679 (0.40, 35.2)

3 319 716 (0.003, 35.0)

global 190 374 (0.35, 34.9)

Table 4.8: Results of the cut optimization if optimizing the Z′ samples individu-
ally and for a global optimization maximizing the minimum relative significance
as discussed in section 4.4.1.

mZ′ in TeV S B S/
√

B

1 58±0.95 200±4.9 3.8
2 69±1.6 2.6±1.1 36
3 100±1.4 0.84±0.98 75

Table 4.9: The expected number of signal events S and background events B for
the optimized cuts from table 4.8. S, B and S/

√
B are determined counting the

number of events with a reconstructed mass Mtt̄ within mZ′ ±300 GeV, including
the background error according to equations 4.7 and 4.8. For Z′, σB = 10 pb is
used. The significance is calculated the same way as in table 4.7.

rel. significance compared to selection

mZ′ in TeV S B S/
√

B optimized standard model

1 53±0.91 193±4.3 3.6 0.95 1.7
2 114±2.0 27±1.8 21 0.58 3.2
3 102±1.4 3.9±1.1 45 0.60 4.5

Table 4.10: The significance S/
√

B for the final selection as decribed in sec-
tion 4.4.3, calculated as in table 4.8. The relative significance is defined as the
ratio of the significance obtained here divided by the significance from another
selection. Selections considered for comparison are the cuts optimized individu-
ally for the different Z′ samples (see table 4.8) and the standard model selection
discussed in section 4.3 (see table 4.7).
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• for the 2D-cut pT ,rel(µ, j) > 35 GeV or ∆R(µ, j) > 0.4,
• the Z veto with a window of 10 GeV, and
• the muon trigger HLT_Mu15.
The final selection has been developed before a detailed study of the optimization

and was done using a standard model tt̄ sample with mtt̄ > 1 TeV. As the cross
section is steeply falling in mtt̄, this sample roughly corresponds to mZ′ = 1 TeV.
Accordingly, the relative significance of the final selection is close to the optimized
selection for mZ′ = 1 TeV which can be seen in table 4.10. This is also the reason of
values for the 2D-cut values and the cut on pT ,lead are close to the optimized values
for mZ′ = 1 TeV. The cut value for HT ,lep was chosen higher than optimal, as a sample
with an inverted HT ,lep cut is used for building the likelihood function for the analysis
(see section 5.2) and a larger region for this inverted cut in HT ,lep is more robust.

The cut on pT ,µ > 25 GeV is purely historical and will probably relaxed in the
future.

The performance of the selection compared to a standard model selection is very
good: as shown in the last column of table 4.10, S/

√
B raises by a factor of over 3 for

mZ′ > 2 TeV. This is because fewer events have four or more jets (as required by the
standard model selection) for large mZ′ . But also for mZ′ = 1 TeV, where the event
topology is more standra model like, S/

√
B is much larger.

The trigger efficiency for different triggers if all other cuts of the final selection are
applied is shown in figure 4.7. In this study, the high level trigger HLT_Mu15 is used
which requires a muon with pT > 15 GeV. This trigger has no requirement on muon
isolation and has a high efficiency for a large range of mtt̄. As jets with large pT are
expected, it would also be possible to use jet triggers. For example, HLT_DiJetAve70

triggers on the presence of two jets with an average corrected pT > 70 GeV. It can
also be seen that the efficiency of a trigger for isolated muons, HLT_IsoMu11, is
decreasing in mtt̄, as expected.

The number of expected events and the selection efficiency after applying the
selection is given in table 4.11. For QCD, enough statistics is available for the two
high p̂T bins (p̂T > 250 GeV) but for the lower p̂T bins, no event passed the selection
and given the high weight, the question is how to interpret zero passing events.
The limit given in the table assumes that the selection efficiency for the lowest p̂T

sample is actually zero and that an upper limit for the selection efficiency of the
second lowest p̂T sample is one passing Monte-Carlo event. Both assumptions are
now discussed.

An upper limit on the number of expected events for the lowest p̂T bin is derived
assuming that for QCD, HT ,lep and the 2D-cut are independent if applying the final
selection except for those two cuts (see also QCD estimation in section 5.2, where
this assumption is checked). In this case, the selection efficiency of applying the last
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Figure 4.7: Trigger efficiency as function of the generated tt̄ mass. The efficiency
is calculated with respect to the final selection.

two cuts is given by the product of the selection efficiencies of the two cuts applied
individually. This yields an upper limit of 0.1 expected events for the final selection
and can be neglected.

The estimation of upper limits on the selection efficiency if no Monte-Carlo event
passed the selection can be derived using Bayesian statistics using a flat prior for the
selection efficiency [87]. This yields an upper limit of − ln(1 −α) passed Monte-Carlo
events at confidence level α in the limit of large Monte-Carlo samples (N & 100).
Assuming one passed Monte-Carlo events cooresponds to α = 0.63 which seems
reasonable.

A stack plot for the processes after the final selection is shown in figure 4.8. The
expected numbers of events for signal and background in a mass window in Mtt̄

were already given in the last section in table 4.10.

4.5 Selection with the Top Jet Algorithm

As discussed in section 3.6, the top jet algorithm can be used to reconstruct hadroni-
cally decaying top quarks with high momentum.

The top jet algorithm can be used for event reconstruction, especially for tt̄ events
in the full hadronic channel [88]. In principle, this is possible for this study as
well. However, a comparison with the other methods developed here is much more
difficult. Furthermore, the leptonically decaying top quark, including 6ET , should
then be reconstructed using the same jet algorithm and jet corrections, for reasons of
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process expected events efficiency

QCD < 7.4 < 1.5 · 10−6

W+jets 144 7.7 · 10−3

Z+jets 8.9 2.9 · 10−3

single top 6.3 5.0 · 10−3

tt̄, semileptonic µ 85 0.010
tt̄, other 40 0.005

Z′, mZ′ = 1 TeV, semileptonic µ 57 0.24
Z′, mZ′ = 2 TeV, semileptonic µ 137 0.55
Z′, mZ′ = 3 TeV, semileptonic µ 150 0.60

Z′, mZ′ = 1 TeV, other 18 0.06
Z′, mZ′ = 2 TeV, other 66 0.16
Z′, mZ′ = 3 TeV, other 77 0.17

Table 4.11: Expected events and selection efficiency after applying the final
selection. The efficiency is calculated with respect to the pre-selection defined in
section 4.2. The assumed cross section for Z′ is σB = 10 pb.
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Figure 4.8: The expected number of events for different Mtt̄ after applying the
final selection for L = 200 pb−1. The cross section for Z′ is σB = 10 pb. Unlike
figure 4.4, no scaling of the signal is performed.
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consistency. Therefore, in the present study, the top jet algorithm is used for event
selection only.

The selection requires one top jet, the other variables are optimized for the indi-
vidual Z′ samples as outlined in section 4.4.2. The result can be seen in tables 4.12
and 4.13. The performance for mZ′ = 1 TeV is worse. This is expected since the top
jet reconstruction efficiency at top quark pT ≈ 500 GeV is low which can be seen
in figure 3.4. For all mZ′ , the statistics for the background Monte-Carlo sample is
clearly becoming the limiting factor for an estimate of the significance. Therefore, no
global optimization has been attempted and no relative significances are given.
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Figure 4.9: The expected number of events after applying a selection requiring
one top tagged jet, HT ,lep > 200 GeV and pT ,rel > 25 GeV. For Z′, σB = 10 pb was
used.

mZ′ in TeV HT ,lep in GeV pT ,lead in GeV 2D-cut (∆R, pT ,rel in GeV)

1 118 235 (0.36, 22.5)

2 237 458 (0.30, 33.2)

3 262 50 (0, 0.4)

Table 4.12: Results of the cut optimization of the selection using the top jet
algorithm for different Z′ samples.

As an example, the resulting Mtt̄ distribution is shown for a relatively loose
selection in figure 4.9.
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mZ′ in TeV S B S/
√

B

1 9.1±0.4 7.6±1.2 3.0
2 43±1.2 0.66±0.98 34
3 52±1.0 0.14±0.96 50

Table 4.13: The expected numbers of signal and background after the optimized
top jet selection. S, B and S/

√
B are calculated as in table 4.8, for L = 200 pb−1

and σB = 10 pb. The relative significance is not given here, as a meaningful
comparison is hardly possible due to limited Monte-Carlo statistics.

To circumvent the problem of limited Monte-Carlo statistics, one can assume that
the “mistag rate” ǫ, i. e. the probability of identifying a jet errornously as top jet,
depends only on the transverse momenum of the jet pT and is independent of all
other observables of the event. Plans exist of how to measure this mistag rate using
data-driven methods [88]. Once this rate is measured, a pre-selected sample of data
(or Monte-Carlo) which would usually undergo the selection of “exactly one top tag”
would instead be weighted by 1 − 2ǫ1ǫ2 where ǫ1 and ǫ2 are the mistag probability
of the two leading jets, assuming that there are not more than two hard jets in the
event.

However, at the time the present study was conducted, this method was not yet
available and was therefore not considered here. Besides, it would be necessary to
verify that the mistag rates determined in [88] for the all hadronic channel are valid
for the muon+jets channel. This is not self-evident, as the flavour composition of jets
changes for a selection with a reconstructed muon and the mistag rate in turn could
depend on jet flavour.
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The final goal of the present study is to establish upper limits on the cross section of
Z′ times branching ratio in tt̄ for different mZ′ . How to determine those limits is the
topic of this chapter.

First, the model used to describe the data and the likelihood function is introduced
in section 5.1.1, followed by a discussion about how to construct confidence intervals
using the likelihood function. There are several ways to do that. In section 5.1.2,
an approximate frequentist approach is presented and section 5.1.3 introduces the
Bayesian method. For the actual calculation of Bayesian confidence intervals, an
efficient algorithm for numerical integration in high dimensions is required. The
algorithm used here, Markov chain Monte-Carlo, is discussed in section 5.1.4.

The construction of the likelihood requires estimating probability densities for
a variety of processes. While this can be done with Monte-Carlo in many cases, a
method is presented to estimate the required quantities for QCD using only few
assumptions from Monte-Carlo in section 5.2. The limits with this methods are given
in section 5.3.

Finally, sources for systematic uncertainties are discussed in section 5.4.1, how they
are incorporated into the statistical methods in sections 5.4.2 and 5.4.3, and finally
the results in section 5.5.

5.1 Statistical Method

5.1.1 Model and Likelihood Function

A model means specifying the probability to observe a given number of events with
a certain distribution, as function of the parameters of the model. The parameters of
the model include the signal cross section for which an upper limit shall be derived.

In this case, the model is given by

p(~x, N|~β) =
ν(~β)Ne−ν(~β)

N!

N∏

j=1

p(xj|~β), (5.1)

where ~x contains the observables of all events, N is the number of observed events, ~β

are the parameters of the model. The first term on the right hand side is the Poisson
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probability to observe N events with a mean of ν(~β) and p(x|~β) is the probability
density of observing a single event at x.

The model is fully specified if ν(~β) and p(x|~β) are given.
The expected number of events ν(~β) can be written as the linear combination of

the expected number of events of all contributing processes:

ν(~β) =

n∑

i=1

βiνi, (5.2)

where the sum runs over all n considered processes and νi is the theoretically
predicted number of events for process i. With this definition, βi is the ratio of the
measured and the theoretically predicted cross section,

βi =
σi

σi,pred
.

Accordingly, p(x|~β) is given by

p(x|~β) =
1

∑
j βj

n∑

i=1

βipi(x) (5.3)

where pi(x) is the probability density for variable x for process i.
The predictions for the number of events νi and densities pi(x) for a process i

are derived from Monte-Carlo: νi is the number of remaining events after applying
the selection for the considered luminosity and an estimate for pi(x) is given by a
normalized histogram of the variable.

In the following, process i = 1 is the process to determine the cross section for, i. e.
the Z′ process, and ν1 is the number of expected events for σB = 1 pb. Given data, a
statement about the true value of σB, or equivalently β1, shall be derived. In order to
do that, first define the Likelihood function of ~β, given data ~x:

L(~β|~x) := p(~x|~β). (5.4)

The likelihood function is a function of the parameters ~β for fixed ~x, while p(~x|~β) is
a density in ~x for fixed ~β.

How the likelihood function can be used to determine upper limits is subject to
the next two sections.

5.1.2 Profile Likelihood and Classical Confidence Intervals

Consider a hypothesis test at significance level1 α where the null hypothesis H0 is that
~β lies in some subset A and the alternative hypothesis H1 is ~β 6∈ A. For example,

1The significanc level for a hypothesis test is the probability of rejecting the null hypothesis when
the null hypothesis is true.
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~β ∈ A represents the model without signal, A = {~β|β1 = 0}.
Then, define the likelihood ratio as

λ(~x) =
sup~β∈A

{L(~β|~x)}

sup~β
{L(~β|~x)}

. (5.5)

If ~x is distributed according to a model with ~β ∈ A, then, in the limit of a large
number of events N, −2 ln λ(~x) converges towards a χ2 distribution with the number
of degrees of freedom is given by n − dim(A), the difference of dimensionality of the
sets the likelihood ratio is calculated for. In the case of a signal search, A represents
the hypothesis with a fixed cross section β1 and therefore k = 1.

This asymptotic property can be used for the mentioned hypothesis test. For given
data ~x, −2 ln λ(~x) is calculated. A larger value means less compatibility with H0.
Now, the null hypothesis is rejected if the probability of obtaining a value larger than
the measured one assuming H0, is less than the significance level α.

The 1 − α quantile of the χ2
k cumulative distribution, y0, defines the critical region:

if −2 ln λ > y0, the null hypothesis is rejected. The probability of rejecting H0, if it is
true, is α, as desired. Note that the value of y0 does not depend on the likelihood
function but only on k and α.

To construct confidence intervals for the signal cross section β1, choose a fixed α,
say α = 0.05, and construct the so-called profile likelihood function in β1,

L̂(β1|~x) = max
{β2,...βn}

L(~β|~x). (5.6)

Now, for each fixed value of β1, the hypothesis test is carried out as described above,
where the null hypothesis H0 is the hypothesis that the signal cross section is given
by β1. Given data ~x, the set of values of β1 for which the null hypothesis is not

rejected is the confidence interval for β1 at the confidence level 1 − α.
More generally, a confidence interval for the parameter β1 at confidence level 1 − α

is defined as an interval (θ1(~x), θ2(~x)) with the property that the true value of β1 is
contained in the interval with probability 1 − α for all true values of β1.

5.1.3 Bayesian Statistics

Here, another method is also used to construct confidence intervals,2 the so-called
Bayesian method. Before applying this method to the model, a brief review of how
the Bayesian view differs from the frequentist is in order.

2Note that the intervals are not strictly confidence intervals in the sense defined above. Rather, they
express a degree of belief, as will be discussed.
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In traditional or frequentist statistics, probability of an event A is defined as the
ratio p(A) = NA/N in the limit of an ensemble consisting of an infinite number of
experiments N where event A is realized NA times. If estimating a true parameter βt,
it does not make sense to assign a probability to different values of βt because there
is only one true value, and the ensemble definition is not applicable. A procedure
for deriving a confidence interval [β1, β2] for the true value βt at a given confidence
level α must ensure that the coverage probability3 is α for all possible values of βt,
particularly for the one true (yet unkown) value.

In Bayesian statistics, on the other hand, the definition of probability is extended
and refers to the degree of belief. With this definition, it is reasonable to specify a
probability for the true value βt. As will be discussed below, one has to make a-priori
assumptions for the value of βt in order to determine the posterior density p(βt) for
the true value βt with data. This a-priori assumption is a probability density π for
βt. It expresses the degree of belief about the possible values of βt before analyzing
the data. The main criticism on the Bayesian approach is that the choice of π is
not “objective”. A Bayesian confidence interval with confidence level α for βt is an
interval with posterior probability α. Frequentist coverage properties of this interval
are not guaranteed.

To apply the Bayesian definition, the posterior probability density for the true value
of ~β, ~βt, has to be derived, given some data ~x. This is done using Bayes’ Theorem,

p(~βt|~x) =
p(~x|~βt)π(~βt)

p(~x)
, (5.7)

where p(~x) is merely a factor of normalization which ensures that the right hand
side is a proper probability density. p(~x) can be formally written as

p(~x) =

∫

p(~x|~βt)π(~βt) d~βt. (5.8)

p(~x|~βt) is the probability to observe ~x, given ~βt, so it is just the model as introduced
in equation 5.1. π(~βt) is the prior for ~βt.

It is not necessary for the prior π to be an actual probability density, as π only
appears together with the model probability p(~x|~βt). If the model probability is
falling fast enough for large ~βt, the value of π becomes unimportant. It is therefore
often possible to choose a flat prior in the parameter of interest. The signal cross

3The coverage probability is the probability of the true value being contained in the given interval,
p(β1 6 βt 6 β2).
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section is determined by β1. For this parameter, define its prior

π1 := 1,

assuming that the total prior factorizes,

π(~βt) =

n∏

i=1

πi(βi,t).

As the denominator of the right hand side of equation 5.7 is merely a constant of
normalization, the posterior density in case of flat priors can be written as

p(~βt|~x) ∝ p(~x|~βt) = L(~βt|~x), (5.9)

where L is the likelihood function introduced in equation 5.4.
Given some data ~x, the upper limit on β1 at confidence level α, β̂α

1 , is defined via
the marginal probability of β1,

p(β1|~x) =

∫

p(~β|~x) d(β2, . . . βn),

such that
∫ β̂α

1

−∞

p(β1|~x) dβ1 = α.

This integration can only be done numerically. A straight-forward numerical
integration algorithm of a function f(x) over a set A ⊆ Rn is to select N evenly
distributed random points xi from A and evaluate

IN :=
λ(A)

N

∑

i

f(xi), (5.10)

where λ(A) is the Lesbegue measure of A. However, if |f(x)| is large for a small
subset B ⊂ A and small otherwise, the error on IN will be large.

The solution is to select xi non-uniformly, as discussed in the next section.

5.1.4 Metropolis-Hastings Markov Chain Monte-Carlo

The original Metropolis algorithm was applied to calculate numerical integrals over
the configuration space of a statistical ensemble in order to evaluate thermodynamical
quantities. If done using the microstate, the observables have to be weighted with the
Boltzmann factor exp(−E/kT) for each microstate and the convergence of an integral
evaluated using the ansatz in equation 5.10 is not good. The idea was, “instead
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Figure 5.1: Markov chains running on a 2D normal distribution with width
one centered at zero. The jump kernel q is Gaussian for all three cases, with
different widths σq: σq = 50 for the left plot, σq = 0.01 for the central plot, and
the optimal width σq = 2.38/

√
2 (according to equation 5.11) for the right plot.

The chain length was n = 50 000 for all three chains.

of choosing configurations randomly, then weighting them with exp(−E/kT), we
choose configurations with a probability exp(−E/kT) and weight them evenly.” [89]

This method was generalized with Markov chains by Hastings [90].
The algorithm produces a sequence of points x1, . . . xN which are distributed

according to a probability density f(x). The procedure is as follows:
1. Choose x1 randomly.
2. Determine a proposed x′ = xi + y where y is chosen according to a symmetric

probability density function q(y), called “jump kernel”.
3. If f(x′) > f(xi), accpect x′ and set xi+1 = x′.
4. Otherwise, accept x′ only with probability f(x′)

f(xi)
.

5. If x′ is not accepted, set xi+1 = xi.
6. Go to 2.

The resulting sequence x1, . . . , xN is a Markov sequence as the conditional distribution
p(xi|x1, . . . xi−1) depends only on xi−1. With standard results from the theory of
Markov chains, it can be shown that if q(y) is chosen such that the probability to
reach any point in a finite number of steps is non-vanishing, then the sequence
x1, . . . xN is distributed according to f(x) [91].

The remaining part of this section addresses the question of how to choose an
appropriate jump kernel q and chain length N.

Choosing q Define the acceptance rate of a chain as proportion of i for which
xi 6= xi+1. A low acceptance rate means that f is small for the proposed x′

i+1 for these
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cases. Clearly, low acceptance rates are to be avoided because only very few points
with high multiplicity are in the chain. This case is shown as first plot in figure 5.1.
The acceptance rate for this chain was 3.4 · 10−4.

On the other hand, if the acceptance rate is very high, it means that f is essentially
flat in the sampled region. This should be avoided as well as the chain is effectively
a random walk covering only a volume ∝

√
N. In this case, the chain length N has to

be very high to sample enough points from the tails of f. This case is shown in the
middle of figure 5.1 where the chain had an acceptance rate of 99.3%.

In [92], the optimal width for a Gaussian kernel q is derived by maximizing the
diffusion speed of the chain in the limit of infinitely many dimensions. It yields a
simple result for the optimal standard deviation for q, σq:

σq =
2.38 · σf√

d
, (5.11)

where σf is the standard deviation of f and d is the number of dimensions. As one
would expect intuitively, the scale of q is in the same order of magnitude as the scale
of f. The asymptotic acceptance rate in this limit is 23.4%.

This value for σq was used for the right plot in figure 5.1. The acceptance rate in
this case was 18.2%.

Usually, σf is not known a-priori. However, it can be determined iteratively by
using a rough estimate for σf for a first chain and subsequently using the variance of
the previous chain to estimate σf and running a new chain with a value of σq chosen
according to equation 5.11 for the next chain. This is repeated until the estimate for
σf converges.

It would also be possible to make “online-updates” for σq in the sense that σq for
the jump attempt xi → xi+1 is chosen based on the historical chain x1, . . . , xi. While
this might work well in practice, the resulting chain is not a Markov chain and thus
has not automatically the proven convergence property. Therefore, no online update
mechanism is used here.

In more than one dimension, the squared standard deviation of f is replaced by
the covariance matrix of f. In this case, a multivariate normal distribution can be
used for q with the covariance matrix from f, which is estimated iteratively as in the
one-dimensional case discussed above.

Choosing a value ~y = (y1, . . . yd) according to the multivariate normal distribution
with covariance matrix V is done by computing the Cholesky decomposition of V ,

V = LLt,

where the matrix L is lower-triangular, and setting

~y = L~n
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where the components of ~n are distributed independently according to a normal
distribution with mean zero and standard deviation one.

Choosing independent random variables distributed according to a normal dis-
tribution is a standard problem for pseudo-number generators. Here, the efficient
Ziggurat method [93] which uses uniformly distributed random numbers as input.
For that, a fast tausworthe random number generator [94] with seeding modifications
described in [95] is used, as implemented in [96].

Choosing N For the present studies, the Markov chain is used to estimate the 95%
upper quantile of the marginal distributions for the component representing the
signal cross section.

The number of iterations N should be large enough to estimate the quantile q to
satisfactory approximation. Unfortunately, the typical “1/

√
N” error cannot be used

for Markov chains, as the sequence is correlated by construction.
In [97], an algorithm is presented to determine the number of iterations necessary

for estimating the quantile q for a given value x0, at a desired level of precision r. To
determine the 95% upper confidence limit, first a long Markov chain is created and
the 95% quantile in the parameter of interest is chosen as x0. Then, the algorithm is
used to estimate the number of iterations necessary to achieve the desired precision
for q.

The main idea is to construct a new sequence zi by setting

zi =

{
1 if xi 6 x0

0 otherwise.

Note that zi is not a Markov chain. However, the “thinned” chain z
(k)

i constructed
by taking every k-th element of the original chain zi, will behave like a Markov chain,
if k is large enough. For such a k, the sequence z

(k)

i is described well by a Markov
chain consisting of only two states, zero and one. For this chain, it is possible to
estimate and extrapolate the error on the quantile q, which has a 1/

√
Nk behavior

(where Nk is the length of the chain z
(k)

i , N/k).
The only task remaining is to find the smallest k such that z

(k)

i behaves like a
Markov chain. In order to do that, the Bayesian Information Criterion (BIC) [98] is
applied. This criterion can be applied more generally to choose between different
models which have a different number of free parameters. In this case, the BIC is
applied to compare two models describing the behavior of the chain z

(k)

i : a first-
order Monte-Carlo model and a second-order Monte-Carlo model. The smallest k is
selected for which the first-order model is preferred by the BIC.
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Figure 5.2: Definition of the QCD sideband region. The QCD shape for Mtt̄

in the final selection and the QCD shape for HT ,lep for the low HT ,lep region are
modelled with events from the shown QCD sideband region.

Now, the Markov chain algorithm can be used to determine upper limits on the
signal cross section using the posterior density. However, before doing so, consider
an alternative method for estimating the densities p(x, N|~β) in equation 5.1 for QCD.

5.2 Data-driven QCD Modelling

As discussed in section 5.1.1, density estimates for the probability densities in Mtt̄ and
the number of expected events after the final selection are required for all processes
to calculate the likelihood function. These predictions can be made by applying the
analysis on Monte-Carlo data and filling the remaining events in histograms, which
are used as the density estimates.

However, QCD models based on Monte-Carlo information only for an event
selection requiring reconstructed leptons are usually not very reliable. Therefore,
a data-driven model is desirable which predicts the number of events and the
distribution of Mtt̄ for the QCD process in the region of the final selection.

Estimating the Mtt̄ distribution To estimate the Mtt̄ distribution for QCD in the
signal region, the 2D-cut in the final selection is replaced by the following cut (see
left plot in figure 5.2):

1. Require ∆R(µ, j) < 0.4 and pT ,rel(µ, j) < 35 GeV. This ensures that there is no
overlap between the final selection and the selection for this QCD sideband.

2. Require ∆R > 0.1.
Then, Mtt̄ is calculated for each event in this QCD sideband. The resulting distribu-
tion is used as an estimate of the Mtt̄ distribution in the signal region.

This method assumes that
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Figure 5.3: HT ,lep and Mtt̄ distributions for the QCD sideband and the final
selection. The HT ,lep distribution in the QCD region is obtained by inverting the
HT ,lep cut in the QCD region. For the QCD sideband, all processes have been
added, for the final selection, only QCD events are shown.

1. the sideband is highly QCD-enriched and
2. the Mtt̄ distributions in the sideband region and the final selection are very

similar, i. e. Mtt̄ and the 2D-cut are independent.
The first assumption can be checked by subtracting the other background processes

which are presumably well described by Monte-Carlo. For Monte-Carlo, the QCD
purity in the sideband is larger than 97%.

The second assumption is valid for Monte-Carlo, as shown in figure 5.3. Of course,
this plot cannot be made with data. As a cross-check on data, different variations
of the 2D-cut values can be applied to verify that Mtt̄ is independent of the 2D-cut.
However, this can only be done in the QCD sideband where the other backgrounds
are negligible. So the independence of Mtt̄ and the 2D-cut is an assumption that
cannot be easily checked with data and so far only relies on Monte-Carlo.

Estimating the number of QCD events To estimate the number of QCD events
after the final selection, NQCD, the HT ,lep cut is inverted to HT ,lep < 200 GeV. This
sample does not only contain QCD events, but also events from the the other samples
W+jets, Z+jets, tt̄, and single top. The distributions for W+jets, Z+jets, tt̄, and single
top are taken from Monte-Carlo, the distribution for QCD is taken from the QCD
sideband region with an inverted HT ,lep cut.

As one is not interested in deriving the number of events for all processes individu-
ally, similar Monte-Carlo distributions are added to caclulate the likelihood function.
This is done for W+jets, Z+jets, and single top which are combined to a “V+jets”
distribution.

The HT ,lep distibution of the events in the low HT ,lep region is used to construct a
likelihood term with the distributions as described. This term mainly constraints the
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Figure 5.4: The Mtt̄ distribution after the final selection and the HT ,lep distribu-
tion in the low HT ,lep region, used for the final likelihood function.

number and ratio of QCD and V+jets events.

The final likelihood function for N observed events ~x is

L(~β|~x, N) =
ν(~β)Ne−ν(~β)

N!
G(βtt̄, ∆tt̄)

2∏

v=1

Nv∏

j=1

pv(xv,j|~β)

ν(~β) =

n∑

i=1

βiνi

pv(xv|~β) =
1

∑n

i=1 βi

n∑

i=1

βipv,i(xv)

(5.12)

where n is the number of processes, v runs from 1 to 2 and denotes the variable type
(Mtt̄ and HT ,lep), and Nv is the number of events for the respective variable.

G(βtt̄, ∆tt̄) is a Gaussian in βtt̄ centered at one with width ∆tt̄. It is a constraint
on the tt̄ cross section. Here, ∆tt̄ = 0.2 was chosen. For the actual analysis, a tt̄ cross
section measurement can be used for ∆tt̄.

Note that such a “constraint” is also valid in frequentist statistics. For this case,
consider an analysis which is the same as the one presented here but determines at
the same time the tt̄ cross section in an appropriate tt̄ sideband, in analogy with the
QCD sideband. This new likelihood function as function of the tt̄ cross section alone
is now approximated by the Gaussian in equation 5.12. This interpretation of the
constraint will also be useful later, when incorporating the systematic uncertainties
in the analysis and the interpretation of the uncertainty ∆tt̄ has to be addressed.

In summary, a method was developed to estimate the number of events for all
background processes and their distribution in Mtt̄ for the signal region. The
assumptions entering this method which still rely on Monte-Carlo are:
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1. For standard model tt̄, the distribution for HT ,lep region and for Mtt̄ is known,
as well as the number of events.

2. W+jets, Z+jets and single top have the same known distribution for Mtt̄ and
for HT ,lep. No assumption is made about the cross section.

3. For QCD, the 2D-cut and Mtt̄ as well as the 2D-cut and HT ,lep are independent.
No further assumptions about the shape or the cross section is made.

4. For the Z′ signals, the distribution in HT ,lep and Mtt̄ is known.

5.3 Results

Given data, it is now possible to calculate the likelihood function as described in
the previous section. From the likelihood function, a limit can be derived by the
profile likelihood method discussed in section 5.1.2 or by posterior marginalization as
motivated in section 5.1.3 with the Markov chain algorithm presented in section 5.1.4.

As real data is not yet available, the method is tested with pseudo-data. This
data is generated according to the model in equation 5.12 at the expected rate at the
scenario of L = 200 pb−1. No signal events are generated in this case.

With a set of pseudo-data, the limits can be determined as discussed in sec-
tions 5.1.2 and 5.1.3. In order to have a reasonable estimate for an average case of data,
many pseudo-experiments are conducted, yielding a distribution of upper limits.
From this distribution, the median is cited as expected limit and the 16% and 84%
quantiles as the one-sigma errors.

The results for the profile likelihood method and the Bayesian method are shown
in table 5.1. The pseudo-data is drawn at nominal expectation for all processes,
except tt̄ for which the expectation is shifted randomly according to the constraint,
i. e. according to a Gaussian with relative width of 20%. For the likelihood method,
300 pseudo-experiments were conducted and 1 000 for the Bayesian method.

5.4 Systematic Uncertainties

So far, it has been assumed that the input of the model can be determined with high
accuracy. This requires in particular that the Monte-Carlo generation of the processes
and the detector behave like implemented for the used samples. However, both the
theoretical description of the physical processes and the event reconstruction are
affected by systematic uncertainties. How those uncertainties can be accounted for in
the analysis is the topic of this section.

First, possible sources of systematic uncertainties are discussed. Then, their
incorporation is discussed for both presented methods and the resulting expected
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upper limit on σB in pb

Z′ mass in TeV likelihood method Bayesian method

1 6.4+3.4
−2.3 6.4+1.2

−2.0

2 0.73+0.46
−0.32 0.76+0.14

−0.22

3 0.24+0.18
−0.08 0.31+0.05

−0.08

Table 5.1: Expected upper limits and 1σ errors for narrow Z′ resonances assum-
ing L = 200 pb−1 and no signal. For an explanation of the statistical methods
used for derivation of the limits, see sections 5.1.2 and 5.1.3.

upper limits.

5.4.1 Sources of Systematic Uncertainties

Several sources of systematic uncertainties are considered in this study. For most
systematic uncertainties, not all Monte-Carlo samples are available. The studied
systematic uncertainties and the included samples are

• jet energy scale for all samples
• scale of αs for W+jets and tt̄

• modelling of extra partons for W+jets and tt̄

• initial and final state radiation for tt̄

The “strength” of a systematic uncertainty i can be parametrized by a parameter
δi which is zero if the systematic does not apply and ±1 for the 68% confidence level
interval of the assumed uncertainty. To study the effect of systematic uncertainties,
Monte-Carlo samples are created for which exactly one δi is set to either +1 or −1
and the other δj are set to zero. How the samples were produced and what δi = ±1
means physically is explained for each systematic.

Note that the exact choice of parameters which are assumed to cover 68% is
conventional and arbitrary to a large extent. The given numbers have been used for
the officially produced Monte-Carlo samples for CMS-wide use. The only exception
is the jet energy scale uncertainty as this does not require a new Monte-Carlo
production. Over the last months, an (implicit) agreement on the strength of this
uncertainty has evolved within the top working group which is taken for this study
as well.

Jet energy scale (JES) As discussed in section 3.5.4, the jet energy corrections will
be derived from data. To reach high accuracy (especially for high pT ), this requires a
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large integrated luminosity. A jet energy scale uncertainty of ±10 % is assumed. To
derive the shifted distributions, the four-momenta of all jets are scaled by 1.1 for δ = 1
or 0.9 for δ = 0.9. Through equation 3.2, 6ET depends on the jet energy corrections.
This is considered by first adding the transverse momenta of the jets to 6~ET , shifting
the jets and 6~ET with the chosen factor and subtracting them from 6~ET again. The
intermediate shifting of 6~ET accounts for the error on 6~ET which is uncorrelated to
jet energy scale such as the energy of jets below 10 GeV which are not used for 6~ET

correction in equation 3.2.

Scale uncertainty Pythia parameters controlling the shower evolution have been
varied: the scale at which the running strong coupling constant αs is evaluated and
the value for ΛQCD which is used to calculate the running of αs. Those parameters
have been changed by a factor of two in both directions.

Extra parton modelling An additional parton in the final state of an interaction can
either be simulated as part of the hard matrix element or as part of the parton shower.
To avoid possible double counting, a so-called matching procedure has to be applied.
For this systematic uncertainty, a parameter controlling the matching procedure has
been changed.

Initial and final state radiation (ISR/FSR) To simulate more or less initial and final
state radiation, a number of shower parameter in Pythia have been changed. For less

ISR/FSR (δ = −1), the default maximum parton virtuality for initial state radiation
has been changed from the center-of-mass scale s to the Q2 of the hard scattering.
For more ISR/FSR (δ = +1), ΛQCD for the running strong coupling constant has been
set to a different value. Also, the scale at which αs is evaluated for the initial state
radiation is raised.

The systematic uncertainties will change the estimated densities in Mtt̄ and HT ,lep

as well as the number of expected events. For most systematic uncertainties, not
enough events are available to reliably estimate densities for the sample affected
by the uncertainty. However, the densities are often compatible with the original
sample, which can be shown using a Kolmogorov test. Therefore, only for systematic
uncertainties with samples containing enough statistics, jet energy scale and extra
parton modelling, the densities are re-estimated. Otherwise, only the change in
acceptance is considered.

The change of acceptance for the different uncertainties is summarized in table 5.2.
It refers to the change of acceptance if counting the total number of events in both, (i)
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acceptance change in %

JES scale extra parton ISR/FSR

process + − + − + − + −

tt̄ 43 −28 12 −6 13 9 8 −57
V+jets 49 −37 −23 57 40 −4 — —
QCD 28 −28 — — — — — —

Z′ (1 TeV) 17 −17 — — — — — —
Z′ (2 TeV) 4 0 — — — — — —
Z′ (3 TeV) 3 −2 — — — — — —

Table 5.2: Systematic uncertainties on the selection acceptance, in percent. The
+ and − columns specify the changes for δ = +1 and δ = −1, respectively. If the
systematic uncertainty was not studied for the process, it is denoted — in the
table.

the region of the final selection and (ii) the low HT ,lep region. These are the events
which are used in the likelihood function.

As example of the change a systematic uncertainty has, figure 5.5 shows the
expected number with and without jet energy scale.

5.4.2 Profile Likelihood Method

The treatment of systematic uncertainties via likelihood convolution has been used
in Z′ searches at the Tevatron [99], for the modifications described below, see [100].
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Figure 5.5: Impact of the jet energy scale uncertainty of ±10 % on the shape and
expected number of events for QCD (left) and Z′ with mZ′ = 2 TeV (right).
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General idea As the systematic uncertainties are independent, their effect on the
result is studied by enabling only one of them at a time. For an arbitrary but
fixed systematic uncertainty, pseudo-data is generated with signal content β1. This
pseudo-data is used as input to the likelihood function as discussed in section 5.1.2.
Particularly, the likelihood is calculated only using density estimates from the Monte-
Carlo samples without systematic uncertainties.

Maximizing the likelihood function yields an estimate β̂1 for the true value of
β1. From the curvature of the likelihood function at the maximum, an error σβ̂1

on
β̂1 is estimated. As the pseudo-data is affected by systematic uncertainties, β̂1 will
systematically deviate from the value of β1 used to create the pseudo-data by some
value ∆.4 To determine the effect of a systematic uncertainty on limit determination,
it is enough to understand the effect of the uncertainty on the profiled likelihood
L(β1|~x) (section 5.1.2). It is assumed that this effect can be described by this error ∆.

Once ∆ has been determined, the profiled likelihood function is convoluted with a
Gaussian with width ∆. If β1 is estimated for the pseudo-data with the convoluted

likelihood, the estimated value for β1 will remain unchanged, but the error is

calculated with the curvature of the convoluted likelihood and will be
√

∆2 + σ2
β̂1

.

Thus, estimates using the convoluted likelihood will be compatible with the true
value, even for data affected by systematic uncertainties.

Modifications So far, it was assumed that ∆ is independent of β1. This is generally
not true. Therefore, the convolution of the likelihood function is replaced by the
integral

L′(β1|~x) =

∫∞

0
L(β′

1|~x)
1

N(β′
1)
√

2π∆(β′
1)

exp

(

−
1
2

(

β1 − β′
1

∆(β′
1)

)2
)

dβ′
1. (5.13)

Furthermore, the integration is now restricted to the physical region where β′
1 > 0.

For fixed β′
1, the Gaussian term in the integrand represents the assumed distribution

of the true value of β1 if the measured value is β′
1. As all β1-variables are always

positive, it is a truncated Gaussian which has to be properly normalized. This is
done by N(β′

1) with

N(β′
1) =

∫∞

0

1√
2π∆(β′

1)
exp

(

−
1
2

(

β′
1 − β1

∆(β′
1)

)2
)

dβ1 =
1
2

(

1 + erf
(

β′
1

∆(β′
1)

))

.

For a fixed systematic uncertainty i, ∆i(β1) is determined by scanning over a range
of values for β1 and conducting many pseudo experiments for each value, estimating

4Where systematically means that averaging over an ensemble of pseudo-experiments yields 〈β1 −

β̂1〉 = ∆ 6= 0.
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Figure 5.6: The systematic shifts of the signal cross section β1. For a single
systematic source i, the shift ∆i(β1) for δi = ±1 is shown on the left. The total
shift ∆(β1) obtained by symmetrizing and quadratically adding the individual
uncertainties. The result is shown in the right plot, with a fitted linear function.

the true value with the likelihood without systematics. The median of the deviation
of the estimated and the true value is ∆(β1). An example of a resulting ∆(β1) is
shown on the left hand side of figure 5.6.

As the systematic uncertainties are two-sided (δ = ±1), this is done for δ = +1 and
δ = −1 separately. The error for one source of uncertainty is symmetrized by taking
the maximum of the two values for |∆i(β1)|. The different ∆i(β1) thus obtained for
each uncertainty are added quadratically which yields the total systematic uncertainty
∆(β1) which is used in equation 5.13. The total ∆(β1) and a fitted linear function are
shown in the right plot of figure 5.6.

Finally, the interpretation of width for the Gaussian constraint of tt̄, ∆tt̄, has to be
addressed, which was discussed on page 99. As outlined there, ∆tt̄ can be seen as an
approximate likelihood term for a tt̄ sideband. Therefore, ∆tt̄ is the statistical error
of this imaginary sideband measurement and has to be considered in addition to the
systematic uncertainties.

5.4.3 Bayesian Method

For the Bayesian treatment, the model from equation 5.12 is modified to include the
systematic uncertainties. To do that, the probability density functions for process
i, pi(~x) are altered such that they depend on the parameters ~δ for the systematic
uncertainties. Also, the expected number of events, νi depends on ~δ. Those new
parameters ~δ are treated as additional parameters of the mode, i. e. the same as the
parameters ~β, with an appropriate prior.
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The dependence chosen here is

νi(~δ)pi(~x|~δ) = νipi(~x)

m∏

j=1

(

νi,j(sgn(δj))pi,j(~x, sgn(δj))

νipi(~x)

)|δj|

. (5.14)

Note that only the product of expectation and density appears. This allows an easy
implementation where all νipi are histograms normalized to νi. The product over
j runs over all m systematics. pi,j are density estimates for the process i where
systematic j has been enabled. It depends on the sign of δj to account for the
asymmetry of the systematics:

pi,j(~x, sgn(δj)) = sgn(δj)pi,j,+(~x) − sgn(δj)pi,j,−(~x) (5.15)

where pi,j,± are density estimates for process i with systematic j determined for the
samples δj = ±1.

Equation 5.14 is not the only plausible possibility to parametrize the systematic
uncertinaties in the model. However, it has several desirable properties:

• for ~δ = 0, the original model is reproduced,
• if exactly one of the βj is ±1 and the others vanish, the density estimate for

systematic j (with δj = ±1) is reproduced. Those two properties ensure that if
choosing ~δ according to a normal distribution around zero with mean one, the
model behaves as expected (i. e. consistent with the earlier definition of δ).

• If for all processes i and ~x, pi(~x) 6= 0, then the densities are well-defined for all
values of δj.

Instead of using the histograms of the variables from Monte-Carlo as density
estimates, one could assume a common functional form for the nominal and system-
atically shifted densities pi and pi,j,± and fit a function to them. The fit parameters
can then be written as function of δj. However, the process of function selection
and fitting has usually to be done manually for each change of the event selection
and is thus very time-consuming and hardly automatable. Furthermore, it might be
difficult to find a suitable function which could introduce an additional systematic
uncertainty.

As priors for the parameters ~δ, uncorrelated Gaussians with mean zero and width
one are used. Now, the posterior density is fully specified and can be processed with
the Markov chain Monte-Carlo marginalization without further changes.

To generate pseudo-data, values for δ are drawn randomly according to the priors.
The scaling parameters ~β are set to one, with the exception of βtt̄ which is chosen
randomly according to its constraint in equation 5.12, i. e. according to a Gaussian
with mean one and width 0.2.
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upper limit on σB for Z′ in pb

Z′ mass in TeV likelihood method Bayesian method σB for topcolor Z′ in pb

1 7.6+4.2
−2.3 7.5+1.4

−2.8 3.28

2 2.48+0.68
−0.37 1.1+0.3

−0.4 0.13

3 0.75+0.13
−0.06 0.33+0.07

−0.10 0.0095

Table 5.3: Expected upper limits and 1σ errors for narrow Z′ resonances
assuming L = 200 pb−1 and no signal. All systematic uncertainties discussed in
section 5.4.1 are accounted for as discussed in sections 5.4.2 and 5.4.3. For the
likelihood method, a Gaussian constraint for tt̄ has been used and a flat prior in
the Bayesian analysis.

5.5 Results Including Systematic Uncertainties

The expected upper limits including all systematic uncertainties are listed in table 5.3
and shown in figure 5.7. Especially for higher masses, the Bayesian method yields
lower, less conservative results. This is because this method effectively measures
the values of δ for the systematic uncertainties simultaneously and thus limits their
impact on the final result.

This robustness of the Bayesian method can be further exploited by replacing the
Gaussian prior used for the tt̄ cross section by a flat one. This changes the expected
upper limit only slightly. The numbers given in table 5.3 have been determined using
a flat prior for tt̄. In the table, the cross sections for the topcolor Z′ (see section 1.5.1)
are also given.

Apart from topcolor Z′, a candidate model for exclusion is the axigluon model [8].
The cross section times branching ratio in tt̄ is 45 pb, 1.3 pb and 0.11 pb for axigluon
masses of 1, 2 and 3 TeV, respectively. Axigluons of mass MA have a width of about
αsMA [101], which cannot be neglected compared to the detector resolution which
is of the same order of magnitude (see figure 3.7). Hence, the reconstructed mass
distribution will have a width which is about a factor

√
2 larger and upper limits for

axigluon cross sections will be higher by about this factor as well. (More detailed
studies will have to be carried out to confirm this statement.) This estimate suggests
that an exclusion of a 2 TeV axigluon can be done with only small improvements
in the analysis of order of 20 % for the limit. Even if this estimate is too optimistic,
an improvement of the current axigluon indirect limit of 0.9 TeV [12] should still be
possible.
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Figure 5.7: The expected upper limits (95% C. L.) on σB for narrow Z′ resonances
with L = 200 pb−1, including systematic uncertainties.



6 Conclusion and Outlook

In this study, reconstruction techniques for tt̄ events with mtt̄ at the TeV range at
the CMS detector have been developed and studied for a scenario of an integrated
luminosity L = 200 pb−1 and 10 TeV center-of-mass energy.

It was shown that the selection and reconstruction used for standard model tt̄

studies does not yield optimal results for high mtt̄ as the decay products of the top
quarks have small angular separation and overlap in the detector.

Possible new cut variables were presented, and a method how to optimize the cut
values. It was shown that the newly developed selection method greatly improves
the significance compared to a standard model selection.

It was also shown how the top jet reconstruction algorithm could be used for event
selection in the µ+jets channel.

Finally, expected upper limits for narrow resonances with masses of 1, 2 and 3 TeV
were determined, both with an approximate frequentist method with a Bayesian
treatment for systematics and with a purely Bayesian method. For the Bayesian
method, a Markov chain Monte-Carlo algorithm was implemented which requires
only little configuration and has very good run time behaviour.

The expected upper limits are in the order of a few picobarn or less and an
improvement of the current exclusion limits for the topcolor Z′ model is well in reach.
This analysis can also be extended for broader resonances such as axigluons, for
which new mass limits could be set already in the studied luminosity scenario.

This analysis was the first comprehensive study for resonances decaying in tt̄

in this mass range and there are still many possible areas for improvements, for
example

• the reconstruction technique can be re-optimized for the new selection,
• other jet reconstruction techniques such as particle flow can be studied for

possible improvement on resolution,
• for lower masses in the order of mtt̄ = 1 TeV, b-tagging algorithms might

improve selection and reconstruction,
• the selection can be optimized and applied for each mass point individually,
• the top jet algorithm can be used for reconstruction as well,
• the parameters of the top jet algorithm can be optimized,
• the mistag measurement of the top jet algorithm [88] can be studied for the

semileptonic µ channel,
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• neural nets can be used for event selection instead of simple cuts (a neural net
would also be more suitable for optimizing the selection for a large mtt̄ range).

Another area of improvement is the combination of results with other methods, for
example a combination with results for low mtt̄ using standard model like selection
and reconstruction techniques [11] or with a corresponding analysis in the electron
channel.
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