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Abstract

Die TPCs des T2K O�-Axis-Nahdetektors sind insgesamt mit etwa 10 m3 einer Argon-
basierten Gasmischung (95% [91%] Argon nach Volumen [Masse]) gefüllt. Da sie seit
Beginn des T2K-Experiments dem Neutrinostrahl ausgesetzt sind, ist es möglich mit
ihnen Neutrino-Wechselwirkungen mit dem TPC-Gas als aktivem Target zu untersuchen.
In dieser Arbeit werden die Ergebnisse der Datennahmeperioden Zwei bis Vier vorgestellt.
Dies entspricht 5.73× 1020 Protonen auf dem Graphittarget des Beschleunigers, ∼ 15%
der aktuell bewilligten Datenmenge mit Myon-Neutrino-Strahl für das T2K-Experiment.
Aktuelle Modelle sagen etwa 600 Wechselwirkungen von Myon-Neutrinos über geladene
Ströme im Referenzvolumen der TPCs in diesem Datensatz voraus.
Neutrino-Ereignisse in den TPCs werden mithilfe der Rekonstruktionssoftware TREx se-

lektiert. Dies geschieht in zwei Schritten: Zuerst wird das negative, in den TPCs startende
Teilchen mit dem höchsten Impuls selektiert. Dieses de�nieren den Vertexkandidaten. An-
schlieÿend werden zusätzliche Schnitte angewandt, um den Untergrund an Ereignissen
von auÿerhalb des Referenzvolumens zu reduzieren. Die Selektion erreicht eine Reinheit
von ∼ 26 % und eine E�zienz von ∼ 32 %.
Mit dieser Selektion wird eine Messung des Wirkungsquerschnitts von Myon-Neutrinos

über geladene Ströme im TPC-Gas durchgeführt. Hierzu wird ein Ansatz mit Fokus auf
der Detektorantwort-Matrix gewählt. Diese Matrix übersetzt Erwartungswerte im wahren
Phasenraum, also Ereignisbeschreibungen mit ihren wahren Eigenschaften, zu Erwar-
tungswerten im rekonstruierten Phasenraum, also Beschreibungen mit rekonstruierten
Eigenschaften. Sie beschreibt also die Detektore�zienz und -au�ösung.
Systematische Detektorunsicherheiten werden ebenfalls von der Matrix abgedeckt. Ent-

sprechend der Unsicherheiten werden mehrere Antwortmatrizen generiert. Jede Matrix
entspricht einem möglichen wahren Detektor und produziert eigene Erwartungswerte für
die Rekonstruktion. Die Erwartungswerte der verschiedenen Matrizen können einzeln mit
den Daten verglichen und anschlieÿend in eine marginale Likelihood kombiniert werden.
Wenn die Antwortmatrix so konstruiert wird, dass sie nicht vom verwendeten Interak-

tionsmodell abhängt, können mit ihr beliebige Interaktionsmodelle mit den Daten vergli-
chen werden. Da die Matrizen die Detektorunsicherheiten beinhalten, müssen diese Un-
sicherheiten nicht für jedes Modell neu evaluiert werden. Werden die gemessenen Daten
und die Detektorantwort-Matrix zusammen verö�entlicht, können auch Modellentwickler,
die nicht im Detail mit dem Detektor vertraut sind, ihre Modelle mit den Daten verglei-
chen. Hierfür müssen sie nur die Erwartungswerte im wahren Phasenraum entsprechend
variieren und mit der Matrix multiplizieren. Verglichen mit dem �klassischen� Ansatz,
bei dem neue Modelle normalerweise in dedizierten Analysen innerhalb der Experimente
getestet werden, ermöglicht dies einen deutlich schnelleren Entwicklungszyklus.
Mit diesem Ansatz wurden Anpassungen nomineller Templates der Ereignisgeneratoren

Neut und Genie unternommen. Diese liefern Wirkungsquerschnitte pro Nukleon und
Neutrinoenergie von (0.42± 0.15)× 10−38 cm2/GeV und (1.02± 0.24)× 10−38 cm2/GeV.



Abstract

The TPCs of the T2K o�-axis near detector contain in total about 10 m3 of an argon-
based gas mixture (95% [91%] argon by volume [mass]) at atmospheric pressure. They
have been exposed to the T2K neutrino beam for the full duration of T2K operation. It is
thus possible to investigate neutrino interactions that happen inside the gas volume of the
TPCs, using it as active target. This work presents the results obtained from T2K runs
two through four. The data corresponds to 5.73× 1020 protons on target, ∼ 15% of the
total muon-neutrino beam exposure expected by the end of the currently approved T2K
programme. Current neutrino cross-section models predict about 600 charged-current
muon-neutrino interaction events in the TPCs' �ducial volume in this data set.
Neutrino events in the TPCs are selected using the new TPC reconstruction soft-

ware TREx. The selection works in two stages: First, the highest momentum, negatively
charged particle that starts inside one of the TPCs is selected. This de�nes the vertex
candidate. Then, additional cuts are applied to that candidate to reduce the out-of-
�ducial-volume background. The selection reaches a purity of ∼ 26 % and an e�ciency
of ∼ 32 %.
This selection is then used to perform a measurement of the charged-current muon-

neutrino cross-section in the TPC gas. The response-matrix centred approach is used.
This method is based on the detector response matrix, which translates expectation
values for event counts in truth space, i.e. describing the true properties of the events,
into expectation values in reco space, i.e. describing the events in reconstructed variables.
In it contained are the information about detector e�ciency and detector smearing.
Systematic detector uncertainties are also handled with the response matrix. A set

of response matrices is generated according to the uncertainties in detector properties.
Each matrix corresponds to one possible true detector performance and yields its own
reco-space prediction for a given truth-space prediction. The di�erent predictions can
then be compared to the recorded data, and combined into a marginal likelihood.
If the construction of the response matrix is done with care (ensuring its physics model

independence), it can be used for tests of arbitrary theories against the data very easily.
Since the set of response matrices contains the knowledge about the systematic detector
uncertainties, the systematics do not have to be re-evaluated for each model that is
tested. If the data and response matrix are published together, the model tests can
also be done by theorists and model builders that are not intimately familiar with the
detector that recorded the data. All they have to do is vary the truth space expectation
values according to their models and multiply them with the matrix. Compared with the
�classic� approach, where new models usually require a new dedicated analysis within
the experiments, this makes tests of new model ideas much easier.
A simple template �t with the nominal Neut and Genie models was done using this

method. It yields a cross section per nucleon and scaled with average neutrino energy of
(0.42± 0.15)× 10−38 cm2/GeV and (1.02± 0.24)× 10−38 cm2/GeV respectively.
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1. Introduction

1.1. The T2K experiment

The T2K (Tokai to Kamioka) experiment is a long-baseline neutrino beam experiment in
Japan. A high intensity (anti-) muon neutrino beam is created at the J-PARC facility in
Tokai, Ibaraki prefecture, at the east coast of Japan. Protons are accelerated in a linear
accelerator and synchrotron, and then �red on a graphite target with a repetition rate of
one spill every 2 to 3 seconds1 (see Fig. 1.1). Each spill consists of 8 bunches of protons
with a bunch-to-bunch time separation of ∼ 580 ns and bunch widths of ∼ 60 ns. The
resulting nuclear interactions in the target produce charged pions. These are then charge-
�ltered and focussed into a 96 m long, evacuated decay pipe by three magnetic horns.
There the pions decay to (mostly) muons and neutrinos. Because of the high momentum
of the pions relative to the target frame, the muons and neutrinos are boosted in the
direction of the pion beam. Muons are stopped by the material after the decay pipe,
while the neutrinos travel on unhindered.[1]
This neutrino beam is aimed at the Super Kamiokande detector at a distance of
∼ 295 km (see Fig. 1.2). Super Kamiokande (SK) is a water Cherenkov detector with a
�ducial mass of 22.5 t. It is located underground in the Mozumi Mine in the Gifu prefec-
ture of Japan. Since SK is positioned slightly o�-axis at 2.5 ° with respect to the neutrino
beam centre, a very narrow neutrino energy distribution is achieved (see Fig. 1.3). The
peak neutrino energy is at 600 MeV.

1The beam performance has been steadily increased.

Figure 1.1.: The T2K neutrino beam line. [2]
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Figure 1.2.: The T2K experiment. [2]

Figure 1.3.: Neutrino beam pro�les at di�erent o�-axis angles. The Super-Kamiokande
detector is at 2.5 °. [3]
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Figure 1.4.: The INGRID on-axis near detector. The 16 identical modules are centred on
the nominal neutrino beam centre. Each module is a sandwich made of nine
iron target plates and eleven scintillator trackers, surrounded by scintillator
veto planes. [6]

T2K's main objective is the investigation of neutrino oscillations. Notable results
include the world's �rst detection of electron-neutrino appearance from a muon-neutrino
beam[4] and �nding hints for normal neutrino mass ordering and maximal lepton sector
CP violation in a joint neutrino and anti-neutrino beam analysis[5].
These measurements are only possible because of a precise characterisation of the

unoscillated neutrino beam properties at the near detectors. They are located 280 m
downstream of the graphite target at J-PARC. The on-axis detector INGRID consists of
14 detector modules of sandwiched iron plates and scintillator planes (see Fig. 1.4). It
measures the actual neutrino beam position to with an accuracy better than 0.4 mrad,
and monitors the total �ux stability via event rate measurements[6].
The o�-axis detector ND280 consists of several solid scintillator detectors and three

large TPCs in a magnet yoke (see Fig. 1.5). It is positioned at the same o�-axis angle
as Super-Kamiokande, and thus investigating the same (unoscillated) neutrino energy
spectrum that is relevant for the oscillation analyses. The Pi-Zero-Detector (P0D) is a
scintillating bar tracker with added layers of lead and bags that can be �lled with wa-
ter as passive targets. The Time Projection Chambers (TPCs) are three large particle
detectors based on gas ionisation. The Fine Grained Detectors (FGDs) are two scin-
tillating bar trackers sandwiched between the three TPCs. The second (downstream)
FGD also includes water layers as passive target for cross-section measurements. These
three detector systems are surrounded by electromagnetic calorimeters (P0D-, Barrel-,
and Downstream-ECALs). All of this is contained in the magnet yoke, which creates a
magnetic �eld of ∼ 0.2 T in the detector. The magnetic yoke itself is instrumented with
the Side Muon Range Detector (SMRD). It consists of scintillating tiles in-between the
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Figure 1.5.: The o�-axis near detector ND280. It is located at the same o�-axis angle as
the Super-Kamiokande detector, above the INGRID on-axis detector. [2]

Table 1.1.: The ND280 sub-detectors.

Resolution Notes

P0D 33.0 mm pitch of triangular scintillator bars in
x and y layers interleaved with passive
lead and water layers

FGD1 9.61 mm square scintillator bars in x and y lay-
ers

FGD2 9.61 mm alternating with passive water target
layers

TPCs 7.0 mm× 9.8 mm vertical × horizontal pad pitch on
readout plane

P0D ECAL 40 mm× 10 mm rectangular scintillator bars in x and
y layers interleaved with passive lead
layers

Barrel ECAL 40 mm× 10 mm rectangular scintillator bars in x and
y layer interleaved with passive lead
layers

Downstream ECAL 40 mm× 10 mm rectangular scintillator bars in x and
y layers interleaved with passive lead
layers

SMRD 875 mm× 167/175 mm scintillator plates in the (horizon-
tal/vertical) gaps of the magnet yoke
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23	Jan.	2010	– 31	May	2018
POT	total:	 3.16	x	1021

𝝂-mode	 1.51	x	1021 (47.83%)
𝜈̅-mode 1.65	x	1021 (52.17%)

Figure 1.6.: Protons On Target at T2K [7]. The data set used in this analysis corresponds
to Runs 2, 3, and 4. In total they make up about half of the presently
available data in neutrino enhanced beam mode.

yoke's iron sheets. See Tab.1.1 for an overview of the respective sub-detector resolutions.
The T2K beam can be operated in �neutrino enhanced� or �anti-neutrino enhanced�

mode, by focussing either positive or negative pions into the decay pipe. The data
analysed in this work corresponds to about half the currently available data in neutrino
enhanced mode (see Fig. 1.6). A detailed description of the used data samples can be
found in Section 2.1.

1.2. Nuclear e�ects

1.2.1. Why nuclear matter matters

Despite the narrow neutrino energy distribution, it is still necessary to reconstruct the
neutrino energy on an event-by-event basis to achieve the highest possible sensitivity
in oscillation analyses. At Super Kamiokande the energy reconstruction is done using
event kinematics. The momenta and masses of reconstructed particles are combined to
calculate the original (invisible) momentum and energy of the incoming neutrino.
In the simplest case of charged-current quasi-elastic (CCQE) interactions on free nu-

cleons, the incoming neutrino converts to a charged lepton (e.g. a muon) and the nucleon
recoils from the interaction as a whole (see Fig. 1.7). The energy transfer to the nucleon
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Figure 1.7: Charged-current quasi-elastic (CCQE) in-
teraction. A neutrino weakly interacts
with a (free) neutron, converting a down-
quark into an up-quark. The quark stays
bound in the nucleon (now a proton) after
the interaction.

is usually smaller than the charged lepton energy, due to the nucleon's higher mass. The
nucleon thus often stays below the detection threshold of the detector. Even so, the
neutrino energy is almost2 perfectly determined by the charged lepton kinematics, as the
initial conditions of the nucleus and direction of the neutrino are known:

pν +mn = pl + pn,

pν =


Eν
Eν
0
0

 ,mn =


mn

0
0
0

 ,pl =


El
pl
pt
0

 ,pn =


√
p2
n + p2

t +m2
n

pn
−pt
0

 .

Here pt is the (balanced) momentum of the outgoing particles, transverse to the incoming
neutrino direction. pl and pn are the longitudinal momenta of the charged lepton and
outgoing nucleon respectively. This method of determining the neutrino energy breaks
down if there are more invisible particles involved, e.g. pions from inelastic interactions.
The average e�ect of such particles can be corrected, but an accurate event-by-event
reconstruction of the energy becomes impossible.
Unfortunately there is currently no all-encompassing model that is able to describe

the scattering of neutrinos o� nuclei. The �eld can be broadly categorised in three
(overlapping) areas of study (see Fig. 1.8): the initial state, the cross section, and �nal
state interactions (FSI).
An overview of the current state of nuclear interaction modelling, event generation,

and their impact on neutrino oscillation analyses is given in [8]. All these uncertainties
propagate to the corrections that are necessary to reconstruct the neutrino energy from
just the charged lepton kinematics. They are thus a direct source of systematic uncer-
tainties in neutrino oscillation experiments such as T2K. Currently, their impact is in
the order of 5%− 10%

1.2.2. The initial state

The initial state describes the nucleus before the interaction with the neutrino. In the
common impulse approximation neutrinos are assumed to interact with the nucleons

2Modulo thermal movement of the nucleon
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Figure 1.8.: Nuclear e�ects.

inside the nucleus, rather than the whole nucleus or the partons inside the nucleons.
This is a useful approximation for �medium range� neutrino energies O(1 GeV). The
initial state is then described with a spectral function, which give the probability of
encountering a nucleon with a given momentum and energy.
One such spectral function is the relativistic Fermi gas (RFG) model, where the nu-

cleons are assumed to be non-interacting, populating a homogeneous, spherical nucleus.
They �ll up available states up to the Fermi momentum pF and its corresponding en-
ergy EF . The energy it takes to remove one nucleon from the nucleus is called binding
energy EB (see Fig. 1.9). The values of pF and EB can be deduced from electron scat-
tering data [9].
An extensions of the RFG model is the local Fermi gas (LFG). In it, the global

Fermi momentum pF is replaced by a local one, dependent on the local density of pro-
tons/neutrons (see Fig. 1.10). This is a somewhat more realistic approach [11].
While both the RFG and LFG models provide spectral functions, usually only more

complicated models that cannot be summarised in closed form are called spectral func-

tion (SF) models. These general models usually include the e�ects of nucleon-nucleon
interactions and generalise the single-particle spectral function to a multi-particle one,
see e.g. [12] and [13].
This kind of initial state correlation (ISC) can lead to �nal states with multiple nucle-

ons and/or �holes� (empty momentum states left behind by excited nucleons) in them.
Especially �nal states with two particles and two holes (2p2h) have recently been found
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Figure 1.9.: Nuclear potential in the Fermi gas model [10], with the binding energy EB,
and the Fermi energies of protons and neutrons Ep,nF .

Figure 1.10.: Fermi momentum in the local Fermi gas model [10].
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to play an important tole in describing di�erential neutrino cross-sectionsi, e.g. [14]. ISCs
are not the only mechanism that leads to 2p2h �nal states though. Final state corre-

lations (FSC) caused by the struck nucleon scattering o� the spectator nucleons and
meson exchange currents (MEC) also play a role (see e.g. [15]).

1.2.3. The cross section

Cross sections of neutrino interactions with nuclei at medium energies are dominated by
four processes: (quasi-)elastic scattering, resonant pion production, coherent pion pro-
duction, and deep inelastic scattering. In the neutral current elastic (NCEL) scattering
process, the neutrinos scatter on the nucleons without producing any additional particles:

ν +N → ν +N .

This is a true elastic process. The charged current quasi-elastic (CCQE) process is very
similar, but because both the lepton and the nucleon change their mass in the interaction,
it is not truly elastic:

νl + n→ l− + p, ν̄l + p→ l+ + n.

The electroweak model of quantum �eld theory that governs this interaction is very well
understood and allows very precise predictions of cross-sections. The uncertainties of this
interaction stem from the fact that the nucleons are not point-like particles, but have
an inner structure of partons. This structure enters the cross-section calculation as form
factors, which have to be determined experimentally.
During resonant pion production (RES) the neutrino scatters o� a nucleon, exciting it

to a resonant state, which in turn decays to (mostly) a nucleon and a pion:

νl + n/p→ l− + ∆+/++, ν̄l + n/p→ l+ + ∆−/0.
(−)
νl + n/p→

(−)
νl + ∆0/+.

Calculations of this cross section have to consider the e�ects of all possible resonances (up
to a cut-o� energy) [16] [17]. Just like in the NCEL and CCQE case, the inner structure
of the nucleons must be considered in the form of form factors [18]. Recent developments
of this cross section have combined the resonant channel with non-resonant interference
terms[19] [20], leading to a much more realistic model [21]. This model is currently being
implemented in the NEUT[22] and GENIE[23] event generators, which are used by most
long-baseline neutrino beam experiments.
At the high energies, neutrinos can be modelled to interact with the nucleon con-

stituents rather than the nucleons as a whole. This regime is called deep inelastic

scattering (DIS). These interactions will generally �destroy� the nucleon and produce
a hadronic shower of particles:

(−)
νl +N → l−(+) +X,

(−)
νl +N →

(−)
νl +X.

At the highest energies, this leads to predictable cross sections (see Fig. 1.11), but it
becomes hard at intermediate energies, when it overlaps with the resonant production
region. Care has to be taken to avoid double-counting of processes.
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Figure 1.11.: World data of inclusive charged-current neutrino cross sections [24]. At
high energies the total cross section becomes proportional to the neutrino
energy Eν . This is a feature of the scattering on the point-like quarks in
the nucleons.

1.2.4. Final state interactions

The largest uncertainties stem from so called �nal state interactions (FSI), which is a
collective term for e�ects induced by interactions of the �nal state particles with the
nuclear matter on their way out of the nucleus. Most implementations of this process
assume the �nal stat particles of the interaction to independently traverse the dense
nuclear medium (cascade models). The GiBUU model[25] is an exception to this rule.
It propagates the phase-space density of the �nal state particle species through a semi-
classical mean �eld of the nucleus. The evolutions of the di�erent particle species is
explicitly coupled this mean �eld and explicit collision terms [26].

1.3. Neutrino gas interactions in the ND280 TPCs

At T2K these uncertainties are constrained with external cross-section data and by doing
cross-section measurements with the near detectors ND280 and INGRID. The design of
ND280 is primarily optimised to record neutrino interactions that occur in the solid state
detectors (like the FGD and P0D). For these events, the TPCs are used in conjunction
with the solid detectors to identify the particles that are produced in the vertex. This
means that the detection thresholds of particles are determined by the properties of the
solid detectors, e.g. the FGDs are sensitive to protons with a minimal momentum of
∼ 450 MeV/c.
The detection thresholds of particles originating in the TPCs are much lower than

that, since the TPCs are instrumented with a higher granularity and the density of the
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Figure 1.12.: The TPCs [27]. The inner wall and �eld cage's outer dimensions are (1808×
2230 × 854) mm (width × height × depth). The outer box is separated
from the inner box by at least 68 mm of carbon dioxide for insulation of the
−25 kV cathode voltage. The outer boxes measure (2302×2400×974) mm.
The inner box is operated at 0.4 mbar overpressure with respect to the
carbon dioxide in the gap. The carbon dioxide is held at less than 5 mbar
overpressure with respect to the surrounding atmosphere.
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active material is much lower than that of the solid detectors. The ND280 TPCs consist
of three large gas-�lled volumes (total ∼ 10 m3), each divided in two halves by a central
cathode (see Fig.1.12). The anodes are instrumented with Micro Mesh Gaseous Structure
(micromegas) modules. They are segmented into pads with a vertical (horizontal) pitch
of 7.0 mm (9.8 mm)[27]. The nominal gas mixture by volume (by mass) is:

� Argon: 95% (91%)

� CF4: 3% (6%)

� iC4H10: 2% (3%)

The gas is a factor ∼ 1000 less dense than the plastics of the scintillators, leading to a
corresponding increase in particle track lengths. The TPCs can e�ciently reconstruct
and identify protons down to a momentum of ∼ 200 MeV/c with the potential to push
this limit down to ∼ 60 MeV/c with improvements of the reconstruction code for these
low-momentum, high-energy-loss particles. At 60 MeV/c the protons have a predicted
average track length in the TPCs of only about 5 cm, probably reaching the limit of
the TPC resolution for tracking. But even without any dedicated e�orts, the detection
threshold is already much better than in the solid detectors, allowing to investigate the
nuclear e�ects in previously inaccessible regions of the phase space.
The downside of the low target density is the low total target mass. The interaction rate

in the TPC gas volume is also about a factor ∼ 1000 lower than in the solid detectors.
Nevertheless, since the ND280 TPCs have been exposed to the T2K neutrino beam
since the beginning of the experiment, they have recorded a usable amount of neutrino
interactions in the sensitive gas volume of the TPCs. The generator models (Neut[22]
and Genie[23]) predict a signal event rate of about ∼ 100 (∼ 50) events per 1 × 1020

protons on target (POT) in the outer (inner) �ducial volume (see Section 2.2.1). This
corresponds to ∼ 600 (∼ 300) events in the data analysed for this thesis (see Section 2.1).
The selection of those events is described in Chapter 2. Since the original reconstruc-

tion software's sole intended used was to track particles that enter the TPC from the
solid detectors, it had no concept of vertices inside the TPCs. Therefore, it was necessary
to extend the functionality of the software. This was implemented with the TPC Recon-
struction Extension (TREx [28]), which is not only used for the gas interaction analysis,
but will also replace the old TPC reconstruction software in future iterations of the solid
detector analyses.

1.4. Event reconstruction in the TPCs

1.4.1. General operation

The process of measuring particles with a Time Projection Chamber can be divided in
three stages:

1. Ionisation
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2. Drift

3. Charge collection

If a charged particle traverses the gas inside the TPCs, it loses energy by ionising the
gas molecules. This ionisation track is what is being measured in the TPC. The mean
energy loss 〈−dE/dx〉 of heavy (i.e. not electrons) charged particles at intermediate
momenta (0.1 . βγ . 1000) is described by the Bethe equation [24]:〈

−dE

dx

〉
= Kz2Z

A

1

β2

[
1

2
ln

2mec
2β2γ2Wmax

I2
− β2 − δ(βγ)

2

]
.

Here z is the charge of the traversing particle, Z and A are the atomic number and molar
mass of the stopping material (i.e. the gas in the TPCs), and K is the constant:

K = 4πNAr
2
emec

2 ≈ 0.307 MeV mol−1 cm2.

I is the material's mean excitation energy (O(Z × 10 eV)). δ(βγ)/2 is the density e�ect
correction that is needed at high energies because the stopping material gets polarised,
e�ectively blocking interactions of the traversing particle's electric �eld. Wmax is the
maximum energy transfer in a single collision. For a traversing particle with mass M it
is:

Wmax =
2mec

2β2γ2

1 + 2γme/M + (me/M)2
.

It is worth mentioning that the mean energy loss is very much driven by these unlikely,
high-energy-loss interactions. The variation of energy deposited in a thin detector slice
is well described by a Landau distribution. Its most probable value is much lower than
the mean energy loss according to the Bethe equation (roughly half).
The electron-ion-pairs are separated by the applied drift �eld. In the T2K TPCs

this �eld is 275 V/cm. The free electrons drift along the electric �eld lines towards the
anode read-out plane, while the ions drift towards the central cathode. The electron drift
velocity is 7.8 cm/µs, while the ions are about a factor 1000 slower. At T2K, only the
electron signal is used for reconstruction.
At the anode, the electrons are recorded, providing a 2D projection of the track.

The read-out technology employed at T2K is that of micro mesh gaseous structures
(micromegas). They consist of a thin wire mesh ∼ 100µm over sensitive rectangular
copper pads. A high electric �eld between between the mesh and the pads causes the free
electrons to ionise more gas molecules, leading to an electron cascade (see Fig.1.13). The
voltage applied between mesh and pads at T2K is 350V, leading to a gas ampli�cation
factor of about 2000. The ampli�ed charge is collected on the pads and digitised using
an Application-Speci�c Integrated Circuit (ASIC) called �AFTER� [27].

1.4.2. Hit calibration

For a reliable track reconstruction and particle identi�cation in the TPCs, the in�uence of
changing environmental conditions has to be taken into account. The TPCs are operated
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Figure 1.13.: Schematic drawing of a micromegas detector[24]. In the T2K TPCs the
ampli�cation voltage HV 2 is 350 V and the drift �gap� is the drift volume
with an electric �eld of 275 V/cm.

slightly above atmospheric pressure to avoid contamination of the drift volume with other
gases. To reduce the load on the structural elements, this overpressure is kept constant,
so the absolute pressure in the TPCs varies together with the atmospheric pressure
outside the detector. There is no temperature regulation either, so both temperature
and pressure depend on the weather conditions. This leads to changing gas densities and
thus changing detector responses.
The speci�c energy loss of particles in the gas is proportional to the gas density. In

the approximation of an ideal gas:

dE

dx
∝ ρ ∝ p

T
.

This means the measured hit3 charges Q have to be converted to a nominal charge Q0

at a standard density to be comparable:

Q0 = Q
p0

T0

T

p
,

with the pressure p0 and the temperature T0 of the chosen standard conditions.
The electron avalanche ampli�cation in the micromegas also depends on the gas density,

so it has to be corrected as well:

Q = Q′
A0

A
,

where Q′ is the uncorrected measured charge and A is the ampli�cation in the readout
plane. In �rst approximation, the electric �eld in the micromegas is homogeneous. The

3The signal recorded on a single pad at the readout plane.
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ampli�cation is then an exponential process depending on the �rst Townsend coe�cient
αT and the length of the ampli�cation region d:

A = exp(αTd).

The Townsend coe�cient of a given gas mixture depends on the gas density and the
electric �eld:

αT =
p

T
f

(
E
T

p

)
,

with the function f only depending on the reduced electric �eld ET/p. Above the am-
pli�cation threshold, it can be approximated very well with a linear function:

f(ET/p) = a · ET/p+ b.

For the ampli�cation that means:

A = exp

(
d
p

T

(
a · ET

p
+ b

))
= exp

(
adE + bd

p

T

)
.

The correction then becomes:

A0

A
= exp

(
bd

(
p0

T0
− p

T

))
For small density changes, this can be approximated as a relative correction:

∆A

A0
= c

∆(p/T )

p0/T0
.

At the T2K TPCs the constant c is roughly −3.2, so for every increase of gas density
of 1% the gain drops by 3.2%. It is measured in regular intervals in dedicated Gas
Monitoring Chambers (GMCs).
The drift velocity vd is a function of the reduced electric �eld ET/p. Since the T2K

TPC are operated at the local maximum drift velocity, no immediate correction for tem-
perature and pressure changes is needed. Instead, the drift velocity is monitored in the
GMCs for changes due to varying gas compositions. The results of these measurements
are used to update the drift velocity calibration about twice per day.

1.4.3. Reconstruction with TREx

The TREx reconstruction software is described in detail in [28]. This section will only
present an overview over the most important concepts and terminology.
The reconstruction begins by grouping the recorded hits into patterns of connected,

i.e. neighbouring, hits. The ends of particle tracks (either from the real ends of particle
trajectories or from particles leaving the TPC) are identi�ed by their extreme positions
in the pattern.
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Connections between these path ends are found using the A∗ algorithm[29]. Hits along
these connections are grouped into paths. Hits where the paths branch o� are grouped
into junctions. This ensures that hits assigned to a certain path likely only contain charge
from a single particle. The hits of the junction can contain the charge information of
multiple overlapping particles.
This algorithm is very good at �nding vertices with three or more particles, even if

two of them are produced back to back4. It would not, however, �nd a vertex with
two particles, as there are no branching-o� paths. These are found by a kink-�nding
algorithm that looks for a sharp angle in the paths. If one is found, an additional
junction is inserted at that position. The kink-�nding does not work well when the two
particles are emitted back to back in the detector frame. Since the neutrino interaction
events are usually boosted in the neutrino direction, this is not a big problem though.
The hits of horizontal (vertical) paths are grouped into vertical (horizontal) slices.

These clusters of hits are used for a more precise determination of the particle position
at that point. A �t of the charge distribution in each cluster yields a position with an
uncertainty that can be smaller than the widths of the pads of the readout plane.
Lastly, helix tracks are �tted to the paths, or rather their hit clusters. The parameters

of the best �t helix determine the reconstructed momentum of the track, and its direction.
See Fig. 1.14 for an overview of the reconstructed objects.

1.5. Model-independent cross-section measurements

A big challenge for cross-section measurements is their explicit or implicit dependence
on the very cross-section models they are supposed to constrain. The reason for this
dependence is that, in general, the detector response to the event can vary considerably
depending on the particular properties of the event. This can lead to very di�erent
e�ciencies and purities of event selections if two theories predict very di�erent coverages
of the phase space. For example, all detectors have certain energy/momentum thresholds
below which they are not sensitive to particles. If two theories (or a theory and reality for
that matter) now predict very di�erent fractions of events/particles below that threshold,
the resulting e�ciency of selecting the events will vary accordingly.
A lot of work is done on minimising or at least quantifying these e�ects. Strategies

range from doing multi-dimensional di�erential cross-section measurements (to ensure a
�at e�ciency in each bin), to repeating the analysis with multiple theories and simply
quoting how much the results depend on the used model. The former approach requires
a lot of data to have a signi�cant number of events in every bin, while the latter su�ers
from the uncertainty of whether all available models even cover reality at all.
The response-matrix-centred method described in this work aims to combine the

model-independence of the multi-dimensional approach with the ability to work with
low number of events of the naive model test. This is achieved by de-coupling the bin-
ning of the reconstructed events from the description of the events on the generator level.

4In fact, the A∗algorithm does not use the orientation of the hits. It only uses the local distances
between neighbouring hits.
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Clusters

Junction hits

Fitted helix tracks

Path hits

Figure 1.14.: TREx objects. Connected collections of hits in the TPCs are called a pattern.
Patterns are further divided into paths � corresponding to single particles
� and junctions, which cannot be attributed to a single particle. The hits
within the paths are grouped in horizontal and vertical clusters, depending
on the local angle of the path. Within each cluster, the horizontal (vertical)
position is �tted assuming a Gaussian charge distribution about the true
particle position. With these �tted positions, helix tracks are �tted to the
paths using the maximum likelihood method.
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The high dimensionality of variables is only needed in truth space, i.e. the description of
the events on the generator level. The actual recorded data can be binned much coarser
in reco space, i.e. with fewer reconstructed variables. The response matrix is the con-
necting piece between the two, describing how likely an event in a particular truth space
bin is going to end up in any of the reco space bins.
If the truth binning is chosen carefully, the response matrix should be independent

of any assumed physics model of the interactions. That is, di�erent models can predict
di�erent truth space distributions, but the values of the response matrix elements do
not depend on the model that is used to build the matrix5. The real data and response
matrix can then be used with arbitrary models to calculate a likelihood and extract cross
sections.
This is so far not di�erent from the naive model testing method. The advantage of

the response matrix approach is realised when considering the matrix and the raw data
as the main result of the measurement. They are (ideally) independent of any model
assumptions and can be used to test any new model or model improvement that will be
developed in the future. Furthermore, if the raw data and response matrix are published,
model developers can use them directly to test any changes or completely new models
against old data. Compared to the classical approach, where the theories are thought
up by theorists and then tested within the experimental groups in dedicated analyses,
this reduces the time of the development cycle considerably. In fact, a lot of work has
been spent to make old experimental results available for easy model tuning, for example
with the NUISANCE framework[30]. Results obtained with the response-matrix-centred
approach would be very easy to include in such global �ts.
It might seem like a shortcut for lazy experimental physicist to simply publish the

raw data and response matrix to leave the rest to the model builders. This is not the
case though, since the construction of the response matrix requires exactly the same
understanding of the detector and care to cover all systematics as a classical analysis.
Also it is unlikely that any experimental group would publish the data and response
matrix without also using them for their own model tests.
The detailed description of how to build the matrix and how to contain the knowl-

edge about the systematic uncertainties in it is given in Chapter 3. The algorithms are
implemented in a Python software library called ReMU, Response Matrix Utilities. It is
intended to make the usage of the data and response matrix as easy as possible. More
informations about the software and data formats are included in Section 3.2.4. Finally,
the response matrix approach is applied to the neutrino gas interaction analysis and a
likelihood template �t is performed to extract an inclusive charged-current cross section
from the data. The results of this are presented in Section 3.5.

5Aside from statistical e�ects from the number of available simulated events in each truth bin.
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2. Event selection

2.1. Data samples

Table 2.1 shows an overview of the used data samples. Di�erent �productions� refer
to di�erent versions of the T2K software stack. The samples �TPC MC Neut� and
�TPC MC Genie� are special MC runs for which only the TPC gas was simulated as
target material for the neutrinos. They are high statistics signal samples and cannot be
used for background studies. These samples only exist as reco-�les from production 6B
(i.e. without TREx), but they were re-processed with the same software version as was
used in productions 6H/I. The same applies to the �Sand MC Neut� sample, which is a
simulation of �sand muons�, i.e. neutrino interactions in the ground material between the
decay pipe and the detectors. The regular Monte Carlo samples only include interactions
in the active and passive components of the detector. Production 6H and 6I only di�er
in some minor book-keeping details. The used software is virtually identical. The �Air�
or �Water� in the sample names refers to the �lling of the P0D's water bags (or lack
thereof). Unless written otherwise, the Neut MC samples are used for plots and tables
presented in this chapter.

2.2. The selection

2.2.1. Fiducial volume and signal de�nition

The central particle of in this selection is the negatively charged Minimum Ionising
Particle (MIP) with the highest momentum (the primary MIP). We de�ne MIPs as both
muons and charged pions of any momentum. This de�nition is used, because the TPCs
are not able to distinguish between pions and muons very well. The primary MIP is
used to categorize the events by their true properties. For the reconstructed events,
the Highest Momentum MIP candidate (HMM) is the basis for event identi�cation and
di�erential measurements. It is de�ned as the track with the highest momentum, which
passes all cuts of Phase 1 of the selection (see Section 2.2.2).
One would like to select only charged-current scattering events of muon-neutrinos in-

side the TPCs, but that is not possible. We would be dealing with an intrinsic background
of other events (e.g. electron-neutrino or neutral-current) that produce a negative pion
as highest-momentum track. The number of these events would heavily depend on the
cross-section models and �uxes involved. To avoid evaluating the selection with model
dependent e�ciencies and purities, we de�ne the signal as all neutrino interactions inside
the TPCs that produce a MIP as highest-momentum negative particle. The overwhelm-
ing majority of these events are charged-current muon-neutrino events and this selection
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Table 2.1.: Data samples. Signal is de�ned without any momentum restrictions (see
Section 2.2.1).

Sample name POT
Number of signal events

Production
track-FV vertex-FV

TPC MC Neut - 57454 27880 6B+TREx
TPC MC Genie - 63186 30837 6B+TREx
Sand MC Neut 11.13× 1020 0 0 6B+TREx
Run 2 Air MC Neut 9.23× 1020 927 461 6H
Run 2 Air MC Genie 9.56× 1020 836 428 6H
Run 2 Air Data 0.35× 1020 - - 6I
Run 2 Water MC Neut 12.02× 1020 1251 630 6H
Run 2 Water MC Genie 12.83× 1020 1185 562 6H
Run 2 Water Data 0.43× 1020 - - 6I
Run 3 Air MC Neut 30.79× 1020 3166 1520 6H
Run 3 Air MC Genie 32.78× 1020 2968 1456 6H
Run 3 Air Data 1.56× 1020 - - 6I
Run 4 Air MC Neut 34.95× 1020 3592 1729 6H
Run 4 Air MC Genie 37.27× 1020 3207 1583 6H
Run 4 Air Data 1.76× 1020 - - 6I
Run 4 Water MC Neut 34.96× 1020 3505 1680 6H
Run 4 Water MC Genie 37.24× 1020 3353 1637 6H
Run 4 Water Data 1.63× 1020 - - 6I
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Figure 2.1.: Fiducial volume de�nitions. The track �ducial volume (blue) and vertex
�ducial volume (red) within the TPCs' gas volume, as seen from the readout
plane (left) and from the beam direction (right). The squares on the readout
plane show the sensitive area of the micromegas modules. All measurements
are in millimetres.
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Table 2.2.: Signal de�nitions.

unrestricted, inner no restriction on primary MIP momentum, vertex in vertex-FV
restricted, inner primary MIP momentum > 200 MeV/c, vertex in vertex-FV
restricted, outer primary MIP momentum > 200 MeV/c, vertex in track-FV

can then still be used to study them. Events with other particles as highest-momentum
negative particle, and events with no negative particle at all are considered background.
There are two kinds of �ducial volumes (FV) de�ned (see Fig.2.1). The �rst is the track

�ducial volume, or track-FV, which determines where the MIP candidates can originate
to pass the cut described in Section 2.2.3.2. It consists of one cuboid per TPC-half,
located in the instrumented region of the gas volume with some additional spacing to
the TPCs' walls, anodes and cathodes. The total track-FV is 6.534 m3.
The second volume is the vertex �ducial volume, or vertex-FV. It is a proper subset of

the track-FV and de�nes where the vertex candidates must be to pass the cut described in
Section 2.2.4.3. Aside from an additional spacing to the TPC walls, anodes and cathode,
it also excludes a volume over the vertical gap between the two micromegas columns in
each TPC-half and some regions with faulty electronics during some of the data runs1

(not shown in �gure). The total vertex-FV is 3.188 m3.
In general, the track-FV de�nes the signal region for the neutrino interactions. If an

interaction happens outside the track-FV it is considered out-of-�ducial-volume (OOFV)
background, even if it happens within the TPC. This is not the case for some of the cut
optimisation studies, where the �ducial volume is de�ned as the vertex-FV. This was
done to ensure that the e�ciencies were not unnecessarily in�uenced by the change of
inner-to-outer volume ratio during the optimisation.
Since the reconstruction e�ciency drops signi�cantly for low-momentum particles

(even without any momentum cuts), we de�ne a phase-space-restricted signal. It in-
cludes only events where the primary MIP has a true momentum of p > 200 MeV/c.
The motivation for this speci�c value is given in Section 2.2.4.1. Table 2.2 shows an
overview of the di�erent signal de�nitions.

2.2.2. Overview

The event selection works in two phases: First, all negative candidate tracks that start in
the track �ducial volume are identi�ed. The highest-momentum candidate then de�nes
the vertex candidate and HMM track. In the second phase, cuts are applied on that
single candidate to reduce the background:

� Phase 1 � Selecting the MIP candidate

1. Event quality cut

2. TPC multiplicity cut

1For simplicity's sake, we exclude these regions for all runs in both MC and data samples. They reduce
the vertex-FV by 0.009m3 from 3.197m3.

33



3. Track postion cut

4. Track charge cut

5. Track momentum cut

� Phase 2 � Cuts on the MIP candidate

6. MIP PID cut

7. Track drift direction cut

8. Vertex position cut

9. T0 quality cut

10. Likelihood match cut

11. TPC cleanliness cut

The result is a selection of events in the �ducial volume, where the negative track with
the highest momentum is a muon or pion.

2.2.3. Selecting the MIP candidate

2.2.3.1. Event quality and TPC activity

The �rst basic cut demands that the event passes the default ND280 event quality criteria.
Then the event is checked for it containing any TPC tracks at all.

2.2.3.2. Track position and orientation

For most tracks that start in the TPCs, no reliable time-of-�ight information is available2.
The reconstructed orientation of the tracks, i.e. forward- or backward-going, is thus not
reliable. That is why all tracks that start or end in the track-FV are considered as
possible MIP candidates. All tracks that end in the track-FV are �ipped (direction and
charge), so they start in the TPC by de�nition and the selection algorithms do not have
to consider the separate cases of ending or starting tracks. The tracks must not start
and stop in the track-FV, as a MIP that is energetic enough to be identi�ed (see below)
would not be stopped by the TPC gas.

2.2.4. Cuts on the MIP candidate

2.2.4.1. MIP identi�cation

Among the remaining tracks, the highest momentum one is chosen as the HMM candidate
and de�nes the vertex candidate. The HMM is then checked for compatibility with the
MIP hypothesis. The Particle Identi�cation (PID) is based on the speci�c energy loss of
charged particles in matter. When a particle traverses a medium it loses energy. That

2A valid time-of-�ight measurements requires the track to cross at least two distant scintillation detec-
tors.
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Figure 2.2.: Particle Identi�cation. The expected and measured speci�c energy losses of
di�erent particles from neutrino interactions in the solid detectors [27].

energy loss depends on the particle's charge, mass and momentum (see Fig. 2.2). The
TPCs can measure both the energy loss (i.e. the ionisation of the gas along the track)
and the momentum (i.e. the curvature of the track in th magnetic �eld). The measured
energy loss is compared to the expectations of four particle hypotheses: electron, muon,
pion, and proton. Each hypotheses de�nes a �pull� P towards that hypothesis:

Pe/µ/π/p =
dE/dx|measured − dE/dx(p)e/µ/π/p

σ(dE/dx|measured − dE/dx(p)e/µ/π/p)
,

with the expected uncertainty of the energy loss measurement σ(· · · ). These pulls are
combined into a likelihood of the particle being of a particular type:

Le/µ/π/p =
exp(P 2

e/µ/π/p)∑
i exp(P 2

i )

Particles are assumed to be MIPs when they pass one of the following criteria:

� (p > 500 MeV/c) ∧ (Lµ > 0.05)

� ((Lµ + Lπ)/(1− Lp) > 0.8) ∧ (Lµ > 0.05)

� Reconstructed track reaches SMRD

The �rst two points correspond to the standard muon PID criteria also used for the solid
detector analyses. As can be seen in Fig. 2.2, muons and pions cannot be distinguished
well. The PID should thus be considered a MIP selection rather than a muon selection.
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Figure 2.3.: Purity vs momentum. The cut at preco = 150 MeV/c is motivated by the
in�uence on the e�ciency as shown in Fig. 2.4. This plot uses a signal
de�nition without restricted momentum phase space.

A reliable dE/dx measurement requires su�ciently long tracks in the TPC. Interactions
close to the edge of the TPC are unable to provide this. Fortunately, forward or backward
going tracks can still be identi�ed in the neighbouring TPCs. This is not possible for
high-angle tracks. These can be recovered if they reach the SMRD. As the name implies
(Side Muon Range Detector), it can be used to identify MIPs since most other particles
should be stopped in the calorimeters.
Particle identi�cation in the TPCs does not work reliably for particles with a momen-

tum p < 100 MeV/c. Figure 2.3 shows the achieved purities for di�erent reconstructed
momentum bins. The purity seems to increase steadily between 0 and 300 MeV/c. A
cut at 300 MeV/c is not desirable though, because it directly cuts into interesting sig-
nal regions at low momenta. The e�ects of di�erent cuts on the selection e�ciency
can be seen in Fig. 2.4. Even without any momentum cut, the e�ciency drops around
preco = 150 MeV/c. This is where the energy loss predictions for MIPs and electrons
cross. A seizable fraction of MIPs is discarded because they could as well have been
an electron. Taking this �electron valley� into account, a cut at preco = 150 MeV/c
seems the most natural choice. It ensures a su�cient e�ciency above 200 MeV/c and
removes the events left of the electron valley, which would count as background when
the phase-space-restricted signal is de�ned as the region right of the valley.
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Figure 2.4.: E�ciency vs momentum in the TPC MC Neut sample. The e�ect of di�erent
cuts on the reconstructed momentum is shown. The dip in e�ciency around
ptrue = 150 MeV/c appears, because the speci�c energy losses of MIPs and
electrons are almost indistinguishable in that momentum region. This plot
uses a signal de�nition without restricted momentum phase space.
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Figure 2.5.: Purity vs cosine of drift angle cos(θx). Tracks parallel to the TPC drift direc-
tion cannot be reconstructed reliably. The contamination with background
increases. MIP candidates with | cos(θx)| > 0.9 are discarded.

2.2.4.2. Drift direction consideration

The reconstruction in the TPCs does not work completely isotropically. Tracks that are
close to parallel to the drift direction have a higher chance of being misreconstructed.
To �nd a good cut value, the drift direction cut was disabled to see the e�ciencies and
purities for di�erent angles (see Fig. 2.5 and Fig. A.1 in the appendix). In the �nal
selection, MIP candidates with | cos(θx)| > 0.9, where θx is the angle between the track's
start direction and the TPC drift direction, are removed.

2.2.4.3. Vertex position

Two cases have to be distinguished: In events with only one reconstructed track, the
track's starting position is identical to the vertex position. In events with more than one
reconstructed track, the position of the main track and the vertex are di�erent. In this
case, the vertex is de�ned by the junction, i.e. the collection of hits in the detector where
multiple tracks meet.
The junction is an extended object, but the true vertex position is a single point in

space. Without any additional information, the junctions position is reconstructed by cal-
culating its center of charge, i.e. the charge-weighted average position of the constituent
hits. This reconstructed position can vary considerably from the true vertex position,
especially for asymmetric junctions. A more precise vertex position is determined by
combining the information available about the junction and the tracks. If there is only
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Figure 2.6.: Vertex position extrapolation. If there is only one track with p > 100 MeV/c,
the center of charge Q is projected onto that track. If the extrapolated
position E falls outside of the junction extent, it is shifted along the track to
the limiting side (a). If there are two or more tracks with p > 100 MeV/c, E
is taken from the position of closest approach of the two highest momentum
tracks (b).

one track with p > 100 MeV/c (and one or more additional tracks below this threshold3),
the center of charge of the junction is projected onto the linear extrapolation of that track
and used as the vertex position (see Fig. 2.6(a)). Should that extrapolation fall outside
of the limits of the junction extent in any of the three coordinate axes, the track is only
extrapolated to the limiting side. If there are two or more tracks with p > 100 MeV/c,
the vertex position is determined by the position of closest approach between the linear
extrapolations of the two highest momentum tracks (see Fig. 2.6(b)).
An event passes the vertex �ducial volume cut, if the vertex position lies within the

vertex-FV as described in Section 2.2.1. The vertex-FV is chosen to be smaller than the
track-FV, because in general the vertex position and the HMM track starting position
are di�erent. Since one �rst has to �nd a MIP candidate to determine the vertex and
its position, the larger track-FV ensures that no signal events are lost because of the
distance between track and vertex.
The vertex-FV was optimised in a study of the e�ciencies and purities at di�erent

positions in the detector with the actual vertex-FV cut disabled (see purities in Fig. 2.7
through Fig.2.9, e�ciencies in Fig.A.2 through Fig.A.4 in the appendix). For this study,
the signal was de�ned as all MIP events within the track-FV rather than the vertex-FV.
Cut values were chosen as to minimise edge e�ects while maximizing the total FV.

2.2.4.4. T0 quality cut

TPCs use timing information to reconstruct a track's position along the drift direction.
The orientation of the track is reconstructed from the relative timing of the charge
arriving at the read-out area. The absolute position of the track inside the TPC requires

3The acceptance threshold of 150MeV/c only applies to the HMM candidate, not to the other tracks
at the vertex.
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Figure 2.7.: Purity vs vertex x-position. Cut thresholds are shown as vertical red lines.
The purity decreases close to the central cathodes (|x| = 0) and towards the
micromegas readout planes at high |x|.

Figure 2.8.: Purity vs vertex y-position. Cut thresholds are shown as vertical red lines.
The purity decreases towards the TPC walls at high |y|.
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Figure 2.9.: Purity vs vertex z-position. Cut thresholds are shown as vertical red
lines. The purity decreases around the vertical gap between the micromegas
columns at z = 0 and towards the TPC walls at high |z|.

an external start time T0, though. This T0 is provided by the scintillating detectors
around the TPCs.
A wrong T0 shifts a reconstructed track in the drift direction inside the TPCs. This

can lead to tracks erroneously being reconstructed inside the �ducial volume. The T0
is reconstructed by matching the TPC tracks to the hits of the surrounding scintillation
detectors (for details see [28]). If the T0 is correct, one can expect a particle track to
actually include hits in the detector that provided the T0. If there is no such track
connected to the vertex, the T0 is considered to be wrong and the event is discarded.

2.2.4.5. Likelihood match

TREx implements the following method to analyse whether two tracks are actually caused
by the same particle [28]:

1. Fit two independent helices to the two paths (i.e. hit collections) and calculate the
log-likelihood of the hit distribution under the two-track hypothesis, ln(L11 · L22).

2. Extrapolate the two helices to the respective other track. This yields two likelihoods
of the hit distributions under the one-track hypotheses, helix one extrapolated onto
track two, L12, and helix two extrapolated onto track one, L21.

3. Compare the total likelihoods of the two-track hypothesis with the one-track hy-
potheses. Reject the one-track hypothesis if the log-likelihood di�erence is above a
certain threshold ∆ ln(L) = ln(L11 · L22)− ln(max(L11 · L12, L22 · L21)) > c.
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Figure 2.10.: Likelihood match cut. Events with log10(∆ ln(L)) < 2.5 are excluded for
the gas interaction selection and selected for the delta-ray control sample
(see Section 2.4.3). The stacked histogram shows Neut and the fake data
is Genie. The Neut data is scaled to match Genie's POT.

At a true gas vertex, no two tracks should match each other except for the case of two
particles being emitted back-to-back with identical momenta (in the detector frame)
and opposite charges. Since the neutrino interaction events are usually boosted in the
detector frame, this is a rare occurrence. For fake vertices caused by delta-rays on the
other hand, the two �halves� of the through-going particle should match one another.
Therefore a cut on the minimum log-likelihood di�erence between the HMM and any

of the other tracks at the vertex is applied (see Fig.2.10). If any tracks are matched with
a log-likelihood di�erence below 102.5 = 316.2, i.e. it seems like the two tracks belong to
the same particle, the event is discarded. The cut value was chosen by disabling the cut
and studying the purities for di�erent likelihood match values (see Fig. 2.11). A more
aggressive cut could lead to model dependent e�ciencies, since the signal distribution
of the likelihood di�erences directly depends on the model and its predicted kinematic
distributions (see Fig. 2.12).

2.2.4.6. TPC cleanliness

A lot of out-of-�ducial-volume (OOFV) events are accompanied by other particles in the
TPC that show no direct connection to the vertex. Additional activity in the vertex'
TPC thus indicates that the event is caused by the �debris� of OOFV events instead of
a true gas interaction event. To quantify this activity, the number of passing-by tracks
is counted.

42



Figure 2.11.: Purity vs likelihood match.

A track is considered as passing-by the vertex if the following conditions are met (see
Fig. 2.13):

� The track has hits in the same TPC as the vertex.

� The track's momentum is at least 100 MeV/c.

� One can de�ne planes at the start and end position of the track, each perpendicular
to the tracks direction at that point. For a passing-by track, the vertex has to lie
in between these two planes, minus a safety margin of 100 mm. This safety margin
prevents tracks from messy gas interaction vertices from vetoing their own vertex.
The start and end positions do not have to lie inside the TPC.

The event is discarded if there is at least one passing-by track present (see Fig. 2.14).

2.3. Performance

2.3.1. E�ciency and purity

The cut performance is shown in Fig. 2.15. Using the restricted, outer (inner) signal
de�nition, we achieve an e�ciency of ∼ 17% (∼ 32%) and a purity of ∼ 26%. The purities
and e�ciencies for the di�erent samples are summarised in Tab. 2.3. The e�ciencies are
slightly lower for Genie than for Neut, as can be seen in the high-statistics, TPC-only
samples. The purities also seem to be lower in the Genie samples than in the Neut
samples, but the di�erence is hardly statistically signi�cant. The numbers do include
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Figure 2.12.: Signal likelihood match. The distribution of signal events depends on the
predictions of the generators. Neut (stacked histogram) and Genie (fake
data) start to di�er for values log10(∆ ln(L)) > 5, but it cannot be excluded
that other models would show larger di�erences at lower values as well. The
cut level of 2.5 is a conservative choice to avoid possible model dependencies.
The Neut data is scaled to match Genie's total number of events, since there
is no POT information in the signal samples.

Safety margin

Vertex

Passing area

Passing-by track

Figure 2.13.: Sketch of a passing-by track.
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Figure 2.14.: Cut on number of passing-by tracks in the vertex-TPC. Events with at least
one passing-by track in the same TPC as the vertex are discarded for the
gas interaction selection. They are used for the TPC cleanliness control
sample (see Section 2.4.1). The stacked histogram shows Neut and the fake
data is Genie. The Neut data is scaled to match Genie's POT.
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Figure 2.15.: Cut performance � outer FV. Cuts up to and including the momentum-
cut (Phase 1) are done on a list of possible candidates tracks. An event is
dropped only if no candidate remains after a cut. Later cuts (Phase 2) are
applied to the single HMM and vertex candidate de�ned by the remaining
candidate of Phase 1 with the highest momentum (see Section 2.2.2). The
considerable drop in e�ciency at the last cut is caused by the fact that the
vertex-FV makes up only about 50% of the track-FV that de�ned the outer
signal events.
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Table 2.3.: Restricted e�ciencies and purities for di�erent samples. See Section 2.1 for
sample descriptions. The quoted errors are statistical only. The values do
include the e�ects of the ad hoc weight (see Section 2.5.1). The weights of the
�ux, target mass uncertainties/corrections were disabled for this evaluation,
as they would a�ect true and reconstructed events in the same way, thus
having no e�ect on the e�ciency. See Section 2.5.2 for a discussion of the
systematic uncertainties.

Sample E�ciency / [%] Purity / [%]
inner outer outer

TPC MC Neut 32.23 ± 0.28 16.67 ± 0.16 -
TPC MC Genie 31.06 ± 0.27 16.39 ± 0.15 -

Run 2 Air MC Neut 34.7 ± 2.3 18.0 ± 1.3 26.1 ± 1.8
Run 2 Air MC Genie 32.2 ± 2.3 17.9 ± 1.4 29.7 ± 2.1
Run 2 Water MC Neut 32.7 ± 1.9 17.6 ± 1.1 31.7 ± 1.8
Run 2 Water MC Genie 34.7 ± 2.1 17.5 ± 1.1 29.0 ± 1.7
Run 3 Air MC Neut 31.9 ± 1.2 16.39 ± 0.68 28.8 ± 1.1
Run 3 Air MC Genie 31.9 ± 1.2 16.93 ± 0.70 26.9 ± 1.0
Run 4 Air MC Neut 32.4 ± 1.1 16.57 ± 0.63 28.5 ± 1.0
Run 4 Air MC Genie 31.0 ± 1.2 16.72 ± 0.67 25.30 ± 0.96
Run 4 Water MC Neut 32.7 ± 1.2 16.65 ± 0.64 28.1 ± 1.0
Run 4 Water MC Genie 32.6 ± 1.2 17.33 ± 0.67 27.50 ± 0.99

Total POT scaled Neut MC 32.57 ± 0.61 16.76 ± 0.34 27.08 ± 0.51
Total POT scaled Genie MC 32.14 ± 0.63 17.11 ± 0.36 25.61 ± 0.50

the e�ects of the �ad hoc� weight, which is introduced in Section 2.5.1. See Section 2.5.2
for a discussion of the total e�ciency and purity in the �nal selection including systematic
uncertainties.

2.3.2. Background categories

The selected background from inside the �ducial volume is very small. It consist of
neutrino interactions that happened inside the track-FV, but which do not produce a
MIP as highest momentum negative track. They can be further split into events with an
electron as primary track, any other negative particle as primary track (very rare), and
events with no negative track at all.
The overwhelming majority of background events stems from interactions that hap-

pened outside the �ducial volume (OOFV). Five categories of OOFV background have
been identi�ed (see Fig. 2.16):

� delta-ray induced

� timing related
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Drift
(a)

(b)

(c)

(d)

Figure 2.16.: Main OOFV background modes. A delta-ray emitted from a through going
particle can be misidenti�ed as vertex (a). If (a part of) a track is matched
with a wrong hit for the T0 assignment, it is shifted along the TPC drift
direction. This can lead to track ends erroneously being reconstructed in
the �ducial volume (b). A particle decaying in the TPC can look like a
2-track vertex (c). Multiple particles entering the TPC coincidentally can
confuse the reconstruction and cause fake vertices (d).

48



� particle decay/stop

� coincident particles

� other

The delta-ray induced background is caused by delta-ray junctions that are misidenti�ed
as gas interaction vertices. The timing related background is caused by a failure to
determine the correct T0 of a track in the TPC. This causes either the main track to
be shifted into the �ducial volume, or a broken track to be shifted away from the vertex
candidate, preventing a match and thus rejection. The particle decay/stop background
is caused by particles stopping in the TPC (and thus looking like a track starting in the
FV) or decaying there, causing a fake vertex to be found.
Coincident particles can also confuse the reconstruction. If another particle enters

the TPC within a distance of 5 cm or less from the HMM candidate, it is counted as
coincident. All background that cannot be assigned to one of these four categories is
counted as �other� background.
Detailed listings of the selection compositions can be found in the appendix: Ta-

ble A.1 shows the event composition of the main selection and the control samples (see
Section 2.4). Table A.2 shows the reaction modes of the events in the �ducial volume.
Only between 3.5% and 4% of the selected events in the �ducial volume are not charged-
current muon-neutrino events. Table A.3 shows the target nuclei of the di�erent samples
and Tab. A.4 the sources of the OOFV background. Please note that the numbers de-
scribing the OOFV background do not include the e�ects of the �ad hoc� weight described
in Section 2.5.1.

2.3.3. Kinematic distributions

The momentum and angular distributions of the main selection can be seen in Fig. 2.17
and Fig. 2.18. Agreement between the two generators is very good. Figure 2.19 shows
the reconstructed track multiplicity at the vertex. The multiplicity smearing matrix can
be seen in Fig. 2.20. Even high multiplicities are reliably reconstructed as such.
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Figure 2.17.: Main selection momentum distribution. The stacked histogram shows Neut
with total detector and �ux uncertainties and the fake data is Genie with
statistical errors. The Neut data is scaled to match Genie's POT. The
values do not include the e�ects of the ad hoc weight (see Section 2.5.1).
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Figure 2.18.: Main selection angular distribution w.r.t the assumed neutrino direction.
The stacked histogram shows Neut with total detector and �ux uncertainties
and the fake data is Genie with statistical errors. The Neut data is scaled
to match Genie's POT. The values do not include the e�ects of the ad hoc
weight (see Section 2.5.1).
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Figure 2.19.: Main selection track multiplicity. The stacked histogram shows Neut with
total detector and �ux uncertainties and the fake data is Genie with statis-
tical errors. The values do not include the e�ects of the ad hoc weight (see
Section 2.5.1).

Figure 2.20.: Signal track multiplicity migration in the �TPC MC Neut� sample. A true
multiplicity of −1 denotes events outside the track-FV.
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2.4. Control samples

The amount of OOFV background in the �nal selection is very high. Since this is the
�rst analysis of interactions in the TPCs ever, it is not clear how well that background is
modelled by the detector simulation. To constrain the background in the main selection
with data, three control samples are de�ned:

� The TPC cleanliness control sample

� The timing control sample

� The delta-ray control sample

Their compositions can be seen in Tab.A.1.
The control samples are disjoint4 modi�cations of the main selection. Except for the

changes described below, they use exactly the same cuts as listed in Section 2.2.2.

2.4.1. The TPC cleanliness control sample

The TPC cleanliness control sample (or Passing-by CS) is de�ned by inverting the TPC
cleanliness cut (see Section 2.2.4.6), so there must be at least one track in the vertex' TPC
passing by the vertex. It contains almost no signal events and its composition is closest to
the compostition of the remaining background in the main selection (see Tab.A.1). The
momentum distribution can be seen in Fig.2.21, the cos(θ) and multiplicity distributions
in Fig.A.5 and Fig.A.6 in the appendix.

2.4.2. The timing control sample

The timing control sample (or Timing CS) is de�ned by inverting the T0 quality cut (see
Section 2.2.4.4 and ignoring the TPC cleanliness cut (see Section 2.2.4.6). It contains
almost no signal events and is enriched in out-of-�ducial-volume events that were caused
by some sort of timing mismatch between the TPCs and surrounding detectors. The
momentum distribution can be seen in Fig.2.22, the cos(θ) and multiplicity distributions
in Fig.A.7 and Fig.A.8 in the appendix.

2.4.3. The delta-ray control sample

The delta-ray control sample (or Delta-ray CS) is created by inverting the likelihood-
matching cut (see Section 2.2.4.5) and ignoring the T0 quality and TPC cleanliness cuts
(see Section 2.2.4.4 and Section 2.2.4.6). It contains almost no signal events and is
enriched in out-of-�ducial-volume events that were caused by delta-rays emitted from
a through-going particle, or by coincidentally entering particles that look like a single
particle entering the TPC. The momentum distribution can be seen in Fig. 2.23, the
cos(θ) and multiplicity distributions in Fig.A.9 and Fig.A.10 in the appendix.

4An event can only pass the selection criteria of either the main selection or one of the control samples.
By construction, it is impossible for an event to pass two or more selections.
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Figure 2.21.: Passing-by CS momentum distribution. The stacked histogram shows Neut
with systematic detector and �ux uncertainties and the fake data is Genie
with statistical errors. The Neut data is scaled to match Genie's POT. The
values do not include the e�ects of the ad hoc weight (see Section 2.5.1).

2.5. Data results

2.5.1. Control samples

The selection has been developed �blind�, i.e. using only Monte Carlo simulations to
develop and optimise the cuts. Data unblinding, i.e. the process of looking at real data
for the �rst time, is done in two steps: �rst with the control samples, and then � only
after making sure the OOFV background is understood su�ciently well � with the main
selection. Comparisons of real data and Monte Carlo momentum distributions in the
control samples can be seen in Fig. 2.24 through Fig. 2.26, with angle and multiplicity
distributions shown in Fig.A.11 through Fig.A.16. The stacked histogram consists of the
Neut samples (including the Sand MC Neut sample), scaled to the data's POT values.
The black points are the real data.
It is obvious that there is a huge di�erence between data and MC. The overall number

of data events is larger by a factor of 2. This e�ect is much stronger for 1-track events than
for n-track events, i.e. events with a proper junction as the vertex. A closer investigation
of this di�erence shows that it not only depends on the track multiplicity (1-track vs
n-track), but also on the main track's momentum, orientation on the micromegas plane,
and x-position (see Tab.A.5 and Tab.A.6).
There are a few possible explanations for this data-MC discrepancy. It is possible

that the MC is simply missing an important background process. Atmospheric muons
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Figure 2.22.: Timing CS sample momentum distribution. The stacked histogram shows
Neut with systematic detector and �ux uncertainties and the fake data is
Genie with statistical errors. The Neut data is scaled to match Genie's
POT. The values do not include the e�ects of the ad hoc weight (see Sec-
tion 2.5.1).
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Figure 2.23.: Delta-ray CS momentum distribution. The stacked histogram shows Neut
with systematic detector and �ux uncertainties and the fake data is Genie
with statistical errors. The Neut data is scaled to match Genie's POT. The
values do not include the e�ects of the ad hoc weight (see Section 2.5.1).

Figure 2.24.: Unblinding Passing-by CS momentum. The stacked histogram shows Neut
with total detector and �ux uncertainties and the data is shown with sta-
tistical errors. The Neut data is scaled to match the real data's POT.
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Figure 2.25.: Unblinding Timing CS momentum. The stacked histogram shows Neut with
total detector and �ux uncertainties and the data is shown with statistical
errors. The Neut data is scaled to match the real data's POT.

Figure 2.26.: Unblinding Delta-ray CS momentum. The stacked histogram shows Neut
with total detector and �ux uncertainties and the data is shown with sta-
tistical errors. The Neut data is scaled to match the real data's POT.
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Figure 2.27.: Unblinding angle on micromegas plane. Combined control samples, 1-track
events with momentum > 1000 MeV/c. The stacked histogram shows Neut
with total detector and �ux uncertainties and the data is shown with sta-
tistical errors. The Neut data is scaled to match the real data's POT.

come to mind, as those are completely missing from the MC samples. Estimates of the
cosmic background contribution (see Section 2.6.3.2) make it seem unlikely that this is
the explanation for this huge di�erence, though. Also, if the missing BG was primarily
cosmic background, its absolute contribution would clearly peak at vertical tracks. This
is not the case.
Instead, the observed dependencies point towards an incorrectly modelled track recon-

struction failure in the TPCs. Especially high momentum tracks parallel to the pad rows
or columns are missing. This becomes more pronounced for high momenta, i.e. very
straight tracks (see Fig. 2.27). Together with the dependence on the drift distance in
the TPCs (i.e. the x-position) and the fact that 1-track events are more a�ected than
n-track events, it seems like the problem might be related to the widths of tracks on
the micromegas plane. We know from previous studies, that the electron drift in the
TPCs is not modelled perfectly and multiple corrections have been implemented already
for Production 7 of the T2K software stack, including �xes to the di�usion parameters
[Di�usion], �eld distortions, and micromegas alignment [Distortion].
On �rst glance, a TPC reconstruction uncertainty in the order of 100% seems unlikely,

given that the TPCs have been used extensively in the FGD and P0D analyses and
nothing of this magnitude has emerged before. The known uncertainties are actually
in the right order of magnitude though. In all P0D and FGD analyses so far, only
correctly reconstructed TPC tracks were of interest. In general, the TPC performance
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has been very good and reconstruction e�ciencies were high (very close to 100%) with
low uncertainties in the order of 1% or less.
However, the OOFV background in this analysis is exactly caused by the few instances

where things go wrong, as reconstruction failures of through-going particles can look like
vertices in the �ducial volume. The selection reduces the number of events from all
events that show TPC activity to the ones that end up in the �nal selections by a factor
of ∼ 500. This means an (absolute) uncertainty of 1% in the failure rate is more than
enough to cover the observed di�erences:

σ(failure rate)

failure rate
≈ 1%

1/500
= 5 > 2.

Similarly, the given implementations of the TPC systematics are focused on modify-
ing correctly reconstructed tracks (e.g. by momentum smearing and e�ciency weights)
rather than dealing with how the reconstruction failures are a�ected. The present im-
plementations can thus not cover the di�erences.
All of this is only conjecture, though, and more in-depth studies are needed to �nd

the real reason of the data-MC discrepancy. Only then can the di�erence be �xed in the
detector simulation. It might even be possible to prevent the reconstruction failure in
the �rst place by improving the reconstruction software. This is not possible within the
time limits of this �rst pass of the analysis. As a stop-gap solution for this problem, we
decided to implement an �ad hoc weight� of the simulated OOFV background that makes
it compatible with the real data in the control samples. The mean weights are binned
according to Tab.A.5 and Tab.A.6, except for events with momenta < 500 MeV/c. For
those events the binning in φx was removed since the dependence seems to be weak. We
assume an uncertainty of 50% of the applied weights, i.e. they are varied according to
a normal distribution with expectation value µ = Ndata/NMC and standard deviation
σ = µ/2. Bins with no data events are assigned a mean weight of 1.0.
The results of these ad hoc weights can be seen in Fig. 2.28 through Fig. 2.30, and

Fig.A.17 through Fig.A.22. Despite the weights not distinguishing between the di�erent
control samples, they are able to ��x� the data-MC di�erence in all three samples. This
suggests that the OOFV background in the main selection is improved accordingly. The
weight is only applied to OOFV events, not to events with the true vertex in the TPC
�ducial volume. If the cause of the discrepancy really is a reconstruction failure in the
order of 1%, its in�uence on the true signal events is already covered in the other detector
systematics.

2.5.2. Main selection

Comparisons of real data and Monte Carlo distributions in the Main Selection can be
seen in Fig. 2.31 through Fig. 2.33. The stacked histogram consists of the Neut samples,
scaled to the data's POT values. Figure A.23 through Fig. A.25 in the appendix show
the same data with Genie Monte Carlo as comparison. Since there is no sample of sand
muons generated with Genie available, the Sand MC Neut sample is used in both cases
(see Section 2.1).
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Figure 2.28.: Unblinding Passing-by CS momentum with ad hoc weights. The stacked
histogram shows Neut with total detector and �ux uncertainties and the
data is shown with statistical errors. The Neut data is scaled to match the
real data's POT.

Both Neut and Genie predict more overall events than present in data:

Ndata −NNeut

NNeut
=

370− 445.0

445.0
= −16.9%

Ndata −NGenie

NGenie
=

370− 421.1

421.1
= −12.1%.

This is completely compatible within the total systematic uncertainty of 17.7% (see
Section 2.6.8) and the statistical uncertainty of 1/

√
Ndata = 5.2%.

The restricted, outer MIP purities (see Section 2.2.1) in Neut and Genie are 26.9%
and 25.4% respectively. The content of non MIP events in the �ducial volume is negli-
gible, so the remaining events can be assumed to be OOFV. Assuming a worst case of
100% correlation between the ad hoc weights, the relative uncertainty on the number of
background events is 50%:

NOOFV,Neut = 325± 163,

NOOFV,Genie = 313± 157.

All other error sources as well as the di�erence between the generators are negligible in
comparison. An estimate of the purity uncertainty is obtained by varying the number of
OOFV events but keeping the number of signal events constant:

NMIP

NMIP +NOOFV
= (26+15

−7 )%.
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Figure 2.29.: Unblinding Timing CS momentum with ad hoc weights. The stacked his-
togram shows Neut with total detector and �ux uncertainties and the data
is shown with statistical errors. The Neut data is scaled to match the real
data's POT.

Varying the number of OOFV events, but keeping the total number of events constant,
yields a purity that is compatible with 0.
The expected restricted outer (inner) e�ciencies in Neut and Genie are 16.8% (32.6%)

and 17.1% (32.1%) respectively. All systematics that a�ect the reconstruction of signal
events are well below the level of 10%5. We can thus conservatively apply this error to
the e�ciency:

εouter = (17.0± 1.7)%,

εinner = (32.4± 3.2)%.

The extraction of a CCinc cross section from this selection is shown in Chapter 3.

2.5.3. Outlook

The main advantage of using the TPCs as active target is the low detection threshold
compared to solid state detectors. This will be especially useful to investigate the kine-
matic distributions of �secondary� particles emitted from the vertex, i.e. particles other
than the primary MIP. Due to time constraints, the systematic uncertainties of detecting
and characterising these particles have not been su�ciently investigated for an inclusion
in the analysis. Monte Carlo generator comparisons can show a few interesting venues
of future development, though.

5Evaluated with the dedicated signal MC samples.
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Figure 2.30.: Unblinding Delta-ray CS momentum with ad hoc weights. The stacked
histogram shows Neut with total detector and �ux uncertainties and the
data is shown with statistical errors. The Neut data is scaled to match the
real data's POT.

We look at �pure� proton events, which we de�ne as events that yield exactly one
identi�ed MIP (from the main selection) and one or more identi�ed protons. Tracks
are identi�ed as protons, if the TPC PID likelihood of being a proton is > 90%. This
simple criterion yields a very �at proton detection e�ciency in the momentum range of
200 MeV/c up to 800 MeV/c (see Fig. 2.34). Above 800 MeV/c, the expected dE/dx of
protons crosses that of the other particles. Below 200 MeV/c, the high energy loss might
lead to saturation e�ects in�uencing the reconstruction and PID.
Figure 2.35 shows a comparison of Neut and Genie predictions for the distribution of

the largest proton momentum in these events. Interestingly, they start to show shape dif-
ferences for momenta just below the sensitivity threshold of previous solid-state-detector
analyses of ∼ 450 MeV/c. Figure 2.36 shows the distribution for the combined control
samples. Here Neut and Genie agree very well with each other. It is noteworthy that
the purities of the �pure proton� selections are much higher than in the general selection.
These selections thus promise to be quite useful despite their low number of events.
The ArgoNeuT collaboration has detected interesting events with back-to-back proton

pairs in the laboratory frame [31]. Figure 2.37 shows the prediction of the angle between
the two protons when demanding exactly two protons in the �pure� sample. Figure 2.38
shows the same for the combined control regions. Scaling the Monte Carlo POT to the
amount of real data, both Neut and Genie predict only about 0.5 events with back-to-
back protons (cos(γ) < −0.95), so �nding 3 or 4 of such events would already correspond
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Figure 2.31.: Unblinding Main Selection momentum (vs Neut). The stacked histogram
shows Neut with total detector and �ux uncertainties and the data is shown
with statistical errors. The Neut data is scaled to match the real data's
POT.
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Figure 2.32.: Unblinding Main Selection angular distribution w.r.t. the assumed neutrino
direction (vs Neut). The stacked histogram shows Neut with total detector
and �ux uncertainties and the data is shown with statistical errors. The
Neut data is scaled to match the real data's POT.
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Figure 2.33.: Unblinding Main Selection multiplicity (vs Neut). The stacked histogram
shows Neut with total detector and �ux uncertainties and the data is shown
with statistical errors. The Neut data is scaled to match the real data's
POT.
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Figure 2.34.: Single proton e�ciency in TPC MC Neut sample. The e�ciency
is calculated as the ratio of reconstructed events with exactly one
true proton that have the proton successfully identi�ed as such:
N(truth: 1MIP+1p, reco: 1MIP+1p)/N(truth: 1MIP+1p, reco: 1MIP+1x)
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Figure 2.35.: Primary proton momentum. The stacked histogram shows Neut with total
detector and �ux uncertainties and the fake data is Genie with statistical
errors. The Neut data is scaled to match Genie's POT.

Highest proton momentum / [MeV/c]
100 200 300 400 500 600 700 800 900 1000 1100

#e
ve

nt
s/

(1
00

 M
eV

/c
)

0

100

200

300

400

500
Integral  1380.97 Integral  1333.33Integral  1333.33

Figure 2.36.: Primary proton momentum in the combined control regions. The stacked
histogram shows Neut with total detector and �ux uncertainties and the
fake data is Genie with statistical errors. The Neut data is scaled to match
Genie's POT.
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Figure 2.37.: Proton-proton angle. The stacked histogram shows Neut with total detector
and �ux uncertainties and the fake data is Genie with statistical errors. The
Neut data is scaled to match Genie's POT.

to a (statistical) signi�cance of about 3σ.
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Table 2.4.: Weights applied as corrections for relative masses of gases in the TPC gas
mixture.

Nucleus Correction factor

Ar 0.9555
H 1.4450
C 1.5787
F 2.1133

2.6. Systematic uncertainties

Most of the systematic uncertainties that apply to this selection have been evaluated by
Edward Larkin in his PhD thesis[28]. Because of their importance, they are repeated
here in their entirety. Some systematics have been added and the implementation of
others were modi�ed to adapt to the evolving requirements of the analysis.

2.6.1. Corrections

Before systematic uncertainties are propagated, there are several corrections applied to
either data or Monte Carlo to account for known and understood di�erences between
real data and simulation. The gas mixture and proton range corrections have been newly
developed for this analysis. All other corrections have been implemented for previous
ND280 analyses and are used unchanged.

2.6.1.1. Gas mixture correction

During the course of the gas interaction analysis, a bug in the simulation of the gas
mixture was discovered causing incorrect relative proportions of argon, isobutane and
tetra�uoromethane leading to incorrectly simulated total target masses in the TPC gas
volume. The gas mixture in the TPCs consists of Ar, CF4, and iC4H10 with the volume
fractions of 95%, 3%, and 2% respectively. The detector model used in Production 6
used mass fractions with the same values instead. To correct this, each simulated event
with an interaction in the TPC gas volume is given a weight according to the true identity
of the target nucleus in simulation. These corrections are shown in Tab. 2.4. There are
substantial corrections to the relative masses of hydrogen, carbon and �uorine and a 5%
reduction in the simulated mass of argon.
Additionally, the Monte Carlo gas density (and thus the target mass) must be matched

to reality. The simulation assumes normal temperature and pressure (NTP) conditions,
while the real temperature and pressure in the TPCs are subject to change due to the
weather. The mean temperature and pressure in the TPCs was estimated from slow
control data of the corresponding sensors (see Tab. 2.5). These numbers are then used
to calculate the ratio of mean gas density in MC and real data:

pNTP
pMIDAS

TMIDAS

TNTP
= 0.994± 0.026.
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Table 2.5.: Mean temperature and pressure in MC and data. The range describes the
yearly variation and the spread of the observed di�erences between sensors.

T ±∆Trange±∆Tspread p ±∆prange±∆pspread

MC (293.15± - ± - ) K (1013± - ± - ) mbar
Data (290.65± 2.5 ± 3.0 ) K (1010± 20 ± 10 ) mbar

The mean density of the gas target is underestimated in the MC by a factor of 0.994.
This is corrected by a weight applied to all MC neutrino interactions in the gas vol-
ume. The uncertainty of 2.6 % on this weight is propagated as a systematic error (see
Section 2.6.3.1). This is a rough estimate of the average density. The correct way to
evaluate it would involve calculating the POT-weighted mean temperature and pressure.
The spread of the sensors could probably also be reduced by calibrating them correctly6.
Since the uncertainty of this rough estimate is already well below the �ux uncertainty, it
was decided that this is not necessary at this point, though.

2.6.1.2. Proton range correction

A bug in the default photo absorption ionization model (PAI) used in the detector simu-
lation causes low-momentum protons to deposit much less energy in the TPCs in Monte
Carlo than in reality. A correction is applied to proton ranges at the analysis level to
resolve this. The correction reduces the physical length of tracks by moving their end
points closer to their starts. This also reduces the number of clusters the tracks are
containing and requires correcting for the lower reconstruction e�ciency for short tracks
compared to long tracks.
Figure 2.39 shows the di�erences between simulated and measured ranges for low

energy protons in argon. Also presented are the corrections which result from them.
This issue will be �xed with the upcoming Production 7 of the T2K software stack.

2.6.1.3. PID corrections

Since the PID determination is mostly unchanged from its pre-TREx implementation,
the dE

dx corrections used with the previous TPC reconstruction are still necessary. They
correct well understood limitations in the hardware, calibration and reconstruction:

� Slight corrections for data (no more than a few percent) are applied to the measured
dE
dx in each TPC. These depend on the speci�c run and subrun range.

� Monte Carlo corrections of around 1% are applied to electrons. This is to account
for a known overestimation of electron energy loss in simulation.

� Finally the expected dE
dx values used to calculate pulls are corrected to account for

unresolved inaccuracies introduced at the reconstruction stage.
6At the moment, the sensors are only used for ensuring that the detector is operating within design
parameters and they do not need a precise calibration.
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Figure 2.39.: Proton ranges in di�erent simulations (a) and the corrections which result
from them (b). The corrections are derived by taking the ratio between the
range in Geant 9.6 with the photo absorption ionisation model (PAI) and in
the Stopping Range of Ions in Matter software (SRIM) [32], and enforcing
no correction at 0 MeV/c or above 130 MeV/c. [28]

2.6.1.4. Momentum resolution corrections

As with the dE
dx corrections, the momentum resolution corrections used with the previ-

ous TPC reconstruction are still used in this analysis. The corrections are quite large,
providing an almost 40% smearing in inverse transverse momentum. They accounts for
known di�erences in momentum resolution between data and Monte Carlo.

2.6.2. Propagation of systematic uncertainties

Systematic uncertainties used in the gas interaction analysis fall into three broad cate-
gories:

� Those which are unchanged since pre-TREx analyses

� Those which are in principle unchanged but require recomputation

� Those which are completely new for the gas interaction analysis

In the �rst case, some cross checks are performed to verify the validity of the old values of
the uncertainties. In the other cases, the values are (re-)computed for the gas interaction
analysis. The general implementation of the systematics is outlined here. It covers two
classes of systematics: variations and weights (of which e�ciency-like uncertainties are
a special case). In any case, systematic variations are only applied to the Monte Carlo
events. The real data is not modi�ed.
Uncertainties based on weights only require the selection to be run once. A set of

random weights within the systematic error in question is then calculated. Variation
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based uncertainties require multiple passes of the selection with the analysis level variable
in question varied many times within its systematic error. The variation in the �nal
number of signal and background events in a given bin after the selection then gives
the total systematic uncertainty for that bin. Unless otherwise stated all sources of
uncertainty are assumed to be gaussian. Each drawing of detector properties and its
subsequent weighting and varying of events is called a �toy�. Every toy thus describes
one possible true detector.

2.6.2.1. Variations

Variation uncertainties account for the uncertainty in some variable v, for example the
track momentum. The selection is repeated multiple times, with this variable modi�ed
each time as

vt = f(v, pt), (2.1)

where v is the unmodi�ed value, vt the varied value of each toy simulation and pt a
parameter randomly drawn according to the uncertainty7 about the parameter in ques-
tion. The detailed properties of the function f depend on the nature of the variable and
uncertainty.

2.6.2.2. Weights

Weight uncertainties can be propagated without modifying the underlying event. They
simply modify the overall weight w of the event depending on some property of the event
v and a randomly drawn parameter pt,

wt = w · f(v, pt). (2.2)

Again the details of the weight calculation depend on the speci�c systematic uncertainty.

2.6.2.3. E�ciencies

Many weight uncertainties, such as the probability of reconstructing a true particle, cor-
respond to a chance for a particular event to be either completely accepted or completely
rejected. In this case, the event property v is the information of whether the event was
accepted (1) or not (0). The parameter is the assumed probability of accepting an event
(the e�ciency) in real data εdata. The weight function is then:

f(v, εdata,t) =

{
εdata,t/εMC | v = 1

(1− εdata,t)/(1− εMC) | v = 0,

where εMC is the e�ciency in the Monte Carlo.
The uncertainty � and thus the distribution of εdata,t � is ideally evaluated by the

di�erence between e�ciency in data and Monte Carlo in well understood control samples.

7The parameters are usually sampled from a normal or uniform distribution.
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The tracking e�ciency, for example, can be evaluated with a control sample of muons
traversing the whole detector. It is selected by demanding that at least two of the
three TPCs each contain exactly one track8. If those two tracks can be matched and
extrapolated to the third TPC, it means that there should be a track there. By counting
how often this third track exists, an e�ciency can be calculated in both real data and
Monte Carlo. For some gas interaction speci�c systematic uncertainties, control samples
are unavailable and we have used comparisons between nominal and modi�ed Monte
Carlo instead.

2.6.3. Event level systematic uncertainties

2.6.3.1. Gas Monte Carlo systematics

Since the density of the gas target changes over time, we have to estimate a mean
density and correct the simulated target mass (see Section 2.6.1.1). The uncertainty on
this estimate is handled as a weight systematic of all events with true vertices inside the
TPCs. The total uncertainty on the mean gas density is assumed to be 2.6 %.

2.6.3.2. Sand and cosmic muon background

It is currently not feasible to perform a robust evaluation of cosmic muon background
due to practical constraints of time and data availability. To get an idea of the expected
cosmic background we look to previous analyses. Those predicted total cosmic ray con-
tamination far below 0.1%, with a total out-of-�ducial-volume background of about 5%.
If we assume that the fraction of out-of-�ducial-volume background from cosmic rays is
the same order as for other analyses', contamination is below 1% and thus neglected.
This decision is also supported by the measured distribution of in-bunch-timing (see
Fig. 2.40). Cosmic background events would lead to a uniformly distributed baseline.
This is not observed.
We do not have a full set of simulated data for each run period for sand muons. Instead,

we have just one sample, corresponding to 11.13 × 1020 POT (about two times higher
than real data POT). We �nd 44.9 sand events passing the main selection (including ad
hoc weights), which scales to a predicted 23.0 events in the real data. These selected sand
events and their associated error are added as additional background in the analyses. The
systematic uncertainty on sand muon �ux is 10%.

2.6.3.3. Cosmic and sand muons as coincident veto tracks

Sand muons and coincident cosmic muons can cause a gas interaction event to be dis-
carded, if they produce a passing-by veto track in the same TPC as the vertex. Previous
analyses evaluated the probability of sand muon activity in TPC1 (the TPC closest to
the graphite target) to be between 0.5 % and 1.4 % per bunch (see Tab. 2.6). The rate

8Plus some additional demands, that are not important for understanding the principle of the method-
ology.
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Figure 2.40.: In-bunch timing. Background from cosmic muons would be uniformly dis-
tributed within the bunch window (∼ ±200 ns). This is not observed.

in TPC2 and TPC3 will be close to that number9. The uncertainty propagation is im-
plemented as a variation. Events are randomly assigned virtual veto tracks according to
the varied sand muon probability. Events with virtual veto track will fail the veto track
cut, even if no actual veto track is present.
The integrated �ux of �hard� cosmic muons (p > 350 MeV/c) at sea level is J2 =

(190 ± 12) m−2s−1 [33]. Assuming that the sensitive area of a single TPC is less than
A = 4 m2 in any given direction, we can estimate an upper limit for the cosmic ray rate
RC in each TPC:

RC < AJ2 = (760± 48) s−1.

The time window ∆t for a beam spill is < 8 µs. The expected number of cosmic muons
passing a TPC during a spill is thus:

NC = RC∆t < (6.08± 0.38)× 10−3.

The rate of cosmic muons being associated with a given bunch in a spill will be even
lower than that. Therefore, the e�ect of cosmic muons is neglected in this analysis.

2.6.3.4. Event pile up

The rate of selected events per spill is so low, that event pile up is entirely negligible.

9The relative change of muon �ux between the TPCs from a possible vertex before the ND280 volume
is in the order of 2× (1m/100m) = 2%.
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Table 2.6.: Sand muon probabilities in TPC1. Numbers were taken from previous anal-
yses. The uncertainties were estimated from the number of simulated events
and the di�erence of total (sand + beam) MC and data occupancy.

Run period Sand muon probability

Run1 Water 0.0051± 0.0010
Run2 Water 0.0080± 0.0011
Run2 Air 0.0099± 0.0014
Run3b Air 0.0096± 0.0010
Run3c Air 0.0108± 0.0015
Run4 Water 0.0120± 0.0010
Run4 Air 0.0138± 0.0010

2.6.3.5. Flux related systematic uncertainties

Flux related uncertainties are caused by di�erent sources: from hadron production rates
to the alignment of the beams and magnetic �elds in the focussing horns. For the gas
interaction analysis we use the same �ux uncertainties and implementation thereof as in
other ND280 analyses (see for example [34]).
As shown in Fig.2.41, hadron interactions are the dominant contributor to the system-

atic uncertainty. This is constrained with data from NA61/SHINE [35]. Other sources
of error are uncertainties over the precise pro�le and alignment of the proton beam, the
magnetic �eld and physical alignment of the focusing horns and target. These errors are
evaluated independently by varying the relevant quantity in simulation and determining
its �nal e�ect on �ux. All errors are ultimately combined into a covariance matrix binned
in neutrino energy and type. Assuming a perfect correlation between the neutrino energy
bins, the �ux uncertainty is about 10%.

2.6.4. Standard TPC variation uncertainties

There is a large degree of overlap between the variation based uncertainties of the gas
interaction analysis and those common to solid detector analyses. It was considered
acceptable to reuse existing values for these uncertainties. This is justi�ed by the close
matching of kinematic distributions between TREx and the old reconstruction, and the
fact that the underlying procedures for �tting and PID were not changed for TREx.

2.6.4.1. Momentum scale

Uncertainties in absolute momentum scale ultimately stem from uncertainties in the
measurement and calibration of the ND280 B �eld. We use the same values as pre-
TREx analyses. Altogether, the uncertainty on momentum scale is 0.57%. The scale
uncertainty is implemented as a simple variation in absolute momentum for all tracks
(partially) reconstructed in the TPC.

74



(GeV)νE
-110 1 10

F
ra

ct
io

na
l E

rr
or

0

0.1

0.2

0.3
µ

Hadron Interactions

Proton Beam Profile & Off-axis Angle

Horn Current & Field

Horn & Target Alignment

Material Modeling

Proton Number

13av1 Error

νFractional flux error at ND280 for

Figure 2.41.: T2K fractional �ux uncertainties for νµ [36]. In this analysis the T2K �ux
tuning �13av1� is used. Its total fractional uncertainty is shown by the
dashed line.

75



2.6.4.2. Momentum resolution

The distribution of the reconstructed momentum around the true value is not known
precisely. The speci�c uncertainty depends on the track's x-coordinate, but generally is
in the order of 10%.
The momentum resolution uncertainty is implemented as a variation in the di�erence

1/pt − 1/pt
true between reconstructed and true inverse transverse momentum. For each

toy experiment each track's inverse transverse momentum error (i.e. the di�erence to the
true value) is smeared by 10%. The new value is then used to calculate a new momentum.

2.6.4.3. B �eld distortion

This momentum variation is necessary because of our limited knowledge of distortions
in the ND280 magnetic �eld, which ultimately stems from our ignorance of magnetic
yoke properties. Unlike the momentum scale error, which accounts for uncertainty on
the mean �eld, this handles our uncertainty on deviations from this mean �eld.
The main correction to B �eld distortions comes from a �eld map produced by direct

measurements in the magnet. Additional corrections are derived from measurements us-
ing the TPC laser system, which can insert photo-electron clouds into the drift volume at
known positions of the central cathode. The di�erence between nominal track momen-
tum and that produced by evaluating these corrections (�re�t momentum�) provides the
B �eld distortion systematics. Like the momentum scale uncertainty, this uncertainty is
propagated as a variation in absolute momentum of the tracks.

2.6.4.4. PID

The PID uncertainties stem from the uncertainties in the dE
dx measurements used to eval-

uate particle identity. We reuse the values from an earlier study, where this is evaluated
through the data-Monte Carlo di�erence in dE

dx between well understood control samples
of electrons, protons and minimum ionizing particles (muons and pions) as a function of
momentum.
This uncertainty is implemented as a variation in the dE

dx value for each TPC segment
of each charged track reconstructed in our TPCs. The exact variation is decided based
on the true particle's identity and momentum. Electrons, protons and minimum ion-
izing particles use separate variations but the method is the same in each case. The
reconstructed dE

dx is varied according to this uncertainty.

2.6.5. Standard TPC e�ciency uncertainties

There is a large degree of overlap between e�ciency uncertainties required for the gas
interaction analyses and those required for general ND280 tracker analyses. In most
cases the overall systematic uncertainty is small. TREx and the previous reconstruction
show very similar performances, justifying the reuse of values from pre-TREx analyses.
Only the track reconstruction e�ciency is recomputed, due to its sensitivity to changes
in pattern recognition.
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Table 2.7.: TPC track �nding e�ciencies for data and Monte Carlo.

TPC Data e�ciency Monte Carlo e�ciency

TPC1 (99.6± 1.0) % (98.9± 1.6) %
TPC2 (99.4± 0.6) % (99.3± 0.7) %
TPC3 (99.1± 2.0) % (99.0± 1.0) %

Table 2.8.: TPC cluster �nding e�ciency systematic as a function of angle in the y�z
plane. Extra Monte Carlo e�ciency corresponds to (εMC − εdata) /εMC where
εMC is Monte Carlo e�ciency and εdata data.

cos θ Extra Monte Carlo e�ciency

0�0.5735 (0.11± 0.02) %
0.5735�1 (0.07± 0.01) %

2.6.5.1. Track reconstruction e�ciency

This uncertainty covers our ignorance about the probability that a charged particle,
which passes through the TPC's instrumented region, is successfully reconstructed as
a track. The track e�ciency contains both the pattern recognition and the likelihood
�tting e�ciencies. The methodology for computing and propagating this systematic is
unchanged since pre-TREx analyses. Speci�c values have, however, been recomputed for
this analysis. The e�ciencies are tabulated in Tab. 2.7. The method for computing the
systematic uncertainty uses conservative minimum e�ciencies for each TPC in data and
Monte Carlo. These come from the least e�cient bin when e�ciencies are binned in
both angle (0 < cos(θ) < 0.84, 0.84 < cos(θ) < 0.9, 0.9 < cos(θ) < 0.94 or 0.94 <
cos(θ) < 1) and momentum (0 MeV/c < p < 400 MeV/c, 400 MeV/c < p < 500 MeV/c,
500 MeV/c < p < 700 MeV/c or 700 MeV/c and over). Both data and Monte Carlo show
high levels of e�ciency which are equivalent within statistical �uctuations.
An e�ciency weight is applied for true primary MIPs from gas interactions. In princi-

ple, the track e�ciency should also a�ect the presence of veto tracks, but the dedicated
sand-veto uncertainty propagation (see Section 2.6.3.3) is already varying the presence
of veto tracks more strongly than the track e�ciency would.

2.6.5.2. Cluster e�ciency

The cluster e�ciency accounts for the ignorance of the probability of missing one or more
horizontal or vertical clusters in an otherwise reconstructed track. The values used for
this systematic uncertainty come from work done prior to the introduction of TREx. In
this study, the cluster e�ciency was compared between data and Monte Carlo for well
understood samples of through-going muons in the horizontal and vertical directions.
Results from this study are shown in Tab. 2.8. The uncertainty weights are applied

to the main track of the selection. For the gas interaction analysis they are entirely
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negligible.

2.6.5.3. Charge ID uncertainty

Charge ID uncertainties account for the chance of a particle being misidenti�ed as its
antiparticle due to incorrectly reconstructed charge. This can be caused by both local
mis-ID (a track segment being assigned the wrong charge) and global mis-ID (a global
track being assigned di�erent charge to its best local segment). It depends on the number
of TPC segments in a track and their relative charge sign. Tracks with one, two and three
segments require di�erent errors as do tracks where the charge sign disagrees between
segments.
The e�ciency of �nding the right charge is derived from a relatively complex parametri-

sation in momentum �tting error. Since the momentum �t is in principle unchanged in
TREx, we reuse the values and propagation methodology used in previous tracker anal-
yses. The charge ID uncertainty is propagated as an e�ciency based on the primary
MIP candidate track. The precise amount by which the weights are varied depends
on the candidate track's momentum �t error, the number of TPC segments and their
charges relative to each other and relative to the global track's charge. These systematic
uncertainties contribute a �nal uncertainty in the gas interaction analysis of less than
1%.

2.6.6. Gas interaction speci�c uncertainties

Many of the uncertainties inherent in a gas interaction analysis have not been computed
before, either because they are only relevant to vertices within the TPC, or because they
didn't have a signi�cant e�ect in other analyses. We evaluate these from scratch.
Due to a lack of control samples for gas interactions, many of these systematic uncer-

tainties rely on studies using only Monte Carlo data. Since it cannot be assumed that
these precisely describe the behaviour of real data, they are used to compute conservative
upper limits on the uncertainties.

2.6.6.1. Vertexing uncertainties

Vertexing uncertainties address our ignorance about the probability of correctly identify-
ing vertices and their properties within the TPC. Since reconstruction di�ers substantially
when it comes to identifying vertices in one-, two- and multi-track events, the parame-
ters describing this uncertainty are binned in charged particle multiplicity. For two-track
interactions vertices are identi�ed through kink �nding and in the case of multiple tracks
they are identi�ed through the TREx junction �nding algorithm.
Due to lack of a viable control sample in data and Monte Carlo, a Monte Carlo only

study was used. The nominal simulation was compared with a noisy sample, in which the
variation in simulated pedestal noise was doubled and the zero suppression threshold10

halved to create extra noise hits. As illustrated in Fig. 2.42, even such a large change in

10Only signals above the zero suppresion threshold are saved as hits.
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(a)

(b)

Figure 2.42.: Normal (a) and extra-noisy (b) version of the same gas interaction event.
Extra noise hits are highlighted in orange. [28]
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Table 2.9.: Summary of vertex resolutions: Gaussian �ts to di�erence of reconstructed
and true vertex position. These studies use the charge based vertex position.

Two-track vertex resolution x / [mm] y / [mm] z / [mm]

Nominal mean -0.286± 0.037 -2.51± 0.040 1.445± 0.059
Nominal sigma 4.143± 0.049 5.650± 0.041 6.332± 0.051
Noisy mean -1.320± 0.084 -2.839± 0.052 3.275± 0.079
Noisy sigma 8.14± 0.11 6.642± 0.058 7.583± 0.066

Multi-track vertex resolution x / [mm] y / [mm] z / [mm]

Nominal mean -1.463± 0.080 -3.813± 0.066 8.65± 0.11
Nominal sigma 8.32± 0.10 9.538± 0.070 14.14± 0.11
Noisy mean -2.23± 0.12 -3.935± 0.080 9.99± 0.14
Noisy sigma 10.56± 0.15 10.332± 0.088 15.59± 0.13

�Hairy� resolution (see Sec. 2.6.6.3) x / [mm] y / [mm] z / [mm]

Nominal mean -0.723± 0.040 -3.097± 0.037 4.716± 0.069
Nominal sigma 5.870± 0.060 7.417± 0.042 10.119± 0.066
Hairy mean -1.361± 0.075 -3.887± 0.090 7.26± 0.15
Hairy sigma 11.12± 0.12 16.63± 0.11 21.53± 0.15

simulation results only in a slight broadening of tracks, but the di�erence between the
two can be taken as an estimate of our uncertainty of real data performance. Three values
were checked for the purpose of quantifying their uncertainty: primary track e�ciency,
vertex resolution, and secondary charged particle e�ciency.
The primary track e�ciency is the probability of reconstructing the primary track

originating within the TPC's instrumented region. Results of the two Monte Carlo
samples are shown in Tab. 2.10. The one-track case is ignored since the general track
e�ciency uncertainty already covers it.
The vertex resolution describes the precision with which a vertex's position can be

identi�ed. To evaluate this, we calculated the di�erence between true and reconstructed
charge based vertex positions in each of the three dimensions and �tted normal distribu-
tions to the histograms. The results are summarised in Tab.2.9. In the noisy sample, the
resolution is up to a factor two worse than in the nominal Monte Carlo sample. This is a
conservative estimate for the systematic uncertainty; the extrapolated position is much
more accurate than the charge based one. Vertices with exactly one charged particle do
not have a junction, so this evaluation cannot be done for them. We assume the real
ratio for those events is somewhere between one (i.e. the nominal case) and the (noisy)
two-track case.
The secondary charged particle e�ciency is the probability of reconstructing a sec-

ondary (i.e. not the primary MIP) charged particle emerging from a vertex. This is
heavily dependent on the length of each track, which requires a correction for protons
at the analysis level (see Section 2.6.1.2). The results are listed in Tab. 2.10. They are
dominated by statistical uncertainties in evaluating them, i.e. the di�erences between
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Table 2.10.: Summary of vertex e�ciencies.

Systematic Nominal MC Noisy MC

Main track Two-track 0.8149± 0.0025 0.8043± 0.0023
e�ciency Multi-track 0.8281± 0.0027 0.8240± 0.0025

0 mm � 50 mm tracks 0.080± 0.018 0.071± 0.015
Secondary particle 50 mm � 100 mm 0.457± 0.024 0.430± 0.021

e�ciency 100 mm � 200 mm 0.745± 0.019 0.744± 0.017
200 mm � 500 mm 0.8338± 0.0077 0.8248± 0.0069
500 mm � 1000 mm 0.9257± 0.0054 0.9238± 0.0049
1000 mm or more 0.9622± 0.0058 0.9602± 0.0052

the normal and noisy sample could still be a statistical �uctuation.
The main track e�ciency uncertainty is propagated in the same way as the general

TPC track e�ciency uncertainty. The only di�erence is the binning in track multiplicity.
The uncertainty in resolution is accounted for by varying the positions of the vertices
and track starting positions in our toy experiments with a scaling factor s.

xtreco = xtrue + s · (xreco − xtrue)

We cannot assume the noisy MC sample to represent the true data behaviour, so we
add the nominal to noisy di�erence to the uncertainty of the evaluation. This means
the scaling factor is randomly drawn from a normal distribution centered around the
evaluated noisy/nominal ratio r with a standard deviation that includes the data-MC
di�erence.

s ∼ Norm(µ = r, σ = (r − 1) + σ(r))

r = σxnoisy/σ
x
nominal

The secondary particle multiplicity is propagated as a combined e�ciency weight, i.e.
the product of the single e�ciency weights of all secondary tracks.

2.6.6.2. T0 determination

The e�ciency uncertainty for the T0 determination represents the uncertainty on the
probability of a T0 being found from a source (P0D, FGD or ECal) through which the
track passes. The uncertainty is computed by comparing the e�ciencies of each source
in data and Monte Carlo.
�Clean� events with through-going particles are selected. These are events where a

unique single track pattern in a given TPC covers its entire length in x, y or z depending
on the detector being checked. Hits are also required in the nearest layers of the two
detectors to either side of the TPC. For z tracks these are either the P0D and FGD1,
FGD1 and FGD2 or FGD2 and the downstream ECal. For x and y tracks they are the
two side ECals and the top and bottom ECals respectively. The categorisation of these
candidate events is illustrated in Fig. 2.43.
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(a)

(b) (c)

Figure 2.43.: T0 candidates in x (a), y (b) and z (c). The red pattern shown in (c) is not
a candidate since it is not a unique single track pattern. [28]

Table 2.11.: Data and Monte Carlo T0 e�ciencies for di�erent sources based on samples
of through-going tracks.

T0 source MC e�ciency Data e�ciency

P0D 0.920± 0.017 0.931± 0.020
FGD1 0.936± 0.012 0.951± 0.015
FGD2 0.968± 0.011 0.981± 0.015

Downstream ECal 0.967± 0.015 0.959± 0.021
Top/Bottom ECal 0.776± 0.096 0.795± 0.143

Side ECals 0.741± 0.023 0.917± 0.025
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The resulting T0 e�ciencies are shown in Tab. 2.11. The uncertainties (statistical and
data-MC di�erence) for top, bottom and side ECals are notably higher than those from
other sources. This is thought to be a result of the methodology used for evaluating the
uncertainty for these detectors, e.g. not accounting for ECAL noise hits that could be
mistaken as proper T0 source. A more robust study could produce lower uncertainties
but on our current time scale these conservative values are considered acceptable.
The systematic uncertainty is propagated as a variation. According to the assumed

e�ciency di�erences in each toy, tracks that do (not) pass the T0 cut are �agged for a
forced failure (success) of the cut. Additionally, the reconstructed tracks with a forced
T0 success are shifted along the drift direction according to the di�erence between re-
constructed and true T0. The T0 source used for this variation depends on whether the
track passes the T0 cut or not. If it does, the detector that provided the reconstructed T0
is used. If the track fails the cut, the detector is chosen from the last detector before the
TPC and the �rst detector after the TPC according to their priorities in the T0-�nding
algorithm of TREx:

1. FGDs

2. Downstream ECAL

3. POD

4. Side ECALs

5. Top/Bottom ECAL

The SMRD is ignored in this case, since a true track coming from there would have to
traverse the ECAL before reaching the TPCs. In the case of tracks starting in the TPC,
the �rst detector after the TPC is used.

2.6.6.3. Hairy track systematic uncertainties

One of the major issues identi�ed during the development of TREx and this analysis was
the existence of �hairy tracks�, i.e. low momentum proton tracks with large amounts
of noise surrounding them. Although reconstruction procedures were implemented to
resolve them, the observed di�erences between data and Monte Carlo necessitate a large
systematic uncertainty.
As seen in Fig.2.44 the TREx reconstruction handles hairy topologies fairly well. In most

of the worst cases, It can reconstruct a hairy particle's trajectory with good accuracy.
Unfortunately, no viable control samples are available for these events. Some proton
samples were used while improving and testing the reconstruction of hairy tracks, but
these are low in statistics and do not allow us to check tracks starting inside the TPC.
Tracks originating in the TPC are expected to be highly sensitive to the presence of hairy
tracks. For these reasons a Monte Carlo only study was used.
To compute our uncertainty, we compare the reconstruction e�ciency and resolution

between a nominal Monte Carlo sample and an arti�cially hairy sample. This sample
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(a) (b)

Figure 2.44.: Two hairy events: a �chainsaw� event (a) and a �low charge shadow�
event (b). In each case green and red blocks represent used and unused
hits respectively and blue lines represent reconstructed tracks (the single
blue line in (a) is partially obscured by unused hits). [28]

(a) (b)

Figure 2.45.: Normal (a) and arti�cially hairy (b) version of the same gas interaction
event. [28]

is created by �lling every ASIC electronics unit11 which the lowest energy proton track
passed through with low charge hits. As can be seen in Fig.2.45, this sample produces far
worse reconstruction performance than any hairy event observed in data (compare with
Fig.2.44). Since the goal of the sample is to produce a conservative, �worst case scenario�
uncertainty covering any unexpected drop in performance of TREx in the presence of hairy
gas interactions, this was considered appropriate.
Results for the track e�ciency are shown in Tab.2.12. They demonstrate a surprisingly

good reconstruction e�ciency for our arti�cially hairy sample, with only about 7% of
primary tracks being lost in the presence of a highly hairy proton track. Since the arti�cial
hairy sample performs worse than the actual hairy events in real data, we characterize
the e�ciency uncertainty as a normal distribution with the central value halfway between
nominal and hairy Monte Carlo. Hairy tracks will also a�ect the e�ciency of secondary
track reconstruction, i.e. the multiplicity. We assign the e�ciency loss for secondary

11The pads of the micromegas readout modules are clustered in rectangles. Each rectangle is read out
by a single Application Speci�c Integrated Circuit (ASIC) module.
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Table 2.12.: Hairy track e�ciency

Track reconstruction e�ciency

nominal sample 0.8131± 0.0017
�hairy� sample 0.7456± 0.0020

tracks the same uncertainties as for the primary tracks. It is handled as a separate
systematic uncertainty though, so the primary and secondary track e�ciencies can be
varied independently in the toy simulations.
The hairy track vertex resolution systematic is evaluated analogously to the regular

vertex resolution systematic in Section 2.6.6.1. Results are shown in Tab. 2.9. The hairy
sample's resolution is about a factor two worse than the nominal sample. Again, this is
a conservative estimate for the uncertainty, as the extrapolation based position performs
much better than the charge based one. We thus model our uncertainty on the scaling
factor s as a uniform distribution between nominal and hairy Monte Carlo.
The e�ciency and resolution systematics for hairy tracks were propagated like their

analogues for general vertex systematic uncertainties. The di�erence is that they are only
implemented for vertices featuring at least one proton below 500 MeV/c. The additional
noise surrounding low-momentum protons is probably caused by the very high speci�c
energy loss of those protons, so this cut-o� was established because we know to a rea-
sonable level of certainty that protons above this threshold do not produce hairy events.
Further restrictions on events for which hairy systematic uncertainties are considered
may be applied in future iterations of the analyses, since we know from experience that
a lot of protons below 500 MeV/c are not hairy. The actual threshold seems to be lower
than that.

2.6.6.4. Track matching

Particles that cannot be identi�ed in the vertex's TPC, can still be identi�ed as MIPs
by TPC-PID in the other TPCs or by reaching the SMRD. This means that the track
matching e�ciency between the TPCs and between TPCs and SMRD has an in�uence
on the overall reconstruction e�ciency. Thus the di�erences of this matching between
data and MC must be evaluated and covered by a systematic weight.
The TPC-SMRD-matching e�ciency was evaluated and implemented for an FGD

analysis of events including neutral pions. We re-use this implementation. The TPC-
TPC-matching uncertainty is extrapolated from the FGD-TPC-matching uncertainties
of previous analyses. In those analyses, the systematic uncertainty was only applied
to FGD tracks with two or less hits, since data and MC agree very well for longer
FGD tracks. For TPC-TPC-matching the FGD-tracks would have to be much longer
than that, so one could argue that we can neglect this uncertainty. Unfortunately we
cannot be sure that the vertex being in the TPC rather than the FGD does not change
this behaviour.
We thus decided to apply the FGD-TPC-matching uncertainty of 2-hit FGD tracks to
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Table 2.13.: OOFV rate uncertainties.

OOFV source rate uncertainty

P0D / FGDs 5.1%
ECALs 11.6%
SMRD 4.9%
other 13.6%

all primary MIPs that cross at least two TPCs, regardless of the number of FGD hits.
Since the TPC-TPC-matching is actually a TPC-FGD-TPC-matching, we apply it in
quadrature. The TPC-TPC-matching only matters if the track length in the �rst TPC is
not su�cient for the PID. To be more precise, only the track length perpendicular to the
drift direction in the TPCs matters, since this determines the possible number of hits on
the readout plane for the dE/dx measurement. That is why we do not apply the weight
to particles with true perpendicular track lengths over 40 cm. This is a conservative
threshold, including more tracks than is strictly necessary.

2.6.7. Out-of-�ducial-volume uncertainties

Background in the gas interaction analysis comes almost exclusively from tracks entering
the TPC from other detectors. The uncertainty in this background is split into two
sources:

� A rate uncertainty on the total number of tracks entering from outside the TPC

� A reconstruction uncertainty on the probability for a track entering from outside
the TPC to be reconstructed as a vertex within the TPC

Rate uncertainties come from uncertainties in the number of neutrino interactions
in the detector material surrounding our TPCs. Reconstruction uncertainties are the
uncertainties on the probability for a side-entering track to be shifted into the �ducial
volume by bad T0 or the probability of a through-going track to be broken.

2.6.7.1. Rate uncertainties

All of the rate uncertainties we use have been evaluated for previous FGD analyses. They
re�ect our incomplete knowledge of the mass and neutrino-interaction cross sections of
the material surrounding the TPCs. A summary is shown in Tab. 2.13. Unlike in the
FGD analyses, we cannot assume the FGD-part of the out-of-�ducial-volume background
to be small. That is why we apply the same uncertainty as for the P0D. The total e�ect
of the OOFV rate uncertainties is lower than the single values, as they are treated as
uncorrelated and partially cancel out.
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Table 2.14.: Junction rates.

Junction probability

Monte Carlo 0.1187± 0.0009
Data 0.1217± 0.0009

2.6.7.2. Delta-ray rate uncertainty

The delta-ray rate uncertainty is the uncertainty regarding the rate of delta-rays emitted
by particles traversing the TPCs. To compute it, a study was performed using the same
sample of through-going muons as for the track reconstruction e�ciency (Section 2.6.5.1).
Through-going tracks were checked in both data and Monte Carlo for the presence of
reconstructed junctions. These usually stem from delta-rays in the TPC. The number of
tracks with at least one reconstructed junction was compared between data and Monte
Carlo. As can be seen in Tab.2.14 there is good agreement between the two. An e�ciency
weight is applied to all out-of-�ducial-volume MIPs that pass through the active volume
of the TPCs.

2.6.7.3. Ad hoc weights

Unblinding the control regions has unveiled a large di�erence between the data and Monte
Carlo distributions of OOFV events. This di�erence is ��xed� with an ad hoc weight as
described in Section 2.5.1. Since we do not know the exact cause of the discrepancy at
this point, an uncertainty of 50% is assumed on these weights. This is the largest source
of uncertainty in the selection.

2.6.8. Summary of systematic uncertainties

The systematic uncertainties are shown in Tab.2.15. The dominating systematics uncer-
tainty is the ad hoc weight at 10.0% (see Section 2.5.1), followed by the �ux uncertainty
at a level of about 4.5 %. Please note that these numbers are lower than the actual un-
certainty, due to missing correlations of the systematics' parameters in the used software.
A simple �worst case� correlation estimate yields an uncertainty of ∼ 10% for the �ux
weight and ∼ 35% for the ad hoc weight (50% realtive uncertainty on ∼ 70% background
events in the main selection).
The largest �non-standard� source of detector systematics a�ecting the signal events are

hairy secondary tracks. It is obvious that more e�ort should be put into understanding
those hairy events and the TPC performance in general. The e�ect of the TPC vertex
resolution is also relatively high. This might be caused by the high surface area to volume
ratio of the �ducial volumes.
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Table 2.15.: Systematic uncertainties overview. Average di�erential errors for the main
selection. Maximum correlation approximation in parentheses.

All weights 13.1%

Flux weight 4.5% (∼ 10%)
Hairy multiplicity 2.9%
Hairy track e�. 1.0%
Gas MC 1.3%
OOFV 3.1%
Ad hoc weights 10.0% (∼ 35%)
Rest 1.3%

All variations 6.6%

Momentum resolution 3.7%
TPC PID 0.9%
B-�eld distortion 3.4%
TPC vertex resolution 2.0%
Sand veto 0.8%
TPC T0 e�. 2.7%
Hairy track vertex resol. 2.8%
Momentum scale 1.8%

Total 17.7%
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3. Cross-section analysis

This chapter describes the fundamentals of the response-matrix-centred approach to
cross-section measurements. The mathematical foundations are explained in Section 3.1
and the implementation for the measurement in the ND280 TPCs can be found in Sec-
tion 3.2. Section 3.3 shows an example of how to use the approach to do a very sim-
ple model �t, producing a model dependent, phase-space-restricted, inclusive, charged-
current cross-section measurement of muon neutrinos on the T2K TPC gas mixture.
The response-matrix-centred approach is a way of presenting cross-section measure-

ments (or any other kind of counting experiment) in a way that tries to be as model-
independent as possible. Its main philosophy can be summarised in three main points:

1. There is a linear relationship between �true� physics expectation values and ex-
pected number of measured events.

2. Our knowledge of that relationship is imperfect.

3. The data is the data is the data.

The linear relationship mentioned in the �rst point is the response matrix. It describes
how likely it is to count an event that happened in the detector (e�ciency) and in which
reconstructed bin it is probably going to end up, i.e. what the reconstructed properties
of the event will be (smearing). We know the elements of this matrix only to a certain
precision. They are subject to uncertainties of evaluating them.
The actually measured data on the other hand is the only thing we can be 100% sure

about. It consists of exact numbers, and systematic or even statistical errors only apply
if one interprets the actual data as expectation values for future measurements. E.g. if
we do a cross-section measurement and measure 16 events of a certain type, we measure
exactly 16 events, not something between 12 and 20. Once we try to predict future
repetitions of the experiment, we have to interpret this number as measurement of the
expectation value, so we get an uncertainty on that: the expectation value is 16± 4. In
general, there is no one-to-one correspondence between data and the physics variables
we are interested in, so the response matrix must be used to translate between the two.
Possible ways to do this are described in Section 3.1.
The main result of any measurement presented in this way consists of the raw re-

constructed data (without any systematic errors) and the response matrix including all
uncertainties on the matrix elements. These two objects are everything that is needed
to test arbitrary physics models against the data in a consistent way. The tests then
produce �traditional� results in truth space.
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3.1. Measurement Strategy

3.1.1. Aims

Cross-section measurements are often used to constrain parameters of a given interaction
model. This usually means that assumptions of that model are built into the analysis,
and published measurements can lose their applicability when the underlying models
change. The data then has an implicitly limited �shelf life�.
Ideally, a measurement should remain useful not only for the current interaction model,

but also for all possible future models. This can be achieved if:

� Arbitrary models can be checked for compatibility with the published data.

� The publication contains all tools and information to do this.

� These tools do not depend on the currently favoured model.

All of this is possible with the response-matrix-centred approach.

3.1.2. The detector model

We categorise all events by their true properties and sort them into a set of truth bins. For
Monte Carlo data, these properties are directly accessible, while for real data they remain
hidden. Selected events are also binned according to their reconstructed properties. The
Poisson expectation value for the number of events in the j-th truth bin is µj . It is
determined by the underlying physics models and the integrated neutrino �ux.
If an event happens in truth bin j, it has a certain probability P (j → i) to be selected

and reconstructed in the i-th reconstruction bin. This probability can be calculated from
the MC sample:

P (j → i) = lim
N→∞

N(truth = j, reco = i)

N(truth = j)
.

It should depend only on the detector properties and not on the interaction model. This
can be achieved by choosing an appropriate binning in truth space (see Section 3.2.2).
The expectation value for the i-th reconstruction bin is then

νi =
∑
j

P (j → i)µj .

This can be expressed as a matrix product1

νi = Rijµj ,

where R is the detector response matrix. Please note that this matrix models both the
selection e�ciency and reconstruction smearing.
Since we need to know the truth information, R can only be built from MC samples.

Unfortunately the simulated detector does not mirror the real detector perfectly. The

1Using Einstein notation.
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di�erences are parametrised in a set of systematic uncertainties (see Section 3.4). Their
e�ect on the response matrix is evaluated by producing lots of �toy simulations�, in
which the same dataset is processed, but the detector properties are sampled from their
uncertainty distribution. This yields a set of Ntoy response matrices Rt, each describing
one possible true detector:

νti = Rtijµj .

3.1.3. The likelihood

One way to measure the compatibility of a given hypothesis and the measured data is the
likelihood L. For a discrete counting experiment, it describes the probability of getting
exactly the measured result n, given the tested hypothesis θ:

L(θ) = P (n|θ).

In our framework, the hypothesis is described by the expectation values of the truth bins
µ:

L(µ) = P (n|µ).

We can expand this expression to explicitly include the possibility of di�erent detector
responses2:

P (n|µ) =
∑
R

P (n|µ, R)P (R),

where the sum is over all possible detectors and their probabilities to be true. This is
impractical, but we can replace the in�nite sum with the random sample of toy detec-
tors Rt:

P (n|µ) =
1

Ntoy

∑
t

P (n|µ, Rt).

The sample is drawn from the uncertainty distributions of the detector properties, so
more-probable matrices will appear more often than unlikely ones. Within the set of
matrices, each one is equally likely.
The remaining probability term is just that of a multi-bin Poisson counting experiment:

P (n|µ, Rt) = PPoisson(n|ν = Rt · µ)

=
∏
i

(Rtijµj)
ni

ni!
exp(−Rtijµj)

So ultimately the total marginal likelihood of a tested hypothesis, given the measured
data, is

L(µ) = P (n|µ) =
1

Ntoy

∑
t

∏
i

(Rtijµj)
ni

ni!
exp(−Rtijµj).

2Choosing a Bayesian approach for brevity.
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Alternatively one can also choose to use the pro�le likelihood

Lpro�le(µ) = max
t

∏
i

(Rtijµj)
ni

ni!
exp(−Rtijµj),

which just selects the toy migration matrix with the highest resulting likelihood.
The pro�le likelihood is only useful for strictly constrained response matrices, i.e. with

hard bounds on all parameters. If a parameter of the matrix is distributed without strict
limits3 and the maximum likelihood is achieved for very extreme matrices, the achieved
likelihood will depend a lot on the number of toy matrices. The more matrices are
sampled from the unlimited distribution, the more extreme the most extreme matrix will
become. If, on the other hand, all parameters are sampled from bounded distributions4,
the extremeness of the most extreme matrix will tend to a limiting value instead of rising
towards in�nity with the number of toy matrices.

3.1.4. Absolute maximum likelihood

A simple hypothesis is completely characterised by the vector of truth expectation values
µ. It has no free parameters. Each expectation value must be a non-negative real
number, µj ∈ R≥0. This de�nes the set of all conceivable hypotheses Ω:

Ω = Rd≥0,

where d = dim(µ) is the number of truth bins. We can thus de�ne a maximum likelihood
hypothesis µmax L such that

Lmax(Ω) = L(µmax L) = max
µ∈Ω

L(µ).

This hypothesis and its likelihood value can then be used as a baseline to compare other
hypotheses to it.

3.1.5. Likelihood ratio testing

The agreement between the data and any given hypothesis can be evaluated with the
likelihood ratio λ:

λ(µ) =
L(µ)

Lmax(Ω)
.

By construction, this value is in the range [0, 1]. A high value shows good agreement,
while low values indicate disagreement.
According to the Neyman�Pearson lemma [37], a hypothesis test using λ as a test

statistic is the most powerful5 test possible. So we de�ne a critical value η and reject
hypotheses where λ < η. The choice of η depends on the desired signi�cance6 of the test

3E.g. with a normal distribution, which is not bounded in either direction.
4E.g. uniform distributions.
5The power of a test 1− β describes the probability of rejecting a false hypothesis.
6The signi�cance of a test α describes the probability of rejecting a true hypothesis.

92



α and the expected distribution of the likelihood ratio f(λ) given that µ is true. It must
be chosen such that

P (λ < η|µ) =

∫ η

0
f(λ|µ) dλ

!
≤ α.

The distribution of λmust be evaluated for each tested hypothesis separately, for example
by doing a su�cient number of MC experiments. The critical value is thus a function of
the hypothesis η(µ).
This can be recti�ed by using the likelihood ratio p-value as test statistic directly. It

is the probability of measuring a likelihood �worse� than the actually measured one λ0,
assuming that the tested hypothesis is true:

pλ(µ) = P (λ < λ0|µ) =

∫ λ0

0
f(λ|µ) dλ.

By construction, this value is uniformly distributed for the true hypothesis, so the critical
value is just the signi�cance, and hypotheses are rejected if

pλ(µ) < α.

3.1.6. Composite hypotheses

Often a tested hypothesis will have some free (nuisance) parameters. Those are called
composite hypotheses. They will de�ne the truth expectation values µ as a function
of these free parameters µ(θ), with the number of free parameters d′ = dim(θ) < d.
The possible values of θ de�ne the set of simple hypotheses Θ, which is a subset of all
conceivable hypotheses:

µ(θ) ∈ Θ ⊂ Ω ⇔ θ ∈ ω,
where ω is the set of allowed values of θ. For example, if all parameters are unrestricted
real values, we have

ω = Rd
′
.

We consider a composite hypothesis true if it contains the true simple hypothesis µtrue,
and false otherwise.
Again, we would like to test hypotheses with the highest possible power at a given

signi�cance. To reject a composite hypothesis Θ, we must reject all contained simple
hypotheses µ(θ):

λ(µ) < η(µ) ∀ µ ∈ Θ.

As an approximation with lower than ideal power, we can consider the maximum likeli-
hood and minimum critical value:

λmax(Θ) = max
µ∈Θ

λ(µ)
!
< ηmin(Θ) = min

µ
η(µ).

Depending on the variation of η(µ) within Θ7, the signi�cance of the test will be less
than or equal to the nominal value α.

7In the limit of large sample sets, the distribution of λmax will approach a χ2-distribution [38] and an
exact value for η can be chosen accordingly. Unfortunately this does not apply in this selection.
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To increase the power of the test, we can use the p-values of the likelihood ratios
directly. With this test statistic, the critical value is identical for all simple hypotheses,
and we reject a composite hypothesis if

pλ(µ) < α ∀ µ ∈ Ω.

That means we can exclude a composite hypothesis by checking whether

pmax(Θ) = max
µ∈Θ

pλ(µ) < α

with maximum power. This is called the �supremum method� [39] and not computa-
tionally harder than �nding ηmin. In both cases f(λ|µ) has to be calculated for each
evaluation in the minimisation/maximisation process.

3.1.7. Parameter estimation

If a composite theory Θ is not rejected, one might want to quote a set of �best �t�
parameters and/or a range of allowed values, i.e. con�dence intervals. The maximum
likelihood point estimator for the parameters θ̂ is straight forward. It is the set of
parameters that produce the highest likelihood:

L(µ(θ̂)) = Lmax(Θ).

Con�dence intervals for the parameters can be calculated by rejecting part of the possi-
ble parameter space analogously to the general composite hypothesis test in Section 3.1.6.
For this, we split the parameters into interesting parameters θ, where we want to quote
the intervals, and nuisance parameters φ. We then interpret the set of all µ(θ,φ) with
a �xed θ as a new composite hypothesis Θ(θ):

µ(θ,φ) ∈ Θ(θ) ⊂ Θ ⇔ φ ∈ Φ(θ),

where Φ(θ) is the set of allowed values of φ given a speci�c θ. Now we can exclude values
of θ by checking whether

pmax(Θ(θ)) < α.

Those values of θ that have not been rejected de�ne the con�dence region.
It might be useful to construct con�dence intervals for parameters of composite hy-

potheses whether or not they have been excluded. In these cases, one is usually only
interested in the allowed parameter range within the context of the analysed hypotheses.
This can easily be achieved by replacing the absolute maximum likelihood Lmax(Ω) with
the maximum likelihood of the hypothesis Lmax(Θ). The likelihood ratio is then

λ(µ) =
L(µ)

Lmax(Θ)
,

and the construction of the con�dence interval only ever compares the nested hypoth-
esis Θ(θ) directly with the enveloping hypothesis Θ. This can reduce the number of
parameters considerably, as no evaluation of the absolute maximum likelihood needs to
be done.
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3.1.8. Pro�le plug-in p-values

Even when only comparing two hypotheses with moderate number of parameters, �nding
pmax(Θ(θ)) is a computationally intensive task. Calculating the p-value for a single µ
takes the generation of O(100) toy data sets from the reco predictions of that hypothesis,
and then maximising the likelihoods of both compared composite hypotheses for each
data set. Maximising the p-value with a typical optimisation algorithm means that it
has to be evaluated at least O(10000) times, depending on the di�culty of �nding the
global(!) likelihood maxima. This quickly escalates into millions upon millions necessary
�ts and a corresponding demand of computing power.
A drastic reduction can be achieved when using the �pro�le plug-in� p-value instead

of the maximum p-value. Instead of maximising the p-value over all possible hypotheses
µ ∈ Θ, one only evaluates the p-value of the most likely hypothesis µ̂:

pplug(Θ) = pλ(µ(θ̂)),

or in the context of parameter estimation:

pplug(Θ(θ)) = pλ(µ(θ, φ̂)).

Here θ̂ and φ̂ are the maximum likelihood estimates of the (nuisance) parameters:

L(µ(θ̂)) = Lmax(Θ),

L(µ(θ, φ̂)) = Lmax(Θ(θ)).

The calculation of this value requires only a single optimisation of the likelihood. The
p-value itself is then computed with toy data assuming the truth of the estimate.
This is called �pro�le plug-in� p-value as we plug-in the pro�le maximum likelihood

estimate for the nuisance values as an estimate for the distribution of the likelihood ratios
of the true hypothesis. The method has certain advantages over other approximation
methods [40], but it is still an approximation. It is thus important to check the coverage
properties of any analysis using this method.

3.1.9. Bayesian posterior sampling

The exact Frequentist approaches described above need a prohibitive amount of comput-
ing power when the number of parameters of the tested composite hypothesis is large.
Those models are better handled by a Bayesian approach. Using a Marcov Chain Monte
Carlo (MCMC) method, it is relatively easy to sample parameter sets θ from the posterior
probability

P (θ|n) ∝ L(µ(θ))P (θ),

with the prior probability P (θ). These sets can then be used to infer information about
the parameters, e.g. point estimates or credible intervals, and to compare di�erent hy-
potheses with one another.
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Since the information about the absolute probability of the hypothesis is lost in the
MCMC, we propose using the Posterior distribution of the Likelihood Ratio (PLR) to
infer the data preference of one model over another. The PLR is de�ned as the posterior
probability of the likelihood ratio of the compared hypotheses being below or equal to a
certain threshold value:

PLRΘ0,Θ1(n, ζ) = P

(
L(µ(θ0))

L(µ(θ1))
≤ ζ

∣∣∣∣θ0 ∼ P (θ0|n),θ1 ∼ P (θ1|n)

)
,

with µ(θ0) ∈ Θ0 and µ(θ1) ∈ Θ1 the (completely independent) parametrisations of
the tested hypotheses. If the threshold value ζ is set to 1, the PLR is equivalent to a
Frequentist p-value under certain circumstances [41]. But even when this is not the case,
the interpretation is straight forward: PLRΘ0,Θ1(n, ζ = 1) is the posterior probability of
the data being more likely under Θ1 than under Θ0.
As with all Bayesian analyses, it is important to choose suitable priors P (θ). There

is no single �correct� way to do this, but we recommend using a Je�reys prior [42]. Its
main advantage is that its probability density � and especially the posterior probability
density resulting from using this prior � is invariant under variable transformations. This
means that the results of the analysis do not depend on the particular parametrisation
of µ(θ). A drawback of Je�reys priors is that they are not necessarily proper, i.e. they
cannot be normalised. This is not a problem here though, as long as the posterior is well
de�ned.
The Bayesian approach treats all unknown parameters equal. It is therefore natural

to also include the detector uncertainties in the MCMC sampling. We simply treat
the detector toy index as additional (nuisance) parameter of the model. The posterior
probability thus also includes information about how likely or unlikely the di�erent toy
detectors are:

P (θ, t|n) ∝ Lt(µ(θ))P (θ, t)

= P (n|µ(θ), Rt)P (θ, t).

3.1.10. Closure tests

All methods described here depend on the model-independence of the response matrix,
so this needs to be ensured with dedicated tests. For the Bayesian analysis one also needs
to make sure of the convergence of the MCMC samples. To this e�ect, one should apply
two checks (see Fig. 3.1). We use two di�erent event generators to build the detector
response matrices and demand that their results are compatible (see 3.2.3). When doing
the MCMC analyses one should generate multiple MCMC posterior samples with di�er-
ent start values and check them for compatibility. If the MCMCs have converged, the
di�erences should be statistical only.
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Figure 3.1.: Data �ow. The two neutrino event generators Neut and Genie are used
to build systematically varied response matrices (see Section 3.2.1). If the
true matrix is independent of the generator model, the matrices should be
compatible within the detector variations and they are combined to increase
the available MC statistics. Based on these systematic response matrices, the
statistical variations are evaluated. In the case of a Bayesian analysis, the
data is then used together with the statistically varied matrices to generate
multiple MCMC posterior samples. If the MCMCs converged, the posterior
samples should only di�er within statistical �uctuations. In this case, they
can be combined into the �nal a-posteriori distribution of the hypothesis
parameters.
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3.2. Implementation

3.2.1. Building the detector response matrices

The detector response matrix is built from Monte Carlo simulations. Events are �rst
categorised by their truth information and assigned a truth bin number j. It is possible
that events do not get assigned a truth bin (see Section 3.2.2). Those events are ignored
for the build of the response matrix. All events with a truth bin number are then
categorised by their reconstructed information. Events that end up being selected by the
gas interaction selection8 get assigned a reco bin number i.
The probability for an event in truth bin j ending up in reco bin i is

P (j → i) = lim
Nj→∞

Nij

Nj
,

as de�ned in Section 3.1. Here Nj is the number of events in truth bin j, including the
events that do not get assigned a reco bin, and Nij the number of events in truth bin
j and reco bin i. Since the number of Monte Carlo events is limited by the available
computing resources, this value can only be approximated:

Rij =
Nij

Nj
.

The simulated detector does not reproduce the behaviour of the real one perfectly.
We parametrise the estimated di�erence as a set of systematic uncertainties that get
propagated as weights and variations in the selection (see Section 3.4). The systematic
parameters are sampled from their assumed distributions (normal or uniform) and the
events are weighted and varied accordingly. We call each sampling of the parameter
space a toy simulation. Each toy simulation t yields its own response matrix

Rtij =
W t
ij

Wj
=
N t
ijw

t
ij

Njwj
,

where Wj and W t
ij are the sum of weights, and wj and wij the average weights of all

events in the respective bins. Since the detector variations do not a�ect the events on
the generator level, the number of event in the truth bin Nj is not a�ected by the toys.
The number of MC events is limited, so the values of Rtij will also su�er from statistical

variations from the true MC value. These �uctuations are not represented in the system-
atic toys. We estimate the statistical uncertainties in a �Bayesian inspired� three-step
process.
The �rst two uncertainties stem from the multinomial sampling of N t

ij . For the purpose
of statistical error estimation, we split the multinomial process in two parts:

� A binomial chance of being reconstructed at all (i.e. e�ciency) εtj

� A multinomial probability of ending up in a certain reco bin (i.e. smearing) ptij

8The main selection or one of the control samples, see Chapter 2.
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εtj = lim
Nj→∞

∑
iN

t
ij

Nj
.

ptij = lim
Nj→∞

N t
ij

εtjNj
.

εtj · ptij = lim
Nj→∞

N t
ij

Nj
.

We do not know the true values of these parameters, so we can treat them as Bayesian
random variables.
If we assume a beta distribution9 as a prior for the distribution of εtj , we can use the

simulated number of events directly to update the parameters of the prior, β′∗j and β
′
†j ,

to get the parameters of the posterior10:

εtj ∼ Beta(βt∗j , β
t
†j),

βt∗j = β′∗j +
∑
i

N t
ij = α′j +N t

∗j ,

βt†j = β′†j + (Nj −
∑
i

N t
ij) = β′j +N t

†j .

Here N t
∗j is the number of selected and N t

†j the number of �lost�, i.e. not selected, events
in truth bin j.
We can do the same for the smearing uncertainty if we assume a Dirichlet distribution11

as a prior for the distribution of ptij . Again we can use the simulated number of events
directly to update the parameters:

ptj ∼ Dir(αtj),

αtij = α′ij +N t
ij .

The variances of the resulting posterior distributions are

σ2(εj) =
βt∗jβ

t
†j

(βt∗j + βt†j)
2(βt∗j + βt†j + 1)

,

σ2(ptij) =
αtij(

∑
i′ 6=i α

t
i′j)

(
∑

i′ α
t
i′j)

2((
∑

i′ α
t
i′j) + 1)

,

and the expectation values

ε̂tj =
βt∗j

βt∗j + βt†j
=

βt∗j
Nj + β′∗j + β′†j

,

9The beta distribution is the conjugate prior for binomial distributed likelihoods. See [43].
10Usually the parameters of the beta function are denoted as α and β. To avoid confusion with the

parameters of the Dirichlet distribution αi, we decided to use β∗ and β† respectively instead.
11The Dirichlet distribution is the conjugate prior for multinomial distributed likelihoods. See [43].
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p̂tij =
αtij∑
i′ α

t
i′j

.

As prior parameters we set
β′∗j = β′†j = 1

and
α′ij = min(1, 3Nreco variables/Nreco bins).

This choice of prior parameters ensures that the overall reconstruction (in)e�ciency of
the truth bins is uniformly distributed apriori. It also means that the prior assumes
that the reconstruction probabilities are concentrated on a few reco bins (∼ 3 per reco
variable), while being completely agnostic about which reco bins those are.12 The result-
ing variances of the posterior distributions are consistent with the standard frequentist
approach in the limit of high statistics. Especially the binomial case correspond to an
experiment where we added a �pseudo-observation� of two simulated events, of which one
was successfully reconstructed, to the actual data.
The third step is to evaluate the statistical uncertainty of the weight correction. The

true weight correction

mt
ij = lim

Nj→∞

wtij
wj

is estimated from the sum of of weights:

m̂t
ij =

wtij
wj

=
W t
ij/N

t
ij

Wj/Nj
.

For the purpose of the variance estimation, we treat wtij independently from εt and ptij
as arithmetic means of samples with given sizes.
We apply the usual standard error of the mean formula for each average weight. The

sample variance is estimated from the sum of squared weights. To be able to estimate
variances even for bins with only one entry, we add a pseudo-observation event with an
expected weight of 1:

σ2(wtij) =

(V t
ij + 12

N t
ij + 1

)
−

(
W t
ij + 1

N t
ij + 1

)2
 1

N t
ij + 1

,

where V t
ij are the sums of the squared weights in the respective bins. The pseudo-

observation represents our prior knowledge of the weights and has no e�ect in the limit
of high statistics. The variance of the weight correction is then

σ2(mt
ij) =

σ2(wtij)

(wj)2
+

(
wtij

(wj)2

)2

σ2(wj).

12Dirichlet distributions with α < 1 favour �extreme� sets of p, where most of the probability is con-
centrated in few categories, over �at sets, where the probability is more uniformly distributed. The
corresponding reco bins do not have to be contiguous.
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All that is left now, is to combine the variances of the multinomial sampling and the
weight correction:

σ2
MC stat(R

t
ij) = (ε̂tjm̂

t
ij)

2σ2(ptij) + (ε̂tj p̂
t
ij)

2σ2(mt
ij) + (p̂tijm̂

t
ij)

2σ2(εtj)

If the statistical variance is much smaller than the systematic detector variation,

σ2
MC stat(R

t
ij)� σ2

syst(Rij) ≈
1

Ntoy − 1

∑
t

(Rtij − R̄ij)2,

for all toy experiments, we can neglect it. In practice there will almost certainly be bins
where this is not the case, e.g. (elmost) empty matrix elements.
To deal with these non-negligible statistical uncertainties, we generate random toy

matrices from every systematic toy matrix according to the three step process described
above: First we draw a set of e�ciencies and multinomial probabilities from the posterior
beta/Dirichlet distributions, and then we modify these with weight factors calculated
from normal distributed mean weights.

εt∗j ∼ Beta(βt∗j , β
t
†j),

pt∗j ∼ Dir(αtj),

wt∗ij ∼ Norm(wtij , σ
2(wtij)),

Rt∗ij =
wt∗ij
wt∗j

εt∗j p
t∗
ij .

These toy matrices are then handled just like the systematic toy matrices.
To further limit the in�uence of the statistical uncertainties, we constrain the truth

bin expectation values to the number of simulated events:

µj
!
< Nj .

Hypotheses that predict more events in a given truth bin than were simulated are outside
the testable scope of the response matrix. If the tested hypotheses (e.g. in a likelihood �t
or Bayesian posterior sampling) are close to this limit, it could lead to model dependence
of the results. Therefore it is necessary to check whether this is the case.

3.2.2. Binning

3.2.2.1. General considerations

The central object of this analysis is the detector response matrix Rij . Its properties
depend �rst and foremost on the chosen binning in truth and reco space. The binning
has to balance the following (contradictory) aims:

� Ensure the independence of the interaction model.
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Table 3.1.: Binning variables.

Truth variables Reco variables

Event type Successful sample
Primary MIP cos(θ) HMM cos(θ)
Primary MIP momentum Multiplicity
Angular separation
(Charged multiplicity)

� Minimise the in�uence of statistical errors.

� Maximise the separation power, i.e. resolution.

The following sections describe the general methodology of choosing the binning. The
actually chosen binning for the CCinc measurement is shown in Section B.1.

3.2.2.2. Choosing the variables to bin in

The response matrix can only be model-independent if it is binned in the right variables.
Variables close to the actual observables are more suited than those that describe the
event in a more fundamental way, which have to be inferred from the measurement. For
example, the lepton momentum is a good variable, as the detector can directly measure
it. The neutrino energy on the other hand is a bad choice, because the translation of
neutrino energy to observables in the detector depends on the physics model (FSI, etc).
But even when binning in direct observables only, one has to take care not to introduce

hidden model dependencies. The distribution of events in variables that we do not bin
in, might still have an e�ect on the detector performance. If di�erent models predict
di�erent angular distributions, which in turn change the detector e�ciency, binning only
in the muon momentum will not be model independent. One has to bin in all truth
variables that a�ect the detector performance to be truly model independent.
Aside from detector performance considerations, one of course also has to bin in the

variables of interest. The reco binning is dictated by the physics goals of the mea-
surement. Again it is important to choose variables as close to the actual observables
as possible. If a variable of interest is the function of other more basic observables, a
binning in those observables would be less susceptible to hidden model dependencies.
Unfortunately the number of events per bin decreases exponentially with the number
of binning dimensions. Our choice of binning variables for the template �t analysis is
summarised in Tab. 3.1 and described in detail in Section 3.2.2.5 and onwards.

3.2.2.3. Bin widths

As seen in Section 3.2.1, the e�ciencies of the truth bins are estimated using a Bayesian
approach that adds two pseudo-measurements as prior information. In order to not be
biased too much towards that prior, we would like the actual number of events per truth
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bin to be larger than that. The average number of events per truth bin is a good measure

for this. We demand that mean(Nj)
!
> 50.

To maximise the number of events per bin, one could choose a very wide binning. This
can lead to model dependences though, if the detector performance varies considerably
within a truth bin. Since model independence is a primary goal of this analysis, this
de�nes an upper limit for the truth bin sizes.
We estimate the response variation within one bin ∆Rij from the variation between

neighbouring bins:
∆Rij = max

j′
|Rij −Rij′ |,

with the neighbouring bins j′. Ideally, one would like this variation to be not much
higher13 than the uncertainties on the matrix elements:

∆′Rij = max
j′

∣∣∣∣∣ Rij −Rij′√
σ2(Rij) + σ2(Rij′)

∣∣∣∣∣ !
< l,

with the normalised in-bin variation ∆′Rij and a limit l ∼ O(5). Unfortunately this aim
is contradictory to the need to �ll each truth bin with su�ciently many events to reduce
the in�uence of the priors (see above). Also, small scale variations might be hidden
within the bins, so care has to be taken on a variable by variable base to optimise the
binning.
If the detector response is su�ciently �at, the truth bin widths should be adjusted to

include the necessary MC statistics. Other than that, they should be made as small as
possible. The reco bin width is mostly dictated by the physics goals of the analysis and
MC statistics. If the truth binning is chosen as to ensure model independence, no reco
binning will introduce additional model dependence. A �ne reco binning might expose
model dependencies, but the cause is solely in the truth binning. Conversely, a coarse
binning can hide dependencies, so one should aim for as �ne a binning as MC and dara
statistics permit. This also ensures the best hypothesis testing power. Reco bins should
not be �ner than their truth counterparts.
We deploy the following algorithm to decide on the �nal bin widths:

1. Set reco binning according to expected statistics and physics goals.

2. Set truth binning very �ne.

3. Merge truth bins until mean(Nj)
!
> 50

a) Set limit for in-bin variation l.

b) Merge neighbouring bins with lowest number of entries until limit is reached.

c) Merge neighbouring bins with lowest in-bin variation ∆′Rij until limit is
reached.

13Ideally one would like the variation within the bins to be lower than the statistical uncertainty, but if
there is no actual in-bin variation, the statistical uncertainty will dominate this estimate.
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d) If necessary, increase l and repeat.

4. Fine-tune binning by hand.

After this, the resulting matrix is checked for su�cient model-independence in the closure
tests (see Section 3.2.3).

3.2.2.4. Empty bins

The Monte Carlo samples used to generate the response matrix use a physics model µ′.
In that model, certain areas of the truth phase space are very unlikely to be realised and
the corresponding truth bins will not be �lled with a su�cient number of events during
the response matrix construction. This means that we have not enough information
about how the detector would react to these kinds of events. Ideally one would like to
build the response matrix with simulation data that covers all possible phase space, but
this is computationally di�cult.
Since we cannot predict how those events behave in the detector, we remove those

bins from the vector of truth expectation values µ. This is equivalent to setting those
expectation values to 0 in all considered hypotheses, and reduces the dimensionality of
Ω. The events that would have been assigned to these bins are now ignored. This means
that we cannot test hypotheses that predict any events in these bins.
There might also be reconstruction bins that never get �lled during the construction

of the response matrix. The expectation value in those bins will be close14 to 0 for
all possible hypotheses in Ω. Finding events in these bins would necessitate further
investigation and possibly the generation of more Monte Carlo data.
To judge how well the simulated data covers the real measurement and tested hypothe-

ses, we can compare the number of simulated events to the number of measured/predicted
events:

ξreco,i(n) = max
t

ni
N t
i

ξtruth,j(µ) =
µj
Nj

.

Numbers close to or above one indicate that the simulated phase space is not su�cient and
should be extended. More speci�cally, ξtruth(µ) indicates how well the given hypothesis
µ is covered by the simulation, while ξreco(n) shows whether the actual measurement is
covered at all.

3.2.2.5. Event categories

True events fall into eight categories: four in-�ducial-volume (FV) categories and four
out-of-�ducial-volume (OOFV) categories. The gas interaction selection categorises FV
events by the highest-momentum, negatively-charged particle:

14It will not be exactly 0 due to the generation of statistically varied matrices as described in Sec-
tion 3.2.1.
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Table 3.2.: Reconstructed event categorisation by control samples.

No likelihood match? Passes T0-quality? No passing-by veto? Selection branch

Yes Yes Yes Main selection
Yes Yes No Passing-by CS
Yes No * Timing CS
No * * Delta ray CS

� negative MIP (muon or pion)

� electron

� negative other

� no negative particle

The OOFV background is categorised by failure mode:

� delta-ray induced

� timing related

� particles stopping or decaying in the TPC

� multiple particles entering the TPC in coincidence

� other

The last two modes are actually combined into a single OOFV category in the matrix,
as the di�erence between them is already encoded in the forward separation variable (see
Section 3.2.2.7).
To constrain the number of OOFV events, the selection de�nes three control samples.

They are created by inverting the T0-quality, passing-by veto and likelihood-match cuts.
Table 3.2 shows the de�nitions of the samples. This means a total of four reco category
bins, one for each sample.
Events in the OOFV categories are conceptually di�erent from the FV events. Even

their truth binning is de�ned with (some) reconstructed information, i.e. that something
in the reconstruction went wrong. There is no pure truth-space de�nition as there is no
true OOFV event unless it is actually reconstructed. It is not possible to de�ne a useful
e�ciency for these events, so we modify the de�nition of the denominator in the response
matrix for OOFV events slightly:

Rij =
Nij

N ′j
∀ j ∈ OOFV,
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with the total number of selected events N ′j . The e�ciency of the these �nuisance bins� is

�xed15, reducing the number of free parameters in the description of the response matrix.
This means that the respective expectation values µj do not describe the absolute number
of potential OOFV events that happened in the detector, but the number of actually
selected OOFV events. The background from events in the �ducial volume, e.g. neutral-
current events, is not a�ected by this.

3.2.2.6. Primary MIP & HMM kinematics

The main idea of the selection is to �nd muon tracks that start in the TPCs' �ducial
volume. The selection performance depends on the muon direction with respect to the
neutrino beam and momentum, so we have to bin in these variables.
Actually, the selection is not looking for muons, but for Minimum Ionizing Particles

(MIPs), since the detector cannot distinguish well between muons and pions. It selects
the negative Highest Momentum MIP candidate (HMM) starting in the TPCs, and the
reco binning is done in the momentum and angle of this particle.
To re�ect this as closely as possible in the truth binning, we de�ne a primary MIP. It

is the highest momentum negative muon or pion for FV events. For OOFV events, it is
the particle that has been misidenti�ed as HMM, regardless of charge. Truth binning is
done in the variables of this particle.
Since the expected data statistics are low, we decided to do a very coarse reco binning

for the �rst analysis. There are only two bins in reconstructed cos(θ), with bin-edges at
−1, 0, 1, distinguishing only between forward and backward going events. We decided
to bin in cos(θ), because the OOFV background is more isotropic than the expected
signal. It thus gives us some separation power between the two. We do not bin in the
reconstructed momentum, since the expected momentum distributions are very similar.

3.2.2.7. Particle separation

The (mis-)reconstruction probability heavily depends on how well the main particle is
�separated� from other particles in the event. As a measure for this, we de�ne the forward
and backward separation sfwd/bwd. For high-momentum particles it simply corresponds
to the closest angle between the particle direction and its neighbours (see Fig. 3.2).
For very-low-momentum particles, their limited range must be taken into account. The

overlap x between two straight, long tracks can be calculated from their separation angle
and a separation scale y (see Fig. 3.3):

tan(θ) = y/x.

The overlap of low-momentum particles is limited by their range, which corresponds to
a minimum separation:

s = max(θ, arctan(y/x)).

15For a single toy matrix, the e�ciency will always be 1. To make things consistent between multiple
toy matrices with di�erent numbers of selected BG events, N ′j is de�ned using the sum of selected
BG events in all toy selections. This ensures that all toy matrices reproduce the BG distributions
they were created with.

106



θ

θ

ν
µ

fwd

bwd

Figure 3.2.: Angular separation in forward and backward direction.
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θ

Figure 3.3.: Overlap between two tracks. After the overlap distance x, the two tracks are
separated by more than the separation scale y.

We set the separation scale to y = 5 cm. This corresponds to more then �ve times the
size of the pads of the readout plane, so the tracks should be fairly easy to separate
at that distance. The particle range in the TPCs can be estimated from its mass and
momentum (see Fig. 3.4):

r = (20.4 cm/(MeVc) · p3/m2).

We use this approximation instead of the MC truth information, because external users
of the response matrix (i.e. non-T2K-members), must be able to generate all necessary
information to �ll the truth bins with their predictions. The particle momentum and
mass are usually available, while more involved calculations of ranges in di�erent kinds
of matter might not be. This leads to a range corrected separation of

s = max(θ, arctan(5 cm/(20.4 cm/(MeVc) · p3/m2)).

In OOFV events, the true separation of the main track at the true vertex outside
the TPC is not of interest to the reconstructed vertex in the TPC. We thus change the
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Figure 3.4.: Estimation of particle range from its mass and momentum [24]. In the
low-momentum region (p/m < 1), x/m is approximately proportional to
(p/m)3, so we can estimate x = k · (p3/m2). The value of the constant k can
be evaluated from simulations of protons in argon gas.
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meaning of the separation variables in these cases. Their forward separation is de�ned
as the angle between the main track and the closest other particle at the position where
the true main particle �rst enters the TPC. This enables the response matrix to treat
collinearly entering particles di�erent from isolated particles. If there is no other particle
entering the TPC within a 5 cm radius, the forward separation of that OOFV event
is assigned a negative default value. This allows the backward separation to encode
the information of whether an event is coincident OOFV background or �other� (see
Section 3.2.2.5).
The backward separation of OOFV events is just the reconstructed backward separation

of the reconstructed vertex. Like the OOFV categories, it is based on reconstructed
information and o�ers an additional hint as to how the event's reconstruction failed. If
an event is reconstructed with a 1-track vertex, i.e. there are no other particles except for
the main one, the backward separation is assigned a negative default value. The OOFV
separations do not use any range corrections.

3.2.2.8. Particle multiplicities

The track multiplicity directly a�ects the performance of the detector, since the vertex
�nding algorithm works very di�erently between one-, two-, and multi-track events. This
information can actually be encoded in the separation and does not need its own variable.
In one-track events, neither forward nor backward separation are de�ned and can be set
to a negative default value. In two-track events, the secondary particle is either oriented
in forward or in backward direction with respect to the main track. The respective
separation is de�ned, while the other is set to the negative default value. In three-track
events we can �ll both the forward and the backward separation with values > 0. If all
secondary tracks are oriented in the same direction, the other separation will get a value
> π/2. This multiplicity encoding is summarised in Fig.3.7. We employ this round-about
encoding of the multiplicity to reduce the number truth variables we have to bin in. The
remaining di�erence in reconstruction performance between the di�erent multiplicities
above three is much smaller than the variation within the angular separation (see Fig.3.5
and Fig. 3.6).
The purity of the selected events is very di�erent between 1-track and n-track events,

giving the multiplicity discrimination power to distinguish between signal and back-
ground. The expected number of real data events is too low and the multiplicity sys-
tematics have not been tested su�ciently enough to do a �ner binning in the n-track
category. There is one bin for 1-track events and one bin for everything else.

3.2.2.9. Other variables

In the future it would be interesting to extend the number of binned variables in reco
and truth space. Especially the properties of secondary particles (e.g. protons, pions)
are of interest here, as they o�er a window into nuclear e�ects. The TPCs could use their
superior sensitivity to low-momentum protons to make very interesting measurements.
Due to time constraints, this could not be achieved in this �rst analysis.
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Figure 3.5.: E�ciency vs. forward particle separation for di�erent charged-particle
multiplicities.
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Figure 3.6.: E�ciency vs. backward particle separation for di�erent charged-particle
multiplicities.
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Figure 3.7.: Encoding of multiplicity in the separation.

3.2.3. Matrix tests

It is important to check whether the generated response matrix is actually as model-
independent as assumed. The most straight-forward approach is to simply compare the
matrix elements of matrices that were generated with di�erent Monte Carlo samples, and
check whether they agree within the assumed statistical uncertainties (see Section 3.2.1).
Figure 3.8 shows this for matrices generated with Neut and Genie. They show a very
good agreement within the statistical uncertainties. Additionally we check whether the
two matrices produce compatible reco-space predictions given the same truth-space input
(see Fig. 3.9). Again the di�erences are compatible within matrix uncertainties.
Care has to be taken when comparing matrices that were generated with very di�erent

sample sizes. The matrix construction uses certain prior assumptions or �fake data points�
as starting points. When increasing the size of used data samples, this leads to the
matrix elements shifting away from the prior values towards the real ones. This means
the element di�erence between matrixes built with two samples of di�erent size does
not have to be cenetered at 0, even if the simulated physics of the samples is exactly
the same. Any bias in element di�erence should still lie within the uncertainty of the
elements, though.
Since the matrices generated with the two generators are compatible, we use both

Genie and Neut MC to generate the single nominal response matrix that is used in the
analysis. The tests described above can only exclude a model-dependency to the level
of the di�erence between the used generators, i.e. Neut and Genie, though. To check
whether the matrix is also good enough to cover models that lie outside the scope of the
generators, we varied the models with an arbitrary �crazy� weighting function

w = 0.5 +

(
exp

(
−p

600 MeV/c

)
+ 0.5| cos(θ)|

)
·
Ncharged

2
,

and compared the resulting matrix to the nominal one in the same way as done before.
The results of this comparison can be seen in Fig. B.1 and B.2 in the appendix. The
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(a) Ignoring di�erences < 0.1

(b) Ignoring di�erences < 1.0

Figure 3.8.: Matrix element comparison Genie-Neut. Shown are the di�erence of matrix
element expectation values, normalised by the statistical uncertainty (see

Section 3.2.1): (R̂Genie
ij − R̂Neut

ij )/
√
σ2(RGenie

ij )− σ2(RNeut
ij ). A normal and a

student's t distribution are �tted to the histogram to estimate the variance
of the distribution. (a) and (b) show the same data, but with di�erent
thresholds for the minimum di�erence.
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(a) Genie truth (b) Neut truth

Figure 3.9.: Forward-folding test. Neut and Genie truth data are folded through the
response matrices (one generated with Genie and one with Neut data). Each
semi-transparent line corresponds to one toy-matrix, and the opaque lines to
the average matrix. The predictions di�er, but are still compatible within
the uncertainties of the matrices. The dotted lines outside the axes indicate
that the neighbouring bin is an over�ow bin.
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Table 3.3.: Software versions.

Reconstruction ND280 software stack Production 6H/I (v11r37)
(including TREx) v2r27p3

Selection Highland2 v2r23
trexAnalysis v1r1

Response matrix ReMU 0.2.0

weighted matrix is compatible with the nominal one, suggesting that it is su�ciently
model-independent.

3.2.4. Software and data format

The software versions used for the reconstruction, selection and analysis are listed in
Tab.3.3. Reconstruction and selection are handled by software that is intended to be used
inside the T2K collaboration. Data formats are based on the ROOT analysis framework
developed at CERN [44] and also very speci�c to the experiment. The �nal output of
the selection is a ROOT �le with the reconstructed properties of each selected event. For
Monte Carlo events, the truth information is also contained.
The ultimate goal of the response-matrix-centred approach is to enable people who are

not intimately familiar with the experiment to compare neutrino event generators with
the measured data. To this end, it was decided to develop the software that deals with
the response matrix independently from the internal T2K software. The result of this
e�ort is the Response Matrix Utilities framework ReMU [45].
ReMU is written in pure Python and thus able to run on any system that supports the

scripting language. Numerical calculations are handled by the NumPy [46], SciPy [47],
and PyMC [48] packages to take advantage of the performance gains of compiled code.
ReMU's source code is publicly available on the code-sharing platform GitHub [49], and
releases of the software are distributed via the Python Package Index (PyPI) [50]. This
means, installing the framework on systems supporting PyPI can be done with a single
command:

pip install remu

Data is stored and exchanged with standard �le formats. The binning of the response
matrix is saved in YAML �les [51], a human text format that is both human readable and
easy to parse by machines. The response matrix is saved as a binary NumPy �le. To save
disk and RAM space, the matrix is saved as a �sparse� matrix, i.e. only bins that were
�lled during the matrix creation are saved. The information which bins were �lled (and
how many events were simulated in each) is saved in another binary NumPy �le. The
data itself (reco or truth space) can either be provided as binned histograms with binary
NumPy �les, or event-by-event with Comma-Separated Values (CSV) �les. Since ROOT
�les are a de-facto standard for data-exchange in many particle-physics experiments, an
extension to allow ROOT �les as input is planned in the future.
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A publication following the response-matrix centred approach would include at least
these elements:

� Response matrix binning in reco space (�reco-binning.yml�)

� Response matrix binning in truth space (�truth-binning.yml�)

� The systematically and statistically varied sparse response matrices (�response.npy�)

� A truth space histogram of how many events were simulated in each bin (�generator-
truth.npy�)

� Reco histogram of data (�data.npy�) or CSV �le of reco properties of all data events
(�data.csv�)

� Truth space background templates (background.npy)

Users of the publication could then provide their own signal predictions to calculate like-
lihoods. ReMU provides many functions to make this as easy as possible. This includes the
de�nition of composite hypotheses and the likelihood maximisation over their parameter
spaces. An example of a very simple analysis is given in Listing 1 in the appendix.

3.3. Template �t

3.3.1. Approach

As a �rst measurement to demonstrate the feasibility of the response matrix approach,
we chose to do a simple template �t. For this we divide the Monte Carlo data into twelve
categories, based on the reaction mode and neutrino type in the TPC �ducial volume,
and the background type for out-of-�ducial-volume events:

� Charged current (CC) νµ events in the �ducial volume (FV)

� Neutral current (NC) events (any neutrino �avour) in the FV

� Charged current ν̄µ events in the FV

� Charged current νe/ν̄e events in the FV

� Timing related Out Of Fiducial Volume (OOFV) events (1-track)

� Timing related Out Of Fiducial Volume (OOFV) events (n-track)

� Delta-ray OOFV events (1-track)

� Delta-ray OOFV events (n-track)

� Particle decay OOFV events (1-track)

� Particle decay OOFV events (n-track)
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� Other OOFV events (1-track)

� Other OOFV events (n-track)

The OOFV categories correspond to the ones de�ned in Section 3.2.2.5, but with the co-
incident particle background included in the �OOFV other� template. The FV categories
do not correspond to the bins of the response matrix. Each of the FV templates will
thus contain events from multiple event category bins. All used templates are depicted
in Section B.2.
The unblinding of the control regions revealed a huge di�erence between data and

MC predictions of the OOFV events. This was ��xed� with an �ad hoc� weight, which
introduces the biggest single systematic detector uncertainty. There is a huge di�erence
between the weights of events with multiple tracks and those with only one reconstructed
track at the vertex. To give the �tter some power to vary the shape of the background
distributions and the strength of this correction, the OOFV templates are split into
1-track and n-track events.
The templates for each category are normalised and then combined linearly to form

the composite hypothesis that can be �tted to the data.

µ(θ) = θ0µ
0 + θ1µ

1 + · · · ,

where θ ∈ R12
+ is the vector of template weights and µk are the normalised templates.

The parameter of interest is the template weight of the FV νµ CC template θ0. The other
parameters θ1−11 are nuisance parameters that describe the composition of background
events. We build a con�dence interval for the parameter of interest as described in
Section 3.1.8 with both a set of Neut and Genie templates.
It is worth emphasising that this very simple template �t does not vary any cross-

section model parameters. The result will be a model-dependent, phase-space-restricted
CCinc cross section.

3.3.2. Final tests

Some �nal tests were done to con�rm that the analysis method performs as intended.
To check the maximum likelihood �tter, we used the full MC reco data to generate toy
data-sets according to a Poisson distribution

ntoy ∼ Poisson(nMC/f),

with the scaling factor f > 100, and the reconstructed distributions ntoy/MC in the toy
data-sets and full MC data-set respectively. The scaling factor needs to be this high, so
the Poisson variation due to the original MC statistics is small compared to the variation
of the toy data sets. With this condition, one knows the expectation value of true signal,
i.e. FV νµ CC, events in the data, and can check how the �t results are distributed
around that value. This was done in all combinations of generator data and generator
templates. The toy data sets generated in this way are called A-sets.
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Since the total number of events simulated in this test is lower than the number of
real data events recorded16, the same check is performed with toy data generated from
the MC truth folded through the average response matrix:

ntoy ∼ Poisson(R · µMC/fPOT).

Here the scaling factor fPOT ∼ 20 scales the MC statistics to the expected numbers in
the real data. The truth expectation values µMC are technically also just random samples
from a Poisson distributed sample obtained by the event generator. The true expectation
values of the model are only reached in the limit of an in�nitively large MC sample. In
this context the Poisson sampled MC expectation values are used as the de�nitive truth
model that di�ers from the �real� generator model by the statistical di�erences. By
folding them through the matrix directly, the corresponding reco expectation values are
know precisely17 and do not get in�uenced by the uncertainty of the MC statistics. The
toy data sets generated in this way are called B-sets.
Figure 3.10 and Fig. 3.11 show the distribution of the maximum-likelihood-�t signal-

template-weight values obtained from the toy data sets. There is a bias towards lower
values in the A-sets. This might be caused by the fact that the expectation value in this
study is close to 0 and the overall event numbers are low. In the B-sets (i.e. folded samples
with realistic event numbers), the �t results are distributed around the expectation value.
There are some slight biases when �tting the Neut data with the Genie templates and vice
versa. This is no problem, as the results of the �ts are expected to be model-dependent.
Another important benchmark is the distribution of the plug-in p-value (as described

in Section 3.1.8) for the known, true expectation values in the toy data sets. It should be
uniformly distributed. The cumulative distributions for the A-sets are shown in Fig.3.12.
The low p-values appear more often than they should. Using them directly as exclusion
limits would thus lead to under-coverage of the con�dence interval. This might be a
consequence of the low signal expectation value, just like the bias in the maximum
likelihood �t results. The pro�le plug-in p-value calculation cannot be employed here
without additional corrections. The distributions for the B-sets are shown in Fig. 3.13.
They show the expected behaviour, proving the pro�le plug-in p-value to be suitable for
the amount of data analysed here.

3.4. Systematic uncertainties

The systematic uncertainties of the selection are summarised in Tab. 2.15 The biggest
uncertainties stem from the �ad hoc� and �ux weights. These numbers refer to the total
in�uence on the main selection. Their e�ect on the matrix construction (see Section 3.2.1)
and template �t (see Section 3.3) will be di�erent.
For example, the �ux uncertainty a�ects the reconstructed events in the same way as

the true events, so its in�uence on the matrix construction should be much smaller18

16Our MC sample is only a factor ∼ 20 larger than the real data, not the required ∼ 100.
17At least for a single given response matrix.
18Assuming a perfectly model-independent matrix, the systematic should have no e�ect at all. Since
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(a) Genie toy data
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(b) Neut toy data

Figure 3.10.: Test of maximum likelihood estimate in the A-sets of toy data. The max-
imum likelihood estimates for the expectation value of signal events were
calculated for 98 (100) randomly generated Genie (Neut) toy data sets.
This was done for both Neut and Genie toy data and both Neut (H0) and
Genie (H1) templates. The arithmetic mean and error on the mean are
displayed in the legend. The true expectation value is shown in black.
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(a) Folded Genie toy data
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(b) Folded Neut toy data

Figure 3.11.: Test of maximum likelihood estimate in the (folded) B-sets of toy data. The
maximum likelihood estimates for the expectation value of signal events
were calculated for 78 (72) randomly generated Genie (Neut) toy data sets.
This was done for both Neut and Genie toy data and both Neut (H0) and
Genie (H1) templates. The arithmetic mean and error on the mean are
displayed in the legend. The true expectation value is shown in black.
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(a) Genie toy data
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(b) Neut toy data

Figure 3.12.: Test of p-value calculation in the A-sets of toy data. The p-values of the true
signal expectation value were calculated for 98 (100) randomly generated
Genie (Neut) toy data sets. This was done for both Neut and Genie toy data
and both Neut (H0) and Genie (H1) templates. The basis of the p-value
calculation is the likelihood ratio of free template hypotheses (H0/1 with
12 free parameters) and the hypotheses with �xed signal weight (h0/1).
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(a) Genie toy data
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(b) Neut toy data

Figure 3.13.: Test of p-value calculation in the (folded) B-sets of toy data. The p-values
of the true signal expectation value were calculated for 78 (72) randomly
generated Genie (Neut) toy data sets. This was done for both Neut and
Genie toy data and both Neut (H0) and Genie (H1) templates. The basis
of the p-value calculation is the likelihood ratio of free template hypotheses
(H0/1 with 12 free parameters) and the hypotheses with �xed signal weight
(h0/1).
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than the worst case 10%. For the template �t, only the shape of the OOFV distributions
matters, since the integral of each template is normalised to 1 anyway. The systematics'
e�ect on the overall quantity of OOFV background in the selection, i.e. the normalisation,
has no in�uence.
The �nal in�uence of the uncertainties depends on the details of the tested models

and measurement method (likelihood template �t, MCMC, etc.). They will naturally be
handled by the methods described in Section 3.1, leading to the construction of con�-
dence/credible intervals that re�ect our knowledge of the detector correctly. It is di�cult
to disentangle the single in�uences in these methods though, so one should use the num-
bers given here as an indication which improvements of statistical uncertainty would
bene�t the gas interaction analysis the most.

3.5. Results

A detailed description of the response matrix used for the analysis can be found in
Section B.1. The calculation of the con�dence interval with the real data was performed
as described in Section 3.3 with both the nominal Neut and Genie model templates.
Additionally, the �t was done with a �crazy� template that was created by using both
the Neut and Genie MC events, and weighting them with the �crazy� weight as described
in Section 3.2.3. The result of the �ts can be seen in Fig.3.14 and Fig.3.15. All template
weights are well within the acceptable range for the response matrix to be valid (see
Section 3.2.1). The resulting expectation values for the number of true charged-current
events in the real data are (maximum likelihood value and 1σ con�dence interval):

θNeut = 271 +98
−83,

θGenie = 653 +119
−105,

θCrazy = 305 +88
−96.

These have to be converted to a cross section that is comparable to other data.
For this, the values have to be divided by the integrated neutrino �ux Φ and the

number of targets N :

σ =
θ

NΦ
.

The total �ux of the analysed data is shown in Fig. 3.16 and yields:

Φ = 11.07× 1012 cm−2.

The target mass m is simply the �ducial volume V multiplied with the average19

density of the drift gas ρ:
m = ρV .

any real matrix will have some model dependence left, we include these systematics when building
the matrix anyway.

19The gas density in the TPCs changes over time due to atmospheric pressure and temperature changes.
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Figure 3.14.: Template �t results. Likelihood ratio p-values and pro�le likelihood ratios
for the three performed template �ts. H0: Neut templates, H1: Genie
templates, H2: �Crazy� templates. Con�dence intervals can be constructed
from these values by including areas over the threshold p-value. The thresh-
olds for 1σ, 2σ, 90%, and 95% con�dence levels are shown. The maximum
likelihood values are shown as vertical lines. The �ts are done indepen-
dently and the results are only valid within the con�nes of the template
models.
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Figure 3.15.: Reco space �t results. Each plot is a projection of the data onto that
variable. The maximum likelihood estimates of the three hypotheses (H0:
Neut templates, H1: Genie templates, H2: �Crazy� templates) are folded
through the response matrix. Each semi-transparent line is the folding
result of one toy matrix. The solid lines show the result of the average
matrix. The data is shown as points with

√
N error bands. The dotted

lines outside the axes indicate that the neighbouring bin is an over�ow bin.
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Figure 3.16.: Muon neutrino �ux corresponding to the 5.73 × 1020 POT of the analysed
data. The total �ux adds up to Φ = 11.07 × 1012 cm−2. The average
neutrino energy is Eν = 0.842 GeV and the central 68% of neutrinos lie
in the interval between 0.405 GeV and 0.978 GeV. The peak energy is at
600 MeV.
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The total �ducial volume of the TPCs is V = 6.534 m3. The mixtures' density at NTP
(T = 293.15 K, p = 1013 mbar) is ρNTP = 1.738 kg/m3, and the average (T = 290.65 K,
p = 1010 mbar) density ρ = 1.748 kg/m3. So the target mass is:

m = 11.4 kg.

The number of targets is not well de�ned since the target material is a mixture of
di�erent gases. The most robust de�nition would be by amount of substance, i.e. in
mole:

Nmol = m/M ,

with the molar mass M = xArMAr + xCF4MCF4 + xiC4H10MiC4H10 = 41.77 g/mol. The
molar fractions of the constituent gases are xAr = 0.949, xCF4 = 0.030, and xiC4H10 =
0.021. They di�er slightly from the volume fractions due to especially isobutane being
far from an ideal gas. The molar masses of the constituents are MAr = 39.95 g/mol,
MCF4 = 88.00 g/mol, and MiC4H10 = 58.12 g/mol. So the amount of target substance is:

Nmol = 273 mol.

Charged-current cross sections are often quoted per nucleon or per neutron. The
number of nucleons NN can be calculated from the total target mass and the uni�ed
atomic mass u:

NN = m/u = 6.87× 1027.

The number of target protons Np is:

Np = NmolNA(18xAr + (6 + 4 · 9)xCF4 + (4 · 6 + 10 · 1)xiC4H10) = 3.13× 1027,

with the Avogadro constant NA. So the number of target neutrons Nn is:

Nn = NN −Np = 3.74× 1027.

As can be seen in Chapter 2, the selection is not particularly sensitive to momenta
below 200MeV/c. Claiming to measure these would thus be bad practice. Instead, we
decide to ignore the events below this threshold in our quoted cross section. The ratio
of events above the threshold in each of the signal templates is

ε =
∑

p>200 MeV/c

µ0
j ,

εNeut = 0.907,

εGenie = 0.908,

εCrazy = 0.873,

and can directly be applied to the measured cross section:

σ′ = εσ =
εθ

NΦ
.
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This means the �nal cross section result is amodel-dependent, inclusive measurement with
restricted phase space. The results presented here do not vary the model parameters in
any way. Model uncertainties must be handled in separate analyses, e.g. by varying the
templates according to the uncertainties and evaluating the in�uence on the cross-section
results. These analyses can use the response matrix used in this analysis as-is, without
having to re-evaluate the detector systematics for the di�erent models.
To calculate an uncertainty on the cross section within the constraints of the model

templates, one can apply normal error propagation:

σ2(σ′) =

(
θ

NΦ

)2

σ2(ε) +
( ε

NΦ

)2
σ2(θ) +

(
εθ

NΦ2

)2

σ2(Φ) +

(
εθ

N2Φ

)2

σ2(N).

The error on ε can be calculated from the MC statistics, the errors on m and Φ are given
by the ND280 systematics, and the error on θ is evaluated from the 68% con�dence
interval, using the larger of the asymmetric errors. A summary of the results and all
error sources is given in Tab. 3.4.
The �nal uncertainties on the cross sections are in the order of 21% to 37%. Considering

only the main selection with ∼ 400 events in total and ∼ 100 signal events, the purely
statistical error would be

√
400/100 = 20%. Detector systematics are in the order of

17%20 and the �ux uncertainty of 10%. These two increase this idealised error to ∼ 28%.
This assumes a perfect knowledge of the number of background events. The fact that this
corresponds (roughly) to the �nal uncertainty shows that the background constriction
using the control regions is working very well.
The maximum likelihood estimates of the Genie model di�ers from the other two

models by about 2σ. Both the Neut and Genie �t show dips in their likelihood ratio
towards the other's maximum likelihood value (see Fig. 3.14). The �crazy� model even
has a local minimum close to Genies global minimum. Its 95% con�dence interval covers
the results of both the Neut and the Genie �t. Overall, the results of all three models
show compatible results. It should be noted though, that the results of one model are not
able to exclude other models. The results are only valid within the tested model space,
i.e. assuming that the model is correct and that the parameter space is wide enough to
cover reality. The maximum likelihoods of the three template �ts are comparable. Only
the Neut templates seem to yield a slightly better �t to the data than the other two
models.
This is the �rst measurement of a neutrino cross section on (mostly) argon at that

neutrino energy. This makes comparisons with existing data di�cult. The closest com-
parable measurement comes from the ArgoNeuT collaboration [52]. They measured the
inclusive charged-current cross section per nucleon on argon at an average neutrino energy
of 9.5 GeV to be

σArgoNeuT
Eν

= (0.66±stat 0.03±syst 0.08)× 10−38 cm2/GeV.

20The e�ect of the systematics on the template �t results are lower than on the absolute numbers of the
selection. The �tter only uses the shape of the templates and can even vary the shape of the OOFV
background to a certain degree.

127



Table 3.4.: Likelihood �t results.

General

Target mass m = (11.4± 0.3) kg
Amount of substance Nmol = (203± 5) mol
Molar composition Ar: 0.95, CF4: 0.03, iC4H10: 0.02
Number of nucleons NN = (6.87± 0.18)× 1027

Number of neutrons Nn = (3.74± 0.10)× 1027

Integrated muon neutrino �ux Φ = (11.1± 1.1)× 1012 cm−2

Mean muon neutrino energy Eν = 0.842 GeV
Central 68% neutrino energy quantile (0.405, 0.978) GeV

Neut template �t

Maximum log-likelihood −74.72
CCinc template weight θ = 271± 98

Sensitive fraction (pMIP,true > 200 MeV/c) ε = 0.907± 0.009
CCinc cross section by mass σm = (2.14± 0.80)× 10−12 cm2kg−1

Sensitive CCinc cross section by mass σ′m = (1.94± 0.66)× 10−12 cm2kg−1

Molar CCinc cross section σmol = (0.120± 0.045)× 10−12 cm2mol−1

Sensitive molar CCinc cross section σ′mol = (0.109± 0.037)× 10−12 cm2mol−1

CCinc cross section per nucleon σN = (3.56± 1.33)× 10−39 cm2/nucleon
Sensitive CCinc cross section per nucleon σ′N = (3.22± 1.11)× 10−39 cm2/nucleon

Genie template �t

Maximum log-likelihood −76.04
CCinc template weight θ = 654± 119

Sensitive fraction (pMIP,true > 200 MeV/c) ε = 0.908± 0.009
CCinc cross section by mass σm = (5.16± 1.08)× 10−12 cm2kg−1

Sensitive CCinc cross section by mass σ′m = (4.69± 0.91)× 10−12 cm2kg−1

Molar CCinc cross section σmol = (0.290± 0.060)× 10−12 cm2mol−1

Sensitive molar CCinc cross section σ′mol = (0.263± 0.051)× 10−12 cm2mol−1

CCinc cross section per nucleon σN = (8.57± 1.79)× 10−39 cm2/nucleon
Sensitive CCinc cross section per nucleon σ′N = (7.78± 1.51)× 10−39 cm2/nucleon

Crazy template �t

Maximum log-likelihood −76.10
CCinc template weight θ = 305± 96

Sensitive fraction (pMIP,true > 200 MeV/c) ε = 0.873± 0.009
CCinc cross section by mass σm = (2.41± 0.80)× 10−12 cm2kg−1

Sensitive CCinc cross section by mass σ′m = (2.10± 0.62)× 10−12 cm2kg−1

Molar CCinc cross section σmol = (0.135± 0.045)× 10−12 cm2mol−1

Sensitive molar CCinc cross section σ′mol = (0.118± 0.035)× 10−12 cm2mol−1

CCinc cross section per nucleon σN = (4.00± 1.33)× 10−39 cm2/nucleon
Sensitive CCinc cross section per nucleon σ′N = (3.49± 1.03)× 10−39 cm2/nucleon
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As the weak interaction cross section should be approximately proportional to the neu-
trino energy, one can compare these numbers to our measurements. The mean neutrino
energy in the T2K beam is 0.842 GeV. Using the not-phase-space-restricted nucleon cross
sections from Tab. 3.4, the corresponding values for the three �ts are:

σNeut �t
Eν

= (0.42± 0.16)× 10−38 cm2/GeV,

σGenie �t
Eν

= (1.02± 0.21)× 10−38 cm2/GeV,

σCrazy �t

Eν
= (0.48± 0.16)× 10−38 cm2/GeV.

The values are completely compatible within the uncertainties, despite the naive extrap-
olation to lower neutrino energies. At this level of uncertainty it is also not necessary to
include an �argon-to-isoscalar� correction21 as has been done for the ArgoNeuT result in
the order of 3%.
This simple comparison of energy-scaled cross sections ignores the considerable spread

of the neutrino energies in both beams. More stringent treatments need to take the actual
beam �uxes into account (see Fig. 3.16). The �most correct� results of this analysis, i.e.
the ones involving the least assumptions, are the sensitive molar and mass cross sections:
σ′mol and σ

′
m (see Tab. 3.4). They describe the sensitive absolute cross section of muon

neutrinos in the T2K beam on the T2K gas mixture, assuming the �tted models. The
cross section per nucleon σ′N implies that the cross section is equal for all nucleons.
This is obviously not the case. The need for �target-to-isoscalar� corrections in precision
measurements underlines this.

21Corrects for the fact that the target does not have the same number of protons and neutrons. For this
measurement it would be more correct to call it a �T2K-gas-to-isoscalar� correction.
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4. Conclusions

We performed a selection of neutrino interactions in the ND280 TPCs. Events where the
highest-momentum, negatively-charged particle is MIP-like (i.e. a muon or a pion) can
be identi�ed with a purity of 26% and an e�ciency of 32%. The overwhelming majority
of these events are charged-current muon-neutrino interactions with argon, which makes
up 91% of the target mass.
Virtually all background events in the selection are out-of-�ducial-volume events. We

could identify �ve failure modes that cause the events to be reconstructed as vertices in
the �ducial volume. The amount of background in the main selection is constrained by
three control regions that invert di�erent cuts of the main selection.
The selection was developed �blind�, i.e. only with Monte Carlo events. The unblinding

of the control regions revealed considerable di�erences between the real data and Monte
Carlo predictions. Further investigations suggest that this is caused by a faulty detector
simulation. The di�erences could be ��xed� by applying binned �ad hoc� weights. Since
the exact nature of the simulation fault remains unknown, the uncertainty on these
weights is assumed to be 50%. It is the largest source of systematic uncertainties for
the selection. Unblinding the main selection showed a good agreement between expected
and predicted distributions (with included ad hoc weights).
A cross-section measurement was extracted from the selection with the response-

matrix-centred approach. Its focus lies on constructing a response matrix that contains all
needed information about the detector performance and the related uncertainties. Once
such a matrix is available, it is relatively easy to test various physics models against the
data, without having to re-evaluate the detector systematics for each model. This will
be useful for the NUISANCE model tuning framework[30], for example.
The actual cross-section extraction from the data was done by performing a template

�t with templates of three models: the Neut and Genie event generators, as well as a
combination of the two with an arbitrary weighting function added. Since the detector
e�ciency drops considerably below MIP momenta of 200 MeV/c, we decided to calculate
a sensitive cross section, i.e. the cross section of events above that threshold. As expected,
the three model template �ts to the data yield slightly di�erent results, with values
ranging from (1.94 ± 0.64) × 10−12 cm2kg−1 (Neut) to (4.69 ± 1.02) × 10−12 cm2kg−1

(Genie). Considering the asymmetric likelihood ratio pro�les and con�dence intervals,
they are compatible with one another.
Systematic and statistical uncertainties of the measurement are roughly equal. The

statistical uncertainty will be reduced by including more data sets in the selection. The
Runs 2-4, which were used in this work, make up only about 15% of the projected total
amount of muon-neutrino data that will have been collected at the end of the T2K
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experiment1. The most important detector systematic is the ad hoc weight. There is
a clear need to understand in detail what causes the data-MC di�erences observed in
the OOFV background, and to �x the detector simulation to represent the real data
performance more closely.
This is the �rst time a cross-section measurement with an exhaustive treatment of

the systematic uncertainties has been performed in the T2K TPCs. The total inclusive
measurement is of limited use to constrain nuclear interaction models. It is an important
milestone on the path to more specialised measurements that take advantage of the TPCs
superior sensitivity to low momentum particles, though. Future iterations of the selection
and analysis will include these particles and o�er unprecedented insights into the nuclear
e�ects of neutrino interactions with argon. Measurements of the anti-muon-neutrino
cross section will also be possible.

1Assuming an equal amount of muon-neutrino mode and anti-muon-neutrino mode beam. A currently
discussed extension of the T2K programme called �T2K Phase 2� would more than double the amount
of data. It would include an upgrade of the near detector, though.
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A. Event selection appendix

Table A.1.: Selection composition. The values do not include the e�ects of the ad hoc
weight (see Section 2.5.1).

Main Selection Passing-by CS
Neut Genie Neut Genie

MIP 38.27% 36.50% 2.56% 2.58%
In FV electron 0.06% 0.12% 0.00% 0.01%

other 0.00% 0.06% 0.00% 0.01%
wrong sign 0.06% 0.12% 0.02% 0.41%

delta-ray 22.56% 21.66% 36.60% 35.52%
Out of FV timing 3.95% 4.04% 10.26% 8.62%

decay 13.02% 15.40% 13.09% 15.53%
coincident 13.87% 13.69% 29.45% 29.75%

other 8.20% 8.40% 8.02% 7.57%

Timing CS Delta-ray CS
Neut Genie Neut Genie

MIP 4.28% 3.57% 0.84% 0.78%
In FV electron 0.00% 0.01% 0.01% 0.01%

other 0.00% 0.03% 0.00% 0.00%
wrong sign 0.05% 0.00% 0.00% 0.00%

delta-ray 19.45% 19.68% 30.80% 30.25%
Out of FV timing 41.23% 39.96% 21.59% 18.52%

decay 10.96% 11.99% 4.14% 4.99%
coincident 16.01% 16.67% 32.94% 35.82%

other 8.00% 8.09% 9.69% 9.62%
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Figure A.1.: E�ciency vs drift angle θx in the TPC MC Neut sample. Tracks parallel
to the TPC drift direction cannot be reconstructed reliably. The selection
e�ciency drops. The e�ect of the θx cut is shown.
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Figure A.2.: E�ciency vs vertex x-position in the TPC MC Neut sample. The e�ect of
the vertex-FV cuts can be seen. The central cathode is located at x = 0.
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Table A.2.: In-FV reactions in main selection.

Neut
MIP electron other wrong sign all In FV

CCQE 61.01% 0.00% - 0.00% 60.81%
2p2h 3.13% 0.00% - 0.00% 3.13%
RES 19.89% 0.00% - 0.00% 19.82%
DIS 11.53% 0.00% - 0.00% 11.49%

COH 1.18% 0.00% - 0.00% 1.18%
NC 2.64% 0.00% - 67.16% 2.74%

CC-ν̄µ 0.50% 0.00% - 32.84% 0.55%
CC-νe, CC-ν̄e 0.11% 100.00% - 0.00% 0.27%

other 0.00% 0.00% - 0.00% 0.00%

Genie
MIP electron other wrong sign all In FV

CCQE 61.16% 0.00% 0.00% 0.00% 60.65%
2p2h 0.00% 0.00% 0.00% 0.00% 0.00%
RES 25.95% 0.00% 0.00% 0.00% 25.73%
DIS 8.78% 0.00% 30.77% 0.00% 8.76%

COH 0.64% 0.00% 0.00% 0.00% 0.63%
NC 2.81% 0.00% 69.23% 48.69% 3.07%

CC-ν̄µ 0.60% 0.00% 0.00% 46.30% 0.75%
CC-νe, CC-ν̄e 0.06% 100.00% 0.00% 5.00% 0.40%

other 0.00% 0.00% 0.00% 0.00% 0.00%

Table A.3.: Target elements. From the Neut MC. The values do not include the e�ects
of the ad hoc weight (see Section 2.5.1).

Main Selection Passing-by CS Timing CS Delta-ray CS
InFV OOFV InFV OOFV InFV OOFV InFV OOFV

Argon 91.10% 0.16% 92.55% 0.09% 91.73% 0.43% 95.44% 0.03%
Fluorine 6.01% 0.00% 2.24% 0.03% 5.57% 0.00% 2.68% 0.01%
Carbon 2.72% 27.95% 5.20% 38.11% 2.32% 26.61% 1.45% 34.48%
Oxygen 0.00% 4.11% 0.00% 5.85% 0.00% 5.63% 0.00% 5.05%

Hydrogen 0.16% 1.77% 0.01% 2.46% 0.01% 1.68% 0.44% 1.74%
Aluminium 0.00% 16.18% 0.00% 13.29% 0.00% 16.43% 0.00% 14.98%

Iron 0.00% 18.90% 0.00% 13.07% 0.00% 20.35% 0.00% 13.53%
Copper 0.00% 1.85% 0.00% 2.70% 0.00% 1.62% 0.00% 2.46%
Lead 0.00% 25.84% 0.00% 21.40% 0.00% 22.82% 0.00% 24.80%
other 0.02% 3.25% 0.00% 3.01% 0.38% 4.42% 0.00% 2.92%
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Figure A.3.: E�ciency vs vertex y-position in the TPC MC Neut sample. The e�ect of
the vertex-FV cuts can be seen.

Table A.4.: OOFV background source. From the Neut MC. The TPC can be a source of
OOFV background, because the �ducial volume is just a sub-set of the full
TPC volumes. Also, particles that get reconstructed in the wrong bunch are
counted as timing-related OOFV background, including events that spacially
happened in the track-FV. The values do not include the e�ects of the ad
hoc weight (see Section 2.5.1).

Main Selection Passing-by CS Timing CS Delta-ray CS

TPC1 3.34% 2.66% 4.56% 2.90%
TPC2 3.43% 2.27% 4.92% 2.17%
TPC3 2.48% 1.45% 5.08% 2.10%
FGD1 3.98% 8.40% 3.58% 5.77%
FGD2 3.32% 5.60% 3.12% 4.21%

DsECAL 0.89% 0.28% 0.85% 0.81%
BrECAL 27.52% 14.09% 22.57% 18.20%

P0DECAL 6.38% 4.40% 7.30% 4.48%
P0D 24.39% 44.27% 22.05% 40.98%

SMRD 16.08% 9.94% 17.60% 10.48%
other 8.19% 6.62% 8.36% 7.89%
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Figure A.4.: E�ciency vs vertex z-position in the TPC MC Neut sample. The e�ect of
the vertex-FV cuts can be seen. E�ciency drops towards the downstream
end of the �ducial volume. Because most particles are emitted in forward
direction, chances increase that the particle tracks are not long enough for
a proper PID in the �rst TPC the particle sees. Those particles can still
be identi�ed in the other TPCs further downstream, but shorter tracks also
reduce the probability of a successful matching of the tracks in the di�erent
TPCs. The same applies for the drop before the vertical gap in the centre
of the TPCs (z = 0). The closer the particle is created before the gap, the
lower is the probability to match the hits before the gap to the hits behind
the gap.

140



Integral  6118.47

)θHMM cos(
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

#e
ve

nt
s/

0.
1 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400
Integral  6118.47

fake data
MIP
electron
other
wrong sign
OOFV delta-ray
OOFV decay
OOFV timing
OOFV coincident
OOFV other

Integral  6136.47
fake data
MIP
electron
other
wrong sign
OOFV delta-ray
OOFV decay
OOFV timing
OOFV coincident
OOFV other

Integral  6118.47Integral  6118.47

Figure A.5.: Passing-by CS angular distribution. The stacked histogram shows Neut
with systematic detector and �ux uncertainties and the fake data is Genie
with statistical errors. The Neut data is scaled to match Genie's POT. The
values do not include the e�ects of the ad hoc weight (see Section 2.5.1).
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Figure A.6.: Passing-by CS track multiplicity. The stacked histogram shows Neut with
systematic detector and �ux uncertainties and the fake data is Genie with
statistical errors. The Neut data is scaled to match Genie's POT. The values
do not include the e�ects of the ad hoc weight (see Section 2.5.1).
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Table A.5.: Missing 1-track background in combined control regions. |φx| is the angle on
the MicroMeGaS plane, with 0 being horizontal.

-|x| position momentum |φx| data events MC events data - MC data / MC
0 - 200 150 - 500 0.00 - 0.32 11 4.0 7.0 2.8
- - 0.32 - 0.64 20 6.2 13.8 3.2
- - 0.64 - 0.96 26 8.6 17.4 3.0
- - 0.96 - 1.28 28 7.1 20.9 3.9
- - 1.28 - 1.60 18 4.3 13.7 4.2
- 500 - 1000 0.00 - 0.32 19 3.5 15.5 5.4
- - 0.32 - 0.64 5 3.6 1.4 1.4
- - 0.64 - 0.96 4 4.9 -0.9 0.8
- - 0.96 - 1.28 5 3.0 2.0 1.7
- - 1.28 - 1.60 0 0.9 -0.9 0.0
- 1000 - ... 0.00 - 0.32 33 5.9 27.1 5.6
- - 0.32 - 0.64 12 3.6 8.4 3.3
- - 0.64 - 0.96 6 3.5 2.5 1.7
- - 0.96 - 1.28 6 1.7 4.3 3.5
- - 1.28 - 1.60 11 1.3 9.7 8.5

200 - 400 150 - 500 0.00 - 0.32 26 5.3 20.7 4.9
- - 0.32 - 0.64 19 4.6 14.4 4.1
- - 0.64 - 0.96 17 2.9 14.1 5.9
- - 0.96 - 1.28 24 5.1 18.9 4.7
- - 1.28 - 1.60 24 3.5 20.5 6.9
- 500 - 1000 0.00 - 0.32 18 5.0 13.0 3.6
- - 0.32 - 0.64 4 2.0 2.0 2.0
- - 0.64 - 0.96 7 0.8 6.2 8.8
- - 0.96 - 1.28 10 1.9 8.1 5.3
- - 1.28 - 1.60 6 0.4 5.6 15.0
- 1000 - ... 0.00 - 0.32 49 7.2 41.8 6.8
- - 0.32 - 0.64 15 2.1 12.9 7.1
- - 0.64 - 0.96 4 0.7 3.3 5.7
- - 0.96 - 1.28 8 0.5 7.5 16.0
- - 1.28 - 1.60 15 0.3 14.7 50.0

400 - 600 150 - 500 0.00 - 0.32 33 6.8 26.2 4.9
- - 0.32 - 0.64 12 4.4 7.6 2.7
- - 0.64 - 0.96 20 4.2 15.8 4.8
- - 0.96 - 1.28 17 4.4 12.6 3.9
- - 1.28 - 1.60 17 3.9 13.1 4.4
- 500 - 1000 0.00 - 0.32 19 2.9 16.1 6.6
- - 0.32 - 0.64 11 1.7 9.3 6.5
- - 0.64 - 0.96 3 1.2 1.8 2.5
- - 0.96 - 1.28 4 1.0 3.0 4.0
- - 1.28 - 1.60 7 0.3 6.7 23.3
- 1000 - ... 0.00 - 0.32 21 6.1 14.9 3.4
- - 0.32 - 0.64 8 2.1 5.9 3.8
- - 0.64 - 0.96 5 1.1 3.9 4.5
- - 0.96 - 1.28 7 0.8 6.2 8.8
- - 1.28 - 1.60 10 0.4 9.6 25.0

600 - 800 150 - 500 0.00 - 0.32 48 21.2 26.8 2.3
- - 0.32 - 0.64 62 33.0 29.0 1.9
- - 0.64 - 0.96 61 31.4 29.6 1.9
- - 0.96 - 1.28 68 40.8 27.2 1.7
- - 1.28 - 1.60 48 24.4 23.6 2.0
- 500 - 1000 0.00 - 0.32 32 13.7 18.3 2.3
- - 0.32 - 0.64 38 15.2 22.8 2.5
- - 0.64 - 0.96 20 7.3 12.7 2.7
- - 0.96 - 1.28 15 4.8 10.2 3.1
- - 1.28 - 1.60 12 2.4 9.6 5.0
- 1000 - ... 0.00 - 0.32 45 20.3 24.7 2.2
- - 0.32 - 0.64 27 10.5 16.5 2.6
- - 0.64 - 0.96 3 3.3 -0.3 0.9
- - 0.96 - 1.28 13 2.9 10.1 4.5
- - 1.28 - 1.60 18 1.1 16.9 16.4
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Table A.6.: Missing n-track background in combined control regions. |φx| is the angle on
the MicroMeGaS plane, with 0 being horizontal.

-|x| position momentum |φx| data events MC events data - MC data / MC
0 - 200 150 - 500 0.00 - 0.32 36 31.9 4.1 1.1
- - 0.32 - 0.64 36 21.0 15.0 1.7
- - 0.64 - 0.96 21 11.3 9.7 1.9
- - 0.96 - 1.28 18 12.2 5.8 1.5
- - 1.28 - 1.60 13 11.6 1.4 1.1
- 500 - 1000 0.00 - 0.32 27 20.1 6.9 1.3
- - 0.32 - 0.64 13 9.2 3.8 1.4
- - 0.64 - 0.96 6 4.2 1.8 1.4
- - 0.96 - 1.28 6 2.7 3.3 2.2
- - 1.28 - 1.60 2 1.0 1.0 2.0
- 1000 - ... 0.00 - 0.32 93 70.5 22.5 1.3
- - 0.32 - 0.64 16 10.6 5.4 1.5
- - 0.64 - 0.96 3 3.1 -0.1 1.0
- - 0.96 - 1.28 2 1.9 0.1 1.1
- - 1.28 - 1.60 2 0.9 1.1 2.2

200 - 400 150 - 500 0.00 - 0.32 51 43.5 7.5 1.2
- - 0.32 - 0.64 40 27.0 13.0 1.5
- - 0.64 - 0.96 35 16.0 19.0 2.2
- - 0.96 - 1.28 29 20.5 8.5 1.4
- - 1.28 - 1.60 35 17.7 17.3 2.0
- 500 - 1000 0.00 - 0.32 42 28.3 13.7 1.5
- - 0.32 - 0.64 23 13.6 9.4 1.7
- - 0.64 - 0.96 10 4.8 5.2 2.1
- - 0.96 - 1.28 3 2.2 0.8 1.4
- - 1.28 - 1.60 3 3.3 -0.3 0.9
- 1000 - ... 0.00 - 0.32 175 90.7 84.3 1.9
- - 0.32 - 0.64 22 15.6 6.4 1.4
- - 0.64 - 0.96 7 3.6 3.4 1.9
- - 0.96 - 1.28 4 2.2 1.8 1.8
- - 1.28 - 1.60 8 1.7 6.3 4.7

400 - 600 150 - 500 0.00 - 0.32 68 44.9 23.1 1.5
- - 0.32 - 0.64 42 24.8 17.2 1.7
- - 0.64 - 0.96 36 17.7 18.3 2.0
- - 0.96 - 1.28 25 19.6 5.4 1.3
- - 1.28 - 1.60 44 19.4 24.6 2.3
- 500 - 1000 0.00 - 0.32 51 31.2 19.8 1.6
- - 0.32 - 0.64 25 10.2 14.8 2.5
- - 0.64 - 0.96 16 5.2 10.8 3.1
- - 0.96 - 1.28 5 2.5 2.5 2.0
- - 1.28 - 1.60 2 1.4 0.6 1.4
- 1000 - ... 0.00 - 0.32 143 95.4 47.6 1.5
- - 0.32 - 0.64 25 16.8 8.2 1.5
- - 0.64 - 0.96 5 4.4 0.6 1.1
- - 0.96 - 1.28 1 2.5 -1.5 0.4
- - 1.28 - 1.60 7 1.0 6.0 7.0

600 - 800 150 - 500 0.00 - 0.32 70 49.6 20.4 1.4
- - 0.32 - 0.64 56 28.3 27.7 2.0
- - 0.64 - 0.96 26 19.8 6.2 1.3
- - 0.96 - 1.28 37 20.8 16.2 1.8
- - 1.28 - 1.60 29 19.3 9.7 1.5
- 500 - 1000 0.00 - 0.32 53 35.3 17.7 1.5
- - 0.32 - 0.64 24 15.0 9.0 1.6
- - 0.64 - 0.96 8 5.5 2.5 1.5
- - 0.96 - 1.28 3 3.3 -0.3 0.9
- - 1.28 - 1.60 6 2.1 3.9 2.9
- 1000 - ... 0.00 - 0.32 157 87.3 69.7 1.8
- - 0.32 - 0.64 26 18.0 8.0 1.4
- - 0.64 - 0.96 5 3.8 1.2 1.3
- - 0.96 - 1.28 3 2.9 0.1 1.0
- - 1.28 - 1.60 1 1.2 -0.2 0.8
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Figure A.7.: Timing CS angular distribution. The stacked histogram shows Neut with
systematic detector and �ux uncertainties and the fake data is Genie with
statistical errors. The Neut data is scaled to match Genie's POT. The values
do not include the e�ects of the ad hoc weight (see Section 2.5.1).
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Figure A.8.: Timing CS track multiplicity. The stacked histogram shows Neut with sys-
tematic detector and �ux uncertainties and the fake data is Genie with sta-
tistical errors. The Neut data is scaled to match Genie's POT. The values
do not include the e�ects of the ad hoc weight (see Section 2.5.1).
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Figure A.9.: Delta-ray CS angular distribution. The stacked histogram shows Neut with
systematic detector and �ux uncertainties and the fake data is Genie with
statistical errors. The Neut data is scaled to match Genie's POT. The values
do not include the e�ects of the ad hoc weight (see Section 2.5.1).
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Figure A.10.: Delta-ray CS track multiplicity. The stacked histogram shows Neut with
systematic detector and �ux uncertainties and the fake data is Genie with
statistical errors. The Neut data is scaled to match Genie's POT. The
values do not include the e�ects of the ad hoc weight (see Section 2.5.1).
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Figure A.11.: Unblinding Passing-by CS angular distribution. The stacked histogram
shows Neut with total detector and �ux uncertainties and the data is shown
with statistical errors. The Neut data is scaled to match the real data's
POT.

146



Figure A.12.: Unblinding Timing CS angular distribution. The stacked histogram shows
Neut with total detector and �ux uncertainties and the data is shown with
statistical errors. The Neut data is scaled to match the real data's POT.
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Figure A.13.: Unblinding Delta-ray CS angular distribution. The stacked histogram
shows Neut with total detector and �ux uncertainties and the data is shown
with statistical errors. The Neut data is scaled to match the real data's
POT.

147



Integral     636

Number of tracks at selected vertex
0 1 2 3 4 5 6 7 8 9

#e
ve

nt
s/

1 

0

50

100

150

200

250

Integral     636
data
MIP
electron
other
wrong sign
OOFV delta-ray
OOFV decay
OOFV timing
OOFV coincident
OOFV other

Integral  376.419
data
MIP
electron
other
wrong sign
OOFV delta-ray
OOFV decay
OOFV timing
OOFV coincident
OOFV other

Integral     636Integral     636

Figure A.14.: Unblinding Passing-by CS multiplicity. The stacked histogram shows Neut
with total detector and �ux uncertainties and the data is shown with sta-
tistical errors. The Neut data is scaled to match the real data's POT.

Figure A.15.: Unblinding Timing CS multiplicity. The stacked histogram shows Neut
with total detector and �ux uncertainties and the data is shown with sta-
tistical errors. The Neut data is scaled to match the real data's POT.
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Figure A.16.: Unblinding Delta-ray CS multiplicity. The stacked histogram shows Neut
with total detector and �ux uncertainties and the data is shown with sta-
tistical errors. The Neut data is scaled to match the real data's POT.
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Figure A.17.: Unblinding Passing-by CS angular distribution with ad hoc weights. The
stacked histogram shows Neut with total detector and �ux uncertainties
and the data is shown with statistical errors. The Neut data is scaled to
match the real data's POT.
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Figure A.18.: Unblinding Timing CS angular distribution with ad hoc weights. The
stacked histogram shows Neut with total detector and �ux uncertainties
and the data is shown with statistical errors. The Neut data is scaled to
match the real data's POT.
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Figure A.19.: Unblinding Delta-ray CS angular distribution with ad hoc weights. The
stacked histogram shows Neut with total detector and �ux uncertainties
and the data is shown with statistical errors. The Neut data is scaled to
match the real data's POT.
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Figure A.20.: Unblinding Passing-by CS multiplicity with ad hoc weights. The stacked
histogram shows Neut with total detector and �ux uncertainties and the
data is shown with statistical errors. The Neut data is scaled to match the
real data's POT.

Figure A.21.: Unblinding Timing CS multiplicity with ad hoc weights. The stacked his-
togram shows Neut with total detector and �ux uncertainties and the data
is shown with statistical errors. The Neut data is scaled to match the real
data's POT.
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Figure A.22.: Unblinding Delta-ray CS multiplicity with ad hoc weights. The stacked
histogram shows Neut with total detector and �ux uncertainties and the
data is shown with statistical errors. The Neut data is scaled to match the
real data's POT.

Figure A.23.: Unblinding Main Selection momentum (vs Genie). The stacked histogram
shows Genie with total detector and �ux uncertainties and the data is
shown with statistical errors. The Genie data is scaled to match the real
data's POT.
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Figure A.24.: Unblinding Main Selection angular distribution (vs Genie). The stacked
histogram shows Genie with total detector and �ux uncertainties and the
data is shown with statistical errors. The Genie data is scaled to match
the real data's POT.
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Figure A.25.: Unblinding Main Selection multiplicity (vs Genie). The stacked histogram
shows Genie with total detector and �ux uncertainties and the data is
shown with statistical errors. The Genie data is scaled to match the real
data's POT.
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B. Cross-section analysis appendix

(a) Ignoring di�erences < 0.1

(b) Ignoring di�erences < 1.0

Figure B.1.: Matrix element comparison Nominal-Crazy. Shown are the di�erence of
matrix element expectation values, normalised by the statistical uncertainty

(see Section 3.2.1): (R̂Nominal
ij − R̂Crazy

ij )/
√
σ2(RNominal

ij )− σ2(RCrazy
ij ). A

normal and a student's t distribution are �tted to the histogram to estimate
the variance of the distribution. (a) and (b) show the same data, but with
di�erent thresholds for the minimum di�erence.

155



(a) Genie truth (b) Neut truth

Figure B.2.: Forward-folding test Nominal-Crazy. Neut and Genie truth data are folded
through the response matrices (one generated with nominal and one with
arbitrarily weighted Monte Carlo). Each semi-transparent line corresponds
to one toy-matrix, and the opaque lines to the average matrix. The predic-
tions di�er, but are still compatible within the uncertainties of the matrices.
The dotted lines outside the axes indicate that the neighbouring bin is an
over�ow bin.
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from remu import binning

from remu import likelihood

# Load the response matrix

resp = np.load("response.npy")

gen_truth = np.load("generator-truth.npy")

with open("truth-binning.yml", 'rt') as f:

truth_binning = binning.yaml.load(f)

# Load data and initialise likelihood machine

data = np.load("data.npy")

lm = likelihood.LikelihoodMachine(data, resp, truth_limits=gen_truth,

eff_indices=np.where(gen_truth>0)[0], is_sparse=True)

# Load provided background

bg = np.load("background.npy")

# Load own models from event-by-event CSV files

# These contain *only* truth information

# No knowledge of the detector performance is needed to create them

truth_binning.reset()

truth_binning.fill_from_csv_file("my-model-0.csv")

model0 = truth_binning.get_values_as_ndarray()

truth_binning.reset()

truth_binning.fill_from_csv_file("my-model-1.csv")

model1 = truth_binning.get_values_as_ndarray()

# Create composite hypotheses, with model and bg weights as parameters

H0 = likelihood.TemplateHypothesis([model0, bg],

parameter_limits=[(0,None), (0,None)])

H1 = likelihood.TemplateHypothesis([model1, bg],

parameter_limits=[(0,None), (0,None)])

# Compare maximum likelihoods of models

ret0 = lm.max_log_likelihood(H0)

ret1 = lm.max_log_likelihood(H1)

print("Maximum likelihood model weights: %f, %f"%(ret0.x[0], ret1.x[0]))

if ret0.L > ret1.L:

print("Model 0 is more likely than model 1.")

else:

print("Model 1 is more likely than model 0.")

Listing 1: Simple example of how to use the ReMU package. Note that �response.npy� is
actually a set of systematically and statistically varied response matrices. The likelihood
results thus include the e�ects of the detector uncertainties.
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B.1. The matrix

B.1.1. Used data samples

We use all available Monte Carlo samples to build the matrix. This includes the �signal
only� samples and the sand muon samples.

B.1.2. Truth binning

The used truth binning is shown in listing 2. It has been tuned to make the signal
e�ciency in each bin su�ciently �at, while ensuring enough Monte Carlo statistics for
each bin. The e�ciencies of the Neut model in comparison with the bin edges are shown
in Fig. B.3 through Fig. B.7. Note that the e�ciency drop for backward going tracks in
Fig.B.4 is caused by the prevalence of low-momentum tracks in that direction. This can
be seen in Fig.B.5, where only tracks with p > 400 MeV/c are considered. Thus it is not
necessary to employ a �ner binning in that area. The �ne binning around cos(θ) = 0
does not just deal with the e�ciency change there, but also with the fact that the reco
binning has a bin edge at that point.
The total number of truth bins is 11760. Out of these, 5353 are �lled with at least

one MC event for the matrix generation. Ignoring the empty bins, the average truth bin
�lling is 46.3, slightly below the target of 50 events per bin. The median bin is �lled with
only 4 events, but 90% of the MC events are �lled into bins with at least 29 events per
bin. 80% of the events are �lled into bins of at least 92 events per bin. Since the MC
data used for the matrix construction should be close to the real distribution of events,
this means that most real events are covered by bins with su�ciently high MC statistics
to suppress the in�uence of the priors.

!RecBinning

binedges:

- - Truth_MIP_mom

- [0.0, 150.0, 200.0, 300.0, 400.0, 500.0, 1200.0, .inf]

- - Truth_MIP_costheta

- [-1.0, -0.2, -0.1, 0.0, 0.1, 0.2, 0.9, 1.0]

- - Truth_MIP_mom_sep

- [-.inf, 0.0, 0.2, 0.4, 0.6, .inf]

- - Truth_MIP_mom_sep_back

- [-.inf, 0.0, 0.2, 0.4, 0.6, 0.8, .inf]

- - MIPoofv

- [0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, .inf]

include_upper: false

Listing 2: Truth binning yaml �le.
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Figure B.3.: E�ciency and bin edges vs true momentum.

Figure B.4.: E�ciency and bin edges vs true angle.
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Figure B.5.: E�ciency and bin edges vs true angle at high momenta.
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Figure B.6.: E�ciency and bin edges vs true forward separation for di�erent charged-
particle multiplicities.
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Backward MIP separation
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Figure B.7.: E�ciency and bin edges vs true backward separation for di�erent charged-
particle multiplicities.

B.1.3. Reco binning

The used reco binning is shown in listing 3. The sample ID is an integer that describes
in which sample an event was reconstructed: the main selection (0) or one of the control
samples (1-3). Since the expected number of recorded events is low, there are only four
bins per sample. Most events of the signal models are recorded in forward going direction,
while the OOFV background events are more evenly distributed. Thus di�erentiating
between forward going and backward going events leads to an improved separation power.
The same is true for the number of reconstructed paths (i.e. particle tracks) at the vertex.
The OOFV is much more likely to produce events with a single track, while most signal
events produce at least two charged particles leaving the vertex. Additionally, the biggest
detector uncertainty at the moment is the �ad hoc� weight, which varies very strongly
between 1-track and n-track events. Di�erentiating between the two allows the �tter to
compensate this to a certain extent.
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!RecBinning

binedges:

- - HMM_costheta

- [-1.0,

0.0,

1.0]

- - Vertex_N_paths

- [0.5,

1.5,

.inf]

- - sample_id

- [-.5,

0.5,

1.5,

2.5,

3.5]

include_upper: false

Listing 3: Reco binning yaml �le.
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B.2. The templates

The templates used in the �t are shown in Fig.B.8 through Fig.B.43. Shown are the 1D
projections onto each binned variable and 2D projections onto every possible combination
of two variables.
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Figure B.8.: Neut νµ CC template
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Figure B.9.: Neut ν̄µ CC template
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Figure B.10.: Neut νe/ν̄e CC template
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Figure B.11.: Neut NC template
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Figure B.12.: Neut 1-track OOFV delta-ray template
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Figure B.13.: Neut n-track OOFV delta-ray template
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Figure B.14.: Neut 1-track OOFV decay template
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Figure B.15.: Neut n-track OOFV decay template
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Figure B.16.: Neut 1-track timing-related OOFV template

171



Truth_MIP_mom
0

5

10

15

20

25

30

35

40

0

500

1000

1500

0

500

1000

1500

0

500

1000

1500

0

500

1000

1500

1.0

0.5

0.0

0.5

1.0

T
ru

th
_M

IP
_c

o
st

h
e
ta

Truth_MIP_costheta
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

0.2

0.0

0.2

0.4

0.6

T
ru

th
_M

IP
_m

o
m

_s
e
p

0.2

0.0

0.2

0.4

0.6

Truth_MIP_mom_sep
10000

20000

30000

40000

50000

60000

70000

80000

90000

0.2

0.0

0.2

0.4

0.6

0.2

0.0

0.2

0.4

0.6

0.2

0.0

0.2

0.4

0.6

0.8

T
ru

th
_M

IP
_m

o
m

_s
e
p
_b

a
ck

0.2

0.0

0.2

0.4

0.6

0.8

0.2

0.0

0.2

0.4

0.6

0.8

Truth_MIP_mom_sep_back
0

20000

40000

60000

80000

100000

120000

140000

0.2

0.0

0.2

0.4

0.6

0.8

0 500 1000 1500
Truth_MIP_mom

1

2

3

4

5

6

7

8

M
IP

o
o
fv

1.0 0.5 0.0 0.5 1.0
Truth_MIP_costheta

1

2

3

4

5

6

7

8

0.2 0.0 0.2 0.4 0.6
Truth_MIP_mom_sep

1

2

3

4

5

6

7

8

0.2 0.0 0.2 0.4 0.6 0.8
Truth_MIP_mom_sep_back

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8
MIPoofv

0

5000

10000

15000

20000

25000

30000

35000

Figure B.17.: Neut n-track timing-related OOFV template

172



Truth_MIP_mom
0

10

20

30

40

50

60

70

80

0

500

1000

1500

0

500

1000

1500

0

500

1000

1500

0

500

1000

1500

1.0

0.5

0.0

0.5

1.0

T
ru

th
_M

IP
_c

o
st

h
e
ta

Truth_MIP_costheta
0

20000

40000

60000

80000

100000

120000

140000

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

0.2

0.0

0.2

0.4

0.6

T
ru

th
_M

IP
_m

o
m

_s
e
p

0.2

0.0

0.2

0.4

0.6

Truth_MIP_mom_sep
10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

0.2

0.0

0.2

0.4

0.6

0.2

0.0

0.2

0.4

0.6

0.2

0.0

0.2

0.4

0.6

0.8

T
ru

th
_M

IP
_m

o
m

_s
e
p
_b

a
ck

0.2

0.0

0.2

0.4

0.6

0.8

0.2

0.0

0.2

0.4

0.6

0.8

Truth_MIP_mom_sep_back
0

20000

40000

60000

80000

100000

120000

140000

160000

0.2

0.0

0.2

0.4

0.6

0.8

0 500 1000 1500
Truth_MIP_mom

1

2

3

4

5

6

7

8

M
IP

o
o
fv

1.0 0.5 0.0 0.5 1.0
Truth_MIP_costheta

1

2

3

4

5

6

7

8

0.2 0.0 0.2 0.4 0.6
Truth_MIP_mom_sep

1

2

3

4

5

6

7

8

0.2 0.0 0.2 0.4 0.6 0.8
Truth_MIP_mom_sep_back

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8
MIPoofv

0

5000

10000

15000

20000

25000

30000

35000

Figure B.18.: Neut 1-track other OOFV template
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Figure B.19.: Neut n-track other OOFV template
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Figure B.20.: Genie νµ CC template
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Figure B.21.: Genie ν̄µ CC template
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Figure B.22.: Genie νe/ν̄e CC template
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Figure B.25.: Genie n-track OOFV delta-ray template
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Figure B.26.: Genie 1-track OOFV decay template
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Figure B.27.: Genie n-track OOFV decay template
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Figure B.28.: Genie 1-track timing-related OOFV template
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Figure B.29.: Genie n-track timing-related OOFV template
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Figure B.30.: Genie 1-track other OOFV template

185



Truth_MIP_mom
10

15

20

25

30

35

0

500

1000

1500

0

500

1000

1500

0

500

1000

1500

0

500

1000

1500

1.0

0.5

0.0

0.5

1.0

T
ru

th
_M

IP
_c

o
st

h
e
ta

Truth_MIP_costheta
0

50000

100000

150000

200000

250000

300000

350000

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

0.2

0.0

0.2

0.4

0.6

T
ru

th
_M

IP
_m

o
m

_s
e
p

0.2

0.0

0.2

0.4

0.6

Truth_MIP_mom_sep
0

20000

40000

60000

80000

100000

120000

140000

160000

0.2

0.0

0.2

0.4

0.6

0.2

0.0

0.2

0.4

0.6

0.2

0.0

0.2

0.4

0.6

0.8

T
ru

th
_M

IP
_m

o
m

_s
e
p
_b

a
ck

0.2

0.0

0.2

0.4

0.6

0.8

0.2

0.0

0.2

0.4

0.6

0.8

Truth_MIP_mom_sep_back
0

50000

100000

150000

200000

0.2

0.0

0.2

0.4

0.6

0.8

0 500 1000 1500
Truth_MIP_mom

1

2

3

4

5

6

7

8

M
IP

o
o
fv

1.0 0.5 0.0 0.5 1.0
Truth_MIP_costheta

1

2

3

4

5

6

7

8

0.2 0.0 0.2 0.4 0.6
Truth_MIP_mom_sep

1

2

3

4

5

6

7

8

0.2 0.0 0.2 0.4 0.6 0.8
Truth_MIP_mom_sep_back

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8
MIPoofv

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Figure B.31.: Genie n-track other OOFV template
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Figure B.32.: Crazy νµ CC template
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Figure B.33.: Crazy ν̄µ CC template
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Figure B.34.: Crazy νe/ν̄e CC template
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Figure B.35.: Crazy NC template
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Figure B.36.: Crazy 1-track OOFV delta-ray template
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Figure B.37.: Crazy n-track OOFV delta-ray template
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Figure B.38.: Crazy 1-track OOFV decay template
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Figure B.39.: Crazy n-track OOFV decay template
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Figure B.40.: Crazy 1-track timing-related OOFV template
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Figure B.41.: Crazy n-track timing-related OOFV template
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Figure B.42.: Crazy 1-track other OOFV template
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Figure B.43.: Crazy n-track other OOFV template
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