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Abstract. We examine the compact Sasaki manifolds in view of transverse Kéhler geometry
and transverse Ké&hler-Ricci flow. In particular we study the transverse K&hler geometry of
the five-dimensional Sasaki-Einstein space T%!. For this purpose a set of local holomorphic
coordinates is introduced and a Sasakian analogue of the K&hler potential is produced. There
are considered deformations of the contact structure fixing the Reeb foliation while varying the
Kahler metric on the transverse holomorphic structure.

1. Introduction

Sasakian geometry is an important odd-dimensional counterpart of Kahler geometry. Recently,
the subject of Sasakian geometry has gathered a great deal of interest in mathematics [1, 2] and
theoretical physics in connection with the AdS/CFT correspondence [3].

AdS/CFT correspondence, in the most interesting dimensions, provides a duality between
field theories and string theories on AdS5x M where supersymmetry requires the five dimensional
Euclidean manifold M to have a real Killing spinor [4]. In particular Sasaki-Einstein manifolds
M whose metric cone C' (M) are Calabi-Yau find applications in string theory where they provide
explicit tests of AdS/CFT duality. New classes of Sasaki-Einstein structures on S2 x S3, denoted
YP4 have been constructed in [5] which contain the homogeneous space 71! = Y1V as a special
case [6].

Sasaki manifolds have a one dimensional foliation, called the Reeb foliation, which has a
transverse Kéahler structure. The Sasaki-Ricci flow was introduced in [7] to study the existence
of Sasaki-Einstein metrics. The Sasaki-Ricci flow is just a transverse Kéhler-Ricci flow which
deforms the transverse Kahler structure.

The aim of this paper is to investigate the transverse Kahler-Ricci flow in the case of the
Sasaki-Einstein space 7', We consider the deformation of the Sasaki structure fixing the Reeb
foliation, while varying the Kéahler metric on the transverse holomorphic structure and, as a
result, the contact structure.

The paper is organized as follows. In the next Section we review Sasaki geometry and describe
the transverse Kéahler geometry. In Section 3 we investigate the transverse Kahler structure of
the Sasaki space TV!. In order to describe the transverse geometry and its deformation we
introduce local holomorphic coordinates. The Sasaki-Einstein space represents a steady soliton
for the transverse Kahler-Ricci flow. In the last Section we provide some closing remarks.
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2. Sasakian manifolds and Sasaki-Ricci flow
Here we recall the definitions and main facts about Sasakian structures and their deformations.
For more details we refer to [1].

2.1. Contact structures and Sasaki manifolds
Let (M, gM) be a 2n+1 dimensional manifold, VM the Levi-Civita connection of the Riemannian
metric g™, and let RM (X, Y) and RicM respectively denote the Riemannian curvature and Ricci
tensor of VM.
By a contact manifold we mean a C*™ manifold M?"*! together with a 1-form 7 such that
A (%dn)" # 0. There is a canonical vector field ¢ called the characteristic vector field or Reeb
vector field defined by the contractions (interior products):

ten=1 and 1gdn=0. (1)

7 defines a 2n-dimensional vector bundle D over M where at each point p € M the fiber D), of
D is given by
D, = kern, . (2)

The tangent bundle of M may be decomposed into
TM =D& L, (3)

where L¢ is the trivial bundle generated by the Reeb vector field &.
There also exists a (1, 1)-tensor field ¢ defined by

(X) = Vx¢, (4)
for any smooth vector field X on M. The tensor field ® satisfies
®? =T+ ®E, (5)

and
g (@X,®Y) = g™ (X,Y) = n(X)n(Y), (6)

for any pair of vector fields X and Y.
(M, gM) is said to be a Sasaki manifold if the cone manifold

(C(M),g) = Ry x M, dr? +r*gM), (7)
is Kéhler. For a Sasaki manifold an equivalent condition holds:
RM(X,6)Y = gM(&, V)X — g™(X,Y)E, (8)

for any pair of vector fields X and Y on M.

A Sasakian manifold (M, &, 7, ®, g™) is a Sasaki-Einstein manifold if the metric g™ is Einstein,
i.e.

RicY = cgM | 9)
for some constant ¢. Taking into account (8) we have ¢ = 2n > 0.

D it is naturally endowed with both a complex structure ®p and a symplectic structure dn.
(D,@m,dn) gives M a transverse Kéhler structure with Kahler form %dn and the transverse
metric g7 is

g (X,Y) =dy(X,2Y), (10)
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which is related to the Sasakian metric g™ by
" =g +nen. (11)

For the transverse metric g7 one can define a connection VZ on D which is the unique torsion
free such that Vg7 = 0. One can check that

Ricl(X,Y) = Ric™(X,Y) + 247 (X,Y). (12)
For a Sasaki-Einstein manifold, we get that the transverse metric is also Einstein
Ric” = 2(n+1)¢7 . (13)

We may introduce a foliation chart {U,} on M, where each U, is of the form U, = I x V,
with I C R an open interval, and V,, C C".

Let (x,2%,...,2") be the local holomorphic coordinates on U, such that the Reeb vector field
is £ = 0, and z',...,2" are local holomorphic coordinates on V,. Moreover it is possible to
introduce a real-valued function K on U, such that {(K) = 0 and [§]

n=dr+iy K;ds —iy K;d#, (14)
j=1 j=1
dn=—-2i Y K ;zd ndZ, (15)
G k=1
g =2 K dd dZ, (16)
G k=1
O=—iy [0 —iK;0,) ®d| +i) [(0;+iK ;0.) @ d7] . (17)
j=1 Jj=1

The function K is a Sasakian analogue of the Kéhler potential for the Kéhler geometry. The
fundamental two-form of the transverse Kahler manifold is given by

n ) 1
Q=—i ’kzl K jpde Ndz* = Sdn. (18)
J’ =

Note that the Sasakian potential is not unique, but admit a Kéhler transformation
K(z,2) — K(z,2)+ f(z)) + f(#), (19)

where f(z) and f(Z) are arbitrary holomorphic and anti-holomorphic functions.

It has been often remarked that Kéhler geometry is connected with a U(1) gauge theory
whose strength is identified with the Kéhler form [9]. Indeed the Ké&hler form (18) can be
written as

Q=dA and A= %(5 — K (z,%), (20)

where the exterior differential operator is given by d = 9 + 0 with 0 = dz/ % and 0 = d&’ %.

J
The one form A is associated with U(1) gauge fields and the transformation (19) corresponds

to the gauge transformation
A— A+A, (21)
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2.2. Deformations of Sasaki structures
We shall consider deformations of a Sasaki structure fixing the Reeb field ¢ and varying the
1-form 7.

For the beginning we introduce the basic r-forms «v on M which satisfy

a=0 , Lea=0, (22)

where L¢ is the Lie derivative with respect to the vector field . In particular a function f is
basic if and only if £(f) = 0. We observe that dn is a basic 2-form, though 7 is not a basic form.
In the system of coordinates (z, 2. .., 2™) given above, a basic r-form of type (p,q), r = p+q

has the form
o= S dZT A NdZP NAEUN - A dF

i1 ipJ1-dq ’

(23)

where o, ..; 7.5, does not depend on .
The space of global basic r-forms will be denoted by A (M) and the transverse complex

structure ®p allows us to decompose

ApeC= o AR (24)
ptg=r

The exterior derivative maps basic forms to basic forms and it is justified to define dg = d| A,
so that
dp : QU — QT (25)

and the subcomplex (A% (M), dp) is called basic de Rham complex. One can also construct the
basic Dolbeault operators dp and dp with the usual properties on complex manifolds

. ADa p+lq
(?B.AB — N 1, (26)
Op « AT — ABIT
and dg = Op + 0p. For what follows it is useful to introduce the operator dS, = %(53 —0p).

A particular basic cohomology class of H]13’1(S ) is the first basic Chern class, defined by the
basic class ¢ (M) := [5=pT] 5 where pT = Ric’ (®-, ) is the transverse Ricci form. Moreover the
real first Chern class ¢;(D) of the vector bundle D vanishes if, and only if, there exists a € R
such that ¢?(M) = [adn]p [1, 10]. We shall apply the general results to the Sasaki-Einstein
space T! which is toric and has the basic first Chern class positive ¢ > 0 and ¢1(D) = 0 [11].

By means of a certain basic function ¢ we introduce the following deformations of the contact
form

n=mn+dgp. (27)

This deformation modifies the transverse form

dn = dn+ dpdge, (28)

in the same transverse Kihler class ¢ = /@[%dn] B. The other tensors vary as follows

(i:@*é@(ch@)oq)?

29
Gg=dijo(Id®®) +7® 1. (29)

For such deformations, we consider the following flow (&,n(t),®(t),g(t)) with initial data
(€,1(0), 2(0), 9(0)) = (&, n. ®, g™).
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The Sasaki-Ricci flow is defined by

dg" . T T
W = *Rlcg(t) + Rg (t) . (30)

In what follows we take k = 2n + 2 in agreement with the normalization of the Sasaki-Einstein
metric (13).

A Sasakian structure (M, &,7, ®, g™) with a Hamiltonian holomorphic vector field X is called
a transverse Kdhler-Ricci soliton or Sasaki-Ricci soliton if [11]

Ric” — (2n 4+ 2)¢" = Lxg" . (31)

In particular any Kéhler-Einstein metric is a steady soliton with X = 0 [12].

3. The Sasaki-Ricci flow on 7! manifold
The metric on the homogeneous toric Sasaki-Einstein space TH! = §2 x S3 is [13, 6]

1 1
ds*(TH) = 8(de% + sin? 01d¢? + df3 + sin® Oydp3) + §(dw 4 cos O1dpy + cos Badgn)? . (32)
Here 6;, ¢; , i = 1,2 are the usual coordinates on two round S? spheres and the angle 1 € [0, 47)

parametrizes the U(1) fiber over S? x S2.
The global defined contact 1-form 7 is

1
n= g(dw + cos 01 dop1 + cosba dgs) , (33)
and the corresponding Reeb vector is
0
=3—. 34
€=35 (34)

Using the contact form 7 (33), the transverse metric g7 (11) is
1
gl = é(dG% + sin? 0 dp? + db3 + sin’ O dep3) . (35)

To investigate the leaf space of the foliation induced by the Reeb field, we have to parametrize
the foliation chart {U,} on TV where each U, = I x V,, with I C R and V,, € C? as described
in the previous Section.

Let the coordinates (z,z!,2?) where ¢ = 0, and (z!,22) are complex coordinates on V.
Taking into account the form (34) of the Reeb vector field we choose the real coordinate

1
x = 31/1. (36)
Concerning the complex coordinates (z!,2?%), it proves that the complex coordinates on the
metric C(T1!) [14] are not helpful. Unfortunately it seems that there is no direct procedure to
get the complex coordinates to describe the transverse Kéhler geometry of those of the metric
cone.
The natural way to find the complex coordinates (z!, z?) is to take into account the fact that
THlis a U(1) bundle over S? x S2, the U(1) fiber being parametrized by the real coordinate x
(36). On each S? sphere the complex coordinate 27 is related to the spherical coordinates by

. 9
2) = tan Ejeld’j, ji=1,2, (37)
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and the standard S? metric is
dzIdzI

2 gp2 29 112
dsj = dfj + sin” 0;d¢; 4(1 )

j=1,2 (no summation). (38)

In terms of the complex coordinates (37), the Sasakian potential generating the transverse
metric g7 (35), according to (16), could be chosen to be of the form

2
1 -
K = 3 zzllog(l +2777). (39)
J:

However this potential does not provide the contact form (33). This deficiency can be
corrected using the fact that the Sasakian potential is defined up to a gauge transformation
(19). We shall perform a gauge transformation with a function

f(ZJ) :_610g2]7 j:1727 (40)

such that Sasakian potential becomes
18 1 d o
K:3;10g(1+23z])—6;10g(z327). (41)

One can check that this potential provides the contact 7 (33) acording to (14).

Concerning the transverse Kihler-Ricci flow, we note that the Sasaki space 7! is Einstein
and, according to (31), represents a steady soliton with the Hamiltonian holomorphic vector
field X = 0.

In general a complex vector field X on M, commuting with &, is called Hamiltonian vector field
if its projection dm,(X) is a holomorphic vector field on V, and the basic function uy := in(X)
is such that [11, 10]:

Opux = —%Lxd’l’]. (42)

The basic function ux is called a Hamiltonian function. It is worth noting that the
Hamiltonian function uwx is a constant if the holomorphic vector field X is proportional to
the Reeb vector field £.

In the system of coordinates (z, 2!, 22) on U,, a vector field can be written as

0 o~ 0
J
X=ag+ ;lex ol (43)

where X7 are local holomorphic basic functions. With this parametrization
2 .
ux =in(X)=ila+iy XK;|, (44)

=1

is a basic function if @ and X7 do not depend on z. Therefore the vector X can be written as

2 2
: d 0
— I J . 7
X = [n(Xx) 2;:1:)( K, 8x+j§:1:X 57 (45)
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Moreover, condition (42) is satisfied since

2 .
_ A T i
Opux = — 'kzl X]K’j,;dz = —ibxdn. (46)
]7 =

Finally we mention that by a deformation (27) of the contact form, the Hamiltonian function
ux is deformed to
ﬂX:iﬁ(X):uX—l-X(p. (47)

4. Conclusions

In the last time, there has been many efforts to extend the symplectic Hamiltonian mechanics
to contact Hamiltonian mechanics. These attempts are motivated by the necessity to describe
the systems with dissipation or time dependent Hamiltonians [15]. In the contact geometry the
Poisson brackets are no more available and the analogue of Hamiltonian vector fields will be the
contact Hamiltonian vector fields.

On the other hand the contact geometry has proved its usefulness in gauge theories of
gravity, black holes in higher dimensions, string theories. A prominent role is played by the
Sasaki-Einstein manifolds in connection with the AdS/CFT correspondence. The integrability
in contact geometry was introduced in [16, 17] and after that the subject has seen a large
development, see, e.g., [18, 19, 20].

A Sasakian structure sits between two Kéhler structures, namely the one on its metric cone
and the one on the normal bundle of its Reeb foliation. In this paper we examined the Kahler
structure of the transverse Kahler geometry and considered possible deformations of the contact
structures.

We exemplified the general results in the case of the five-dimensional Sasaki-Einstein space
T, We introduced local holomorphic coordinates and constructed the Sasakian potential,
analogous to the Kahler potential.

It is worth extending the study of the transverse Kéhler structure to the five-dimensional
Sasaki-Einstein spaces YP? as well as higher-dimensional contact spaces. Starting with a Sasaki
soliton and using the Sasaki-Ricci flow it would be interesting to generate new contact structures.
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