
Double Field Theory

Author: Hanne Hoitzing

Supervisor: dr. Diederik Roest

Bachelor thesis

University of Groningen

Centre of Theoretical Physics

July 12, 2012

Азбука, к мудрости ступенька
You have to learn to walk before you can run

Abstract

In this thesis, a theory called double field theory will be discussed.
First, an introduction will be given into string theory. After this, com-
pactifications of dimensions will be discussed and with it the notion of
winding. This winding gives rise to T-duality which is an important
symmetry of double field theory. We will discuss the weak constraint
which says all fields and gauge parameters must be annihilated by
the operator ∂i∂̃

i. An action to all orders in the fields will be con-
structed and it will turn out that a constraint stronger than the weak
constraint is needed to ensure gauge invariance of the action and to
keep T-duality as a symmetry. A possible stronger constraint is the
strong constraint but it will be shown that upon satisfying this strong
constraint it is always possible to perform an O(D,D) transformation
after which our double field theory has become a single field theory.
Finally, it is discussed what conditions are exactly needed to prove
gauge invariance and to keep all the symmetries. These conditions
are compared with the strong constraint and the possibility of an in-
termediate constraint will be discussed.
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1 Introduction

This thesis will discuss a theory called double field theory. It is a theory
that describes a massless subsector of closed string theory. Why was double
field theory developed and why is it called ‘double’ field theory? At the
moment string theory is the best candidate for a quantum gravity theory.
It is, however, very hard to do calculations in string field theory. Double
field theory contains some ‘stringy’ aspects and it is relatively simple to do
calculations in double field theory. In this way we get a theory that describes
strings and we can actually calculate things. We will give a short explanation
why this is the case, but first we give a short introduction into string theory.

Around 1915 Einstein presented the Einstein field equations. These well
known equations specify how the geometry of space and time is influenced by
whatever matter is present, and form the core of Einstein’s general theory of
relativity. It is a theory of gravity but it does not contain quantum mechanics.
This means that if we go to very small distances where quantum mechanical
effects begin to play a role, Einstein’s theory does not work any more. If
we try to quantize general relativity, the theory becomes non-renormalizable.
Whenever we want to calculate something, like a probability, we get infinite as
an answer. This of course does not make any sense. String theory finds a way
to avoid these infinities by using one dimensional vibrating strings instead
of point particles. It is for now the most successful quantum gravity theory
that we have. Before 1995 there were five known consistent nontrivial string
theories, called super string theories. Although they are all fundamentally
based on one-dimensional vibrating strings, in detail they look very different.
So different that people did not think they might be related to each other.
But after 1995 it was discovered that they actually are related by dualities.
In this thesis a particular duality called T-duality will be discussed.

Why did people not see before that the different super string theories
are related to each other? It is because an inconvenient notation was used
to write down the theories. A notation in which the symmetries of the
theories were not manifest. Doing calculations is a lot easier if there are more
symmetries in a theory. Imagine doing calculations in quantum field theory
without using notation where Lorentz invariance is manifest, i.e., without
using xµ but rather writing out all components. Calculations will become a
mess. Finding symmetries to write formulae in a nice and simple way is what
every theoretical physicist is dreaming of. In double field theory we double
the coordinates to get new symmetries and we can write the theory in an
O(D,D) covariant form. The calculations will be much simpler than in string
field theory. Since double field theory does contain real ‘stringy’ aspects, it
combines the easy calculation of a field theory, with aspects of string theory.
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In what sense is double field theory ‘stringy’? If we do double field theory,
we work in D spacetime dimensions. But d of them will be compactified to
form a d-dimensional torus and the other n = D − d will be just ordinary
Minkowski-space dimensions. We thus work in a Rn−1,1 × Td spacetime. As
soon as we compactify a dimension, the notion of winding will appear. A
string can wind around the compact dimension one or several times. This is
something a particle cannot do, it is a real stringy feature. The winding w
will turn out to have dimensions of momentum. Just like the momentum p is
canonical to the coordinate x, we find that the winding w will we canonical
to a coordinate x̃, which we will call the dual coordinate.

We now let all our fields depend on both the normal coordinates x, and
the dual coordinates x̃. We have therefore doubled the coordinates, but
in principle we should only do this for the d compact directions since only
these have winding (you cannot wind around a non-compact dimension) and
therefore only these will have a dual coordinate. However, it is convenient
to also double the non-compact coordinates which we will call xµ. In this
way we can write the theory in an O(D,D) covariant form which is what we
wanted. We can always restrict our fields in such a way that they will not
depend on these doubled noncompact coordinates.

The question is whether these extra degrees of freedom are redundant or
not. It turns out that in order to make sure the theory is consistent, we have
to impose a constraint on the fields and gauge parameters. One possible
constraint we can use that leads to a correct theory is called the strong con-
straint. However, this strong constraint is actually so strong that it implies
that the extra degrees of freedom are in fact redundant and we can always
write our theory in such a way that the fields are independent of the dual
coordinates x̃. We will discuss the possibility to create a different constraint
which is less strong than the strong constraint, but will nevertheless still lead
to a consistent theory.

2 Classical closed string theory

In this section we will first discuss the relativistic point particle since it will
prove to be helpful. The construction of the relativistic string action will be
analogous to the construction of the action for the relativistic point particle.
We will derive the equations of motion for a relativistic string, choose our
world-sheet parameterization and finally obtain a mode expansion of the
string coordinates.
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2.1 The relativistic point particle

Here we will construct the relativistic action S of a free point particle. How
do we do this? Let us first look at the action Snr of a nonrelativistic free
particle. It is given by the time integral of the kinetic energy:

Snr =

∫
dt

1

2
mv2. (2.1)

The equation of motion which follows by Hamilton’s principle is

d~v

dt
= 0. (2.2)

Why is this action nonrelativistic? A simple answer is that the action allows
the particle to move with any constant velocity, even one that exceeds the
velocity of light. Therefore Snr cannot describe a relativistic point particle.
Also, the action is not invariant under a Galilean boost ~v → ~v + ~v0 with
constant ~v0. This means that the action is not Lorentz invariant. Normally
we require the action to be a Lorentz scalar to make sure that the equations of
motion are Lorentz invariant. In this case however, we see that the equation
of motion is Lorentz invariant even though the action is not. This might
leave you wondering whether Lorentz invariance is too strong a constraint on
the action. But for what will come, we will always demand the action to be
a Lorentz scalar.

Lorentz invariance imposes strong constraints on the possible forms of
the action. The correct action turns out to be

S = −mc
sf∫
si

ds = −mc2
tf∫
ti

dt

√
1− v2

c2
. (2.3)

Here the constant m is needed to make the action dimensionless. It is no

surprise that the proper time τ = t
√

1− v2

c2
enters the actions, since all

Lorentz observers agree on the amount of time that elapses on a clock carried
by the moving particle. Note that the action makes no sense if v> c since it
ceases to be real: the constraint of maximal velocity is implemented.

When a particle moves, it traces out a line in spacetime, called the world-
line of the particle. The equations of motion are obtained from (2.3) through
the principle of stationary action. We know that the action is proportional to
the proper time which, if multiplied by c, gives the ‘proper length’ ds. This
means that the particle moves in such a way as to minimize this invariant
length ds between its starting and ending point. We will see this is analogous
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to the case of a relativistic string, only in that case the string will trace out
a world-sheet instead of a world-line. And the string will move in such a way
as to minimize the Lorentz invariant area of this worldsheet.

2.1.1 Reparametrization invariance

Here we will discuss a very important concept: reparametrization invariance.
To evaluate the integral in (2.3), it is useful to parameterize the particle
world-line. Reparametrization invariance of the action means that the value
of the action is independent of the parametrization we choose. To parame-
terize a world line, we only need one parameter, for example τ . As τ ranges
in the interval [τi, τf ] it describes the motion of the particle. The coordinates
xµ are now functions of τ . Normally, time is used as a parameter. But here
even the time coordinate x0 is parameterized since we want to treat space
and time on equal footing.

We rewrite the action (2.3) by using ds2 = −ηµνdxµdxν :

S = −mc
τf∫
τi

dτ

√
−ηµν

dxµ

dτ

dxν

dτ
, (2.4)

where have used ηµν = diag(−1, 1, 1, 1). It can easily be shown that S is
reparametrization invariant by changing the parameter τ to τ ′ and using the
chain rule.

The notion of reparametrization invariance is important since it allows
us to choose one that simplifies our equations of motion. We will use this to
our advantage when we calculate the equations of motion of the relativistic
closed string.

2.2 The relativistic closed string

In this section we will first derive the action for a relativistic string. We
will do this in a way analogous to what we have done in the point particle
case. Finally, we will give the equations of motion and simplify them by
choosing a particular parametrization for our world-sheet, where we make
use of reparametrization invariance. We will see that the equations of motion
are wave equations.

2.2.1 The Nambu-Goto string action

Just as a particle traces out a line in spacetime, a string traces out a surface.
This two-dimensional surface is called the world-sheet. An open string will
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trace out a strip and a closed string will trace out a tube. We will only be
interested in closed strings since only these will give rise to winding, which
will be explained in section 4.

Just as a world-line can be described by one parameter, a world-sheet
requires two parameters. We will call these parameters σ and τ . It will turn
out that τ is related to time on the strings and σ is related to positions along
the strings. We use them to construct the Lorentz invariant area

A =

∫
dσdτ

√
(
∂Xµ

∂τ

∂Xµ

∂σ
)2 − (

∂Xµ

∂τ

∂Xµ

∂τ
)(
∂Xν

∂σ

∂Xν

∂σ
). (2.5)

Here Xµ(τ, σ) = (X0(τ, σ), X1(τ, σ), . . . , Xd(τ, σ)) are the string coordinates
in (d+1)-dimensional spacetime.

Let us imagine the world-sheet of a closed string string, a tube. Since
we take τ to be related to time on the string, planes of constant τ that
intersect the world-sheet will define what we call our string at that specific
time. So by fixing τ we now where our string is at that moment, we know
which string we are talking about. Then by specifying σ, we now where on
the string we are. Finally, Xµ tells us where that specific point on the string
is in our (d+1)-dimensional spacetime. For bosonic string theory, which we
are discussing, the number of spacetime dimensions is 26, the proof of which
can be read in [3].

We now use the invariant area (2.5) to construct the action. This action
is called the Nambu-Goto string action

SNG = −T
τf∫
τi

σ1∫
0

dτdσ

√
(Ẋ ·X ′)2 − (Ẋ)2(X ′)2. (2.6)

Here the constant T plays the same role as m did for the point particle
case, it makes the action dimensionless. Since it multiplies a surface area,
it has dimensions [length]−2. We have chosen our σ parameter to lie in the
interval [0, σ1] where for closed strings we will set σ1 equal to 2π. We have
also introduced the notation Ẋ ≡ ∂Xµ

∂τ
, Xµ′ ≡ ∂Xµ

∂σ
. The speed of light c was

set equal to one in (2.6). From now on we will work in natural units.

2.2.2 The equations of motion

We can obtain the equations of motion for the relativistic string setting the
variation of the action (2.6) equal to zero. This leads to

∂Pτµ
∂τ

+
∂Pσµ
∂σ

= 0, (2.7)
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where we have used δXµ(τi, σ) = δXµ(τf , σ) = 0 (which means that we fix
the time values at the beginning and ending of the string’s trajectory) and for
closed strings δXµ(τ, σ = 0) = δXµ(τ, σ = 2π) (This periodicity condition
says that if we pick a point on the string and move around the string once,
we get back at the same point where we started). We have also introduced
Pτµ ≡ ∂L

∂Ẋµ and Pσµ ≡ ∂L
∂Xµ′ .

2.2.3 choosing a σ parametrization

If one would try to obtain the equations of motion by expanding (2.7), one
would soon realize this gives very complicated equations. To simplify these
equations we will use the fact that the area (2.5) is reparametrization invari-
ant. We can choose a τ and σ parametrization that suits us best. First we
concentrate on the σ parametrization.

Imagine the two-dimensional world-sheet of the string parameterized by
σ and τ . Lines of constant τ and σ can be drawn on the world-sheet to form
a grid. Now Ẋ = ∂Xµ

∂τ
and Xµ′ = ∂Xµ

∂σ
are tangent vectors along lines of

constant τ and σ respectively. We can impose the following two constraints:

ẊµX ′µ = 0, Ẋ2 +X ′2 = 0. (2.8)

The first constraint tells us that the lines of constant τ are orthogonal to
the lines of constant σ. The second constraint1 specifies the length of the
tangent vectors. Once we have specified our τ parameterization (which we
will do in a minute), our σ parameterization will be completely fixed by the
two constraints since we now have specified both a length and a direction.
The two constraints can be conveniently packaged together as

(Ẋ2 ±X ′)2 = 0. (2.9)

2.2.4 light-cone coordinates and a τ parameterization

In what will come, we will work in light-cone coordinates. The reason for this
is that the quantization of the relativistic string will turn out to be easier in
these coordinates. The two light-cone coordinates X+ and X− are defined2

1Note that in this constraint, since τ is related to time on the strings, Ẋ2 is the length
of a timelike vector, and is therefore negative.

2 We note that X+ and X− both have equal right to be called a time coordinate since
they depend on the string time coordinate X0 in the same way. However, neither is a
time coordinate in the standard sense of time. Light-cone time is not the same as ordinary
time! The most familiar property of time is that it goes forward for any physical motion
of a particle. Imagine a spacetime diagram with X0 and X1 as orthogonal axes. The
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as follows

X+ ≡ 1√
2

(X0 +X1) (2.10)

X− ≡ 1√
2

(X0 −X1), (2.11)

all the other coordinates (X2,. . . ,Xd) are left the same, they are called the
transverse light-cone coordinates XI . To make it extra clear, we have

X+, X−, X2, X3, . . . , X26︸ ︷︷ ︸
XI

, (2.12)

where the total number of spacetime dimensions is 26 because we are talking
about closed bosonic string theory.

In light-cone coordinates the invariant interval ds2 takes the form

− ds2 = −2dX+dX− + (dX2)2 + · · ·+ (dXd)2. (2.13)

Note that, if we are given ds2, solving for dX− or for dX+ does not require
taking a square root. This is an important feature of light-cone coordinates
and it is the reason why they are easy to work with.

We fix our τ parameterization by choosing

X+(τ, σ) = α′p+τ. (2.14)

Here α′ is defined as 1
2πT

(where T is the same constant as in (2.6)) and is
called the slope parameter. Also p+ is the momentum of the string in the +
direction. The choice (2.14) is called the light-cone gauge.

2.2.5 the wave equation

Already by choosing our σ-parameterization, the expressions for Pτµ and Pσµ
have simplified. We can calculate them using (2.6) and (2.8). This gives

Pτµ =
1

2πα′
Ẋµ,

Pσµ = − 1

2πα′
X ′µ, (2.15)

which we can use together with (2.7) to get the simplified equations of motion:

Ẍµ −X ′′µ = 0. (2.16)

We recognize this as a wave equation.

light-cone axes X± now have a slope of 45◦. If we imagine a light ray traveling in the
negative X1 direction, X+ remains zero, i.e., light-cone time will freeze! Nevertheless, we
will take X+ as the light-cone time coordinate and think of X− as a spatial coordinate.
We will also choose our τ parameter to be proportional to X+.
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2.2.6 mode expansion and commutation relations

We saw in section 2.2.5 that the equations of motion take the form of a wave
equation. The general solution of this wave equation is

Xµ(τ, σ) = Xµ
L(τ + σ) +Xµ

R(τ − σ), (2.17)

where Xµ
L (the L stand for left) is a left-moving wave and Xµ

R (the R stands
for right) is a right-moving wave. We can thus imagine the closed string as a
closed piece of rope on which waves can move around. The left-moving waves
are independent of the right-moving waves and together they form standing
waves on the string. To visualize this, see Figure 1. The solution in (2.17)
is, however, not the only solution. Another solution to the wave equation is
given by

X̃µ(τ, σ) = Xµ
L(τ + σ)−Xµ

R(τ − σ). (2.18)

The coordinates in (2.17) are the string coordinates and the coordinates in
(2.18) are called the dual string coordinates. These dual coordinates will play
an important role when we compactify some of the dimensions. When we
include them, they give rise to a symmetry called T-duality. This will be
discussed in section 4.

As said before, for closed strings we choose our σ parameter to lie in the
interval [0, 2π].3 If we pick a point on a string and let σ run 2π further, we
are back at exactly the same point (if we take τ to be constant). This means
σ = 0 and σ = 2π represent the same point on the closed string.

The parameter space (τ, σ) for closed strings is a cylinder, so, to describe
closed strings properly we compactify the world-sheet coordinate σ:

σ ∼ σ + 2π. (2.19)

We demand that the string coordinate Xµ assumes the same value at any
two points that are identified with each other in parameter space:

Xµ(τ, σ) = Xµ(τ, σ + 2π), ∀ τ, σ. (2.20)

We emphasize that the condition (2.20) only applies in a space in which every
closed string can be continuously shrunk into a point. This means that the
space in which the string propagates has to be a simply connected space, for
example Minkowski space. If a spatial direction is curled up into a circle,
closed string can wrap around this circle and cannot be continuously shrunk
into a point any more. In this case (2.20) must be modified. We will do this

3We can in fact use any interval of the form [σ0, σ0 + 2π] to describe the closed strings.
The choice σ0 = 0 is just one of the possible choices.
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in section 4 .

We will construct the mode expansion of the string coordinates and their
dual coordinates. First two new variables are introduced:

u ≡ τ + σ, (2.21)

v ≡ τ − σ. (2.22)

In terms of these new variables, equation (2.17) becomes

Xµ = Xµ
L(u) +Xµ

R(v). (2.23)

When we let σ → σ+2π, u increases by 2π and v decreases by 2π. Equation
(2.20) can therefore be written as

Xµ
L(u) +Xµ

R(v) = Xµ
L(u+ 2π) +Xµ

R(v − 2π), (2.24)

or, equivalently,

Xµ
L(u+ 2π)−Xµ

L(u) = Xµ
R(v)−Xµ

R(v − 2π). (2.25)

Note that for the dual coordinates, we get an expression similar to (2.25) but
with an extra minus sign on the right hand side.

Since u and v are independent variables, if we would take the deriva-
tive with respect to u, the right hand side must vanish. Therefore we have
X ′µL (u) = X ′µL (u + 2π) where a prime denotes a derivative with respect to
the argument. We can also take the derivative with respect to v and thus
we find that both X ′µL (u) and X ′µR (v) are periodic functions with a period of
2π. Note that this argument also holds for the dual coordinates. We can
therefore write the mode expansions

X ′µL (u) =

√
α′

2

∑
n∈Z

ᾱµne
−inu,

X ′µR (v) =

√
α′

2

∑
n∈Z

αµne
−inv. (2.26)

The αµn and ᾱµn are just constants. If we demand Xµ to be real, we get
αµ−n = (αµn)∗ and ᾱµ−n = (ᾱµn)∗.

We can now integrate these expressions to obtain formulae for Xµ
L(u) and

Xµ
R(v)

Xµ
L(u) =

1

2
xLµ0 +

√
α′

2
ᾱµ0u+ i

√
α′

2

∑
n6=0

ᾱµn
n
e−inu,

Xµ
R(v) =

1

2
xRµ0 +

√
α′

2
αµ0v + i

√
α′

2

∑
n6=0

αµn
n
e−inv, (2.27)
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Figure 1: Vibrating string [7]

where the coordinate zero modes xLµ0 and xRµ0 are constants of integration.
Only the sum of these zero modes will play a role in the string coordinates.

By applying (2.25) we see that

2π

√
α′

2
ᾱµ0 = 2π

√
α′

2
αµ0 , (2.28)

and therefore
ᾱµ0 = αµ0 . (2.29)

This is an important result and it tells us that closed string theory has
only one momentum operator (it is shown below that the momentum pµ is
proportional to αµ0 ). We emphasize that this only holds in a simply connected
space, since this result was derived from (2.20) which is invalid when we use
compact dimensions.

We will write down the full solution for our string coordinates and dual
coordinates by substituting (2.27) in (2.17) and (2.18), and using (2.29):

Xµ(τ, σ) =
1

2
(xLµ0 + xRµ0 ) +

√
2α′αµ0τ + i

√
α′

2

∑
n6=0

e−inτ

n
(ᾱµne

−inσ + αµne
inσ),

X̃µ(τ, σ) =
1

2
(xLµ0 − x

Rµ
0 ) +

√
2α′αµ0σ + i

√
α′

2

∑
n6=0

e−inτ

n
(ᾱµne

−inσ − αµneinσ).

(2.30)

The expansions have a nice interpretation. For the normal coordinate the
first term is a constant, it gives the ‘starting coordinates’ of the string. It
tells us where the string is at τ =0. The last term describes the excitations on
the string. It says that our string can wiggle and can have all sorts of waves
propagating on it. To make clear how this looks like, see Figure 1. Finally,
the string coordinates have a term proportional to τ . Since τ represents a
time, this term can be seen as a momentum; it is the momentum of the string
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as a whole. Indeed, we can calculate the momentum by integrating the first
equation in (2.15) over σ, since Pτµ(τ, σ) = ∂L

∂Ẋµ is a momentum density.
This gives us

pµ =

2π∫
0

Pτµ(τ, σ)dσ =

√
2

α′
αµ0 , (2.31)

and thus

αµ0 =

√
α′

2
pµ. (2.32)

We see that the dual coordinates do not satisfy constraint (2.20) and therefore
they are not physical. As noted before, this periodicity condition will change
for compactified coordinates. This is why we will use the dual coordinates
when our space is noncompact, as will be discussed in section 4.

It is convenient to write down the τ and σ derivatives of Xµ. This will
come in handy later. With the help of (2.17) we note that

Ẋµ = Xµ′

L (τ + σ) +Xµ′

R (τ − σ),

Xµ′ = Xµ′

L (τ + σ)−Xµ′

R (τ − σ). (2.33)

After adding and subtracting these equations we find

Ẋµ +Xµ′ = 2Xµ′

L (τ + σ) =
√

2α′
∑
n∈Z

ᾱµne
−in(τ+σ),

Ẋµ −Xµ′ = 2Xµ′

R (τ − σ) =
√

2α′
∑
n∈Z

αµne
−in(τ−σ). (2.34)

Note that the barred oscillators do not mix with the unbarred oscillators in
these combinations of derivatives.

3 Quantization of closed string theory

We will now begin the quantization of closed string theory, derive an impor-
tant condition and obtain a mass formula for closed string states. Finally,
the closed string state space will be constructed. We will be particularly
interested in the massless level. It will turn out that at this level, the spec-
trum of closed strings contains three fields: gravity fields hµν , Kalb-Ramond
fields Bµν and dilaton fields φ. The fact that closed string theory gives rise
to gravitons, is why it is called a quantum gravity theory.
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3.1 The level matching condition

In this section we will derive the level matching condition. This condition
will play an important role in double field theory where it is called the weak
constraint, which will be discussed in section 5. Before deriving the level
matching condition we will introduce commutation relations between the αIn
modes.

3.1.1 Commutation relations

The wave equation continues to hold in the quantum theory, so we can still
use the mode expansion. It will turn out that the classical modes αIn become
quantum operators with nontrivial commutation relations. Will not derive
the commutation relations here since this is not important for this thesis. We
will only be interested in the results. The derivation is quite straightforward
and leads to [3]: [

ᾱIm, ᾱ
J
n

]
= m δm+n,0 η

IJ ,[
αIm, α

J
n

]
= m δm+n,0 η

IJ . (3.1)

The left-moving and right-moving oscillators are independent, they do not
see each other. We therefore have [αIm, ᾱ

J
n] = 0. Note that α+

n and α−n do not
appear in (3.1). This is because they do not give any new information. To
obtain a full solution, α+

n and α−n are not needed. In fact, by comparing the
light-cone gauge (2.14) with the mode expansion (2.30), we see that α+

n = 0
for n 6= 0. Also, it can be shown that the minus oscillators α−n can be
expressed in terms of the transverse oscillators.

To be able to construct the state space of closed strings, we need to
introduce annihilation and creation operators. We will do this by first making
the definition

αµn = aµn
√
n, αµ−n = aµ∗n

√
n, n ≥ 1. (3.2)

Up until now, both α and a have been classical variables. They will now
become operators. Classical variables that are complex conjugates of each
other become operators that are Hermitian conjugates to each other in the
quantum theory. We can therefore preserve the first of the above definitions,
but the second must be changed. For our light-cone modes µ = I we take

αIn = aIn
√
n and αI−n = aI†n

√
n, n ≥ 1. (3.3)

Note that whereas the αIn modes are defined for all integers n, the aIn and aI†n
operators are only defined for positive n. By using (3.1) it is straightforward
to show that [

aIm, a
J†
n

]
= δm,nη

IJ , (3.4)
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and also that
[
aIm, a

J
n

]
=
[
aI†m , a

J†
n

]
= 0. This means that (aIn, a

I†
m) satisfy

the commutation relations of the canonical annihilation and creation oper-
ators of a quantum simple harmonic oscillator. We can therefore interpret
aI†n as a creation operator, and aIn as an annihilation operator. Oscillators
corresponding to different mode numbers or different light-cone coordinates
commute with each other. In terms of the α operators we have

αIn are annihilation operators,

αI−n are creation operators (n ≥ 1). (3.5)

3.1.2 The level matching condition

We here derive an important condition. Once the space state is obtained, all
states not satisfying this condition are considered to be non-physical. The
condition will thus be of great importance when we investigate the allowed
states and the fields which they represent. Because of its importance we will
derive it explicitly.

We use the definition of the relativistic dot product in light-cone coordi-
nates (see (2.13)) to write the constraint equations (2.9) as

− 2(Ẋ+ ±X+′
)(Ẋ− ±X−′

) + (ẊI ±XI′)2 = 0, (3.6)

and rewrite this as

Ẋ− ±X−′
=

1

2α′p+
(ẊI ±XI′)2. (3.7)

Here we have used the light-cone gauge (2.14) (i.e. we used that Ẋ+ = α′p+)
and we used X+′

= 0 since X+ does not depend on σ.4 Note, like we said
before, that to solve for the derivatives of X−, we did not have to take a
square root. This is of course because of the off-diagonal term in the metric
when using light-cone coordinates. The light-cone gauge was useful since it
made X+ into a constant.

We can use (2.34) to write

(ẊI +XI′)2 = 4α′
∑
n∈Z

(
1

2

∑
p∈Z

ᾱIp ᾱ
I
n−p)e

−in(τ+σ) ≡ 4α′
∑
n∈Z

L̄⊥n e
−in(τ+σ),

(ẊI −XI′)2 = 4α′
∑
n∈Z

(
1

2

∑
p∈Z

αIp α
I
n−p)e

−in(τ−σ) ≡ 4α′
∑
n∈Z

L⊥n e
−in(τ−σ) (3.8)

4 We have also assumed that p+ 6= 0. It can happen that p+ is equal to zero, but for
this to occur the momentum p1 must exactly cancel the energy p0. This only happens if
a massless particle travels exactly in the negative x1 direction. This does not occur very
often, so we will assume p+ 6= 0.
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Here we have defined two sets of transverse Virasoro operators :

L̄⊥n =
1

2

∑
p∈Z

ᾱIpᾱ
I
n−p, L⊥n =

1

2

∑
p∈Z

αIpα
I
n−p. (3.9)

Equation (3.8) can be put into (3.7) to obtain

Ẋ− +X−
′
=

2

p+

∑
n∈Z

L̄⊥n e
−in(τ+σ), Ẋ− −X−′

=
2

p+

∑
n∈Z

L⊥n e
−in(τ−σ). (3.10)

There is another way in which the derivatives of X− can be expressed. By
using (2.34) we see that

Ẋ− +X−
′
=
√

2α′
∑
n∈Z

ᾱ−n e
−in(τ+σ), Ẋ− −X−′

=
√

2α′
∑
n∈Z

α−n e
−in(τ−σ).

(3.11)
Finally, by comparing (3.10) and (3.11) we can express the minus oscillators
in terms of the Virasoro operators

√
2α′ ᾱ−n =

2

p+
L̄⊥n ,

√
2α′ α−n =

2

p+
L⊥n . (3.12)

In particular, for n = 0 we use (2.32) and find

√
2α′ α−0 = α′p− =

2

p+
L⊥0 . (3.13)

As we will see below, this formula only holds at the classical level and is not
correct in the quantum theory.

We know that α−0 = ᾱ−0 and this gives rise to the level matching condition

L⊥0 = L̄⊥0 . (3.14)

What does it mean that L⊥0 and L̄⊥0 must be equal? Well, they are operators
and an operator is defined by how it acts on a state. So the level matching
condition says that for any state |λ, λ̄〉 of the closed string we must have
L⊥0 |λ, λ̄〉 = L̄⊥0 |λ, λ̄〉. States that do not satisfy this constraint do not belong
to the state space.

There is however, one subtlety in defining the Virasoro operators. In the
derivation, the α modes were treated as commuting classical variables. But
we know that they do not commute in the quantum theory. We must ask
ourselves whether the ordering matters and if so, whether the ordering in
(3.9) is the correct one. Two α operators only fail the commute when their
mode numbers add up to zero. This means that the only ambiguous operator
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is L⊥0 . We will need to pick an ordering and the standard choice of ordering is
normal ordering. Normal ordering means that we put annihilation operators
to the right of creation operators. In this way, the Virasoro operators will
always annihilate the vacuum. If we carefully look at L⊥0 , and make sure
we write everything normal ordered, it turns out that all we have to do is
include a constant. So every time we see L⊥0 in a classical formula, this needs
to be replaced by (L⊥0 + a) when going to the quantum theory. The ordering
constant a can be calculated using zeta function regularization, and it is -1
[3].

We use (3.9), (2.32) and (3.3) to define the operators L⊥0 and L̄⊥0 without
the ordering constant as

L̄⊥0 =
α′

4
pIpI + N̄⊥, L⊥0 =

α′

4
pIpI +N⊥. (3.15)

Here we have introduced N̄⊥ and N⊥, the number operators associated with
the barred and unbarred operators, respectively:

N̄⊥ ≡
∞∑
n=1

n āI†n ā
I
n, N⊥ ≡

∞∑
n=1

n aI†n a
I
n (3.16)

A number operator counts the number of right-moving or left-moving os-
cillators. Its eigenvalue is the sum of the mode numbers of the creations
operators appearing in the state.

When we introduce the normal ordering constant, the expression (3.12)
changes to

√
2α′ ᾱ−n =

2

p+
(L̄⊥n − 1),

√
2α′ α−n =

2

p+
(L⊥n − 1). (3.17)

Note that the level matching constraint does not change due to these constant
shifts. The level matching constraint can be written in terms of the number
operators by using (3.15):

N̄⊥ = N⊥ (3.18)

This equation tells us that, for a state to be physical, the number of right-
moving operators (the number of α) must equal the number of left-moving
operators (the number of ᾱ). So, for example, if we act on the vacuum with
an unbarred creation operator aI†n , we must also act with a barred creation
operator āI†m . If we do not do this, we will not satisfy the level matching
constraint and our state will not be physical.

We will construct the closed string state space in the next section and
only focus on the massless subsector of the spectrum. To know the mass of
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the states we will of course need a mass formula. Since α−0 = ᾱ−0 we average
the expression (3.17) to get

√
2α′α−0 ≡

1

p+
(L⊥0 + L̄⊥0 − 2) = α′p−, (3.19)

where the last equality follows from (2.32). We have expressed p− in terms
of the Virasoro operators and use this to construct the mass formula:

M2 = −p2 = 2p+p− − pIpI =
2

α′
(L⊥0 + L̄⊥0 − 2)− pIpI , (3.20)

or, in terms of the number operators,

M2 =
2

α′
(N⊥ + N̄⊥ − 2). (3.21)

3.2 Closed string state space

Finally, we arrive at the interesting part of closed string theory, its state
space. We will be witness of the remarkable result that string theory gives
rise to gravitons. String theory was first thought of to be a theory of the
strong force, until it was found that one of the particles in the spectrum of
closed strings was a massless spin 2 particle. String theory was believed to
have failed since no such particle was observed in the strong force. But the
graviton is a massless spin 2 particle! So now string theory is considered to
be a theory of quantum gravity.

Different states that satisfy (3.18) will be discussed. First we need a
vacuum on which to act. The time-independent states of the quantum theory
are labeled by the eigenvalues of a maximal set of commuting operators.
Because it is usually convenient to work in momentum space, we will work
with the operators p+ and pI . The vacuum will be denoted by |p+, ~pT 〉, where
p+ is the eigenvalue of the p+ operator and ~pT is the transverse momentum,
the components of which are eigenvalues of the pI operators.

3.2.1 Tachyon states

Since we need to satisfy N⊥ = N̄⊥, the first state we can think of has
N⊥ = N̄⊥ = 0. They are ground states and have M2 = − 4

α′ , i.e., they have a
negative mass! These states are called tachyons and they are unstable. Their
instability is expected to be an instability of spacetime itself. They remain
largely mysterious and we will not consider them any further.
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3.2.2 Massless states

The next state we can think of has N⊥ = N̄⊥ = 1. Since we want the lowest
possible excited state, we take one oscillator from the left-sector and one
from the right-sector, both with the lowest possible mode number, i.e. mode
number one. Recall that the eigenvalue of a number operator is the sum of
the mode numbers of the creation operators appearing in the state. So if we
act with two creation operators with mode number one, the corresponding
states are massless. The most general state we can write down is∑

I,J

RIJ a
I†
1 āJ†1 |p+, ~pT 〉. (3.22)

Here I and J are completely arbitrary labels attached to different oscillators.
Because they can each take 24 different values (see (2.12)), the number of
states is (D− 2)2 where D=26. The RIJ are elements of an arbitrary square
matrix of size (D − 2).

One can ask oneself the question what it is exactly that the creation
operators create. They create oscillations on the string so that, by acting
with all kinds of operators on the vacuum, we can make the string wiggle in
all sorts of ways.

A general square matrix is reducible, it contains subspaces that do not
mix with the other subspaces. We can always decompose a square matrix in
its symmetric and antisymmetric part

RIJ =
1

2
(RIJ +RJI) +

1

2
(RIJ −RJI) ≡ SIJ + AIJ , (3.23)

where SIJ is the symmetric part and AIJ the antisymmetric part of RIJ . The
symmetric part can be decomposed further into a symmetric traceless part
and a trace. Let ŜIJ denote the traceless part and let S ′ = δIJSIJ/(D−2)FF.
The matrix RIJ now becomes

RIJ = ŜIJ + AIJ + S ′δIJ . (3.24)

These terms are independent and they will not mix with each other. They
cannot be decomposed any further, so we can now split the states in (3.22)
in groups of linearly independent states:∑

IJ

ŜIJ a
I†
1 āJ†1 |p+, ~pT 〉, (3.25)∑

IJ

AIJ a
I†
1 āJ†1 |p+, ~pT 〉, (3.26)

S ′aI†1 āI†1 |p+, ~pT 〉. (3.27)
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We now claim that the states in (3.25) represent one-particle graviton states.
Why this is the case, can be read in [3]. So gravity appears in string theory!

The states in (3.26) correspond to the one-particle states of the Kalb-
Ramond field, an antisymmetric tensor field Bµν with two indices. This field
can be thought of as a generalization of the Maxwell field Aµ. The Kalb-
Ramond field couples to strings in a way that is analogous to the way that
the Maxwell fields couples to particles, so strings carry Kalb-Ramond charge.

The state in (3.27) has no free indices since I is summed over, so it rep-
resents only one state. It corresponds to a one-particle state of a massless
scalar field. The field is called the dilaton field.

To summarize, the massless subsector of closed string theory contains
gravity fields, Kalb-Ramond fields, and dilaton fields. We can of course also
construct massive states, but they are so massive that we cannot even see
them in experiments. We do not have enough energy to make them. They
are so massive because from (3.21) we see the mass will have a factor 1/α′

and α′ is a very small number.5 Such massive states will not interesting for
us.

4 T-duality of closed strings

In this section we will talk about T-duality. This is a symmetry which relates
two systems that have very different description, but identical physics. We
will see that a world where one dimension is curled up into a circle of radius
R cannot be distinguished from a world in which the circle has radius α′/R.

We will make only one dimension compact, since this is the most simple
case but it does show some interesting features. As soon as we compactify a
dimension, the relation (2.29) will not hold any more. We will still have the
level matching condition but this time it does not lead to a constraint of the
form N⊥ = N̄⊥. We will again construct the space state and interpret the
results.

4.1 Winding and dual coordinates

Bosonic string theory tells us we are living in a 26-dimensional spacetime.
This is a lot more than the 4 dimensions we see. Now of course we know
bosonic string theory is not all there is (like its name suggests, it does not
contain fermions) but even the other string theories that we know of have at

5The length of the string is in fact
√
α′.
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least 10 spacetime dimensions. We must therefore find a way to get rid of
the extra dimensions. We do not see them at low energy experiments, but
nonetheless they are there. How do we interpret such dimensions? We say
they are curled up, or compact.

4.1.1 Compact dimensions

Imagine living in a world with only one spatial dimension. The dimension is
infinite, but by making identifications we can make it compact. We declare
that points with coordinates that differ by 2πR are exactly the same point,
meaning that if we would walk a distance 2πR, we would find ourselves at the
same point where we started. This is of course always the case in a compact
dimension: you will get back to the same point over and over again as long
as you keep on walking. It is therefore the same as walking on a circle. So
by making the identification

x ∼ x+ 2πR, (4.1)

we transformed the an infinite dimension into a circle. The interval 0 ≤
x < 2πR is called the fundamental domain for the identification (4.1). A
fundamental domain is a subset of the entire space in which no two points
are identified. Any point in the entire space is in the fundamental domain
or is related by the identification to some point in the fundamental domain.

4.1.2 Winding

In this section we discuss the effects on closed strings when one spatial di-
mension has been made into a circle. The closed strings we have considered
up until now were moving in Minkowski space, a simply connected space.
If we have one or more compact dimensions, not all closed strings can be
reduced continuously to zero size. We will only talk about one compact di-
mension here, since it is easiest to visualize and it is enough to introduce
winding. When we discuss double field theory however, more dimensions
will be compact. It is just a generalization of what we discuss here.

Imagine a world with only two spatial dimensions, one of which is com-
pact. Such a world can be thought of as the surface of an infinitely long
cylinder. Let x be the coordinate that has been made compact via the iden-
tification (4.1). We thus have x ∈ [0, 2πR] and y ∈ [−∞,∞].

We will now consider different strings living on this two-dimensional
surface. Let us look at Figure 2. On the left we see strings on the two-
dimensional surface. On the right is the covering space of the cylinder, this
is the plane with identification. Circles are represented as lines here, of which
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Figure 2: Left: closed strings living on the surface of a cylinder. Right: the same

strings in covering space.[3]

the endpoints are identified. We will denote the x coordinate of a string as
X.

The simplest string is a string that does not wrap around the compact
dimension. This is string (a) in Figure 2. We see that it is a closed string in
the covering space and it satisfies

X(τ, σ = 2π) = X(τ, σ = 0). (4.2)

This is the same condition as (2.20). This string can be continuously shrunk
into a point.

But now look at string (b). This string wraps around the compact dimen-
sion once. It is a straight line in covering space and the points B and B′ are
identified. We can clearly see from covering space that the periodicity condi-
tion is now slightly changed. All the strings are parameterized by σ ∈ [0, 2π],
so that the point B corresponds to σ = 0 and the point B′ corresponds to
σ = 2π. We get the following periodicity condition:

X(τ, σ = 2π) = X(τ, σ = 0) + 2πR. (4.3)

A consequence of this slightly changed periodicity condition is that the mode
expansion of the string coordinate of string (b) will also slightly change. We
will discuss this in a minute.

String (c) is also wrapped around the compact dimension once, but now
in the opposite direction. This gives a similar condition as (4.3) but now
with −2πR instead of +2πR.

String (d) and string (e) are both wrapped twice around the cylinder.
They satisfy the condition

X(τ, σ = 2π) = X(τ, σ = 0) + 2 ∗ 2πR. (4.4)
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Of course a more general case would be that we wrap around the compact
dimension as many times as we want. Do not forget that σ always ranges
from 0 to 2π. We say that the string has winding number m, with m an
integer, if it wraps m times around the cylinder in the direction of positive x.
This means that if we say string (b) has winding number +1, then string (c)
has winding number -1. A generic string now satisfies the boundary condition

winding number m : X(τ, σ + 2π) = X(τ, σ) +m2πR. (4.5)

The winding number appears because we have actually two circles: one with
coordinate σ and one with coordinate x. The closed strings are mappings
from the σ-circle into the x -circle. The mapping of one circle into another is
characterized by an integer, the winding number of the map. But the winding
number m actually never shows up explicitly in formulae. We here introduce
the winding w since it plays an important role in double field theory. It is
defined as follows

w ≡ mR

α′
. (4.6)

If winding is defined in this way, it has dimensions of momentum,6 and it
will turn out we can indeed interpret it as a new kind of momentum. We
write the periodicity condition in terms of w

X(τ, σ + 2π) = X(τ, σ) + 2πα′w. (4.7)

4.1.3 Mode expansion

We will consider strings that are propagating in a 26-dimensional spacetime.
For simplicity we only make one dimension compact and we work in light-
cone coordinates. The coordinates will be organized in such a way that X25

is the one curled up into a circle. We thus have

X+, X−, X2, X3, . . . , X24︸ ︷︷ ︸
Xi

, X25, (4.8)

where the X i are the transverse light-cone coordinates. We will not consider
them any more since we already discussed them in sections 2 and 3. They
are noncompact and they do not have winding. We will here only consider
the compact dimension X25, which we will just call just X from now on.

We can now follow the same steps as in 2.2.6. We will not go through
all the steps again since the changes are minor. The compact coordinate

6Since R is a length and α′ is a length squared, winding takes dimensions [length]−1,
which is a momentum dimension since we work in natural units.
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X still satisfies the wave equation, so equations (2.17) and (2.18) still hold.
However, since our periodicity condition has now slightly changed, we get

XL(u+ 2π)−XL(u) = XR(v)−XR(v − 2π) + 2πα′w. (4.9)

(Recall that u = τ + σ and v = τ − σ) This reduces to (2.25) if we have no
compact dimensions, i.e. if w = 0. The left hand side is still independent of
v and the right hand side is still independent of u, so the mode expansions
of XL(u) and XR(v), (2.27), still hold (only now without the µ index since
we consider only one compact dimension) since their derivatives are still 2π-
periodic.

But now we fill in (4.9) and see that we do not get α0 = ᾱ0 but rather

ᾱ0 = α0 +
√

2α′w, (4.10)

which of course reduces to (2.29) when w equals zero.
We can also calculate the momentum p of the string along the compact

direction:

p =

2π∫
0

Pτ (τ, σ)dσ =
1

2πα′

2π∫
0

dσ(ẊL + ẊR) =
1√
2α′

(α0 + ᾱ0). (4.11)

To emphasize the resemblance between the momentum p and the winding w
we write

p =
1√
2α′

(ᾱ0 + α0),

w =
1√
2α′

(ᾱ0 − α0). (4.12)

This suggests that the winding w is on the same footing as the momentum p.
Their dimension is the same and we can think of both of them as momentum
operators. It is convenient to record the values of the zero modes:

α0 =

√
α′

2
(p− w),

ᾱ0 =

√
α′

2
(p+ w). (4.13)

By using these equations we can write the mode expansions (2.27) (again
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without the µ index) as

XL(τ + σ) =
1

2
xL0 +

α′

2
(p+ w)(τ + σ) + i

√
α′

2

∑
n6=0

ᾱn
n
e−in(τ+σ),

XR(τ − σ) =
1

2
xR0 +

α′

2
(p− w)(τ − σ) + i

√
α′

2

∑
n6=0

αn
n
e−in(τ−σ). (4.14)

Just as we did in section 2.2.6, we will write down the full solution of our
string coordinate and our dual coordinate. Recall that X(τ, σ) = XL(τ +
σ) + XR(τ − σ) and X̃(τ, σ) = XL(τ + σ) − XR(τ − σ). As promised, the
dual coordinate now does represent a physical solution

X(τ, σ) = x0 + α′pτ + α′wσ + i

√
α′

2

∑
n 6=0

e−inτ

n
(ᾱne

−inσ + αne
inσ),

X̃(τ, σ) = q0 + α′wτ + α′pσ + i

√
α′

2

∑
n6=0

e−inτ

n
(ᾱne

−inσ − αneinσ), (4.15)

where we have defined

x0 ≡
1

2
(xL0 + xR0 ),

q0 ≡
1

2
(xL0 − xR0 ). (4.16)

The dual coordinate did not represent a physical solution before since it
did not satisfy the periodicity condition (2.20) for a string in a noncompact
spacetime. But since we are now working with a compact dimension, this
periodicity condition has changed into (4.7). It can easily be seen that this
condition is satisfied by the normal string coordinate X(τ, σ). But we still see
that the dual coordinate violates this condition! How can this be? Instead
of (4.7) we get

X̃(τ, σ + 2π) = X̃(τ, σ) + 2πα′p. (4.17)

The winding w has been replaced by the momentum p! We will discuss
in a minute that this is no coincidence. In the dual world, the roles of
momentum and winding have interchanged and therefore the dual coordinate
should satisfy (4.17) rather than (4.7).

Let us now interpret equations (4.15). For the normal string coordinate
we get what we expected. Since we added the left-movers and right-movers,
the terms containing pw and τσ dropped out. The centre of mass momentum
p of the string (which is in this case just the momentum in the compact
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direction since we consider only one dimension) multiplies the time τ . It is
therefore the momentum associated with the coordinate x0. The last term
represents, just like before, the oscillations on the string itself. If the winding
term would not be there, the result would be exactly the same as (2.30)
(without the µ index of course). The role of the winding is more apparent if
we look at the expansion of the dual coordinate.

To form the dual coordinate, we substract the right-movers from the left-
movers. As a consequence, the terms containing pτ and wσ drop out. Instead
of p, the ‘winding’ w now multiplies τ ! We put this between exclamation
marks because w does not play the role of winding any more. The coordinate
zero mode has also changed. We interpret this as w being the momentum
associated with the coordinate q0. The winding associated with q0 is now p.
The roles of momentum and winding have thus interchanged.

This is a very important result. It will be the main reason that a world
with a compact dimension of radius R cannot be physically distinguished
from a world where the compact dimension has radius α′/R. This seems
absurd, how can we not notice whether we live in a very big dimension or a
very small one? The interchangeability of winding and momentum plays a
key role in understanding this.

4.2 Quantization of compactified closed strings

Just like before, we will not be bothered by the derivation of the commuta-
tion relations. They are in fact the same as in (3.1), only now without the
superscript index. We can interpret the winding w as an operator, just like
p. When we treat w as an operator, the eigenvalues will correspond to the
various possible windings.

4.2.1 A discrete spectrum

Because we have compactified the x-direction, the zero mode x0 is a coor-
dinate that lives on a circle with radius R. This results in the momentum
operator p being quantized. For suppose we make a translation along the
x-direction by an amount y. This is done by acting with the operator e−iyp.
Since x0 lives on a circle of radius R, a translation of 2πR should not make
any difference. We get back to exactly the same point. This is the same as
saying the condition

e−ipy = e−ip(y+2πR) (4.18)

must hold. This means that e−ip2πR = 1 which results in

p =
n

R
, n ∈ Z. (4.19)
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This is not something that holds only for strings. For particles the momentum
will also be quantized if we work in compact dimensions. It is analogous to
the case of a particle in a box. The momentum spectrum of a free particle is
continuous, but as soon as we put the particles in an infinite potential well,
the momentum will become quantized.

The winding w is also quantized, which we can see from its definition
(4.6). Now we will come to an important conclusion. We just saw that
the coordinate x0 lives on a circle of radius R resulting in the momentum
p being quantized with eigenvalues n/R. Now we know the winding w is
quantized with eigenvalues mR/α′ and this suggests that the coordinate q0
lives on a circle with radius R̃ = α′/R. The dual string coordinate X̃ is thus
a coordinate living on a circle of radius α′/R! We will come back to this in
section 4.4.

4.2.2 Mass formula

We now return to the picture where we have 25 noncompact spacetime di-
mensions, and one compact spacial dimension, i.e. (4.8).

Since we have not compactified the − direction, we still have α−0 = ᾱ−0
and thus the level matching condition L⊥0 = L̄⊥0 still holds. This time how-
ever, this will not lead to the equality of the barred and unbarred number
operators. This will be important once we start constructing the state space
of compactified closed strings. To see why we get N⊥ 6= N̄⊥ we look care-
fully at the definitions of the Virasoro operators and split out the compact
dimension. By using (3.15),(3.9) and (2.32), we find

L̄⊥0 =
1

2
ᾱI0ᾱ

I
0 + N̄⊥

=
1

2
ᾱi0ᾱ

i
0 + ᾱ0ᾱ0 + N̄⊥

=
α′

4
pipi +

1

2
ᾱ0ᾱ0 + N̄⊥. (4.20)

A similar expression holds for L⊥0 but then without the bars. The number
operators N⊥ and N̄⊥ include contributions from all the oscillators, those
corresponding to the noncompact directions with superscript i and those
correspond to the compact coordinate X. We can now calculate

L⊥0 − L̄⊥0 =
1

2
(α0α0 − ᾱ0ᾱ0) +N⊥ − N̄⊥ = −α′pw +N⊥ − N̄⊥, (4.21)

where we have used (4.13). By using the level matching condition L⊥0 = L̄⊥0 ,
we get

N⊥ − N̄⊥ = α′pw. (4.22)
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This is the constraint that must be satisfied to represent a physical state.
We see that if there is neither winding nor momentum (momentum in the
compact dimension), the number of left-moving and the number of right-
moving excitations must be the same. This is of course the same result as
the one we got in section 3 where we did not have a compact dimension. But
for states that have both nonzero winding and momentum, the number of
left-moving and right-moving excitations will not be the same. We can write
the constraint (4.22) in a more useful way by using (4.19) and (4.6):

N⊥ − N̄⊥ = nm. (4.23)

To study the string spectrum, we need a formula for the mass of the states.
We will construct such a formula from the viewpoint of an observer that
lives in the 25-dimensional Minkowski space. The observer does not see the
compact dimension, he does not know this extra dimension is present. But of
course if there is any momentum in the compact direction, the corresponding
energy cannot just disappear. The observer will ‘see’ this energy as extra
mass. So if there is momentum in the compact direction, an observer living
in the 25-dimensional Minkowski space will measure a higher rest mass than
an observer living in the 26-dimensional spacetime.

Just like we did in section 3, we will start with the formula M2 = −p2
where p only contains the noncompact components p+, p−, en pi. We thus
have

M2 = −p2 = 2p+p− − pipi =
1

α′
(α0α0 + ᾱ0ᾱ0) +

2

α′
(N⊥ + N̄⊥ − 2), (4.24)

where we have used (3.19) to write p− in terms of the Virasoro operators,
and (4.20) to rewrite the Virasoro operators. Finally we use (4.13) to write

M2 = p2 + w2 +
2

α′
(N⊥ + N̄⊥ − 2). (4.25)

We already explained why the term p2 enters in the rest mass. From our
viewpoint we just do not see the compact dimension so any momentum in
this direction contributes to the rest mass. But what does the term w2 mean?
This is a real stringy term. If the string winds m times around the compact
dimension, its length is 2πmR. The energy is given by the product of the
string length and the tension in the string. Recall (section 2.2.4) that α′ is
defined as 1

2πT
where T is the tension in the string. We thus have

energy = length ∗ tension = 2πRm
1

2πα′
=
Rm

α′
= w, (4.26)

and we find that w2 indeed has dimensions of [mass]2. The term w2 in the
mass formula thus tells us that a string gains energy if it is stretched out.
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4.3 State space of compactified closed strings

Finally, we are able to construct the state space of compactified closed strings.
Again, we will only be interested in the massless states. Just like we did be-
fore, we start by defining a vacuum. We use the familiar labels that are
associated with 25-dimensional Minkowski space, but the states now carry
additional labels that specify the momentum and the winding along the com-
pact dimension. Since the momentum is quantized as p = n/R, we can use
n as a label for the momentum of the state. Similarly, we will use m as
a label for the winding of the state. The vacuum will thus be denoted by
|p+, ~pT ;n,m〉. Note that not all these states are physical, they still have to
satisfy (4.23). Since in the vacuum we have no excitations (N⊥ = N̄⊥ = 0)
this means that either n or m must be zero. States with both n and m
nonzero are not allowed, but they can be acted upon by combinations of
creation operators to produce allowed states.

Since we are working with 25 noncompact dimensions and one compact
dimension, we have to seperate out the oscillators that arise from the com-
pact dimension. They carry no 25-dimensional Lorentz index. We thus use
operators of the form ai†n and a†n and their barred versions. For convenience
we write (4.25) as

M2 =
( n
R

)2
+
(mR
α′

)2
+

2

α′
(N⊥ + N̄⊥ − 2). (4.27)

4.3.1 States with m=n=0: the (1,1) sector

These states have neither winding nor momentum in the compact direction.
Such a state could for example be string (a) in Figure 2 provided that it has
no momentum along the x axis. We expect these states to be the same as the
ones discussed in section 3.2, with the only difference being that the states
now live in a 25-dimensional Minkowski spacetime instead of a 26-dimensional
one. The constraint (4.23) tells us that N⊥ = N̄⊥ which means we should act
with the same number of left-moving oscillators as right-moving oscillators.

The vacuum itself has no oscillators at all and we see from the mass
formula that it is a tachyon state with M2 = − 4

α′ .
For the next excited states we act with two operators, one from the left

and one from the right sector. To get massless states we give them both
mode number one, we thus have (N⊥, N̄⊥) = (1, 1). For both sectors we can
act with two kinds of oscillators (those that belong to the compact direction
and those that do not) so there are four ways we can combine the oscillators
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to form massless states:

a†1ā
†
1 |p+, ~pT ; 0, 0〉,

a†1ā
i†
1 |p+, ~pT ; 0, 0〉,

ai†1 ā
†
1 |p+, ~pT ; 0, 0〉,

ai†1 ā
j†
1 |p+, ~pT ; 0, 0〉. (4.28)

The first line contains only one state. It carries no 25-dimensional index,
meaning it is a massless scalar field. The states in the second and third line
each carry the index i, they are photon states. Each set of states corresponds
to a Maxwell field, so we get a total of two Maxwell fields. Finally, the states
in the fourth line have exactly the same structure as the massless closed string
states of Minkowski space, except that the dimensionality is now reduced to
25. These states therefore comprise a gravity field, a Kalb-Ramond field and
a dilaton.

How can these states be the same as the ones discussed in section 3? We
did not even get one Maxwell field there, let alone two! We also seem to have
an extra scalar field now. Fortunately, there is a nice interpretation for this.
Suppose all the 26 spacetime dimensions are noncompact. We use µ to tell
us in which dimension we are. We can write µ̂ = {µ, 25} where we have done
nothing special, we just write the spacial dimension labeled by 25 separately.
This is the same situation which was discussed in section 3.2 so we get the
fields

hµ̂ν̂

Bµ̂ν̂

φ (4.29)

These are the gravity, Kalb-Ramond and dilaton fields as we discussed them
in section 3.2.

We now compactify the direction with label 25. As an observer living in
25-dimensional spacetime we do not see this compact direction, we only see
the 25 noncompact directions. We can take µ̂, ν̂ to both lie along µ, we can
take only one of them to lie along µ or none of them, in which case they both
take the value 25. This results in the following fields:

We see that hµν , Bµν and φ are the 25-dimensional gravity, Kalb-Ramond
and dilaton fields which correspond to the fourth line in (4.28). The fields in
the second column have only one Lorentz index. They are vectors from the
viewpoint of a 25-dimensional observer. These are the two extra vector fields
we found. The last column does not have any Lorentz indices at all, these
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µ̂, ν̂ both along µ only one of them along µ none of them along µ
hµν hµ25 h2525
Bµν Bµ25

φ

Table 1: Kaluza Klein reduction

states represent scalars from a 25-dimensional viewpoint. We only get one
extra scalar field since B2525 is zero because B is an antisymmetric tensor (so
B2525 = −B2525 = 0).

To summarize, we see that the states we found in section 3.2 and the
states in (4.28) are actually the same states, they are just reorganized. This
is called Kaluza Klein reduction

4.3.2 States with n=0 or m=0

These states still satisfy N⊥ − N̄⊥ = 0. The ground states are

|p+, ~pT ;n, 0〉, M2 =
n2

R2
− 4

α′
,

|p+, ~pT ; 0,m〉, M2 =
m2R2

α′2
− 4

α′
. (4.30)

Both sets of states correspond to scalar fields since they have no Lorentz
indices. The states can be tachyonic, massless, or massive, depending on the
value of the radius R. This is the case from the viewpoint of an observer
that lives in 25-dimensional Minkowski spacetime. Acting with excitations
operators on these vacua produces heavier states. Such states have N⊥ +
N̄⊥ ≥ 2 and, as a result, they are massive for all values of the radius R.

4.3.3 States with n = m = ±1 or n = −m = ±1

Here we only get massless states at a particular radius R∗ =
√
α′. This is

called the self-dual radius for reasons that will become clear later. We will
not be interested in these massless fields since they only exist at this dual
radius, not in general situations.

4.3.4 The (2,0) and (0,2) sectors

The mass formula given in (4.27) gives the mass in 25 dimensions. A state
that is massive in 25 dimensions, can perfectly well be massless in 26 di-
mensions. The mass formula from the viewpoint of an observer living in 26
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dimensions is given by

M2 =
2

α′
(N⊥ + N̄⊥ − 2) (4.31)

The only difference with (4.27) is that we have no contribution of the winding
and momentum in the compact direction. This makes sense, we do not treat
the compact dimension differently from all the other dimensions in this case.
If a string is moving in the compact dimension, this will not contribute to
the rest mass any more.

If we use (4.31) to calculate the mass of a state, we get extra massless
fields. These fields are massless in 26 dimensions, but not in lower dimen-
sional situations. If we want the states to be massless in both 26 (10 in the
case of super string theory) and 25 (or less) dimensions, the states must have
n = m = 0 to get M2 = M2 = 0. This means we cannot have nonzero
winding and nonzero momentum at the same time. Since N⊥ − N̄⊥ = nm
must always be satisfied, the only sector we then have, is the sector where
(N⊥, N̄⊥) = (1, 1). As we discussed, this sector gives rise to the massless
fields hµν , Bµν , and φ. But the sector also gives massive states, since if
N⊥ = N̄⊥ = 1 we have nm = 0 and if we have no winding (m=0), n can
take any value. Also, if we have no momentum (n=0), m can take any value
and the level matching condition will still be satisfied. So the (1,1) sector
has one unique solution to give massless states in lower dimensions, which is
n = m = 0. It also gives an infinite tower of massive states, known as the
Kaluza-Klein tower.

But double field theory does not restrict itself to sectors which give mass-
less fields in the lower dimensional cases. Here we want to consider the fields
that give massless states in 10 dimensions, irrespective of the mass the states
will have in 9 or less dimensions. This means we do not need to restrict
ourselves to the (1,1) sector. By looking at (4.31) we see that we get extra
massless fields if (N⊥, N̄⊥) = (2, 0), (0, 2).

For future use, we will discuss these sectors here. We get eight different
vacua since we can construct eight different combinations of n and m which
satisfy (4.23) and (N⊥, N̄⊥) = (2, 0), (0, 2). They are listed in the table
below.

(N⊥, N̄⊥) = (2, 0) (N⊥, N̄⊥) = (0, 2)

(n,m) = (1, 2), (2, 1), (−1,−2), (−2,−1) (n,m) = (−1, 2), (1,−2), (2,−1), (−2, 1)

Table 2: The possible values of (n,m)
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Let us consider the possibility (n,m) = (1, 2). We get the following states:

|p+, ~pT , 1, 2〉 → vacuum

aI†1 a
J†
1 |p+, ~pT , 1, 2〉 → gravity field + scalar field

aI†2 |p+, ~pT , 1, 2〉 → vector field (4.32)

In the second line, the operators aI†1 and aJ†1 commute. Instead of a general
matrix of size (D − 2) that splits in a symmetric traceless, anti-symmetric
and a trace part, we now have a symmetric matrix that splits in a symmetric
traceless matrix and a trace. That is why we do not get a Kalb-Ramond field
this time, but we do get a graviton and a scalar field. The third line just
gives a vector fields since the creation operator has one Lorentz-index.

All the other possibilities listed in Table 2 give the same fields. In total
we thus get eight extra gravitons, scalar fields and vector fields. We will
come back to this in section 6.2.

4.4 T-duality as an exact symmetry

In this section we will discuss a remarkable property of the spectrum of the
compactified string. We will show that the spectrum for a compactification
with radius R is identical to one with radius R̃ = α′

R
, which is called the dual

radius. But not only the mass spectrum is identical, it turns out that the two
compactifications are physically indistinguishable! This is called T-duality
of closed string theory.

4.4.1 Identical Mass spectra

To show this property we must take a closer look into equation (4.27), which
reads

M2 =
( n
R

)2
+
(mR
α′

)2
+

2

α′
(N⊥ + N̄⊥ − 2), N⊥ − N̄⊥ = nm. (4.33)

We see that if we replace R by α′

R
, the formula almost takes the same form

M2
(
R;n,m

)
=
n2

R2
+
m2R2

α′2
+

2

α′
(N⊥ + N̄⊥ − 2),

M2
(
R̃;n,m

)
=
n2R2

α′2
+
m2

R2
+

2

α′
(N⊥ + N̄⊥ − 2). (4.34)

One might say these formulae are not the same, but the difference is merely
superficial. As n and m run over all possible integers, the lists of masses are

34



the same in both cases. So explicitly, we have

M2
(
R;n,m

)
= M2

(
R̃;m,n

)
, ∀ n,m ∈ Z. (4.35)

Of course this equation only holds if we are comparing states with identical
oscillator structure. Note that the exchange of n and m does not affect the
constraint in (4.33). This proves that the mass spectra of theories with dual
radii are identical. The exchange of n and m is of course just the exchange
of winding and momentum.

But now we have only proved that the mass spectra are equal. We still
have to show that the physics is identical at dual radii. But of course we
remember the discussion in section 4.2.1, where we noted that the dual co-
ordinate given in (4.15) lives on a circle of radius α′

R
! This implies that a

theory where we use the dual coordinate X̃ to describe the strings living on
a circle of radius α′

R
is identical to a theory where we use the ‘normal’ coor-

dinate X living on a circle of radius R (assuming of course that m and n are
exchanged plus some additional exchanges we will now discuss). To establish
the equivalence of the two theories we need to make a map between them.

First we list the operators, quantization conditions and commutations
relations for both theories in Table 3 and Table 4 below.

Theory with radius R

H(R) = 1
2α
′pipi + 1

2α
′(p2 + w2) +N⊥ + N̄⊥ − 2

x0 lives on a circle of radius R

p has eigenvalues n/R

q0 lives on a circle of radius α′/R

w has eigenvalues mR/α′

[x0, p] = [q0, w] = i

[ᾱm, ᾱn] = [αm, αn] = mδm+n,0

[αm, ᾱn] = 0

Table 3: A theory where the X coordinate lives on a circle of radius R

We have placed a tilde over all the operators of the theory with radius
α′/R to distinguish them from the operators of the other theory. The formula
for the Hamiltonian is also given and although we did not discuss how to
derive this formula7 we show it here to make the equivalence of both theories
clear.

7The derivation of the Hamiltonian is actually quite simple. The Hamiltonian should
generate τ translations. Recall the light-cone gauge X+ = α′p+τ , so that we have
∂
∂τ = ∂X+

∂τ
∂

∂X+ = α′p+p− where we used that p− generates X+ translations which is
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Theory with radius α′/R

H̃(R̃) = 1
2α
′pipi + 1

2α
′(p̃2 + w̃2) + Ñ⊥ + ¯̃N⊥ − 2

x̃0 lives on a circle of radius R

p̃ has eigenvalues n/R

q̃0 lives on a circle of radius α′/R

w̃ has eigenvalues mR/α′

[x̃0, p̃] = [q̃0, w̃] = i

[ ˜̄αm, ˜̄αn] = [α̃m, α̃n] = mδm+n,0

[α̃m, ˜̄αn] = 0

Table 4: A theory where the X coordinate lives on a circle of radius α′/R

The mapping we make between the theories is as follows:

{
x0 → q̃0
q0 → x̃0

} {
p → w̃
w → p̃

} {
ᾱn → ˜̄αn
αn → −α̃n.

}
(4.36)

This mapping is suggested by comparing the two lines of (4.15). For all
operators associated with the 25-dimensional Minkowski spacetime, the map
is the identity map. A theory on the dual radius is mapped into itself, hence
the name dual radius.

We explicitly see that the operators are mapped into others that live on
similar spaces and have identical spectra. For example, both x0 and q̃0 live
on identical circles. Both p and w̃ have the same spectrum. The sign factor
in the map of the oscillators does not affect N⊥. The map establishes the
physical equivalence of the theories under consideration and it proves that
T-duality is an exact symmetry of free closed string theory compactified on
a circle.

5 Double field theory

Finally we are ready to discuss double field theory. We will first show that
by doubling the coordinates and demanding diffeomorphism invariance, we
cannot have a theory of gravity alone. We have to include two extra fields:
a Kalb-Ramond field and a dilaton field. So we get exactly the same fields
as we have in the massless subsector of closed string theory! We will rewrite
the level matching condition so that it becomes the constraint ∆A=0, where

a consequence of the off-diagonal metric in light-cone coordinates. The Hamiltonian is
thus given by H = α′p+p− which can be written in terms of the number operators as is
done in Table 3 and 4
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A is any field or gauge parameter. For the action to cubic order in the fields
this constraint is enough to ensure gauge invariance and no extra constraints
are needed. However, to prove gauge invariance for the action to all orders,
a stronger constraint is needed. We will show why the situation is different if
we go beyond cubic interactions and we will show that the strong constraint
leads to a consistent theory. Finally, we show that this strong constraint
implies that all fields and gauge parameters are restricted. They depend
only on the coordinates of a totally null subspace N , so that the theory is
related by an O(D,D) transformation to one in which all fields and gauge
parameters depend on x but do not depend on x̃.

5.1 Linearised double diffeomorphism symmetry

In this section we show that linearised double diffeomorphism invariance
requires the massless multiplet of closed string theory, i.e., the gravity field
hµν , the Kalb-Ramond field bµν and the dilaton φ. But first we discuss
O(D,D) symmetries and introduce a new notation.

5.1.1 The doubled torus and some words on notation

In section 4 we have discussed the situation where only one of the dimensions
was made compact. Of course if we believe super string theory we need to
compactify at least six dimensions. One compact dimension it looks like
a circle, two compact dimensions form a donut, and d compact dimensions
form a d-dimensional torus T d. Here we will consider the situation in which
spacetime is a product of n-dimensional Minkowski space Rn−1,1 with a d-
dimensional torus T d, i.e., Rn−1,1 × T d. We thus work in D-dimensional flat
space8 where D = n+ d.

We will use coordinates xi = (xµ, xa) with i = 0, 1, 2, . . . , D − 1 where
we have split the D coordinates into coordinates xµ on the n-dimensional
Minkowski space Rn−1,1 and coordinates xa on the d-torus T d. States are
labeled by momentum pi = (kµ, pa) and the string windings wa (which we
of course only need in the compact dimensions, so there is no wµ). For the
coordinates xa we have the identification xa ∼ xa + 2πR (which is the same
as (4.1) only now we have attached a label since we have more than one
compact dimension) and the operators pa and wa have integer eigenvalues.

By Fourier transforming, dependence on the momenta kµ, pa becomes
dependence on the spacetime coordinates xµ, xa while dependence on wa

becomes dependence on x̃a. So because we have winding, we can include the

8Flat space means that parallel lines never intersect. So a donut is a flat space whereas
a sphere is not.
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dual coordinates x̃ and we let our fields depend on both the normal and the
dual coordinates. This is the main idea of double field theory, the motivation
of which was discussed in the introduction.

The fields are fields on Rn−1,1 × T 2d where T 2d is the doubled torus con-
taining the original torus T d together with another torus T d parameterized
by the winding coordinates. The doubled torus actually contains the original
torus and all the tori related to it by T-duality. So T-duality is changing
which T d subspace of the doubled torus is regarded as being part of the
spacetime Rn−1,1 × T d.

All physical strings must satisfy the level matching condition, i.e., they
must be annihilated by L⊥0 − L̄⊥0 . This gives L⊥0 − L̄⊥0 = N⊥− N̄⊥−pawa = 0
which is a generalization of (4.22) where now we sum over a since we have
more compact dimensions.

5.1.2 O(D,D) symmetries

T-duality is actually an O(d, d,Z) transformation acting on the torus coor-
dinates xa, x̃a. An O(d, d;Z) transformation is defined as a transformation
that leaves the metric η̂ invariant. For g ∈ O(d, d;Z) we have

gT η̂g = η̂, η̂ =

(
−1d 0

0 1d

)
or η̂ =

(
0 I
I 0

)
, (5.1)

where g is a 2d × 2d matrix. The two different forms of the metric are
related by a basis transformation and they can both be used. The Z just
means that we are considering matrices g with integer values. This is needed
because we want p and w to have integer eigenvalues. The situation we
discussed in section 4 was actually an O(1, 1;Z) symmetry since we had only
one compact dimension. In that case T-duality transforms the x-coordinate
into the x̃-coordinate, which is actually an example of inversion. Inversion
is the transformation which transforms all x to x̃. If we have more than one
compact dimension, more general transformations are possible. For example
if we compactify two dimensions we get a donut. By doing a T-duality
transformation we can change both radii to their dual onces, or only one of
them. We thus get four donuts related by T-duality. The T-duality symmetry
includes a Z2 symmetry for each direction a that interchanges xa with x̃a.
Performing a Z2 transformation on each of the toroidal dimensions takes
a theory in the original spacetime Rn−1,1 × T d with coordinates xµ, xa to
a theory in the dual spacetime Rn−1,1 × T̃ d with coordinates xµ, x̃a, this is
inversion.

If we would have D noncompact directions, we would have a continuous
O(D,D) symmetry. This time the Z is not needed since the momentum
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in all directions would be continuous, not discrete and we would not have
winding. As soon as we compactify d dimensions the symmetry breaks into
O(d, d;Z)×O(n, n) and if we restrict the fields to be independent of the dou-
bled noncompact coordinates, this further breaks to O(d, d;Z)×O(n− 1, 1).
An O(D,D) symmetry ensures the Lorentz and T-duality symmetries of the
compactified cases relevant to string theory, and it will often be convenient
to simply refer to the O(D,D) symmetry in what follows.

5.1.3 The massless multiplet

We start with Einstein’s action for gravity but we consider only weak gravity
fields. This means we only use the action to quadratic order in the fluctuation
field hij(x) = gij(x)− ηij [1]:

(2κ2)S0 =

∫
dx
[1

4
hij ∂2hij −

1

4
h∂2h+

1

2
(∂ihij)

2 +
1

2
h ∂i ∂jh

ij
]
. (5.2)

The metric ηij is the constant metric we use in Minkowski space. The gravity
field hij is a fluctuation of this constant metric, so we can see a graviton
as being a disturbance of flat spacetime. By including more orders of the
fluctuation field hij spacetime will become more and more curved. We also
used h = ηijhij.

This action is invariant under the following linearised diffeomorphisms

δhij = ∂iεj + ∂jεi. (5.3)

This is just saying that the action must not depend on which coordinates
we use (for example, physics cannot depend on whether we use Cartesian
coordinates or polar coordinates to describe our fields).

Now we start doing double field theory. We will let the gravity field not
only depend on the normal coordinates, but also on the dual coordinates, i.e.
hij = hij(x

µ, xa, x̃a). The action must now of course also be invariant under
coordinate transformations of these dual coordinates! The action must thus
be invariant under linearised ‘dual diffeomorphisms’

δ̃hij = ∂̃iε̃j + ∂̃j ε̃i. (5.4)

The action (5.2) is the action we get if the gravity field would only depend on
x and not on x̃. To include the dependence on x̃ the most natural thing to
do is just to double all the terms in the action but now with tilde derivatives:

(2κ2)S0 =

∫
[dxdx̃]

[1

4
hij ∂2hij −

1

4
h∂2h+

1

2
(∂ihij)

2 +
1

2
h ∂i ∂jh

ij

+
1

4
hij ∂̃2hij −

1

4
h∂̃2h+

1

2
(∂̃ihij)

2 +
1

2
h ∂̃i ∂̃jh

ij
]
. (5.5)
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The first line in (5.5) is of course invariant under (5.3) and the second line
is invariant under (5.4). But the first line is not invariant under the dual
diffeomorphisms (5.4)! After varying under δ̃ we get

(2κ2)δ̃S =

∫
[dxdx̃]

[
(∂̃jh

ij)∂k(∂iε̃k − ∂k ε̃i) + (∂i∂jh
ij − ∂2h)∂̃ · ε̃

+(∂ihij − ∂jh)(∂ · ∂̃)ε̃j
]
. (5.6)

To cancel this variation we can introduce extra fields. The gauge transfor-
mations of these extra fields are fixed since we need to exactly cancel the
terms in (5.6). We will introduce only two extra fields and they will cancel
the first two terms in the variation. To cancel the first term we can use a
field bij in the following way:

(2κ)2S1 =

∫
[dxdx̃](∂̃jh

ij)∂kbik, with δ̃bij = −(∂iε̃j − ∂j ε̃i). (5.7)

The second term in (5.6) can be canceled by introducing a field φ in a similar
way:

(2κ)2S1 =

∫
[dxdx̃](−2)(∂i∂jh

ij − ∂2h)φ, with δ̃φ =
1

2
∂̃ · ε̃. (5.8)

Now, lo and behold, the transformation of the field bij given in (5.7) is ex-
actly the transformation of an antisymmetric tensor field, meaning we can
interpret bij as a Kalb-Ramond field! Also, the field φ is interpreted as a
dilaton field. Thus by demanding that our action is independent under dou-
ble diffeomorphisms (the normal and the dual ones) we have to add extra
fields which turn out to be exactly the same fields string theory predicted in
the massless sector!

But what about the third term in (5.6)? We put the third term to zero
by demanding that the gauge parameter ε̃ satisfies the constraint ∂ · ∂̃ = 0.
This is an important constraint. We will see in a moment that this means
that the gauge parameters should satisfy the so-called weak constraint. You
can of course wonder why we do not simply introduce another field to cancel
this third term in the variation of the action. This can be done, but a non-
trivial theory that is invariant under both δ and δ̃ transformations without
the constraint has not yet been found [1].

5.2 Toroidal backgrounds

Here we will write the level matching condition from closed string theory in
a different form. For this, we need to discuss closed string theory in toroidal
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backgrounds. We use Gij and Bij as the constant background metric and
antisymmetric tensor, respectively. But first we will discuss why we do this
and what it means.

5.2.1 The Kalb-Ramond field

Here we try to get a better understanding of how to interpret the Kalb-
Ramond field.

Imagine we have a charged particle. We can put the particle in an electric
field which can be seen as a background that influences the movements of the
particle. The particle can couple to the vector potential Aµ. This coupling
term in the action will be of the form

− q
∫
dxµAµ, (5.9)

where q is the charge of the particle. The electromagnetic potential is inte-
grated over the one-dimensional word-line of the particle, and it has a gauge
symmetry transformation Aµ → Aµ +∂µΛ(x). It does not matter what func-
tion we choose for Λ(x), the physics we get will be the same for every choice.
This is because the term actually appearing in the action is the field strength
tensor Fµν = ∂µAν − ∂νAµ which is gauge invariant. Note that the gauge
parameter Λ has no indices, it is a scalar.

This story can be generalized to strings and Kalb-Ramond fields. Just as
the vector potential Aµ can be seen as a background for a charged particle,
the Kalb-Ramond field Bµν can be seen as a background for a string that
has a certain ’Kalb-Ramond charge’. A string can couple to a Kalb-Ramond
field in the same way a particle couples to the vector potential. However, this
time the Kalb-Ramond field is integrated over a two-dimensional world-sheet
instead of a one-dimensional word-line. The coupling between the string and
the Kalb-Ramond field has the form

−
∫
dxµdxµBµν . (5.10)

The Kalb-Ramond field Bµν is an antisymmetric Lorentz tensor which has
two indices and a gauge symmetry transformation Bµν → Bµν + ∂µεν − ∂νεµ
where now the gauge parameter εµ has one Lorentz index. The tensor which is
invariant under these gauge transformations is Hµνρ = ∂µBνρ+∂νBρµ+∂ρBµν .
We have just inserted an extra Lorentz index everywhere. The way in which
a particle couples to the Maxwell field is the same as the way in which a
string couples to the Kalb-Ramond field. That is why the Kalb-Ramond
field can be seen as a higher-dimensional Maxwell field.

41



We will use Gij and Bij as constant backgrounds, and hij and b̂ij represent
fluctuations of the constant background metric and antisymmetric tensor,
respectively.

Since we have split our indices in noncompact and compact directions we
get

Gij =

(
Ĝab 0
0 ηµν

)
, Bij =

(
B̂ab 0
0 0.

)
(5.11)

Note that for noncompact directions, the metric is just the Minkowski metric
ηµν but as soon as we compactify a direction, the metric will become the

metric on a torus Ĝab. We also define

Eij ≡ Gij +Bij. (5.12)

5.2.2 The weak constraint

To write the level matching condition in a more convenient form, we need to
introduce some new symbols. This is done a lot in string theory and it can
be confusing but it helps us in writing down nice and simple formulae. We
start by giving the zero modes [1]:

α0i = − i√
2

( ∂

∂xi
− Eik

∂

∂x̃k

)
= −i

√
α′

2
Di,

ᾱ0i = − i√
2

( ∂

∂xi
+ Eki

∂

∂x̃k

)
= −i

√
α′

2
D̄i, (5.13)

where we have introduced the derivatives

Di =
1

α′

( ∂

∂xi
− Eik

∂

∂x̃k

)
,

D̄i =
1

α′

( ∂

∂xi
+ Eki

∂

∂x̃k

)
. (5.14)

The equations (5.13) are just generalizations of (4.13) since pj = 1
i
∂j and

wk = 1
i
∂̃k which is easily obtained by Fourier expanding. Also note that

wi = {wa, 0}, x̃i = {x̃a, 0} and ∂
∂x̃i

= { ∂
∂x̃a

, 0} since there are no windings
nor dual coordinates along the noncompact directions. If we put the tilde
derivatives equal to zero, the zero modes reduce to (2.32)9. The derivatives
D and D̄ are real and independent derivatives with respect to right- and
left-moving coordinates (x̃i − Eijxj) and (x̃i + Ejix

j), respectively.

9The placing of the factors of α′ is just convention.
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We now introduce the operator ∆, which is quadratic in the α0 and ᾱ0

operators:

− α′

2
∆ ≡ 1

2
αi0Gijα

j
0 −

1

2
ᾱi0Gijᾱ

j
0. (5.15)

By using equation (3.15) we write

L⊥0 − L̄⊥0 = N⊥ − N̄⊥ − α′

2
∆, (5.16)

so that the level matching condition for fields with N⊥ = N̄⊥ becomes the
constraint ∆ = 0. In terms of the introduced derivatives, we get

∆ =
1

2
(D2 − D̄2), (5.17)

where we used D2 = DiDi and D̄2 = D̄iD̄
i. It is now easy to show that

∆ = − 2

α′

∑
i

∂

∂x̃i

∂

∂xi
= − 2

α′

∑
a

∂

∂x̃a

∂

∂xa
. (5.18)

So for fields with N⊥ = N̄⊥ the level matching condition implies that all fields
must be annihilated by ∂i∂̃

i. This is called the weak constraint. In fact, all
gauge parameters should also obey the weak constraint, we already saw in
section 5.1.3 that we needed to impose the weak constraint on the gauge
parameter ε̃ to make the action invariant under the dual diffeomorphisms.

5.3 Constraint and Null subspaces

Here we take a closer look at the weak constraint that requires fields and
gauge parameters to lie in the kernel of the second-order differential operator
∆. We also define a projector [[·]] that takes an arbitrary field into this
kernel. Finally, we discuss why this projection is needed if we start including
terms beyond cubic order in the fields in the action.

5.3.1 Null momenta and the projector

Consider states with N⊥ = N̄⊥ = 1, i.e., states in the (1,1) sector which was
discussed in section 4.3.1. The projection to the physical space with ∆ = 0
is most easily discussed in momentum space. Given a field φ(xµ, xa, x̃a), a
Fourier series for the compact dimensions yields

φ(xµ, xa, x̃a) =
∑

n,m∈Zd
φ̂(xµ, na,m

a)eim
ax̃a+inaxa , (5.19)
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where we used (wa, pa) = (ma, na) with a = 1, 2, . . . , d (Recall that winding
and momentum can be labeled by the integers ma and na, respectively).

By using equation (5.18) we see that

∆φ = 0 ↔
∑
a

nam
a ≡ nm = 0. (5.20)

We can combine the winding ma and the momentum na of the field φ into a
2d-column vector v:

v =

(
m
n

)
∈ Z2d, (5.21)

and define the inner product with respect to the O(d, d) invariant metric η̂

v ◦ v′ ≡ vT η̂ v′ = (m,n)

(
0 1
1 0

)(
m′

n′

)
= mn′ + nm′. (5.22)

Since v ◦ v = 2nam
a, the weak constraint now takes the form

∆φ = 0 ↔ v ◦ v = 0, (5.23)

that is, the vector v is null with respect to η̂. So if a field satisfies the weak
constraint (which must be the case for a field to be physical) the momentum
vector v corresponding to each Fourier component of the field is a null vector.

For a general field φ like the one in (5.19) we have

∆φ =
1

α′

∑
v∈Z2d

v ◦ v φ̂(xµ, v) eiv
TX, (5.24)

where we combined xa and x̃a into the 2d-column vector X =
(
x̃a
xa

)
and we

used (5.18) and v ◦ v = 2nm.
If we want the field φ to be physical we need (5.24) to be zero. This can

be done by introducing a projector [[·]] that projects a general field φ into a
field that satisfies the ∆ = 0 constraint

[[φ]] ≡
∑
v∈Z2d

δv◦v,0φ̂(xµ, v)eiv
TX. (5.25)

It is now clear that
∆[[φ]] = 0. (5.26)

The operation [[·]] is a linear map from the space of functions on the doubled
torus to the kernel of ∆. It is a projector because applying it twice has the
same effect as applying it once.
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A general superposition of allowed fields (fields that are annihilated by
∆) is also allowed since ∆ is a linear operator. However, the product of
two fields will in general not be annihilated by ∆ (i.e., [[φ]][[φ′]] 6= [[φφ′]]).
Suppose we have the fields φ and φ′ with null momenta v and v′:

φ(xµ, xa, x̃a) =
∑
v∈Z2d

φ̂(xµ, v)eiv
TX,

φ′(xµ, xa, x̃a) =
∑
v′∈Z2d

φ̂′(xµ, v′)eiv
′TX. (5.27)

The product (φφ′) will have momentum (v + v′). It is seen from (5.24) that
this product is only annihilated by ∆ if

(v + v′) ◦ (v + v′) = 0. (5.28)

Since v and v′ are themselves null, this is satisfied if

v ◦ v′ = 0. (5.29)

So the product of two fields only satisfies the weak constraint if the inner
product of the momenta of the fields is null with respect to η̂.

5.3.2 Trouble beyond cubic order

Suppose that the full string action (which we construct in section 5.5.2)
contains products of fields with other fields or with gauge parameters. We
want the action to describe physical processes but we just saw that only
imposing the weak constraint is not enough to obtain this. We need the
projection on such products to make them physical, i.e., we need something
like [[A(x, x̃)B(x, x̃)]] where A and B are fields or gauge parameters.

To show we do not yet need to use this stronger constraint for the action
to cubic order, we use some results of string field theory. String field theory
tells us that the cubic action has terms of the form [1]∫

φ1[[φ2φ3]], (5.30)

where φ1, φ2 and φ3 have momenta v1, v2 and v3, respectively. When inte-
grating, only the component with v1 + v2 + v3 = 0 gives a contribution. So
we get only contributions if v2 + v3 = −v1. Since the field φ1 must be physi-
cal, the momentum vector v1 is null. But if v1 is null, the only contribution
we get from the integral is the one in which the sum v2 + v3 is also null.
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So the constraint (5.28) is then automatically satisfied, we do not need the
projection. We thus have∫

φ1[[φ2φ3]] =

∫
φ1φ2φ3. (5.31)

We can also have products of fields and gauge parameters in the gauge trans-
formations of the fields. If this is the case, we should in principle also use
the projection here for as a field is allowed, is should still be allowed after
a gauge transformation. But again string field theory tells us that a pro-
jection is not needed. The gauge transformations to cubic orders will have
terms of the form

∫
φ1[[λφ2]] and by the same arguments as before we have∫

φ1[[λφ2]] =
∫
φ1λφ2.

However, if we go to higher orders in the fields, the action can contain
terms of the form ∫

φ1φ2[[φ3φ4]]. (5.32)

Again, the only terms that contribute to the integral are those for which
v1 + v2 + v3 + v4 = 0, i.e., v1 + v2 = −v3 − v4. Whereas the momenta are all
null by themselves, neither v1 + v2 nor v3 + v4 need to be null! To see this,
look at Figure 3. Because all the four momentum vectors are null, they lie
on the light-cone. If the vectors are oriented in the way as they are in Figure
3, then also their total sum is null. However, the sum of two vectors lying
on the light-cone, does not lie on the light-cone any more, i.e. v1 + v2 is not
null if v1 and v2 are null.

Figure 3: Null vectors [8].

This implies ∫
φ1φ2[[φ3φ4]] 6=

∫
φ1φ2φ3φ4, (5.33)

and we really do need the projection. This means that if we construct the
action beyond cubic orders in the fields, the weak constraint alone does not
ensure physical processes. We need a constraint that is somewhat stronger.
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5.4 The strong constraint and its consequences

We will now discuss a constraint that ensures that such products lie in the
kernel of ∆. But bear in mind that this constraint is just one possible stronger
constraint, it is certainly not unique. In fact, there are reasons to believe that
this so-called strong constraint is too strong. We will discuss this in section
6.

5.4.1 The strong constraint

The strong constraint states that all products of fields and gauge parameters
are annihilated by ∆:

∆(AB) = ∂i∂̃
i(AB) = 0, (5.34)

for any fields A and B. Note that if this constraint is satisfied, automatically
also ∂i∂̃

i(AαBβ) = 0 for any α, β which can by checked by using the chain
rule.

5.4.2 O(D,D) covariant notation

Here we will develop an O(D,D) covariant notation which will be very useful
to explain to consequences of imposing the strong constraint. To make such a
notation, we introduce extra coordinates x̃µ, so that we have 2D coordinates
XM with

XM ≡
(
x̃i
xi

)
, where x̃i =

(
x̃a
x̃µ

)
, xi =

(
xa

xµ

)
. (5.35)

We have now doubled the coordinates in the noncompact directions as well
as those in the compact directions. We will consider only fields that are
independent of the extra coordinates x̃µ, so that these coordinates play no
role.

Similarly, we define

∂M ≡
(
∂̃i

∂i

)
. (5.36)

The O(D,D) invariant metric which is used to raise and lower indices, is given
by ηMN =

(
0 I
I 0

)
, so that we have

XM =

(
xi

x̃i

)
, and ∂M =

(
∂i
∂̃i

)
. (5.37)

Note that in this notation (and by using (5.18))

∆ = −ηMN∂M∂N = −∂M∂M = −2∂i∂̃
i, (5.38)
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where we set α′ = 1 for convenience. The strong constraint can now be
written as

∂M∂M(AB) = 0 → ∂MA∂MB = 0, (5.39)

where the last step follows from the fact that both A and B must satisfy the
weak form of the constraint: ∂M∂MA = ∂M∂MB = 0.

5.4.3 Consequences of the strong constraint

Imposing this strong constraint gives rise to a consistent theory, but it also
implies that we can always perform an O(D,D) transformation after which
all the field and gauge parameters will depend on either xi or x̃i but not on
both. We will now prove this statement.

Consider a field A written in terms of its Fourier modes

A(x̃i, x
i) =

∑
p̃i,pi

A(p̃i, pi) e
i(p̃ix̃i+pix

i). (5.40)

Now by demanding that ∂M∂MA = 0 we get

∂̃i∂iA = −
∑
α

Aα(p̃i, pi) piα p̃
i
α e

i(p̃iαx̃αi+piαx
i
α) = 0 (5.41)

where the α refer to different Fourier modes. For this equation to be zero in
general, we need piαp̃

i
α = 0 for all α. As (x̃, x) transforms as a vector under

O(D,D), the vector

PMα ≡
(
p̃iα
piα

)
(5.42)

also transforms as a vector under O(D,D). So the constraint ∂M∂MA = 0
implies

∂̃i∂iA = 0 ↔ piα p̃
i
α = 0 ↔ Pα · Pα = ηMNPMαPNα = 0. (5.43)

That is, the weak constraint implies that the momentum vector P corre-
sponding to each Fourier mode (each α) is a null vector and therefore each
Pα lies on the light-cone.

Now consider the strong constraint (5.39). We can again write the fields
A and B in their Fourier component, and then after applying the strong
constraint we get

∂iA∂̃
iB + ∂iB∂̃

iA = −
∑
α,β

AαBβ(pAiαp̃
Bi
β + pBiβ p̃

Ai
α ) ei(P

T
α ·X)A+i(PTβ ·X)B = 0,

(5.44)
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where we have used the labels A,B to specify to which fields the momentum
vectors refer. If we want this equation to be zero in general, we need

PA
α · PB

β = 0, ∀ α, β,A,B, (5.45)

where PA
α =

(
p̃iα
piα

)A
, etc.

In other words, the momentum vector of each Fourier mode is orthogonal
to the momentum vector of any other Fourier mode of any field. This means
that all momentum vectors Pα live in an isotropic10 subspace of R2D.

When we say two momentum vectors are orthogonal, we mean Pα ·Pβ = 0.
This does not mean that the vectors are orthogonal in the usual sense, e.g.
two vectors with a 90◦ angle between them. On the contrary, all vectors Pα
lie in the same direction! To understand this, imagine a light-cone and two
vectors Pα and Pβ. Since both vectors are null themselves, they both lie on
the light-cone. But if Pα ·Pβ = 0 we also have (Pα +Pβ) · (Pα +Pβ) = 0 and
therefore the sum of the two vectors must also be null. The only situation
in which this is the case, is the one in which Pα and Pβ point in the same
direction. Only then will their sum still lie on the light-cone.

Any vector Pα on that is null (i.e. it lies on the light-cone) can be trans-
formed by an O(D,D) transformation to one in which the p̃i component is
zero. Since the strong constraint implies that all momentum vectors point
in the same direction, a transformation can be made after which all momen-
tum vectors are independent of p̃i. That is, any Fourier mode of any field
has p̃i = 0 which means that all of our fields only depend on x, and not on
x̃.

Note that it is really necessary that A and B can be any field or gauge
parameter, they can for example represent the same field or two different
fields. If the constraint ∂M∂M(AB) = 0 would not hold for two different fields
but only for products of fields with themselves or with gauge parameters, for
example ∂M∂M(d bij) 6= 0, then is not true that Pα · Pβ = 0 for all α, β
and therefore not all momentum vectors point in the same direction. In this
case there will always be some Fourier mode that does depend on p̃i when
the other modes do not. It is not possible to have all modes of all fields
independent of p̃i any more. This also means that there will always be a field
which still depends on x̃.

To summarize, the strong constraint implies that we can always perform
an O(D,D) transformation after which all our fields and gauge parameters
depend on x but not on x̃. This means that the dual coordinates do not

10An isotropic subspace is one in which any two vectors in the space are both null and
mutually orthogonal.
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represent physical degrees of freedom, we can eliminate the dependence of
fields on these dual coordinates by solving constraints. This would imply
that double field theory is actually just a single field theory! The strong
constraint seems to come a bit out of the blue. One might wonder if it is
possible to find alternatives for the strong constraint. We will do this in
section 6.

5.5 Background independent action to all orders

Our final goal is to construct the action to all orders and see what extra
conditions (besides the weak constraint) we need to make the theory consis-
tent. We can then compare these extra conditions with the strong constraint
and discuss whether the strong constraint is actually needed or that it is too
strong. We will do this in section 6.1, but first we need to construct the
action.

We will not explicitly derive the action to all orders here since we are
just interested in the results. We will however, explain how this action was
constructed.

5.5.1 The gauge transformations in a background independent
form

To derive the action to all orders, it is useful to work in a notation which is
manifestly background independent. The cubic action derived in [1] is actu-
ally background independent, this was proven in [2]. But it was written in
an ugly form, a form in which the background independence is not manifest.
The fields that were used are eij and d where eij = hij + b̂ij up to quadratic
order and the usual scalar dilaton φ is related to the field d by

√
−ge−2φ = e−2d, (5.46)

so that e−2d is a scalar density. Here g = det(gµν) where gµν is the metric
tensor.

The cubic action and its gauge transformations will be needed to construct
the full action. We will therefore give the cubic action which was constructed
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in [1]:

(2κ2)S =

∫
[dxdx̃]

[1

4
eij�e

ij +
1

4
(D̄jeij)

2 +
1

4
(Dieij)

2 − 2dDiD̄jeij − 4d�d

+
1

4

(
(Diekl)(D̄

jekl)− (Diekl)(D̄
lekj)− (Dkeil)(D̄jekl)

)
+

1

2
d
(

(Dieij)
2 + (D̄jeij)

2 +
1

2
(Dkeij)

2 +
1

2
(D̄keij)

2 + 2eij(DiD
kekj + D̄jD̄

keik)
)

+ 4eijdD
iD̄jd+ 4d2�d

]
. (5.47)

where � = 1
2
(D2 + D̄2). The action is invariant under the following gauge

transformations [1]:

δeij =D̄jλi +
1

2

[
(Diλ

k)ekj − (Dkλi)ekj + λkD
keij

]
+Diλj +

1

2

[
(D̄jλ̄

k)eik − (D̄kλ̄j)eik + λ̄kD̄
keij

]
, (5.48)

and

δd = −1

4
(D · λ+ D̄ · λ̄) +

1

2
(λ ·D + λ̄ · D̄)d. (5.49)

In this equation λi and λ̄i are two independent vectorial gauge parameters,
and the derivatives are the ones as defined in (5.14).

The action also has a Z2 symmetry

Z2 transformations : eij → eji, Di → D̄i, D̄i → Di, d→ d. (5.50)

This Z2 symmetry is the same Z2 symmetry as the one discussed in 5.1.2. It
says that using the coordinate xa or the coordinate x̃a does not matter, these
situations are physically equivalent. We thus have such a Z2 symmetry in
every compact direction. The action to full orders will also have this discrete
symmetry and it will in fact play an important role in discussing the strong
constraint.

The gauge transformations given above are to first order in the fields.
These transformations are used in [4] to construct the gauge transformations
to all orders. It turns out that the transformations of the dilaton field (5.49)
are actually already the full transformations, exact to all orders. We do
not have to include more terms in this equation. The transformation of eij
however, does need some extra terms:

δeij =Diλ̄j + D̄jλi

+
1

2
(λ ·D + λ̄ · D̄)eij +

1

2
(Diλ

k −Dkλi)ekj − eik
1

2
(D̄kλ̄j − D̄jλ̄

k)

−1

4
eik(D

lλ̄k + D̄kλl)elj. (5.51)
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Note that only one term quadratic in the fields is needed to get the full
transformations.

In [2] a new field Eij is introduced. This field allows us to write the gauge
transformations (5.51) in a manifestly background independent form. This
field is defined as Eij = Eij + ěij where ěij combines the fluctuation fields,

i.e., ěij = hij + b̂ij. It was shown in [4] that the field ěij is related to (eij, d)
by ěij = fij(e, d) where

f =
(

1− 1

2
e
)−1

e, (5.52)

so that
ě = Fe, (5.53)

where we use matrix notation and defined F as

F ≡
(

1− 1

2
e
)−1

. (5.54)

The field Eij thus includes both the full metric gij = Gij + hij and anti-

symmetric tensor gauge field bij = Bij + b̂ij, where Gij and Bij are constant
background fields.

To write the gauge transformations in a manifestly O(D,D) covariant
form, two new gauge parameters ξi and ξ̃i must be introduced, which are
defined as:

λi = −ξ̃i + Eijξ
j, λ̄ = ξ̃i + Ejiξ

j. (5.55)

We can combine ξi and ξ̃i into a fundamental O(D,D) vector

ξM =

(
ξ̃i
ξi

)
. (5.56)

Since we have a relation between Eij and eij, the gauge transformations of
the field eij can be used to obtain those of the field Eij. In fact, it was shown
in [2] that for any variation or derivative

δE = FδeF. (5.57)

We can now write the gauge transformations (5.51) in the following mani-
festly background-independent form [2]

δEij = Diξ̃j − D̄j ξ̃i + ξM∂MEij +DiξkEkj + D̄jξkEik, (5.58)

where the calligraphic derivatives are defined as

∂i =
1

2
(EjiDj + EijD̄j), ∂̃i =

1

2
(−Di + D̄i). (5.59)
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For later use, it is convenient to write the gauge transformations in a slightly
different form. By using the definition of the calligraphic derivatives, we can
rewrite (5.58) as

δξEij = ∂iξ̃j − ∂j ξ̃i + LξEij + Eik
(
∂̃qξk − ∂̃kξq

)
Eqj + Lξ̃Eij, (5.60)

where we used the standard Lie derivative and introduced a dual Lie deriva-
tive:

Lξ = ξk∂kEij + ∂iξ
kEkj + ∂jξ

kEik,
Lξ̃ = ξ̃k∂̃

kEij − ∂̃kξ̃iEkj − ∂̃kξ̃jEik. (5.61)

The transformation of the dilaton (5.49) can be written as

δd = −1

2
∂Mξ

M + ξM∂Md. (5.62)

5.5.2 Constructing the full action

An action written only in terms of the calligraphic derivatives, gij, Eij and d
will be manifestly background independent. The strategy is to seek such an
action that agrees with the action (5.47) to cubic order. But how should we
start? It is convenient to now use the dilaton theorem. This theorem states
that a constant shift of the dilaton is equivalent to a change of the coupling
constant. The theorem is manifest in actions where the dilaton appears in
an exponential prefactor that multiplies all terms in the Lagrangian, and
all other occurrences of the dilaton involve its derivatives. This helps us in
finding a form in which to write our terms in the action. We aim for an action
where the overall multiplicative factor takes the conventional form e−2d and
elsewhere the dilaton appears with derivatives.

Now we begin the computation. The (−4d�d) term in the action (5.47)
could come from a term of the form 4e−2dgijDidDjd. Indeed, if we expand
the calligraphic derivatives using (5.59) we get the desired quadratic term
and even some cubic terms that we want:

4e−2dgijDidDjd = −4d�d+4eijdDiD̄jd+4d2�d−2d2DiD̄jeij+(td), (5.63)

where (td) stands for total derivatives of ∂i and ∂̃i11. These terms can be
ignored since we integrate to form the action.

We see that the first three terms in (5.63) are indeed present in the cubic
action. The last term is not, but it will cancel against other terms that we get

11Thus (td)=∂Mv
M for some vM .
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by repeating this strategy to finally obtain all terms in (5.47) after expansion.
This is done in [2] and the result is the following background-independent
action:

S =

∫
dxdx̃ e−2d

[
− 1

4
gikgjlDpEklDpEij +

1

4
gkl(DjEikDiEjl + D̄jEkiD̄iElj)

+ (DidD̄jEij + D̄idDjEji) + 4DidDid
]
. (5.64)

5.5.3 Extra constraints needed

Where exactly do we need extra constraints to make the theory consistent?
We will discuss all the places where we need a constraint stronger than the
weak constraint. Then in the next section we will calculate what kind of
extra conditions we need exactly. We will then compare this to what the
strong constraint implies.

We did not need the strong constraint to construct the action, but in [2]
it was stated that we do need the strong form of the constraint to guarantee
the Z2 symmetry of the action. This is the same Z2 symmetry as the one in
(5.50) with the only difference that now we have the field Eij instead of eij and
we have calligraphic derivatives instead of normal ones. So the action (5.64)
should be the same after exchanging the indices in Eij, exchanging barred
and unbarred derivatives and leaving the dilaton invariant. We see that
the second and third term indeed stay the same after these transformations.
This is however not so obvious for the first and the last term. And by
demanding the action should be invariant under the Z2 transformation, a
stronger constraint than the weak constraint is indeed needed.

If the fields are allowed (if they satisfy the weak constraint) we want them
to still be allowed after a gauge transformation. The gauge transformations
(5.58) and (5.62) contain products of fields with gauge parameters and fields
with themselves. So here we also need a stronger constraint than the weak
constraint.

Finally, it was stated in [2] and [6] that the strong constraint is required
to prove gauge invariance of the action.

We will discuss these three situations in the next section. They seem to
be the only places where extra conditions are needed.

6 Alternatives for the strong constraint

To make a consistent theory to all orders, we can impose the strong con-
straint. But we already saw that the strong constraint leads to the fact that
our double field theory is actually a single field theory.
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In this section we will discuss two possible solutions to this problem. One
of them is finding a lighter constraint. A constraint that still leads to a
consistent theory, but lets us keep the dual coordinates. Could there be such
a constraint? The other one involves the (0, 2) and (2, 0) sectors which were
discussed in section 4.3.4.

6.1 Finding a less strong constraint

We start analysing all three situations discussed in section 5.5.3. What kind
of terms do we need to set to zero to make sure everything turns out the way
we want it to? We list some terms that need to be put to zero and in the
end discuss what it means.

6.1.1 Z2 symmetry of the action

As discussed before, only the first and the last term in (5.64) give problems.
We start with the first term. We demand that

gikgjlDp EklDp Eij = gikgjl D̄p Elk D̄p Eji. (6.1)

This equation can be expanded by using Ekl = gkl + bkl:

gikgjl
(
DpgklDpgij +DpgklDpbij +DpbklDpgij +DpbklDpbij

)
=

= gikgjl
(
D̄pgklD̄pgij + D̄pgklD̄pbji + D̄pblkD̄pgij + D̄pblkD̄pbji

)
, (6.2)

where we used that gij is symmetric in the exchange of its indices. For this
equation to hold, the term on the left with two derivatives working on the
metric should equal the term on the right with two derivatives on the metric.
The same holds for the terms with two derivatives working on the b field.
We thus get

gikgjl
[
DpgklDpgij − D̄pgklD̄pgij

]
= 0,

gikgjl
[
DpbklDpbij − D̄pbklD̄pbij

]
= 0, (6.3)

We can rewrite these equations if we use the fact that the constraint ∂MA∂
MB =

0 (or equivalently ∂iA∂̃
iB + ∂̃iA∂iB = 0) takes a simple form using calli-

graphic derivatives. A short calculation shows that ∂MA∂
MB = 0 is equiv-

alent to DiADiB = D̄iAD̄iB. So we can write (6.3) as

gikgjl
[
∂i gkl ∂̃

i gij + ∂̃i gkl ∂i gij
]

= 0, (6.4)

gikgjl
[
∂i bkl ∂̃

i bij + ∂̃i bkl ∂i bij
]

= 0, (6.5)
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which is satisfied if we set

∂M∂
M
(
gklgij

)
= 0,

∂M∂
M
(
bklbij

)
= 0.

(6.6)

As for the mixed terms in (6.3), they are all zero. This is not hard to see
since we have

gikgjlDpgklDpbij = −gjkgilDpgklDpbij = −gjlgikDpgklDpbij = 0, (6.7)

where the equation is zero because it equals minus itself.
We now work out the last term in (5.64). This time we want to have

DidDid = D̄idD̄id, (6.8)

and it is easy to show this is equivalent to

∂M∂
M
(
dd
)

= 0. (6.9)

So to keep Z2 symmetry, (6.6) and (6.9) need to be satisfied. But of course
these equations should still hold after a gauge transformation of the fields.
So we should also have

δ
(
∂M∂

M
(
dd
))

= 0,

δ
(
∂M∂

M
(
bijbkl

))
= 0,

δ
(
∂M∂

M
(
gijgkl

))
= 0. (6.10)

This leads to more conditions that involve products of (derivatives of) gauge
parameters with (derivatives of) fields and products of (derivatives of) fields
with (derivatives of) other fields.

6.1.2 Gauge invariance

If we would vary the action using (5.62) and (5.58) we will get very long
equations. Fortunately we can simplify our calculations by working in a
derivative expansion in ∂̃. We write the action (5.64) as

S = S(0) + S(1) + S(2), (6.11)

where the superscript denotes the number of ∂̃ derivatives in the action. We
can do the same for the Lagrangian

S(k) =

∫
dxdx̃ L(k), k = 0, 1, 2, (6.12)
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and the gauge transformations

δξ = δ
(0)
ξ + δ

(1)
ξ , (6.13)

where

δ
(0)
ξ Eij = ∂iξ̃j − ∂j ξ̃i + LξEij,

δ
(1)
ξ Eij = −Eik

(
∂̃kξl − ∂̃lξk

)
Elj + Lξ̃Eij,

δ
(0)
ξ d = ξi∂id−

1

2
∂iξ

i,

δ
(1)
ξ d = ξ̃i∂̃

id− 1

2
∂̃iξ̃i, (6.14)

which can easily be verified by looking at (5.60) and (5.62).
To prove gauge invariance, we need to prove that the whole action is

invariant under all gauge transformations. In other words, we need to show
that

(
δ
(0)
ξ + δ

(1)
ξ

)(
S(0) + S(1) + S(2)

)
= 0. But as discussed in [2] this is

equivalent12 to showing

δ(0)S(1) + δ(1)S(0) = 0. (6.15)

It is also explained in [2] that we only have to focus on the terms in the
in the gauge transformations that are not of the form of a Lie derivative.
Because if the terms do have that form, they will eventually combine into
total derivatives13. Since we integrate to get the action, these surface terms
do not matter.

Since the gauge parameters ξi and ξ̃i are independent of each other, the
action must be invariant under variations under only ξi and variations under
only ξ̃i separately. This gives us the opportunity to split the calculation
in two parts. First we check gauge invariance with only ξ̃i nonzero. So
we calculate δ(1)L(0) + δ(0)L(1) with ξi set to zero and we focus only on the
variations that are not of the form of a Lie derivative. Then we check gauge
invariance with only ξi nonzero. The calculation is done in appendix A. It
shows that to prove total gauge invariance we need to set the following terms
to zero:

12If (6.15) is zero, then also δ(1)S(1) + δ(0)S(2) = 0 since these two equations are T-dual
versions of each other [2]. Also, δ(0)S(0) = 0 is just saying that the conventional action is
gauge invariant and δ(1)S(2) = 0 is again the T-dual version of this. So by only proving

(6.15) it is guaranteed that
(
δ
(0)
ξ + δ

(1)
ξ

)(
S(0) + S(1) + S(2)

)
= 0.

13More precisely, given δξ
(
e−2d

)
= ∂i

(
ξie−2d

)
and δξL = ξi∂iL we find δξ

(
e−2dL

)
=

∂i
(
ξie−2dL

)
, where L denotes a Lagrangian that transforms as a scalar under diffeomor-

phisms.
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∂M∂
M
(
ξ̃qgkl

)
= 0, ∂M∂

M
(
ξrgpi

)
= 0, ∂M∂

M
(
∂iξjgkl

)
= 0,

∂M∂
M
(
ξ̃qd
)

= 0, ∂M∂
M
(
ξrd
)

= 0, ∂M∂
M
(
∂kbpjξ

j
)

= 0,

∂M∂
M
(
ξ̃qbjp

)
= 0, ∂M∂

M
(
ξrbjp

)
= 0,

∂M∂
M
(
ξ̃jg

ij
)

= 0, ∂M∂
M
(
ξjbpj

)
= 0.

Again, these equations should also hold after a gauge transformation.
More precisely, the condition

δ
(
∂M∂

M
(
AB
))

= 0, (6.16)

should hold where A and B are such, that their combination corresponds to
any term in the boxed equation above. This gives new conditions but it is
important to note that it leads to a sum of terms to be annihilated by ∂M∂

M ,
so in the most general case we do not get conditions in the from that the
operator ∂M∂

M should annihilate products of fields with other fields/gauge
parameters separately.

6.1.3 Finding dependence on both normal and dual coordinates

Here we discuss whether is it possible to have both x dependence and x̃
dependence (without having the possibility to perform an O(D,D) transfor-
mation after which the dependence on x̃ has disappeared) given that the
conditions discussed in sections 6.1.1 and 6.1.2 must be satisfied.

First note that if the strong constraint is imposed, indeed all the con-
straints are satisfied since the strong constraint demands that every product
between fields and gauge parameters we can think of should be annihilated
by ∂M∂

M . However, the strong constraint is not needed. As noted before,
to make sure the conditions listed in sections 6.1.1 and 6.1.2 still hold after
gauge transformations, new conditions arise but they do not involve products
between fields and gauge parameters to be annihilated by ∂M∂

M separately.
We can therefore impose a different, more general constraint but it will look
ugly. In fact, in [5] it was found that consistency of gauge invariance of double
field theory requires two closure constraints and one invariance constraint.
These constraints select subsets of fields and gauge parameters for which the
gauge symmetries are consistent. The weak and strong constraints are suf-
ficient to satisfy the closure and invariance constraints, but not necessary.
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The closure constraints take the following form [5]:

ξQ[1∂
P ξ2]Q∂PV

M
N + 2∂P ξ

Q
[1∂

P ξ2]NV
M
Q + 2∂P ξ[1Q∂

P ξM2] V
Q
N = 0,

(6.17)

and
3

2
∂R
(
ξP[1ξ

Q
2 ∂P ξ3]Q

)
∂RV

M
N = 0, (6.18)

where V M
N is a generic tensor and ξ1, ξ2, ξ3 represent different transforma-

tions. Finally, the invariance constraint takes the form [5]:∫
dKX e−2d G(ξ, E , d) = 0, (6.19)

which says that the action should transform as a scalar under the gauge
transformations. The function G(ξ, E , d) is given in appendix B.

These constraints were derived by demanding the closure of the so-called
C-bracket which governs the gauge algebra. In principle, the same conditions
should be derivable after writing out (6.10) and (6.16) and collecting every
condition that needs to be satisfied.

6.2 Include extra massless fields

The motivation for this solution is as follows. One of the massless fields we
found in section 4.3 is the gravity field hµν . But we saw in section 5.1.3
that this field alone was not enough for double field theory. We needed to
include both the Kalb-Ramond field and the dilaton field to make the theory
invariant under double diffeomorphisms. These three fields together form an
irreducible representation of O(D,D). But the theory becomes inconsistent
again if we go beyond cubic order in the fields, and if we do not impose the
strong constraint. It seems natural to include the massless fields belonging
to the (0, 2) and (2, 0) sectors discussed in section 4.3.4. Including extra
massless fields worked before, so why shouldn’t we try it again? This means
we will include eight more gravitons, vector fields and scalar fields. It is cer-
tainly worth a try. But the extra massless fields, together with the ones we
already had (hµν , bµν and d), should again form a representation of O(D,D).
We can check this by adding the number of degrees of freedom of all the
massless fields and compare this to the dimension of the adjoint representa-
tion of O(D,D). This is the dimension of a 2D × 2D antisymmetric matrix,
which is 1

2
2D (2D − 1) = 2D2 − 1. We will count the off-shell number of

degrees of freedom for the massless fields we obtained in the (2,0) and (0,2)
sectors. The number of off-shell degrees of freedom is larger than the number
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of on-shell degrees of freedom, since we also count non-physical degrees of
freedom which can be eliminated using certain gauge choices. We get the
following

1
2
D
(
D + 1

)
− 1 (graviton field)

D (vector field)
1 (scalar field) +

1
2
D
(
D + 3

) (6.20)

These are the numbers of degrees of freedom (off-shell) of one gravity field,
one vector field and one scalar field. If we would include the whole (2,0)
sector we should multiply this by four, and if we would also include the (0,2)
sector we should multiply it by eight. We have to add the number of degrees
of freedom of the (1,1) sector we already had, which is D2. It will soon be
clear it is not possible to set this equal to 2D2 − 1, since we get

D2 + k
1

2

(
D2 + 3

)
6= 2D2 −D, for any k ∈ Z (6.21)

This means that if we include the extra massless fields obtained from the
(2,0) and (0,2) sectors, all the fields together do not fit in an O(D,D) rep-
resentation. This should have been the case if we want to obtain a theory
which has an O(D,D) symmetry.

7 Conclusion

In double field theory, all fields and gauge parameters should satisfy the
weak constraint, which states that they must be annihilated by the operator
∂M∂

M . A stronger constraint is needed to make the theory consistent to all
orders in the fields. We took a closer look into what conditions are exactly
needed to accomplish this. A possible constraint is the so-called strong con-
straint. However, it can be proven that by imposing this strong constraint
a transformation can be performed after which dependence on the dual co-
ordinate x̃ is absent. This implies the double field theory is equivalent to a
single field theory up to a T-duality rotation. If a constraint can be found
which is less strong than the strong constraint, dependence on both x and
x̃ can exist in a form where it is not possible to ‘rotate the x̃ dependence
away’.

A set of conditions was found that is needed to make the action gauge
invariant and to keep T-duality as a symmetry. These conditions must of
course still hold after gauge transformations and demanding this gives rise
to more complicated conditions. However, these extra conditions do not
imply that the operator ∂M∂

M annihilates all possible products of fields and
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gauge parameters (as the strong constraint does). It only demands certain
combinations of certain products between gauge parameters and fields to be
annihilated.

In this thesis, an explicit form of an intermediate constraint was un-
fortunately not found due to lack of time. However, such an intermediate
constraint was found in [5] where this result was derived requiring the closure
of the so-called C-bracket. The intermediate constraint takes a complicated
form which makes it cumbersome to solve it in full generality.

We also briefly discussed another way of trying to do double field theory
beyond the strong constraint: including extra massless fields, coming from
the (N⊥, N̄⊥) = (2, 0), (0, 2) sectors of closed string theory. However, these
extra fields, together with the usual Kalb-Ramond 2-form, graviton and dila-
ton field, do not seem to fit in a representation of O(D,D). Therefore, such a
theory would not have T-duality symmetry.

8 Acknowledgements

First of all, I would like to thank my supervisor Diederik Roest for proposing
this interesting subject for helping me with the problems I had to face making
this thesis. I have learned a lot of new things while working on this thesis.

Secondly, I would like to thank G. Dibitetto, R. Andringa, J. Rosseel and
A. Guarino for always taking the time to answer my questions and for making
me better understand some concepts. Without them, this thesis would not
be what it is now.

Last but not least, I would like to thank the Dutch weather for not being
too nice and therefore not distracting me from writing my thesis.

A Explicit check of gauge invariance

The expression for L(1) and L(0) are given in [2] and read

L(1) = e−2d
[1

2
gikgjlgpq

(
bir∂̃

rbjpHklq + bpr∂̃
rgkl∂qgij − 2blr∂̃

rgip∂kgjq

)
− gikgpq∂̃jbip∂kgjq + 2bir∂j ∂̃

rgij + 2∂̃kbik∂jg
ij

+ 2gij∂i∂̃
kbjk + ∂̃kgij∂ibjk − 8gijbik∂̃

kd∂jd
]

+ (td), (A.1)
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and

L(0) = e−2d
(
− 1

4
gikgjl∂pgkl∂pgij +

1

2
gkl∂jgik∂

igjl

− ∂i∂jgij + 4∂id∂id−
1

12
H ijkHijk

)
+ (td). (A.2)

A.1 Invariance under ξ̃i

We first check the gauge invariance under ξ̃i. It can be seen from (6.14) that

δ
(0)

ξ̃
is trivial on all fields, except for δ

(0)

ξ̃
bij = ∂iξ̃j − ∂j ξ̃i. So we only have to

vary the b’s inside (A.1).
The variation of L(0) is somewhat lengthier. We use the following varia-

tions [2]:

δ
(1)

ξ̃
Hijk = Lξ̃Hijk + 3∂̃pξ̃[i∂|p|bjk] + 3∂[iξ̃|p|∂̃

pbjk] + 6∂[i∂̃
pξ̃jbk]p,

δ
(1)

ξ̃

(
∂igjk

)
= Lξ̃

(
∂igjk

)
+ ∂̃pξ̃i∂pgjk + ∂iξ̃p∂̃

pgjk − 2∂i∂̃
pξ̃(jgk)p,

δ
(1)

ξ̃

(
∂ibjk

)
= Lξ̃

(
∂ibjk

)
+ ∂̃pξ̃i∂pbjk + ∂iξ̃p∂̃

pbjk + 2∂i∂̃
pξ̃(jbk)p,

δ
(1)

ξ̃

(
∂ig

jk
)

= Lξ̃
(
∂ig

jk
)

+ ∂̃pξ̃i∂pg
jk + ∂iξ̃p∂̃

pgjk + gp(j∂i∂̃
k)ξ̃p,

δ
(1)

ξ̃

(
∂id
)

= Lξ̃
(
∂id
)

+ ∂̃kξ̃i∂kd+ ∂iξ̃k∂̃
kd− 1

2
∂i∂̃

kξ̃k,

δ
(1)

ξ̃

(
∂i∂jg

ijd
)

= Lξ̃
(
∂i∂jg

ij
)

+ 2∂j∂jg
ip∂̃j ξ̃p + 2∂iξ̃p∂̃

p∂jg
ij + 2∂jg

ip∂i∂̃
j ξ̃p + ∂i∂j ξ̃∂̃

pgij.

(A.3)

which can be calculated using (6.14) and (5.61). For the variations, we do not
use the terms of the form of a Lie derivative. These terms combine together
with the transformation of e−2d into a total derivative. We need to vary only
terms involving partial derivatives since δ

(1)

ξ̃
gij is just the Lie derivative on

gij which can be seen by looking at (6.14). The same holds for the variation
of bij, and the dilaton d transforms as a density.

Let us first look at the terms quadratic in derivatives on d. These are the
last term in L(1) and the fourth term in L(0). Since none of the other terms
contain a dilaton field, after variating only these two terms the d’s should
vanish. Indeed, we find

δ(0)L(1)
last + δ(1)L(0)

fourth = δ(0)
(
− 8e−2dgijbik∂̃

kd∂jd
)

+ δ(1)
(

4e−2dgij∂id∂jd
)

= 8e−2d∂id
(
∂k ξ̃i∂̃

kd+ ∂̃kξ̃i∂k d
)
− 4e−2d∂id ∂i∂̃

kξ̃k

= −2e−2d
(
∂jg

ij∂i∂̃
kξ̃k + gij∂i∂j ∂̃

kξ̃k
)
, (A.4)
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where in the last step we performed a partial integration and we set the
following term to zero:

∂id
(
∂k ξ̃i∂̃

kd+ ∂̃kξ̃i∂k d
)

= 0. (A.5)

This is indeed zero according to the strong constraint. The terms that are
left do not contain a d any more and they will eventually cancel against other
terms.

The first term of L(1) and the last term of L(0) are the only terms that
still contain a b after variation. They should therefore cancel against each
other. A straightforward calculation shows that these terms indeed cancel if
we set the following term to zero

e−2dgikgjlgpq∂[kblq]

(
∂̃αξ̃i∂αbjp + ∂αξ̃i∂̃

αbjp

)
= 0. (A.6)

We now compute the variation of L(1), but without the first and last
terms, since we already used them. A straightforward calculation shows that
we get

δ(0)L(1) = e−2dgikgjlgpq
[
∂[q ξ̃α]∂̃

αgkl − 2∂[lξ̃α]∂̃
αgqk − 2∂̃l∂[q ξ̃k]

]
∂pgij

+ 2e−2d
(

2∂[iξ̃α]∂j ∂̃
αgij + 2∂̃α∂[iξ̃α]∂jg

ij

+ 2gij∂i∂̃
α∂[j ξ̃α] + ∂̃αgij∂i∂[j ξ̃α]

)
(A.7)

We can do the same for the variation of L(0). If we do not consider the fourth
and last term for a moment we get

δ(1)L(0) = −1

2
e−2dgikgjlgpq

[
δ(1)
(
∂qgkl

)
−2δ(1)

(
∂lgqk

)]
∂pgij−e−2dδ(1)

(
∂i∂jg

ij
)
.

(A.8)
By using (A.3) this is easy to calculate. Finally, we add (A.7), (A.8) and the
remaining two terms of (A.4). It can be shown this vanishes only if we set
the following terms to zero

e−2dgikgjlgpq∂pgij

(
∂α ξ̃q ∂̃

α gkl + ∂̃α ξ̃q ∂α gkl

)
= 0, (A.9)

e−2d∂id
(
∂α ξ̃j ∂̃

α gij + ∂̃α ξ̃j ∂α g
ij
)

= 0, (A.10)

e−2dgikgjl
(
∂i∂αξ̃j ∂̃

αgkl + ∂i∂̃
αξ̃j∂αgkl

)
= 0, (A.11)

and of course the weak constraint always holds, so ∂̃i∂i annihilates every field
or gauge parameter.
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A.2 Invariance under ξi

We now check gauge invariance under ξi. This time, to vary L(1) we only
need to vary terms that involve partial derivatives and therefore transform
non-covariantly. We use the following variations [2]:

δ
(0)
ξ

(
∂̃rbjp

)
= Lξ

(
∂̃rbjp

)
+ ∂̃kbjp ∂kξ

r + ∂̃rξk∂kbjp − 2∂̃r∂[jξ
k bp]k , (A.12)

δ
(0)
ξ

(
∂̃kgij

)
= Lξ

(
∂̃kgij

)
+ ∂̃pgij ∂pξ

k + ∂̃kξp ∂pg
ij − 2∂̃k∂pξ

(i gj)p , (A.13)

δ
(0)
ξ

(
∂̃kd
)

= Lξ
(
∂̃kd
)

+ ∂̃pd ∂pξ
k + ∂̃kξj ∂jd−

1

2
∂̃k∂jξ

j , (A.14)

δ
(0)
ξ

(
∂̃rgkl

)
= Lξ

(
∂̃rgkl

)
+ ∂̃pgkl ∂pξ

r + ∂̃rξp ∂pgkl + 2∂̃r∂(kξ
p gl)p , (A.15)

δ
(0)
ξ

(
∂ibjk

)
= Lξ

(
∂ibjk

)
− 2∂i∂[jξ

p bk]p , (A.16)

δ
(0)
ξ

(
∂̃r∂jg

ij
)

= Lξ
(
∂̃r∂jg

ij
)

+ ∂̃p∂jg
ij ∂pξ

r + ∂̃rξp ∂p∂jg
ij (A.17)

− ∂jgpj ∂̃r∂pξi − ∂̃rgpj ∂j∂pξi − gpj ∂̃r∂j∂pξi − ∂̃rgip ∂p∂jξj

− gip∂̃r∂p∂jξj ,
δ
(0)
ξ

(
∂i∂̃

kbjk
)

= Lξ
(
∂i∂̃

kbjk
)

+ ∂i∂kξ
p ∂̃kbjp + ∂kξ

p ∂i∂̃
kbjp (A.18)

+ ∂i∂jξ
p ∂̃kbpk + ∂i∂̃

kξp ∂pbjk + ∂̃kξp ∂i∂pbjk + ∂i∂̃
k∂jξ

p bpk

− ∂̃k∂jξp ∂ibkp ,
δ
(0)
ξ

(
∂pgkl

)
= Lξ

(
∂pgkl

)
+ ∂p∂kξ

q glq + ∂p∂lξ
q gkq , (A.19)

δ
(0)
ξ

(
∂id
)

= Lξ
(
∂id
)
− 1

2
∂i∂jξ

j . (A.20)

Next, we look at δ(1). It acts trivially on d, while on g and b we find the
non-linear transformations [2]

δ
(1)
ξ gij = 2

(
∂̃kξl − ∂̃lξk

)
gk(i bj)l , (A.21)

δ
(1)
ξ gij = −

(
∂̃iξk − ∂̃kξi

)
gjlblk + (i↔ j) , (A.22)

δ
(1)
ξ bij = gik

(
∂̃lξk − ∂̃kξl

)
glj + bik

(
∂̃lξk − ∂̃kξl

)
blj . (A.23)

Since these transformations do not take the form of a Lie derivative, we have
to vary everything in δ(1)L(0), not only the terms involving partial derivatives.
It is therefore convenient to slightly rewrite L(0) with less appearances of
metrics and inverse metrics,

L(0) = e−2d
(1

4
gpq∂pg

ij ∂qgij −
1

2
gij∂jg

kl ∂lgik − ∂i∂jgij (A.24)

+ 4gij∂id ∂jd−
1

12
gilgjpgkqHijkHlpq

)
.
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So we vary all terms of L(1) involving partial derivatives by using (A.12)-
(A.20). Then we vary every term of L(0) under δ(1) using (A.21)-(A.23).

This is a long calculation and it is easiest to split it in three parts. One
part with terms proportional to gikgjlgpq, another part with terms propor-
tional to gjlgpq and finally a part with terms proportional to gpq. In doing
this, we keep the indices of ξi and the tilde derivative ∂̃i up and the rest
of the indices down. Also, by using gklgij∂qgik = −∂qglj, we rewrite certain
terms in such a way that derivatives work on a metric with indices down.
The three parts should now all cancel by themselves.

The terms proportional to gikgjlgpq cancel if we set the following terms
to zero:

e−2dgikgjlgpqbir∂[kblq]

(
∂α ξ

r ∂̃α bjp + ∂̃α ξr ∂α bjp

)
= 0, (A.25)

e−2dgikgjlgpqblr∂jgkq

(
∂α ξ

r ∂̃α gpi + ∂̃α ξr ∂α gpi

)
= 0. (A.26)

The terms proportional to gjlgpq cancel if the following terms are set to zero:

e−2dgjlgpq∂jgql

(
∂α ξ

r ∂̃α bpr + ∂̃α ξr ∂α bpr

)
= 0, (A.27)

e−2dgjlgpq∂pblr

(
∂α ξ

r ∂̃α gqj + ∂̃α ξr ∂α gqj

)
= 0, (A.28)

e−2dgjlgpq∂jdbpr

(
∂α ξ

r ∂̃α gql + ∂̃α ξr ∂α gql

)
= 0. (A.29)

And finally, to cancel the terms proportional to gpq we need

e−2dgpq∂qd
(
∂α ξ

j ∂̃α bpj + ∂̃α ξj ∂α bpj

)
= 0, (A.30)

e−2dgpq∂qdbpk

(
∂α ξ

k ∂̃α d+ ∂̃α ξk ∂α d
)

= 0. (A.31)

A.3 Gathering all the terms

We will collect the terms that ensure gauge invariance of the action after set-
ting them to zero. Some of the terms derived above have the same structure
so it is not necessary to list them all.

B The invariance constraint

The invariance constraint which was derived in [5] states∫
dKX e−2d G(ξ, E , d) = 0, (B.1)
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∂M∂
M
(
ξ̃qgkl

)
= 0, ∂M∂

M
(
ξrgpi

)
= 0, ∂M∂

M
(
∂iξjgkl

)
= 0,

∂M∂
M
(
ξ̃qd
)

= 0, ∂M∂
M
(
ξrd
)

= 0, ∂M∂
M
(
∂kbpjξ

j
)

= 0,

∂M∂
M
(
ξ̃qbjp

)
= 0, ∂M∂

M
(
ξrbjp

)
= 0,

∂M∂
M
(
ξ̃jg

ij
)

= 0, ∂M∂
M
(
ξjbpj

)
= 0.

where

G(ξ, E , d) =− ∂P∂MξN∂PHMN − 2∂P ξN∂P∂MHMN + 4∂Pd∂M∂
P ξNHMN

+ 4∂Pd∂
P ξN∂MHMN + 4∂Nd∂

P ξM∂PHMN

+
1

4
HMN∂P ξM∂PHKL∂NHKL −HMN∂P ξM∂PHKL∂KHNL

+ 8HMN∂P ξM∂P∂Nd− 8HMN∂Md∂
P ξN∂Pd

− 2∂M
(
∂P∂P ξNHMN

)
+ 4∂P∂P ξM∂NdHMN

+ ∂P ξ
Q∂QEaM∂PEbNSabηMN + ∂P∂

NξMEaM∂PEbNSab
− ∂P∂MξNEaM∂PEbNSab . (B.2)

We will not explain in detail what all the terms in this equation mean, for
a thorough understanding see [5]. The purpose of showing this formula is to
emphasize that the intermediate constraint takes on a very ugly form. So
although it is not necessary to impose the strong constraint, the intermediate
constraint is complicated and this makes it cumbersome to solve it in full
generality.
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