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Abstract. We show that the Lie derivative of spinor fields is parametrized by Higgs fields
defined by the kernel of a gauge-natural Jacobi morphism associated with the Einstein–Cartan–
Dirac Lagrangian. In particular, the generalized Kosmann lift to the total bundle of the theory
is constrained by variational Higgs fields on gauge-natural bundles.
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1. Introduction
Natural and gauge (classical) Lagrangian field theories have been framed within the geometric
construction of a gauge-natural bundle, according to which classical physical fields are sections
of bundles functorially associated with gauge-natural prolongations (also known as Ehresmann
prolongations [2]) of principal bundles, by means of left actions of Lie groups on manifolds [1]. It
is well known that, while the jet prolongation of a principal bundle is not a principal bundle, the
gauge-natural prolongation of a principal bundle is provided with the structure of a principal
bundle [2, 9]. We consider Lagrangian field theories which are assumed to be invariant with
respect to the action of a gauge-natural group W

(r,k)
n G defined as the semidirect product of a

k-th order differential group of the base manifold with the group of r-th order n-th velocities on
the structure group G (n = dim X is the dimension of the basis manifold).

Within such theories there is a priori no natural way of relating infinitesimal gauge
transfomations with infinitesimal base transformations; we found that a canonical determination
of Noether conserved quantities, without fixing any connection a priori, can be performed on
a reduced bundle of W (r,k)P determined by the original W (r,k)

n G-invariant variational problem.
Connections can be characterized by means of such a canonical reduction [4, 5, 13, 17, 18]. Such
conserved quantities can be characterized in terms of Higgs fields on gauge principal bundles
having moreover the richer structure of a gauge-natural prolongation [19].

We consider the particular case of the Einstein–Cartan–Dirac Lagrangian and we show that,
being the Lie derivative of fields constrained by Jacobi equations, the Kosmann lift to the total
bundle of spin-tetrads, spin-connections and spinors is associated with a variational Higgs field
on the underlying gauge-natural principal bundle.

2. Gauge-natural Jacobi fields and canonically conserved quantities
Let JsY of s–jet prolongations of (local) sections of a fibered manifold π : Y → X, with
dim X = n and dim Y = n + m. The natural fiberings πss−1 are affine fiberings inducing a
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natural splitting JsY ×Js−1Y T ∗Js−1Y = JsY ×Js−1Y (T ∗X⊕ V ∗Js−1Y), which yields rising
order decompositions: given a vector field Ξ : JsY → TJsY, we have a naturally induced
decomposition in the sum of its horizontal part ΞH and its vertical part ΞV and analogously for
the exterior differential on Y we have (πr+1

r )∗ ◦d = dH +dV , where dH and dV are the horizontal
and vertical differential, respectively.

Naturally induced is also a sheaf splitting Hp(s+1,s) =
⊕p

t=0 C
p−t
(s+1,s) ∧H

t
s+1, where Hp(s,q) and

Hps are the sheaves of horizontal forms with respect to the projections πsq and πs0, respectively,
while Cp(s,q) ⊂ H

p
(s,q) and Cps ⊂ Cp(s+1,s) are contact forms (see e.g. [7, 11]); the projection on

the summand of lesser contact degree h is the horizontalization. We set Θ∗s
.= kerh + d kerh,

where d kerh is the sheaf generated by the corresponding presheaf. By quotienting the de
Rham sequence with the contact structure so defined, we have the Krupka variational sequence
0→ IRY → V∗s , where V∗s = Λ∗s/Θ

∗
s. Let E∗ denote its differential morphisms; a section λ ∈ Vns is

a generalized Lagrangian and correspondingly a section Edλ
.= En(λ) ∈ Vn+1

s is the generalized
higher order Euler–Lagrange type morphism associated with λ [11].

Let P → X be a principal bundle with structure group G. For r ≤ k integers consider the
gauge-natural prolongation of P given by W(r,k)P .= JrP×XLk(X), where Lk(X) is the bundle
of k–frames in X [1, 9]; W(r,k)P is a principal bundle over X with structure group W(r,k)

n G which
is the semidirect product with respect to the action of GLk(n) on Gr

n given by jet composition
and GLk(n) is the group of k–frames in IRn. Here we denote by Gr

n the space of (r, n)-velocities
on G. Let F be a manifold and ζ : W(r,k)

n G× F→ F be a left action of W(r,k)
n G on F. There

is a naturally defined right action of W(r,k)
n G on W(r,k)P×F so that we get in a standard way

the associated gauge-natural bundle of order (r, k): Yζ
.= W(r,k)P×ζ F. All our considerations

shall refer to a fibered manifold Y which has also the structure of a gauge-natural bundle.
Functorial linearity properties of a gauge-natural lift Ξ̂ (for details, see e.g. [3, 9]) enabled

us to define the gauge-natural generalized Jacobi morphism associated with a Lagrangian λ and
the variation vector field Ξ̂V , i.e. the linear morphism J (λ, Ξ̂V ) .= E·cEjsΞ̂cdλ

[14]. The space

K
.= kerJ (λ, Ξ̂V ) defines generalized gauge-natural Jacobi equations, the solutions of which we

call generalized Jacobi vector fields and characterize canonical covariant conserved quantities
[13].

Induced linearity properties of the Lie derivative of sections of gauge-natural bundles
characterize the form ω(λ, Ξ̂V ) .= −£Ξ̄cEn(λ) as a new Lagrangian defined on an extended space.
It is remarkable that when ω(λ, Ξ̂V ) is an horizontal differential (i.e. a null Lagrangian) we get
a conservation law which holds true along any section of the gauge natural bundle (not only
along solutions of the Euler–Lagrange equations). It is also remarkable that the new Lagrangian
ω, in principle, is not gauge-natural invariant; nevertheless, its restriction ω(λ,K) is invariant
and corresponding Noether conservation laws and Noether identities [20] can be obtained,
so that a canonical determination of conserved quantities is given on a reduced bundle of
W (r,k)P determined by the original W (r,k)

n G-invariant variational problem [15, 16]; in particular,
necessary conditions for the existence of global solutions of Jacobi equations associated with the
existence of canonically defined global conserved quantities can be interpreted as topological
conditions for the existence of a Cartan connection on the principal bundle W (r,k)P [18].

3. Spinor gauge-natural Higgs fields
In the following we shortly recall the Einstein–Cartan–Dirac theory; details can be found e.g. in
[3, 25]. In particular, we point out the gauge-natural structure of such a theory.

On a 4-dimensional manifold admitting Lorentzian structures (SO(1, 3)e-reductions) X
consider a SPIN(1, 3)e-principal bundle Σ → X and a bundle map inducing a spin-frame
on Σ given by Λ̃ : Σ → L(X) defining a metric g via the reduced subbundle SO(X, g) = Λ̃(Σ)
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of L(X). A left action ρ of the group W (0,1)SPIN(1, 3)e on the manifold GL(4, IR) is given
so that the associated bundle Σρ

.= W (0,1)Σ×ρ GL(4, IR) is is a gauge-natural bundle of order
(0, 1), the bundle of spin-tetrads θ. Let so(1, 3) ' spin(1, 3) be the Lie algebra of SO(1, 3). One
can consider the left action of W (1,1)

4 SPIN(1, 3)e on the vector space (IR4)∗⊗ so(1, 3). The
associated bundle Σl

.= W (1,1)Σ ×l ((IR4)∗⊗so(1, 3)) is a gauge-natural bundle of order (1, 1),
the bundle of spin-connections φ. If γ̂ is the linear representation of SPIN(1, 3)e on the vector
space C4 induced by the choice of matrices γ we get a (0, 0)-gauge-natural bundle Σγ̂

.= Σ×γ̂C4,
the bundle of spinors. A spinor connection φ̃ is defined in a standard way in terms of the spin
connection. We notice that a spin (as well as spinor) connection is induced by a principal
connection on Σ.

Within this picture, we assume that the total Lagrangian of a gravitational field interacting
with spinor matter is λ = λEC + λD, where the Einstein–Cartan Lagrangian and the Dirac
Lagrangian can be represented by the morphisms

λEC : Σρ ×X J1Σl → ∧4T ∗X , λD : Σρ ×X Σl ×X J1Σγ̂ → ∧4T ∗X ,

respectively (local expressions can be found e.g. in [3]).
Let k be the vector bundle defined by the Jacobi equations J (λEC +λD, Ξ̂V ) = 0, where Ξ̂ is

the gauge-natural lift to the associated total bundle of an infinitesimal principal automorphism
of the principal bundle underlying the theory, i.e. of the SPIN(1, 3)e-principal bundle Σ→ X.
Since for each gauge-natural lift we have the well known equality Ξ̂V (ψ) = −£Ξ̄ψ, in local
fibered coordinates on the total bundle given by (xµ, θaµ, φ

ab, φabµ , ψ) the gauge-natural Jacobi
equations read

(−1)|σ|dσ (dµ(−£Ξ̄ψ)ab(∂cd(∂
µ
ab)λ−

s−|µ|∑
|α|=0

(−1)|µ+α| (µ+ α)!
µ!α!

dα∂
α
cd(∂

µ
abλ))) = 0 ,

with 0 ≤ |σ|, |µ| ≤ 1, dµ is the total derivative and we write for the total Lagrangian

λ
.= λEC + λD = − 1

2k
Φab ∧ εab + (

iα

2
(ψ̄γa∇aψ −∇aψ̄γaψ)−mψ̄ψ)ε ,

where ε is a volume density on X and Φ the curvature form of the spin-connection φ, α and
m are constants. Along k, we have Ξ̄abv = −∇̃[aξb] (the so-called Kosmann lift [10]), where ∇̃
is the covariant derivative with respect to the standard transposed connection on the bundle of
spin-tetrads Σρ. We remark that, since the Lie derivative of spinor fields £Ξ̄ψ can be written in
terms of Ξ̂h̃ (the horizontal part of Ξ̂ with respect to the spinor-connection) the spinor-connection
ω̃ is constrained [4, 26]. In the following we shall characterize this fact more precisely.

By an abuse of notation, we denote by k the Lie algebra of generalized Jacobi vector fields.
Let now h be the Lie algebra of right-invariant vertical vector fields on W (1,1)Σ; the Lie algebra
k is characterized as a Lie subalgebra of h; the Jacobi morphism is self-adjoint and k is of
constant rank; the split structure h = k ⊕ ImJ is well defined and it is also reductive, being
[k, ImJ ] = ImJ [17].

In particular, for each p ∈ W (1,1)Σ by denoting S .= hp, R .= kp and V .= ImJp we have
the reductive Lie algebra decomposition S = R⊕ V, with [R,V] = V. Notice that S is the Lie
algebra of the Lie group WG .= W

(1,1)
4 SPIN(1, 3)e. For the purposes of this note, it is sufficient

to know that the Lie algebra R exists and it is well defined; we shall not write down explicitly
such a Lie algebra, although this question is of great interest and will be investigated extensively
elsewhere.
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As a consequence of the fact thatR is a reductive Lie algebra of S, there exists an isomorphism
between V .= ImJp and TX so that V turns out to be the image of an horizontal subspace. Thus
we caracterize a principal bundle S → X, with dimS = dimS and such that X = S/R, where
R is a Lie group of the Lie algebra R and R = TqS/R; the principal subbundle S ⊂W(1,1)Σ
is then a reduced principal bundle.

In the following, to simplify the notation, we shall omit the orders of a gauge-natural
prolongation; in particular, denote by WG a gauge-natural prolongation of a given appropriate
order of the stucture group of the Einstein–Cartan–Dirac theory. The Lie group R of the Lie
algebra R is in particular a closed subgroup of WG [18, 19]. We have the composite fiber bundle
WΣ → WΣ/R → X , such that WΣ/R = WΣ ×WG WG/R → X is a gauge-natural bundle
functorially associated with WΣ×WG/R→ X by the right action of WG. The left action of
WG on WG/R is in accordance with the reductive Lie algebra decomposition.

Definition 1 We call a global section h : X→WΣ/R a spinor gauge-natural Higgs field.

3.1. Higgs fields and the Lie derivative of spinors
Let ω be a principal connection on WΣ and ω̄ a principal connection on the principal bundle
S i.e. a R-invariant horizontal distribution defining the vertical parallelism ω̄ : V S→ R in the
usual and standard way. It defines the splitting TpS 'ω̄ R⊕ Ĥp, p ∈ S. Since R is a subalgebra
of the Lie algebra S and dimS = dimS, it is defined a principal Cartan connection of type S/R,
such that ω̂|V S = ω̄. It is a connection on WΣ = S×RWG→ X, thus a Cartan connection on
S→ X with values in S [5] and it splits into the R-component which is a principal connection
form on the R-manifold S, and the V-component which is a displacement form [18].

A gauge-natural Higgs field, being a global section of Ĥp, with p ∈ S, is related with the
displacement form defined by the V-component of the Cartan connection ω̂ above. The pull-back
by h of the R valued component of a S valued pricipal connection ω on WΣ onto the reduced
subbundle S is the connection form of a principal connection on S. Given the composite fiber
bundle WΣ→WΣ/R→ X, we have the exact sequence

0→ VWΣ/RWΣ→ VWΣ→WΣ×WΣ/R VWΣ/R→ 0 ,

where VWΣ/RWΣ denote the vertical tangent bundle of WΣ→WΣ/R. Every connection ω̃ on
the latter bundle determines a splitting VWΣ = VWΣ/RWΣ⊕WΣ/R ω̃(WΣ×WΣ/R VWΣ/R),
by means of which we can define a vertical covariant differential as a mapping J1WΣ →
T ∗X⊗WΣVWΣ/RWΣ. The covariant differential on WΣh relative to the pull-back connection
h∗(ω̃) can be expressed by means of this mapping in a known way; for coordinate expressions
and further details see [12].

Remark 1 A geometric interpretation of the Kosmann lift as a reductive lift has been proposed
for the definition of a SO(1, 3)e-reductive Lie derivative of spinor fields [8]. From a variational
point of view the Kosmann lift is charaterized as the only gauge-natural lift satisfying the
naturality condition Ljs+1Ξ̂H

[Ljs+1Ξ̂V
λ] .= 0 equivalent with Jacobi equations. Gauge-natural

Jacobi equations state that Lie derivatives of spinors coincide with the vertical parts of gauge-
natural lift of principal automorphisms lying in K, which can be expressed through the vertical
covariant differential, defined for each global section h of WΣ/R → X; then we can say that
the Lie derivative of gauge-natural spinors is constrained and it is parametrized by a Higgs field
h defined by K. This condition implies a reduction of the structure group WG to R. Each
global section h of WΣ/R → X affects spin and spinor connections induced functorially on
the associated bundle. In particular, the Kosmann lift to the total bundle of spin-tetrads, spin-
connections and spinors is constrained by variational Higgs fields on the spinor gauge-natural
bundle.
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