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Abstract: A Regge–Wheeler analysis is performed for a novel black hole mimicker ‘the regular
black hole with asymptotically Minkowski core’, followed by an approximation of the permitted
quasi-normal modes for propagating waveforms. A first-order WKB approximation is computed for
spin zero and spin one perturbations of the candidate spacetime. Subsequently, numerical results
analysing the respective fundamental modes are compiled for various values of the a parameter
(which quantifies the distortion from Schwarzschild spacetime), and for various multipole numbers
`. Both electromagnetic spin one fluctuations and scalar spin zero fluctuations on the background
spacetime are found to possess shorter-lived, higher-energy signals than their Schwarzschild coun-
terparts for a specific range of interesting values of the a parameter. Comparison between these
results and some analogous results for both the Bardeen and Hayward regular black holes is consid-
ered. Analysis as to what happens when one permits perturbations of the Regge–Wheeler potential
itself is then conducted, first in full generality, before specialising to Schwarzschild spacetime. A
general result is presented explicating the shift in quasi-normal modes under perturbation of the
Regge–Wheeler potential.

Keywords: regular black hole; Minkowski core; Lambert W function; black hole mimic; Regge–
Wheeler potential; quasi-normal modes; WKB approximation

1. Introduction

Given the conditions that a propagating waveform is purely ingoing at the horizon and
purely outgoing at spatial infinity, the proper oscillation frequencies of a candidate black
hole spacetime are determined via analysis of the permitted quasi-normal modes (QNMs).
QNM analysis is by now utterly standard, with a wealth of literature containing QNM
analyses in many varied contexts [1–26], as well as the QNMs of propagating waveforms
emanating from an astrophysical source being directly observed via experiment in the
LIGO/VIRGO merger events [27–29]. Given the hope that LIGO/VIRGO (or more likely
LISA [30]) will eventually be able to delineate the fingerprint of classical black holes
from possible black hole mimickers, it is increasingly relevant to analyse well-motivated
candidate spacetimes that model black hole mimickers and to compile results that speak
to the advances made in observational and gravitational wave astronomy. It should be
noted that such analysis is purely classical, as is consistent with the relevant ringdown
calculation for LIGO/VIRGO. It is well-known that classical curvature singularities in
general relativity (GR) typically occur at a distance scale that only a complete theory of
quantum gravity could adequately describe. More specifically, treatments of both the
classical analysis and aspects from the quantum mechanics can lead to the amelioration
of curvature singularities in certain configurations [31,32]. However, in the absence of a
phenomenologically falsifiable/verifiable theory of quantum gravity, it is well-motivated to
construct nonsingular model spacetimes and analyse them through the lens of standard GR.

One such candidate spacetime is the regular black hole with an asymptotically
Minkowski core. By ‘regular black hole’, one means in the sense of Bardeen [33]; a black
hole with a well-defined horizon structure and everywhere-finite curvature tensors and

Universe 2021, 7, 418. https://doi.org/10.3390/universe7110418 https://www.mdpi.com/journal/universe

https://www.mdpi.com/journal/universe
https://www.mdpi.com
https://orcid.org/0000-0002-1763-3563
https://doi.org/10.3390/universe7110418
https://doi.org/10.3390/universe7110418
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/universe7110418
https://www.mdpi.com/journal/universe
https://www.mdpi.com/article/10.3390/universe7110418?type=check_update&version=1


Universe 2021, 7, 418 2 of 22

curvature invariants. Regular black holes as a subject matter possess a rich genealogy; see
for instance references [33–40]. For current purposes, the candidate spacetime in question
is given by the line element

ds2 = −
(

1− 2m e−a/r

r

)
dt2 +

dr2

1− 2m e−a/r

r

+ r2
(

dθ2 + sin2 θ dφ2
)

. (1)

One can find thorough discussions of aspects of this specific metric in references [41,42],
where causal structure, surface gravity, satisfaction/violation of the standard energy condi-
tions, and locations of both photon spheres and timelike circular orbits are analysed through
the lens of standard GR. An extremal version of this metric, and various other metrics with
mathematical similarities, have also been discussed in rather different contexts [43–50].

This paper seeks to compute some of the relevant QNM profiles for this candidate
spacetime. Consequently, the author first performs the necessary extraction of the specific
spin-dependent Regge–Wheeler potentials in Section 2, before analysing the spin one
and spin zero QNMs via the numerical technique of a first-order WKB approximation in
Section 3. For specified multipole numbers `, and various values of a, numerical results are
then compiled in Section 4. These analyse the respective fundamental modes for spin one
and spin zero perturbations of a background spacetime possessing some trial astrophysical
source. Brief comparison is made between these results and the analogous results for the
Bardeen and Hayward regular black hole models. General perturbations of the Regge–
Wheeler potential itself are then analysed in Section 5, with some quite general results
being presented, before concluding the discussion in Section 6.

2. Regge–Wheeler Potential

In this section, the spin-dependent Regge–Wheeler potentials are explored. Ultimately,
the spin two axial mode involves perturbations which are somewhat messier, and hence
do not lend themselves nicely to the WKB approximation and subsequent computation
of quasi-normal modes without the assistance of numerical code. Due to this ensuing
intractability, the relevant Regge–Wheeler potential for the spin two axial mode is explored
for completeness, before specialising the QNM discourse to spin zero (scalar) and spin
one (e.g., electromagnetic) perturbations only. The QNMs of spin two axial perturbations
are relegated to the domain of future research. Given one does not know the spacetime
dynamics a priori, the inverse Cowling approximation is invoked, where one allows the
scalar/vector field of interest to oscillate while keeping the candidate geometry fixed. This
formalism closely follows that of reference [51].

To proceed, one implicitly defines the tortoise coordinate via

dr∗ =
dr

1− 2m e−a/r

r

. (2)

Although this equation is not analytically integrable, one can still conduct analysis
of the Regge–Wheeler potential through this implicit definition of the tortoise coordinate.
The coordinate transformation Equation (2) allows one to write the spacetime metric
Equation (1) in the following form:

ds2 =

(
1− 2m e−a/r

r

){
− dt2 + dr∗2

}
+ r2

(
dθ2 + sin2 θ dφ2

)
, (3)

which can then be rewritten as

ds2 = A(r∗)2{− dt2 + dr∗2 }+ B(r∗)2
(

dθ2 + sin2 θ dφ2
)

. (4)
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In Regge and Wheeler’s original work [52], they show that for perturbations in a black
hole spacetime, assuming a separable wave form of the type

Ψ(t, r∗, θ, φ) = eiωtψ(r∗)Y(θ, φ) (5)

results in the following differential Equation (now called the Regge–Wheeler equation):

∂2ψ(r∗)
∂r2∗

+
{

ω2 − VS
}

ψ(r∗) = 0 . (6)

Here Y(θ, φ) represents the spherical harmonic functions, ψ(r∗) is a propagating scalar,
vector, or spin two axial bivector field in the candidate spacetime, VS is the spin-dependent
Regge–Wheeler potential, and ω is some (possibly complex) temporal frequency in the
Fourier domain [15,22,23,38,51–53]. The method for solving Equation (6) is dependent
on the spin of the perturbations and on the background spacetime. For instance, for vec-
tor perturbations (S = 1), specialising to electromagnetic fluctuations, one analyses the
electromagnetic four-potential subject to Maxwell’s equations:

1√−g
∂µ

(
Fµν

√
−g
)
= 0 , (7)

while for scalar perturbations (S = 0), one solves the minimally coupled massless Klein–
Gordon equation

�ψ(r) =
1√−g

∂µ

(√
−g ∂µ ψ

)
= 0 . (8)

Further details can be found in references [23,24,51,52]. For spins S ∈ {0, 1, 2}, this
yields the general result in static spherical symmetry [51,53]:

V0,1,2 =

{
A2

B2

}
[`(`+ 1) + S(S− 1)(grr − 1)] + (1− S)

∂2
r∗B
B

, (9)

where A and B are the relevant functions as specified by Equation (4), ` is the multipole
number (with ` ≥ S), and grr is the relevant contrametric component with respect to
standard curvature coordinates (for which the covariant components are presented in
Equation (1)).

For the spacetime under consideration, one has A(r) =
√

1− 2m e−a/r

r , B(r) = r,

grr = 1− 2m e−a/r

r , and ∂r∗ =
(

1− 2m e−a/r

r

)
∂r. Hence,

∂2
r∗B
B

=

(
1− 2m e−a/r

r

)
∂r

[
1− 2m e−a/r

r

]
r

=

(
r− 2m e−a/r

r3

)(
2m e−a/r(r− a)

r2

)
, (10)

and so one has the exact result that

V0,1,2 =

(
r− 2m e−a/r

r3

){
`(`+ 1) +

2m e−a/r

r
(1− S)

[
S + 1− a

r

]}
. (11)

That is,

V0,1,2 =

(
1− 2m e−a/r

r

){
`(`+ 1)

r2 +
2m e−a/r

r3 (1− S)
[
S + 1− a

r

]}
. (12)

Please note that at the outer horizon, rH = 2m eW(− a
2m ), with W being the special

Lambert W function [51,53–64], the Regge–Wheeler potential vanishes. Taking the limit as
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a→ 0 recovers the known Regge–Wheeler potentials for spin zero, spin one, and spin two
axial perturbations in the Schwarzschild spacetime:

VSch.,0,1,2 = lim
a→0
V0,1,2 =

(
1− 2m

r

){
`(`+ 1)

r2 +
2m
r3 (1− S2)

}
. (13)

Please note that in Regge and Wheeler’s original work [52], only the spin two axial
mode was analysed. However, this result agrees both with the original work, as well as
with later results extending to spin zero and spin one perturbations [23]. It is informative
to explicate the exact form for the RW-potential for each spin case, and to then plot the
qualitative behaviour of the potential as a function of the dimensionless variables r/m and
a/m for the respective dominant multipole numbers (` = S).

• Spin one vector field: The conformal invariance of spin one massless particles in

(3 + 1) dimensions implies that the ∂2
r∗B
B term vanishes, and indeed mathematically

the potential reduces to the highly tractable

V1 =

(
1− 2m e−a/r

r

)
`(`+ 1)

r2 . (14)

Specialising to the dominant multipole number ` = 1 gives:

V1

∣∣∣∣
`=1

=
2
r2

(
1− 2m e−a/r

r

)
. (15)

Now, in order to examine the qualitative features of the potential it is of mathematical
convenience to define the new dimensionless variables x = r/m, and y = a/m. It is
worth noting here that convention in the historical literature would be to set a ∼ mp,
such that the newly introduced scalar parameter appeals to the quantum gravity
regime. This would imply that y = a/m ∼ mp/msun � 1. In view of the redefinition
of parameters, Equation (15) may be re-expressed as follows:

m2V1

∣∣∣∣
`=1

=
2
x2

(
1− 2 e−y/x

x

)
. (16)

The qualitative features of V1 are then plotted in Figure 1, for the full range of y such
that the spacetime still possesses a nontrivial horizon structure, and the domain for x
such that one is strictly outside the horizon.
An immediate sanity check from Figure 1 is that for a = 0, where the candidate
spacetime reduces to Schwarzschild, one observes a peak at r = 3m. This is the
expected location of the photon sphere for Schwarzschild, and is indeed the corre-
sponding location of the peak of the relevant spin one RW-potential. As a increases,
the r-coordinate location of the peak decreases. For all values of a, there is falloff at
spatial infinity, and once the peak is crested there is rapid falloff as one approaches the
horizon location (where the RW-potential vanishes completely). The green line present
in Figure 1b corresponds to the approximate location of the photon sphere calculated
in reference [42]; rγ ≈ 3m− 4

3 a. This approximation is used for the location of the
peak of the spin one potential in order to extract the QNM profile approximations in
Section 3. One can see that for the given domain and range this approximation has
high accuracy, closely matching with the locations of the peaks.
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(a)

(b)

Figure 1. The qualitative features of the spin one Regge–Wheeler potential for the dominant multipole
number ` = 1 are depicted. (a) Three-dimensional plot of m2V1. (b) Contour plot. ‘blue’→‘red’
corresponds to ‘high’→‘low’.

• Spin zero scalar field: The potential now becomes

V0 =

(
1− 2m e−a/r

r

){
`(`+ 1)

r2 +
2m e−a/r

r3

(
1− a

r

)}
, (17)

and fixing the dominant multipole number ` = 0, one specialises to the scalar s-wave,
which is of particular importance, yielding

V0

∣∣∣∣
`=0

=
2m e−a/r

r3

(
1− 2m e−a/r

r

)(
1− a

r

)
. (18)

Once again, to examine the qualitative features of the potential it is convenient to
re-express this in terms of the dimensionless variables x = r/m, y = a/m:

m2V0

∣∣∣∣
`=0

=
2 e−y/x

x3

(
1− 2 e−y/x

x

)(
1− y

x

)
. (19)

The qualitative features of V0 are then displayed in Figure 2.
The most notable feature is the spin zero peak; we see a slight shift in the peak locations
between the spin one and spin zero potentials. The green line in Figure 2b is a ‘line of
best fit’, obtained via manual corrections starting from the approximate location of
the photon sphere as found in reference [42], and marks the a-dependent coordinate
location r0 ≈ 41

15 m− 4
3 a. Given one does not have information concerning how the

peak shifts when comparing the spin one and spin zero potentials a priori, and the peak
location is not analytically solvable (see Section 3), this approximation is the best one
can do in order to retain the desired level of mathematical tractability. Consequently,
in Section 3, the approximation for r0 as above is used in the computation of the
relevant QNM profiles. The remaining features of the plot are qualitatively similar to
those for the spin one case.
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(a)

(b)

Figure 2. The qualitative features of the spin zero Regge–Wheeler potential for the dominant
multipole number ` = 0 are depicted. (a) Three-dimensional plot of m2V0. (b) Contour plot.
‘blue’→‘red’ corresponds to ‘high’→‘low’.

• Spin two bivector field (axial mode): The potential becomes

V2 =

(
1− 2m e−a/r

r

){
`(`+ 1)

r2 − 2m e−a/r

r3

(
3− a

r

)}
, (20)

and, fixing the dominant multipole number ` = 2, one finds:

V2

∣∣∣∣
`=2

=
1
r2

(
1− 2m e−a/r

r

){
6− 2m e−a/r

r

(
3− a

r

)}
. (21)

Once again, it is informative to re-express this in terms of the dimensionless variables
x = r/m, y = a/m, giving

m2V2

∣∣∣∣
`=2

=
1
x2

(
1− 2 e−y/x

x

){
6− 2 e−y/x

x

(
3− y

x

)}
. (22)

The qualitative features of V2 are then displayed in Figure 3.
Once again the approximate location for the peak of the spin two (axial) potential
is obtained via application of manual corrections to the approximate location of the
photon sphere as obtained in reference [42], and is found to be r2 ≈ 10

3 m− 5
3 a (this

is the green line in Figure 3b). This approximation would serve as a starting point
to extract QNM profile approximations for the spin two axial mode, similarly to the
processes performed for spins one and zero in Section 3. However, for a combination
of readability and tractability, this is for now a topic for future research. The remaining
qualitative features of the spin two (axial) potential are similar to those for spins one
and zero.
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(a)

(b)

Figure 3. The qualitative features of the spin two axial Regge–Wheeler potential for the dominant
multipole number ` = 2 are depicted. (a) Three-dimensional plot of m2V2. (b) Contour plot.
‘blue’→‘red’ corresponds to ‘high’→‘low’.

3. First-Order WKB Approximation of the Quasi-Normal Modes

To calculate the quasi-normal modes for the candidate spacetime, one first defines
them in the standard way: they are the ω present in the right-hand-side of Equation (5),
and they satisfy the “radiation” boundary conditions that Ψ is purely outgoing at spatial
infinity and purely ingoing at the horizon [12,23]. Due to the inherent difficulty of ana-
lytically solving the Regge–Wheeler equation, a standard approach in the literature is to
use the WKB approximation. Although the WKB method was originally constructed to
solve Schrödinger-type equations in quantum mechanics, the close resemblance between
the Regge–Wheeler equation Equation (6) and the Schrödinger equation allows for it to be
readily adapted to the general relativistic setting. Given the use of the WKB approximation,
one cannot extend the analysis of the QNMs for the candidate spacetime to the case when
a > 2m/e, as for this case there are no horizons in the geometry. The existence of the
outer horizon (or at the very least an extremal horizon) is critical to setting up the correct
radiative boundary conditions. Other techniques for approximating the QNMs, e.g., time
domain integration (see reference [26] for an example), are likely to be applicable in this
context. For now, this research is relegated to the domain of the future.

To proceed with the WKB method, one makes the stationary ansatz Ψ ∼ eiωt, such
that all of the qualitative behaviour for Ψ is encoded in the profiles of the respective ω.
Computing a WKB approximation to first-order yields a relatively simple and tractable
approximation to the quasi-normal modes for a black hole spacetime [12,23,25]:

ω2 ≈
[
V(r∗)− i

(
n +

1
2

)√
−2 ∂2

r∗V(r∗)
]

r∗=rmax

, (23)

where n ∈ N is the overtone number, and where r∗ = rmax is the tortoise coordinate
location which maximises the relevant Regge–Wheeler potential. It is worth noting that
V(r∗)

∣∣
r∗=rmax

= V(r)
∣∣
r=rmax

; this will be used in the subsequent analysis.
In-depth calculations of the WKB approximation up to higher orders in a general

setting can also be found in references [12,23,25]. Furthermore, various improvements and
refinements to the WKB approximation have been explored in references [65–70]. These
include the derivation of a generalised higher-order formula, and the exploration of an
improved variant of the original WKB approximation using Padé approximants. These
formulae present various intractabilities by hand and are best handled by numerical code.
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Consequently, a first-order calculation is performed to holistically analyse the qualitative
aspects of the QNMs; refinement in accuracy is left to the numerical relativity community
to explore further.

3.1. Spin One

For spin one particles recall that the relevant Regge–Wheeler potential is given by

V1(r) =

(
1− 2m e−a/r

r

)
`(`+ 1)

r2 . (24)

The V1(r) Regge–Wheeler potential is proportional to the V0(r) effective potential used
for determining the location of the photon sphere for massless particles [42]. Specifically,
one has

∂ V1

∂r
=

2`(`+ 1)
r3

{
m e−a/r

r

(
3− a

r

)
− 1
}

. (25)

The resulting stationary points are not analytically solvable, and via comparison with
reference [42] one sees that the spin one Regge–Wheeler potential is maximised precisely

at the location of the photon sphere; r1 = rγ =
√

m e−a/rγ(3rγ − a) ≈ 3m− 4
3 a. Thus, one

immediately obtains the spin one, first-order WKB approximation for the real part of the
quasi-normal modes (recall y = a/m):

Re(ω2) ≈ V1

∣∣∣∣
r=r1

≈ 9 `(`+ 1)
(9m− 4a)2

{
1− 6m e

3a
4a−9m

9m− 4a

}

=
9`(`+ 1)

m2

 1
(9− 4y)2

1− 6 e
3y

4y−9

9− 4y

 . (26)

Letting rc = 3m − 4
3 a, recalling x = r/m (i.e., xc = rc/m), and defining z = a/rc,

alternative representations include (eliminating m):

Re(ω2) ≈ `(`+ 1)
r2

c

{
1−

2 e−a/rc(rc +
4
3 a)

3rc

}
=

`(`+ 1)
r2

c

{
1−

2 e−z(1 + 4
3 z)

3

}
, (27)

or (eliminating a):

Re(ω2) ≈ `(`+ 1)
r2

c

1− 2m e
3(rc−3m)

4rc

rc

 =
`(`+ 1)

r2
c

{
1− 2 e

3
4 (1− 3

xc )

xc

}
. (28)

Which expression is preferred is a matter of taste and context.
Now, to compute the imaginary part of the QNMs, note that

∂2V1

∂r2∗

∣∣∣∣
r=r1

=

(
1− 2m e−a/r

r

){(
1− 2m e−a/r

r

)
∂2V1
∂r2 +

2m e−a/r(r− a)
r3

∂V1
∂r

}∣∣∣∣∣
r=r1

. (29)

However, already it is known that ∂V1/∂r
∣∣
r=r1

= 0, and so this reduces to

∂2V1

∂r2∗

∣∣∣∣
r=r1

=

(
1− 2m e−a/r

r

)2
∂2V1

∂r2

∣∣∣∣∣∣
r=r1

. (30)
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Thus, for spin one particles one finds

∂2V1

∂r2∗

∣∣∣∣
r=r1

= `(`+ 1)

(
1− 2m e−a/r

r

)2{
6
r4 − (a− 2r)(a− 6r)

2m e−a/r

r7

}∣∣∣∣∣∣
r=r1

≈ 486 `(`+ 1)
(9m− 4a)4

(
1− 6m e

3a
4a−9m

9m− 4a

)2

×
{

1− 27m e
3a

4a−9m (18m− 11a)(2m− a)
(9m− 4a)3

}
, (31)

therefore giving

Im(ω2) ≈ −
(

n +
1
2

)√
−2 ∂2

r∗V1(r)
∣∣∣∣
r=r1

≈ − 18
√

3
(9m− 4a)2

(
n +

1
2

)(
1− 6m e

3a
4a−9m

9m− 4a

)

×

√√√√`(`+ 1)

{
27m e

3a
4a−9m (18m− 11a)(2m− a)

(9m− 4a)3 − 1

}

= −

(
n + 1

2

)
m2 18

√
3

1− 6 e
3y

4y−9

9− 4y


×

√√√√√ `(`+ 1)
(9− 4y)4

27 e
3y

4y−9 (18− 11y)(2− y)
(9− 4y)3 − 1

 . (32)

Alternative expressions include (eliminating m):

Im(ω2) ≈ −
2
√

3
(

n + 1
2

)
r2

c

(
1− 2 e−a/rc(3rc + 4a)

9rc

)

×

√
`(`+ 1)

{
(3rc + 4a)(2rc − a)(6rc − a) e−a/rc

27r3
c

− 1
}

= −
2
√

3
(

n + 1
2

)
r2

c

(
1− 2 e−z(3 + 4z)

9

)

×

√
`(`+ 1)

{
(3 + 4z)(2− z)(6− z) e−z

27
− 1
}

, (33)
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or (eliminating a):

Im(ω2) ≈ −
2
√

3
(

n + 1
2

)
r2

c

1− 2m e
3(rc−3m)

4rc

rc



×

√√√√√`(`+ 1)

3m e
3(rc−3m)

4rc (11rc − 9m)(3rc −m)

16r3
c

− 1


= −

2
√

3
(

n + 1
2

)
r2

c

(
1− 2 e

3
4 (1− 3

xc )

xc

)

×

√√√√`(`+ 1)

{
3 e

3
4 (1− 3

xc )(11xc − 9)(3xc − 1)
16x3

c
− 1

}
. (34)

Thus, the first-order WKB approximation of the spin one QNMs, for general multipole
numbers ` and oscillation modes n, is given by

ω2 ≈ 9`(`+ 1)
(9m− 4a)2

(
1− 6m e

3a
4a−9m

9m− 4a

)

×

1− 2
√

3i
(

n +
1
2

)√√√√ 1
`(`+ 1)

[
27m e

3a
4a−9m (18m− 11a)(2m− a)

(9m− 4a)3 − 1

]
=

9`(`+ 1)
m2(9− 4y)2

1− 6 e
3y

4y−9

9− 4y



×

1− 2
√

3i
(

n +
1
2

)√√√√√ 1
`(`+ 1)

27 e
3y

4y−9 (18− 11y)(2− y)
(9− 4y)3 − 1


 .

(35)

For the purposes of extracting numerical results in Section 4, it is useful to redefine
this as the dimensionless quantity

m2ω2 ≈ 9`(`+ 1)
(9− 4y)2

1− 6 e
3y

4y−9

9− 4y



×

1− 2
√

3i
(

n +
1
2

)√√√√√ 1
`(`+ 1)

27 e
3y

4y−9 (18− 11y)(2− y)
(9− 4y)3 − 1


 .

(36)
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Alternative expressions include (eliminating m):

ω2 ≈ `(`+ 1)
r2

c

(
1− 2(3rc + 4a) e−a/rc

9rc

)

×
{

1− 2
√

3i
(

n +
1
2

)√
1

`(`+ 1)

[
(2rc − a)(6rc − a)(3rc + 4a) e−a/rc

27r3
c

− 1
]}

=
`(`+ 1)

r2
c

(
1− 2(3 + 4z) e−z

9

)

×
{

1− 2
√

3i
(

n +
1
2

)√
1

`(`+ 1)

[
(3 + 4z)(2− z)(6− z)e−z

27
− 1
]}

,

(37)

or (eliminating a):

ω2 ≈ `(`+ 1)
r2

c

1− 2m e
3(rc−3m)

4rc

rc



×

1− 2
√

3i
(

n +
1
2

)√√√√√ 1
`(`+ 1)

3m e
3(rc−3m)

4rc (11rc − 9m)(3rc −m)

16r3
c

− 1




=
`(`+ 1)

r2
c

(
1− 2 e

3
4 (1− 3

xc )

xc

)

×

1− 2
√

3i
(

n +
1
2

)√√√√ 1
`(`+ 1)

[
3 e

3
4 (1− 3

xc )(11xc − 9)(3xc − 1)
16x3

c
− 1

] .

(38)

In the Schwarzschild limit one obtains

ω2
Sch. = lim

a→0

(
ω2
)
≈ `(`+ 1)

27m2

(
1− i(2n + 1)√

`(`+ 1)

)
, (39)

which agrees with existing work in the literature [12,23].

3.2. Spin Zero

For spin zero particles recall that one has the following specific form for the Regge–
Wheeler potential:

V0(r) =

(
1− 2m e−a/r

r

){
`(`+ 1)

r2 +
2m e−a/r(1− a

r
)

r3

}
. (40)

It is immediately clear that the peak of this potential is going to be slightly shifted
from the location of the photon sphere, which for the spin one case maximised V1(r).
Computing:

∂V0

∂r
=

1
r3

{[
2m e−a/r

r

(
3− a

r

)
− 2

][
`(`+ 1) +

2m e−a/r

r

(
1− a

r

)]

+

(
1− 2m e−a/r

r

)[
−2m e−a/r

r

(( a
r

)2
− 3
( a

r

)
+ 1
)]}

. (41)
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The associated stationary points are not analytically solvable for r. It is worth noting
that in general, the stationary points of V0 are `-dependent, unlike in the case for V1.
Without knowledge of the location of the peak for the spin zero potential a priori, the best
line of inquiry which retains the desired level of tractability is to specialise to the scalar
s-wave (corresponding to ` = 0), which is of particular importance, playing a dominant
role in the signal. This constraint is fit for purpose in extracting the relevant results in
Section 4. Specialising to the s-wave, one finds

∂V0

∂r

∣∣∣∣
`=0

=
2m e−a/r

r4

{
m e−a/r

r

[
4
( a

r

)2
− 14

( a
r

)
+ 8
]
−
[( a

r

)2
− 5
( a

r

)
+ 3
]}

, (42)

and still the associated stationary points are not analytically solvable. As such, to make
progress one uses the approximate location of the peak as found in Section 2; r0 ≈ 41

15 m− 4
3 a.

See Figure 2b for details. One obtains the following approximation for the real part of the
spin zero QNMs for the scalar s-wave:

Re(ω2) ≈ V0(r0)

∣∣∣∣
`=0

≈
6750m e

15a
20a−41m (41m− 35a)

(
30m e

15a
20a−41m + 20a− 41m

)
(20a− 41m)5

=
6750
m2

 e
15y

20y−41 (41− 35y)(30 e
15y

20y−41 + 20y− 41)
(20y− 41)5

 . (43)

For the imaginary part of the spin zero QNMs, first one has

∂2V0

∂r2∗

∣∣∣∣
r=r0

=

(
1− 2m e−a/r

r

)2
∂2V0

∂r2

∣∣∣∣∣∣
r=r0

, (44)

with

∂2V0

∂r2 =
2
r4

{
3`(`+ 1) +

4m2 e−2a/r

r2

[
2
( a

r

)2
− 10

( a
r

)
+ 5
]( a

r
− 2
)

−m e−a/r

r

[
12(`2 + `− 1)− 4

( a
r

)
(2`2 + 2`− 7)

+
( a

r

)2
(`2 + `− 11) +

( a
r

)3
]}

, (45)

giving

∂2V0

∂r2
∗

=
2
r4

(
1− 2m e−a/r

r

)2{
3`(`+ 1) +

4m2 e−2a/r

r2

[
2
( a

r

)2
− 10

( a
r

)
+ 5
]( a

r
− 2
)

−m e−a/r

r

[
12(`2 + `− 1)− 4

( a
r

)
(2`2 + 2`− 7)

+
( a

r

)2
(`2 + `− 11) +

( a
r

)3
]}

. (46)
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For tractability, it is now prudent to specialise to ` = 0. This yields

∂2V0

∂r2∗

∣∣∣∣
`=0

=
2
r4

(
1− 2m e−a/r

r

)2{(
2m e−a/r

r

)2( a
r
− 2
)[

2
( a

r

)2
− 10

( a
r

)
+ 5
]

−m e−a/r

r

[
−12 + 28

( a
r

)
− 11

( a
r

)2
+
( a

r

)3
]}

, (47)

and one obtains the following approximation for the imaginary part of the s-wave spin
zero QNMs (expressed only as a function of y for readability):

Im(ω2) ≈ −
(

n +
1
2

)√
−2
[

∂2
r∗V0

(
r0 ≈

41
15

m− 4
3

a
)]∣∣∣∣∣

`=0

= −1350
m2

(
n +

1
2

)√5 e
15y

20y−41 (30 e
15y

20y−41 + 20y− 41)

(20y− 41)
11
2


×
{

100 e
15y

20y−41 (59950y3 − 247230y2 + 327795y− 137842)

+2112500y4 − 13535125y3 + 31644825y2 − 31703660y + 11303044

} 1
2

. (48)

Combining Equations (43) and (48) gives the approximation for the dimensionful
ω2; however the expression is unwieldy and not particularly important to display here.
Using Equations (43) and (48) to compute the real and imaginary approximations for
the dimensionless m2ω2, respectively, is sufficient for extracting the relevant results in
Section 4.

4. Numerical Results

Given that the behaviour of the waveform is aggressively governed by the funda-
mental mode, to extract profile approximations it is both physically well-motivated and
mathematically tractable to specialise to n = 0. Given the WKB approximation is only
valid in the presence of a nontrivial horizon structure, and that the candidate spacetime
only possesses horizons for a ∈

(
0, 2m

e
)
, it is prudent for one to define the dimensionless

object â = a/amax = ae
2m = e

2 y, such that â ∈ (0, 1). One may then define the dimensionless
ω̂ = ωm, such that all of the qualitative information for the dimensionful ω as a function
of the dimensionful a is now encoded in the dimensionless ω̂ as a function of the dimen-
sionless â. As such, one then examines ω̂ by plugging in values of y = 2

e â into the relevant
equations from Section 3 on a case-by-case basis. Lastly, it will be of most use to analyse the
dominant multipole number in each spin case. Given ` ≥ S, for electromagnetic spin one
fluctuations this will correspond to analysing ` = 1, for scalar spin zero fluctuations one
analyses the s-wave corresponding to fixing ` = 0 (as already stipulated), and finally for
spin two axial perturbations one would fix ` = 2. Notably this implies that the approximate
locations for the peaks of the relevant RW-potentials computed in Section 2 are directly
applicable here.
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4.1. Spin One

Consequently, to analyse QNM profile approximations for electromagnetic spin one
fluctuations on the background spacetime, fix the fundamental mode n = 0, and analyse
the special case of the dominant multipole number ` = 1. Substituting these values into
Equation (36) and computing the resulting square root gives the results from Table 1 for
the approximation of ω̂ for different values of â ∈ (0, 1) (rounded to 6 d.p.):

Table 1. Fundamental QNM of the spin one field for ` = 1, obtained via first-order WKB approximation.

â WKB Approx. for ω̂

0.0 0.287050–0.091235i

0.1 0.293902–0.092012i

0.2 0.301291–0.092532i

0.3 0.309304–0.092708i

0.4 0.318051–0.092419i

0.5 0.327658–0.091486i

0.6 0.338285–0.089636i

0.7 0.350117–0.086433i

0.8 0.363377–0.081139i

0.9 0.378330–0.072338i

1.0 0.395289–0.056624i

Immediately there are the following qualitative observations:

• As a sanity check, Im(ω̂) < 0 for all values of â, indicating that the propagation of
electromagnetic fields in the background spacetime is stable—an expected result;

• Re(ω̂) increases monotonically with â—this is the frequency of the correspond-
ing QNMs;

• Im(ω̂) decreases with â initially, up until â ≈ 0.35, and then it increases monotonically
with â for the remainder of the domain—this is the decay rate or damping rate of
the QNMs;

• Given that throughout the historical literature, it is conventional to assert â ∼ mp, it is
likely of primary interest to examine the behaviour of this plot for small â. In view
of this, if one constrains the analysis of the qualitative behaviour for ω̂ prior to the
trough present in Figure 4, one would expect that the signals for electromagnetic
radiation propagating in the presence of a regular black hole with asymptotically
Minkowski core should have both a higher frequency as well as a faster decay rate
than their Schwarzschild counterparts. This qualitative result may translate to the
spin two case, and speak directly to the LIGO/VIRGO calculation. The fact that the
signal is expected to be shorter-lived could present a heightened level of experimental
difficulty when trying to delineate signals, though this may very well be offset by the
fact that the signal also carries higher energy; further discussion on these points is left
to both the numerical relativity and experimental communities.
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Figure 4. A plot of the points from Table 1 with a linear interpolation curve. Re(ω̂) increases
monotonically with â, hence increasing â corresponds to one moving from left to right.

4.2. Spin Zero

For spin zero scalar fluctuations, specialising to the s-wave, similarly fix the funda-
mental mode n = 0. Substituting this into Equations (43) and (48), which are the relevant
equations to compute the real and imaginary approximations of ω̂2, respectively, (recall
these have already specialised to the s-wave given ` has already been fixed to be zero),
and then taking the appropriate square root yields the results from Table 2 and Figure 5
(to 6 d.p.):

Table 2. Fundamental QNM of the massless, minimally coupled spin zero scalar field for the s-wave
(` = 0), obtained via first-order WKB approximation.

â WKB Approx. for ω̂

0.0 0.187409–0.094054i

0.1 0.189734–0.094530i

0.2 0.191948–0.094669i

0.3 0.194049–0.094425i

0.4 0.196027–0.093742i

0.5 0.197868–0.092557i

0.6 0.199552–0.090796i

0.7 0.201042–0.088385i

0.8 0.202285–0.085306i

0.9 0.203235–0.081735i

1.0 0.203894–0.078421i
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Figure 5. A plot of the points from Table 2 with a linear interpolation curve. Re(ω̂) increases
monotonically with â, hence increasing â corresponds to one moving from left to right.

There are the following qualitative observations:

• Re(ω̂) once again increases monotonically with â—higher â-values correspond to
higher frequency fundamental modes;

• Im(ω̂) < 0 for all â, indicating that the s-wave for minimally coupled massless scalar
fields propagating in the background spacetime is stable;

• Im(ω̂) decreases with â initially (down to a trough around â = 0.25), before monoton-
ically increasing with â for the rest of the domain—this is the decay/damping rate of
the QNMs;

• Similarly as for the electromagnetic spin one case, when one examines the behaviour
for small â, the signals for the fundamental mode of spin zero scalar field pertur-
bations in the presence of a regular black hole with asymptotically Minkowski
core are expected to have a higher frequency and to be shorter-lived than for their
Schwarzschild counterparts.

4.3. Comparison with Bardeen and Hayward

It is worth investigating whether these qualitative results are aligned with the anal-
ogous results for other well-known regular black hole geometries in GR. Analysis of the
QNMs for both the Bardeen [33] and Hayward [34] regular black holes has been performed
in references [18–21]. The choices made in setting up a tractable numerical analysis make it
difficult to directly compare many of the findings; however in Appendix A of reference [18],
some analogous and comparable results are presented for the spin zero case for both the
Bardeen and Hayward models. The findings can be summarised as follows:

• For the fundamental mode of the spin zero scalar s-wave for the Bardeen regular
black hole, as deviation from Schwarzschild increases, Re(ω) increases and |Im(ω)|
decreases. The signals are hence expected to have higher frequency but be longer-lived
than for their Schwarzschild counterparts;

• For the fundamental mode of the spin zero scalar s-wave for the Hayward regular
black hole, as deviation from Schwarzschild increases, both Re(ω) and |Im(ω)| de-
crease. The signals are hence expected to have lower frequency and be longer-lived
than for their Schwarzschild counterparts.

These results suggest that for spin zero perturbations, one does not have the same
qualitative differences in the ringdown signal between the class of regular black hole mod-
els in static spherical symmetry and Schwarzschild. Consequently, the ability to delineate
between singular and nonsingular astrophysical sources based on observed signals by
LIGO/VIRGO (or LISA) is likely a question of comparing specific candidate geometries,
rather than comparing the bracket of ‘regular spacetimes’ to their singular counterparts.
Whether this extends to the more astrophysically relevant domain of axisymmetry, or in-
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deed to spin two axial and polar perturbations, is at this stage unclear. Furthermore, given
that the parameters which quantify the deviation from Schwarzschild are often associated
with quantum scales, one conjectures that the current margin of error present in the data
from LIGO/VIRGO is too high to be able to form robust conclusions; this is left to the
numerical and experimental community for further comment. LISA is far more likely to be
able to probe with the necessary level of accuracy.

5. Perturbing the Potential—General First-Order Analysis

Suppose one perturbs the Regge–Wheeler potential itself, replacing V(r) → V(r) +
δV(r). It is of interest to analyse what effect this has on the estimate for the QNMs.
Classical perturbation of the potential to first-order in ε is performed, capturing any
linear contributions from external agents that may disturb the propagating waveforms.
First-order perturbation is well-motivated from the perspective of the historical literature,
and ensures the analysis has the desired level of tractability. As such, one has the following:
V(r)→ V(r) + δV(r) = V(r) + ε δVa(r) + ε2 δVb(r) +O(ε3) ≈ V(r) + ε δVa(r). All terms
of order ε2 or higher are therefore truncated. Consequently, for notational convenience it is
advantageous to simply replace δVα(r) with δV(r) in the discourse that follows, eliminating
superfluous indices. Furthermore, for notational convenience, define rmax = rσ to be the
generalised location of the peak of the potentials. One observes the following effects on the
QNMs:

• First, the position of the peak shifts:

0 ≈ [V + ε δV ]′(r)
∣∣∣
r=rσ+ε δrσ

, (49)

giving
V ′(rσ + ε δrσ) + ε [δV ]′(rσ + ε δrσ) ≈ 0 . (50)

Performing a first-order Taylor series expansion of the left-hand-side of Equation (50)
about δr0 = 0 then yields

V ′(rσ) + ε [δV ]′(rσ) + ε δrσ

{
V ′′(rσ) + ε [δV ]′′(rσ)

}
≈ 0 , (51)

and eliminating the term of order ε2, combined with the knowledge that V ′(rσ) = 0,
gives

δrσ ≈ −
[δV ]′(rσ)

V ′′(rσ)
. (52)

• Secondly, the height of the peak shifts:

[V + ε δV ](rσ + ε δrσ) = V(rσ + ε δrσ) + ε [δV ](rσ + ε δrσ) , (53)

and performing a first-order Taylor series expansion about δr0 = 0 yields the following
to first-order in ε:

[V + ε δV ](rσ + ε δrσ) ≈ V(rσ) + ε
{
[δV ](rσ) + δrσV ′(rσ)

}
= V(rσ) + ε [δV ](rσ) . (54)

• Third, the curvature at the peak shifts

[V + ε δV ]′′(rσ + ε δrσ) = V ′′(rσ + ε δrσ) + ε [δV ]′′(rσ + ε δrσ) , (55)

which for first-order-Taylor about δrσ = 0 and to first-order in ε gives

[V + ε δV ]′′(rσ + ε δrσ) ≈ V ′′(rσ) + ε [δV ]′′(rσ) + ε δrσV ′′′(rσ) , (56)
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which from Equation (52) can then be approximated by the following

[V + ε δV ]′′(rσ + ε δrσ) ≈ V ′′(rσ) + ε

{
[δV ]′′(rσ)−

V ′′′(rσ)

V ′′(rσ)
[δV ]′(rσ)

}
. (57)

Given the following (one assumes the existence of some tortoise coordinate relation
∂r∗ = T(r)∂r):

∂2
r∗ [V + ε δV ](rσ + ε δrσ) = ∂r∗{T(r)∂r[V + ε δV ](r)}

∣∣∣∣
r=rσ+ε δrσ

= T2(r)[V + ε δV ]′′(r) + [V + ε δV ]′(r)T′(r)T(r)
∣∣∣∣
r=rσ+ε δrσ

, (58)

one may perform Taylor series expansions about ε = 0 for the relevant terms (and truncate
to first-order in ε):

∂2
r∗ [V + ε δV ](rσ + ε δrσ) = [T(rσ + ε δrσ)]

2[V + ε δV ]′′(rσ + ε δrσ)

+[V + ε δV ]′(rσ + ε δrσ)T′(rσ + ε δrσ)T(rσ + ε δrσ)

≈
[
T(rσ) + ε δrσT′(rσ)

]2
[V + ε δV ]′′(rσ + ε δrσ)

+ε δrσV ′′(rσ)T′(rσ)T(rσ)

≈ [T2(rσ) + 2ε δrσT′(rσ)][V + ε δV ]′′(rσ + ε δrσ)

−ε T′(rσ)T(rσ)[δV ]′(rσ) , (59)

and substituting the result from Equation (57) then finally gives (all functions on the
right-hand-side are evaluated at r = rσ; notation suppressed for tractability):

∂2
r∗ [V + ε δV ] ≈ T2V ′′ − ε

{(
T′T + 2T′ + T2V ′′′

V ′′

)
[δV ]′ − T2[δV ]′′

}
. (60)

As such, for the square root one has:

√
−2∂2

r∗ [V + ε δV ](rσ + ε δrσ) ≈
{
− 2T2V ′′

+2ε

[(
T′T + 2T′ + T2 V ′′′

V ′′

)
[δV ]′ − T2[δV ]′′

]} 1
2

, (61)

and performing a first-order Taylor series expansion about ε = 0 gives (all functions on the
right-hand-side are evaluated at r = rσ):

√
−2∂2

r∗ [V + ε δV ] ≈ T
√
−2V ′′ − ε√

2

{(
T′

|V ′′| 12
+

2T′

T|V ′′| 12
+

TV ′′′

|V ′′| 32

)
[δV ]′

− T

|V ′′| 12
[δV ]′′

}
. (62)
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Assembling the pieces, to first-order in WKB and first-order in ε the approximate shift
in the QNMs is given by:

δ(ω2
n) ≈ ε [δV ]

+i
(

n +
1
2

)
ε√
2

{(
T′

|V ′′| 1
2

+
2T′

T|V ′′| 1
2

+
TV ′′′

|V ′′| 3
2

)
[δV ]′ − T

|V ′′| 1
2

[δV ]′′
}

, (63)

where all expressions on the right-hand-side are evaluated at r = rσ. This specific formula
is general for all instances where the WKB approximation is appropriate. It is informative
to now apply this to the most straightforward example of Schwarzschild spacetime.

Perturbing around Schwarzschild:
For the particular case of spin one Schwarzschild, one sets a→ 0, and has the following:

VSch.,1(r) =
(

1− 2m
r

)
`(`+ 1)

r2 , T(r) = 1− 2m
r

, rσ = 3m . (64)

Then the relevant quantities necessary to substitute into Equation (63) are:

V ′′Sch.,1(rσ) = −2`(`+ 1)
81m4 , V ′′′Sch.,1(rσ) =

16`(`+ 1)
243m5 ,

T(rσ) =
1
3

, T′(rσ) =
2

9m
, (65)

and the approximate shift in the QNMs is given by

δ(ω2
n) ≈ ε [δV ](rσ)

+ε i
(

n +
1
2

){
11m√
`(`+ 1)

[δV ]′(rσ)−
3m2

2
√
`(`+ 1)

[δV ]′′(rσ)

}∣∣∣∣∣
rσ=3m

. (66)

6. Conclusions

The spin-dependent Regge–Wheeler potentials for the regular black hole with asymp-
totically Minkowski core were extracted and their qualitative features thoroughly analysed.
Subsequently, the spin one and spin zero fundamental quasi-normal mode profiles were ex-
amined via first-order WKB approximation for the respective dominant multipole numbers.
For small a, both scalar spin zero and spin one electromagnetic fluctuations propagating
in a regular black hole with asymptotically Minkowski core spacetime were found to
have shorter-lived, higher-energy signals than for their Schwarzschild counterparts. This
qualitative result does not necessarily extend to the class of regular black hole spacetimes
in static spherical symmetry. Finally, general analysis of perturbation of the Regge–Wheeler
potential itself was performed, and a general result presented explicating the associated
shift in the QNM profiles under the perturbation V(r)→ V(r) + δV(r) to first-order in ε.
This general result was then applied to Schwarzschild spacetime.

Future research could include performing these calculations to higher-order in WKB,
using the improved version of WKB with Padé approximants, comparing the QNM profiles
to those extracted using a different method to WKB (say, e.g., time domain integration),
and numerical refinement of the approximations. It would also be prudent to extend the
analysis to the spin two axial mode. Discovery of a candidate spacetime which is the
asymptotically Minkowski analog to Kerr, on which the wave equation separates, would
also be of high interest, giving an astrophysically relevant candidate spacetime which
hopefully possesses a ringdown signal that LIGO/VIRGO or LISA could delineate from
Kerr. Furthermore, of interest is to explore the QNMs for when the candidate spacetime is
modelling a compact massive object which is something other than a black hole; i.e., when
a > 2m/e.
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