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Abstract. We study the modular class of Q-manifolds, and in particular of

negatively graded Lie ∞-algebroid. We show the equivalence of several de-
scriptions of those classes, that it matches the classes introduced by various

authors and that the notion is homotopy invariant. In the process, the adjoint

and coadjoint actions up to homotopy of a Lie ∞-algebroid are spelled out.
We also wrote down explicitly some dualities, e.g. between representations up

to homotopies of Lie ∞-algebroids and their Q-manifold equivalent, which we

hope to be of use for future reference.

1. Introduction. The modular class can be broadly defined as the obstruction to
the existence of an invariant volume form. For Lie algebras, it is a class in the
Chevalley-Eilenberg cohomology obstructing the existence of a bi-invariant volume
form on the corresponding Lie group. For a regular foliation, it is the obstruction
to the existence of a transverse volume form invariant under all monodromies; It
is valued in tangent cohomology. For Poisson structures, it is the obstruction to
the existence of a volume form preserved under all Hamiltonian vector fields, and
is valued in Poisson cohomology [23]. Now, Lie algebras, regular foliations, and
Poisson structures are Lie algebroids, an object at the heart of Professor Kirill
Mackenzie’s work: he wrote two books which are the main references on the matter
[39, 40], and made numerous crucial contributions to their studies. It is therefore
not surprising that the various and disparate occurrences of modular classes have
long been unified as particular cases of modular classes of Lie algebroids [51, 14]. To
be more precise, it has been rightly suggested by Yvette Kosmann-Schwarzbach and
Alan Weinstein that modular classes should be associated not to a Lie algebroid,
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but to a Lie algebroid morphism: the modular class of a Lie algebroid being the
one of its anchor map [21, 22, 11, 10]. Notice that the aforementioned articles make
a crucial use of Kirill Mackenzie’s explicit description of Lie algebroid morphisms
detailed in Part I, chapter 4 of [39], first developed by himself in [38].

For finite dimensional Lie algebroids, there is dual point of view, attributed to
Vaintrob [46], but used also by Kirill MacKenzie and Ping Xu in their studies
of Lie bialgebroids [42], which consists in seeing the Lie algebroid as a graded
manifold equipped with a degree +1 vector field squaring to zero. As explained by
Voronov [50] in Q-manifolds and Mackenzie theory: an overview, Q-manifolds are
an efficient manner to deal with Lie bialgebroids. When they are of finite rank,
Q-manifolds, i.e. graded manifolds concentrated in negative degrees equipped with
a degree +1 self-commuting vector field, can be seen as being the dual of Lie ∞-
algebroids. They are a natural tool in gauge theory [28, 36] and higher structures
[9]. Of course, it contains (when the base manifold is a point) Lie ∞-algebras,
whose role is well-known in various deformation theories, in particular deformation
quantizations [19] or deformations of Poisson manifolds [12], as well as complex
geometry [24] and, more generally, the Atiyah class of a Lie algebroid pair [13, 31].
In most cases, the only properties of Lie ∞-algebroids of interest are those which
are preserved under an equivalence relation called homotopy equivalence (See [8]
for natural interpretations): this aspect is not seen for Lie algebroids, for which
homotopy equivalence reduces to Lie algebroid isomorphisms.

For instance, an unique up to homotopy “universal Lie ∞-algebroid” has also
been associated to singular foliations in [15, 34, 32] and Lie-Rinehart algebras [33].

In the present article, we describe the modular class of negatively graded Lie
∞-algebroids. Those are used by Sylvain Lavau [35] to define modular class of a
singular foliation as being the one of (any one of) its universal Lie ∞-algebroid.

The modular class of a Lie ∞-algebroid has already been considered (in Z2-
graded setting) by several authors: A. J. Bruce [7] and T. Voronov [49] (notice
that the modular class appears in the arXiv version of [49] -page 6- but not in the
printed version [50]). In both works, it is the obstruction to the existence of an
Berezinian form invariant with respect to the homological vector field Q. Also and
independently, Gran̊aker [18] describes (via operads) unimodular Lie ∞-algebras
and proves that the notion is homotopy invariant. However, as far as we know, the
homotopy invariance of modular class for Lie ∞-algebroids was never considered,
nor was this class related with representations up to homotopy, more precisely with
the adjoint action up to homotopy. We also give some of its geometric properties
when restricted to a leaf. Since the final goal shall be the study of the modular class
of singular foliations [34], we intend to insist more on the modular class of a Lie
∞-algebroid and on its homotopy invariance, but we start with the Lie ∞-algebra
case.

We start in Sections 2 and 3 with a detailed study of the modular forms and class
of a Lie ∞-algebra (mainly those of finite dimension, although this condition may
be relaxed). We show that it can be defined either as the supertrace of the adjoint
action, or as the divergence of the vector field that dualizes the Lie ∞-brackets. We
also show that it is well-behaved under Lie ∞-morphisms, and their homotopies.

In Sections 4 and 5, we enlarge this construction to negatively gradedQ-manifolds.
Again, we show that it can be defined either as the divergence of the Q-vector field,
but also as the super-trace of the adjoint action. This requires a precise description
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of adjoint and coadjoint actions for Q-manifolds that extend the Abad-Crainic ad-
joint representations of to homotopy [16, 1, 43] for Lie algebroids. We then show
invariance under homotopy equivalence. Various examples are then given, and the
geometric meaning is detailed.

2. Lie ∞-algebras. We begin by reviewing some concepts about graded vector
spaces and Lie ∞-algebras [29]. Different authors use different conventions: our
conventions match those in [4, 8, 32, 29, 44].

2.1. Conventions on graded vector spaces. We will work with Z-graded vector
spaces with finite dimension over a field K = R or C.

Let E = ⊕i∈ZEi be a finite dimensional graded vector space (i.e. all vector
spaces Ei are of finite dimension, and this dimension is zero except for finitely many
of them). We call Ei the homogeneous component of E of degree i. An element x
of Ei is said to be homogeneous with degree |x| = i. For each k ∈ Z, one may shift
all the degrees by k and obtain a new grading on E. This new graded vector space
is denoted by E[k] and is defined by E[k]i = Ei+k.

A morphism Φ : E → V between two graded vector spaces is a degree preserving
linear map, i.e. a collection of linear maps Φi : Ei → Vi, i ∈ Z. We call Φ : E → V
a morphism of degree k, for some k ∈ Z, if it is a morphism between E and V [k].

The dual E∗ of E is naturally a finite dimensional graded vector space whose
component of degree i is the dual (E−i)

∗ of E−i, for all i ∈ Z, in equations: (E∗)i =
(E−i)

∗.
Given two finite dimensional graded vector spaces E and V , their direct sum

E⊕V [resp. tensor product E⊗V ] is a finite dimensional graded vector space with
grading

(E ⊕ V )i = Ei ⊕ Vi [resp. (E ⊗ V )i = ⊕j+k=iEj ⊗ Vk ].

We adopt the Koszul sign convention: for homogeneous morphisms f : E → V
and g : F → W , the tensor product f ⊗ g : E ⊗ F → V ⊗W is the morphism of
degree |f |+ |g| given by

(f ⊗ g)(x⊗ y) = (−1)|x||g|f(x)⊗ g(y), x ∈ E, y ∈ F.

For each k ∈ N0, let T
k(E) = ⊗kE and let T (E) = ⊕kT k(E) be the tensor

algebra over E. The graded symmetric algebra over E is the quotient

S(E) = T (E)/
〈
x⊗ y − (−1)|x||y|y ⊗ x

〉
.

This quotient is a graded commutative algebra, whose product we denote by ⊙.
For n ≥ 1, let Sn be the permutation group of order n. For any n-tuple of

homogeneous elements x = (x1, . . . , xn) in E and any σ ∈ Sn, the Koszul sign is
the element in ϵ(σ, x) ∈ {−1, 1} defined by

xσ(1) ⊙ . . .⊙ xσ(n) = ϵ(σ, x)x1 ⊙ . . .⊙ xn.

For the sake of simplicity, we will simply denote the Koszul sign by ϵ(σ) instead of
ϵ(σ, x).

An element σ of Sn is called an (i, n − i)-unshuffle if σ(1) < . . . < σ(i) and
σ(i+ 1) < . . . < σ(n). The set of (i, n− i)-unshuffles is denoted by Sh(i, n− i).

Since we consider E a finite dimensional graded vector space, we identify S(E∗)
with (SE)∗.
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Koszul sign conventions and degree reasons yield, for each homogeneous elements
f, g ∈ E∗,

(f ⊙ g)(x⊙ y) = (f ⊗ g)(x⊙ y + (−1)|x||y|y ⊙ x)

= (−1)|x||g|f(x)g(y) + (−1)|x||y|+|y||g|f(y)g(x),

= (−1)|x||g|f(x)g(y) + f(y)g(x) x, y ∈ E.

2.2. Lie ∞-algebras. We will consider the symmetric approach to Lie ∞-algebras,
as in [29, 44].

Definition 2.1. A symmetric Lie ∞-algebra or a Lie[1] ∞-algebra is a graded
vector space E = ⊕i∈ZEi together with a family of degree +1 linear maps lk :
Sk(E) → E, k ≥ 1, satisfying∑

i+j=n+1

∑
σ∈Sh(i,j−1)

ϵ(σ) lj
(
li
(
xσ(1), . . . , xσ(i)

)
, xσ(i+1) . . . , xσ(n)

)
= 0, (1)

for all n ∈ N and all homogeneous elements x1, . . . , xn ∈ E.

The décalage isomorphism (see, e.g. [4]) establishes a one to one correspondence
between skew-symmetric Lie ∞-algebra structures over E and symmetric Lie ∞-
algebra structures over E[1].

Example 1 (Symmetric graded Lie algebra). A symmetric graded Lie algebra is a
symmetric Lie ∞-algebra E = ⊕i∈ZEi such that ln = 0 for n ̸= 2. Then the degree
0 bilinear map on E[1] defined by:

[x, y] := (−1)j l2(x, y) for all x ∈ Ei, y ∈ Ej (2)

is a graded Lie bracket. In particular, if E = E−1 is concentrated in degree −1, we
get a Lie algebra structure.

Example 2 (Symmetric DGL algebra). A symmetric differential graded Lie algebra
(DGLA) is a symmetric Lie ∞-algebra E = ⊕i∈ZEi such that ln = 0 for n ̸= 1 and
n ̸= 2. Then d := l1 is a degree +1 linear map d : E → E squaring zero and satisfies
the following compatibility condition with the bracket {·, ·} = l2(·, ·):{

d {x, y}+ {d(x), y}+ (−1)|x| {x, d(y)} = 0,
{{x, y} , z}+ (−1)|y||z| {{x, z} , y}+ (−1)|x| {x, {y, z}} = 0.

(3)

Example 3. Let (E = ⊕i∈ZEi, d) be a cochain complex. Then End(E)[1] =
(⊕i∈Z EndiE)[1] has a natural symmetric DGL algebra structure with l1 = ∂, l2 =
{ , } given by:{

∂ϕ = −d ◦ϕ+ (−1)|ϕ|+1ϕ ◦d,
{ϕ, ψ} = (−1)|ϕ|+1

(
ϕ ◦ψ − (−1)(|ϕ|+1)(|ψ|+1)ψ ◦ϕ

)
,

for ϕ, ψ homogeneous elements of End(E)[1].

Recall that for (E, {lk}k≥1), a symmetric Lie ∞-algebra, equations (1) establish:

(i) for n = 1, that l1 ◦ l1 = 0, so that l1 : E• → E•+1 is a differential on E and
we have an associated cohomology H•(E, l1);

(ii) for n = 2, that

l1(l2(x1, x2)) + l2(l1(x1), x2) + (−1)|x1|l2(x1, l1(x2)) = 0,

so that the bracket l2 induces a graded symmetric bracket on H•(E, l1);



MODULAR CLASS OF LIE ∞-ALGEBROIDS AND ADJOINT REPRESENTATIONS 277

(iii) for n = 3, that the previously defined symmetric bracket on H•(E, l1) satisfies
the graded symmetric Jacobi identities as in equations (3).

Hence:

Proposition 1. Let (E, {lk}k≥1) be a symmetric Lie ∞-algebra. The graded vector

space H•(E, l1) has a natural graded symmetric Lie algebra structure.

2.3. Symmetric Lie ∞-algebras as graded manifolds over a point. Let
(E, {lk}k≥1) be a finite dimensional symmetric Lie ∞-algebra. Consider the re-
duced graded symmetric algebra, i.e. the graded commutative algebra
(S≥1(E∗),⊙) (“reduced” means that S0(E∗) = K is not included in the algebra
structure). Elements in (E−i1)

∗⊙ . . .⊙(E−ik)
∗ are said to be of degree i1+ . . .+ ik

and arity k. Let E be the formal completion of E with respect to the arity. Elements
of E shall be referred to as functions and are, by definition, formal sums

F =
∑
k≥1

F (k)

with F (k) ∈ Sk(E∗) an element of arity k. By F (x1, . . . , xk), with x1, . . . , xk ∈ E,
we mean the element of K obtained by pairing Fk ∈ Sk(E∗) ≃ (Sk(E))∗ with
x1 ⊙ · · · ⊙ xk ∈ Sk(E).

We denote by Eki , the space of functions of arity k and degree i, i.e.

Eki = ⊕i1+···+ik=i(E−i1)
∗ ⊙ . . .⊙ (E−ik)

∗. (4)

When only the degree or the arity is specified, we shall denote the corresponding
vector space by Ei and Ek, respectively.

Since it is the completion of (S≥1(E∗),⊙)), E has no unit. When a unit is added
(i.e., if we consider the completion of (S(E∗),⊙) instead), we obtain a unital algebra
that we shall denote by E .

We say that a map Ψ : E → E has degree i ∈ Z if Ψ(E•) ⊂ E•+i and arity k ∈ Z
if Ψ(E•) ⊂ E•+k. Any map of degree i decomposes according to arity:

Ψ =
∑
k∈Z

Ψ(k) .

(Notice that the sum runs on Z: a linear map can very well reduce arity.)
We call the graded derivations of E vector fields of the graded manifold E.

The vector space Der(E) of vector fields of E is a graded Lie algebra with respect
to the bracket

[Q,P ] = Q ◦P − (−1)|Q||P |P ◦Q, Q,P ∈ Der(E).

A symmetric Lie∞-algebra structure (E, {lk}k≥1) induces a degree +1 derivation
of E , QE : E → E , squaring to zero. This derivation decomposes according to its
arity:

QE =
∑
k≥0

Q
(k)
E

where, for each k ≥ 0, the arity k derivation Q
(k)
E is given by:

Q
(k)
E (ξ)(x1 ⊙ . . .⊙ xk+1) = (−1)|ξ| ⟨ ξ , lk+1(x1, . . . , xk+1) ⟩ ,

for all ξ ∈ E∗, x1, . . . , xk+1 ∈ E.



278 RAQUEL CASEIRO AND CAMILLE LAURENT-GENGOUX

For each homogeneous x ∈ E, let ix : S(E∗) → S(E∗) be the derivation of arity
−1 and degree |x| defined by the evaluation map

ix(ξ) = ⟨ξ, x⟩ , ξ ∈ E∗.

The vector field QE satisfies

[ [ [QE , ix1
] , ix2

] , . . . , ixk
]
(−1)

= i(−1)k+1lk(x1,...,xk),

for all k ≥ 1 and x1, x2, . . . , xk ∈ E.
By going backward, one derives a Lie ∞-algebra structure on E out of a degree

+1 derivation of the completion E of S≥1(E∗), which leads to the following:

Proposition 2. [30, 47] Let E be a graded vector space of finite dimension, and let
E be the formal completion of S≥1(E∗) with respect to arity. There is a one-to-one
correspondence between:

(i) symmetric Lie ∞-algebra structures on the graded vector space E,
(ii) degree +1 vector fields on the graded manifold E (= degree +1 derivations of

E) squaring to 0.

The differential graded commutative algebra referred to in item (ii) of Proposition
2 is sometimes seen as a “Q-manifold over a point” [48].

Remark 1. It is extremely practical to look at the “abstract” correspondence
explained in Proposition 2 in coordinates. Given ξ1, ξ2, . . . ∈ E∗ a homogeneous
basis of E∗ and x1, x2, . . . ∈ E its dual basis, the explicit formulas that relate the
vector field QE and the Lie ∞-algebra brackets {lk}k≥1 in Proposition 2 can be

checked to be (for our conventions):

QE =
∑
j

∑
k,i1,...,ik

1

k!
Qji1...ik ξ

ik ⊙ . . .⊙ ξi1
∂

∂ξj
,

lk =
∑

j,i1,...,ik

(−1)|xj |

k!
Qji1...ik ξ

ik ⊙ . . .⊙ ξi1 ⊗ xj ,

lk(xi1 , . . . , xik) =

n∑
j=1

(−1)|xj |Qji1...ikxj .

The coefficients Qji1,...,ik ∈ K are unique if we assume them to be graded symmetric,

i.e. Qjiσ(1),...,iσ(k)
= ϵ(σ)Qji1,...,ik for every permutation σ.

Convention. In view of Proposition 2, we will use the notation
(
E,QE ≡ {lk}k≥1

)
to denote a Lie ∞-algebra of finite dimension, depending on the context.

Definition 2.2. The cohomology of a Lie ∞-algebra
(
E,QE ≡ {lk}k≥1

)
is the

cohomology defined by the differential QE : E• → E•+1. It is a graded commutative
algebra denoted by H•(E,QE).

2.4. Morphisms of Lie ∞-algebras. A morphism of Lie∞-algebras [30] is gener-
ally defined as being a comorphism between symmetric coalgebras that is compatible
with the Lie ∞-structures. When spelled out, it is equivalent to the following set
of conditions.
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Definition 2.3. Let (E,QE ≡ {lk}k≥1) and (F,QF ≡ {mk}k≥1) be Lie∞-algebras.

A Lie ∞-morphism Φ : (E,QE ≡ {lk}k≥1) → (F,QF ≡ {mk}k≥1) is given by a
collection of degree zero maps:

Φk : Sk(E) → F, k ≥ 1,

such that, for each n ≥ 1,∑
k+l=n

σ∈Sh(k,l)

ε(σ)Φ1+l(lk⊗1⊗
l

)(xσ(I)) =
∑

k1+...+kj=n

σ∈Sh(k1,...,kj)

ε(σ)

j!
mj(Φk1 ⊗Φk2 ⊗ . . .⊗Φkj )(xσ(I)).

In Definition 2.3, we do not need to assume E to F to be of finite dimension.
When it is the case, taking the dual of the linear maps Φk, for all k ≥ 1, we obtain
a family Φ∗

k : F ∗ → Sk(E∗) of linear maps, which extend to a graded commutative
algebra morphism Φ∗ : F → E , with F and E being the graded commutative
algebras of functions on F and E respectively.

This leads to the following alternative description of Lie ∞-morphisms:

Proposition 3. Let
(
E,QE ≡ {lk}k≥1

)
and

(
F,QF ≡ {mk}k≥1

)
be Lie ∞-algebras

of finite dimensions with functions E and F , respectively. There is a one-to-one cor-
respondence between:

(i) Lie ∞-morphisms Φ from
(
E,QE ≡ {lk}k≥1

)
to
(
F,QF ≡ {mk}k≥1

)
,

(ii) graded commutative algebra morphisms Φ∗ : F → E commuting with vector
fields:

Φ∗
◦QF = QE ◦Φ∗.

The second item in Proposition 3 means that Φ is a morphism of Q-manifolds over
a point [48].

Remark 2. For every Lie ∞-morphism as above, Φ1 : (E, l1) → (F,m1) is a
chain map. The map it induces at the level of cohomology is a graded Lie algebra
morphism. Moreover, the Lie ∞-morphism Φ is a Lie ∞-isomorphism if and only
if Φ1 is a chain isomorphism.

Definition 2.4. Let Φ :
(
E,QE ≡ {lk}k≥1

)
→
(
F,QF ≡ {mk}k≥1

)
) be a Lie ∞-

algebra morphism. We say Φ is a Lie ∞-quasi-isomorphism if the chain map
Φ1 : (E, l1) → (F,m1) is a quasi-isomorphism.

Let Ω•([0, 1]) stand for the de Rham complex of forms over [0, 1] and let ddR be
its de Rham differential. Also, we shall denote by t the coordinate in [0, 1].

Definition 2.5. Let
(
E,QE ≡ {lk}k≥1

)
and

(
F,QF ≡ {mk}k≥1

)
be Lie ∞-

algebras of finite dimensions with functions E and F . A homotopy between Lie
∞-algebra morphisms Φ,Ψ is a morphism of graded commutative algebras:

Ξ∗ : (F , QF ) −→ (E ⊗ Ω•([0, 1]), QE ⊗ id + id⊗ ddR) (5)

which coincides with Φ∗ and Ψ∗ at t = 0 and 1, respectively.

A homotopy equivalence between
(
E,QE ≡ {lk}k≥1

)
and (F,QF ≡ {mk}k≥1

)
is a pair of Lie ∞-algebroid morphisms:

Φ∗ : (E , QE) −→ (F , QF )
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Ψ∗ : (F , QF ) −→ (E , QE)

whose compositions Φ∗ ◦Ψ∗ and Ψ∗ ◦ Φ∗ are homotopy equivalent to the identity.

Let us spell out the meaning of (5). To start with, recall that an element in
V ⊗ C∞([0, 1]), with V a finite dimensional vector space, can be seen as a time-
dependent element in V that we should denote by Ft ⊗ 1. Similarly, since ω ∈
Ω1([0, 1]) reads f(t)dt with f(t) ∈ C∞([0, 1]), an element in V ⊗ Ω1([0, 1]) can
be seen as a time-dependent element in V that we shall denote by Ht ⊗ dt (the
dependence in t being smooth in both cases). As a consequence, an element of
degree i of V ⊗Ω•([0, 1]) can be seen as a sum Gt ⊗ 1 +Ht ⊗ dt, where Gt, Ht ∈ V
are elements of degree i and i−1, respectively, which depend smoothly on t ∈ [0, 1].

With these conventions in mind, for any algebra morphism Ξ∗ as in (5) and every
F ∈ F of degree i, we have

Ξ∗(F ) = Gt ⊗ 1 +Ht ⊗ dt,

for some time-dependent Gt ∈ Ei and Ht ∈ Ei−1. For every fixed t ∈ [0, 1], we define
Ξ∗
t , Ht : F → E of respective degrees 0 and −1 by:

Ξ∗
t : F 7→ Gt and Ht : F 7→ Ht.

Since Ξ∗ is a graded algebra morphism, so is Ξ∗
t for every t ∈ [0, 1], and for all

F1, F2 ∈ F :

Ht(F1 ⊙ F2) = Ht(F1)⊙ Ξ∗
t (F2) + (−1)|F1|Ξ∗

t (F1)⊙Ht(F2).

Since Ξ∗ is a chain map, so is Ξ∗
t , for all t (it is therefore a family of Lie ∞-algebroid

morphisms) and the following relation holds:

dΞ∗
t

dt
= Ht ◦QF +QE ◦Ht.

Homotopic morphisms induce the same map in cohomology, see, e.g. [32]. An
inverse up to homotopy of a Lie ∞-algebra morphism Φ is a Lie ∞-algebra
morphism Ψ such that Φ ◦Ψ and Ψ ◦Φ are homotopic to the identity maps.

2.5. Representations of Lie ∞-algebras. A complex (V, d) induces a natural
symmetric DGLA structure in End(V )[1], see Example 3.

Definition 2.6. A representation of a Lie ∞-algebra (E, {lk}k∈Z) on a complex
(V, d) is a Lie ∞-morphism

Φ : (E, {lk}k∈Z) → (End(V )[1], ∂, { , }).

Remark 3. Equivalently, a representation of E is defined by a collection of degree
+1 maps

Φk : Sk(E) → End(V ), k ≥ 1,
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such that, for each n ≥ 1, x1, . . . , xn ∈ E,

n∑
i=1

σ∈Sh(i,n−i)

ε(σ)Φn−i+1

(
li
(
xσ(1), . . . , xσ(i)

)
, xσ(i+1), . . . , xσ(n)

)

=∂Φn(x1, . . . , xn) +
1

2

n−1∑
j=1

σ∈Sh(j,n−j)

ε(σ)
{
Φj(xσ(1), . . . , xσ(j)),Φn−j(xσ(j+1), . . . , xσ(n))

}
.

(6)

It is convenient to define Φ0 to be the differential d : V → V .

Remark 4. Equation (6) may then be expressed in a more concise manner:

n∑
i=1

σ∈Sh(i,n−i)

ε(σ) Φ̃n−i(Φ̃i−1(yσ(1), . . . , yσ(i)), yσ(i+1), . . . , yσ(n)) = 0, (7)

where yi = xi + vi ∈ E ⊕ V for all index, and where

Φ̃i(x1 + v1, . . . , xi + vi) = li(x1, . . . , xi) +

i∑
k=1

ϵkΦi−1(x1, . . . , x̂k, . . . , xi)(vk),

with ϵk = (−1)|vk|(|xk+1|+···+|xi|). Equations (7) mean that the family Φ̃ equips
E ⊕ V with a Lie ∞-algebra structure, called the semi-direct product of a Lie
∞-algebra with its representation. For g a Lie algebra and V a vector space, we
recover the usual semi-direct product Lie algebra g⊕ V .

Let us give the dual description. The tensor product E⊗V ∗ comes with a natural
left E-module structure given by F ·(G⊗α) := (F ⊙G)⊗α for all F,G ∈ E , α ∈ V ∗.

Proposition 4. Let
(
E,QE ≡ {lk}k≥1

)
be a Lie ∞-algebra of finite dimension,

and E be its unital graded commutative algebra of functions. Let V be a graded
vector space. There is a 1-1 correspondence between:

(i) representations of
(
E,QE ≡ {lk}k≥1

)
on the complex (V, d),

(ii) degree +1 maps D : E ⊗ V ∗ → E ⊗ V ∗,
(a) which extends d∗ : V ∗ → V ∗, in the sense that the component of D(1⊗β)

in 1⊗ V ∗ is 1⊗ d∗(β), for all β ∈ V ∗ ,
(b) which squares to 0, i.e. D2 = 0,
(c) which is compatible with QE in the sense that:

D(F · ψ) = QE(F ) · ψ + (−1)iF · Dψ, F ∈ Ei, ψ ∈ E ⊗ V ∗.

Proof. The dual of the semi-direct product Lie ∞-algebra structure on E ⊕ V ,
defined in Remark 4, gives a derivation QE⊕V of S(E∗ ⊕ V ∗) = E ⊗ S(V ∗) which
restricts to E ⊕ E ⊗ V ∗ (because all brackets on the semi-direct product are zero
when two elements in V are considered). This restriction D satisfies the required
conditions. This construction can be reverted.
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The object in item (ii) of Proposition 4 deserves to referred to as a flat connection.

For V a representation of
(
E,QE ≡ {lk}k≥1

)
, its dual V ∗ comes with a natural

representation structure: it suffices to compose the maps Φk : Sk(E) → End(V )[1],
k ≥ 0, as in Remark 3, with the natural symmetric graded Lie algebra morphism

End(V )[1] → End(V ∗)[1]

that sends a linear map ϕ to −ϕ∗. We call this representation the dual represen-
tation.
Adjoint and coadjoint representation. An important example of a representa-
tion is given by a Lie ∞-algebra adjoint representation on itself. In fact, we first
define its dual, i.e. the coadjoint representation.

As before, let
(
E,QE ≡ {lk}k≥1

)
be a Lie ∞-algebra of finite dimension with

functions E . Let us add a unit to E , hence obtaining a grade commutative algebra
E . The space Der(E) of derivations of E , i.e. vector fields of the graded manifold
E, is naturally identified with E ⊗ E.

The Lie bracket [QE , − ] : Der(E) → Der(E) satisfies all four conditions in item
(ii) in Proposition 4. Therefore, it defines a representation of the Lie ∞-algebra(
E,QE ≡ {lk}k≥1

)
on (E∗,−l∗1) that we call coadjoint representation.

Let us spell out its dual representation. It is routine to check that the following
collection of degree +1 maps:

ad(k) : Sk(E) → End(E)

x1 ⊙ . . .⊙ xk 7→ ad
(k)
x1⊙···⊙xk

:= lk+1 (x1, . . . , xk, − ) ,
k ≥ 1, (8)

defines ad =
∑
k≥1 ad

(k), the representation of the Lie ∞-algebra E on (E, l1) dual
to the coadjoint representation.

Definition 2.7. The representation ad is called the adjoint representation of(
E,QE ≡ {lk}k≥1

)
.

3. The modular class of a Lie ∞-algebra. Let
(
E,QE ≡ {lk}k≥1

)
be a Lie

∞-algebra of finite dimension.
The restriction of the adjoint representation ad : S(E) → End(E)[1] given by (8)

to the space S(E)−1 of degree −1 elements of S(E), is a linear map

ad|S(E)−1
: S(E)−1 ⊂ S(E) → End0(E).

In other words, for all homogeneous x1, . . . , xk ∈ E whose degree add up to −1,

ad
(k)
x1⊙···⊙xk

is a linear endomorphism of E of degree 0, i.e. a family indexed by

i ∈ Z of linear endomophisms of Ei. For each k ≥ 1, let ω(k) ∈ Ek1 be defined, for
all homogeneous x1, . . . , xk ∈ E whose degree add up to −1, by

ω(k)(x1, . . . , xk) = Str ad
(k)
x1⊙...⊙xk

,

where Str denotes the super trace operator on E, i.e. the alternate sum of the traces

of the restriction to Ei of ad
(k)
x1⊙...⊙xk

.

Definition 3.1. We callmodular function of a Lie∞-algebra
(
E,QE ≡ {lk}k≥1

)
of finite dimension, the function ωE ∈ E+1 = S(E∗)+1 defined by

ωE =
∑
k≥1

ω(k),
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with ω(k) ∈ Sk(E∗)+1.

Remark 5. It deserves to be noticed that we not really need E to be of finite
dimension. To define the modular function, it is enough to assume it is of finite
rank in every degree. It even suffices that the super-trace is defined.

Let ξ1, . . . , ξn be a basis of E∗, made of homogeneous elements. Using conven-
tions of Remark 1, any derivation Q of E , of degree i reads:

Q =
∑
k∈N

∑
1 ≤ i1, . . . , ik ≤ n

j = 1, . . . , n

|ξi1 | + · · · + |ξik | − |ξj | = i

1

k!
Qji1,...,ikξ

ik ⊙ · · · ⊙ ξi1
∂

∂ξj
.

We define its divergence to be the element in E given by:

div(Q) := (−1)i+1
n∑
j=1

∂

∂ξj
Q(ξj)

= (−1)i+1
∑
k∈N

∑
1 ≤ i1, . . . , ik ≤ n

j = 1, . . . , n

|ξi1 | + · · · + |ξik | − |ξj | = i

1

k!
Qji1,...,ik

∂

∂ξj
(
ξik ⊙ · · · ⊙ ξi1

)

= (−1)i+1
∑
k∈N

∑
1 ≤ i1, . . . , ik−1 ≤ n

j = 1, . . . , n

|ξi1 | + · · · + |ξik−1 | = i

1

(k − 1)!
Qji1,...,ik−1,j

ξik−1 ⊙ · · · ⊙ ξi1 .

The next proposition implies that our definition of the modular class coincides
with the ones of [7] and [49].

Proposition 5. Let
(
E,QE ≡ {lk}k≥1

)
be a Lie ∞-algebra of finite dimension.

1. The modular function ωE is QE-closed, i.e. QE(ωE) = 0.
2. The modular function coincides with the divergence of the vector field QE:

ωE = div(QE).

Proof. Let us prove the first item. By construction, QE(ωE) is a function of degree
2. Let us compute its component of arity k. Let x1, . . . , xk ∈ E be homogeneous
elements whose degrees add up to −2, then:

QE(ωE)(x1 ⊙ . . .⊙ xk)

=
∑
h≤k

σ∈Sh(h,k−h)

(−1)|ωE |ε(σ)ω(k)
(
lh(xσ(1), . . . , xσ(h))⊙ xσ(h+1) ⊙ . . .⊙ xσ(k)

)

=−
∑
h≤k

σ∈Sh(h,k−h)

ε(σ) Str ad
(k)
lh(xσ(1),...,xσ(h))⊙xσ(h+1)⊙...⊙xσ(k)

=Str (l1 ◦ adx1⊙...⊙xk
+adx1⊙...⊙xk

◦ l1)+

+
1

2

∑
h≤l

σ∈Sh(h,l−h)

(−1)|xσ(1)|+...+|xσ(h)| Str
[
ad

(h)
xσ(1)⊙...⊙xσ(h)

, ad
(k−h)
xσ(h+1)⊙...⊙xσ(k)

]
= 0.
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Above, we used, in the second line, Definition 3.1 of the modular function and in
the third line the description given in Equation (6) of representations. In the last
line, we used the fact that the supertrace of a graded commutator vanishes.

Let us prove the second item. Let x1, x2, . . . , xn and ξ1, ξ2, . . . , ξn be dual basis of
E and E∗, made of homogeneous elements. Now, for each k ≥ 1 and xi1⊙. . .⊙xik ∈
Sk(E)−1 we have, by definition of the supertrace,

ωE(xi1 ⊙ . . .⊙ xik) = Str
(
ad

(k)
xi1

⊙...⊙xik

)
=

n∑
j=1

(−1)|ξ
j | 〈ξj , lk+1(xi1 , . . . , xik , xj)

〉
=

n∑
j=1

∂

∂ξj
Q(ξj)(xi1 ⊙ . . .⊙ xik)

= (divQE) (xi1 ⊙ . . .⊙ xik).

Remark 1 was used to relate the second to the third line. This completes the
proof.

Remark 6. In the supermanifold case, Bruce [7] proves an equivalent statement
of Proposition 5 by showing first that LQE

ρ = (divQE) ρ, for any Berezinian form
ρ. He then notices that the relation L2

QE
= 1

2L[QE ,QE ] = 0 gives immediately

QE [divQE ] = 0. This is an efficient method, but we prefer to go through the
properties of the supertrace in order to have a proof that may remain valid if there
exists infinitely many brackets, as in Example 7. This seems complicated using
[7] (which uses a formalism that does not immediately allow infinite sums). Also,
the idea of relating this construction to the adjoint representation seems to be
conceptually relevant. Last, we want to avoid Berezinians - at this point.

The first item in Proposition 5 makes sense of the following

Definition 3.2. The modular class of a Lie ∞-algebra
(
E,QE ≡ {lk}k≥1

)
of

finite dimension is the cohomology class of the modular function ωE in H1(E,QE),
the first degree cohomology of E.

Let
(
E,QE ≡ {lk}k≥1

)
and

(
F,QF ≡ {mk}k≥1

)
be Lie ∞-algebras of finite di-

mensions, and Φ a morphism of Lie ∞-algebras from the first one to the second one.
Let Φ∗ : F → E be the corresponding morphism of Lie ∞-algebras as in Proposition
3. Since Φ∗ is a chain map, ωΦ := ωE − Φ∗(ωF ) is a cocycle of degree 1. As in
[22], we call its corresponding class in H•(E,QE) the modular class of the Lie
∞-algebra morphism Φ.

Proposition 6. The modular class of a Lie ∞-isomorphism vanishes.

Proof. This proof is surprisingly complicated, and will make use of co-derivations,
and Sweedler’s notation, see [37]. Consider the reduced symmetric algebra S≥1(E)
equipped with its usual coalgebra structure given by:

∆(x1 ⊙ . . .⊙ xn) =

n−1∑
j=1

σ∈Sh(j,n−j)

ε(σ)(xσ(1) ⊙ . . .⊙ xσ(j))⊗ (xσ(j+1) ⊙ . . .⊙ xσ(n)),
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for x1, . . . , xn ∈ E. We will use Sweedler’s notation: given x ∈ S≥1(E),

∆(1)(x) = ∆(x) = x(1) ⊗ x(2),

and the coassociativity yields

∆(n)(x) = (id⊗∆(n−1))∆(x) = x(1) ⊗ . . .⊗ x(n+1), n ≥ 2.

Notice that ∆(n)(x) = 0, for all x ∈ S≤n(E).

Let Φ :
(
E,QE ≡ {lk}k≥1

)
→
(
F,QF ≡ {mk}k≥1

)
be a Lie ∞-isomorphism and

ME : S≥1(E) → S≥1(E) the coderivation of S≥1(E) defined by the Lie ∞-structure
in E:

ME(x) = l(x(1))⊙ x(2) + l(x), x ∈ S≥1(E).

For each x ∈ Sk(E), k ≥ 1, let us consider the linear map Φx : E → F given by

Φx(y) = Φk+1(x⊙ y).

The map Φ1 : (E, l1) → (F,m1) is an isomorphism:

l1 = Φ−1
1 ◦m1 ◦Φ1

and, taking into account Definition 2.3, we have, for each homogeneous x ∈ S≥1(E):

adEx +Φ−1
1 ◦ΦME(x) + (−1)|x|Φ−1

1 ◦Φx ◦ l1 + (−1)|x(1)|Φ−1
1 ◦Φx(1)

◦ adEx(2)

=Φ−1
1 adFΦ(x) ◦Φ1 +Φ−1

1 ◦m1 ◦Φx +Φ−1
1 ◦ adFΦ(x(1))

◦Φx(2)
.

(9)

Then, for each x ∈ S≥1(E)−1, we have

Φ∗ωF (x) =ωF (Φ(x)) = Str adFΦ(x) = StrΦ−1
1 ◦ adFΦ(x) ◦Φ1

=Str adEx +StrΦ−1
1 ◦ΦME(x) − Str

(
Φ−1

1 ◦Φx ◦ l1 +Φ−1
1 ◦m1 ◦Φx

)
+ Str(−1)|x(1)|Φ−1

1 ◦Φx(1)
◦ adEx(2)

−StrΦ−1
1 ◦ adFΦ(x(1))

◦Φx(2)

=ωE −QE(StrΦ
−1
1 ◦Φx)

+ Str(−1)|x(1)|Φ−1
1 ◦Φx(1)

◦ adEx(2)
− StrΦ−1

1 ◦ adFΦ(x(1))
◦Φx(2)

.

By recursively applying equation (9) we get

Φ∗ωF (x) = ωE +QE

(
Str
∑
n

(−1)n

n
(Φ−1

1 ◦Φ)nx

)
,

where, for each x ∈ Sk(E), k ≥ 1,

k∑
n=1

(−1)n

n
(Φ−1

1 ◦Φ)nx =− Φ−1
1 ◦Φx +

1

2
Φ−1

1 ◦Φx(1)
◦Φ−1

1 ◦Φx(2)

+ . . .+
(−1)k

k
Φ−1

1 ◦Φx(1)
◦ . . . ◦Φ−1

1 ◦Φx(k)
.

Therefore Φ∗ [ωF ] = [ωE ] .

A Lie ∞-algebra
(
E,QE ≡ {lk}k≥1

)
is called minimal if l1 = 0 and is called

linear contractible if lk = 0, k ≥ 2, and H•(E, l1) is trivial.
Any Lie ∞-algebra is isomorphic to the direct sum of a minimal Lie ∞-algebra

with a linear contractible one [19]. In this decomposition, the minimal Lie ∞-
algebra is unique up to isomorphism, and a homotopy equivalence between Lie
∞-algebras induce an isomorphism between their minimal Lie ∞-algebras. Since a
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linear contractible Lie∞-algebra has a trivial modular class, the following statement
follows from Proposition 6.

Proposition 7. A homotopy equivalence of Lie ∞-algebras intertwines their mod-
ular classes. In equation:

Φ∗[ωE ] = [ωF ] and Ψ∗[ωF ] = [ωE ],

for any homotopy equivalence as in Definition 2.5.

Let
(
E,QE ≡ {lk}k≥1

)
be a Lie ∞-algebra of finite dimension. Recall from

Proposition 1 that the cohomology H•(E, l1) of the complex (E, l1) comes equipped
with a natural graded Lie algebra structure. It admits therefore also a modular
function, which, by construction, is of arity one, which, for degree reasons, is an
element in (H−1(E, l1))

∗.

Proposition 8. Let
(
E,QE ≡ {lk}k≥1

)
be a Lie ∞-algebra of finite dimension.

The modular function ωE of E and the modular function ωH(E,l1) of the graded Lie
algebra H•(E, l1) are related by:

ωH•(E,l1) ([x]) = ωE(x),

for all x ∈ E−1 with l1(x) = 0.

Proof. For every graded Lie algebra, the modular function is the supertrace of the
adjoint action on elements of degree −1.

In particular, the modular function of the graded Lie algebra H•(E, l1) is

ωH•(E,l1) ([x]) = Str
(
ad

(2)
[x]

)
, [x] ∈ H−1(E, l1).

Now, for a complex (E, l1) of finite dimension, the supertrace of a chain map is
equal to the supertrace of the map it induces in cohomology on H•(E, l1). Hence,
for all x ∈ E−1 with l1(x) = 0.

Str
(
ad

(2)
[x]

)
= Str

(
ad(2)x

)
.

This completes the proof.

Remark 7. Proposition 7 allows to make sense of Lie ∞-algebras of infinite dimen-
sion which are homotopy equivalent to one of finite dimension. By the homotopy
transfer theorem, these are exactly Lie ∞-algebras (E, {lk}k≥1) such that the co-

homology of the complex (E, l1) has finite dimension.

Example 4. For any representation Φ : S(E) → End(V )[1] of a Lie ∞-algebra
(E,QE ≡ {lk}k≥1) on the complex (V, d), consider the degree +1 function ωΦ ∈ E+1

given by

ωΦ(x1, . . . , xk) = StrΦk(x1, . . . , xk),

for each homogeneous x1, . . . , xk ∈ E, k ≥ 1, whose degrees add up to −1. This
function is QE-closed, hence defines a class in H•(E,QE), that we call the char-
acteristic class of the representation Φ. Now, the direct sum E ⊕ V comes
equipped with the semi-direct product Lie ∞-algebra structure (see Remark 4). We
leave it to the reader to check that the characteristic class of the representation Φ
is the modular class of the inclusion E ↪→ E ⊕ V . For the adjoint representation,
we recover the modular function of Definition 3.1.
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Example 5. For Lie ∞-algebras concentrated in degree less or equal to −1 (i.e.
for “negatively graded Lie ∞-algebras”), only the 2-ary bracket with an element of
degree −1 can contribute to the modular function. In view of Proposition 8, we
see that its modular function is entirely determined by the one of its associated
symmetric GLA H•(E, l1), although, in general, a Lie ∞-algebra is not homotopy
equivalent to its associated GLA H•(E, l1).

Example 6. Consider the following Lie ∞-algebra: E−2 = R, E0 = R, E1 = R and
Ei = 0 otherwise. All brackets are 0 except the 3-ary brackets of the generators
e−2 ∈ E−2, e0 ∈ E0 and e1 ∈ E1, for which

{e−2, e1, e0}3 = e0.

The modular function is defined on generators by

ω(e−2, e1) = 1

and is zero otherwise. It is, in particular, non-zero. This example shows that the
3-ary bracket may contribute to the modular function, in contrast with the situation
of Example 5.

Example 7 (Lie algebra actions). Let G be a Lie group with Lie algebra g acting
on a vector space V . We do not assume that the action is linear, but we assume the
origin O to be a fixed point of this action, as in [31], Section 4.3. The Lie algebra

g then acts by derivation on the infinite-jet Ŝ(V ) of functions at 0. The Chevalley-
Eilenberg differential of this action is a derivation Q of degree +1 squaring to zero

of ∧•g∗ ⊗ Ŝ(V ). Explicitly:

Q =

n∑
i,j,k=1

Γkij ϵ
i ∧ ϵj ∂

∂ϵk
+

n∑
i=1

ϵi ⊗X
(∞)
i

where (ϵi)i=1,...,n is a basis of g∗, (ei)i=1,...,n is the dual basis and X
(∞)
i is the

infinite jet at m of the formal vector field (that is to say, an element in Ŝ(V ∗)⊗ V )
associated to the infinitesimal action of ei on V .

By Proposition 4, it therefore corresponds to a Lie ∞-algebra structure concen-
trated in degrees −1 and 0 on g|−1 ⊕ V |0. According to Theorem 5, the modular
function of this Lie ∞-algebra is:

ωE =

n∑
i=1

n∑
j=1

Γjijϵ
i +

n∑
i=1

div(X
(k)
i ) ϵi

=ωg +

n∑
i=1

div(X
(∞)
i ) ϵi

where ωg ∈ g∗ is the modular function of the Lie algebra g, and where div(X
(∞)
i )

is the divergence of the infinite jet of the vector field Xi. This class is zero if g is a
unimodular Lie algebra, and if there exists an infinite jet of a volume form on M
formally preserved by the g-action.
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4. Lie ∞-algebroid.

4.1. Lie ∞-algebroids and their cohomologies. In what follows, M is a man-
ifold whose sheaf of functions we denote by O.

Remark 8. Unless otherwise specified, M can be a complex or a smooth manifold.
It can also be an affine variety, with O then being the sheaf of its regular functions.

We warn the reader not to confuse Z2-grading used by Bruce [7] or in several
works by Khudaverdian and Voronov [25, 26, 27, 49] and the Z-grading we are using
here.

Definition 4.1. [30, 47] A negatively graded Lie ∞-algebroid is a collection
of vector bundles E = ⊕i≥1E−i over M equipped with a sheaf of Lie ∞-algebra
structures over the sheaf of sections and a vector bundle morphism ρ : E−1 → TM ,
called the anchor of E, such that the brackets lk = {− , . . . , −}k are all O-linear
in each argument except if k = 2 and at least one of its two entries has degree −1.
In the latter case, however:

{x, fy}2 = f {x, y}2 + ρ(x)[f ]y, x ∈ Γ(E−1), y ∈ Γ(E).

It follows from the definition that ρ ◦ l1(x) = 0 and that ρ({y, z}2) = [ρ(y), ρ(z)]
for all x ∈ Γ(E−2) and y, z ∈ Γ(E−1).

Example 8. When M is a point, we recover negatively graded Lie ∞-algebras
studied in the previous section. When E−i = 0 for i ̸= 1, we recover Lie algebroids.

Proposition 9. [30, 47] Let E = ⊕i≥1E−i be a graded vector bundle over a manifold
M and let E be the sheaf of sections of the graded symmetric algebra bundle S(E∗)
(with the understanding that E∗

−i is considered to be of degree +i). There is a
one-to-one correspondence between:

(i) negatively graded Lie ∞-algebroid brackets and anchor ((lk)k≥1, ρ) on the
graded vector bundle E,

(ii) degree +1 vector fields Q on the graded manifold E (= degree +1 derivations
of E) squaring to 0.

In the proposition above, the sheaf E will be referred to as functions on E. Again,
sections of E∗

−i1 ⊗ . . . ⊗ E∗
−ik are said to be functions of degree i1 + . . . + ik and

arity k. We denote by Ei, the space of functions of degree i and by Ek the space of
functions of arity k, as in Section 2.3. We denote by X(E) the graded Lie algebra
of derivations of E , that shall be also referred to as vector fields on E.

We say a map Ψ : E → E has arity k if Ψ(E•) ⊂ E•+k. Also we say it has degree
p if Ψ(E•) ⊂ E•+p.

The pair (E , Q) in item (ii) of Proposition 9 is often referred to as a Q-manifold
with a trivialization. Proposition 9 allows the following convention:

Convention. From now on, we shall say simply “Lie ∞-algebroids” for “negatively
graded Lie ∞-algebroids”. Also, Lie ∞-algebroids shall, from now, be denoted as

(E,Q ≡ ({lk}k≥1 , ρ)),

where E = (E−i)i≥1 is a graded vector bundle over M , {lk}k≥1 are the Lie ∞-
brackets, ρ is the anchor map and Q : E → E is the degree +1 derivation, related
as in items (i) and (ii) in Proposition 9.

Here are two important notions:
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Definition 4.2. Let (E,Q ≡ ({lk}k≥1 , ρ)) be a Lie ∞–algebroid over M . The

linear part (E ⊕ TM, l1,−ρ) is the complex of vector bundles over M defined by

. . .
l1−→ E−n

l1−→ . . .→ E−2
l1−→ E−1

−ρ−−→ TM.

In addition to the cohomology of the linear part, the following cohomology is
also important [28, 36]:

Definition 4.3. The cohomology of a Lie ∞-algebroid (E,Q ≡ ({lk}k≥1 , ρ))

is the cohomology H•(E,Q) of the graded commutative algebra E with respect to
the differential Q.

Example 9. When M is a point, we recover the cohomology of Lie ∞-algebras
studied in the previous section. When E−i = 0 for i ̸= 1, we recover the usual Lie
algebroid cohomology (see Chapter IV in Kirill Mackenzie [39]).

Proposition 9 is now considered as a classical result [47, 48, 5], we insert a proof
in order to fix sign conventions and notations.

Proof of Proposition 9. Any vector field Q ∈ X(E) is a derivation of E and can be
decomposed as a sum

Q =
∑
k∈Z

Q(k)

where each Q(k) is an arity k map. For instance, each homogeneous section of E,
e ∈ Γ(E), defines a canonical O-linear vector field ie ∈ X(E) of arity −1 and degree
|e|, defined by

ie(α) = ⟨α, e⟩ , α ∈ E1 = Γ(E∗).

The brackets and the anchor of the Lie ∞-algebroid corresponding to a vector
field Q ∈ X(E) of degree +1 are given by:

[Q, ie]
(0)

(f) =− ρ(e) [f ] , f ∈ O, e ∈ Γ(E)

[. . . [[Q, ie1 ] , ie2 ] , . . . , iek ]
(−1)

=(−1)k+1i{e1,e2,...,ek}k
, e1, . . . , ek ∈ Γ(E),

where [., .] stands for the graded Lie bracket on X(E):

[Q,P ] = Q ◦P − (−1)|Q||P |P ◦Q.

For instance, for α ∈ Γ(E∗), e, e1, . . . , en ∈ Γ(E), f ∈ O,〈
Q(0)(α), e

〉
= (−1)|α| ⟨α, l1(e)⟩ ,〈

Q(1)(f), e
〉
= −ρ(e)(f),〈

Q(1)(α), e1 ⊙ e2

〉
= (−1)|α| ⟨α, {e1, e2}2⟩ − (−1)|e2|ρ(e1)(⟨α, e2⟩)− ρ(e2)(⟨α, e1⟩)

and, for each n ≥ 3, the map Q(n−1) : E1 → En is the “dual” of the n-ary bracket ln:

Q(n−1)(α)(e1 ⊙ e2 ⊙ . . .⊙ en) = (−1)|α| ⟨α, ln(e1, e2 . . . , en)⟩ .

With this correspondence, it is routine to check that Q ◦Q = 0 if and only if
({lk}k≥1 , ρ) is a Lie ∞-algebroid structure.

Lie∞-algebroid morphisms may be defined using the duality developed in Propo-
sition 3.
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Definition 4.4. A Lie ∞-algebroid morphism Φ : (E,Q ≡ ({lk}k≥1 , ρ)) →
(E′, Q′ ≡ ({l′k}k≥1 , ρ

′)) is a degree 0 algebra morphism Φ∗ : E ′ → E such that

Φ∗
◦Q′ = Q ◦Φ∗.

When Φ∗ is O-linear map, we shall say that the Lie ∞-algebroid morphism is over
the identity of M .

In particular, a Lie∞-algebroid morphism Φ as in Definition 4.4 induces a graded
commutative algebra morphism:

H(Φ) : H(E′, Q′) 7→ H(E,Q). (10)

Remark 9. Lie ∞-algebroid morphisms over the identity of the base manifold M
may be defined as in Definition 2.3 as a family of degree 0 vector bundle morphisms
Φk : S

k(E) → F , k ≥ 1, satisfying several obvious conditions. This description is
much more involved for general ∞-algebroid morphisms, as it is for Lie algebroids
(see Part I, chapter 4 of [39]). We will need this point of view in the next section.

Convention. From now on, all Lie ∞-algebroids morphisms that we shall consider
will be over the identity of the base manifoldM and this assumption will be implicit.

Remark 10. There is another map at cohomology level that should not be confused
with the morphism of Equation (10). The arity 0 component of a Lie ∞-algebroid
morphism Φ induces a chain map ϕ1 : Ei → E′

i, i ≥ 1, between their linear parts:

. . .
l1 // E−3

l1 //

ϕ1

��

E−2

ϕ1

��

l1 // E−1

ϕ1

��

−ρ // TM.

id

��
. . .

l′1

// E′
−3

l′1

// E′
−2

l′1

// E′
−1 −ρ′

// TM ′

The arity 0 component of Φ is in fact entirely determined by this chain map.

Homotopies of Lie ∞-algebroid defined exactly as for Lie ∞-algebras (see Defi-
nition 2.5) as being graded differential algebra morphisms:

Ξ∗ : (E ′, Q′) → (E⊗̂Ω•([0, 1]), Q⊗ id + id⊗ ddR)

with the additional condition that Ξ∗ has to be over the identity of M , i.e. has
to be O-linear. Also, ⊗̂ refers to the completion that identifies E⊗̂Ω•([0, 1]) with
sections of the graded symmetric algebra of E∗ ⊕ T ∗[0, 1] seen as a vector bundle
over M × [0, 1]. Equivalently, this means that Ξ∗

t , H
∗
t are O-linear for all t ∈ [0, 1],

see [32] Section 3.4.3.
The previous reference provides a proof of the following fact: if two Lie ∞-

algebroid morphisms Ψ and Φ from (E,Q ≡ ({lk}k≥1 , ρ)) to (E
′, Q′ ≡ ({l′k}k≥1 , ρ

′))

are homotopic, then there exists a O-linear map H : E ′ → E of degree −1 such that

Ψ∗ − Φ∗ = Q ◦H+H ◦Q′. (11)

In turn, Equation (11) implies the following:

Proposition 10. Two homotopic Lie ∞-algebroid morphisms induce the same
graded algebra morphism H•(E′, Q′) → H•(E,Q) in cohomology. In particular,
a homotopy equivalence between two Lie ∞-algebroids induces an isomorphism of
their respective cohomologies.
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4.2. Representations of Lie ∞-algebroids. For Lie algebroids, representations
are better seen as being flat connections, a point of view used by Kirill Mackenzie
(see, e.g., [20]). The same holds for Lie ∞-algebroids [45].

Let (E,Q ≡ ({lk}k≥1 , ρ)) be a Lie ∞-algebroid overM and V = ⊕i∈ZVi a graded
vector bundle over the same manifold. In the following, we will consider that the
anchor ρ : E → TM is extended by 0 on ⊕i≥2E−i.

Definition 4.5. A Lie ∞-algebroid connection of (E,Q ≡ ({lk}k≥1 , ρ)) on V is

a map ∇ : Γ(S(E))×Γ(V ) → Γ(V ) given by a family of degree +1 maps (∇(k))k≥0,
called Taylor coefficients,

∇(k) : Γ(Sk(E))× Γ(V ) → Γ(V )

(e1 ⊙ · · · ⊙ ek, v) 7→ ∇(k)
e1⊙···⊙ekv

satisfying the following axioms:

1. ∇(k)
fe1⊙···⊙ekv = f ∇(k)

e1⊙···⊙ekv,

2. For k ̸= 1, ∇(k)
e1⊙···⊙ek(fv) = f ∇(k)

e1⊙···⊙ekv,

3. ∇(1)
e1 (fv) = f ∇(1)

e1 v + ρ(e1)[f ] v,

for every f ∈ O, v ∈ Γ(V ) and e1, . . . , ek ∈ Γ(E), k ≥ 1.

Remark 11. In particular, ∇(0) : V → V is a vector bundle morphism of degree
+1.

Remark 12. Let us extend ρ : Γ(E−1) → X(M) to Γ(S(E)) by imposing it to be
0 on (⊕i≥2E−i)⊕ Sk≥2E. Then Axioms (1), (2) and (3) in Definition 4.5 read

∇(k)
ge1⊙···⊙ek(fv) = fg∇(k)

e1⊙···⊙ekv + g ρ(e1, . . . , ek)[f ] v,

for all e1, · · · , ek ∈ Γ(E), k ≥ 1, v ∈ Γ(V ) and f, g ∈ O.

Let us give a dual description of a Lie ∞-algebroid connection of (E,Q ≡
({lk}k≥1 , ρ)) on V . Sections of the tensor product S(E∗)⊗ V come with a natural

left Γ(S(E∗))-module structure given by

F · (G⊗ v) := (F ⊙G)⊗ v, F,G ∈ Γ(S(E∗)), v ∈ Γ(V ).

Notice that we identify O and Γ(S0(E∗)).

Proposition 11. Let (E,Q ≡ ({lk}k≥1 , ρ)) be a Lie ∞-algebroid and V a graded
vector bundle over M . There is a one-to-one correspondence between connections
of (E,Q ≡ ({lk}k≥1 , ρ)) on V and degree +1 operator

D : Γ(S(E∗)⊗ V ∗) −→ Γ(S(E∗)⊗ V ∗)

such that, for all ξ ∈ Γ(S(E∗)) and ω ∈ Γ(S(E∗)⊗ V ),

D(ξ·ω) = Q(ξ)·ω + (−1)|ξ|ξ·Dω.

The correspondence goes as follows:

⟨Dα, e1 ⊙ · · · ⊙ ek ⊗ v⟩ = (−1)|α|⟨α,∇(k)
e1⊙···⊙ekv⟩+ (−1)|α|+1ρ(e1 ⊙ · · · ⊙ ek) [⟨α, v⟩]

with the understanding that ρ(e1 ⊙ · · · ⊙ ek) is zero unless k = 1 and e1 ∈ Γ(E−1).
Here, v ∈ Γ(V ), α ∈ Γ(V ∗), e1 ⊙ · · · ⊙ ek ∈ Γ(Sk(E)), k ≥ 1.
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We say that a Lie ∞-algebroid connection is flat when D2 = 0, with D as in the
above proposition. Alternatively, flat connections are called representations of
(E,Q ≡ ({lk}k≥1 , ρ)) on V . This obviously extends Lie algebroid representations

in Kirill MacKenzie’s [39], and representations up to homotopy of Lie algebroids
[1]. Kirill MacKenzie studied those representations in the frameworks of double Lie
algebroids, see [17]-[41].

Let us spell out the meaning of flatness in terms of Taylor coefficients of the
connection. The data in Definition 4.5 define a flat connection if and only if:

1. ∇(0) : V → V makes V a complex, i.e. squares to zero. From now on, we will
denote ∇(0) by DV to emphasize on the fact that it is a differential.

2. For all e ∈ Γ(E), we have

∇(1)
l1(e)

= −DV∇(1)
e − (−1)|e|∇(1)

e DV =
{
DV ,∇(1)

e

}
.

In particular, the symmetric graded commutator
{
DV ,∇(1)

e

}
is zero for all

e ∈ Γ(E−1).
3. For all e1, e2 ∈ Γ(E), we have:{
∇(1)
e1 ,∇

(1)
e2

}
−∇(1)

ℓ2(e1,e2)
= −

{
DV ,∇(2)

e1⊙e2

}
+∇(2)

ℓ1(e1)⊙e2 + (−1)|e1|∇(2)
e1⊙ℓ1(e2)

4. More generally, for all e1, . . . , en ∈ Γ(E)
n∑
i=1

σ∈Sh(i,n−i)

ε(σ)∇(n−i+1)

li(eσ(1),...,eσ(i))⊙eσ(i+1)⊙···⊙eσ(n)

=
{
DV ,∇(n)

e1⊙···⊙en

}
+

1

2

n−1∑
j=1

σ∈Sh(j,n−j)

ε(σ)
{
∇(j)
eσ(1)⊙···⊙eσ(j)

,∇(n−j)
eσ(j+1)⊙...⊙eσ(n)

}
.

(12)

Equation (12) is an obvious direct extension of the equivalent formula (6) for Lie
∞-algebras. All items (1), (2) and (3) are in fact special cases of (12).

Definition 4.6. For a representation V of a Lie ∞-algebroid (E,Q ≡ ({lk}k≥1 , ρ)),
we call Chevalley-Eilenberg differential the operator D defined in the Propo-
sition 11 and Lie ∞-algebroid cohomology the cohomology of the complex
(Γ(S(E∗)⊗ V ∗),D).

Also, Proposition 11 allows to give a clear definition of morphisms of represen-
tations.

Definition 4.7. A morphism Ψ : (V,DV ) → (W,DW ) between two represen-
tations V and W of (E,Q ≡ ({lk}k≥1 , ρ)), with respective Chevalley-Eilenberg

differentials DV ,DW , is a degree zero Γ(S(E∗))-linear map

Ψ : Γ(S(E∗)⊗W ∗) → Γ(S(E∗)⊗ V ∗),

such that Ψ ◦DW = DV ◦Ψ.

We now extend to graded vector bundles Kirill Mackenzie’s construction of the
Atiyah Lie algebroid of a vector bundle (Part I, Section 3 of [39]).

Definition 4.8. Let (V,DV ) be a complex, indexed by Z, of vector bundles over
M . Define a graded vector bundle (A−i)i∈Z over M by:
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1. A−1 := CDO(V ) is the Atiyah algebroid of the graded vector bundle V , i.e.
its sections are degree 0 maps δ : Γ(V ) → Γ(V ) such that there exists a unique
vector field ρ(δ) on M satisfying:

δ(fv) = fδ(v) + ρ(δ)[f ] v, f ∈ O, v ∈ Γ(V ).

2. for i ≥ 2, A−i := End−i+1(V, V ) is the vector bundle of vector bundle endo-
morphisms of degree −i+ 1.

This space comes equipped with a natural differential graded Lie algebroid struc-
ture when equipped with a symmetric graded commutator as a bracket, and the
commutator with DV as a differential. The anchor is the map δ 7→ ρ(δ) of the first
item. We call it the Atiyah differential graded Lie algebroid of (V,DV ).

Remark 13. The Atiyah differential graded Lie algebroid is not negatively graded,
and cannot be restricted to its negatively graded part.

For Lie algebroids, representations become morphisms valued in the Atiyah Lie
algebroids [39]. Similarly:

Proposition 12. Let (E,Q ≡ ({lk}k≥1 , ρ)) be a Lie ∞-algebroid and (V,DV ) a
complex of vector bundles over M . There is one-to-one correspondence between
flat connections (∇(k))k≥0 of a Lie ∞-algebroid (E,Q ≡ ({lk}k≥1 , ρ)) on V with

DV = ∇(0) and Lie ∞-algebroid morphisms from (E,Q ≡ ({lk}k≥1 , ρ)) to the

Atiyah differential graded Lie ∞-algebroid of the complex (V,DV ).

Proof. This is precisely the content of Equation (12). The k-th Taylor coefficient
of the Lie ∞-morphism is precisely ∇(k), for k ≥ 1.

Also, representations of Lie ∞-algebroids may be described as semi-direct prod-
ucts.

Proposition 13. A representation (∇(n))n≥1 of a Lie ∞-algebroid
(E,Q ≡ ({lk}k≥1 , ρ)) over V endows the graded vector bundle E ⊕ V with a struc-

ture of Lie ∞-algebroid (ℓk)k≥1 when equipped with the brackets:

ℓk(e1, . . . , ek) = lk(e1, . . . , ek)

ℓk(e1, . . . , ek−1, v) = ∇(k−1)
e1⊙···⊙ek−1

v

for all e1, . . . , ek ∈ Γ(E), v ∈ Γ(V ). All other brackets are zero and the anchor is
(e, v) 7→ ρ(e), for all (e, v) ∈ Γ(E−1 ⊕ V−1).

Proof. A direct computation shows that flatness is equivalent to higher Jacobi iden-
tities. All other axioms are obvious. Alternatively, it also follows from Proposition
11.

A representation of a Lie algebroid on a vector bundle V induces a representation
on V ∗. The same applies for a Lie ∞-algebroid.

Let (E,Q ≡ ({lk}k≥1 , ρ)) be a Lie ∞-algebroid and (V,DV ) a complex of vec-

tor bundles over M . Any connection (∇(n))n≥0 with ∇(0) = DV admits a dual

connection (∗∇(n))n≥0 on the dual graded vector bundle V ∗. In terms of Taylor

coefficients, it is defined by ∗∇(0) = −D∗
V and

⟨∗∇(n)
e1⊙···⊙enα, v⟩+ (−1)|α|(|e1|+···|en|+1)⟨α,∇(n)

e1⊙···⊙env⟩ = ρ(e1 ⊙ · · · ⊙ en)⟨α, v⟩
for all α ∈ Γ(V ∗), v ∈ Γ(V ), e1, · · · , en ∈ Γ(E).
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Proposition 14. The dual of the dual of a connection ∇ is mapped to ∇ under
the canonical isomorphism (V ∗)∗ ≃ V . A Lie ∞-algebroid connection is flat if and
only if its dual connection is flat.

4.3. Adjoint and coadjoint representations. Adjoint and coadjoint representa-
tions of Lie ∞-algebroids are not as easy to define as those of Lie ∞-algebras: there
is no clear equivalent of Equations (8). Also, adjoint and coadjoint representations
of Lie algebroids are not so easy to define, and depend on the choice of a connection
[1]. For Lie ∞-algebroids, they can be defined upon a choice of connections on E,
as we will now see. Let (E,Q ≡ ({lk}k≥1 , ρ)) be a Lie ∞-algebroid over M . Recall

that E := Γ(S(E∗)). Let X(E) = ⊕i∈ZXi(E) be the graded Lie algebra of vector
fields on the graded manifold E (i.e. graded derivations of E), then

adQ : P 7→ [Q,P ] = Q ◦P − (−1)|P |P ◦Q

is a degree +1 operator on X(E) squaring to zero. It satisfies the graded Leibniz
identity:

adQ(F.P ) = Q[F ]P + F.adQP. (13)

for all F ∈ E , P ∈ X(E).

Definition 4.9. We call abstract coadjoint complex the complex (X(E) =
⊕i∈ZXi(E), adQ).

Let us choose a family ∇ = (∇i)i≥1 of vector bundle connections1 on each one
of the vector bundles (E−i)i≥1. These connections allow to map a vector field X
on M to the unique degree 0 derivation of E whose restriction to Γ(E∗

−i) is the dual

of the covariant derivative ∇i
X . Also, e ∈ Γ(E−i) maps to the unique degree −i

derivation of E whose restriction to Γ(E∗
−j) is 0 for i ̸= 0 and whose restriction to

Γ(E∗
−i) is the contraction with e. Altogether, these mappings give an identification

of E-modules:
E ⊗O Γ (E ⊕ TM) ≃ X(E).

Under this identification, the abstract coadjoint complex becomes a degree +1
linear map squaring to zero

adQ : E ⊗O Γ (E ⊕ TM) → E ⊗O Γ (E ⊕ TM) .

Equation (13) and Proposition 11 imply that it is a representation of (E,Q ≡
({lk}k≥1 , ρ)) on a graded vector bundle which is T ∗M in degree 0 and (E−i)

∗ in

degree +i. We call it the coadjoint representation of (E,Q ≡ ({lk}k≥1 , ρ))

associated to the connection ∇. We call adjoint representation of (E,Q ≡
({lk}k≥1 , ρ)) its dual representation: it is by construction a representation of (E,Q ≡
({lk}k≥1 , ρ)) on its linear part:

· · · −→ E−2
l1−→ E−1

−ρ−→ TM.

Remark 14. Since the coadjoint complex associated to the connection∇ = (∇i)i≥1

is isomorphic to the abstract coadjoint complex (as differential graded E-modules),
the coadjoint representations associated to two different choices of connections are
strictly isomorphic (in a canonical manner). The same holds for the adjoint repre-
sentation.

Proposition 15 provides an explicit description of the adjoint representation,
where:

1Here∇i is a TM-connection on E−i, and must not be confused with the i+1-ary operation∇(i)
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1. For the sake of simplicity, we now denote all the connections ∇i by the same
symbol ∇,

2. [∇X , lk] stands for the graded commutator of coderivations of Γ(S(E)), namely:

[∇X , lk] (e1, . . . , ek)

=∇X lk(e1, . . . , ek)− lk(∇Xe1, . . . , ek)− . . .− lk(e1, . . . ,∇Xek),

for all e1, . . . , ek ∈ Γ(E), X ∈ X(M).

We hope that it can be of use for future references, since it seems that it has never
been written down explicitly.

Proposition 15. Let (E,Q ≡ ({lk}k≥1 , ρ)) be a Lie ∞-algebroid. The Taylor

coefficients of the adjoint representation ad∇ induced by a connection ∇ on E are
given by the differential

· · · l1 // E−2
l1 // E−1

−ρ // TM . (14)

and the following family of degree +1 maps (ad∇ (k))k≥1:

ad
∇ (1)
e′ (e) = {e′, e}2 − (−1)|e

′|∇ρ(e)e
′,

ad
∇ (1)
e′ (X) = [∇X , l1] (e

′) + [ρ(e′), X] + ρ(∇Xe
′)

ad
∇ (2)
e1⊙e2(X) = [∇X , l2] (e1, e2)

+∇[ρ(e1),X]+ρ(∇Xe1)e2 + (−1)|e1|∇[ρ(e2),X]+ρ(∇Xe2)e1

ad
∇ (k)
e1⊙...⊙ek(e) = {e1, . . . , ek, e}k+1 , k ≥ 2,

ad
∇ (k)
e1⊙...⊙ek(X) = [∇X , lk] (e1, . . . , ek), k ≥ 3,

where e, e′, e1, . . . ek ∈ Γ(E) and X ∈ X(M).

Example 10. For a Lie algebroid E = E−1, the adjoint representation is the
adjoint representation (up to homotopy) constructed in [1].

4.4. Berezinian bundle. We define the Berezinian bundle (or “Berezinian” for
short) of a finite dimensional graded bundle V = ⊕i∈ZVi over M to be the line
bundle

Ber(V ) := · · · ⊗ ∧⊤V ∗
2 ⊗ ∧⊤V1 ⊗ ∧⊤V ∗

0 ⊗ ∧⊤V1 ⊗ ∧⊤V ∗
2 ⊗ · · ·

with the understanding that ∧⊤E stands for ∧dim(E)E for any finite dimensional
vector space E. The infinite tensor product above is indeed finite, hence well-
defined. We consider the Berezinian bundle to be of degree 0 (in fact, any degree
would work). The following lemma is a well-known fact of homotopy theory.

Lemma 4.10. A homotopy equivalence between finite dimensional complexes of
vector bundles induces a canonical isomorphism of their Berezinian bundles.

Let us describe sections of this bundle. Given a family µ := (µi)i∈Z, with µi a
nowhere vanishing section of ∧⊤Vi (defined in some open subset U ⊂M), we denote
by µ∗

2i the dual nowhere vanishing section of ∧⊤V ∗
2i. The tensor product:

µ := · · · ⊗ µ∗
−2 ⊗ µ−1 ⊗ µ∗

0 ⊗ µ1 ⊗ µ∗
2 · · · (15)

is a nowhere vanishing section Ber(V ) on U ⊂M .

Theorem 4.11. For any representation (∇(n))n≥0 of a Lie ∞-algebroid (E,Q ≡
({lk}k≥1 , ρ)) on a finite dimensional graded vector bundle V , the Berezinian bundle
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Ber(V ) comes equipped with a natural representation structure whose unique non-
vanishing Taylor coefficient is, for all e ∈ Γ(E−1), given by:

∇Ber
e µ =

(∑
i∈Z

(−1)idivµi
(∇(1)

e )

)
µ, (16)

for every µ as in (15), where divµi
is defined by the relation

d∑
k=1

v1 ∧ · · · ∧
(
∇(1)
e vk

)
∧ · · · ∧ vd = divµi

(
∇(1)
e

)
v1 ∧ · · · ∧ vd

for every nowhere vanishing local sections v1, . . . , vd of Vi such that v1∧· · ·∧vd = µi
is a section of ∧⊤Vi.

Proof. For each trivialization (vi)i∈I of Γ(V ) by homogeneous sections of V , con-

sider (αi)i∈I the dual trivialization of Γ(V ∗). The connection functions ωji ∈ E
of ∇ are defined in terms of the Chevalley-Eilenberg differential D by:

Dαi =
∑
j∈I

(−1)|αi|(|αj |+1)ωji ⊗ αj .

Notice that, since D has degree +1, each connection function has degree |ωji | =
1 + |vi| − |vj |. In particular, ωii has arity 1 (i.e. is a section of (E−1)

∗ for all index
i), and is defined by:

ωii(e) =
〈
αi,∇(1)

e vi

〉
, e ∈ Γ(E−1). (17)

In particular Strω =
∑
i∈I(−1)|αi|ωii has arity +1 and degree +1.

Let µ be the section of Ber(V ) defined by the chosen local trivialization of Γ(V ).
Then Equation (16) reads:∑

i∈Z
(−1)idivµi(∇(1)

e ) = Strω(e). (18)

Let us consider another (local) trivialization (v′i)i∈I such that v′ = Av, for some

matrix of local smooth functions A = (Aji )i,j∈I . The coefficient Aji of this matrix is
zero if |vi| ≠ |vj |, so that A is a block diagonal matrix with blocks (An)n∈Z. A direct
computation gives that the connection functions ω′ and ω for these trivializations
are related by (using Einstein’s convention):

ω′
i
j
= (A−1)ipω

p
k A

k
j −Q(Akj )(A

−1)ik.

Since Aji = 0 when the degrees of vi and vj are different, we have, by invariance of
the trace: ∑

i∈I s.t. |vi|=j

(A−1)ipω
p
kA

k
j =

∑
i∈I s.t. |vi|=j

ωii

so that:

Strω′ − Strω = −(−1)|vi|Q(Aki )(A
−1)ik =

Q[(Ber(A)]

Ber(A)
= Q[ln(|Ber(A)|)]. (19)

Let us use Equations (18) and (19) to show that (i) ∇Ber is well-defined and (ii) is
a Lie ∞-algebroid connection which (iii) is flat.

For two different trivializations as above, the associated sections of Ber(V ) are
related by

µ′ = Ber(A)µ,
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where Ber(A) =
∏

k detA2k+1∏
k detA2k

. Equation (19) implies that

Strω′ (e)− Strω (e) = ρ(e)[ln(|Ber(A)|)], e ∈ Γ(E−1).

This implies (i) and proves that ∇Ber
e is well-defined. It also implies (ii), i.e. that

∇Ber
e is O-linear in E while ∇Ber

e f µ = f∇Ber
e µ+ ρ(e)[f ]µ, for all f ∈ O.

To prove (iii), we will use the flatness of D. For each i ∈ I,

D2αi =
∑
j

(−1)|αi|(|αj |+1)Q(ωji )⊗ αj + (−1)1+(|αi|+|αj |)|αk|ωki ⊙ ωjk ⊗ αj = 0,

and, consequently,

Q(ωji ) =
∑
k

(−1)(|αi|+|αj |)|αk|+|αi|(|αj |+1)ωki ⊙ ωjk. (20)

In particular,

Q(Strω) =
∑
i

(−1)|αi|Q(ωii)

=
∑
i,k

(−1)|αi|ωki ⊙ ωik by Eq. (20)

=
∑
i,k

(−1)|αi|(−1)(1+|αi|−|αk|)ωik ⊙ ωki for degree reason

=
∑
i,k

(−1)1+|αk|ωik ⊙ ωki = −
∑
k

(−1)|αk|Q(ωkk) = −Q(Strω).

This implies that Strω =
∑
i∈I(−1)|vi|ωii is a Q-closed element in E1. In view of

flatness conditions (1)-(3) in page 292, this is equivalent to ∇Ber being a represen-
tation:

∇Ber
l1(e)

= 0

∇Ber
{e1,e2} =

[
∇Ber
e1 ,∇Ber

e2

]
,

for e1, e2 ∈ Γ(E−1).

5. The modular class of a Lie ∞-algebroid.

5.1. Some definitions and computations. The Berezinian bundle of a repre-
sentation of a Lie ∞-algebroid (E,Q ≡ ({lk}k≥1 , ρ)) has two characteristics: (i) it

is concentrated in some degree, and (ii) it has rank 1 in this degree. This implies
that only its first Taylor coefficient may be non-zero, and only when applied to a
section of E−1. Given now a rank-1 representation B →M , i.e. a representation
that admits these two characteristics, denote by (e, b) 7→ ∇B

e b its Taylor coefficient.
From now on, we work in smooth differential geometry, i.e. O = C∞(M).

Assume there exists a nowhere vanishing section b of B, then the section ωb ∈
Γ(E∗

−1) = E+1 defined by:

∇B
e b = ωb(e) b

is a Q-closed function on E i.e.:

ωb(l2(e1, e2))− ρ(e1)[ωb(e2)] + ρ(e2)[ωb(e1)] = 0 and ωb(l1(ẽ)) = 0,
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for any e1, e2 ∈ Γ(E−1), ẽ ∈ Γ(E−2). Also, it is easily checked that for every
nowhere vanishing smooth function λ ∈ O:

ωλb(e) = ωb(e) +
ρ(e)[λ]

λ
= ωb(e) + ρ(e)[ln(|λ|)]

or, equivalently, ωλb = ωb + QE [ln(|λ|)]. As a consequence, the class of ωb ∈
H1(E,Q) does not depend on the choice of b. If there is no non-vanishing section
because the rank 1 bundle B is not trivial, then we can consider the representa-
tion B ⊗ B, which is now trivial as a rank 1 bundle, and consider one-half of the
class defined above. We call this class the characteristic class of the rank-1
representation B.

Definition 5.1. We call characteristic class of a representation of a Lie ∞-
algebroid the characteristic class of its Berezinian bundle (defined in Theorem 4.11).

Let (E,Q ≡ ({lk}k≥1 , ρ)) be a Lie ∞-algebroid and ∇ = (∇i)i≥1 a connection

on E. The adjoint representation ad∇ (see Section 4.3) has a characteristic class.
Since different connections define isomorphic representations (see Remark 14), we
have:

Proposition 16. Let (E,Q ≡ ({lk}k≥1 , ρ)) be a Lie ∞-algebroid. The characteris-
tic class of the adjoint representation with respect to a connection ∇ is independent
of the chosen connection.

By Proposition 16, the following definition makes sense.

Definition 5.2. The modular class of a Lie ∞-algebroid (E,Q ≡ ({lk}k≥1 , ρ))
is the characteristic class of any of its adjoint representations. When the modular
class is zero, we say that the Lie ∞-algebroid is unimodular.

Let us give a concrete description of the modular class. Let X1, . . . , Xn and

e
(i)
1 , . . . , e

(i)
ai be local trivializations of TM and each one of the vector bundles E−i,

over some open subset of M .
For every Y ∈ X(M), we define div(Y ) to be the unique function that satisfies:

[Y,X1 ∧ · · · ∧Xn] = div(Y )X1 ∧ · · · ∧Xn

and we define div(i)(e) to be, for all i ≥ 1 and all e ∈ Γ(E−1), the unique function
that satisfies:

{e, e(i)1 ∧ · · · ∧ e(i)ai }2 =

ai∑
k=1

e
(i)
1 ∧ · · · ∧ {e, e(i)k }2 ∧ · · · ∧ e(i)ai = div(i)(e) e

(i)
1 ∧ · · · ∧ e(i)ai

then

Definition 5.3. Let (E,Q ≡ ({lk}k≥1 , ρ)) be a Lie ∞-algebroid. The modular

cocycle with respect to the local trivializations X1, . . . , Xn and e
(i)
1 , . . . , e

(i)
ai as

above is the section ω∇ of E∗
−1 given for all e ∈ Γ(E−1) by:

ω∇(e) = div(ρ(e)) +
∑
i≥1

(−1)idiv(i)(e).

In the expression of the adjoint action of a Lie ∞-algebroid, as described in
Proposition 15, the Taylor coefficients (even the one that will appear when comput-
ing the action on the Berezinian bundle) have terms involving the TM -connection
on E that do not appear in the expression of ω∇. The next statement is therefore
not obvious, and deserves a careful proof.
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Proposition 17. Any modular cocycle is a representative of the modular class.

Proof. Let x1, . . . , xn be local coordinates in an coordinate neighborhood U ⊂ M ,
and e1, . . . , er be local trivialization of E over U (by homogeneous sections). We
denote the dual variables by ξ1, . . . , ξr and by µ the section of the Berezinian bundle
of E ⊕ TM constructed out the local trivializations ∂

∂x1
, . . . , ∂

∂xn
and e1 . . . , er.

From Theorem 4.11 we know that ∇Ber
e µ = Strω(e)µ, e ∈ Γ(E−1) where

Strω(e) =

n∑
k=1

〈
dxk, ad

(1)
∂

∂xk

(e)

〉
+

r∑
k=1

〈
ξk, ad(1)ek (e)

〉
.

Taking into account the Taylor coefficients of the adjoint representation given in
Proposition 15 we have

Strω(e) =

n∑
i=1

〈
dxi,

[
ρ(e),

∂

∂xi

]〉
+

n∑
i=1

〈
dxi, ρ(∇ ∂

∂xi

(e))
〉

+ (−1)|ek|
r∑

k=1

〈
ξk, {ek, e}2

〉
+ (−1)|ek|

r∑
k=1

〈
ξk,∇ρ(ek)(e)

〉
.

(21)

Now, consider the functions ρik = ⟨ρ(ek), dxi⟩ =
〈
ξk, ρ∗(dxi)

〉
and notice that

r∑
k=1

〈
ξk,∇ρ(ek)(e)

〉
=

r∑
k=1

n∑
i=1

〈
ξk,∇ρik

∂
∂xi

(e)
〉

=

r∑
k=1

n∑
i=1

〈
ρik ξ

k,∇ ∂
∂xi

(e)
〉
=

n∑
i=1

〈
(−1)|ξk|ρ∗(dxi),∇ ∂

∂xi

(e)
〉

As a consequence, the second and fourth terms in (21) add up to zero. Therefore

Strω(e) =

n∑
i=1

〈
dxi,

[
ρ(e),

∂

∂xi

]〉
+

r∑
k=1

(−1)|ξk|
〈
ξk, {ek, e}2

〉
=div(ρ(e)) +

∑
i≥1

(−1)idiv(i)(e) = ω∇(e).
(22)

This completes the proof.

Remark 15. Let x1, . . . , xn, e1, . . . , er be as in the proof of Proposition 17. For
every index i such that ei has degree −1, we define functions (ρia)a=1,...,n by:

ρ(ei) =

n∑
a=1

ρia
∂

∂xa

and we define functions (Γki,j)1≤i,j,k≤d by

l2(ei, ej) =

d∑
k=1

Γki,jek.

(Of course Γki,j = 0 unless |ek| = |ei|+ |ej |+ 1). For every index i such that ei has
degree −1, Equation (22) in the proof of Proposition 17 reads:

ω∇(ei) =

 n∑
a=1

∂ρia
∂xa

+

d∑
j=1

(−1)|ej |Γji,j

 . (23)
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An immediate consequence of Proposition 17 is the following result (which ex-
tends Example 5).

Corollary 1. The modular class of a negatively graded Lie ∞-algebroid (E,Q ≡
({lk}k≥1 , ρ)) depends only on l1, ρ and on the restriction of l2 to Γ(E−1)⊗Γ(E) →
Γ(E).

Let us conclude this section by explaining the relation with the existing studies
on modular classes [7] and [49].

Remark 16. In local coordinates, the modular cocycle is the divergence of QE , so
that the modular class as defined as above matches the modular class as defined
in [7, 49]. Let us check this point that generalizes Proposition 5. Let x1, . . . , xn
be local coordinates in an coordinate neighborhood U ⊂M , and e1, . . . , er be local
trivialization of E over U (for homogeneous sections). We denote the dual variables
by ξ1, . . . , ξr. In general, the divergence of a vector field Q of degree i is defined by:

Div(Q) := (−1)i+1

(
r∑

k=1

∂

∂ξk
Q[ξk] +

n∑
k=1

∂

∂xk
Q[xk]

)
(24)

For vector fields of degree 1, for degree reasons, the divergence of the components
of Q of arity ≥ +2 or 0 will disappear in the sum on the right-hand side of (24):

Div(Q) :=

r∑
k=1

∂

∂ξk
Q(1)[ξk] +

n∑
k=1

∂

∂xk
Q(1)[xk].

Define functions ρja and Γki,j as in Remark 15. Then

Q(1) =
∑
i,a

ρai ξ
i ∂

∂xa
+
∑
i,j,k

(−1)|ξ
k|Γki,jξ

jξi
∂

∂ξk
.

Hence

Div(Q) =

r∑
i=1

 n∑
a=1

∂ρia
∂xa

+

r∑
j=1

(−1)|ξ
j |Γji,j

 ξi.

The sum over i indeed only runs on indices such that |ξi| = 1. This is the definition
of the modular cocycle in [7]. Equation (23) means that this definition matches our
Definition 5.3.

5.2. The modular class, leaf by leaf description, and homotopy invari-
ance. For any negatively graded Lie ∞-algebroid (E,Q ≡ ({lk}k≥1 , ρ)), the image

ρ(Γ(E−1)) of the anchor map is a singular foliation in the sense of [2, 3]. In par-
ticular, the base manifold M is a disjoint union of leaves. More precisely, any
equivalence class L of the equivalence relation on M defined by: “ m1 ∼ m2 if
and only there exists a finite family of vector fields in ρ(Γ(E−1)) whose successive
time-1 flows maps m1 to m2” is a submanifold such that TmL = ρm(E−1|m), at
every m ∈ L. We call these submanifolds leaves of (E,Q ≡ ({lk}k≥1 , ρ)).

Let L be such a leaf.

1. The restriction of the linear part (E⊕TM, l1,−ρ) to L is a complex of vector
bundles

· · · l1−→ iLE−2
l1−→ iLE−1

−ρ−→ iLTM (25)

whose differential has constant rank.
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This can be proven as follows. The kernel and image of ρ have constant
rank along L since ρ(iLE−1) = TL. Let σ : TL → iLE−1 be a section of the
anchor map ρ : iLE−1 → TL. Consider the connections on the vector bundles
(iLE−i)i≥2 and the vector bundle Ker(ρ) ⊂ iLE−1, defined by:

∇σ
ue := l2(σ(u), e) for all u ∈ X(L), e ∈ Γ(E−k) or e ∈ Γ(Ker(ρ)).

The graded Jacobi identity implies that for any e ∈ Γ(E−1), f ∈ Γ(E−k) (for
k ≥ 2 ) or f ∈ Γ(Ker(ρ)):

l1(l2(e, f)) = l2(e, l1(f)).

When applied to e = σ(u), this reads [∇σ
u, l1] = 0. The differential l1 is

therefore preserved under parallel transportation along L, and, in particular,
is of constant rank along the leaf L.

2. The first item implies that the cohomology of the complex (25) is a graded
bundle over L.
We denote by H•(iLE) this cohomology, and call it the graded cohomology
of (E,Q ≡ ({lk}k≥1 , ρ)) over the leaf L.

Notice that H0(iLE) is the normal bundle iLTM/TL of L in M .
3. Also, AL(E,Q) := iLE−1/l1(iLE−2) is a (transitive) Lie algebroid over L,

when equipped with the anchor and Lie bracket:

ρ : e 7→ ρ(e) and {e1, e2} = l2(e1, e2) for all e1, e2, e ∈ Γ(iLE−1).

The horizontal bar stands for the natural map Γ(iLE−1) 7→ Γ(AL(E,Q)).
We call AL(E,Q) the holonomy Lie algebroid of the leaf L for (E,Q ≡
({lk}k≥1 , ρ)). Its isotropy Lie algebra bundle is H−1(iLE) by construction.

4. Each one of the spaces H•(iLE) comes equipped with a canonical AL(E,Q)-
connection defined by:

∇ef = l2(e, f)

where e ∈ Γ(iLE−1) and f ∈ Γ(iLE−k), for k ≥ 2, or f ∈ Γ(iLKer(ρ)) and the
horizontal bars are as before.
As an exception to the previous rule, the AL(E,Q)-connection on H0(iLE) =
iLTM/TL is defined by:

∇eX = [ρ(ẽ), X]

for every X ∈ X(M), and every section ẽ of E−1 whose restriction to L is e.
Also, X 7→ X stands for the natural map X(M) 7→ Γ(iLTM/TL).

5. The higher Jacobi identities imply that the above AL(E,Q)-connections are
flat.
The flatness of the AL(E,Q)-connection on H−i(iLE) for i ≥ 1 follows from
the graded Jacobi identity, for all e1, e2 ∈ Γ(E−1), f ∈ Γ(E−k) with k ≥ 2 or
f ∈ Ker(ρ):

l2(l2(e1, e2), f)

=l2(e1, l2(e2, f))− l2(e2, l2(e1, f))− l3(e1, e2, l1(f))− l1 ◦ l3(e1, e2, f)

since f 7→ l3(e1, e2, l1(f))+l1 ◦ l3(e1, e2, f) induce the zero map in cohomology.
The flatness of the AL(E,Q)-connection on the normal bundle is well-known
and is easy to check: it uses the fact that the anchor map ρ is a morphism
(see, for instance, [3]).

Let us conclude this discussion with a Lemma:
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Lemma 5.4. Let L be a leaf of a Lie ∞-algebroid (E,Q ≡ ({lk}k≥1 , ρ)). The

graded cohomology H•(iLE) over the leaf L is a module over the holonomy Lie
algebroid AL(E,Q) of L.

Let us consider now the Berezinian bundle of the graded vector bundle H•(iLE):

Ber(H•(iLE)) := · · · ∧⊤ H−3(iLE)⊗ ∧⊤(H−2(iLE))∗

⊗ ∧⊤H−1(iLE)⊗ ∧⊤(iLTM/TL)∗.

By Lemma 4.10, there is a canonical isomorphism between the Berezinian of a
complex and the Berezinian of its cohomology. In particular, there is a canonical
isomorphism:

iL : Ber(E ⊕ TM, l1,−ρ) ≃ Ber(H•(iLE)).

Recall that (E⊕TM, l1,−ρ) stands for its linear part. Let us compute the modular
class of the leaf L, i.e. the characteristic class of this Lie algebroid representation.
This Proposition shall be helpful.

Proposition 18. For every section e ∈ Γ(E−1) and every section µ of the Berezi-
nian bundle Ber(E ⊕ TM, l1,−ρ)

∇Ber
e iLµ = iL adBere µ.

In the previous equation, on the left hand side, ∇Ber
e is computed with the help of

the AL(E,Q)-connections on H•(iLE).

Proof. Let X1, . . . , Xk be a local trivialization of the normal bundle iLTM , arising

from local vector fields X1, . . . , Xk. For every i ≥ 1, let e
(i)
1 , . . . , e

(i)
hi

be sections of

Ker(l1) ⊂ iLE−i (or Ker(ρ) for i = 1) whose classes e
(i)
1 , . . . , e

(i)
hi

modulo l1(E−i−1)

form a local trivialization of the bundleH−i(iLE). There exists sections f
(i)
1 . . . , f

(i)
bi

of iLE−i such that:

1. local extensions of X1, . . . , Xk, ρ(f
(1)
1 ) . . . , ρ(f

(1)
b1

) form a trivialization of TM

(in a neighborhood of L).

2. l1(f
(i+1)
1 ), . . . , l1(f

(i+1)
bi+1

), e
(i)
1 , . . . , e

(i)
hi
, f

(i)
1 . . . , f

(i)
bi

form a trivialization of

iLE−i.

The isomorphism iL, between Berezinian bundles, maps the section µ associated
with the trivialization of E⊕TM given above to the section associated to the triv-

ialization X1, . . . , Xk and e
(i)
1 , . . . , e

(i)
hi
. Now, both actions of E−1 on the Berezinian

bundles are the alternate sums of the terms computed as in (17), for all the elements
of the trivializations above. In order to check that the Berezinian actions computed
with respect to these two local trivializations coincide, it suffices to check that,

for all possible indices, the term in adBere µ where the bracket l2(e, f
(i)
j ) appears

adds up to zero with the term due to the bracket l2(e, l1(f
(i)
j )) (or [ρ(e), ρ(f

(1)
j )] for

i = 1). Also the term where the bracket of the form l2(e, e
(i)
j ) appears is equal to

the term where ∇ee
(i)
j appears, and the term where [ρ(e), Xi] appears is the term

where ∇eXi appears. This completes the proof.

A Lie ∞-algebroid morphism Φ from a Lie ∞-algebroid (E,Q ≡ ({lk}k≥1 , ρ)) to

(E′, Q′ ≡ ({mk}k≥1 , ρ)) induces in particular:
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1. A chain map ϕ1 : E• → E′
•

· · ·

ϕ1

��

l1 // E−2

ϕ1

��

l1 // E−1

ϕ1

��

−ρ // TM

=

��
· · ·

m1

// E′
−2 m1

// E′
−1 −ρ′

// TM

OO (26)

2. and a degree zero vector bundle morphism ϕ2 : S2(E) → E such that for
every sections e1, e2 ∈ Γ(E):

ϕ1({e1, e2})

={ϕ1(e1), ϕ1(e2)}+ l1ϕ2(e1, e2)− ϕ2(l1(e1), e2)− (−1)|e1|ϕ2(e1, l1(e2)).
(27)

Let us assume that both (E,Q ≡ ({lk}k≥1 , ρ)) and (E′, Q′ ≡ ({mk}k≥1 , ρ
′)) have

the same leaves, and let L be such a leaf. The Lie ∞-morphism above then induces,
by Equations (26 - 27)

1. a Lie algebroid morphism AL(E,Q) −→ AL(E
′, Q′),

2. a graded vector bundle morphism:

H•(iLE) −→ H•(iLE
′)

3. These morphisms intertwines the respective actions of AL(E,Q) and
AL(E

′, Q′) on H•(iLE) and H•(iLE
′).

In particular, homotopy equivalent Lie ∞-algebroids (E,Q ≡ ({lk}k≥1 , ρ)) and

(E′, Q′ ≡ ({mk}k≥1 , ρ
′)) have the same leaves, and a homotopy equivalence induces

1. a Lie algebroid isomorphism AL(E,Q) ≃ AL(E
′, Q′),

2. a graded vector bundle isomorphism:

H•(iLE) ≃ H•(iLE
′)

3. which intertwines the respective actions of AL(E,Q) and AL(E
′, Q′) on

H•(iLE) and H•(iLE
′).

By Lemma 4.10, a homotopy equivalence between two complexes induces a canon-
ical isomorphism of their Berezinian bundles, and the following diagram commutes.

Ber(E ⊕ TM, l1,−ρ)
iL

++
≃

��

Ber(H•(iLE)) ≃ Ber(H•(iLE
′))

Ber(E′ ⊕ TM, l′1,−ρ′)

OO

iL

33

The following corollary of Proposition 18 follows from the previous discussion:

Corollary 2. A homotopy equivalence between two Lie ∞-algebroids intertwines
the modular classes of their leaves. In particular, unimodularity of a given leaf is
preserved under homotopy equivalence.
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