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ABSTRACT. We study the modular class of @-manifolds, and in particular of
negatively graded Lie oo-algebroid. We show the equivalence of several de-
scriptions of those classes, that it matches the classes introduced by various
authors and that the notion is homotopy invariant. In the process, the adjoint
and coadjoint actions up to homotopy of a Lie co-algebroid are spelled out.
We also wrote down explicitly some dualities, e.g. between representations up
to homotopies of Lie oo-algebroids and their Q-manifold equivalent, which we
hope to be of use for future reference.

1. Introduction. The modular class can be broadly defined as the obstruction to
the existence of an invariant volume form. For Lie algebras, it is a class in the
Chevalley-FEilenberg cohomology obstructing the existence of a bi-invariant volume
form on the corresponding Lie group. For a regular foliation, it is the obstruction
to the existence of a transverse volume form invariant under all monodromies; It
is valued in tangent cohomology. For Poisson structures, it is the obstruction to
the existence of a volume form preserved under all Hamiltonian vector fields, and
is valued in Poisson cohomology [23]. Now, Lie algebras, regular foliations, and
Poisson structures are Lie algebroids, an object at the heart of Professor Kirill
Mackenzie’s work: he wrote two books which are the main references on the matter
[39, 40], and made numerous crucial contributions to their studies. It is therefore
not surprising that the various and disparate occurrences of modular classes have
long been unified as particular cases of modular classes of Lie algebroids [51, 14]. To
be more precise, it has been rightly suggested by Yvette Kosmann-Schwarzbach and
Alan Weinstein that modular classes should be associated not to a Lie algebroid,
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but to a Lie algebroid morphism: the modular class of a Lie algebroid being the
one of its anchor map [21, 22, 11, 10]. Notice that the aforementioned articles make
a crucial use of Kirill Mackenzie’s explicit description of Lie algebroid morphisms
detailed in Part I, chapter 4 of [39], first developed by himself in [38].

For finite dimensional Lie algebroids, there is dual point of view, attributed to
Vaintrob [46], but used also by Kirill MacKenzie and Ping Xu in their studies
of Lie bialgebroids [42], which consists in seeing the Lie algebroid as a graded
manifold equipped with a degree +1 vector field squaring to zero. As explained by
Voronov [50] in @Q-manifolds and Mackenzie theory: an overview, Q-manifolds are
an efficient manner to deal with Lie bialgebroids. When they are of finite rank,
@-manifolds, i.e. graded manifolds concentrated in negative degrees equipped with
a degree +1 self-commuting vector field, can be seen as being the dual of Lie oo-
algebroids. They are a natural tool in gauge theory [28, 36] and higher structures
[9]. Of course, it contains (when the base manifold is a point) Lie oc-algebras,
whose role is well-known in various deformation theories, in particular deformation
quantizations [19] or deformations of Poisson manifolds [12], as well as complex
geometry [24] and, more generally, the Atiyah class of a Lie algebroid pair [13, 31].
In most cases, the only properties of Lie oc-algebroids of interest are those which
are preserved under an equivalence relation called homotopy equivalence (See [8]
for natural interpretations): this aspect is not seen for Lie algebroids, for which
homotopy equivalence reduces to Lie algebroid isomorphisms.

For instance, an unique up to homotopy “universal Lie oo-algebroid” has also
been associated to singular foliations in [15, 34, 32] and Lie-Rinehart algebras [33].

In the present article, we describe the modular class of negatively graded Lie
oo-algebroids. Those are used by Sylvain Lavau [35] to define modular class of a
singular foliation as being the one of (any one of) its universal Lie co-algebroid.

The modular class of a Lie co-algebroid has already been considered (in Zs-
graded setting) by several authors: A. J. Bruce [7] and T. Voronov [49] (notice
that the modular class appears in the arXiv version of [49] -page 6- but not in the
printed version [50]). In both works, it is the obstruction to the existence of an
Berezinian form invariant with respect to the homological vector field Q. Also and
independently, Granaker [18] describes (via operads) unimodular Lie oco-algebras
and proves that the notion is homotopy invariant. However, as far as we know, the
homotopy invariance of modular class for Lie oco-algebroids was never considered,
nor was this class related with representations up to homotopy, more precisely with
the adjoint action up to homotopy. We also give some of its geometric properties
when restricted to a leaf. Since the final goal shall be the study of the modular class
of singular foliations [34], we intend to insist more on the modular class of a Lie
oo-algebroid and on its homotopy invariance, but we start with the Lie oc-algebra
case.

We start in Sections 2 and 3 with a detailed study of the modular forms and class
of a Lie oco-algebra (mainly those of finite dimension, although this condition may
be relaxed). We show that it can be defined either as the supertrace of the adjoint
action, or as the divergence of the vector field that dualizes the Lie oo-brackets. We
also show that it is well-behaved under Lie oo-morphisms, and their homotopies.

In Sections 4 and 5, we enlarge this construction to negatively graded Q-manifolds.
Again, we show that it can be defined either as the divergence of the Q-vector field,
but also as the super-trace of the adjoint action. This requires a precise description
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of adjoint and coadjoint actions for Q-manifolds that extend the Abad-Crainic ad-
joint representations of to homotopy [16, 1, 43] for Lie algebroids. We then show
invariance under homotopy equivalence. Various examples are then given, and the
geometric meaning is detailed.

2. Lie oco-algebras. We begin by reviewing some concepts about graded vector
spaces and Lie oo-algebras [29]. Different authors use different conventions: our
conventions match those in [4, 8, 32, 29, 44].

2.1. Conventions on graded vector spaces. We will work with Z-graded vector
spaces with finite dimension over a field K = R or C.

Let E = ®;czE; be a finite dimensional graded vector space (i.e. all vector
spaces E; are of finite dimension, and this dimension is zero except for finitely many
of them). We call E; the homogeneous component of E of degree i¢. An element x
of E; is said to be homogeneous with degree |z| = i. For each k € Z, one may shift
all the degrees by k and obtain a new grading on F. This new graded vector space
is denoted by E[k] and is defined by E[k]; = E; k.

A morphism ® : E — V between two graded vector spaces is a degree preserving
linear map, i.e. a collection of linear maps ®; : E; —» V;, i € Z. Wecall ®: E -V
a morphism of degree k, for some k € Z, if it is a morphism between E and V[k].

The dual E* of E is naturally a finite dimensional graded vector space whose
component of degree 7 is the dual (E_;)* of E_;, for all i € Z, in equations: (E*); =
(E_i)"

Given two finite dimensional graded vector spaces E and V, their direct sum
E @V [resp. tensor product E® V] is a finite dimensional graded vector space with
grading

(EeV)i=E, oV, [esp. (EQV); ==V ]
We adopt the Koszul sign convention: for homogeneous morphisms f : E — V

and g : ' — W, the tensor product f ® g : E® F — V ® W is the morphism of
degree |f| + |g| given by

(fogeey) =1 f)2gy), zecEyeF

For each k € Ny, let T*(E) = ®*E and let T(E) = @, T*(E) be the tensor
algebra over E. The graded symmetric algebra over E is the quotient

S(E) =T(B)/ (zoy - (-1 My @),

This quotient is a graded commutative algebra, whose product we denote by ®.

For n > 1, let S,, be the permutation group of order n. For any n-tuple of
homogeneous elements « = (z1,...,2,) in E and any o € S,,, the Koszul sign is
the element in e(o, z) € {—1,1} defined by

To1) O .. O Ty = €(0,2)T1 O ... O Ty,

For the sake of simplicity, we will simply denote the Koszul sign by €(o) instead of
(o, x).
An element o of S, is called an (i,n — 4)-unshuffle if o(1) < ... < o(i) and
o(i+1) <...<a(n). The set of (i,n — i)-unshuffles is denoted by Sh(i,n — i).
Since we consider F a finite dimensional graded vector space, we identify S(E*)
with (SE)*.
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Koszul sign conventions and degree reasons yield, for each homogeneous elements
f9€E",

(fog@ey) = (feg@Eoy+ (-1l
(—D)llel £ (2)g(y) + (=1)l=lvtvllel £ (y)g(2),
(—D)ll9l f(2)g(y) + f(y)g(x) =,y € E.

2.2. Lie oo-algebras. We will consider the symmetric approach to Lie co-algebras,
as in [29, 44].

Definition 2.1. A symmetric Lie oo-algebra or a Lie[l] co-algebra is a graded
vector space E = ®;czE; together with a family of degree +1 linear maps I :
SH(E) — E, k > 1, satisfying

Z Z 6(0’) lj (l, (xa(l),...,xg(i)) 7xo(i+1) ~-~;xo(n)) = 07 (1)
i+j=n+1oeSh(i,j—1)
for all n € N and all homogeneous elements z1,...,x, € F.
The décalage isomorphism (see, e.g. [4]) establishes a one to one correspondence

between skew-symmetric Lie oo-algebra structures over E and symmetric Lie oo-
algebra structures over E[1].

Example 1 (Symmetric graded Lie algebra). A symmetric graded Lie algebra is a
symmetric Lie oo-algebra F = ®;czF; such that [,, = 0 for n # 2. Then the degree
0 bilinear map on E[1] defined by:

[z,9] := (=1)?1a(x,y) for all x € E;,y € E; (2)
is a graded Lie bracket. In particular, if £ = E_; is concentrated in degree —1, we

get a Lie algebra structure.

Example 2 (Symmetric DGL algebra). A symmetric differential graded Lie algebra
(DGLA) is a symmetric Lie co-algebra E = @®;czF; such that I, = 0 for n # 1 and
n # 2. Then d := [y is a degree +1 linear map d : F — F squaring zero and satisfies
the following compatibility condition with the bracket {-,-} = l3(:,):

{ d{z,y} + {d(x),y} + (—1)* {z,d(y)} = 0, 3)
{{z, v}, 2} + (1) {z, 2} y} + (1) {z, {y, 2}} = 0.

Example 3. Let (E = ®;czE;,d) be a cochain complex. Then End(E)[l] =
(®icz End; E)[1] has a natural symmetric DGL algebra structure with [ = 9, Il =

{, } given by:

0p = —dop+ (—1)1¢1H1p o d,

{p, 0} = (_1)|¢\+1 (¢01/, _ (_1)(\¢\+1)(\wl+1)¢0¢) ,
for ¢, homogeneous elements of End(F)[1].

Recall that for (E,{lx};>,), a symmetric Lie co-algebra, equations (1) establish:

(i) for n = 1, that I3 0l = 0, so that l; : E4 — Fet1 is a differential on E and
we have an associated cohomology H*(E,ly);
(ii) for n = 2, that

h(la(w1,22)) + la(h (1), 2) + (1) Ny (21, 13 (22)) = 0,
so that the bracket I3 induces a graded symmetric bracket on H®(F,[;);
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(iii) for n = 3, that the previously defined symmetric bracket on H®(E,l;) satisfies
the graded symmetric Jacobi identities as in equations (3).

Hence:

Proposition 1. Let (E, {lx},>,) be a symmetric Lie co-algebra. The graded vector
space H*(E,l1) has a natural graded symmetric Lie algebra structure.

2.3. Symmetric Lie oo-algebras as graded manifolds over a point. Let
(E,{lx}y>,) be a finite dimensional symmetric Lie oo-algebra. Consider the re-
duced graded symmetric algebra, ie. the graded commutative algebra
(SZYHE*),®) (“reduced” means that S°(E*) = K is not included in the algebra
structure). Elements in (E_;,)*®...®©(E_;,)* are said to be of degree i; + ...+
and arity k. Let &£ be the formal completion of E with respect to the arity. Elements
of £ shall be referred to as functions and are, by definition, formal sums

F = Z k)
k>1
with F(®) ¢ S¥(E*) an element of arity k. By F(z1,...,x), with z1,...,2, € E,
we mean the element of K obtained by pairing Fj, € S*(E*) ~ (S*(FE))* with
SHORRRION 7S Sk(E)
We denote by £F, the space of functions of arity k and degree i, i.e.

Ef = Birtotin=i(B-is)* © ... © (B-3,)" (4)

When only the degree or the arity is specified, we shall denote the corresponding
vector space by & and £, respectively.

Since it is the completion of (SZ!(E*),®)), £ has no unit. When a unit is added
(i.e., if we consider the completion of (S(E*), ®) instead), we obtain a unital algebra
that we shall denote by £.

We say that a map ¥ : £ — & has degree i € Z if U(&,) C oy and arity k € Z
if U(E€®) C £*FF. Any map of degree i decomposes according to arity:

U= wh
keZ

(Notice that the sum runs on Z: a linear map can very well reduce arity.)

We call the graded derivations of £ vector fields of the graded manifold F.
The vector space Der(€) of vector fields of F is a graded Lie algebra with respect
to the bracket

[Q,Pl=Q-P—(—1)I®I"IP.Q,  Q,P €Der(¢).

A symmetric Lie co-algebra structure (E, {l1},~,) induces a degree +1 derivation
of &, Qg : £ — &, squaring to zero. This derivation decomposes according to its

arity:
k
Qe =) QY
k>0
where, for each k > 0, the arity k& derivation Q%) is given by:

QW () (@1 0 ... Ozpp1) = (1€, (@1, 2ps1) ) s
for all £ € E*, x1,...,2141 € E.
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For each homogeneous z € E, let i, : S(E*) — S(E*) be the derivation of arity
—1 and degree |z| defined by the evaluation map

i(§) = (§x), §E€E"
The vector field Qg satisfies

[[[@B, i) izs]s- - 72’:%](71) = i(*l)’“*llk(zl ..... Tg)>

for all K > 1 and z1,22,...,2 € E.
By going backward, one derives a Lie co-algebra structure on F out of a degree
+1 derivation of the completion &£ of S=!(E*), which leads to the following:

Proposition 2. [30, 47] Let E be a graded vector space of finite dimension, and let
E be the formal completion of SZ1(E*) with respect to arity. There is a one-to-one
correspondence between:

(i) symmetric Lie co-algebra structures on the graded vector space E,
(ii) degree +1 wvector fields on the graded manifold E (= degree +1 derivations of
&) squaring to 0.

The differential graded commutative algebra referred to in item (%) of Proposition
2 is sometimes seen as a “Q-manifold over a point” [48].

Remark 1. It is extremely practical to look at the “abstract” correspondence
explained in Proposition 2 in coordinates. Given &',¢2,... € E* a homogeneous
basis of E* and x1,xo,... € E its dual basis, the explicit formulas that relate the
vector field Qg and the Lie oco-algebra brackets {l;},~, in Proposition 2 can be
checked to be (for our conventions): -

Q = 2 > W@ 008 55,
G kit ik
(—1)l=sl i . .
o= > T @hea O 08 e,
Js81seeey ik ’
" .
Ie(Tiyy o oymyy) = Z(_l)lzleglmikxj.
j=1

. j . . .
The coefficients @Q;, € K are unique if we assume them to be graded symmetric,
J

ie. ng(l)r"via(k) = €(0)Q;, ., for every permutation o.
Convention. In view of Proposition 2, we will use the notation (E, Qr = {lk}k>1)

to denote a Lie co-algebra of finite dimension, depending on the context.

Definition 2.2. The cohomology of a Lie co-algebra (E, Qr = {lk}k21> is the

cohomology defined by the differential Qg : £E¢ — Eet1. It is a graded commutative
algebra denoted by H*(E,QEg).

2.4. Morphisms of Lie co-algebras. A morphism of Lie co-algebras [30] is gener-
ally defined as being a comorphism between symmetric coalgebras that is compatible
with the Lie oco-structures. When spelled out, it is equivalent to the following set
of conditions.
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Definition 2.3. Let (E,Qp = {lx};>,) and (F, Qp = {ms};>,) be Lie co-algebras.
A Lie co-morphism & : (E,Qg = {lx},~,) = (F,Qr = {my},~,) is given by a
collection of degree zero maps: - -

o :SME) 5 F, k>1,
such that, for each n > 1,

Z 6(0)@1+l(lk®1®l)(xa(1)): Z 61(;?)mj(q)kl®(I)k2®...®¢)kj)(xa(1)).

k+l=n k1+...+kj:n
oceSh(k,l) oc€Sh(ky,....,k;)

In Definition 2.3, we do not need to assume E to F' to be of finite dimension.
When it is the case, taking the dual of the linear maps @y, for all £ > 1, we obtain
a family ®; : F* — S*¥(E*) of linear maps, which extend to a graded commutative
algebra morphism ®* : F — &, with F and £ being the graded commutative
algebras of functions on F' and E respectively.

This leads to the following alternative description of Lie co-morphisms:

Proposition 3. Let (E, Qr = {lk}k21) and (F, Qr = {mk}k21) be Lie co-algebras
of finite dimensions with functions & and F, respectively. There is a one-to-one cor-
respondence between:

(i) Lie co-morphisms ® from (E,QE = {lk}k21) to (R Qr = {mk}k21),
(i) graded commutative algebra morphisms ®* : F — & commuting with vector
fields:

D*oQp = Qp o d".

The second item in Proposition 3 means that ® is a morphism of Q-manifolds over
a point [48].

Remark 2. For every Lie oco-morphism as above, ®; : (E,l;) — (F,mq) is a
chain map. The map it induces at the level of cohomology is a graded Lie algebra
morphism. Moreover, the Lie co-morphism & is a Lie co-isomorphism if and only
if ®; is a chain isomorphism.

Definition 2.4. Let @ : (E,QE = {lk}k21> — (F, Qr = {mk}k21>) be a Lie co-
algebra morphism. We say ® is a Lie co-quasi-isomorphism if the chain map
®, : (E,l;) = (F,my) is a quasi-isomorphism.

Let ©°([0, 1]) stand for the de Rham complex of forms over [0, 1] and let dgr be
its de Rham differential. Also, we shall denote by ¢ the coordinate in [0, 1].
Definition 2.5. Let (E,QE = {lk}k21) and (F,QF = {mk}k21) be Lie oo-

algebras of finite dimensions with functions £ and F. A homotopy between Lie
oo-algebra morphisms ®, ¥ is a morphism of graded commutative algebras:

= (F,Qr) — (E@0Q°([0,1]), Qp ®id +id ® dar) (5)
which coincides with ®* and ¥* at t = 0 and 1, respectively.
A homotopy equivalence between (E, Qr = {lk}k>1) and (F,Qp = {mk}k>1>
is a pair of Lie co-algebroid morphisms: - -

o*: (£,Qp) — (F,Qr)
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U (F,Qr) — (€,Qr)
whose compositions ®* o U* and ¥* o ®* are homotopy equivalent to the identity.

Let us spell out the meaning of (5). To start with, recall that an element in
V ® C*([0,1]), with V a finite dimensional vector space, can be seen as a time-
dependent element in V' that we should denote by F; ® 1. Similarly, since w €
01([0,1]) reads f(t)dt with f(t) € C°([0,1]), an element in V ® Q!([0,1]) can
be seen as a time-dependent element in V' that we shall denote by H; ® dt (the
dependence in ¢ being smooth in both cases). As a consequence, an element of
degree i of V ® Q°([0,1]) can be seen as a sum Gy ® 1 + H; ® dt, where Gy, H, € V
are elements of degree ¢ and i — 1, respectively, which depend smoothly on ¢ € [0, 1].

With these conventions in mind, for any algebra morphism =* as in (5) and every
F € F of degree i, we have

(1]

“(F)=Gy® 1+ H, ®dt,

for some time-dependent G; € &; and H; € &;_. For every fixed t € [0, 1], we define

*

=y, Hy : F — &£ of respective degrees 0 and —1 by:

=y F— Gyand Hy: F— Hy.

*

Since =* is a graded algebra morphism, so is ZF for every t € [0,1], and for all
Fi,F, e F:

Hy(F1 © Fy) = Hy(F1) @ Zf(Fy) + (—-1)1P1Z5 () © Hy(F).

Since Z* is a chain map, so is 2}, for all ¢ (it is therefore a family of Lie co-algebroid
morphisms) and the following relation holds:
d=y

dt

=HioQr + Qg o Hy.

Homotopic morphisms induce the same map in cohomology, see, e.g. [32]. An
inverse up to homotopy of a Lie co-algebra morphism ® is a Lie oco-algebra
morphism ¥ such that ® oW and ¥ ® are homotopic to the identity maps.

2.5. Representations of Lie co-algebras. A complex (V,d) induces a natural
symmetric DGLA structure in End(V)[1], see Example 3.

Definition 2.6. A representation of a Lie co-algebra (E, {l1},.;) on a complex
(V,d) is a Lie co-morphism

P (E7 {lk}kez) - (End(V)[l},a, {7 })

Remark 3. Equivalently, a representation of F is defined by a collection of degree
+1 maps

@y : S¥(E) — End(V), k>1,
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such that, for eachn > 1, x1,...,2, € F,
n

D e(@)Pnip1 (i (To@)s- s Ta(i)) s To(itt)s > Ta(n))

=1
oc€Sh(i,n—1)
1 n—1
:6<I>n(m1, o ,.Tn) + B E(O’) {(I’j(l‘g(l), e ,Z‘U(j)), @n_j(xa(jJrl), R xo—(n))} .
j=1
oce€Sh(j,n—j)

(6)
It is convenient to define ®( to be the differential d: V — V.

Remark 4. Equation (6) may then be expressed in a more concise manner:

n

Z 5(0—) énfi(&)ifl(ya(l)a s 7ya(i))7 Yo(i41)s - -+ ayo(n)) =0, (7)
i=1
oeSh(i,n—1)

where y; = z; + v; € E® V for all index, and where

i
(I)i(.’ﬂl +’l)1, BRI 7 +’l)1) = li(fﬂl, . ,1'7;) + Zekq)i_l(xl, . ,@,. . .,Cﬂi)(’l}k),
k=1

with €, = (—1)lol(zeril++lzi)  Bquations (7) mean that the family & equips
E @V with a Lie oco-algebra structure, called the semi-direct product of a Lie
oo-algebra with its representation. For g a Lie algebra and V' a vector space, we
recover the usual semi-direct product Lie algebra g ¢ V.

Let us give the dual description. The tensor product EQV* comes with a natural
left £-module structure given by F'- (G®a) := (FOG)@aforall F,G € £, a € V*.

Proposition 4. Let (E,QE = {lk}k>1) be a Lie oco-algebra of finite dimension,

and £ be its unital graded commutative algebra of functions. Let V be a graded
vector space. There is a 1-1 correspondence between:

(i) representations of (E,QE = {lk}k>1) on the complez (V,d),
(i1) degree +1 maps D : EQRV* - E@ V™,
(a) which extends d* : V* — V*, in the sense that the component of D(1® f3)
in1@V*is1®d*(8), for al B e V* |
(b) which squares to 0, i.e. D? =0,
(¢) which is compatible with Qg in the sense that:

D(F-) =Qp(F) -+ (-1)'F-Dy, Fe& eV

Proof. The dual of the semi-direct product Lie oco-algebra structure on £ &V,
defined in Remark 4, gives a derivation Qggy of S(E* & V*) = £ ® S(V*) which
restricts to € ® £ ® V* (because all brackets on the semi-direct product are zero
when two elements in V' are considered). This restriction D satisfies the required
conditions. This construction can be reverted. O
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The object in item (%i) of Proposition 4 deserves to referred to as a flat connection.
For V a representation of (E, Qr = {lk}k21>, its dual V* comes with a natural
representation structure: it suffices to compose the maps @, : S*(E) — End(V)[1],
k > 0, as in Remark 3, with the natural symmetric graded Lie algebra morphism
End(V)[1] — End(V*)[1]

that sends a linear map ¢ to —¢*. We call this representation the dual represen-
tation.

Adjoint and coadjoint representation. An important example of a representa-
tion is given by a Lie oco-algebra adjoint representation on itself. In fact, we first
define its dual, i.e. the coadjoint representation.

As before, let (E, Qr = {lk}k21> be a Lie oo-algebra of finite dimension with
functions £. Let us add a unit to £, hence obtaining a grade commutative algebra
&. The space Der(€) of derivations of &, i.e. vector fields of the graded manifold
E, is naturally identified with £ ® E.

The Lie bracket [Qg, —] : Der(£) — Der(€) satisfies all four conditions in item
(ii) in Proposition 4. Therefore, it defines a representation of the Lie oo-algebra

E,Qr = {lk}k>1> on (E*, —I}) that we call coadjoint representation.

Let us spell out its dual representation. It is routine to check that the following
collection of degree +1 maps:

ad®) SK(E) — End(E)

(k)

k>1, (8)
T1O... Oz = ady ooop, = ke (P10, T, — ),

defines ad = Zk21 ad® | the representation of the Lie co-algebra E on (E,l;) dual
to the coadjoint representation.

Definition 2.7. The representation ad is called the adjoint representation of

(EvQE = {lk}k21)'

3. The modular class of a Lie oco-algebra. Let (E,QE = {lk}k21) be a Lie

oo-algebra of finite dimension.
The restriction of the adjoint representation ad : S(E) — End(E)[1] given by (8)
to the space S(E)_1 of degree —1 elements of S(E), is a linear map

adjs(m)_, : S(E)-1 C S(E) — Endy(E).

In other words, for all homogeneous x1,...,xr € E whose degree add up to —1,
adgi)@m@% is a linear endomorphism of E of degree 0, i.e. a family indexed by

i € Z of linear endomophisms of E;. For each k > 1, let w®) ¢ EF be defined, for
all homogeneous z1, ...,z € E whose degree add up to —1, by

k
wk) (z1,...,2x) = Str adil)@m@zk,
where Str denotes the super trace operator on FE, i.e. the alternate sum of the traces

of the restriction to E; of ad(z]i)@HOIk.

Definition 3.1. We call modular function of a Lie co-algebra (E, Q= {lk}k21)
of finite dimension, the function wg € €41 = S(E*)41 defined by

wp =Y w®,

k>1
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with w®) € SF(E*) .

Remark 5. It deserves to be noticed that we not really need E to be of finite
dimension. To define the modular function, it is enough to assume it is of finite
rank in every degree. It even suffices that the super-trace is defined.

Let €', ...,€" be a basis of E*, made of homogeneous elements. Using conven-
tions of Remark 1, any derivation @ of £, of degree ¢ reads:

D S Y

.....

o€
keN 1<d1,..., ir <n 5
j n

€]+ + €% — |e7| =

We define its divergence to be the element in £ given by:
. i~ 0
div(@) = (-1 Y 5-0(&)
g=1">

o

i17-~~,ika j
kEN  1<iy,..., iy <n 3

% 1 j Th—1 i1
BLRAED DR DR ey L
. ; <

‘Ei1‘+...+‘§ik—l| —
The next proposition implies that our definition of the modular class coincides
with the ones of [7] and [49].
Proposition 5. Let (E, Qe = {lk}k21> be a Lie co-algebra of finite dimension.

1. The modular function wg is Qg-closed, i.e. Qp(wg) =0.
2. The modular function coincides with the divergence of the vector field Qg:

wgE = le(QE)

Proof. Let us prove the first item. By construction, Qg(wg) is a function of degree
2. Let us compute its component of arity k. Let xq,
elements whose degrees add up to —2, then:

Qe(WE)(T1 0 ... O )
= Z (—1)‘“”5‘6(0') w®) (lh(xa(l), R ,.’L‘G(h)) OZoht1) © ... O J,‘U(k))

..., Xk € FE be homogeneous

h<k
o€Sh(h,k—h)
_ (k)
- Z 6(0) Str adlh(xa(l)a---azo(h))@za(h+1)®~»-®za(k')
h<k
oeSh(h,k—h)
= StI’ (ll o adﬁ@__‘@zk —|—adzl@m@1k oll) +
1 _
- _ 1zl FHlzeml (h) (k—h) _
+ 5 Z (—1)Few WISt |ady | 6..0w. 0 > @a, gy 0.0z g | = O-

h<l
oc€Sh(h,1—h)
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Above, we used, in the second line, Definition 3.1 of the modular function and in
the third line the description given in Equation (6) of representations. In the last
line, we used the fact that the supertrace of a graded commutator vanishes.

Let us prove the second item. Let z1, 2o, ..., %, and &', £2,. .., " be dual basis of
E and E*, made of homogeneous elements. Now, for each k¥ > 1 and z;, ©...0x;, €
S*(E)_, we have, by definition of the supertrace,

wE('Til ©...0 xlk) = Str (ad(z]j)(D@mk)

72 |§] 5] lk+1(x117'-~>xik7xj)>

Z ang (E)wa ©... O z,)

= (le QEp) (T, ©...0x).

Remark 1 was used to relate the second to the third line. This completes the
proof. O

Remark 6. In the supermanifold case, Bruce [7] proves an equivalent statement
of Proposition 5 by showing first that EQ =p = (divQg) p, for any Berezinian form
p. He then notices that the relation EQE = I‘C[QE;QE] = 0 gives immediately
QgrldivQg] = 0. This is an efficient method, but we prefer to go through the
properties of the supertrace in order to have a proof that may remain valid if there
exists infinitely many brackets, as in Example 7. This seems complicated using
[7] (which uses a formalism that does not immediately allow infinite sums). Also,
the idea of relating this construction to the adjoint representation seems to be
conceptually relevant. Last, we want to avoid Berezinians - at this point.

The first item in Proposition 5 makes sense of the following

Definition 3.2. The modular class of a Lie co-algebra (E, Qr = {lk}k21) of

finite dimension is the cohomology class of the modular function wg in H*(E, Qg),
the first degree cohomology of E.

Let (E, Qr = {lk}k>1> and (F, Qr = {mk}k>1) be Lie oo-algebras of finite di-
mensions, and ¢ a morphism of Lie co-algebras from the first one to the second one.
Let ®* : F — & be the corresponding morphism of Lie oo-algebras as in Proposition
3. Since ®* is a chain map, we = wg — ®*(wp) is a cocycle of degree 1. As in
[22], we call its corresponding class in H*(F,Qg) the modular class of the Lie
oo-algebra morphism ®.

Proposition 6. The modular class of a Lie co-isomorphism vanishes.

Proof. This proof is surprisingly complicated, and will make use of co-derivations,
and Sweedler’s notation, see [37]. Consider the reduced symmetric algebra S=1(E)
equipped with its usual coalgebra structure given by:

A(.’L’l ®...0® l’n) = Z xg(l) ®©...0 xg—(g)) ® (xg(j+1) ©...0 xo’(n))7

Jj=1
o€Sh(j,n—j)
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for 21,...,7, € E. We will use Sweedler’s notation: given z € SZ!(E),
A(l)(l‘) = A(:Z}) = (1) ® T(2),
and the coassociativity yields
A () = (d® A(nil))A(JC) =21)®...QZnt1), N2> 2.
Notice that A (z) = 0, for all z € S<"(E).

Let @ : (E,QE = {lk}k21> — (F, QrF = {mk}k21) be a Lie co-isomorphism and
Mpg : SZY(E) — SZ1(E) the coderivation of SZ!(E) defined by the Lie oco-structure
in E:

ME(J;) :l(x(l))Gx(2)+l(m), xESZl(E>.
For each x € S¥(E), k > 1, let us consider the linear map ®, : E — F given by
Pu(y) = Prya(z O y).
The map @, : (E,l;) — (F,my) is an isomorphism:
ll = (I)Il oMy o(I)l
and, taking into account Definition 2.3, we have, for each homogeneous = € SZ!(E):
adf —‘r@;l OCI)ME(I) + (—1)‘58‘(1)1*1 o‘bz oll + (_1)‘$(1)|(I);1 O(I)m(l) o adfm (9)
_ F — — F
:@1 1 adq,(z) oq)l + @1 1 o1 oq)a: + @1 1 o adq,(m(l)) O(I)m(2> .
Then, for each z € SZ}(E)_;, we have
P*wp(r) =wp(P®(x)) = Str adg(z) =Strd; ' adg(m) o ®y
=Strad) +Str®; " o ®py,(0) — Str (27 0 Ppoly + @7 omy 0 Dy)
_ E - F
+ Str(—l)lxm@l 1 O(bx(l) o ada:@) — Str q)l 1 o adcp(xm) O(D
=Wg — QE(Str q);l o(I)x)
+Str(-DlFolet @

Z(2)

E — F
oad — Str (bl 1 o ad@(l(l)) od

(1) T(2) z(2)"

By recursively applying equation (9) we get
*wp(z) =wp + Qp | Stry_ ﬂ(@;l S0 |,
n n ’

where, for each x € S¥(E), k> 1,

~ (1" !
Z n (CI)l_lo(I))Z :7(1)1_10(1)r+§(1)1_1°q)95(1) °®;1°®1(2)
n=1
(_1)k -1 -1
TRl TR SRPUSPRL JEpL
Therefore ®* [wr] = [wg] - O

A Lie oc-algebra <E,QE = {lk}k>1) is called minimal if [; = 0 and is called
linear contractible if I, =0, k > 2, and H*(F,[y) is trivial.

Any Lie oo-algebra is isomorphic to the direct sum of a minimal Lie co-algebra
with a linear contractible one [19]. In this decomposition, the minimal Lie oco-
algebra is unique up to isomorphism, and a homotopy equivalence between Lie
oo-algebras induce an isomorphism between their minimal Lie co-algebras. Since a
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linear contractible Lie co-algebra has a trivial modular class, the following statement
follows from Proposition 6.

Proposition 7. A homotopy equivalence of Lie co-algebras intertwines their mod-
ular classes. In equation:

" wg| = [wr] and V*|wr| = [wg],

for any homotopy equivalence as in Definition 2.5.

Let (E,QE = {lk}k21) be a Lie oco-algebra of finite dimension. Recall from

Proposition 1 that the cohomology H®(FE,[;) of the complex (E, ;) comes equipped
with a natural graded Lie algebra structure. It admits therefore also a modular
function, which, by construction, is of arity one, which, for degree reasons, is an
element in (H1(E,[;))*.

Proposition 8. Let (E,QE = {lk}k21) be a Lie co-algebra of finite dimension.

The modular function wg of E and the modular function wy(g,,) of the graded Lie
algebra H®(E,l1) are related by:

WHe(E,l;) ([55]) = WE($)7

for all x € E_y with l1(x) = 0.

Proof. For every graded Lie algebra, the modular function is the supertrace of the
adjoint action on elements of degree —1.
In particular, the modular function of the graded Lie algebra H®(E, 1) is

wrre(g) ([2]) = Str (adfj])) , lz] e HTY(E ).

Now, for a complex (E,!l;) of finite dimension, the supertrace of a chain map is
equal to the supertrace of the map it induces in cohomology on H*(E,l;). Hence,
for all x € E_; with [3(z) = 0.

Str (ad(QD = Str (ad;2)> .

[z

This completes the proof. O

Remark 7. Proposition 7 allows to make sense of Lie co-algebras of infinite dimen-
sion which are homotopy equivalent to one of finite dimension. By the homotopy
transfer theorem, these are exactly Lie oco-algebras (F, {l},~,) such that the co-
homology of the complex (F,l;) has finite dimension. -

Example 4. For any representation ® : S(E) — End(V)[1] of a Lie co-algebra
(E,Qr = {lr};>,) on the complex (V,d), consider the degree +1 function we € €41
given by B

Wq>(.’1717 L. ,a:k) = Str (I)k(l'l, L. ,.7,‘;9),

for each homogeneous z1,...,z; € E, k > 1, whose degrees add up to —1. This
function is @ g-closed, hence defines a class in H*(E,Qg), that we call the char-
acteristic class of the representation ®. Now, the direct sum F @& V comes
equipped with the semi-direct product Lie co-algebra structure (see Remark 4). We
leave it to the reader to check that the characteristic class of the representation ®
is the modular class of the inclusion £ <— E @ V. For the adjoint representation,
we recover the modular function of Definition 3.1.
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Example 5. For Lie oc-algebras concentrated in degree less or equal to —1 (i.e.
for “negatively graded Lie co-algebras”), only the 2-ary bracket with an element of
degree —1 can contribute to the modular function. In view of Proposition 8, we
see that its modular function is entirely determined by the one of its associated
symmetric GLA H*®(E,l;), although, in general, a Lie co-algebra is not homotopy
equivalent to its associated GLA H*(E, ;).

Example 6. Consider the following Lie co-algebra: E_5 =R, Fy =R, F; = R and
E; = 0 otherwise. All brackets are 0 except the 3-ary brackets of the generators
e_o € E_5, ey € Ey and ey € Fy, for which

{e_a,e1,€0}3 = €p.
The modular function is defined on generators by
wle_g,e1) =1
and is zero otherwise. It is, in particular, non-zero. This example shows that the

3-ary bracket may contribute to the modular function, in contrast with the situation
of Example 5.

Example 7 (Lie algebra actions). Let G be a Lie group with Lie algebra g acting
on a vector space V. We do not assume that the action is linear, but we assume the
origin O to be a fixed point of this action, as in [31], Section 4.3. The Lie algebra
g then acts by derivation on the infinite-jet S (V) of functions at 0. The Chevalley-
FEilenberg differential of this action is a derivation @ of degree +1 squaring to zero
of A*g* ® S(V). Explicitly:

n eI
— ki i (o0)
Q= ) The A€J86k+;:16 ® X;

3,j,k=1

where (€;)i=1,..n is a basis of g*, (&;)i=1,...n is the dual basis and Xi(oo) is the
infinite jet at m of the formal vector field (that is to say, an element in S(V*) @ V)
associated to the infinitesimal action of e; on V.

By Proposition 4, it therefore corresponds to a Lie co-algebra structure concen-
trated in degrees —1 and 0 on g|—1 ® V]p. According to Theorem 5, the modular
function of this Lie co-algebra is:

WEg :i Zn:ngei + idiv(Xi(k)) €

i=1 j=1 i=1

=wy + Z div(Xi(oo)) €

i=1

where wg € g* is the modular function of the Lie algebra g, and where div(Xi(oo))
is the divergence of the infinite jet of the vector field X;. This class is zero if g is a
unimodular Lie algebra, and if there exists an infinite jet of a volume form on M
formally preserved by the g-action.



288 RAQUEL CASEIRO AND CAMILLE LAURENT-GENGOUX

4. Lie oo-algebroid.

4.1. Lie cc-algebroids and their cohomologies. In what follows, M is a man-
ifold whose sheaf of functions we denote by O.

Remark 8. Unless otherwise specified, M can be a complex or a smooth manifold.
It can also be an affine variety, with O then being the sheaf of its regular functions.

We warn the reader not to confuse Zs-grading used by Bruce [7] or in several
works by Khudaverdian and Voronov [25, 26, 27, 49] and the Z-grading we are using
here.

Definition 4.1. [30, 47] A negatively graded Lie oo-algebroid is a collection
of vector bundles £ = @;>1E_; over M equipped with a sheaf of Lie oc-algebra
structures over the sheaf of sections and a vector bundle morphism p: E_y — TM,
called the anchor of E, such that the brackets [, = {—,..., —}, are all O-linear
in each argument except if k¥ = 2 and at least one of its two entries has degree —1.
In the latter case, however:

{x7fy}2 = f{x7y}2 + p(‘r)[f]yv MRS F(E,l),y € F(E)

It follows from the definition that poly(z) = 0 and that p({y, 2}2) = [p(v), p(2)]
for all x € (E_3) and y,z € T'(E_1).

Example 8. When M is a point, we recover negatively graded Lie occ-algebras
studied in the previous section. When E_; = 0 for ¢ # 1, we recover Lie algebroids.

Proposition 9. [30,47] Let E = &;>1E_; be a graded vector bundle over a manifold
M and let € be the sheaf of sections of the graded symmetric algebra bundle S(E*)
(with the understanding that E*, is considered to be of degree +i). There is a
one-to-one correspondence between:
(i) negatively graded Lie oo-algebroid brackets and anchor ((Ix)k>1,p) on the
graded vector bundle E,
(ii) degree +1 vector fields Q on the graded manifold E (= degree +1 derivations

of £) squaring to 0.

In the proposition above, the sheaf £ will be referred to as functions on E. Again,
sections of £*;, ®...® E*, are said to be functions of degree i; + ...+ i and
arity k. We denote by &, the space of functions of degree i and by £* the space of
functions of arity k, as in Section 2.3. We denote by X(F) the graded Lie algebra
of derivations of £, that shall be also referred to as vector fields on F.

We say a map ¥ : £ — & has arity k if ¥(£®) C £*FF. Also we say it has degree
p lf \I/(E.) C 50+p-

The pair (£, Q) in item (i) of Proposition 9 is often referred to as a Q-manifold
with a trivialization. Proposition 9 allows the following convention:

Convention. From now on, we shall say simply “Lie co-algebroids” for “negatively
graded Lie oo-algebroids”. Also, Lie oo-algebroids shall, from now, be denoted as

(B,Q= ({lk}k21 )

where E = (E_;);>1 is a graded vector bundle over M, {l;},., are the Lie oo-
brackets, p is the anchor map and Q : £ — & is the degree +1 derivation, related
as in items (i) and (ii) in Proposition 9.

Here are two important notions:
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Definition 4.2. Let (E,Q = ({lx};>;.p)) be a Lie co-algebroid over M. The
linear part (F @& TM,ly,—p) is the complex of vector bundles over M defined by

e, SEL, S E S TM

In addition to the cohomology of the linear part, the following cohomology is
also important [28, 306]:

Definition 4.3. The cohomology of a Lie oc-algebroid (F,Q = ({lk}k21 ,0))
is the cohomology H*(E, Q) of the graded commutative algebra £ with respect to
the differential Q.

Example 9. When M is a point, we recover the cohomology of Lie co-algebras
studied in the previous section. When E_; = 0 for ¢ # 1, we recover the usual Lie
algebroid cohomology (see Chapter IV in Kirill Mackenzie [39]).

Proposition 9 is now considered as a classical result [47, 48, 5], we insert a proof
in order to fix sign conventions and notations.

Proof of Proposition 9. Any vector field Q € X(F) is a derivation of £ and can be
decomposed as a sum
0-Ya

kEZ

where each Q%) is an arity k& map. For instance, each homogeneous section of F,
e € I'(E), defines a canonical O-linear vector field i, € X(E) of arity —1 and degree
le], defined by

ie(a) = (v, €), ac & =T(E").

The brackets and the anchor of the Lie oco-algebroid corresponding to a vector
field Q € X(F) of degree +1 are given by:

Qi (f) == p(e) 1], fE0 ecl(B)
[ l1@rie ] vies) s vie ) T =D i o ey €1 en € T(E),
where [.,.] stands for the graded Lie bracket on X(E):
[Q,P]=Q.P—(—1)€I"Ip.q.
For instance, for a € T'(E*), e,eq,...,e, € T(E), f € O,

(QO(a),e) = (~1)!* (@, 1 (e))

(QU(f),€) = =ple)(f),
<Q(1)(06)7€1 ©) €2> = (1)1 (a, {e1, e2},) — (—1)12p(e1) (e, €2)) — ple2) (e, e1))
and, for each n > 3, the map Q(”—l) : 1 — £™is the “dual” of the n-ary bracket I,

Q(n—l)(a)(el Oe®...0e,) = (—1)“‘| (a,lp(e1,62...,6e,)).

With this correspondence, it is routine to check that Q.@Q = 0 if and only if
({lk}>1,p) is a Lie oc-algebroid structure. O

Lie oc-algebroid morphisms may be defined using the duality developed in Propo-
sition 3.
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Definition 4.4. A Lie oc-algebroid morphism @ : (E,Q = ({lx}y>,.0)) —
(£, Q" = ({lj}>1:¢")) is a degree 0 algebra morphism ®* : £ — & such that

D" 0@ = QoD

When &* is O-linear map, we shall say that the Lie co-algebroid morphism is over
the identity of M.

In particular, a Lie oco-algebroid morphism @ as in Definition 4.4 induces a graded
commutative algebra morphism:

H(®): H(E', Q') = H(E,Q). (10)

Remark 9. Lie co-algebroid morphisms over the identity of the base manifold M
may be defined as in Definition 2.3 as a family of degree 0 vector bundle morphisms
®;.: S¥(E) — F, k > 1, satisfying several obvious conditions. This description is
much more involved for general oo-algebroid morphisms, as it is for Lie algebroids
(see Part I, chapter 4 of [39]). We will need this point of view in the next section.

Convention. From now on, all Lie co-algebroids morphisms that we shall consider
will be over the identity of the base manifold M and this assumption will be implicit.

Remark 10. There is another map at cohomology level that should not be confused
with the morphism of Equation (10). The arity 0 component of a Lie co-algebroid
morphism @ induces a chain map ¢ : E; — E!, i > 1, between their linear parts:

Iy Iy 1 —p

E_3 E_» FE_4 TM.
idn \L% \L(ﬁl J{id
Ey—F,—>E  —=TM

z; I ; ~

The arity 0 component of ® is in fact entirely determined by this chain map.

Homotopies of Lie oc-algebroid defined exactly as for Lie oc-algebras (see Defi-

nition 2.5) as being graded differential algebra morphisms:
=T (€,Q) — (£82°([0,1]),Q ®id +id ® dar)

with the additional condition that =* has to be over the identity of M, i.e. has
to be O-linear. Also, ® refers to the completion that identifies £2Q°([0,1]) with
sections of the graded symmetric algebra of E* @ T*[0, 1] seen as a vector bundle
over M x [0,1]. Equivalently, this means that =}, H;} are O-linear for all ¢ € [0, 1],
see [32] Section 3.4.3.

The previous reference provides a proof of the following fact: if two Lie oo-
algebroid morphisms ¥ and @ from (E,Q = ({lx};>.p)) to (B, Q" = ({l.}1>1:0"))
are homotopic, then there exists a O-linear map H : &' — € of degree —1 such that

W*—¢*2Q0H+HOQI. (11)
In turn, Equation (11) implies the following:

Proposition 10. Two homotopic Lie oo-algebroid morphisms induce the same
graded algebra morphism H®*(E', Q') — H*(FE,Q) in cohomology. In particular,
a homotopy equivalence between two Lie co-algebroids induces an isomorphism of
their respective cohomologies.
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4.2. Representations of Lie co-algebroids. For Lie algebroids, representations
are better seen as being flat connections, a point of view used by Kirill Mackenzie
(see, e.g., [20]). The same holds for Lie oco-algebroids [45].

Let (E,Q = ({lx}1>1 s p)) be a Lie co-algebroid over M and V' = @®,¢zV; a graded
vector bundle over the same manifold. In the following, we will consider that the
anchor p : F — T'M is extended by 0 on ©;>2F_;.

Definition 4.5. A Lie oo-algebroid connection of (E,Q = ({lx};>,.p)) on V is

amap V : T'(S(E)) xT(V) — I'(V) given by a family of degree +1 maps (V*))z>0,
called Taylor coefficients,

v . T(SHE)) x T(V)

(el @...®€k7/u)

- I(V)
= vilfz}--@acv
satisfying the following axioms:
L. V}]Z@---Qekv = fvgfg,,@eku
2. For k#1, VL oo (fo) = FVEL o0,
3. V& (o) = f V& v + plen)lf] v,
for every f € O, v e T'(V) and eq,...,ep € T(E), k > 1.

Remark 11. In particular, V(®) : V' — V is a vector bundle morphism of degree
+1.

Remark 12. Let us extend p: I'(E_;) — X(M) to I'(S(E)) by imposing it to be
0 on (®i>2F_;) ® S*22E. Then Axioms (1), (2) and (3) in Definition 4.5 read

V;’Z)@.A.@ek (fv)=fg Vi’fga.u@ekv +gpler, ... ex)lflv,
forall e, -+ e €T(E), k>1,ve (V) and f,g € O.

Let us give a dual description of a Lie oo-algebroid connection of (E,Q =
({lk}r>1,p)) on V. Sections of the tensor product S(E*) ® V' come with a natural
left I'(S(E*))-module structure given by

F(Gov)=(Fo@®ev, FGel(S(E)),vel(V)
Notice that we identify O and I'(S°(E*)).

Proposition 11. Let (E,Q = ({lx},>,,p)) be a Lie co-algebroid and V' a graded
vector bundle over M. There is a one-to-one correspondence between connections
of (E,Q = ({lg}p>1.p)) onV and degree +1 operator

D:T(S(E*)®@V*) — I(S(E*) @ V*)
such that, for all € € T(S(E*)) and w € T(S(E*) @ V),
D(¢w) = Q(&)w + (—1)Fl¢- Dw.
The correspondence goes as follows:
(Da,er @+ ©ex @v) = (=1)Na, Vi 00,0) + (=) pler @ -+ © ) [(a,v)]

with the understanding that p(eqx © --- @ ey) is zero unless k =1 and e; € T'(E_1).
Here, v € T(V),a € T(V*),e1 ®--- O e, € I(S¥(E)), k > 1.
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We say that a Lie co-algebroid connection is flat when D? = 0, with D as in the
above proposition. Alternatively, flat connections are called representations of
(E,Q = ({lc},>,,p)) on V. This obviously extends Lie algebroid representations
in Kirill MacKenzie’s [39], and representations up to homotopy of Lie algebroids
[1]. Kirill MacKenzie studied those representations in the frameworks of double Lie
algebroids, see [17]-[41].

Let us spell out the meaning of flatness in terms of Taylor coefficients of the
connection. The data in Definition 4.5 define a flat connection if and only if:

1. VOO : vV — V makes V a complex, i.e. squares to zero. From now on, we will

denote V(© by Dy to emphasize on the fact that it is a differential.

2. For all e € T'(F), we have

1 _ e _
Vi = —DvV — (=1)Iv Dy = {Dv, Vgl)}

In particular, the symmetric graded commutator {DV, Vél)} is zero for all

ec F(E,l)
3. For all ey, ey € T'(E), we have:

1 1 (1) _ (2) (2) e1|w(2)
{Vgl),vgg)} ~Vileren) = {DV’ Vm@ez} + Vi enoe T DV
4. More generally, for all eq,...,e, € I'(E)

Li(€o(1)r €0 (i) ) Do (i41) O OCa(n)
i=1
o€Sh(i,n—1)
- (12)

) (n—3)
e(o) {V€a<1>®"‘®ea<y‘> Ve i © oo | -
1

N | =

b )
j=
o€Sh(j,n—j)
Equation (12) is an obvious direct extension of the equivalent formula (6) for Lie
oo-algebras. All items (1), (2) and (3) are in fact special cases of (12).

Definition 4.6. For a representation V' of a Lie oc-algebroid (£, Q = ({lx};>1,0)),
we call Chevalley-Eilenberg differential the operator D defined in the Propo-
sition 11 and Lie oo-algebroid cohomology the cohomology of the complex
(T(S(E") @ V*), D).

Also, Proposition 11 allows to give a clear definition of morphisms of represen-

tations.

Definition 4.7. A morphism ¥ : (V,Dy) — (W, Dy ) between two represen-
tations V and W of (E,Q = ({lx};>,,p)), with respective Chevalley-Eilenberg
differentials Dy, Dy, is a degree zero I'(S(E*))-linear map

U:T(S(E)@W*) - T(S(E)@ V"),
such that ¥ oDy, = Dy o V.

We now extend to graded vector bundles Kirill Mackenzie’s construction of the
Atiyah Lie algebroid of a vector bundle (Part I, Section 3 of [39]).

Definition 4.8. Let (V,Dy) be a complex, indexed by Z, of vector bundles over
M. Define a graded vector bundle (A_;);cz over M by:
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1. A_; := CDO(V) is the Atiyah algebroid of the graded vector bundle V, i.e.
its sections are degree 0 maps 0 : I'(V') — I'(V') such that there exists a unique
vector field p(d) on M satisfying:

5(fv) = fo(v) +p(6)[flv, feEO,vweT(V).
2. fori > 2, A_; := End_;11(V,V) is the vector bundle of vector bundle endo-
morphisms of degree —i + 1.
This space comes equipped with a natural differential graded Lie algebroid struc-
ture when equipped with a symmetric graded commutator as a bracket, and the

commutator with Dy as a differential. The anchor is the map § — p(9) of the first
item. We call it the Atiyah differential graded Lie algebroid of (V, Dy).

Remark 13. The Atiyah differential graded Lie algebroid is not negatively graded,
and cannot be restricted to its negatively graded part.

For Lie algebroids, representations become morphisms valued in the Atiyah Lie
algebroids [39]. Similarly:
Proposition 12. Let (E,Q = ({lx}y>1,p)) be a Lie co-algebroid and (V,Dy) a
complex of vector bundles over M. There is one-to-one correspondence between
flat connections (V*))x>o of a Lie oco-algebroid (E,Q = ({lx} >y ,p)) on V with
Dy = VO and Lie co-algebroid morphisms from (E,Q = ({lx}y>,,p)) to the
Atiyah differential graded Lie co-algebroid of the complex (V,Dy).

Proof. This is precisely the content of Equation (12). The k-th Taylor coefficient
of the Lie oo-morphism is precisely V¥ for k > 1. O

Also, representations of Lie oo-algebroids may be described as semi-direct prod-
ucts.

Proposition 13. A  representation (V(”))nzl of a Lie oo-algebroid
(E,Q = ({lk}y>1,p)) over V endows the graded vector bundle E @&V with a struc-
ture of Lie co-algebroid ({x)g>1 when equipped with the brackets:

Ek(el,. .. ,6k) = lk(ela .. .7ek)
gk(ela sy ek*lvv) = ngé.l.).@ek_lv

foralley,...,ep € I'(E),v € T'(V). All other brackets are zero and the anchor is
(e,v) = p(e), for all (e,v) €T (E_1 ®V_q).

Proof. A direct computation shows that flatness is equivalent to higher Jacobi iden-
tities. All other axioms are obvious. Alternatively, it also follows from Proposition
11. O

A representation of a Lie algebroid on a vector bundle V' induces a representation
on V*. The same applies for a Lie co-algebroid.
Let (E,Q = ({lk}y>1:p)) be a Lie oc-algebroid and (V, Dy) a complex of vec-

tor bundles over M. Any connection (V(™),sq with V(©) = Dy, admits a dual
connection (*V(”))nzg on the dual graded vector bundle V*. In terms of Taylor
coefficients, it is defined by *V(®) = —Dy7, and

(Vb oe,r0) + (D)l 0, T o ) = pler @+ © en) (@)
forall a e T(V*),v € T(V),e1, - ,e, € T(E).
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Proposition 14. The dual of the dual of a connection V is mapped to V under
the canonical isomorphism (V*)* ~ V. A Lie co-algebroid connection is flat if and
only if its dual connection is flat.

4.3. Adjoint and coadjoint representations. Adjoint and coadjoint representa-
tions of Lie oco-algebroids are not as easy to define as those of Lie oo-algebras: there
is no clear equivalent of Equations (8). Also, adjoint and coadjoint representations
of Lie algebroids are not so easy to define, and depend on the choice of a connection
[1]. For Lie oc-algebroids, they can be defined upon a choice of connections on F,
as we will now see. Let (E,Q = ({lx};>,,p)) be a Lie co-algebroid over M. Recall
that £ := ['(S(E*)). Let X(F) = @;c2%;(E) be the graded Lie algebra of vector
fields on the graded manifold E (i.e. graded derivations of £), then

adg: P~ [Q,P]=Q.P — (-1)IFIP.Q
is a degree +1 operator on X(FE) squaring to zero. It satisfies the graded Leibniz
identity:
adg(F.P) = Q[F] P + F.adgP. (13)
forall Fe &, P e X(E).

Definition 4.9. We call abstract coadjoint complex the complex (X(E) =
®iezXi(E),adq).

Let us choose a family V = (V?);>; of vector bundle connections' on each one
of the vector bundles (E_;);>1. These connections allow to map a vector field X
on M to the unique degree 0 derivation of £ whose restriction to I'(E*,) is the dual
of the covariant derivative V% . Also, e € I'(E_;) maps to the unique degree —i
derivation of £ whose restriction to I'(E* ;) is 0 for i # 0 and whose restriction to
I'(E*,) is the contraction with e. Altogether, these mappings give an identification
of £-modules:

EQRoT(E®TM) ~ X(E).

Under this identification, the abstract coadjoint complex becomes a degree +1

linear map squaring to zero

adg : E®Re'(E®TM) > E@o T (EaTM).
Equation (13) and Proposition 11 imply that it is a representation of (E,Q =
({lk}>15p)) on a graded vector bundle which is 7*M in degree 0 and (E_;)* in
degree +i. We call it the coadjoint representation of (E,Q = ({lx},~;,p))
associated to the connection V. We call adjoint representation of (E,Q =
({lx}>1 > p)) its dual representation: it is by construction a representation of (£, Q =
({li}4>1 » p)) on its linear part:

i E o, E L ZATM.

Remark 14. Since the coadjoint complex associated to the connection V = (V);>1
is isomorphic to the abstract coadjoint complex (as differential graded £-modules),
the coadjoint representations associated to two different choices of connections are
strictly isomorphic (in a canonical manner). The same holds for the adjoint repre-
sentation.

Proposition 15 provides an explicit description of the adjoint representation,
where:

1Here V' is a T'M-connection on E_;, and must not be confused with the i+1-ary operation V%)
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1. For the sake of simplicity, we now denote all the connections V* by the same
symbol V,
2. [Vx,l] stands for the graded commutator of coderivations of I'(S(E)), namely:

[Vx, lk] (817 ceey ek)
=Vxlg(er,...,ex) —lk(Vxer,...,ex) — ... — lp(er, ..., Vxer),
for all e1,...,ex € I'(E), X € X(M).
‘We hope that it can be of use for future references, since it seems that it has never
been written down explicitly.
Proposition 15. Let (E,Q = ({lx};>,.p)) be a Lie co-algebroid. The Taylor

coefficients of the adjoint representation ad™ induced by a connection V on E are
given by the differential

I Iy —p
E_, E_4

TM . (14)

and the following family of degree +1 maps (adv(k))kzlf

ady, Mie) = {e e}y — (—1)¥IV e,
ady, V(X) = [Vx,h](¢)+[p(e)), X] + p(Vxe')
adl 2 (X) = [Vx,lo](er,e2)
FV (e X 4p(Txen€2 + (DI ) X119 cenren
adzg_)_@ek(e) = et epelpy, k>2,
ady ¥ (X)) = [Vx,ll(en,..over), k>3,

where e, €', e1,...ep € T(E) and X € X(M).

Example 10. For a Lie algebroid £ = FE_;, the adjoint representation is the
adjoint representation (up to homotopy) constructed in [1].

4.4. Berezinian bundle. We define the Berezinian bundle (or “Berezinian” for
short) of a finite dimensional graded bundle V = ®;czV; over M to be the line
bundle

Ber(V):=--- @A VoA VIoAT VAT VIoAN V@

with the understanding that ATE stands for AY™E) E for any finite dimensional
vector space E. The infinite tensor product above is indeed finite, hence well-
defined. We consider the Berezinian bundle to be of degree 0 (in fact, any degree
would work). The following lemma is a well-known fact of homotopy theory.

Lemma 4.10. A homotopy equivalence between finite dimensional complexes of
vector bundles induces a canonical isomorphism of their Berezinian bundles.

Let us describe sections of this bundle. Given a family p := (u;)iez, with p; a
nowhere vanishing section of ATV; (defined in some open subset & C M), we denote
by u3; the dual nowhere vanishing section of ATV, The tensor product:

pi=- @ ply @ py @ pp @ g @ - (15)
is a nowhere vanishing section Ber(V) on U C M.

Theorem 4.11. For any representation (V("))ngo of a Lie co-algebroid (E,Q =
({lk}r>15p)) on a finite dimensional graded vector bundle V', the Berezinian bundle
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Ber(V) comes equipped with a natural representation structure whose unique non-
vanishing Taylor coefficient is, for all e € T'(E_1), given by:

Vet = <Z<—1>idivm<v$>>> n (16)
1€EZL

for every p as in (15), where div,,, is defined by the relation

d
Zvl/\~-~/\ (Vgl)vk) A--- ANog = divy, (Vgl)) Vi A ANvg
k=1

for every nowhere vanishing local sections vy, ...,vq of V; such that vi \---Nvg = p;
is a section of AT V;.

Proof. For each trivialization (v;)ier of I'(V)) by homogeneous sections of V', con-
sider (c)ies the dual trivialization of I'(V*). The connection functions w] € £
of V are defined in terms of the Chevalley-Eilenberg differential D by:

Da; = Z(fl)\ail(lajlﬂ)wzj ® .
JeI
Notice that, since D has degree +1, each connection function has degree |wf | =
1+ |v;| — |vj|. In particular, w! has arity 1 (i.e. is a section of (E_1)* for all index
i), and is defined by:

wi(e) = <ai7V£1)vi> , eeT(E_y). (17)

In particular Strw = Y, ;(—1)/%lw? has arity +1 and degree +1.
Let p be the section of Ber(V') defined by the chosen local trivialization of I'(V').
Then Equation (16) reads:

> (=1)idiv,, (V) = Straw(e). (18)
i€Z
Let us consider another (local) trivialization (v});er such that v = Aw, for some
matrix of local smooth functions A = (A?); jer. The coefficient A} of this matrix is
zero if |v;| # |vj], so that A is a block diagonal matrix with blocks (A )necz. A direct
computation gives that the connection functions w’ and w for these trivializations
are related by (using Einstein’s convention):
wil = (ATh)jwp A — Q(AT)(A™);.

Since A{ = 0 when the degrees of v; and v; are different, we have, by invariance of

the trace:
Yo AWkl = > W
i€l S.b. |vi|=4 i€l S.b. |vi|=j
so that:
) Ber(A
Strw’ — Strw = —(=1)lQAF)(A™Y)i = ngéef(igl))] = Q[In(|Ber(4)])]. (19)

Let us use Equations (18) and (19) to show that (i) VB¢ is well-defined and (i) is
a Lie oo-algebroid connection which (#i3) is flat.
For two different trivializations as above, the associated sections of Ber(V') are
related by
u' = Ber(A) u,
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where Ber(A) = %. Equation (19) implies that
k

Strw’ (e) — Strw (e) = p(e)[In(|Ber(A)])], eeT'(E_1).
This implies (i) and proves that VE¢ is well-defined. It also implies (%), i.e. that

VEer is O-linear in E while VB¢ f i = fVBe 1+ p(e)[f] i, for all f € O.
To prove (iii), we will use the flatness of D. For each i € I,

D2 = Z(—l)‘o‘il(la”"'l)Q(wg) ®a; + (—1)1+(‘°‘i|+‘a-7‘)|ak|wf ® wi ®aj; =0,
J

and, consequently,

o
&
ENE
Il

Z(il)(\ai|+\0¢j|)|ak‘+|ai‘(“3‘j ‘Jrl)wi.c ® wi, (20)
k

In particular,

Q(Strw) Z |a1‘Q
Z Dlvlwk o wi by Eq. (20)

Dl (—1)AFlesl=lerD i @ Wk for degree reason

M

:Z D) o wf = =3 (=D Q(wf) = ~Q(Strw).
i,k

k

This implies that Strw = Ziej(*l)lvi‘wf is a @-closed element in & . In view of
flatness conditions (1)-(3) in page 292, this is equivalent to VB¢ being a represen-
tation:

Vi =
v]{B:Ir 2} = [vBer vBer]

er ?

for e1,eo € T(E_y). O

5. The modular class of a Lie oco-algebroid.

5.1. Some definitions and computations. The Berezinian bundle of a repre-
sentation of a Lie oo-algebroid (£, Q = ({lx};>,p)) has two characteristics: (i) it
is concentrated in some degree, and (i) it has rank 1 in this degree. This implies
that only its first Taylor coefficient may be non-zero, and only when applied to a
section of F_;. Given now a rank-1 representation B — M, i.e. a representation
that admits these two characteristics, denote by (e, b) = VEb its Taylor coefficient.

From now on, we work in smooth differential geometry, i.e. O = C>®(M).
Assume there exists a nowhere vanishing section b of B, then the section w, €
I'(E*,) = 41 defined by:

VEb = wye)b

is a Q-closed function on E i.e.:

wp(l2(e1,e2)) — pler)[wp(e2)] + p(e2)ws(e1)] = 0 and wy(11(€)) = 0,
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for any ej,eq € T'(E_;), € € T'(E_3). Also, it is easily checked that for every
nowhere vanishing smooth function A € O:
e)A
onle) =nle) + 92 = aafe) 4 o m(A)

or, equivalently, wyxy = wp + Qr[In(|A|)]. As a consequence, the class of wy, €
H'(E,Q) does not depend on the choice of b. If there is no non-vanishing section
because the rank 1 bundle B is not trivial, then we can consider the representa-
tion B ® B, which is now trivial as a rank 1 bundle, and consider one-half of the
class defined above. We call this class the characteristic class of the rank-1
representation B.

Definition 5.1. We call characteristic class of a representation of a Lie oco-
algebroid the characteristic class of its Berezinian bundle (defined in Theorem 4.11).

Let (E,Q = ({lk}>1,p)) be a Lie oc-algebroid and V = (V*);>1 a connection

on E. The adjoint representation ad" (see Section 4.3) has a characteristic class.
Since different connections define isomorphic representations (see Remark 14), we
have:

Proposition 16. Let (E,Q = ({lx},~,,p)) be a Lie co-algebroid. The characteris-
tic class of the adjoint representation with respect to a connection V is independent
of the chosen connection.

By Proposition 16, the following definition makes sense.

Definition 5.2. The modular class of a Lie co-algebroid (E,Q = ({lx};>:0))
is the characteristic class of any of its adjoint representations. When the modular
class is zero, we say that the Lie oo-algebroid is unimodular.

Let us give a concrete description of the modular class. Let Xi,...,X, and

6&1), ceey et(fi) be local trivializations of T'M and each one of the vector bundles E_;,

over some open subset of M.
For every Y € X(M), we define div(Y") to be the unique function that satisfies:

YV, Xi N AXp] =diviV)XT A - A X,

and we define divl! (e) to be, for all i > 1 and all e € T(E_;), the unique function
that satisfies:

fe @A ne@h =S e A A fe e A Ael) = div®(e) ef) A A )

then
Definition 5.3. Let (E,Q = ({lx};>,,p)) be a Lie oc-algebroid. The modular
cocycle with respect to the local trivializations Xi,..., X, and egi) eg?

above is the section wy of E*; given for all e € I'(F_;) by:
wy(e) = div(p(e)) + Z 1)'div? (e

i>1

In the expression of the adjoint action of a Lie oo-algebroid, as described in
Proposition 15, the Taylor coefficients (even the one that will appear when comput-
ing the action on the Berezinian bundle) have terms involving the T'M-connection
on F that do not appear in the expression of wy. The next statement is therefore
not obvious, and deserves a careful proof.
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Proposition 17. Any modular cocycle is a representative of the modular class.

Proof. Let x1,...,z, be local coordinates in an coordinate neighborhood U C M,
and eq,...,e, be local trivialization of E over U (by homogeneous sections). We

denote the dual variables by £',. .., £" and by i the section of the Berezinian bundle

of E®TM constructed out the local trivializations 6%1, ceey % and ey...,e,.

From Theorem 4.11 we know that V2" = Strw(e) u, e € T'(E_1) where
— - 1) k(1)
Strw(e) Z<dwk,adagk(e)> Z<§ adg,’ (e )>

k=1 k=1

Taking into account the Taylor coefficients of the adjoint representation given in
Proposition 15 we have

n

Strw(e):z<dx“[ , ]> zn;<da:,,

i=1
1)/ 37 (€ fenseha) + '”‘Z & Ve () -
k=1

Now, consider the functions p}, = (p(e,), d;) = (¢F, p* (dx1)> and notice that

i(fkvva (e)) = ZZ<€’“ oo )>

k=11=1
Y (T @) = 3 (1 (), 9 (@)

k=11=1

2 ()

(21)

<.

As a consequence, the second and fourth terms in (21) add up to zero. Therefore

Strw(e) :zn: <dml, { , }> + Z DI (Ex {ex, e}y)

i=1 (22)
=div(p(e)) + Z )idiv® (e) = wy ().
i>1
This completes the proof. O
Remark 15. Let z1,...,x,,€1,...,¢e,. be as in the proof of Proposition 17. For

every index i such that e; has degree —1, we define functions (p}),=1,.. » by:
n
.0
_ 7
(61) - ; Pa aza

and we define functions (I'} ;)1<i jr<d by

2(e;, €5) g rk i€k

(Of course '} ; = 0 unless |ex| = |e] + |e;] + 1). For every index ¢ such that e; has
degree —1, Equation (22) in the proof of Proposition 17 reads:

wy (e;) = Zapa+z nleirs ). (23)

a=1
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An immediate consequence of Proposition 17 is the following result (which ex-
tends Example 5).

Corollary 1. The modular class of a negatively graded Lie co-algebroid (E,Q
({lk}>1:p)) depends only only, p and on the restriction of lo to T'(E_1) QT'(E)
I'(E).

o

Let us conclude this section by explaining the relation with the existing studies
on modular classes [7] and [49].

Remark 16. In local coordinates, the modular cocycle is the divergence of Qg, so
that the modular class as defined as above matches the modular class as defined
n [7, 49]. Let us check this point that generalizes Proposition 5. Let x1,...,x,
be local coordinates in an coordinate neighborhood U C M, and ey, ..., e, be local
trivialization of E over U (for homogeneous sections). We denote the dual variables
by €1, ...,£". In general, the divergence of a vector field Q of degree i is defined by:

Div(Q) := (—1)"! (Z 8§kQ + Z 67@ T ) (24)

For vector fields of degree 1, for degree reasons, the divergence of the components
of @ of arity > 42 or 0 will disappear in the sum on the right-hand side of (24):

Div(Q Z 8£kQ(1) —1—2 oz, Q(l [zg].

Define functions p’ and F’-c - as in Remark 15. Then

a -1 ’ | 1 a
QW = szﬁ + 3 (1) Irk e aek”

3,5,k

Hence

T T
8p ] . .
Div@) = 3 S50 + e, ) .
i=1 Jj=1
The sum over i indeed only runs on indices such that €| = 1. This is the definition
of the modular cocycle in [7]. Equation (23) means that this definition matches our
Definition 5.3.

5.2. The modular class, leaf by leaf description, and homotopy invari-
ance. For any negatively graded Lie co-algebroid (E,Q = ({lx};~,,p)), the image
p(T(E_1)) of the anchor map is a singular foliation in the sense of [2, 3]. In par-
ticular, the base manifold M is a disjoint union of leaves. More precisely, any
equivalence class L of the equivalence relation on M defined by: “m; ~ mqy if
and only there exists a finite family of vector fields in p(T'(E_1)) whose successive
time-1 flows maps my to mo” is a submanifold such that T, L = pm(E-1|m), at
every m € L. We call these submanifolds leaves of (E,Q = ({lx};~,.p))-
Let L be such a leaf. B

1. The restriction of the linear part (E®TM,l;, —p) to L is a complex of vector
bundles

B, S E SA i TM (25)

whose differential has constant rank.
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This can be proven as follows. The kernel and image of p have constant
rank along L since p(ipE_1) = TL. Let 0: TL — iy E_;1 be a section of the
anchor map p: iy F_; — T'L. Consider the connections on the vector bundles
(irE_;)i>2 and the vector bundle Ker(p) C i E_1, defined by:

Voe :=l3(o(u),e) for all u € X(L),e € I'(E_j) or e € I'(Ker(p)).

The graded Jacobi identity implies that for any e € T'(E_1), f € T(E_g) (for
k>2)or f e'(Ker(p)):

hi(la(e, f)) = la(e, 11 (£))-

When applied to e = o(u), this reads [V7,l3] = 0. The differential Iy is
therefore preserved under parallel transportation along L, and, in particular,
is of constant rank along the leaf L.

2. The first item implies that the cohomology of the complex (25) is a graded
bundle over L.
We denote by H,(ir, E) this cohomology, and call it the graded cohomology
of (E,Q = ({lg},>.p)) over the leaf L.
Notice that Hy(iy E) is the normal bundle i, TM/TL of L in M.

3. Also, AL(E,Q) = iLE_1/l1(iE_3) is a (transitive) Lie algebroid over L,
when equipped with the anchor and Lie bracket:

p: e p(e) and {e1,e3} = la(eq,e2) for all ey, eq,e € T(iLE_1).

The horizontal bar stands for the natural map I'(i,E_1) — I'(AL(E, Q)).
We call AL (E, Q) the holonomy Lie algebroid of the leaf L for (E,Q =
({lk}>1,p)). Its isotropy Lie algebra bundle is H_1 (i E) by construction.

4. Each one of the spaces Hq(ir, E) comes equipped with a canonical Ap(E,Q)-
connection defined by:

Vel =la(e, f)
where e e T(ipE_1) and f € T(irE_g), for k > 2, or f € T'(i,Ker(p)) and the
horizontal bars are as before.
As an exception to the previous rule, the Ay, (E, Q)-connection on Hy(ip E) =
i TM/TL is defined by:

V.X = [p(@), X]

for every X € X(M), and every section € of F_; whose restriction to L is e.
Also, X — X stands for the natural map X(M) — I'(iyTM/TL).

5. The higher Jacobi identities imply that the above Ar(E, Q)-connections are
flat.
The flatness of the A (E, @)-connection on H_;(ir E) for ¢ > 1 follows from
the graded Jacobi identity, for all e;,eo € T'(E_1), f € T(E_g) with k > 2 or

f € Ker(p):
12(52(61,62)7f)
=la(e1,la(ez, f)) — la(ez, l2(e1, f)) — l3(e1, e2,l1(f)) — l1ols(er, e2, f)

since f — l3(e1, ea,l1(f))+11 ol3(eq, €2, f) induce the zero map in cohomology.
The flatness of the Ay (E, Q)-connection on the normal bundle is well-known
and is easy to check: it uses the fact that the anchor map p is a morphism
(see, for instance, [3]).

Let us conclude this discussion with a Lemma:
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Lemma 5.4. Let L be a leaf of a Lie oo-algebroid (E,Q = ({lx}>,.p)). The

graded cohomology He(ir, E) over the leaf L is a module over the holonomy Lie
algebroid A (E,Q) of L.

Let us consider now the Berezinian bundle of the graded vector bundle H,(ir E):
Ber(H (i E)) :==--- AT H_3(iLE) @ AT (H_o(ir E))*
@ATH (i E)® AT (iLTM/TL)*.

By Lemma 4.10, there is a canonical isomorphism between the Berezinian of a
complex and the Berezinian of its cohomology. In particular, there is a canonical
isomorphism:

i, :Ber(E® TM,ly,—p) ~ Ber(He (i F)).

Recall that (E®TM,l;,—p) stands for its linear part. Let us compute the modular
class of the leaf L, i.e. the characteristic class of this Lie algebroid representation.
This Proposition shall be helpful.

Proposition 18. For every section e € T'(E_1) and every section p of the Berezi-
nian bundle Ber(E & TM,ly, —p)

VEerippn =ipad? p

In the previous equation, on the left hand side, V?e" is computed with the help of
the Ar(E,Q)-connections on He(iL E).

Proof. Let X1,..., X} be a local trivialization of the normal bundle i;TM, arising

from local vector fields X1, ..., Xj. For every i > 1, let egi), .. (Z) be sections of

Ker(ly) CipE_; (or Ker(p) for ¢ = 1) whose classes e(l ). EzZ) modulo ll(E_Z 1)

form a local trivialization of the bundle H_; (i E). There exists sections f1 ce fb:
of iy E_; such that:

1. local extensions of X7,..., X, p( (1)) cee p(f(l)) form a trivialization of T M
(in a neighborhood of L).
2. ll(fl(iJrl)), ool lgfirll))’egi) es , 1Z ...,fb form a trivialization of
ipE_;.
The isomorphism i, between Berezinian bundles, maps the section p associated
with the trivialization of £ @ TM given above to the section associated to the triv-
ialization X1, ..., Xy and E(li), .. (1) Now, both actions of E_; on the Berezinian
bundles are the alternate sums of the terms computed as in (17), for all the elements
of the trivializations above. In order to check that the Berezinian actions computed
with respect to these two local trivializations coincide, it suffices to check that,

dBeT

for all possible indices, the term in a u where the bracket lo(e, f;l)) appears

adds up to zero with the term due to the bracket I3 (e, ll(f( ))) ( [p(e), p(f;l))] for
i =1). Also the term where the bracket of the form Iz (e, e

(2)
J
the term where Vge;) appears, and the term where [p(e), X;] appears is the term

) appears is equal to

where VzX; appears. This completes the proof. O

A Lie oo-algebroid morphism ¢ from a Lie oo-algebroid (E,Q = ({lx};>,:p)) to
(£, Q"= ({mk}y>1 - p)) induces in particular:



MODULAR CLASS OF LIE co-ALGEBROIDS AND ADJOINT REPRESENTATIONS 303

1. A chain map ¢ : Ee — E.,

E_, E_, TM (26)
1 i 1 l o1 J{ [—
/
p— EI_Q p— £ — TM

2. and a degree zero vector bundle morphism ¢, : S?(E) — E such that for
every sections eq, e € I'(E):
¢1({e1, e2})
={¢1(e1), p1(e2)} + ligaler, e2) — da(la(e), e2) — (—1)1pa(eq, Iy (e2)).
Let us assume that both (E,Q = ({lx};>,,p)) and (£, Q" = ({mk};>, . p)) have

the same leaves, and let L be such a leaf. The Lie co-morphism above then induces,
by Equations (26 - 27)

1. a Lie algebroid morphism Ap(F,Q) — AL(E',Q’),
2. a graded vector bundle morphism:

(27)

H,(iLE) — H,(i,E')
3. These morphisms intertwines the respective actions of Ap(F,Q) and
AL(E', Q") on Hy(iLE) and He(iL E’).
In particular, homotopy equivalent Lie co-algebroids (E,Q = ({lk}k21 ,p)) and
(£, Q"= ({mu}y>1,p')) have the same leaves, and a homotopy equivalence induces

1. a Lie algebroid isomorphism A (E,Q) ~ Ar(F',Q’),
2. a graded vector bundle isomorphism:

Ho(i,E) ~ Hy(iLE')

3. which intertwines the respective actions of Ap(E,Q) and AL(E',Q’) on
H.(iLE) and H.(iLE/).

By Lemma 4.10, a homotopy equivalence between two complexes induces a canon-
ical isomorphism of their Berezinian bundles, and the following diagram commutes.

Ber(E®TM,li,—p)

\

~ Ber(Ho(iLF)) ~ Ber(Ho(iL E’))
Ber(E' @ TM, 1}, —p")
The following corollary of Proposition 18 follows from the previous discussion:

Corollary 2. A homotopy equivalence between two Lie co-algebroids intertwines
the modular classes of their leaves. In particular, unimodularity of a given leaf is
preserved under homotopy equivalence.
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