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Approximate quantum Fourier transform with O(n log(n))
T gates
Yunseong Nam 1✉, Yuan Su 2✉ and Dmitri Maslov3✉

The ability to implement the Quantum Fourier Transform (QFT) efficiently on a quantum computer facilitates the advantages
offered by a variety of fundamental quantum algorithms, such as those for integer factoring, computing discrete logarithm over
Abelian groups, solving systems of linear equations, and phase estimation, to name a few. The standard fault-tolerant
implementation of an n-qubit unitary QFT approximates the desired transformation by removing small-angle controlled rotations
and synthesizing the remaining ones into Clifford+T gates, incurring the T-count complexity of Oðn log2 ðnÞÞ. In this paper, we show
how to obtain approximate QFT with the T-count of Oðn log ðnÞÞ. For brevity, the above figures omit the dependence on the
approximation error ε, assuming the error is fixed. Our approach relies on quantum circuits with measurements and feedforward,
and on reusing a special quantum state that induces the phase gradient transformation. We report asymptotic analysis as well as
concrete circuits, demonstrating significant advantages in both theory and practice.
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INTRODUCTION
Quantum Fourier Transform (QFT) is one of the most important
operations in quantum computing. It can extract the periodicity
encoded in the amplitudes of a quantum state, which is employed
by an efficient algorithm for integer number factoring, widely
known as Shor’s algorithm1. Shor’s integer factoring algorithm can
be generalized (while still relying on the QFT) into a polynomial-
time algorithm for the discrete logarithm problem over Abelian
groups1. The importance of the above is witnessed through the
threat such algorithms pose to modern public-key cryptosystems,
such as the RSA or the ECC. Using the QFT as a subroutine, the
eigenphase of a black-box unitary can be estimated up to an
arbitrary precision2, which may be used to estimate quantum
amplitudes3,4, simulate quantum chemistry/dynamics5, find the
ground state/energy of a Hamiltonian6, compute Hessian to
optimize molecular geometry7, exponentiate unitaries8, construct
fractional powers of the QFT using constantly many copies of the
controlled-QFT8,9, extract features of the solution of linear
systems10, and more. QFT has also been used in quantum
arithmetics11,12 and quantum cryptography13.
QFT can be implemented approximately by removing all

rotation gates with angles smaller than a certain threshold value,
resulting in the Approximate QFT (AQFT). In practice, it was shown
that it suffices to apply AQFT with ~5.3 × 104 controlled rotation
gates to factor 2048-digit numbers (reflecting the de facto key size
for today’s standard14) with a high expected algorithmic accuracy
(≳99.992%)15. AQFT has been studied extensively in the literature.
The robustness of the quantum computer equipped with the
AQFT was investigated in detail16–20. A study of the optimal level
of the approximation of the AQFT in the presence of certain errors
may be found in ref. 21. Implementation of the QFT and its
approximate version over restricted architectures was addressed
in refs 22,23. An efficient approximate implementation of the AQFT
that harnesses certain quantum hardware features was also
investigated24.

Quantum information is fragile, and it is generally accepted that
the implementation of large quantum algorithms must rely on the
fault-tolerant computations. Fault tolerance suppresses the errors
at the cost of using multiple physical qubits to encode a single
logical qubit. Fault-tolerant computations must furthermore rely
on a quantum gate library consisting of those gates that are
constructible fault tolerantly. A standard choice for such a
computationally universal gate library is Clifford+T. Within known
fault tolerance approaches, Clifford gates can generally be
implemented with the relative ease, frequently transversally. On
the other hand, a non-Clifford gate typically does not admit such
an implementation; for instance, a T gate may be implemented
fault tolerantly by distilling a certain quantum state and then
teleporting it into the gate25. A T gate is indeed far more costly
than any of the Clifford gates, and therefore efficient fault-tolerant
circuits must minimize the T-count.
To implement an n-qubit AQFT to within a certain fixed error

fault-tolerantly, the standard approach is to approximate the
desired transformation by removing small-angle controlled rota-
tions to bring down the gate count from O(n2) [ref. 26, page 219] to
O n log ðnÞð Þ, and then replace the remaining Oðn log ðnÞÞ
controlled rotations with their Clifford+T implementations.
The resulting circuit has the T-count of Oðn log 2ðnÞÞ. Only in the
special case of the semiclassical version of AQFT27, where the
AQFT transform is followed by the measurement, the T-count of
Oðn log ðnÞÞ implementation is known28. In contrast, in this paper,
we focus on the fully coherent AQFT.
We develop a more efficient implementation with the T-count

complexity of Oðn log ðnÞÞ for the general case of fully coherent
AQFT, improving over the standard construction by a factor of
Oðlog ðnÞÞ. Including the dependence on the approximating
error ε results in the reduction of complexity from
Oðn log ðn=εÞlog ðn log ðn=εÞ

ε ÞÞ, assuming the error budget is split
equally between the approximation of the QFT itself and the
approximation by Clifford+T library, and evenly across gates
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needing the decomposition into Clifford+T, to Oðn log ðn=εÞþ
log ðn=εÞlog ðlogðn=εÞε ÞÞ. We drop the dependence on ε in most
discussions to improve the readability. Our results show that, in
general and regardless of the amenability to the semiclassical
approach, the AQFT may be implemented with Oðn log ðnÞÞ T
gates. This allows for the efficient implementation of the AQFT in
any quantum algorithm, including those that use the AQFT as
subroutines in the midst of the quantum computation5,7,10,12,13.
Since our implementation is more involved compared to the
standard, we also make a separate effort to show that the constant
factor and small-order additive terms missing in the asymptotic
analyses but otherwise present in our construction do not prevent
it from achieving a significant practical advantage.

RESULTS AND DISCUSSION
We start with a high-level description of our result, and delay the
detailed discussion of algorithmic advantages and further low-
level optimizations offered by the final circuits to the following
subsections.
The entry point for our construction is the standard textbook

implementation of the QFT circuit [ref. 26, page 219] using O(n2)
parametrized controlled-Za rotations, where a ∈ {1∕2, 1∕4, . . ., 1∕2n−1},
and n Hadamard gates. Recall that the AQFT may be obtained
from the textbook circuit by simply discarding the rotations with
parameter a below a certain threshold, keeping only b controlled
rotations per layer, with parameter b scaling logarithmically with
n (see Fig. 1 for an illustration). A standard fault-tolerant
implementation of AQFT with �n log ðnÞ (removing lower order
terms, and for simplicity furthermore assuming n stages of log ðnÞ
gates) parametrized controlled rotations, choosing b ¼ log ðnÞ for
simplicity and to remove the dependence on the approximation
error, uses �24n log 2ðnÞ T gates since 8 T gates are employed to
map controlled rotations into uncontrolled ones [ref. 30, Fig. 10],
and �3 log ðnÞ T gates are needed to approximate the
uncontrolled rotations35.
We optimize the above implementation by first noting that

mapping controlled rotations into uncontrolled ones may be done
using only 4 T gates. This reduces the T gate count to
�12n log 2ðnÞ. We next notice that the uncontrolled rotations
come in layers, and thus can be induced via adder, given access to
a log ðnÞ-qubit gradient state32. Using an efficient b-bit integer
adder31 with ~4b T gates allows to reduce the T gate requirement
from �12n log 2ðnÞ to �8n log ðnÞ þ 3 log 2ðnÞ, where 8 = 4 + 4 T
gates are employed to remove the control (4 T gates) and integer-
add the target (4 T gates) per each controlled rotation, and
3 log ðnÞ T gates35 are used on each of log ðnÞ qubits to synthesize
the log ðnÞ-qubit gradient state, that is then reused. This is the
most significant reduction giving improvements in both asymp-
totic analysis and gate counts. We next apply RUS circuits to
reduce the cost of state generation by a factor of about 2.533,
leading to �8n log ðnÞ þ 1:2 log2ðnÞ T gates and find local
optimizations worth of ~8n T gates further bringing down the T
gate cost to the final figure of �8nðlog ðnÞ � 2Þ þ 1:2 log 2ðnÞ,
compared to the original �24n log 2ðnÞ.

Details of the construction
We start with an n-qubit AQFT whose construction relies on O(nb)
controlled-Za gates with

Za :¼ 1 0

0 eiπa

� �
;

where a ∈ {1∕2, 1∕4, . . ., 1∕2b}, for b :¼ dlog ne, and n Hadamard
(H) gates (see Fig. 1 for an illustration with n = 6 and b = 3). Such
a choice of b implies a very specific approximation error ε, whose
analysis will be detailed in the next section. We unite the

individual controlled rotations into n − 1 sets separated by the
H gates, such as illustrated in Fig. 1.
To implement a given controlled-Za rotation, we map its real-

valued degree of freedom into that of the uncontrolled power of
Pauli-Z, such as shown in Fig. 2. This implementation was
developed by combining Kitaev’s trick2 with Toffoli-
measurement construction of Jones 29 with our own choice of
the relative the phase Toffoli gate, and custom circuit simplifica-
tions. Our circuit improves over the one reported in [ref. 30, Fig. 10]
(note that the middle T gate in [ref. 30, Fig. 10] can be replaced
with the Za gate) by 4 T gates (8 ↦ 4), 9 CNOT gates (12 ↦ 3), 1 H
gate (4 ↦ 3), and 1 Phase (P) gate (2 ↦ 1) at the cost of
introducing 1 measurement and 1 classically-controlled con-
trolled-Z operation. Note that the fault-tolerant cost of those
operations introduced is significantly lower than that of a single
T gate, as the construction of the T gate itself requires both a
measurement and a classically controlled quantum correction25.
We now group the uncontrolled Za rotations into one layer

(time slice), as shown in Fig. 3. This layer applies the transforma-
tion that was coined the phase gradient operation in31, the
induction of which by the addition circuit was first reported in
ref. 32. Such a transformation can be implemented by a b-bit adder
at the cost of 4b + O(1) T gates31, so long as one has access to a

special quantum state ψbþ1

�� i :¼ 1ffiffiffiffiffiffiffi
2bþ1

p P2bþ1�1
j¼0 e�2πij=2bþ1

jj i. The

quantum state ψbþ1

�� i can be reused to induce phase gradient
transformations in all n − 1 sets of controlled-Za rotations.
A schematic circuit diagram of our AQFT implementation is shown
in Fig. 4.
To construct the special (b + 1)-qubit state ψbþ1

�� i, we first apply
H gates to the quantum register 00:::0j i and then exercise the
gates Z, Z−1∕2, …, Z�1=2b . The latter step is accomplished via
approximating each Za by RUS circuits33. Specifically, we
approximate complex number eiπa by z*∕z, where z 2 Z½ω� with

Fig. 1 AQFT with n = 6 and b = 3. Note that each of the n − 1 sets
of controlled-za gates are separated by the H gates.

Fig. 2 Ancilla-aided, measurement/feedforward-based fault-tolerant
controlled-Za gate. This construction improves on the known state-
of-the-art in the quantum resource requirement (see main text for
detail), while enabling to decouple the control from the target,
important for further optimization.
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ω := eiπ∕4 being the cyclotomic integer obtained from the PSLQ
Algorithm34. We choose r 2 Z½ ffiffiffi

2
p � randomly and search the

solution y 2 Z½ω� of the norm equation ∣y∣2 = 2L − ∣rz∣2 with

L ¼ dlog ðjrzj2Þe35, such that V :¼ 1ffiffi
2

p L ð rz y
�y� rz� Þ is a unitary. We

exactly synthesize the two-qubit gate ð V 0
0 Vy Þinto a Clifford+T

circuit33,36. Upon measuring the second qubit and obtaining 0, the
gate Za is successfully implemented. Otherwise, a Z error takes
place and can be reversed at zero cost in the T gate count. The
expected number of repetitions until success is 2L∕∣rz∣2. We
resorted to using this more complex algorithm as opposed to
the simpler one given by refs 35,36, as we already use quantum
circuits with measurements and feedforward elsewhere in our
constructions, and the RUS approach results in about 2.5-fold
improvement33 in the number of the T gates required to obtain
the desired Za.

Local optimization
Here we describe a local optimization of the AQFT circuit
developed above, exploiting the fact that controlled-P and
controlled-T gates have a special implementation, due to both
P and T gates being a part of the Clifford+T library.
We start by noting that the controlled-P gate may be

implemented by two CNOT gates and three T gates (including
inverses) as shown in Fig. 5. We know from our construction above
that each controlled-Za gate in the AQFT is implemented using
8 T gates (of which 4 are used to remove the control, and 4 to
implement the target via the adder). Therefore, instead of relying
on inducing the gradient operation through the adder, we
implement controlled-P gates directly, according to Fig. 5.
Next, we consider controlled-T gates. As per Fig. 1, we see that

each controlled-T gate in the AQFT neighbors a controlled-P gate
in the following layer of controlled-Za gates in the target qubit
line. Since we implement controlled-P gates according to Fig. 5,
we may obtain T-count savings via gate cancellation (TT† = Id) by
rewriting the controlled-T gate as the controlled-Z3∕4 gate

followed by the controlled-Z−1∕2, where the controlled-Z−1∕2 gate
is implemented according to Fig. 5, inducing T-count reduction by
2 on the ‘target’ of controlled-Z−1∕2 and controlled-T gates, and by
another 2 for each layer of controlled-Za gates by cancellations on
the ‘control’ line, and the controlled-Z3∕4 gate is implemented
directly as per the top panel of Fig. 2, which costs 5 T gates.
Altogether, the above implementation of the controlled-T and

controlled-P gate pair requires 7(= 5 + 3 + 3 − 2 − 2) T gates. This
is in comparison to 16 T gates that would otherwise have been used
by the implementation based on the adder. What remains to be
investigated at this point is the modification that needs to be made
to the gradient operation so as to induce a partial gradient
operation, i.e., kj i ψdþ1;bþ1

�� i 7! e2πik=2
bþ1

kj i ψdþ1;bþ1

�� i, where k < 2b−d,
d ≤ b, and ψdþ1;bþ1

�� i is the state ψbþ1

�� i without first d + 1 qubits,
to implement the remaining Za gates in a layer.
To obtain the partial gradient operation, we analyze how the

gradient operation works. Firstly, we formally define the state

ψdþ1;bþ1

�� i :¼ 1ffiffiffiffiffiffiffi
2b�d

p P2b�d�1
j¼0 e�2πij=2bþ1

jj i. The application of (b − d)-

bit addition (see ref. 31) to kj i ψdþ1;bþ1

�� i results in two cases: k + j <
2b−d and k + j ≥ 2b−d. In order for the partial gradient operation to
work, we need k + j ↦ k + j mod2b−d. This may be achieved by
applying Z1=2

d
gate to the most significant bit of the modular

addition circuit. Since in our case d = 2, this amounts to applying a
T gate for each gradient operation. This means that the overall
result of our optimization detailed in this section is by about 8(n −
2) T gates.

Comparisons to prior work
Our improved implementation of AQFTn with n > b > 2 requires the
qubit count of nq = n + 3b − 4, the CNOT-gate count of 7:5n �
13þPn�1

l¼3 (16min(b − 2, l − 2) − 5)þPminðb;n�1Þ
b0¼3 CCNOTðRUSb0 Þ=

pb0 , and the T-count of 7n� 11þPn�1
l¼3 ð8minðb� 2; l � 2Þ þ 1ÞþPminðb;n�1Þ

b0¼3 CTðRUSb0 Þ=pb0 , where CgðRUSb0 Þ denotes the count of

the fault-tolerant gate g in the RUS circuit synthesizing z�1=2b
0
, and

pb0 denotes the success probability of the RUS circuit. As follows
from our constructions, the T gate count can be fairly accurately
approximated by the simple formula 8n(b − 1). This may be
compared to the previous state of the art that uses a variant of
[ref. 30, Fig. 10] to implement the controlled-Za, which requires
nq = n + 1 qubits, the CNOT gate count of 12 �Pn�1

l¼0 minðb; lÞ, and
the T-count of 3ðn� 1Þ þPminðb;n�1Þ

b0¼2 ðn� b0Þ½CTðGridsynthb0 Þ þ 8�,
where CT(Gridsynth) is the T-count of the Gridsynth algorithm 35

synthesizing z1=2
b0
and CT = 1 when considering z±1∕4 gate.

Fig. 3 A 4-qubit example of the layer of controlled-za gates. The
uncontrolled rotations are grouped together to induce the phase
gradient operation31,32.

Fig. 4 A schematic diagram of the full implementation of the fault-tolerant AQFT. ψ denotes the preparation of the special state ψbþ1

�� i. Ui

illustrate the operations that precede the ith adder, including H gates and the relative phase Toffoli gates used to map controlled-Za into
uncontrolled Za rotations. U0

i denotes the operations that follow the adder up to the in-circuit measurements. ADDERi denotes the ith adder.
U

00
i are the classically controlled controlled-Z gates, applied at the ith step.

Fig. 5 Direct implementation of the controlled-P gate. These
constructions also work when all Z-axis gates are replaced by their
complex conjugates.
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For a concrete comparison with the previous state of the art30,37 at
the gate-by-gate level, we implemented our improved fault-tolerant
construction as described in Section II B in software. We synthesized
the RUS circuits for za gates with a ∈ { − 1∕23, − 1∕24, . . ., − 1∕213},
motivating the choice of the smallest angle π∕2b by that sufficient to
launch a quantum attack on the classically-infeasible instance of
the integer factoring problem corresponding to cracking the RSA-
2048. We also chose the overall fault-tolerance error that arises
from the gate synthesis to be below 1.1 × 10−4 for all sizes of the
AQFT (n ≤ 4096 and b= 13) we considered. In particular, we chose
the error 10−5 per za gate approximation for our improved
construction. This amounts to the gate-synthesis error budget of
~10−5∕n per rotation for the previous state-of-the-art AQFT circuit.
The improvement of the accuracy per Za gate is justified by the
fact that our implementation of the AQFT requires the approx-
imation of only O(b) rotations instead of O(nb) in the previous
constructions.
Summary of the resulting quantum resource cost of our

improved AQFT implementation is shown in Table 1. We included
a comparison of the gate costs of our implementation to those
circuits known previously: first set relying on [ref. 30, Fig. 10] to
implement controlled-Za gates in the AQFT and the second set
resulting from an automated AQFT circuit optimization37. For both
implementations, we used Gridsynth algorithm35 to synthesize Za

gates. Note that our implementation carries a significant practical
advantage, saving quantum resource cost in the form of the
T-count by a factor of as large as 12 (AQFT4096 with b= 13). The
slight increase in nq and the CNOT gate counts are completely
offset by the savings in the T-count in the fault-tolerant regime.

Complexity analysis
The total T-count in our AQFT circuit is 8nðb� 1Þ þ Oðb log ðb=εÞÞ.
This is because each of the nb − b(b + 1)∕2 = nb + O(b2)
controlled-Za gates consumes 4 T gates to be first mapped into an
uncontrolled Za and another 4 T gates for the Za to be
implemented as a part of the adder circuit, except for
controlled-Z1∕2 and controlled-Z1∕4 gates; the two require 7 T
gates to implement and 1 T gate to correct for the phase in the
partial gradient operation. The construction of the special state
ψdþ1;bþ1

�� i requires implementation of O(b) Za rotations, and we
approximate each rotation with Oðlog ðb=εÞÞ T gates33 to achieve
accuracy ε∕b per rotation.
There are two sources of approximation errors in our

construction. Our circuit differs from the ideal AQFT circuit only

in the preparation of the special state ψdþ1;bþ1

�� i. Therefore, the
spectral norm distance between our AQFT circuit and the ideal
AQFT is O(b ⋅ ε∕b)=O(ε). This ensures that, with 1−O(ε2)
probability, regardless of how many operations to follow from
the ψdþ1;bþ1

�� i state preparation stage, our circuit implements the
ideal AQFT. If we choose b ¼ Oðlog ðn=εÞÞ, the spectral norm error
of the ideal AQFT circuit will be O(ε). Due to the triangle inequality,
the total error can be upper bounded by adding the error of the
Clifford+T synthesis and the error of AQFT, which is still O(ε).
The above error analysis shows that for all effective purposes

(specifically, when ε ≻ n∕2n) we can drop the dependence on the
approximation error ε, resulting in the claimed T-count of
Oðn log nÞ.

Future work
Future lines of inquiry may include laying out our circuit in
restricted architectures and the optimization of depth. To address
former, both the basic QFT22,23 and the adder31 we rely on (being
the long adder) can be laid out in the Linear Nearest Neighbor
architecture with a constant SWAP overhead. Thus, the increase in
the CNOT gate count due to SWAP operations will remain under
control, and the overall cost of the implementation is expected to
continue being dominated by the cost of the T gates (note that
the introduction of SWAP gates does not increase the number of
T gates), although the cost of the CNOTS will start to matter more.
To address depth, we first note that everything but the adder is
already parallelized. To optimize depth, one may choose to rely on
a fast logarithmic-depth adder and lay it out in 2D Square Lattice
(a natural architecture for superconducting circuit quantum
information processors) using the H-tree – an H-tree, popular in
VLSI design, is a fractal tree, embedded in a 2D square lattice,
constructed from a repeating pattern that resembles the letter H.
This will introduce additional gates and require more space, but it
may reduce the depth. Note that for small numbers such as those
used in our result (b = 13) the H-tree remains compact and
requires few SWAP operations.

Conclusion
Before our contribution, the best known coherent approximation
of the n-qubit QFT to an error ε by a quantum
fault-tolerant Clifford+T circuit featured the T-count of
Oðn log ðn=εÞlog ðn log ðn=εÞ

ε ÞÞ, with the term Oðn log ðn=εÞÞ originat-
ing from the standard AQFT construction using controlled

Table 1. Quantum resource counts for implementing an n-qubit AQFT with b = 13. nq denotes the number of qubits required to execute the
corresponding circuit. Columns CNOT and T report the number of respective gates in the circuits. All circuits are available in ref. 38.

Our AQFT implementation AQFT with controlled-za per30 (Fig. 10) Optimized AQFT37

Circuit nq CNOT T nq CNOT T nq CNOT T

AQFT8 25 390 303 9 336 1083 8 56 1821

AQFT16 51 1798 1162 17 1404 6309 16 234 7815

AQFT32 67 4654 2698 33 3900 19,261 32 650 22,683

AQFT64 99 10,366 5770 65 8892 47,099 64 1482 54,269

AQFT128 163 21,790 11,914 129 18,876 106,631 128 3146 123,333

AQFT256 291 44,638 24,202 257 38,844 229,729 256 6474 267,007

AQFT512 547 90,334 48,778 513 78,780 476,873 512 13,130 553,277

AQFT1024 1059 181,726 97,930 1025 158,652 993,727 1024 26,442 1,148,497

AQFT2048 2083 364,510 196,234 2049 318,396 2,084,983 2048 53,066 2,427,081

AQFT4096 4131 730,078 392,842 4097 637,884 4,316,993 4096 106,314 4,993,035

Complexity O(n) Oðn log ðnÞÞ Oðn log ðnÞÞ O(n) Oðn log ðnÞÞ Oðn log2ðnÞÞ O(n) Oðn log ðnÞÞ Oðn log 2ðnÞÞ
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rotations, and term Oðlog ð n
log ðn=εÞ εÞÞ coming from the fault-

tolerance overhead. In this paper we reported an improved
approximation of the QFT by a quantum Clifford+T circuit
with the T-count of Oðn log ðn=εÞ þ log ðn=εÞlog ðlog ðn=εÞε ÞÞ. Our
improvement is twofold: first, we reduce the dependence on
n from Oðn log 2ðnÞÞ to Oðn log ðnÞÞ, and second, we moved the
dependence on ε from the leading term into a lower order
additive term. This means that the smaller the desired approxima-
tion error the more efficient our construction is compared to those
known previously.
Our implementation includes constant factor improvements that

are not captured by the asymptotics. We report significant practical
advantages from applying our construction, as is evidenced by the
numbers in Table 1, showing the improvement by a factor of 10 to
12 in the T-count for values of n of the size expected in practical
applications of quantum computers. This shows that our result
carries both theoretical and practical value.

METHODS
Descriptions of the methods used to construct the AQFT circuit, the central
result of our paper, are available in Section II. See Section II A for the
detailed methods of the circuit construction. See Section II B for further
circuit optimization methods used to improve the T-gate counts.

DATA AVAILABILITY
The AQFT circuits that use our improved circuit design are available in the online
repository38 https://github.com/y-nam/QFT.

CODE AVAILABILITY
Our improved AQFT circuits, which are the quantum programs, are available in the
online repository38 https://github.com/y-nam/QFT.
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