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THE CASE FOR A SUPER NEUTRINO BEAM

Milind V. Diwan
Brookhaven National Laboratory

ABSTRACT
In this paper I will discuss how an intense beam of high energy neutrinos pro-
duced with conventional technology could be used to further our understanding
of neutrino masses and mixings. I will describe the possibility of building such
a beam at existing U.S. laboratories. Such a project couples naturally to a
large (> 100 kT) multipurpose detector in a new deep underground laboratory.
I will discuss the requirements for such a detector. Since the number of sites for
both an accelerator laboratory and a deep laboratory are limited: I will discuss
how the choice of baseline affects the physics sensitivities, the practical issues
of beam construction, and event rates.

1 Introduction

In 1) we argued that an intense broadband muon neutrino beam and a large
detector located more than 2000 km away from the source could be used to
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Figure 1: Nodes of oscillations for Am§2 : 0.0025eV2 in neutrino energy
uersus baseline {left}. Possible baselines from Broohhauen National Laboratory
(BNL) and Fermi National Laboratory (FNAL) to the Homestalce underground
site are indicated. They correspond to distances of ~ 2540 km and ~ 1290 km,
respectively. Right hand side shows the wide band neutrino spectrum from 28
GeV protons at a distance of I km from the target. The anti-neutrino spectrum
loo/cs similar, but has contamination from neutrinos.

perform precision measurements of neutrino properties such as the mass dif-
ferences, the mass hierarchy, the mixing parameters, and CP violation in the
neutrino sector. Using the currently deduced neutrino mass differences and
mixing parameters 2) and the same formalism as 1) we formulated several
simple rules for such an experiment:

For precise measurements of Am§2and sin2 2023, it is desirable to observe
a pattern of multiple nodes in the energy spectrum of muon neutrinos. Since the
cross section, Fermi motion, and nuclear effects limit the resolution of muon
neutrino interactions below ~ 1 GeV, we need to utilize a wide band muon
neutrino beam with energy range of 1—6 GeV and a distance of ~2000km to
observe 3 or more oscillation nodes. See Fig. 1.

The appearance spectrum of electron neutrinos from the conversion 1/” —>
1/, contains information about sin2 2613, 601:, Amgl and the ordering of neu—
trino masses through the matter effect (i.e. (m1 < m2 < m3) versus (m3 <
m1 < 7712)). We showed that the effects of the various parameters can be
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separated using the broad-band 1—6 GeV beam and the ~2000km distance.
The matter effect causes the conversion probability to rise with energy and is
mostly confined to energies > 3 GeV whereas the effects of 60p fall as 1/E.
We showed that this energy dependence can be used to measure the value of
60p and sin2 2013 without taking data with anti-neutrinos.

The additional contribution to the appearance event rate due to
3-generation CP violation in the neutrino sector is approximately proportional
to: sin 60p sin 2013 >< (AmglL/ALEV). This contribution increases linearly with
distance while the total flux falls as 1/L2 for a detector of a given size. The
statistical sensitivity for the additional CP contribution, however, remains ap-
proximately independent of distance. It is therefore advantageous to perform
the experiment with a very long (> 2000 km) baseline because then we can
relax the requirements on systematic errors on the flux, the cross sections, the
other oscillation parameters, and the calculation of the matter effect.

Because of the electron neutrino contamination background in a conven—
tional accelerator neutrino beam the sensitivity to 60p will be limited to the
parameter region sin2 2613 > 0.01. The main CP-conserving contribution to
the 11'” —> V6 signal is proportional to sin2 2613 in this region. The CP—violating
term, on the other hand, is linear in sin 2613. Therefore the fractional con—
tribution due to the CP—violating term increases for small sin 2613, although
the total appearance signal decreases. The statistical sensitivity to the CP—
violating term remains approximately independent of the value of sin2 2613 as
long as backgrounds do not dominate the observed spectrum 3). When sin2 2013
is very small (< 0.002) this rule no longer holds because the signal is no longer
dominated by the sin2 2613 term in the 3-generation formalism 4).

Current generation of accelerator experiments such as K2K 5), MINOS
6), or CNGS 7) focus on obtaining a definitive signature of muon neutrino
oscillations at the first node (Amg2L/4E ~ 7r/2) for the atmospheric mass
scale. Other recent proposed projects (JPARC—to—SK, NUMI—offaxis) 8= 9)
also focus mainly on the first node, but propose to use an off-axis narrow
band beam to lower the background in the search of 11,, —> lle caused by a
non-zero 913. The narrow band beam and limited statistics, however, do not
allow measurement of the parameters in a definitive way. Proposed reactor
disappearance searches, also at the first node for the atmospheric mass scale,
are only sensitive to sin2 2613 4).
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Thus, current and near term accelerator based experiments are focussed
on the atmospheric mass scale. Experiments using astrophysical sources such as
solar neutrinos or atmospheric neutrinos are sensitive to either the solar or the
atmospheric mass scale. The parameters are now known well enough (Amg2 ~
(].(](]256V2 and Amgl ~ 8 x 10—56V2 ) 10= 11= 12) that it is possible to design
a qualitatively different experiment that will have good sensitivity to both mass
scales. The CP contribution is dependent on both atmospheric and solar Am2;
it is also likely that such an experiment is necessary to uncover any new physics
in neutrino mixing or interactions with matter. A next generation accelerator
experiment with well understood, pure beams, sufficiently long baseline, and
low energy wide band beam (1—5 GeV) could fill this role.

In this paper we will discuss different options for the baseline. In 1)
we demonstrated that for 3-generation mixing the CP parameters could be
measured using neutrino data alone. Any additional information from anti—
neutrino running therefore could make the measurements more precise as well
as constrain contributions from new physics, in particular, new interactions in
matter or new sources of CP violation in the neutrino sector. We will calculate
the significance with which the neutrino mass and mixing parameters can be
measured using both neutrino and anti—neutrino data and the implications for
the determination of the mass hierarchy and demonstration of CP violation.

2 Accelerator and Detector Requirements

Previously we described the BNL Alternating Gradient Synchrotron (AGS)
operating at 28 GeV upgraded to provide total proton beam power of 1 MW
13) and a 500 kTon detector placed at the proposed national underground lab—
oratory (NUSEL) 14) in the Homestake mine in South Dakota. The main
components of the accelerator upgrade at BNL are a new 1.2 GeV Supercon-
ducting LINAC to provide protons to the existing AGS, and new magnet power
supplies to increase the ramp rate of the AGS magnetic field from about 0.5
Hz of today to 2.5 Hz. For 1 MW operation the protons from the accelerator
will be delivered in pulses of 9 X 1013 protons at 2.5 Hz. We have determined
that 2 MW operation of the AGS is also possible by further upgrading the syn—
chrotron to 5 Hz repetition rate and with further modifications to the LINAC
and the RF systems. The neutrino beam will be built with conventional horn
focussed technology and a 200 m long pion decay tunnel.
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High energy multi—MW proton beams are also under consideration at
FNAL. The most ambitious plans 15) call for a 8 GeV superconducting LINAC
that can provide 1.5 x 1014 H‘ ions at 10 Hz corresponding to 2 MW of total
beam power. Some of these 8 GeV ions could be injected into the main injector
(MI) to provide 2 MW proton beam power at any energy between 40 and 120
GeV; for example: 40 GeV at 2 Hz or 120 GeV at 0.67 Hz. Such a plan
allows much flexibility in the choice of proton energy for neutrino production.
As Figure 1 shows for observing multiple oscillation nodes in muon neutrino
oscillations it is necessary to have a wide band beam with energies from 1 to
5 GeV. Protons above ~ 20 GeV are needed to provide such a flux: clearly
possible at either BNL or FNAL. For the purposes of the analysis in this paper
we will assume that the spectrum from either the BNL or the FNAL beam
will be the same. This will allow us a proper comparison of the physics issues
regarding the baselines.

If a large detector facility (as a part of NUSEL) 16= 17= 18) is located
at Homestake (HS) the beam from BNL (FNAL) will have to traverse 2540km
(1290km) through the earth. At BNL the beam would have to be built at
an incline angle of about 11.30. Current design for such a beam calls for the
construction of a hill with a. height of about 50 m 13). Such a hill will have
the proton target at the top of the hill and a 200 m long decay tunnel on
the downslope. At FNAL the inclination will be about 5.70. There is already
experience at FNAL in building the NUMI beam 6); this experience could be
extended to build a new beam to HS. In either case, it is adequate to have a
short decay tunnel (200 m) compared to the NUMI tunnel (750 m) to achieve
the needed flux. The option of running with a narrow band beam using the off—
axis technique 19) could be preserved if the decay tunnel is made sufficiently
wide. For example, a 4 m diameter tunnel could allow one to move and rotate
the target and horn assembly so that a 1" off-axis beam could be sent to the
far detector.

With 1 MW of beam, a baseline of 2540 km, and a 500kT detector we
calculate that we would obtain ~60000 muon charged current and ~20000
neutral current events for 5 X 107360 of running in the neutrino mode in the
absence of oscillations. For the same running conditions in the anti—neutrino
mode (with the horn current reversed) we calculate a total of ~19000 anti-
muon charged current and ~7000 neutral current events; approximately 20%
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of the event rate in the anti—neutrino beam will be due to wrong-sign neutrino
interactions. For the shorter baseline of 1290 km from FNAL to HS, the event
rates will be higher by a factor of (2540/1290)? For both neutrino and anti—
neutrino running approximately ~0.7% of the charged current rate will be from
electron charged current events which form a background to the 1/” —> Ve search.
It will be desirable to obtain similar numbers of events in the anti-neutrino and
the neutrino beam. Therefore, for the calculations in this paper we assume 1
MW operation for 5 X 107sec in the neutrino mode and 2 MW operation for
5 x 107sec in the anti-neutrino mode.

A large detector facility at NUSEL will most likely be used for a broad
range of physics goals. Important considerations for such a detector are the
fiducial mass, energy threshold, energy resolution, muon/electron discrimina-
tion, pattern recognition capability, time resolution, depth of the location, and
the cost. Two classes of detectors are under consideration: water Cherenkov
detector instrumented with photo-multiplier tubes and a liquid Argon based
time projection chamber.

A water Cherenkov detector built in the same manner as the super—
Kamiokande experiment (with 20 inch photo-multipliers placed on the inside
detector surface covering approximately 40% of the total area) 20) can achieve
the 500 kT mass. This could be done by simply scaling the super—Kamiokande
detector to larger size or by building several detector modules 16= 17). Such
a detector placed underground at NUSEL could have a low energy thresh—
old (< 10 MeV), good energy resolution (< 10%) for single particles, good
muon/electron separation (< 1%), and time resolution (< few ns). For the
experiment we propose here it is important to obtain good energy resolution
on the neutrino energy. This can be achieved in a water Cherenkov detector by
separating quasi-elastic scattering events with well identified leptons in the final
state from the rest of the charged current events. The fraction of quasi-elastics
in the total charged current rate with the spectrum used in this paper is about
23% for the neutrino beam and 39% for the anti-neutrino beam. Separation of
quasi-elastic events from the charged current background is being used by the
K2K experiment 5). Further work is needed to make this event reconstruction
work at higher energies. The reconstruction algorithm could be enhanced by
the addition of ring imaging techniques to the detector 21).

A number of proponents have argued that a liquid Argon time projection
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chamber (LARTPC) could be built with total mass approaching 100 kT 18).
A fine grained detector such as this has much better resolution for separating
tracks. It is possible therefore to use a large fraction of the charged current
cross section (rather than only the quasi-elastic events) for determining the
neutrino energy spectrum. The LARTPC will also have much better particle
identification capability. Therefore, a LARTPC with a smaller total fiducial
mass of ~100 kT than the 500 kT assumed for the water Cherenkov tank is
expected to have similar performance for the physics.

For the purposes of this paper we will assume the same detector perfor—
mance as described in 1). For the physics sensitivity calculated in this paper
we will assume 1 MW operation for 5 X 107sec in the neutrino mode and 2
MW operation for 5 x 107560 in the anti—neutrino mode. In both cases we
will assume a detector fiducial mass of 500 kT. With the running times, the
accelerator power level, and the detector mass fixed, we will consider two base-
lines: 1290 km (for FNAL to Homestake) and 2540 km (for BNL to Homestake)
assuming that the detector is located at Homestake.

Lastly, we note that for this analysis the far detector could be at several
comparable sites in the western US, notably WIPP or the Henderson mine in
Colorado. While the detailed calculations change, the qualitative results are
easily deduced from this work for other locations.

3 VI, disappearance

We propose to use clean single muon events 1) and calculate the neutrino
energy from the energy and angle of these muons assuming they are all from
quasi-elastic interactions. The expected spectrum is shown in Figure 2; the sim-
ulation includes effects of Fermi motion, detector resolution, and backgrounds
from non—quasielastic events.

A great advantage of the very long baseline and multiple oscillation pat-
tern in the spectrum is that the effect of systematic errors from flux normaliza-
tion, background subtraction, and spectrum distortion due to nuclear effects or
detector calibration can be small. Nevertheless, since the statistics and the size
of the expected distortion of the spectrum are both large in the disappearance
measurement, the final error on the precise determination of the parameters will
most likely have significant contribution from systematic errors. In Figure 3
we show the 1 sigma resolutions that could be achieved on Am§2 and sin2 2023.
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Figure 2: Simulated spectrum of detected muon neutrinos for 1 MW beam and
500 hT detector exposed for 5 X 107 sec. Left side is for baseline of 2540 km,
right side for baseline of 12.90 km. The oscillation parameters assumed are
shown in the figure. Only clean single muon events are assumed to be used for
this measurement (see teat).

The black lines (labeled (1)) show the resolutions for purely statistical errors.
For the red lines (labeled (2)) we have included a 5% bin-to-bin systematic un—
certainty in the spectrum shape and a 5% systematic uncertainty in the overall
normalization. These uncertainties could include modeling of cross sections or
knowledge of the background spectra. For the Am§2 resolutions we also show
the expected resolution for an additional systematic error of 1% 0n the global
energy scale (blue line labeled (3)). This uncertainty for the Super Kamioka
water Cherenkov detector is estimated to be 2.5% in the multi—GeV region 20).

Although the resolution on Am§2 will be dominated by systematic errors
for the proposed experimental arrangement, a measurement approaching 1 — 2%
precision can clearly be made. On the other hand= the resolution on sin2 2623
is dominated by the statistical power at the first node. This results in a factor
of ~2 better resolution with 1290 km than with 2540 km using the same sized
detector.

Running in the anti-neutrino mode with 2 MW of beam power will yield
approximately the same spectra and resolutions on Am§2 and sin2 2923. By
comparing the measurements with the results from neutrino running a test
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Figure 3: I sigma resolutions on Am§2 (left) and sin2 2623 (right) expected
after analysis of the oscillation spectra from Figure 2. The solid curves are
for BNL-HS 2540 km baseline, and the dashed are for FNAL-HS 12.90 km
baseline. The curves labeled 1 and 2 correspond to statistics only and statistics
and systematics, respectively (similarly for dashed curves of the same color).
The curve labeled (3} on the left has an additional contribution of 1% systematic
error on the global energy scale.

of CPT is possible. In such a comparison many systematic errors, such as the
global energy scale, common to the neutrino and anti-neutrino data sets should
cancel yielding a comparison with errors less than 1%.

Finally, we remark that it is important to make precision measurements
of both Am§2 and sin2 2623 not only because they are fundamental parameters,
but also because they are needed for interpreting the appearance (1!” —> 14,)
result. Knowledge of both Amgl and Am§2 are essential in fitting the shape of
the appearance signal to extract other parameters. In addition, it will be very
important to definitively understand if sin2 2623 is close to 1.0 or is < 1.0. If
sin2 2023 < 1.0 then there will be an ambiguity in 623 —> 71'/2 — 923. As we will
describe below this ambiguity will affect the interpretation of the appearance
spectrum.
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Figure 4: Simulation of detected electron neutrino (top plots} and anti-neutrino
(bottom plots} spectrum (left for BNL-HS 2540km, right for FNAL-HS 1290
km) for 3 values of the 0P parameter 60p, 1350, 45", and —45", including
background contamination. Obviously, the dependence of event rate on the 0P
phase has the opposite order for neutrinos and anti-neutrinos. The hatched
histogram shows the total background. The 1/6 beam background is also shown.
The other assumed miring parameters and running conditions are shown in the
figure. These spectra are for the regular mass hierarchy (R0).
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4 ye appearance

Assuming a constant matter density, the oscillation of 1/” —> 1/6 in the Earth
3021“) 3—generation mixing is described approximately by the following equation

S1112 2613
23 —(-':l _ D2

a sin 60p COS 013 5:111 26118111 2613 sin 2623 X

A(1 — A)
sin(A) mom) sin((1 — Am)
+a cos 60p cos 6‘13 sin 2612Asin 2913 sin 2623 ><

A(1 — A)
cos(A) sin(,1lA) sin((1 — A)A)

2 COS2 623 $1112 2612

0‘T

P(11# A Va) 2 sin2 0 sin2((£l — 1)A)

sin2(z¢lA)

(1)
where a : Amgl/Amgl, A : AmglL/JLE, fl : 2VE/Am§1= V =

fiGFne. n6 is the density of electrons in the Earth. Recall that Amgl :
Am§2 + Amgl. Also notice that AA = LGpne/x/i is sensitive to the sign of
Amgl. For anti—neutrinos, the second term in Equation 1 has the opposite sign.
It is proportional to the following CP violating quantity.

J0p E sin 012 sin 623 sin 013 cos 012 cos 023 cos2 613 sin 60p (2)

Equation 1 is an expansion in powers of a. The approximation becomes
inaccurate for Am§2L/4E > 7r/2 as well as Q ~ 1. For the actual results we
have used the exact numerical calculation, accurate to all orders. Nevertheless,
the approximate formula is useful for understanding important features of the
appearance probability: 1) the first 3 terms in the equation control the matter
induced enhancement for regular mass ordering (R0) (m1 < 1712 < ’ITL3) or
suppression for the unnatural or reversed mass ordering (UO) (7713 < ml < 7712)
of the oscillation probability above 3 GeV; 2) the second and third terms control
the sensitivity to CF in the intermediate 1 to 3 GeV range; and 3) the last term
controls the sensitivity to Amgl at low energies.

The ye signal will consist of clean, single electron events (single showering
rings in a water Cherenkov detector) that result mostly from the quasi—elastic
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Figure 6: 90% confidence level error contours in sin2 2013 versus 60p for sta-
tistical and systematic errors with neutrino data alone. Left is for BNL-HS
and right is for FNAL-HS. The test point used here is sin2 2013 = 0.04 and
60p : 45". Am§2 : 0.0025 6V2, and Amgl : 7.3 X 10‘5 6V2. The values of
sin2 2012 and sin2 2023 are set to 0.86, 1.0, respectively.

reaction 116 + n —> e— + p. The main backgrounds will be from the electron
neutrino contamination in the beam and reactions that have a no in the final
state. The 71-0 background will depend on how well the detector can distinguish
events with single electron induced and two photon induced electromagnetic
showers. Assuming the same detector performance as in 1) we calculate the
expected electron neutrino and anti-neutrino spectra shown in Figure 4. These
spectra were calculated for the parameters indicated in the figures for the regu—
lar mass ordering (R0). For the reversed mass ordering (U0) the anti-neutrino
(neutrino) spectrum will (not) have the large matter enhancement at higher
energies. The dependence of the total event rate on the CP phase parameter
is the same for R0 and U0 in either running mode.

4.1 013 and 60p phase

If there is no excess of electron events observed then we can set a limit on the
value of sin2 2013 as a function of 60p. Such 95 and 99% CL. sensitivity limits
are shown in Figure 5. These set of plots illustrate various considerations that
must be evaluated for the very long baseline project. After running initially
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Figure 7: 90% confidence level error contours in sin2 2013 versus (50p for statis-
tical and systematic errors for 32 test points. This simulation is for combining
both neutrino and anti-neutrino data. Left is for BNL-HS and right is for
FNAL-HS. We assume 10% systematic errors for this plot.

in the neutrino mode with 1 MW of beam power, if an excess signal is found
then a measurement of 601: versus sin2 2013 can be made as shown in Figure
6, at the same time the mass hierarchy is determined from the strength of
the signal in the higher energy region. If there is no signal in the neutrino
mode then either 013 is too small for the regular mass hierarchy (R0) or the
mass hierarchy is reversed (U0) and parameters are in the “unlucky” region
(—1400 < 6gp < 30"). For the shorter baseline of 1290 km, the 4913 sensitivity
for the reversed hierarchy is not reduced as much as for 2540 km because both
the CP-sensitivity and the matter effect are weaker. Although this yields a
better limit for sin2 2013 in the absence of signal, it affects the precision on 6013
and the determination of the mass hierarchy.

If there is no signal in the neutrino mode= we will run in the anti—neutrino
mode to cover the “unlucky” parameter space for the appearance signal. A
combination of neutrino and anti-neutrino running will yield a stringent limit
approaching sin2 2013 ~ 0.003 independent of the value of 60p. The simulation
results shown here include wrong sign contamination in both the background
and signal for anti-neutrinos. Interestingly= since more than 20% of the event
rate in the anti-neutrino case actually arises from the neutrino contamination=
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the sin2 2913 limit in the anti-neutrino case exhibits less dependence on 6c
and the mass hierarchy. If there is a signal in the neutrino mode, we will
get the first measurement of 60p from neutrino data alone in the 3-generation
model, but it will still be important to run in the anti—neutrino mode for better
precision, over—constraints on the 3-generation model, and search for possible
new physics either in the mixing or in the interactions of neutrinos.

In Figure 6 we show the 90% confidence level interval in the 60p versus
sin2 2613 plane from neutrino running alone for the two baselines. We have
chosen the point 60p = 45" and sin2 2613 = 0.04 as an example. At this test
point for the regular mass hierarchy, the resolution on 60p is ~ $200. The
mass hierarchy is also resolved at > 5 sigma because of the large enhancement
of the spectrum at higher energies. As we pointed out in the introduction, the
resolution on the CP phase is approximately independent of the baseline. The
major difference between the 1290 and 2540 km baselines is that the shorter
baseline has higher correlation between the parameters, 60p and sin2 2613, has
better resolution on sin2 2913, and has worse sensitivity to systematic errors on
the background and the spectrum shape. If the systematic errors exceed 10%,
the shorter baseline will most likely have worse performance for measuring the
CP parameter.

The sensitivity to systematic errors and the dependence on the mass hi—
erarchy can be relieved by using data from both neutrino and anti-neutrino
running. Figure 7 shows the 90% confidence level interval for 32 test points
in the 60p and sin2 2613 plane after both neutrino and anti-neutrino data. A
number of observations can be made: Figure 7 is for the regular mass hierarchy.
The plot for the reversed mass hierarchy is similar. After both neutrino and
anti-neutrino data the hierarchy will be resolved to more than 10 sigma (some—
what less significance for the shorter baseline) for sin2 2613 as small as 0.01.
The resolution on 60p is seen to be approximately independent of sin2 2013
for sin2 2613 > 0.01. When sin2 2613 is so small that the background becomes
dominant, the 60p resolution becomes poor. The resolution on 60p is seen to
be approximately the same for 2540 and 1290 km, except for small sin2 2013
where large statistics at 1290 km are seen to overcome the background. The
resolution on sin2 2613 is, however, better for the shorter baseline because the
sensitivity comes from the first node of oscillations which has much higher
statistics at the shorter baseline.
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4.2 Correlations with other parameters

The measurement of 6c using a wide band beam and multiple oscillation
nodes is largely free of ambiguities and correlations 23). The 60p —> 71' — 60p
ambiguity is resolved by the detection of multiple nodes including the effects
of the cos 60p term. The mass hierarchy is resolved because it has a strong
energy dependence obvious in the shape of the spectrum.

The remaining main sources of correlations are the uncertainty on Amgl
and sin2 2623. The CP terms in Equation 1 are linear in Amgl, therefore the
systematic uncertainty on the event rate at the second oscillation maximum
will be < 10%, which is the uncertainty on Amgl from solar neutrino and
KAMLAND experiments. As discussed above, this level of uncertainty will not
affect the CP measurement for the longer baseline of 2540 km, but could be
important for the shorter baseline of 1290 km.

An examination of Equation 1 shows that the knowledge of 023 affects the
first (Amgl dominated) and the last (Amgl dominated) terms as sin2 923 and
cos2 023, respectively. The first term is responsible for the matter enhanced
(or suppressed) appearance at high energies and the last term is responsible
for appearance at low energies. Current knowledge of 923 from atmospheric
neutrinos 10) is rather poor: 35 < 923 < 55". A precise determination of
sin2 2623 using the muon disappearance spectrum is, therefore, essential for
proper interpretation of the appearance signal. A 1% determination of sin2 2623
(Figure 3) leads to an uncertainty of ~ 10% on the appearance event rates if
023 ~ 45" and N 2% if 623 ~ 35". If 623 ~ 35" then there is also the additional
ambiguity of 623 —> 71' /2 — 623. Because of the strong energy dependence at
low and high energies the ambiguity as well as the uncertainty should not
affect the interpretation of the neutrino data in the case of the longer 2540km
baseline. Uncertainties on both Amgl and 023 aifect the neutrino and anti—
neutrino appearance spectra in the same manner, therefore after both data.
sets are acquired these systematic errors are expected to have little effect on
establishing CP violation in neutrinos, but may affect the determination of
parameters in the case of the shorter baseline.

It is important to understand the physics case for the super—beam if
sin2 2013 is so small that the background prevents us from detecting a signal. In
this case, both the mass hierarchy through the matter effect and the CP phase
measurement are not accessible for any baseline. However, the 11,, —> He conver—
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Figure 8: Expected spectrum of electron neutrinos (left) for 013 = 0 and other
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disappearance and assuming a 10% measurement of Amgl from KAMLAND.
The area between the curves is allowed by the appearance spectrum {left} for
6'23 = 35".

sion signature still could be accessible for the longer baseline of 2540 km because
of the last term in Equation 1. This term depends on the “solar” Amgl as well
as sin2 2612 and cos2 623. For the current value of the solar parameters ~ 100
events could be expected over a similar background. This is shown in Figure 8
where we have used a 1 degree off—axis neutrino spectrum to reduce the back—
ground level at low energies. For this calculation we have used sin2 2023 = 1.0
and sin2 2623 = 0.88 as test points. We assume that sin2 2023 will be measured
with ~1.5% precision in disappearance. In the case of sin2 2023 = 0.88: we are
lead to an ambiguity in 623 of 35":i:0.60 —> 55010.60. This ambiguity is clearly
distinguished at several sigma in the case of the 2540 km baseline as shown in
the right hand side of Figure 8. The ambiguity resolution is accomplished by
comparing the result of appearance with the result of 176 disappearance from
solar and KAMLAND measurements. For Figure 8 we assume that A7713l will
be determined to ~ 10%. This comparison of appearance and disappearance
experiment could also be important for uncovering new physics in this sector.

5 Conclusion

We have studied various possible measurements using a powerful neutrino
beam, using a MW—class proton source located either at BNL or FNAL, to
a large capable detector with fiducial mass in excess of 100kT over a distance
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~ 2000km. For our study here, we chose the distances of 1290 and 25—10km
because they correspond to the distances from FNAL and BNL to Homestake
in South Dakota, one of the possible sites for a large detector. Nevertheless,
our results are applicable to any other site in the U.S. at a comparable dis—
tance from an accelerator laboratory. Qualitatively, this project is motivated
by the need to perform an experiment that is sensitive to both the atmospheric
(Amg2 ~ 0.002561f2 ) and the solar (Amgl ~ 8 X 10—56V2 ) oscillation scales
and to obtain an oscillatory pattern in the energy spectrum of muon neutrinos.
The detector requirements for such an experiment — both in size and perfor-
mance — are well-matched to other important goals in particles physics, such as
detection of proton decay and astrophysical neutrinos. Therefore the potential
physics impact is very broad for particle and astrophysics.

In this paper we have shown that very precise measurements of Amg2
and sin2 2023 can be made using the observation of the oscillatory spectrum of
muon neutrinos at either 1290 or 2540 km. For these precise measurements the
shorter baseline has an advantage because of the increased statistical power,
however it is very likely that the measurements will be systematics dominated
to about 1% for either distance. We have also shown that very good bounds on
sin2 2013 can be obtained from both baselines using the appearance of electron
neutrinos. The electron event rate at shorter baseline has smaller matter effect
and smaller dependence on the CP phase. Therefore, the 613 bound using the
neutrino data alone from the shorter baseline will have less dependence on the
CP phase and the mass hierarchy. When both neutrino and anti—neutrino data
are combined the 60p and mass hierarchy dependence is eliminated for both
baselines, and the 013 bound from either baseline will likely be dominated by the
knowledge of backgrounds. The limit on sin2 2013 could reach ~ 0.003 if total
number of background events can be controlled to about twice the expectation
from the electron neutrino contamination in the beam (~ 0.7%).

If a signal is found for electron appearance then the value of the CP phase
can be determined from the shape of the spectrum using neutrino data alone
for either baseline. A more precise measurement of the CP phase and further
constraint on the 3-generation model can be made by additional running in the
anti-neutrino mode. There are some advantages for having the longer 2540 km
baseline for the CP measurement. The matter effect is much larger and there-
fore the mass hierarchy can be resolved with greater confidence. The effect of
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60p on the spectrum is also much larger for the longer baseline. This allows
extraction of the parameter 65»p without relying on very precise determination
of the spectrum shape. The systematics of the spectrum shape are dependent
not only on the knowledge of the beam, but also on other neutrino parame—
ters such as Amgl, 023, Amgl, and 012. These parameters must be obtained
from solar and reactor experiments, and from the muon neutrino disappearance
analysis. A 10% systematic uncertainty on the backgrounds and the shape of
the spectrum is tolerable for the 2540 km baseline, whereas the uncertainty
needs to be smaller for the shorter baseline experiment. In addition, the longer
baseline allows detection of the appearance of electron neutrinos even if 913 is
too small, through the effect of Amgl alone. This observation can also help
separate the 023 —> 71'/2 — 023 ambiguity if needed.

Despite the small, but significant differences between the two possible
baselines, we conclude that an experiment using a beam from either FNAL
or BNL to a large next generation multipurpose detector is very important
for particle physics and could lead to major advances in our understanding of
neutrino phenomena. It is important to recognize that the detector meant for
such an experiment needs to be highly capable in terms of pattern recognition
and energy resolution. If such a detector is located in a deep low background
environment, it has broad applications in searching for nucleon decay and as—
trophysical neutrino sources. There are many advantages if both beams can
be built and sent to the same detector. The correlation between parameters
and the size of the matter effect are different for the two baselines. It is pos—
sible that by combining the results from the two baselines all dependence on
external parameters could be eliminated, and the neutrino sector much better
constrained. The requirement on total running time could also be reduced.

This work was supported by DOE grant DE—AC02-98CH10886. I also
want to thank the Aspen Center for Physics where much of the writing of this
paper took place.
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