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Abstract. We examine the compact Sasaki manifolds in view of transverse Kähler geometry
and transverse Kähler-Ricci flow. In particular we study the transverse Kähler geometry of
the five-dimensional Sasaki-Einstein space T 1,1. For this purpose a set of local holomorphic
coordinates is introduced and a Sasakian analogue of the Kähler potential is produced. There
are considered deformations of the contact structure fixing the Reeb foliation while varying the
Kähler metric on the transverse holomorphic structure.

1. Introduction
Sasakian geometry is an important odd-dimensional counterpart of Kähler geometry. Recently,
the subject of Sasakian geometry has gathered a great deal of interest in mathematics [1, 2] and
theoretical physics in connection with the AdS/CFT correspondence [3].

AdS/CFT correspondence, in the most interesting dimensions, provides a duality between
field theories and string theories on AdS5×M where supersymmetry requires the five dimensional
Euclidean manifold M to have a real Killing spinor [4]. In particular Sasaki-Einstein manifolds
M whose metric cone C(M) are Calabi-Yau find applications in string theory where they provide
explicit tests of AdS/CFT duality. New classes of Sasaki-Einstein structures on S2×S3, denoted
Y p,q, have been constructed in [5] which contain the homogeneous space T 1,1 = Y 1,0 as a special
case [6].

Sasaki manifolds have a one dimensional foliation, called the Reeb foliation, which has a
transverse Kähler structure. The Sasaki-Ricci flow was introduced in [7] to study the existence
of Sasaki-Einstein metrics. The Sasaki-Ricci flow is just a transverse Kähler-Ricci flow which
deforms the transverse Kähler structure.

The aim of this paper is to investigate the transverse Kähler-Ricci flow in the case of the
Sasaki-Einstein space T 1,1. We consider the deformation of the Sasaki structure fixing the Reeb
foliation, while varying the Kähler metric on the transverse holomorphic structure and, as a
result, the contact structure.

The paper is organized as follows. In the next Section we review Sasaki geometry and describe
the transverse Kähler geometry. In Section 3 we investigate the transverse Kähler structure of
the Sasaki space T 1,1. In order to describe the transverse geometry and its deformation we
introduce local holomorphic coordinates. The Sasaki-Einstein space represents a steady soliton
for the transverse Kähler-Ricci flow. In the last Section we provide some closing remarks.
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2. Sasakian manifolds and Sasaki-Ricci flow
Here we recall the definitions and main facts about Sasakian structures and their deformations.
For more details we refer to [1].

2.1. Contact structures and Sasaki manifolds
Let (M, gM ) be a 2n+1 dimensional manifold, ∇M the Levi-Civita connection of the Riemannian
metric gM , and let RM (X,Y ) and RicM respectively denote the Riemannian curvature and Ricci
tensor of ∇M .

By a contact manifold we mean a C∞ manifold M2n+1 together with a 1-form η such that
η ∧ (1

2dη)n 6= 0. There is a canonical vector field ξ called the characteristic vector field or Reeb
vector field defined by the contractions (interior products):

ιξη = 1 and ιξdη = 0 . (1)

η defines a 2n-dimensional vector bundle D over M where at each point p ∈ M the fiber Dp of
D is given by

Dp = ker ηp . (2)

The tangent bundle of M may be decomposed into

TM = D ⊕ Lξ , (3)

where Lξ is the trivial bundle generated by the Reeb vector field ξ.
There also exists a (1, 1)-tensor field Φ defined by

Φ(X) = ∇Xξ , (4)

for any smooth vector field X on M . The tensor field Φ satisfies

Φ2 = −I + η ⊗ ξ , (5)

and
gM (ΦX,ΦY ) = gM (X,Y )− η(X)η(Y ) , (6)

for any pair of vector fields X and Y .
(M, gM ) is said to be a Sasaki manifold if the cone manifold

(C(M), ḡ) = (R+ ×M , dr2 + r2gM ) , (7)

is Kähler. For a Sasaki manifold an equivalent condition holds:

RM (X, ξ)Y = gM (ξ, Y )X − gM (X,Y )ξ , (8)

for any pair of vector fields X and Y on M .
A Sasakian manifold (M, ξ, η,Φ, gM ) is a Sasaki-Einstein manifold if the metric gM is Einstein,

i.e.
RicM = c gM , (9)

for some constant c. Taking into account (8) we have c = 2n > 0.
D it is naturally endowed with both a complex structure Φ|D and a symplectic structure dη.

(D,Φ|D, dη) gives M a transverse Kähler structure with Kähler form 1
2dη and the transverse

metric gT is
gT (X,Y ) = dη(X,ΦY ) , (10)
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which is related to the Sasakian metric gM by

gM = gT + η ⊗ η . (11)

For the transverse metric gT one can define a connection ∇T on D which is the unique torsion
free such that ∇T gT = 0. One can check that

RicT (X,Y ) = RicM (X,Y ) + 2gT (X,Y ) . (12)

For a Sasaki-Einstein manifold, we get that the transverse metric is also Einstein

RicT = 2(n+ 1)gT . (13)

We may introduce a foliation chart {Uα} on M , where each Uα is of the form Uα = I × Vα
with I ⊂ R an open interval, and Vα ⊂ Cn.

Let (x, z1, . . . , zn) be the local holomorphic coordinates on Uα such that the Reeb vector field
is ξ = ∂x and z1, . . . , zn are local holomorphic coordinates on Vα. Moreover it is possible to
introduce a real-valued function K on Uα such that ξ(K) = 0 and [8]

η = dx+ i
n∑
j=1

K,j dz
j − i

n∑
j=1

K,j̄ dz̄
j , (14)

dη = −2i

n∑
j,k=1

K,jk̄ dz
j ∧ dz̄k , (15)

gT = 2
n∑

j,k=1

K,jk̄ dz
j dz̄k , (16)

Φ = −i
n∑
j=1

[
(∂j − iK,j∂x)⊗ dzj

]
+ i

n∑
j=1

[
(∂j̄ + iK,j̄∂x)⊗ dz̄j

]
. (17)

The function K is a Sasakian analogue of the Kähler potential for the Kähler geometry. The
fundamental two-form of the transverse Kähler manifold is given by

Ω = −i
n∑

j,k=1

K,jk̄ dz
j ∧ dz̄k =

1

2
dη . (18)

Note that the Sasakian potential is not unique, but admit a Kähler transformation

K(z, z̄) −→ K(z, z̄) + f(zj) + f̄(z̄j) , (19)

where f(z) and f̄(z̄) are arbitrary holomorphic and anti-holomorphic functions.
It has been often remarked that Kähler geometry is connected with a U(1) gauge theory

whose strength is identified with the Kähler form [9]. Indeed the Kähler form (18) can be
written as

Ω = dA and A =
i

2
(∂̄ − ∂)K(z, z̄) , (20)

where the exterior differential operator is given by d = ∂ + ∂̄ with ∂ = dzj ∂
∂zj

and ∂̄ = dz̄j ∂
∂z̄j

.
The one form A is associated with U(1) gauge fields and the transformation (19) corresponds
to the gauge transformation

A −→ A+ Λ , (21)

where Λ = i
2

(
f̄(z̄
)
− f(z)).
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2.2. Deformations of Sasaki structures
We shall consider deformations of a Sasaki structure fixing the Reeb field ξ and varying the
1-form η.

For the beginning we introduce the basic r-forms α on M which satisfy

ιξα = 0 , Lξ α = 0 , (22)

where Lξ is the Lie derivative with respect to the vector field ξ. In particular a function f is
basic if and only if ξ(f) = 0. We observe that dη is a basic 2-form, though η is not a basic form.

In the system of coordinates (x, z1, . . . , zn) given above, a basic r-form of type (p, q) , r = p+q
has the form

α = αi1···ipj̄1···j̄qdz
i1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq , (23)

where αi1···ipj̄1···j̄q does not depend on x.

The space of global basic r-forms will be denoted by ΛrB(M) and the transverse complex
structure Φ|D allows us to decompose

ΛrB ⊗ C = ⊕
p+q=r

Λp,qB . (24)

The exterior derivative maps basic forms to basic forms and it is justified to define dB = d|Λr
B

so that
dB : Ωr

B → Ωr+1
B , (25)

and the subcomplex (Λ∗B(M), dB) is called basic de Rham complex. One can also construct the
basic Dolbeault operators ∂B and ∂̄B with the usual properties on complex manifolds

∂B : Λp,qB → Λp+1,q
B ,

∂̄B : Λp,qB → Λp,q+1
B ,

(26)

and dB = ∂B + ∂̄B. For what follows it is useful to introduce the operator dcB = i
2(∂̄B − ∂B).

A particular basic cohomology class of H1,1
B (S) is the first basic Chern class, defined by the

basic class cB1 (M) := [ 1
2πρ

T ]B where ρT = RicT (Φ·, ·) is the transverse Ricci form. Moreover the
real first Chern class c1(D) of the vector bundle D vanishes if, and only if, there exists a ∈ R
such that cB1 (M) = [a dη]B [1, 10]. We shall apply the general results to the Sasaki-Einstein
space T 1,1 which is toric and has the basic first Chern class positive cB1 > 0 and c1(D) = 0 [11].

By means of a certain basic function ϕ we introduce the following deformations of the contact
form

η̃ = η + dcBϕ . (27)

This deformation modifies the transverse form

dη̃ = dη + dBd
c
Bϕ , (28)

in the same transverse Kähler class cB1 = κ[1
2dη]B. The other tensors vary as follows

Φ̃ = Φ− ξ ⊗ (dcBϕ) ◦ Φ ,

g̃ = dη̃ ◦ (Id⊗ Φ) + η̃ ⊗ η̃ .
(29)

For such deformations, we consider the following flow (ξ, η(t),Φ(t), g(t)) with initial data
(ξ, η(0),Φ(0), g(0)) = (ξ, η,Φ, gM ).
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The Sasaki-Ricci flow is defined by

∂gT

∂t
= −RicTg(t) + κgT (t) . (30)

In what follows we take κ = 2n+ 2 in agreement with the normalization of the Sasaki-Einstein
metric (13).

A Sasakian structure (M, ξ, η,Φ, gM ) with a Hamiltonian holomorphic vector field X is called
a transverse Kähler-Ricci soliton or Sasaki-Ricci soliton if [11]

RicT − (2n+ 2)gT = LXgT . (31)

In particular any Kähler-Einstein metric is a steady soliton with X = 0 [12].

3. The Sasaki-Ricci flow on T 1,1 manifold
The metric on the homogeneous toric Sasaki-Einstein space T 1,1 = S2 × S3 is [13, 6]

ds2(T 1,1) =
1

6
(dθ2

1 + sin2 θ1dφ
2
1 + dθ2

2 + sin2 θ2dφ
2
2) +

1

9
(dψ + cos θ1dφ1 + cos θ2dφ2)2 . (32)

Here θi, φi , i = 1, 2 are the usual coordinates on two round S2 spheres and the angle ψ ∈ [0, 4π)
parametrizes the U(1) fiber over S2 × S2.

The global defined contact 1-form η is

η =
1

3
(dψ + cos θ1 dφ1 + cos θ2 dφ2) , (33)

and the corresponding Reeb vector is

ξ = 3
∂

∂ψ
. (34)

Using the contact form η (33), the transverse metric gT (11) is

gT =
1

6
(dθ2

1 + sin2 θ1 dφ
2
1 + dθ2

2 + sin2 θ2 dφ
2
2) . (35)

To investigate the leaf space of the foliation induced by the Reeb field, we have to parametrize
the foliation chart {Uα} on T 1,1 where each Uα = I × Vα with I ⊂ R and Vα ⊂ C2 as described
in the previous Section.

Let the coordinates (x, z1, z2) where ξ = ∂x and (z1, z2) are complex coordinates on Vα.
Taking into account the form (34) of the Reeb vector field we choose the real coordinate

x =
1

3
ψ . (36)

Concerning the complex coordinates (z1, z2), it proves that the complex coordinates on the
metric C(T 1,1) [14] are not helpful. Unfortunately it seems that there is no direct procedure to
get the complex coordinates to describe the transverse Kähler geometry of those of the metric
cone.

The natural way to find the complex coordinates (z1, z2) is to take into account the fact that
T 1,1 is a U(1) bundle over S2 × S2, the U(1) fiber being parametrized by the real coordinate x
(36). On each S2 sphere the complex coordinate zj is related to the spherical coordinates by

zj = tan
θj
2
eiφj , j = 1, 2 , (37)
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and the standard S2 metric is

ds2
j = dθ2

j + sin2 θjdφ
2
j = 4

dzjdz̄j

(1 + zj z̄j)2
, j = 1, 2 (no summation) . (38)

In terms of the complex coordinates (37), the Sasakian potential generating the transverse
metric gT (35), according to (16), could be chosen to be of the form

K =
1

3

2∑
j=1

log(1 + zj z̄j) . (39)

However this potential does not provide the contact form (33). This deficiency can be
corrected using the fact that the Sasakian potential is defined up to a gauge transformation
(19). We shall perform a gauge transformation with a function

f(zj) = −1

6
log zj , j = 1, 2 , (40)

such that Sasakian potential becomes

K =
1

3

2∑
j=1

log(1 + zj z̄j)− 1

6

2∑
j=1

log(zj z̄j) . (41)

One can check that this potential provides the contact η (33) acording to (14).
Concerning the transverse Kähler-Ricci flow, we note that the Sasaki space T 1,1 is Einstein

and, according to (31), represents a steady soliton with the Hamiltonian holomorphic vector
field X = 0.

In general a complex vector fieldX onM , commuting with ξ, is called Hamiltonian vector field
if its projection dπα(X) is a holomorphic vector field on Vα and the basic function uX := iη(X)
is such that [11, 10]:

∂̄BuX = − i
2
ιXdη . (42)

The basic function uX is called a Hamiltonian function. It is worth noting that the
Hamiltonian function uX is a constant if the holomorphic vector field X is proportional to
the Reeb vector field ξ.

In the system of coordinates (x, z1, z2) on Uα, a vector field can be written as

X = a
∂

∂x
+

2∑
j=1

Xj ∂

∂zj
, (43)

where Xj are local holomorphic basic functions. With this parametrization

uX = iη(X) = i

a+ i
2∑
j=1

XjK,j

 , (44)

is a basic function if a and Xj do not depend on x. Therefore the vector X can be written as

X =

η(X)− i
2∑
j=1

XjK,j

 ∂

∂x
+

2∑
j=1

Xj ∂

∂zj
. (45)
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Moreover, condition (42) is satisfied since

∂̄BuX = −
2∑

j,k=1

XjK,jk̄dz̄
k = − i

2
ιXdη . (46)

Finally we mention that by a deformation (27) of the contact form, the Hamiltonian function
uX is deformed to

ũX = iη̃(X) = uX +Xϕ . (47)

4. Conclusions
In the last time, there has been many efforts to extend the symplectic Hamiltonian mechanics
to contact Hamiltonian mechanics. These attempts are motivated by the necessity to describe
the systems with dissipation or time dependent Hamiltonians [15]. In the contact geometry the
Poisson brackets are no more available and the analogue of Hamiltonian vector fields will be the
contact Hamiltonian vector fields.

On the other hand the contact geometry has proved its usefulness in gauge theories of
gravity, black holes in higher dimensions, string theories. A prominent role is played by the
Sasaki-Einstein manifolds in connection with the AdS/CFT correspondence. The integrability
in contact geometry was introduced in [16, 17] and after that the subject has seen a large
development, see, e.g., [18, 19, 20].

A Sasakian structure sits between two Kähler structures, namely the one on its metric cone
and the one on the normal bundle of its Reeb foliation. In this paper we examined the Kähler
structure of the transverse Kähler geometry and considered possible deformations of the contact
structures.

We exemplified the general results in the case of the five-dimensional Sasaki-Einstein space
T 1,1. We introduced local holomorphic coordinates and constructed the Sasakian potential,
analogous to the Kähler potential.

It is worth extending the study of the transverse Kähler structure to the five-dimensional
Sasaki-Einstein spaces Y p,q as well as higher-dimensional contact spaces. Starting with a Sasaki
soliton and using the Sasaki-Ricci flow it would be interesting to generate new contact structures.
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