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Constraint on the Cosmic Curvature in a Model with the
Schwarzschild–de Sitter Metric from Supernovae and
Gamma-Ray Burst Observational Data

Vladimir N. Yershov

Institute of Radio Engineering and Telecommunication Technologies, State University of Aerospace
Instrumentation, 67 Bol’shaya Morskaya, 190000 St. Petersburg, Russia; vyershov@guap.ru

Abstract: In developing his cosmological model of 1917, de Sitter theoretically predicted the phe-

nomenon of cosmological redshift (the de Sitter effect), which he did long before the discovery of

this phenomenon in observations. The de Sitter effect is gravitational by its nature, as it is due to

differences between the coordinate systems of the observer and the distant source. However, the

relationship between the redshift and distance derived from the de Sitter metric is at odds with

observations, since this relationship is nonlinear (quadratic) for small redshifts, while the observed

relationship between the same quantities is strictly linear. This paper discusses the possibility that

cosmological redshift is gravitational by its nature, as in de Sitter’s 1917 model. At the same time,

here, as in de Sitter’s model, an elliptical space is used, the main characteristic of which is the

identification of its antipodal points. But, unlike de Sitter’s model, here, in order to ensure strict

linear dependence of the redshift on distance, the origin of the reference system is transferred to

the observer’s antipodal point. The Schwarzschild–de Sitter metric used in this model allows you

to estimate the curvature of space from observational data. To achieve this, a theoretical Hubble

diagram is built within the framework of the model with the Schwarzschild–de Sitter metric, which

is compared with observations from the Pantheon+ catalogue of type Ia supernovae and the Amati

catalogue of gamma-ray bursts in the redshift range of 0 < z < 8. As a result of this comparison, we

found that the lower estimate of the radius of curvature of space was quite large: 2.4× 1015 Mpc.

This means that the observational data indicate a negligible curvature of space.

Keywords: Schwarzschild–de Sitter metric; elliptical space; wormholes; gravitational redshift; type-Ia

supernovae

1. Introduction

The first exact solutions of Einstein’s field equations were spherically symmetric. The
Schwarzschild metric [1] corresponds to the following interval in spherical coordinates
r, θ, φ:

ds2 = gSch
tt c2dt2 − dr2

gSch
tt

− r2(dθ2 + sin2 θdϕ2) , (1)

with its metric coefficient associated with time

gSch
tt = 1− rg

r
, (2)

where rg = 2 GM/c2 is the gravitational radius, M is the central mass, c is the speed of
light, and G is the gravitational constant. This solution is symmetric with respect to the
local centre of spherical mass distribution. Two other exact solutions to Einstein’s field
equations were found, one by Einstein [2]:

ds2 = c2dt2 − dr2 − R2 sin2 r

R
(dθ2 + sin2 θdϕ2) (3)
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and the other by de Sitter [3]:

ds2 = cos2 r

R
c2dt2 − dr2 − R2 sin2 r

R
(dθ2 + sin2 θdϕ2) . (4)

These two solutions are also spherically symmetrical, but their symmetry is not local
because the solutions are not related to the preferred centre of curvature or the central mass
distribution. The curvature R−2 is global by definition, so the symmetry of these models is
spherical with respect to any arbitrary point in space.

In the Schwarzschild solution (1), the metric coefficient gtt implies a transformation
(dilation) of time along the radial coordinate r. It follows from the coefficient (2) that this
transformation leads to a complete halt in the flow of time at the Schwarzschild radius
r = rg. A similar cessation of time is inherent in the de Sitter metric (4), since the time
coordinate in this metric is also subject to dilatation along the radial coordinate r due to the
metric coefficient

gdS
tt = cos2 r

R
= cos2 χ . (5)

Here, the projective angle χ is such that

r = Rχ . (6)

Thus, according to the expression (5), time stops at a large distance from the observer,
corresponding to χ = π

2 , when cos χ = 0. At closer distances to the observer, time dilation
leads to a decrease in the frequencies of the spectral lines of light sources. On the basis of
this property, de Sitter theoretically predicted the possibility of cosmological redshift, which
was called the de Sitter effect. This prediction was experimentally confirmed ten years
later by Lemaître [4], and then by Hubble, who wrote that the observed “velocity-distance

relation may represent the de Sitter effect” [5].
As can be seen from the comparison of metrics (1) and (4), the de Sitter effect is

gravitational by its nature, since it is caused by the difference between the coordinate
systems of the source and the observer in curved spacetime, similar to what happens in the
Schwarzschild metric. But, unlike the gravitational redshift in the Schwarzschild metric,
the de Sitter gravitational redshift is global and isotropic: its character remains the same,
regardless of the choice of the observer’s point in space and the direction of observation.

In Einstein’s metric (3), the metric coefficient associated with time is identical to unity;
therefore, in Einstein’s cosmological model, there is no effect of time dilation, and time is
universal for all space. Einstein’s metric (3) corresponds to the Riemannian space S3 with a
constant positive curvature λ = R−2, due to the presence of a non-zero density of matter
distribution over space, ρ > 0. In the case of the de Sitter metric (4), λ = 3R−2, and ρ0 = 0
(i.e., the space is empty). The distance dos from the observer (o) to the source (s) is measured
by the radial coordinate r:

o
|r=0

r = Rχ ≡ dos−−−−−−−−−−−→ s −−−−−−−−−−−−−−−−→ a . (7)

The notation ‘a’ is used here for the observer’s antipodal point in space S3. This point
corresponds to the projective angle χ = π, which marks a very large distance from the
observer. In principle, light from the source can reach the observer from this point as
well, although in practice, this is unlikely due to the presence of horizons, which will be
discussed below. In addition, there is coordinate ambiguity for χ > π/2, as discussed by
de Sitter in [3].

To avoid this ambiguity, de Sitter replaced the Riemannian sphere S3 with an ellip-
tical (projective) space, the main property of which is the identification of its antipodal
points (o ≡ a). The same elliptical space was used in subsequent cosmological models by
Lemaître [4], Tolman [6] and Robertson [7–9], from where elliptical space transitioned into
the standard cosmological model of cold dark matter ΛCDM with the cosmological term Λ.
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In 1939, R.C. Tolman proposed a general method for finding exact solutions to Ein-
stein’s field equations [10]. One of the new solutions found by Tolman combines the
Schwarzschild metric with the de Sitter metric (SdS):

ds2 = gttc
2dt2 − dr2

gtt
− R2 sin2 r

R
(dθ2 + sin2 θdϕ2) . (8)

In this metric, the metric coefficient associated with time

gtt = 1− rg

r
− r2

R2 (9)

includes the curvature parameter R−2. Therefore, the SdS solution can be used to estimate
the curvature of space. However, this cannot be carried out directly, because, as with the
Schwarzschild metric, the SdS metric is local and anisotropic. This problem is solved by
using the main property of elliptical space, i.e., the connectivity between its antipodal
points. In this case, it is also necessary to transfer the origin of the coordinate system
from the point where the observer is located to their antipodal point. We will discuss this
in Section 2, and then, in Section 3, we will estimate the R parameter by calculating the
theoretical distance moduli for the SdS metric and comparing them to the distance moduli
derived from observations of distant sources such as supernovae and gamma-ray bursts.

2. Materials and Methods

2.1. Elliptical Space

The luminosity distances calculated with the use of the metric coefficient

gdS
tt = cos2 r

R
(10)

in the de Sitter metric are not consistent with the observations because here, the theoretical
relationship between luminosity distances and redshifts is nonlinear (quadratic) near the
origin. At the same time, the observational data show a strictly linear relationship between
luminosity distances and redshifts at low redshifts.

Notwithstanding, one can avoid nonlinearity by moving the origin of the coordinate
system from the observer point (o) to the antipodal point (a):

o
dso←−−−−−− s

r=rs←−−−−−−−−−−−−−−−− a
r=0|
≡ o (11)

Compared with the diagram (7), in this coordinate system, distances are calculated as
in the normal coordinate system associated with an observer. Here, rs is the radial dis-
tance between the antipodal point (a) and the source location (s). In order to use the
Schwarzschild–de Sitter metric in the calculations, let us bring to bear the main property of
elliptical space, the connectivity between its antipodal points (see below). Our goal is to
calculate the source-to-observer distance (dso) in the SdS metric and compare it with the
redshift z of the source. Using the above notations, we obtain the distance between the
observer and their antipodal point in the form

ro = rs + dso . (12)

In this configuration, the centre of symmetry of the SdS metric is located at the
observer’s antipodal point (a). From the observer’s perspective, this point looks like a
distant sphere with a large (or infinite) radius. It encompasses the entire celestial sphere (4π

steradian) around the observer. In this way, the SdS metric becomes spherically symmetric
and isotropic for any arbitrary point in space, provided that the antipodal points are
endowed with this metric.
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Endowing an elliptical space with the SdS metric is possible if the mathematical
identification of distant points is materialised through their physical connectivity by means
of a structure with a metric that is an exact solution of Einstein’s field equations. Such
an exact solution to the field equations was found in 1935 by Einstein and Rosen [11].
This solution interconnects two different spaces or two different regions of the same
space. Therefore, it was called the Einstein–Rosen bridge, but more often, it is called the
“wormhole” [12]. In the simplest case, the exterior space around a wormhole is described by
the Schwarzschild metric or by the Schwarzschild–de Sitter metric (if space has a curvature
of R−2). In both metrics, the redshift is gravitational by its nature, so it can be calculated
using the metric coefficient (9). Such a calculation within the scheme (11) makes it possible
to obtain theoretical cosmological redshifts of distant sources.

As shown by Morris, Thorne and Yurtsever [13], it is most likely that wormholes
are microscopic objects with dimensions in the order of the Planck–Wheeler length,
ℓP =

√
Gh̄/c3 = 1.62× 10−33 cm. This determines the scale of the difference between the

idealised (mathematical) elliptical space and its physical counterpart, the space whose
antipodal regions are connected through microscopic Einstein–Rosen wormholes.

There is a widespread belief that wormholes are unstable and that even the slightest
disturbance associated with the passage of particles of matter or radiation through their
throats destroys them. However, most publications on the stability or instability of worm-
holes are based on the concept of their traversability [14–16]. Other publications discuss
this topic either in terms of exotic theories of gravity [17], or within the framework of the
theory of quantum gravity [18], which does not yet exist. Therefore, such publications can
be disregarded.

In classical general relativity, wormholes are the smallest possible objects. As such,
they are not traversable and, therefore, they are stable by definition. Moreover, according
to the ideas of Einstein, Rosen and Wheeler, the answer to the question of the relationship
between the discrete (particles of matter) and the continuous (space) lies precisely in the
possibility of the existence of microscopic structures within the framework of general
relativity. Thus, the question of where matter particles and radiation can come from at all is
clarified by the possibility of the existence of microscopic wormholes, proven by Einstein
and Rosen.

A static wormhole is described by the Schwarzschild metric (1). But our goal here
is to estimate the curvature of space R−2, which is encoded in the Schwarzschild–de
Sitter metric (8). Therefore, we use this metric, with its free parameter R to be evaluated
using observations.

The observer is located near one of the throats of the wormhole (hereinafter referred
to as the near throat), and the observed source is somewhere between the observer and the
far throat of the observer’s antipodal point. According to our choice of coordinate system,
any distance is now measured from the origin of that coordinate system (a) to the source
(rs) and to the observer (ro), with the origin being a large antipodal sphere surrounding the
observer. Our goal is to find the relationship between the redshift of the source (z) and the
distance from the source to the observer:

dso(z) = ro − rs . (13)

Since the origin of the coordinates for these calculations is located on the surface
of a distant sphere with radius ro, regardless of the direction to the source, this distance
remains the same when observing any source (for example, a supernova). But the distance
to the source rs from the origin can vary, depending on the source redshift All distances
are counted along the line of sight to the source (a supernova). The global (cosmological)
redshift of the source is given by the Schwarzschild metric with a gravitational radius rg,
calculated from the origin a (any point on the antipodal sphere).

In this case, the effect of cosmological gravitational redshift is caused by the local
distribution of masses in the vicinity of the observer due to the connectivity between the
region of elliptical space adjacent to the observer and the region around the observer’s
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antipodal point. In elliptical space, with its identified antipodal points, the centre of the local
mass distribution (as well as all other points of this mass distribution, including the points
of the Schwarzschild horizons of each mass) are geometrically transformed into a huge
sphere around the observer. The radius of this sphere is so large that any local differences
in the positions of the mass distributions correspond to negligible relative displacements of
the distant sphere surfaces, including the surfaces of the Schwarzschild horizons.

In this way, a collective spherically symmetrical horizon of radius rg is formed around
each point in space, and all points in space are equivalent in this respect. So, the universe
looks the same to any arbitrarily chosen observer. In such a scheme, all masses within some
vicinity of the observer contribute to the global collective gravitational redshift through
their antipodal points. From the point of view of an observer, the size of this neighbourhood
can be very large. It includes matter in the form of local and distant galaxies, as well as
possibly distant clusters of galaxies. However, compared to the gravitational radius rg, the
size of this region around the observer is negligible.

2.2. Redshift–Distance Relationship

In our scheme (11), there are two unknown distances, ro and rs. The latter quantity can
be replaced by the source-to-observer distance dso = ro − rs, which is the sought theoretical
quantity to be compared with observational data. The gravitational radius rg and the
global radius of curvature R are the unknowns. Thus, in total, our model has three free
parameters: ro, rg and R, which should be determined from observations.

Both the source and the observer are in the SdS metric (8) with its redshift-defining
coefficient (9). In this case, the redshift z of the source with respect to the observer is
calculated using the following expression:

z =

√

go
tt

gs
tt

− 1 (14)

or, taking into account (9),

(z + 1)2 =

[

1− rg

ro
− r2

o

R2

][

1− rg

rs
− r2

s

R2

]−1

. (15)

2.2.1. Approximate Solution

Expression (15) can be converted to the desired functional dependence of the distance
dso = ro − rs on the source redshift z by regrouping the terms included in this expression
and temporarily taking rg as the distance unit: rg = 1. Later, this parameter can be
translated into some generally accepted units of distance measurement, for example, in light
years or megaparsecs. By rearranging Equation (15), we obtain

(1 + z)2 =
(

1− r−1
o − r2

o R−2
)(

1− r−1
s − r2

s R−2
)−1

. (16)

Replacing rs in (16) with rs = ro − dso, we obtain an expression containing only the
sought parameters ro, dso and R, as well as the redshift z, which is the input argument:

(ro − dso)
−1 = 1− (1− r−1

o − r2
o R−2)(1 + z)−2 − (ro − dso)

2R−2. (17)

Then, the distance dso as a function of redshift z reads

dso = ro −
[

1− (1− r−1
o − r2

o R−2)(1 + z)−2 − (ro − dso)
2R−2

]−1
. (18)

This simple solution is recursive; hence, it is approximate. Given that the value
of R2 in the denominator of the last term in (18) is known to be extremely large (from
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observations), the distances dso can be calculated by successive approximations. In the
zero-order approximation, the last term in expression (18) can be neglected:

d
(0)
so = ro −

[

1− (1− r−1
o − r2

o R−2)(1 + z)−2
]−1

. (19)

This depends only on z and can be substituted on the right-hand side of the expression (18)
to calculate the required distances dso.

2.2.2. Exact Solution

An exact solution to Equation (15) also exists (the author must acknowledge that it
was proposed by Øyvind Grøn, the reviewer of this paper). The solution is achieved by
converting Equation (15) into a reduced cubic equation,

r3
s + 3prs + 2q = 0 (20)

using the coefficients p = − 1
3

[

1− rg

ro
− r2

o
R2

]

(1 + z)−2R2 and q =
rgR2

2 . Since |p3| > |q2|,
while p < 0, the discriminant of (20) is negative, p3 + q2 < 0, which means that (20) has
three real solutions [19]:

rs = 2
√

−p cos
ϕ

3
, and r±s = −2

√

−p cos
ϕ± π

3
, (21)

with ϕ = arccos(−q/
√

−p3). Like in (18), the required source-to-observer distance is
calculated as dso = ro − rs using one of the exact solutions (21):

dso = ro − 2
√

−p cos
ϕ

3
, or d±so = ro + 2

√

−p cos
ϕ± π

3
(22)

The choice between these three solutions can be made by comparing them with the
approximate solution (18), since it is the only one. It turns out that the first of these
solutions results in distances decreasing with the growth of z, while the third (d−so) leaves
the distances approximately constant within the redshift range 0 < z < 0.1. Both contradict
observational facts. The only solution that corresponds to the observations is the second
solution d+so. It also coincides with the approximate solution from Section 2.2.1.

2.2.3. Luminosity Distance

The luminosity distance comparable with that of the source, is obtained from the
expressions (18) or (22) by multiplying these expressions by the scaling factor (1 + z)2:

dL(z) = dso(1 + z)2, (23)

with one of the (1 + z)-factors accounting for the loss of luminosity due to the cosmological
redshift z, as well as for the lower rate at which the photons reach the observer because
of the cosmological time dilatation due to the non-unit metric coefficient gtt. The other
(1 + z)-factor takes into account the distortion of the photon’s trajectory (coefficient g−1

tt in
the Schwarzschild–de Sitter metric). The expression (23) can be used to determine the free
parameters of our model by comparing the theoretical distance moduli

µtheor = 5 log dL + 25 (24)

(in stellar magnitudes) with the distance moduli obtained from observations. The numerical
coefficients in (24) correspond to the luminosity distances dL, expressed in Mpc.

2.3. Observational Data

The Formulas (18)–(24) describe the theoretical relationship between distances to
remote sources and redshifts. Distances are expressed as the photometric properties of
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sources. Thus, the assessment of theoretical parameters should be based on observational
photometric data for a wide range of cosmological redshifts. One of the most accurate sets
of observational data of this kind is the photometric catalogue Pantheon+ [20,21], which
contains data on 1701 type Ia supernovae in the redshift range of 0 < zSN < 2.26.

Yet, this range of redshifts is not wide enough to indicate differences between cos-
mological models, since these differences are manifested significantly only for redshifts
z > 3. The range of redshifts can be expanded by using additional observational data
from the gamma-ray burst (GRB) catalogue compiled by Amati et al. [22]. This catalogue
contains 193 moduli of gamma-ray burst distances µGRB, calculated and calibrated using
the Amati relation [23]. The range of redshifts covered by this catalogue, 0.03 < zGRB < 8.1,
is significantly wider than in the case of type Ia supernovae.

The µGRB data are much noisier than µSNe, and they are also slightly systematically
biased within the redshift range 0 < z < 0.7, where all cosmological models and data must
coincide. This bias is calculated to be −0.258 [mag] by minimising the Pearson’s χ2 for
27 GRBs within the mentioned redshift range (the GRB data are corrected for this bias).

3. Results

Calculations using the Formulas (18)–(24) give estimates of the parameters R, ro and
rg within the framework of the SdS model. The parameters are estimated by minimising
the χ2 Pearson criterion [21]

χ2 = ∆DTC−1∆D, (25)

in which C is the covariance matrix and ∆D is the vector of residuals between theoretical
and observational distance moduli:

∆Di = µtheor
i (zi)− µi. (26)

The length of this vector is N = 1701, which corresponds to the length of the Pantheon+
catalogue, which provides the observational µi of type Ia supernovae. The theoretical
distance moduli are calculated for the SdS model by using the Formulas (18), (22) and (24),
as described in the previous section. For comparison purposes, µtheor

i (zi) is also calcu-
lated by using the standard formalism of the ΛCDM model, applying the cosmological
parameters estimated by the authors of the Pantheon+ catalogue [21].

Since here, we extend the range of available source redshifts by using an additional
catalogue of calibrated GRBs, which provides only the uncertainties of the GRB distance
moduli instead of the full covariance matrix, we can use a simplified χ-squared calculation

χ2 = (diag CT∆D)2 =
N

∑
i=1

∆D2
i

σ2
µi

, (27)

where σ2
µi

are the uncertainties of µi corresponding to the diagonal of the covariance matrix
(see, e.g., [24], § IIIc for theoretical work or [25,26] for practical examples of using (27) for
comparison of various cosmological models between each other).

The parameters of the standard ΛCDM model, as estimated in [21] by using the
Pantheon+ sample, are H0 = 73.6± 1.1 [km/s/Mpc], ΩM = 0.334± 0.018 and Ωk = 0.
The theoretical distance moduli curve corresponding to these parameters is indicated in
Figure 1 by the thin solid curve. It matches fairly well with the observational type Ia
distance moduli (pink circles in this plot), with Pearson’s χ2

ΛCDM = 906.1.
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Figure 1. Comparison of the theoretical distance moduli µ (dashed and solid curves) with the
observational distance moduli of the joint data sample, including 1701 type Ia supernovae from the
Pantheon+ catalogue (pink circles) and 193 gamma-ray bursts from the Amati catalogue (blue circles).
The thin solid curve shows the theoretical distance moduli calculated by using the parameters of
the standard ΛCDM model. The bold dashed curves indicate the distance moduli based on the
Schwarzschild–de Sitter metric for the approximate (red) and exact solutions (black). The abscissa
corresponds to the redshifts z of type Ia supernovae and gamma-ray bursts.

The theoretical parameters rg, ro and R for the SdS model are obtained by minimising
Pearson’s χ2, which is achieved by the global descent method with consecutive iterations.
These parameters based on 1701 type Ia supernova data are given in the second column of
Table 1. The one-sigma confidence intervals for these parameters are calculated by varying
the parameters and taking those of their values that correspond to a Pearson’s probability
of 68.3%. These values are divided by the square root of the number of degrees of freedom,
√

N − np, where n = 3 is the number of free parameters, and N = 1701 is the number of
sources in the sample.

The calculated theoretical distance moduli for the SdS model are shown as two dashed
bold curves in Figure 1, with the red curve corresponding to the approximate solution
of (15), while the black dashed curve represents the exact solution. The quality of the
SdS-model fit into the observational data is characterised by the minimum value of the
Pearson criterion, which turns out to be χ2 = 887.6 for the approximate solution and
χ2 = 871.3 for the exact solution. These values indicate slightly better binding of the theory
discussed here to the observational data, in comparison with the ΛCDM model.

The additional distance moduli extending the observational redshift range to z ≈ 8 are
193 data points from the Amati catalogue. They are shown in Figure 1 as blue circles. With
this joint data sample of SNe+GRB containing 1894 data points, the number of degrees of
freedom is N − n = 1891. In the case of the approximate solution, the tolerance intervals
of the parameters for the type Ia SNe and for the joint data sample of SNe+GRB remain
approximately the same as for the SNe alone, because the photometric accuracy of SNe is
much higher than that of GRBs. With the exact solution, the tolerances are smaller when
the more accurate SN data are used for determining the model parameters.
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Table 1. Fitting of the SdS theoretical model to the observational data.

Parameter SNe SNe+GRB Units

Approximate solution

R (1.08+∞
−0.83)× 105 (1.17+∞

−0.94)× 105 [rg] 1

ro − 1 (9.91 ± 0.15)× 10−8 (9.91+0.18
−0.06)× 10−8 [rg]

rg (2.13 ± 0.03)× 1010 (2.13+0.03
−0.04)× 1010 [Mpc]

χ2
min 887.6 2033.7 –

Exact solution

R (1.127+5.2
−0.85)× 105 (1.127+5.9

−0.89)× 105 [rg]
ro − 1 (9.914 ± 0.009)× 10−8 (9.914 ± 0.011)× 10−8 [rg]

rg (2.12 ± 0.03)× 1010 (2.12 ± 0.04)× 1010 [Mpc]
χ2

min 871.3 2018.0 –

1 Only the lower limit is determinable.

Nevertheless, the GRB data confirm the parameter values for ro and rg obtained from
SNe (compare the second and third columns of Table 1). The first four rows of this Table
provide the outcome of the approximate solution, and the last four rows correspond to the
more accurate results of the exact solution.

The estimated value of the SdS model parameter R = (1.127+5.2
−0.85)× 105, shown in the

second column of Table 1, is the lower estimate of the radius of curvature of the universe,
since the upper tolerance interval of R is very wide (even being indefinite in the case of
the approximate solution). The value of R (in units of rg) combined with the scale factor rg

suggests that the spatial curvature of the universe is constrained from above by the value
1/R2 ≈ 1.75× 10−31 Mpc−2.

4. Discussion

Observations of 1701 type Ia supernovae collected in the Pantheon+ catalogue, com-
bined with observations of 193 gamma-ray bursts from the Amati catalogue, make it
possible to determine the lowest possible value of the radius of curvature of the universe
in a cosmological model with the Schwarzschild–de Sitter metric. It turns out to be very
large: 2.4× 1015 Mpc. Accordingly, the curvature of space in this model is constrained from
above by the value 1.75× 10−31 Mpc−2. That is, the observational data used in this work
for these estimates are compatible with the possibility that space is flat.

In this paper, we discuss the origin of cosmological redshift in an alternative way: the
redshift of remote galaxies is interpreted as a manifestation of the static Schwarzschild–de
Sitter metric. Many studies will disagree with this interpretation because it is commonly
believed that the universe cannot be static. The point is that the standard cosmological
model, with its interpretation of redshift as the result of space expansion described by
the dynamic Friedmann–Lemaître–Robertson–Walker (FLRW) metric, can explain a large
variety of observational facts. Therefore, since the late 1990s, the standard model has been
dubbed the concordance cosmological model, which puts all the observations together.

The current general view is that static cosmological models have long been a thing
of the past and that it is not worth interpreting astrophysical observations in terms of
static models, since they allegedly cannot explain such theoretically and observationally
substantiated facts, such as Big Bang nucleosynthesis, the initial annihilation of matter and
antimatter, the recombination of plasma in the process of the universe’s expansion, the
process of structure formation and the subsequent reionisation of the medium during the
formation of the first stars and galaxies.

However, a static model is discussed here for good reasons: the observational facts
obtained over the past two years by the James Webb Space Telescope (JWST) have disar-
ranged the entire coherent picture of concordance cosmology and made us think about the
nature of cosmological redshift.
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The light-gathering power and high angular resolution of the JWST provide exquisitely
detailed information about the physical processes that took place in the universe 13 billion
years ago and earlier—a glimpse into the so-called “dark ages”, when, according to the
concept of the expanding universe, the process of recombination ended and the process of
reionisation should have begun.

The generally accepted view was that the process of the formation of the first stars and
the beginning of reionisation corresponded to redshifts z ∼ 20. But the JWST observations
have shown that at distances corresponding to these redshifts, there are a large number
of massive galaxies (with masses > 1010 M⊙) that formed less than 700 million years after
the beginning of the universe. The observed large number density of massive galaxies
with z > 10 [27] is at odds with the predictions of the theory of galaxy formation. The
recently published UNCOVER catalogue of JWST galaxies [28,29] contains a very large
number of galaxies with z ≈ 20, while, according to the ΛCDM model, this is the redshift
where the first stars and galaxies are expected to be formed. Therefore, at this redshift,
corresponding to the universe’s age of ∼160–200 million years, there should be much fewer
galaxies, which are expected to be shapeless and small in size.

These observational facts are currently explained by galaxy evolution. But there is
a problem here, because the JWST observations show that galaxies with z > 10 are fully
formed, with disks and bulges, containing large amounts of dust and heavy chemical
elements. They are look-alikes of the late-universe galaxies, but with one exception: the
physical sizes of remote galaxies are much smaller than those of the galaxies next to us.
This is an illusion due to the geometry of the expanding scaling factor. By contrast, in the
geometry of a static coordinate system, the galaxies have quite normal sizes, in accordance
with their masses and luminosities.

Additional confirmation that the small angular sizes of high-redshift galaxies are
not due to their evolution comes from a recently discovered contradiction between the
reionisation rate of the early universe known from pre-JWST observations and the new
reionisation rate based on the JWST observations. The observed large number density of
high-redshift massive galaxies necessarily implies—within the framework of ΛCDM—an
extremely high rate of star formation, since the ΛCDM-based time that has elapsed since
the Big Bang is very short (a few hundred million years).

It follows that the density of ionising photons must then be very high. According
to the calculations in [30], reionisation should not only have begun much earlier than
the standard model suggests, but should have already been completed by the time the
galaxies observed by the JWST telescope formed. This is at odds with other observational
facts, like the large abundance of neutral hydrogen at redshifts z ≈ 13–17. For example,
the discovery of an anomalously strong neutral hydrogen absorption line in the redshift
range z ≈ 13–17 [31] indicates the presence of a large amount of neutral hydrogen, which is
incompatible with the ΛCDM-based theory of reionisation. By contrast, in static or slowly-
evolving coordinates, such a problem does not occur, since in these cases, the volume of
space for z ≈ 13–17 in which the observed galaxies are located turns out to be much larger
than in the case of the ΛCDM model. Accordingly, the number density of galaxies per unit
volume is lower in a static model, and there can be much more neutral hydrogen within this
volume, which is consistent with observations and which removes all the contradictions.

Consequently, the reionisation process based on the JWST observations is now in very
strong tension with the cosmic microwave background (CMB) and the Lyman-α forest [32].
This is a new kind of tension (CMB-based reionisation optical depth tension), which adds
to the previous CMB-based issues discussed intensively in the literature, including Hubble
constant tension, σ8-tension, the CMB Cold Spot problem, and many other issues, which
we are not going to discuss here. But, taken altogether, plus the lack of evolution time from
the beginning of the universe for the high-redshift galaxies discovered by the JWST, this all
indicates a profound crisis of the ΛCDM, which must somehow be resolved.

As for the other observational facts, in the past, static cosmological models were not
only supported by the same observational phenomena as ΛCDM, but they predicted that
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such phenomena existed. In the literature, there are plenty of papers discussing how
static-universe models solve challenging observational facts in alternative ways to ΛCDM.
So, there is no need to review these topics in detail here.

And for those researchers who are convinced that without the expansion of the uni-
verse, it is impossible to explain all the observed facts, there is a palliative solution. The fact
is that the static Schwarzschild–de Sitter metric is mathematically equivalent to the dynamic
McVittie metric [33,34]. The latter is the Schwarzschild metric (like in the model discussed
here) embedded in the FLRW metric of the expanding universe. Thus, all arguments
regarding the Big Bang’s nucleosynthesis, structure formation, etc., remain valid for the
McVittie (≡SdS) metric, as for the metric of ΛCDM.

The only difference between McVittie’s solutions and ΛCDM is that most of the
cosmological redshift in the McVittie metric is due to the gravitational effect (as in the
SdS metric discussed here), and only a small fraction is due to the effect associated with
space expansion. Therefore, the Hubble constant H0 in this case becomes very small,
which is equivalent to a very large value of the parameter R obtained here in the SdS
metric. Accordingly, the age of the universe is estimated to be several orders of magnitude
larger than the 13.8 billion years suggested in the ΛCDM model. We will discuss this
option elsewhere.

Nevertheless, we will mention explanations of some observational facts as they are
seen within the framework of static cosmological models. For example, the cosmological
redshift phenomenon was itself predicted theoretically by de Sitter for a static cosmological
model well before the appearance of any dynamical cosmological models. Moreover, de
Sitter warned in his 1917 paper that the lines of spectra systematically displaced towards
the red might give rise to a spurious positive radial velocity interpretation [3]. In 1923,
Eddington repeated this warning by writing the following: in de Sitter’s theory, there is the
general displacement of spectral lines to the red in distant objects due to the slowing down
of atomic vibrations which would be erroneously interpreted as a motion of recession [35].

Then, in 1926, Eddington predicted thermalised background radiation to exist with
T = 3 K for a static-universe model [36]. Later, in 1937, a similar prediction with respect to
the CMB temperature T = 2.8 K within a static-universe framework was proposed by W.
Nernst [37]. Only much later, in 1953, did G. Gamow make his prediction with respect to the
CMB and its temperature T = 7 K for the expanding-universe model [38]. The abundances
of light elements in a static universe were explained by G.R. Burbidge and F. Hoyle [39,40],
R. Salvaterra and A. Ferrara [41] and others, although there are some unresolved issues
for both the static and dynamic universe models. For example, the expanding universe
model predicts that the synthesis of deuterium from hydrogen occurred only during the
short period of nucleosynthesis after the Big Bang. In the future, the synthesis of deuterium
cannot occur—it can only be destroyed in the interior of stars [42]. For this reason, the
observed abundance of deuterium must be gradually diminishing with time. The Big
Bang nucleosynthesis theory predicts the same evolution for lithium. But, contrary to this
theory, observations show that the abundance of lithium is growing with time. This fact is
attributed to the phenomenon of cosmic-ray spallation [43].

As for the process of structure formation in the universe, it is believed that the initial
inhomogeneities that subsequently give rise to structures such as galaxy clusters and
filaments arose at the inflationary stage due to quantum fluctuations, and then due to
baryonic acoustic oscillations at the initial stage of the expansion of the universe, when
the density of matter was sufficiently high. It is believed that in a static universe, there
can be no process of structure formation. However, according to the classical scenarios,
structure formation in static universe models occurs due to the mechanism of gravitational
instability. Initial fluctuations in the homogeneous gas of primordial hydrogen grow
exponentially into large-scale structures [44,45]. In the early years of cosmology, when
static cosmological models were considered to be on a par with expanding-universe models,
these scenarios agreed with observations. But when Eddington published a paper in 1930
showing that Einstein’s static model of the universe was unstable [46], static models fell
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out of fashion. Nevertheless, in 1970, N. Rosen, the collaborator of Einstein, proved that
Eddington’s judgment was not well founded and that static universe models are stable [47].
This reopened the possibility of exploring the structure-formation process in models with
static metrics.

These studies continued throughout the 1980s to the beginning of the 2000s. It was
found that in static models, matter aggregation is likely to be fractal [48,49], which was
later confirmed by statistical studies of CMB maps [50] and of the matter distribution in
the universe [51,52]. Opposite to this, in the standard model of an expanding universe,
structures cannot be fractal. Therefore, the reasons for the existence of the largest structures
in the universe (the filaments and wall-like super-clusters, with huge voids between them)
still cannot be explained within the framework of ΛCDM.

Based on the newly recognised strong ΛCDM tension called “the reionisation optical
depth tension”, one can confidently conclude that the model-dependent cosmological
parameters derived from the “Planck” -mission CMB measurements cannot be fully trusted.
Thence, the H0-tension is resolved and is supportive of the type Ia supernova value of
H0 = 73.5 km s−1 Mpc−1. The corresponding age of the universe is then reduced to
12.4 Gyr (instead of the commonly accepted value of 13.8 Gyr deduced from the CMB
Plank cosmology). This means that the galaxies with z ≈ 20 observed by the JWST are as
young as 160 million years old, which highlights to the extreme degree the impossibility of
constructing a physically meaningful galaxy-formation model predicting a well-developed
galaxy to be built in such a short time. This suggests that the universe’s age, according to
the ΛCDM model, is likely to be incorrect. The only alternative to solving this problem is
to revise the standard cosmological model, which would make it possible to determine the
real (larger) age of the universe.

Some people would be tempted to relegate the gravitational redshift hypothesis dis-
cussed here as an “amusing curiosity”, not worthy of being seriously discussed. Then, they
would also have to agree that the hypothesis of the late 1970s of the inflationary universe by
Starobinsky, Linde, Guth and others, which, according to the authors themselves in those
years, was considered an “amusing curiosity”, also had no right to be discussed. However,
that hypothesis (still a hypothesis that has not been confirmed by any observations) has
now become the basis of the standard cosmological model.

The main problem with the two hundred or so existing inflation models is that they
are quite successful in explaining current experimental data, but they do not allow for
the prediction of the results of future measurements. In contrast to these hypotheses, the
model discussed in this manuscript makes a clear testable prediction of the results of
future measurements. The graph in Figure 1 shows that supernovae with redshifts z = 3
or more, when they are detected, will be dimmer, compared to what ΛCDM predicts for
these redshifts. But in order to explain the additional dimming of supernovae from z > 1 ,
in relation to the simple model of an expanding universe, the concept of an unobservable
physical entity called “dark energy” was introduced into the standard model. Its energy
density, as determined by the supernova distance moduli, turned out to be 10120 times less
than the vacuum energy density determined experimentally in elementary particle physics.

The cosmological model presented here does not need to introduce unobservable
physical entities. It predicts the photometric parameters of distant sources, depending
on their redshifts, and the observed quantities follow the predictions exactly based on
gravitational redshift formalism.
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Abbreviations

The following abbreviations are used in this manuscript:

CMB Cosmic Microwave Background (radiation)
FLRW Friedmann–Lemaitre–Robertson–Walker (metric)
GRB gamma-ray burst
JWST James Webb Space Telescope
ΛCDM lambda cold dark matter (cosmological model)
SN supernova
dS de Sitter (metric)
SdS Schwarzschild–de Sitter (metric)
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