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Abstract

The High Energetic Stereoscopic System (H.E.S.S.) experiment has been successfully taking
and analyzing gamma-ray data for more than a decade. It was designed to be at the technical
frontier and since then many efforts were taken to keep that level of excellence. Nevertheless,
there are still borders that are yet to be crossed. This work is focused on two of those
constraints and provides the cornerstone for the system and its collaboration to not fall
behind. The first one is the ability to extend the observation schedule by allowing safe
operations of the telescopes during moonlight. Due to the detector system being a very
sensitive and delicate system, additional light in the sky or the vicinity has always been a
red flag. In the end, this is one of the main reasons why the site is located at an extremely
remote place in the Khomas Highland at the heart of Namibia. The main science goal kept
shifting from monitoring and scanning the gamma-ray night sky more and more to studying
targets of opportunity in the last years, where the system reacts to an alert from another
experiment when a source in the sky shows exceptional activity. Since those alerts might come
in at any time, the question whether observations under moderate moonlight are possible
became of interest. The developed model for the brightness of the night sky provides those
answers together with different strategies to extend the system’s duty cycle by an additional
60% to 88%. The second main part goes the other direction: Instead of taking more data, the
possibility of analyzing more of the data already available using machine learning techniques
is investigated. Many events are recorded and written to disc but due to strict quality
selection cuts never end up in an analysis. With the modern available hardware it is possible
to apply deep learning algorithms that are capable of analyzing data that otherwise would
have been discarded. Results on the Active Galactic Nucleus PKS 2155-304 are presented,
where the signal to noise ratio of the analysis could be improved from 11.6 to 12.4. In this
sense, both covered topics share the same goal of further pushing the limits of this well
established system, to stay at the edge of modern astroparticle research.
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Kurzfassung

Das High Energetic Stereoscopic System (H.E.S.S.) Experiment beobachtet und analysiert
Gammastrahlung erfolgreich seit mehr als einem Jahrzehnt. Es wurde an der Grenze
des technisch Möglichen konstruiert und viele Bemühungen wurden jeher unternommen,
um diesen Grad an Exzellenz zu erhalten. Nichtsdestotrotz gibt es immer noch Bereiche
in die man noch nicht vorgedrungen ist. Diese Arbeit konzentriert sich auf zwei dieser
Beschränkungen und legt den Grundstein für das System und die damit verbundene
Kollaboration um nicht abgehängt zu werden. Der erste Punkt ist die Fähigkeit den
Beobachtungszeitplan durch das Erlauben von Beobachtungen während Mondlichts zu
erweitern. Da die Detektoren sehr empfindlich sind war zusätzliches Licht im Himmel oder
der Umgebung immer ein rotes Tuch. Dies ist nicht zuletzt ein Grund dafür, warum sich
der Standort an einem so abgelegenem Ort im Khomas Hochgebirge im Herzen Namibias
befindet. Der wissenschaftliche Schwerpunkt hat sich in den letzten Jahren zunehmend
verschoben. Von systematischen Beobachtungen und dem Abtasten des Gammastrahlen-
Himmels hin zur Untersuchung von Gelegenheitszielen, bei denen das System auf den
Alarm von anderen Experimenten reagiert, wenn eine Quelle im Himmel außergewöhnliche
Aktivität zeigt. Da diese Alarme zeitlich nicht vorhersagbar sind stellte sich die Frage,
ob Beobachtungen während mäßigem Mondlicht möglich sind. Das hierfür entwickelte
Modell der Helligkeit des Nachthimmels liefert diese Antworten zusammen mit verschiedenen
Strategien die den Betriebszyklus des Systems um zusätzliche 60% bis 88% erhöhen. Der
zweite Teil der Arbeit geht die andere Richtung: Anstatt mehr Daten zu nehmen wird die
Möglichkeit untersucht mehr der bereits vorhandenen Daten mittels maschinellem Lernen
auszuwerten. Aufgrund von strengen Qualitätskriterien in den Standardanalysen werden
viele Ereignisse zwar aufgezeichnet, aber nie in einer Auswertung verwendet. Mit der
modernen verfügbaren Hardware ist es möglich Algorithmen mit tiefen maschinellen Lernen
zu verwenden, die in der Lage sind Daten zu analysieren welche normalerweise verworfen
würden. Ergebnisse des aktiven Galaxienkern PKS 2155-304 werden gezeigt, bei denen
das Signalrauschverhältnis der Auswertung von 11.6 auf 12.4 verbessert werden konnte.
In diesem Sinne verfolgen beide präsentierten Themen das gemeinsame Ziel die Grenzen
dieses etablierten Systems zu erweitern um an der Front moderner Forschung im Bereich der
Astroteilchenphysik bleiben zu können.
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Chapter 1.

Introduction to Astroparticle Physics

1.1. Victor Hess discovers Cosmic Rays

It is not by chance, that the collaboration I was thankfully part of during the work on this
thesis and their telescope system in Namibia, which will be introduced later in detail, are
named H.E.S.S. (High Energetic Stereoscopic System). At the beginning of the last century,
there was no particle physics, not to mention astroparticle physics. In fact, it was just a few
years earlier in 1896, that radioactivity had been discovered through Antoine Henri Becquerel
and was therefore a hot research topic in those days. It is amazing what development science
and mankind as such went through in those last 100 years, as the existence of those research
topics seems to be taken for granted nowadays. The H.E.S.S. telescope system was officially
inaugurated in 2004, 40 years after the passing of Austrian physicist Victor Franz Hess, with
the acronym chosen to honor his life work.

V. Hess undertook his famous balloon flights in 1911 and 1912, where he originally wanted
to prove that the penetrating, ionizing radiation, which was measurable in closed containers
was coming from radioactive decays in the earth’s crust. [Hess, 1912] A decrease in rate
with increasing height over ground due to more absorption from the air was postulated,
but for example Theodor Wulf could not prove this with enough statistical evidence while
climbing the tallest building of his time (the Eiffel Tower in Paris) with his measuring device
[Wulf, 1910]. Wulf’s result even hinted at an increasing rate with height, but the significance
was not high enough and the influence of the Eiffel Tower’s steel structure was not fully
understood. Today we know, that the radioactive elements within the metal structure did
definitely influence his results.
Hess on the other hand had the possibility to measure radiation during 7 balloon flights
and thus covered a wider range in altitude difference than for example Wulf before him and
was not constraint to climbing structures. He managed to seal both of his electroscopes to
eliminate any bias from change in air pressure. His measurement results are summarized in
figure 1.1.
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Chapter 1. Introduction to Astroparticle Physics
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Figure 1.1.: The summary of Victor Hess’s balloon flights. Horizontal bars show the height
bins. Although the data points are calculated as averages over several flights
with varying conditions, the trend is still obvious. (plotted after "Tabelle der
Mittelwerte" on page 1089 of Hess [1912])

Hess’ conclusion after the last and highest flight up to over 5000 meters above sea level was
the following [Hess, 1912]:

Die Ergebnisse der vorliegenden Beobachtungen scheinen am ehesten durch
die Annahme erklärt werden zu können, daß eine Strahlung von sehr hoher
Durchdringungskraft von oben her in unsere Atmosphäre eindringt und auch noch
in der untersten Schicht einen Teil der in geschlossenen Gefäßen beobachteten
Ionisation hervorruft. [...] Da ich im Ballon weder bei Nacht noch bei einer
Sonnenfinsternis eine Veränderung der Strahlung fand, so kann man wohl kaum
die Sonne als Ursache dieser hypothetischen Strahlung ansehen, wenigstens
solange man nur an eine direkte γ-Strahlung mit geradliniger Fortpflanzung
denkt.

The results of the presented observations seem to be most likely explained by the
assumption that a radiation with strong penetration power enters our atmosphere
from above and even in the lowest layer causes a part of the observed ionization
in closed vessels. [...] Since I did not find a change of the radiation in the balloon
neither at night nor during an eclipse, one can barely see the sun as the origin
of this hypothetical radiation, at least as long as one only thinks of a direct
γ-radiation with straight propagation.

This publication is often referred to as the cradle of astroparticle physics. It was widely
accepted as it could proof that indeed there is radiation coming from the ground and the
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1.2. Spectrum and Composition of Cosmic Rays

decreasing rate is noticeable in the first data points, but quickly gets overcompensated by
the newly detected strong cosmic radiation from above. Since then, many research fields
evolved around this radiation, its composition and origin. The last piece is the one with the
most still open questions. What are the objects and mechanisms in the universe, that are
able to produce or accelerate particles to the enormous energies measured locally today?

1.2. Spectrum and Composition of Cosmic Rays

The energy spectrum of cosmic rays has been relatively well-studied over an astonishing
range. In good approximation, it can be described as a rapidly falling power law in energy
dN
dE ∼ E−α with the index α ≈ 2.8. Looking closer however, there is more structure to the
spectrum. At the so called "knee" around 1015 eV, there is a significant steepening from
α = 2.7 to α = 3.0 and a second steepening at about 5 · 1017eV (α = 3.3) is followed by
a harder spectral index (α = 2.7) above 5 · 1018 eV, which form the "second knee" and the
"ankle" as they can be seen in figure 1.2.
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Figure 1.2.: The cosmic ray spectrum. The data points have been scaled with a factor of E2.6

to better visualize the changes in power law indexes. Figure from Patrignani, C.
et al. (Particle Data Group) [2016]
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These changes in the spectral shape are thought to be connected with changes in the
composition and sources of the particles. Below the "knee", most cosmic rays are believed to
origin from super nova remnants inside our galaxy and the decrease in flux beyond the "knee"
can be described with particles escaping the magnetic field of our galaxy as their gyroradii
rg increase.

rg = p⊥
|q|B

(1.1)

Assuming e.g. a proton with charge 1 e and neglecting the rest mass one can write:

rg ≈
E/c

e B
. (1.2)

Using a magnetic field strength of our galaxy of 3µG [McMillan, 2011] and the energy of
the "knee" E = 5 · 1018 eV, the gyroradius turns out to be

rg ≈
5 · 1018 eV/c
e 3µG ≈ 1800 pc, (1.3)

which easily exceeds the average height of the milky way of (≈ 300 pc) and is in the order
of 1/10 of the galactic radius (≈ 20− 30 kpc).
Cosmic rays are composed mainly of protons at lower energies and show a trend to a more
prominent abundance of heavier nuclei towards the ankle [Abraham et al., 2010], or as
Bertram Schwarzschild put it in the headline of his Physics today article [Schwarzschild,
2010]:

The highest-energy cosmic rays may be iron nuclei. Or perhaps, at energies far
beyond what terrestrial accelerators can produce, protons just look fat.

1.3. Gamma-Rays in the Context of Cosmic Ray Research

The answer to the question where do Cosmic Rays come from? is twofold: What are the
sources and/or mechanisms that produce the observed spectrum of particles and where do
we find them?
To generate the bulk of observed energy density of cosmic rays, a power of ≈ 2 · 1041erg s−1

is necessary. Known objects to generate this amount of energy are e.g. super novae, if there
are 1-3 per century with an average kinetic energy of 2 · 1051 erg and at least 10 % of the
energy is converted into the production of super relativistic particles [Bykov et al., 2018].
But even though super novae are the biggest explosions possible in the universe, they are
thermal processes and the ultra high energy particles observed in cosmic rays can only be
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1.3. Gamma-Rays in the Context of Cosmic Ray Research

explained with non-thermal acceleration mechanisms. In 1949, Enrico Fermi proposed an
acceleration mechanism using randomly moving "magnetic mirrors" [Fermi, 1949].

If a particle collides head on with such a mirror, it would gain energy and similar lose
some of its velocity in a tailing collision. If these mirrors are thought as moving interstellar
magnetized clouds, the probability of up-scattering would be higher than that of decelerating
collisions and the particles would gain kinetic energy on average. This random process is now
called second-order Fermi acceleration, because the mean energy gain per bounce depends
on the relativistic mirror velocity squared β2 << 1. This process yields a power law for the
spectrum, but without a fixed value for the index. It is also rather inefficient and particles
would need in the order of 106 years to reach the ultra high energies observed.

The much more efficient first order Fermi acceleration was proposed years later in the 1970s.
It considers particles being trapped within a shock front, where they diffuse from upstream to
downstream and vice versa. When viewed in an appropriate reference frame every encounter
is head-on with a mean fractional increase in energy. The resulting spectrum can be shown
to be

dN

dE
∝ E−2 (1.4)

for a strong non-relativistic shock. Although this simple picture returns a value for the
power law index, it is not quite at the experimentally measured sloped of α ≈ 2.8. More
sophisticated considerations have to be taken into account to fully explain the observed
cosmic ray spectrum. See for example Bell [2013] for detailed explanations or Achterberg
et al. [2001] for a description of ultra-relativistic shocks. Such shock fronts are believed to
be found at the expanding shells of super nova remnants or jets of active galactic nuclei.

The problem: Cosmic rays are charged particles. Even though precise measurements would
allow to draw a lot of conclusions about the production mechanisms and the source
properties, one can not link the particles arriving at earth to a location in the sky, since
they have been arbitrarily deflected by galactic magnetic fields on their journey through the
universe to us. At least below an energy of several EeV, at which the gyroradius becomes
greater than the diameter of the galaxy. See the publication on "Correlation of the Highest-
Energy Cosmic Rays with Nearby Extragalactic Objects" by The Pierre Auger Collaboration
et al. [2007]. This results in a mostly homogeneous diffuse distribution of arrival directions.

Neutral particles created right at the source of such galactic accelerators however do travel
(aside of maybe gravitational lensing effects) in straight lines and if detected at earth can be
traced back to point to their origin: Photons (gamma-rays) and neutrinos. Neutrinos show
incredible low cross sections, which makes them perfect messengers as they do barely interact
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Chapter 1. Introduction to Astroparticle Physics

with anything on the way from their source to earth. Unfortunately it is the same property
that makes them very hard to detect.
This work focuses on gamma-rays. There are two main production scenarios which will be
described briefly below, followed by a deeper explanation of the detection method and the
introduction to the H.E.S.S. gamma-ray telescopes in the next chapter.

Hadronic Scenario

If one looks at protons as representatives of cosmic ray particles, and their possible
interactions during or just after the aforementioned acceleration to ultra high energies, they
are likely to undergo deep inelastic scattering with other protons or nuclei in the interstellar
medium, resulting in the creation of mesons. In the simplest picture these would be pions
from proton-proton interactions:

p + p→ p + p + π0 + π± + · · · (1.5)

Those secondary particles then typically decay via the following channels

π0 → γ + γ (1.6)

π+ → µ+ + νµ → e+ + νe + ν̄µ + νµ (1.7)

π− → µ− + ν̄µ → e− + ν̄e + νµ + ν̄µ (1.8)

to produce the neutral messengers that point back to their origin. Measuring the gamma-ray
flux, the lateral morphology and spectral shape, the host object can be studied.

Leptonic Scenario

The other possible scenario to create a gamma-ray emission related to cosmic rays is the
so called leptonic scenario. In this case, electrons or positrons produce gamma-rays via up-
scattering of ambient photon fields, like the cosmic microwave background or local infrared
and optical radiation fields. This process is known as the inverse Compton effect.

Often, both scenarios are plausible explanations to the gamma-ray origin, but in either
case, the measured flux can be used to study astrophysical objects like the young shell-type
supernova remnant RX J0852.0-4622 (also know as Vela Junior). Its morphology in gamma-
rays has first been resolved by the H.E.S.S. collaboration [Aharonian et al., 2007a], showing
a clear shell structure of the shock front. In the early publication the hadronic scenario was
favored, but newer studies [H.E.S.S. Collaboration et al., 2018] still can not exclude the
leptonic scenario completely.

6



1.3. Gamma-Rays in the Context of Cosmic Ray Research

Figure 1.3.: Left: exposure-corrected excess map for RXJ0852.0-4622. The white dashed line
shows the position of the Galactic plane; the inset shows the PSF of the analysis
at the same scale for comparison.
Right: same as in the left panel, but additionally the boundary of the ON region
is shown as a white circle and the significance contours at 3, 5, 7, 9, and 11
σ are shown in black with increasing line width for increasing significance. In
addition, X-ray contours from the ROSAT All Sky Survey for energies larger
than 1.3 keV are shown in red. The X-ray contours were derived at 25, 50, 75,
and 100 counts. Figure and caption adopted from H.E.S.S. Collaboration et al.
[2018]
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Chapter 2.

Introducing H.E.S.S.

Figure 2.1.: The H.E.S.S. array at sunrise. Image by Matthias Büchele, May 2018.

The High Energy Stereoscopic System (H.E.S.S.) is an array of five imaging air Cherenkov
telescopes (IACTs) located at the Khomas Highlands in Namibia ( 23◦16′0′′S, 16◦30′0′′E).
The first four telescopes are in operation since 2003 (H.E.S.S. Phase-I), while the fifth was
added to the array in 2012 (H.E.S.S. Phase-II). The four 12 m telescopes are arranged in
a square with side length of 120 m and have a total mirror area of 107 m2 each [Aharonian
et al., 2004]. The bigger Cherenkov telescope 5 (CT5) with a total mirror area of 614 m2

was placed in the center of the four other telescopes. Figure 2.1 shows the telescopes during
sunrise. For security measures they are parked pointing south, away from the sun.
Both parts of this work only use data of the four small telescopes.

9



Chapter 2. Introducing H.E.S.S.

2.1. From Gamma Rays to Events on disc, the IACT principle

As the name imaging air Cherenkov telescope implies, air is an important component to
operate this kind of device. But it does not mean the pneumatics involved in the drive
system, rather than the atmosphere above the telescope. The Earths atmosphere is only
transparent to parts of the electromagnetic spectrum. For example visible light, but not
X-rays or gamma-rays (see Fig. 2.2). Although that is a good thing for all life on Earth, it
is bad for science as this type of radiation is not directly accessible at ground level.

Gamma rays, X-rays and ultraviolet
light blocked by the upper atmosphere
(best observed from space).

Visible light
observable
from Earth,
with some
atmospheric
distortion.

Most of the
infrared spectrum
absorbed by
atmospheric
gases (best
observed
from space).

Radio waves observable
from Earth.

Long-wavelength
radio waves
blocked.
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Figure 2.2.: Illustration of the atmospheric opacity. Image credits: NASA, public domain.

To observe such short wavelengths and thus high energies one has to go above the atmosphere
(or at least very high in altitude). This was and is done in the past and the present via
balloons and satellites, but as the spectrum of cosmic radiation decreases rapidly in flux
with increasing energies (see chapter 1.2), these methods become less efficient and economic.
Flux is defined as the number of particles (or photons) per area, energy, time and solid angle.
Since most experiments aim for high resolution in energy and solid angle, and it is not always
feasible to do integrated measurements over a certain amount of time, the only parameter
to tweak is the effective detector area. But as with many space-born experiments, size is
relative. The Large Area Telescope on board of the Fermi Gamma-ray Space Telescope for
example has an effective detector area of roughly 1 m2. This is where the enormous mirror
dish areas of the H.E.S.S. telescopes come to play.

2.1.1. Particle Showers in the Atmosphere

Since direct measurements of gamma-rays is not possible at ground level and huge detectors
cannot be brought to space, an indirect method is used. When cosmic radiation enters the
atmosphere there are two types of interactions which will happen depending on the nature
of the particle: hadronic and electromagnetic.

10



2.1. From Gamma Rays to Events on disc, the IACT principle

For a detailed explanation the reader is advised to see Matthews [2004]. In the following a
brief summary will be given.

Figure 2.3.: Schematic views of (a) an electromagnetic cascade and (b) a hadronic shower. In
the hadron shower, dashed lines indicate neutral pions which do not re-interact,
but quickly decay, yielding electromagnetic subshowers (not shown). Not all pion
lines are shown after the n = 2 level. Neither diagram is to scale. Figure and
caption from Matthews [2004]

A high energetic photon will transform into an electron-positron pair via pair production on
average after a charatceristic distance proportional to the radiation length in the medium.
These still very energetic particles emit Bremsstrahlung - new photons, which themselves
create e−e+ pairs. The process repeats until the energy per particle reaches a critical limit
which is too low for either of the two processes.
Protons, as the main representative of hadronic particles in cosmic radiation, have additional
interaction channels. In this case the most likely process is the creation of pions, which
themselves induce electromagnetic subshowers (Fig. 2.3).
Even at TeV energies the total path length until the cascade stops is small compared to the
atmospheric depth, which rules out direct measurements of the secondary particles to gain
insight in the primary particles properties as direction of origin, particle type and energy.
Here the C in IACT comes to play: The Cherenkov effect. It is named for Soviet physicist
Pavel Cherenkov, who shared the 1958 Nobel Prize in Physics for its discovery. The speed of
light in vacuum c is a universal constant. Nothing can travel faster. But in dielectric media
such as water or air, the speed of light is decreased by a factor known as the refractive index
n. Ultra relativistic particles such as those described in the air showers above can exceed this
speed and therefore travel faster through a medium than light propagates in that medium,
leading to a trailing light cone with a specific opening angle cos θc = 1

nβ with β = v
c (see

figure 2.4). This effect is similar to super sonic objects that are followed by a shock wave
audible as sonic boom.
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Chapter 2. Introducing H.E.S.S.

c
n t

βctθc

Figure 2.4.: The geometry of the Cherenkov radiation shown for the ideal case of no
dispersion. The blue arrows show the wave front formed of constructive
interference. Image credits: Arpad Horvath under the CC-BY 2.5 license. ∗

This Cherenkov radiation is in first order approximation visible blue light. The reason why
human eyes don’t see blue flashes all over the nightsky is its timescale. A particle shower
is fully developed within a few nanoseconds, but the "integration" time of human vision is
much larger, resulting in the Cherenkov light from such cascades not being perceptible.
Nevertheless it is possible to take images of those showers with dedicated fast camera
hardware, which will be explained in the following section.

2.1.2. Camera Hardware

The H.E.S.S. Phase I cameras consist of 960 pixels made out of photomultiplier tubes
(PMTs), sensitive to single photons with a total field of view of about 5◦ in diameter. The
deadtime is around 450 µs. The H.E.S.S. Phase II camera on the fifth telescope (CT5) was
built in a similar fashion with 2048 PMTs but since it was designed several years later, more
advanced readout electronics were available and used, allowing to lower the deadtime down
to 15 µs.
Starting in 2015 the four cameras of the phase I telescopes have been upgraded to counter
the increasing number of hardware failures due to aging and most of all reduce the deadtime
(down to 6 µs) to keep up with the higher triggerrate of CT5 which is at roughly 1.5 kHz
compared to the 200-300 Hz of the small telescopes [Giavitto et al., 2015]. The signals of
the individual PMTs are amplified by two separate channels per pixel with different gains to

∗Adapted from https://en.wikipedia.org/wiki/Cherenkov_radiation#/media/File:Cherenkov.svg,
Creative Common license: https://creativecommons.org/licenses/by-sa/2.5/legalcode
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2.1. From Gamma Rays to Events on disc, the IACT principle

have a wider range. The low gain channel sacrifices resolution for the benefit of still being
linear without clipping strong signals. With the high gain channel on the other hand it is
possible to resolve single photo electron peaks from the electronic and dark noise.
The final signal is taken from either of the channels or a linear interpolation if it falls into
the region of overlapping linearity of the two channels and at this point is given in "units"
of ADC counts, which stands for the analog to digital converter values obtained from the
corresponding hardware.

A = (1− ε) ·ADCHG + ε ·ADCLG (2.1)

with

ε = (ADCHG − 150)/(200− 150) (2.2)

To trigger an event, multiple stages are required. If a large enough cluster of pixels in a
camera reaches the set threshold, the camera sends a signal to the central trigger, which will
initiate a full array readout only if at least two telescopes were hit within a short period
of time. This on the one hand assures stereoscopic data, which can be reconstructed with
more precision, and on the other hand lowers the number of accidental triggers through
background.

2.1.3. Image Calibration and Cleaning

To convert from ADC counts to an equivalent of photo electrons (p.e.) on the PMT cathode
the following formulas are used:

AHG = ADCHG − PHG

γADCe

· FF (2.3)

ALG = ADCLG − PLG

γADCe

· FF · HG
LG

(2.4)

With PHG and PLG being the pedestal positions for both channels measured in ADC counts.
These are the baselines of signal in the absence of Cherenkov events, which is dominated by
night sky background with some addition of pure electronic noise (the dark pedestal).
γADCe is the absolute gain of the high gain channel in units of ADC counts per p.e. . It is
calculated from special single photo electron (singlePE) runs, where the cameras are parked
within the shelters to block any stray light and then illuminated by a very faint pulsed laser
diode to trigger events where only few (best case single) photo electrons are induced in the
PMTs. The distance of those peaks to each other and to the pedestal baseline is directly

13



Chapter 2. Introducing H.E.S.S.

related to the gain factor which can therefore be calculated via a fit. For details see the
H.E.S.S. publication on calibration [Aharonian et al., 2004].
FF is the flat fielding coefficient, which accounts for gain and quantum efficiency variation
within the camera pixels. It is obtained from another special run type where the camera is
uniformly illuminated with a diffuse light source and the deviations of every pixel response to
the mean of all pixels within a camera is calculated and stored. The inverse of that deviation
is than multiplied as FF factor to the pixels to guarantee a flat camera response.
The last piece is HG

LG , which denotes the gain ratio of the high to low gain channel. This is
needed, since the low gain channel cannot resolve single p.e. peaks and therefore the gain has
to be calculated relative to the other channel. It is obtained from data, where the channel
outputs in the overlapping working regime of both gain channels are compared.

After all pixel values are converted to p.e. the cleaning step is applied. It suppresses the
recorded noise in all pixels but the ones containing Cherenkov signal by applying a two
thresholded tailcut. In the standard configuration, the so-called 5-10 cleaning is used: A
pixel is flagged as signal if its value is above 5 (10) p.e. and there is at least on neighboring
pixel with more than 10 (5) p.e., otherwise it is set to zero. This method provides strong
cleaning capabilities while still managing to not cut away too much of the edge of a signal
patch, since pixel values as low as 5 p.e. are kept there.

2.2. Reconstruction of Event Properties

The main analysis takes place offline. There is a real time analysis (RTA) running on site,
but it is trimmed to work fast and therefore does not provide a true and full calibration, but
is rather used for the shift crew to be alerted if for example a source in the field of view shows
an extraordinary high gamma-ray flux. In this case of a flare, it is not of first priority to
calculate the flux with highest precision, but to be noticed and follow up the observation. Or
on the other side if H.E.S.S. does follow an external alert to observe a target of opportunity,
the shifters can estimate for how long it makes sense to stay on that target before returning
to the regular schedule.
The next section will discuss the procedures to analyze the data.

2.2.1. Overview of Analysis Techniques

The IACT technique for gamma-ray detection is strongly background dominated. For a
rule of thumb there are 1000 hadronic induced triggered images from cosmic rays for every
gamma-ray images in the data. The first important step in every analysis chain is therefore
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2.2. Reconstruction of Event Properties

Figure 2.5.: The schematics and geometry of imaging an Cherenkov shower with a IACT.
Figure from de Naurois [2012]

to suppress this background∗. Looking back at the shower schematics in figure 2.3 at page
11, the main difference in the two shower developments is the presence of multiple sub-
showers in the hadronic case. This leads to an overall more lateral spread light distribution
at the ground level. Electromagnetic showers develop fairly straight downwards, close to the
original trajectory of the primary particle. It is impossible for a shower to hit all four (five)
telescopes head on and therefore the image of such a shower will always be a view from the
side, resulting in the characteristic elliptical shape of the image in the camera plane. See
figures 2.5 and 2.6.
In figure 2.6 the images of multiple cameras are overlayed to illustrate the advantage of
stereoscopic imaging. The origin of the shower seen in the camera plane is located somewhere
along the major shower axis. As illustrated in Fig. 2.5 this point is an angular distance of
θ1 away from the top of the shower images. Remember that the top of the shower always
corresponds to the central end in the camera image. Unluckily this distance θ1 is not known
per se, since it relates to the height in the atmosphere the first interaction took place.
Although this could be modeled and estimated, it is much easier to use stereoscopy where
the origin is simply the intersection of all shower axis in the image.

∗Except one is interested in using a device built for gamma-ray imaging to measure a proton spectrum.
Cheers David, see thesis of Jankowsky (2020).
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Figure 2.6.: Examples of Cherenkov shower images from simulations after cleaning.
Left: gamma-ray induced electromagnetic shower with characteristic elliptical
shape. The images of two cameras are overlayed to illustrate the stereoscopy.
Right: Hadron induced shower with typical irregular shaped due to
electromagnetic sub-showers

It has to be noted, that the shower images displayed here are hand picked extreme cases to
represent their corresponding classes. In reality, gamma-ray signals do not always look that
elliptical and hadronic showers are not always that irregular. The spectrum in between is
continuous, that is why having a strong classifier to automatically separate the types is very
important.

The H.E.S.S. standard analysis

The standard analysis implementation is based on describing the image with its moments,
which are named after M. Hillas, who proposed them in one of the most cited publications in
gamma-ray astronomy [Hillas, 1985]. The Hillas parameters are (as illustrated in Fig. 2.7):

• length and width of an ellipse describing the geometry of the shower. Used mainly for
event classification.

• The size of the image. The name of this parameter is misleading and does not relate
to the ellipse’s area, but is rather calculated as the total sum of all pixel amplitudes
contributing to the event. It has therefore units of p.e. and is used for the energy
reconstruction.

• nominal distance of the image’s center of gravity to the center of the camera. Used for
data quality selection cuts.

• orientation α of the ellipse relative to the camera center. Used for direction reconstruc-
tion in the stereoscopic analysis as described above.
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miss

camera centre

distance
length

width

α

centre of gravity

Figure 2.7.: The most important image moments as described by Hillas [1985]. Figure with
best thanks from Veh [2018].

Those parameters can easily be calculated [de Naurois, 2012] considering every image as a
set of pixels with coordinates (xi, yi) and amplitudes ai. It is noted with respect to chapter 4
on deep learning, that these calculations are independent of camera and pixel geometry and
composition. All it needs are the coordinates of each pixel with respect to a camera reference
frame.
The first and second moments are:

〈x〉 =
∑
i xiai∑
i ai

, 〈y〉 =
∑
i yiai∑
i ai

(2.5)

〈x2〉 =
∑
i x

2
i ai∑

i ai
, 〈y2〉 =

∑
i y

2
i ai∑
i ai

, 〈xy〉 =
∑
i xiyiai∑
i ai

(2.6)

with the variances and covariances:

σx2 = 〈x2〉 − 〈x〉2, σy2 = 〈y2〉 − 〈y〉2, σxy = 〈xy〉 − 〈x〉〈y〉 (2.7)

using intermediate variables:

χ = σx2 − σy2 , z =
√
χ2 + 4σxy (2.8)

b =

√
(1 + χ/z)〈x〉2 + (1 + χ/z)〈y〉2 − 2σxy〈x〉〈y〉

2 (2.9)
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The final Hillas parameters then read:

d =
√
〈x〉2 + 〈y〉2 (2.10)

l = 1
2(σx2 + σy2 + z) (2.11)

w = 1
2(σx2 + σy2 − z) (2.12)

α = arcsin( b
d

) (2.13)

size =
∑
i

ai (2.14)

From these parameters the direction of the primary particle can be calculated in the camera
frame and the source location in the sky is obtained via coordinate transforms. Another
important parameter is the core impact position. It describes the position on the ground
where the primary particle would have hit the Earth if it would not have created the shower
and can be calculated knowing the particles origin and the azimuth angle at which it is seen
from every telescope. It is a measure for "how far" away a shower happened and plays an
important role in energy reconstruction together with the size, as showers appear bright if
they are of high energy or very close and a dim shower might be either far away at higher
energy or close to the telescope array with lower energy.

To calculate the event properties, the Hillas parameters of several (two to five, depending on
the amount of triggered cameras) telescopes have to be combined. The HEGRA Collaboration
already had multiple IACT telescopes operational and developed the mean scaled width and
length (MSW, MSL) parameters [Hofmann, 1997].
The H.E.S.S. collaboration built on that principle and refined those to the mean reduced
scaled width and length (MRSW, MRSL):

MRSW = 1
Ntel

Ntel∑
t=0

wdatat −mean(wMC
t )

stddev(wMC
t )

(2.15)

The expression for MRSL is equivalent. Ntel is the total number of telescopes and
mean(wMC

t ) and stddev(wMC
t ) are the interesting parts: Those values are obtained as the

mean and standard deviation of measured width wt in telescope number t from massive 2D
lookup tables generated from gamma-ray Monte Carlo simulations, with the lookup axis
being size and core impact position. There are four smoothed tables (mean and stddev for
w and l) for every combination of 13 zenith distances and 6 different source offsets each.
Values in between are linear interpolated.
MRSW and MRSL tell how far away from the expectation in width and length a particular
event was, given its image amplitude (size), the distance from the telescopes (core impact
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2.2. Reconstruction of Event Properties

position) and the telescope pointing direction. Since the lookups are generated from gamma-
ray simulations only, a value far off from the middle of the distribution (zero) is a strong
indicator for the event being of hadronic nature and therefore background. The event
classifier, based on a boosted decision tree, mainly depends on those parameters.

Now that the direction and type of the primary particle is determined, the last missing
piece of information is its energy. This is, as mentioned earlier, strongly dependent on size
and core impact position and can therefore be obtained by another lookup scheme based on
Monte Carlo Simulations.

Model and ImPACT Analysis

There are two advanced analysis chains within the H.E.S.S. collaboration, namely: the Model
[de Naurois and Rolland, 2009] and the ImPACT [Parsons and Hinton, 2014] analysis. For in
depth understanding, the reader is referred to the individual publications on those methods.

Both techniques use a likelihood approach to fit the entire camera images and not only use
the image moments like the Hillas method. The difference lies in to what the data is fitted. In
the case of Model it is a semi-analytical shower model, that simply spoken produces gamma-
ray like camera images given an energy, direction and core impact position. The background
rejection is done via a goodness-of-fit-value, since hadronic events cannot be described very
good with the model and thus can be identified this way.

The ImPACT analysis builds on top of an image-template library which is generated from
gamma-ray simulations to which the fit is performed. Background rejection based on a similar
goodness-of-fit value is mentioned in the publication, but discarded by the authors due to too
strong dependencies on night sky background and the required knowledge of the SinglePE
and Pedestal width. The ImPACT chain therefore uses a boosted decision tree (BDT) trained
on simulations to classify the events based on their Hillas- and MRSW/MRSL parameters.
Figure 2.8 shows the key performance plots of the three analysis methods. Both advanced
methods clearly outperform the Hillas approach in angular resolution (lower is better) and
are very comparable, with ImPACT being dominant at high energies and Model performing
slightly better on the lowest energies.

The second plot showing the effective area, describes the classification efficiency and is
calculated as the relative amount of detected MC gamma-simulations out of all simulated
events multiplied with the area on the ground the simulations were scattered over. This value
is crucial to obtain a flux spectrum and needs to be as high as possible over the full energy
range. At high energies, Model has clear deficiencies and ImPACT shows the best efficiency.
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At the low end it is again Model with the best performance and this time ImPACT being
even slightly behind the standard Hillas approach.

Figure 2.8.: Comparison of the three analysis chains. Left: Angular resolution, given as the
68% containment radius. Right: Effective area, calculated as the relative amount
of detected MC gamma-simulations out of all simulated events times the area on
the ground the simulations were scattered over. Figure from Parsons and Hinton
[2014]

2.2.2. Limitations of the current Techniques

Apart from the slight differences the advanced methods show in the high and low energy
extremes, both clearly outperform the traditional method. Nevertheless there might still
be room for improvement, since all methods rely on data quality cuts. In the standard∗

configuration these preselection cuts are applied before any analysis step takes place:

• size > 60 p.e.: Excludes very faint images or such with few pixels triggered.

• local distance < 0.525 m: Ensures the event images are mostly contained within the
camera.

• multiplicity >= 2: Only stereo data will be analyzed.

These cuts sort out data that can usually not be analyzed with good precision. Different
analysis approaches might be able to include them and boost the overall sensitivity of the
experiment.
The size cut mainly affects low energy events and is not very hard. Even images with very few
pixels will already pass the 10-5 tailcuts (see illustration in figure 1 in appendix A). Its main

∗H.E.S.S. internally called std_zeta
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wrong position

true soure position

Figure 2.9.: The local distance cut only keeps events where the images center of gravity is
closer to the camera center than a given radius to prevent misinterpretations of
truncated events.

goal is to keep out noise images that accidentally made it passed the stereoscopic trigger and
the cleaning step. There is no big potential in lowering the cut value here. Having a data set
without a multiplicity cut is of course possible, but the big advantage of having an array of
telescopes versus a single one then vanishes. The biggest potential for improvement lies in
changing the local distance. Figure 2.9 illustrates why this cut was introduced in the first
place: Shower images at the edge of the camera get truncated, leading to a misinterpretation
of the main shower axis. While an experienced human would still be capable of identifying
this case and trying to resolve the issue, the automated analysis of just the image moments
or the fit of a template/model will definitely either fail or produce a wrong result. Since it is
not a good idea to train an army of PhD students to look at event images by hand, maybe
a computer could be trained to perform this task. More on that topic later in chapter 4.

To push the limits of H.E.S.S., this work focused on the two aspects presented in the following
chapters:

Either enable more data taking to increase the total number of events recorded to disc,
by allowing moonlight observations.

Or improve the data analysis to include more of the already recorded events, by using modern
machine learning tools, which can analyze data with loosened cuts.
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Chapter 3.

Moonlight Observations with H.E.S.S.

This chapter will present the development of the night sky background (NSB) prediction
tool and show how it was used to make observations during moonlight happen with H.E.S.S.
For the first 15 years of operation, the cameras were only switched on if the Sun is more than
18◦ below the horizon and there is no moon at all above the horizon. This strict conditions
were chosen to guarantee best data quality and maximum security for the very sensitive
PMTs within the cameras. But since both other big active IACT collaborations that use PMT
based cameras (VERITAS and MAGIC) already showed that safe and successful operations
under moderate moonlight are possible (see Archambault et al. [2017] and Ahnen et al. [2017]
respectively), the time had come for H.E.S.S. to join the party. To sooth conservative voices
and assure that no harm will be done to the newly upgraded cameras, predictive calculations
had to be performed and presented to the collaboration and its board first.

3.1. The NSB Tool as Foundation

The goal is to deliver a user friendly and platform independent tool that can predict the
brightness of a certain region in the sky for every location, time and date on earth. Python
is chosen as cross platform programming language so that the final tool does not have to be
compiled for a specific system. The final model functions can however be ported to a system
of choice to be used e.g. within the data acquisition software (written in C++) on site in
Namibia.

3.1.1. The early Model

As a starting point, the MODEL OF THE BRIGHTNESS OF MOONLIGHT from
Krisciunas and Schaefer [1991] was used and implemented as is. The authors of that
publication tried to find a compromise between pure functional model fitting and first hand
derivatives and ended up with "an easy-to-use equation that will predict the moonlight
brightness with an accuracy of 8% to 23%." [Krisciunas and Schaefer, 1991] Equations 3.1 -
3.7 are taken from this publication.
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The two main components are the background brightness of the night sky B0 and the
contribution from scattered moonlight Bmoon:

B0 = Bzen10−0.4k(X(zen)−1)X(zen) (3.1)

Bmoon = f(ρ)I∗(α)× 10−0.4k X(zenm)[1− 10−0.4k X(zen)] (3.2)

with

X(zen) = 1√
1− 0.96 sin2 zen

(3.3)

I∗(α) = 10−0.4(3.84+0.026|α|+4·10−9α4) (3.4)

f(ρ) = 105.36[1.06 + cos2 ρ] + 106.15−ρ/40 (3.5)

Bzen is the sky brightness in zenith which scales the whole equation 3.1. Parameter k
describes the extinction coefficient in units of magnitudes per air mass. Equation 3.3 is
their choice of atmospheric depth calculation, where zen and zenm are the zenith distance
of the point of interest and the Moon respectively. Equation 3.4 describes the illuminance of
the Moon based on the phase angle α, where α is the angular distance between earth and
sun as seen from the Moon with full moon for α = 0◦ and new moon at α = 180◦ (see fig
3.13 on page 46 to easily adapt this convention). The equation for illuminance is derived
from the following relation between illuminance in footcandles and the V magnitude of the
Moon m:

I(m) = 10−0.4(m+16.57) (3.6)

m(α) = −12.73 + 0.026|α|+ 4 · 10−9α4 (3.7)

The final piece for describing the brightness of the Moon Bmoon is the scattering function
f(ρ) (Eq. 3.5). It contains the overall scaling and the dependence to the separation angle ρ
between moon and point of interest in the sky, which will turn out to be one of the most
important parameters when thinking about moonlight observations.

All angles in the mentioned equations are taken in degrees with the appropriate trigonometric
functions.

In the end, the two components have to be summed

B = B0 +Bmoon (3.8)
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The resulting brightness is given in units of nanoLambert [nLb] and is therefore actually a
measure of luminance∗. The relation to SI units is given by:

1 Lb = 1
π

1× 104 cd m−2 (3.9)

To compute brightness values from the model the necessary inputs are:
The zenith distances of the Moon zenm and of the point of interest (POI) in the sky zen,
angular separation of the Moon and POI ρ and the moon phase α.
Note that there is no explicit dependency on any azimuth angle, but practically one would
take the two coordinate pairs (az, alt with alt = 90◦− zen) for moon and POI and calculate
the separation ρ on the go using the great circle distance on a sphere:

ρ(alt1, az1, alt2, az2) = cos−1[sin(alt1) sin(alt2) + cos(alt1) cos(alt2) cos(az1 − az2)] (3.10)

Given some values for the five parameters these relations can be used to draw an image of
the nightsky by scanning the point of interest across the field of view. To do so a python
program was developed which calculates the moons coordinates in the sky based on time,
date and location of the observer on earth. The result can be viewed on screen or saved to
a fits-file.
To compare the results and to improve the model, brightness data of the sky over the H.E.S.S.
site is needed. No such direct measurements are available, especially not covering the whole
sky and monitoring an extended period of time to cover a significant part of the parameter
space. The tool PyASB developed and described by Nievas [2013] seemed promising. The
exact details of the pipeline can be found in the author’s thesis. Here is a simplified version
of the general steps the tool provides:

• load allsky image (CCD photograph)

• dark signal subtraction

• star detection using catalogs

• fitting the photometric data based on the tabulated star magnitudes

• resulting in a night sky background map with units [mag / arcsec2].

At the H.E.S.S. site in Namibia, just 300 meters away from the Cherenkov telescopes, ATOM
(the Automatic Telescope for Optical Monitoring) is located and with it its cloudmonitor: a
Starlight Xpress SXV-H5 CCD camera with fisheye lens to capture an image of the sky every

∗Strictly spoken, brightness is the term for the subjective impression of the objective luminance, but for
the rest of this work the two terms will be used interchangeable, since we will not be dealing with light sources
far off the visual spectrum.
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three minutes. This data source and the PyASB pipeline were used to generate verification
data for the NSB model.

One month of data during the winter in Namibia (June 2010, 6664 images in total) was
used for the analysis. Figures 3.1, 3.2 and 3.3 show the images from the all-sky camera
together with the data obtained from those and the corresponding models for nights without
moon, half moon and full moon respectively. The fourth plot always shows the relative
deviation calculated as data−model

0.5(data+model) . At the very first glance, one sees that the model lacks
a description of the milky way. With the simple background description of Bo (formula 3.1)
which is basically just a mean brightness value with some added zenith dependency, the
galactic plane is underestimated while extragalactic regions are too bright, leading to the
relative deviations seen in figure 3.1d, where the edge of the milky way is the area of zero
deviation. With higher moon phase, the moon induced brightness is dominant and the overall
description of the model is much better. The original model by Krisciunas et al. did not claim
to be valid for coordinates closer than 5◦ to the Moon, which is why no value is returned in
this case.
Attention has to be paid to the lens flares and reflections of the direct moonlight in the CCD
images. Those are wrongly interpreted as sky brightness values by the PyASB tool and lead
to additional differences of data and model close to the Moon. Nevertheless, the model as a
functional basis seemed promising as most of the sky regions fall within the ±0.25 contour
lines.
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Figure 3.1.: Comparison of the data obtained from the CCD image using the PyASB software
and the NSB model without moonlight (2010/06/11 00:02:21).
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Figure 3.2.: Comparison of the data obtained from the CCD image using the PyASB software
and the NSB model at half moon (2010/06/18 20:01:37).
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Figure 3.3.: Comparison of the data obtained from the CCD image using the PyASB software
and the NSB model at full moon (2010/06/25 18:01:09).
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3.1.2. The advanced Model

In order to get a better description of the whole sky, starlight definitely had to be considered.
At the end of 2016, which was the time the advanced model was developed, the GAIA-
Collaboration released their first public data release [Gaia Collaboration et al., 2016]. It
includes photometric data of over 109 stars and is accessible online for download and
via database queries. The python NSB tool was adapted to query and process that data
automatically for the user and store a 4π skymap in arbitrary resolution in Hierarchical
Equal Area isoLatitude Pixelisation (HEALPix, Gorski et al. [1999]) with stored values of
brightness in units of Magnitude per arcsecond squared. This step had only to be done once,
since the background of fixed stars will very likely not change in the next millennial (only
updated versions of the GAIA dataset will become available, which will not affect the results
significantly). Once prepared, this starlight map can be used as lookup and the values per
sky location can be added to the model. For this step the conversion from the logarithmic
unit Magnitude per arcsecond squared to the linear nano Lambert is done via∗:

Bstars(M [Mag/arcsec2]) = π × 105 × 108400× 10−0.4M [nLb] (3.11)

The new model now consists of three parts:

B = B0 +Bstars +Bmoon (3.12)

To compensate the increase in overall brightness, the scaling factor Bzen (within expression
3.1 of B0) was reduced from 79.0 to 52.0, since the star light is no longer implicitly contained
in that part of the model. Further improvements to the model were made by using the
extinction factor k = 0.479 from the photometric fit of PyASB and fitting the scattering
function to measurements. For this, equation 3.12 was solved for f(ρ), which is hidden in
Bmoon, and the brightness values B(zen, az) were taken from data, which resulted in values
for f(ρ) for various separation angles, which could be collected in a binned histogram.

f(ρ) = B(zen, az)−B0(zen)−Bstars(zen, az)
I∗(α)× 10−0.4k X(Zm)[1− 10−0.4k X(Z)]

(3.13)

Then the fixed Parameters of the original formula for f(ρ) were replaced by variables and
fitted with a least squares algorithm. Note, that the values for ρ are given in units of degrees.

f(ρ) = 10A[1.06 + cos2 ρ+ 10B−ρ/40] (3.14)

∗http://hms.sternhell.at/lightwiki/index.php/Conversion_of_light_measurements
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The result together with the original curve of Krisciunas et al. is shown in figure 3.4. The
new scattering function shows a slightly different shape and is shifted to lower values. The
minimum at roughly 90◦ is maintained. This represents the minimum in dipole scattering
efficiency perpendicular to the incoming light. Overall the fit to the data can be described
as very good, emphasizing the well chosen model functions of Krisciunas et al. No change
was needed, just a refit to the differently behaving atmosphere in Namibia.
Unfortunately this means the NSB prediction tool will not be a universal model for the
sky over an arbitrary location, but especially fitted to Namibian conditions. However if one
would like to include other places, it would be not too much work to fit f(ρ) again.
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fit results:
A = 5.1276± 0.0039
B = 5.9596± 0.0167

Krisciunas et al.

this work

PyASB measurement

Figure 3.4.: Measurement and fit of the scattering function f(ρ)

The new images produced with the advanced model in figure 3.6 on page 34 show great
similarity to the CCD images. To put in on the test, histograms were filled with the relative
deviations x = data−model

0.5(data+model) measured on all pixels (image size 200 × 200, with roughly
75% being data points due to the circular field of view) for all 6664 images resulting in
close to 2.0 · 108 evaluated points in the sky. This was done for the basic and advanced
NSB model. The results can be seen in figure 3.5a and 3.5b. Negative values represent
the model being too bright, positive values stem from the data being brighter. For better
understanding the performance of the individual model parts, distributions for subsets of the
data were generated. Namely for times with the Moon being above the horizon and without.
A simple Gaussian function with mean µ, standard deviation σ and an amplitude a was
fitted to compare the distributions. All follow the normal distribution quite well. Looking
at the bottom row of figure 3.5, where no moon time is considered, the background models
can be compared. As expected, the basic model having only a very simple description for
the background is not only too bright overall (µ = −0.3554), but shows a wide spread with
σ = 0.3984. The adjustment made to the advanced version of the model by the introduction
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of the GAIA star data improved the background description clearly. This is visible in less
spread (σ = 0.2462) and a shift towards the center (µ = −0.0359).
Looking at the formula for the relative deviation x, one can calculate the relative brightness
of the model m with respect to the data d for the case where all data is included:

x = d−m
0.5(d+m) (3.15)

m(x) = 2− x
x+ 2 d (3.16)

m(µ) = 1.037 d (3.17)

and for the µ± 1σ extremes:

m(µ+ σ) = 0.810 d (3.18)

m(µ− σ) = 1.328 d (3.19)

Having a small tendency of being rather too bright than too dim is not a bad thing, since
the model will be used to decide whether observations with H.E.S.S. are safe to perform.
This way the tendency means having more conservative estimates.
An interesting characteristic of the deviation plots is the shoulder on the positive side, which
is not described by the normal distribution. Since it is basically absent in the case without
moonlight, it is not related to the new background model and can most likely be explained
with the lens flares and reflections that are visible in the CCD images. Those are wrongly
interpreted as bright sky but not covered by the moonlight model. This explanation will be
supported at the end of the following section, where the deviation plots will be shown for a
model that is not based on CCD images.
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(d) Advanced model only moonlight
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(e) Basic model no moonlight
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Figure 3.5.: Comparison of the basic and advanced model with the data, calculated from all
6664 images. Relative deviation is given as data−model

0.5(data+model) .
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Figure 3.6.: The advanced NSB model in comparison with the CCD camera images.
For visualization the model maps were smoothed with a Gaussian kernel of
radius 0.5 pixel
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3.1.3. The currents Model

At this point in the development, the Python tool was in a state ready to be used
for scheduling moonlight observations, but unfortunately the H.E.S.S. Collaboration was
not (yet). Most of the features described in chapter 3.2 were already implemented.
The Collaboration hesitated for multiple reasons, but the bottom line is: No moonlight
observations took place for nearly 2 years after the tool and the plans for such observations
were presented at the spring collaboration meeting in 2017. During that time I worked on
different ways of pushing the limits of H.E.S.S. Namely on new ways of analyzing data, which
can be found in chapter 4.
Only after the detection of a gamma ray burst during moonlight by the MAGIC Collaboration
on January 14th 2019 [Mirzoyan et al., 2019], H.E.S.S. began to perform moonlight
observations on a semi regular basis just a few days later. This gave the first true
measurements of perceived brightness as seen by the telescopes and lead to the development
of this new model.
The limiting factor for a H.E.S.S. camera to operate safely is the current flowing through
the photomultiplier tube (PMT) anode. If this current exceeds a certain threshold, the PMT
and thus the corresponding pixel can be damaged permanently. Technically this should never
happen due to the presence of security mechanisms that turn off the pixel before reaching the
limit, but it is always good practice to better be safe than sorry. Another important fact is the
PMT aging. Photomultipliers permanently "drop gain" even under nominal circumstances,
which has to be readjusted by raising the high voltage. This procedure is done on a regular
basis but cannot be done indefinitely since the high voltage has a technical limited working
range, which leads to a finite lifetime of such devices. In this way the illumination of the
PMT directly correlates to the amount of aging and has to be kept within an acceptable
range.
The new model will predict night sky background (NSB) based on measurements of the
PMT currents. Since the relation between current and illumination is linear to a great
extend, the new model takes the existing functional dependencies and introduces linear
scaling parameters. It is then fitted to the newly acquired data.

The data

The H.E.S.S. cameras save monitoring data to disc with a frequency of roughly 1.0 Hz, which
is stored in a separate file from the one containing the data of triggered events. From here,
the values of total current drawn from the high voltage divider (HVI) for every pixel can
be extracted. To get only the contribution caused by the illumination, one has to subtract
the dark current on a pixel by pixel basis. This so called electronic pedestal is measured in
dedicated runs several times per month by artificially triggering the camera with turned on
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high voltage while keeping the camera lid shut and the telescopes parked in the shelter. See
figure 3.7 for details.
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Figure 3.7.: Pedestal measurements. Calculated from raw camera monitoring data as median
and standard deviation over all pixels within each camera per run.

The resulting ∆HV I (in units of µA) is directly proportional to the illumination I (the
photon flux measured in Hz):

∆HV I[A] = I[Hz] · gain · charge (3.20)

with the nominal gain of 3.158 · 105 and the charge being 1 unit charge e

∆HV I[A] = I[Hz] · 3.158 · 105 · 1.6 · 10−19As (3.21)

I[Hz] = ∆HV I[A] · 1
5.0528 · 10−14As

(3.22)

I[MHz] = 19.791MHz
µA ·∆HV I[µA] (3.23)

As an example, figure 3.8 shows the NSB averaged over the four telescopes in 1 minute bins
for the first successful MoonlightObservationRun in the history of H.E.S.S. It was performed
on the standard candle Crab Nebula with a moon phase of 61% and an angular separation
of the source and the Moon in the sky of 121◦ in the night of 2019/01/26. The gray shade
indicates the Moon being above the horizon. One can see the brightness increasing shortly
before the Moon rises. This moonlight dawn will be taken into account by the new model
version, since those transition times from absolute darkness to moonlight are the most crucial
for extending the H.E.S.S. schedule in an easy and save approach.
As already mentioned, the requirement of extending the H.E.S.S. observation time into
moonlight is to always guarantee a safe operation of the camera hardware. To get a feeling
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Figure 3.8.: First Moonlight Observations of Crab. NSB calculated from ∆HV I for the runs
taken on Crab (145077 - 145089). Moon rises at 22:02 (gray shade). Values
averaged over the four telescopes in one minute bins, error bars given as standard
deviation within each bin.

for the stress put on the PMTs, the percentage of turned off pixels due to too much current
drawn by them can be plotted for the same time period (figure 3.9). The observation runs
were performed with nominal gain settings and only the pixel threshold for triggering events
was changed on the go between the runs, to keep the rate under control. This however
does not affect the data shown here. The PMTs are always operational and draw current
independent of the camera read-out rate. For an extended period, the total number of affected
pixels stayed at the baseline level, even after the Moon came into play. At 23:07 observations
were stopped since the amount of turned off pixels reached 10% on average with single
telescopes occasionally spiking over 30%.
This first successful test confirmed the collaboration’s guesstimate that safe operations are
indeed possible up to a NSB rate of roughly 550 MHz with nominal settings, which is in
correspondence with the technical limits. The hardware limit for the total HVI per pixel is
at 120 µA.
A simple back-of-the-envelope calculation shows:
With an averaged dark current of roughly 90±10 µA (eye balled from fig 3.7), the overhead
will be 20-40 µA. Following Eq. 3.23 this would translate to a theoretical maximum NSB
rate of 400-800 MHz, matching the observations.
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Figure 3.9.: Pixels turned off due to too much illumination for the runs taken on Crab
(145077 - 145089). Moon rises at 22:02 (gray shade). Values averaged over the
four telescopes in one minute bins, error bars given as standard deviation within
each bin.

The following considerations determine the next steps:

• How much observation time can be gained in safe operation conditions?

• Should the gain be lowered, to allow more NSB and thus get even more additional
observation time while eventually sacrificing sensitivity? And if so, to which extent?

• What is the amount of extra time at those settings, how does it compare to regular
dark time observations?

To answer those questions there was a huge demand for a reliable model to predict the
currents in the cameras depending on the sky brightness. To fit the model properly, more
data taken under various conditions is needed to span as much of the parameter space as
possible. With the important parameters being: Moon phase, moon altitude, source altitude
and moon-source angular separation. It is very hard to cover the full space with a pointing
device that shall keep doing science at the same time. This means having at least one complete
28 minutes measurement run per target position in the sky and only pointing at reasonable
gamma ray sources in the sky. To get the additional data which will improve the model, the
collaboration understandably asked for NSB predictions of the planned measurements to not
accidentally expose the camera to unnecessary harsh conditions, which in returned required
a proper model and therefore turned out to be challenging.
With the allsky CCD images, on which the previous model was based on, one could get an
extensive amount of combinations of source altitudes and separations out of a single image

38



3.1. The NSB Tool as Foundation

by simply picking different pixels / spots in the image. The moon altitude was naturally
scanned by taking images over the whole night and the moon phase on a similar fashion by
doing so for concurring nights during a complete month. And all of this without interfering
with the scientific schedule of the telescopes (since they were not involved at all) and with
no technical limitations on how far to go into bright nights for example around full moon.
Nevertheless a variety of moonlight runs were taken with H.E.S.S. in 2019 and the ones used
in this analysis covered a fair amount of the parameter space. The full run list can be found
in appendix B. It contains more than 70 runs with a total observation time of 1610 minutes
(26.8 hours). The main parameter distributions are shown below (Fig. 3.10).
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Figure 3.10.: Distributions of the different parameters within the moonlight observations
data set.
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Changes to the model function

For a better overview, the whole set of dependencies is summarized below. Up to now it was
assumed that the spectra of the different contributions and the sensitivity curve of the PMTs
are all compatible and match reasonably well, so that the total brightness can be expressed
as a simple sum as in Eq. 3.12. Since the conversion from brightness units to currents in the
camera is expected to be linear, a scaling factor pi is introduced for every individual part to
take a potential wavelength spectra mismatch into account. The total NSB brightness will
be:

B = p0 ·B0 + p1 ·Bmoon + p2 ·Bstars (3.24)

with

B0 = 10−0.4k(X(zen)−1)X(zen) (3.25)

Bmoon = f(ρ) · I∗(α) · [10−0.4k X(zenm−h) − 10−0.4k X(π/2)] · [1− 10−0.4k X(zen)] (3.26)

X(zen) = 1√
1− 0.96 sin2 zen

(3.27)

I∗(α) = 10−0.4(3.84+0.026|α|+4·10−9α4) (3.28)

f(ρ) = 10A[1.06 + cos2 ρ] + 10B−ρ/40 (3.29)

Bstars being the lookup created based on the GAIA data and ρ the angular separation
calculated from the sky location (zen, az) and moon position (zenm, azm). The extinction
coefficient k is free to be fitted this time as well.

The equation for B0 lost its parameter Bzen, which is now represented as p0 for clarity.
Furthermore, p1 would be redundant if A and B within f(ρ) are fitted at the same time.

At first this was done, but the fit did not proof to be stable. The result for A showed two
solutions it would fall into (see the two peaks and the exact fit results in appendix A figure
11a):

The first one had low and even negative values with huge spread and the other one had
values very close to the previously determined result (first new solution: ≈ 3.3± 9.6, second
new solution: ≈ 5.7± 0.6, previous result: 5.1276± 0.0039). Additionally, the newly fitted B
parameter was as well close to the formerly derived one (new solution: ≈ 6.1± 0.6, previous
result: 5.9596± 0.0167), but with a comparably big uncertainty. This lead to the decision to
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keep the two parameters as fixed in favor of overall fit stability. Therefore p1 will remain in
the formula. Leading to the final equation with five free parameters:

B(p0, p1, p2, k, h) = p0 ·B0(k) + p1 ·Bmoon(k, h) + p2 ·Bstars (3.30)

The aforementioned extension to better handle moon dawn and dusk can be seen in equation
3.26. The introduced moon horizon correction factor h, which artificially shifts the Moon
above the horizon even though physically it is not there yet, allows to keep the trigonometric
functions as they are, while being able to deal with zenith distances of more than 90◦.
Furthermore the base model had the flaw of not being continuous when the Moon passes
the horizon. Bmoon does return values even with the Moon having a zenith distance greater
than 90◦, so the tool was set to return zero if (zenm − h) > π/2, which effectively switched
off the Moon below the horizon, but did not give a satisfying transition. The extra term
−10−0.4k X(π/2) was introduced to subtract the baseline. Now Bmoon will transition smoothly
during moon rise and set. The difference in the functional behavior is visualized in figure
3.11. A potential brightness bias is compensated by the refit of the remaining parameters.
The source position and moon-source angular separation are all taken to be the exact values
and are not affected by the moon horizon correction h.
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Figure 3.11.: The changed Bmoon function with additional horizon terms for different moon
phases. The observation position has been fixed to zen = 0 for this plot.
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The fit to data

The final fit was done combined over all runs simultaneously with the free parameters
p0, p1, p2, k, h and the real values of zen, zenm, ρ, α for every time bin and source accordingly.
To test the stability, 200 fits with different initial values for the parameters were performed.
Those were chosen semi-randomly each time in the following fashion: For each of the 200 fits,
50 fully random guesses (within a reasonable range in all dimensions) of the start parameters
were performed and the squared errors of the model evaluated with those 50 parameter sets
compared to each other. The best random guess of those 50 was taken as starting point for
the actual fit of the model to the data, using the Trust Region Reflective (TRF) algorithm
for least-squares optimization within the scipy Python package based on Branch et al. [1999].
It is an algorithm designed to avoid getting stuck at parameter space boundaries. All 200
iterations succeeded to find an optimal solution with nearly identical final loss value and
the final parameters all agreeing within their error ranges, proving the fit to be stable.
The parameters and errors for all iterations are then combined by summing 200 normal
distributions derived from each pair of fit value Xi and the corresponding standard deviation
σi via

N(X) =
200∑
i=0

1√
2πσ2

i

e
−0.5 (X−Xi)

2

σ2
i (3.31)

and then fitted again with a Gaussian. Those distributions for all parameters can be found
in appendix A (figure 12) and showed no noticeable problems.
The combined results of the currents model are shown together with the values of the previous
models in the following overview:

Currents Model:

p0 = 49.204± 0.646
p1 = 0.952± 0.100
p2 = 1.520± 0.017
k = 0.293± 0.030
h = 4.346± 0.311

A = 5.1276 (fixed)
B = 5.9596 (fixed)

Advanced Model:

p0 = 52
p1 = 1
p2 = 1
k = 0.479
h = 0

A = 5.1276± 0.0039
B = 5.9596± 0.0167

Krisciunas et al.:

p0 = 79
p1 = 1
p2 = 1
k = 0.172
h = 0

A = 5.36
B = 6.15

As mentioned earlier, A and B have not been fitted again but were used as fixed from the
advanced model and are shown here for means of completeness.
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In comparison to the previous model versions, the parameters look reasonable. The moon
contribution scaling p1 is basically unchanged, the sky background contribution p0 (formerly
Bzen) is lower where the starlight contribution increases. The extinction k went down as
well, but still is higher than Krisciunas’ original value of 0.172 and the newly introduced
moon horizon correction h has a reasonable value of roughly 4◦. That is the altitude below
the horizon at which moon dawn starts and dusk ends respectively.
To understand the parameters, it is worth looking at the Pearson correlation coefficients
corr(X) calculated as:

corr(X) =
(

diag(KXX)
)− 1

2 KXX
(

diag(KXX)
)− 1

2 , (3.32)

with diag(KXX) being the diagonal elements of the covariance matrix KXX. It reveals
dependencies and redundancies of parameters. For this, the covariance matrix of a randomly
selected fit result is taken. The correlation coefficients can be seen in table 3.1.

p0 p1 p2 k h

p0 1.000
p1 -0.234 1.000
p2 -0.366 -0.104 1.000
k 0.228 -0.994 0.105 1.000
h 0.055 0.893 -0.096 -0.879 1.000

Table 3.1.: Pearson correlation coefficients of the fit parameters

The parameters p0, p1 and p2 are all slightly anti-correlated, which is to be expected as they
are the scaling factors for the individual parts. A higher contribution of one results in a lower
of another. The parameter responsible for scaling the moonlight p1 is strongly connected to
the extinction coefficient k, since the moonlight is the brightest contributor and only a higher
atmospheric extinction could lower it down.
The last noticeable correlation is between the moon horizon correction h and p1 and k, but
this has only technical reasons, since looking at the model formula one sees that k is the most
powerful parameter to correct misleading values of h since p0, p2 are not directly connected
to h. There is no meaningful dependency to be found in this one.
Figure 3.12 shows the comparison of the currents model to the performance of the two
previously described models. Clearly the statistic is the worst in the latest model, but
nevertheless the distribution is the sharpest and most centered of the three. The currents
model outperforms both previous versions.
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Calculating again the µ± 1σ extremes of the model m with respect to the data d yields

m(µ+ σ) = 0.851 d (3.33)

m(µ) = 1.004 d (3.34)

m(µ− σ) = 1.185 d (3.35)

which means on average the model is only 0.4% too bright and in 68% of the cases the
calculated values are within the range of not more than 15.3% too dim or 18.1 % too bright.
The aforementioned prominent positive shoulder in figure 3.12b, which was assumed to stem
from lens flares within the CCD images, with deviation values in the range of 0.5 to 1.0 is
no longer present in the deviation plot of the currents model (Fig. 3.12c). One could argue
that there is still a small feature on the positive side of the distribution (in the range 0.2 to
0.4), but since the fitted normal distribution does cover it very well and still is significantly
narrower than the two previous ones, it is not considered to be a problem with the model.

This concludes the section on model development. Starting from a simple approach, several
improvements were made and the final result is a model describing the true brightness
perceived by the upgraded H.E.S.S. telescopes baked into an easy to use and open source
Python tool. Details on the installation and usage, including code to reproduce all results
shown in this thesis can be found in section 3.4 on page 62.
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Figure 3.12.: Comparison of the currents model with the data and the previous models.
Relative deviation is given as data−model

0.5(data+model) .

3.2. Usage of the Model

3.2.1. Predicting the Sky Brightness

The model can be used to predict the night sky brightness at any given time. For example,
to create a plot like figure 3.14 on page 47, showing the estimated brightness for a particular
source over the course of a whole week.
The shown source, the galactic center, culminates close to zenith in that particular week and
without moonlight (white background in the plot) the sky brightness only depends on the
altitude angle in an inverse proportional fashion. During the week the moon time gets more
relevant from night to night as the moon phase trends towards full moon and as expected,
full moon is very bright and the NSB increases dramatically.
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Naively one could say: Well, if full moon is too much, let’s use everything up to half moon
and we’re good, gaining 50% of observation time.
But it is not that simple: Although it is true that half of a month the Moon has a phase of
less than 50 %, during that two weeks it is above the horizon mostly during daytime.

Sun EarthMoon

1)

2)

3)

4)

Figure 3.13.: Simplified top view of earth, moon and sun. The shading will never change,
since the slow motion of the Earth around the Sun can be neglected. During a
24h day/night cycle for the observer (red dot), the moon position can also be
assumed to be fixed.

See figure 3.13 and imagine the observer (red dot) looking for new moon (3). It is only visible
during the day, waning moon (2) is visible in the end of the night, full moon (1) is visible the
whole night. This is the reason for H.E.S.S. shifts switching personal during full moon, since
no observations of dark sky are possible at all. The safest time gains at low moon phases do
not make up a lot of time, where as the most could be gained in principle with very strong
moon.
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Figure 3.14.: Estimated night sky background for the Galactic Center during one week in
May 2018. Upper plot: NSB together with marks for low, intermediate and
very strong NSB. Lower plot: Altitude of source and moon together with the
separation between both if they are above the horizon at the same time and the
moon phase. Both plots: daytime is orange shaded, moontime is grey shaded.
The gray band from 80 to 100 serves as a visual aid for source altitudes being
close to zenith, separation being the safest (minimum of the scattering function
f(ρ)) and moon phase being extremely high.
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Chapter 3. Moonlight Observations with H.E.S.S.

Even neglecting the moon phase for a moment, the amount of allowed additional background
brightness for deeper exposures cannot easily be determined. Consider a dark location in the
sky outside the galactic plane with very few stars in the vicinity, which happens to be
visible for H.E.S.S. the whole year. Since the threshold for maximum allowed brightness
the cameras can take is an absolute value, dark patches in the sky allow more NSB from
moonlight until they are too bright. Technically, many additional hours of observation time
would be possible on such a location, but practically if there is no scientific relevant target,
this extra data will be mostly useless for regular source monitoring. For getting the reader
into picture, following summary contains rough numbers on NSB strength, which are also
shown as green/orange/red dashed lines in Fig. 3.14:

100 MHz very dark, extra galactic
e.g. PKS 2155-304 without moon (see appendix A Fig. 10 on p. 117)

∼120 MHz normal background (green),
e.g. Crab Nebula without moon (see Fig. 3.8 on p. 37)

∼420 MHz high background (orange),
e.g. galactic plane or Eta Carinae region without moon (see appendix A Fig. 9c on p.
116)

>550 MHz too much light (red), pixels turn off,
e.g. Crab Nebula under 60 % moonlight (see Fig. 3.8 on p. 37)

For the following calculations, the sky was divided in HEALPix with a resolution index of
6. This gives 49152 pixels over the sphere with a mean spacing of 0.916◦ and was chosen
as a compromise between computation time (every resolution index higher quadruples the
amount of pixels and with it the computation load) and resolution compared to the field
of view of the H.E.S.S. telescopes (5◦). A dummy source was placed at every pixel center
an then tracked by the NSB Python tool for 365 days with time steps of 20 minutes to
calculate the predicted brightness with the latest NSB model at that location and time,
resulting in (365 · 24 · 3 =)26280 · 49152 ≈ 1.3 × 109 data points. If a given source is not
visible at a certain time (below the horizon or lower than the minimum required altitude to
be observed), the entry will be NaN (Not a Number, which can be correctly identified by
Python later). This was done for 6 scenarios: allowing and disallowing the Moon to be above
the horizon for minimum source altitudes of 0◦, 30◦ and 60◦. Now the amount of valid entries
per pixel smaller then a given limit x can be counted for each scenario and interpreted as
time bins this HEALPix coordinate can be observed by H.E.S.S. Since the steps were fixed
at 20 minute intervals and calculated for a complete year, a simple division by 3 converts
to units of hours per year in which that spot has a brightness lower than x. Subtracting the
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corresponding data maps obtained with moonlight allowed from those without, yields a map
with additional hours per year.
Figures 3.15 and 3.16 show the resulting data with altmin = 30◦. The limit of 250 MHz was
chosen arbitrary in this figure. To understand the two big holes in the map, the data is
shown in both galactic and equatorial coordinate systems. For many people, the first system
makes it easier to locate prominent sources but harder to imagine the reason for the missing
data points. In equatorial projection their origin is obvious: The big northern blind spot
corresponds to coordinates in the sky sphere, where the H.E.S.S. telescopes can never point
to, due to their location on the southern hemisphere on earth. The second and smaller gap
stems from the fact, that indeed some points in the sky are too far south. Only lowering
the minimum required source altitude would enable observations in that direction if the
telescopes point close to the horizon.
The map shows time in hours which could be gained from moonlight observations, if the
maximum brightness the cameras are allowed to take is set to 250 MHz. Dark sky regions
like in the vicinity of PKS 2155-304 or the Large Magellanic Cloud profit the most, where
i.e. the galactic center or Eta Carinae regions do only get very little extra time ore none
at all since they are already very bright without moonlight. The small sprinkles without
data in this map have to be ignored. They come from individual stars, which are so bright
that they boost the average sky brightness in a particular HEALPix above the threshold.
In reality such a star in the field of view of a H.E.S.S. camera would only illuminate a very
small number of pixels, which in response would be turned off, which does not interfere with
data taking.

3.2.2. Predicting the Time Gain through Moonlight Observations

Coming back to the question how much the collaboration will gain in observation time: The
next plausible answer would be to look at a similar plot like 3.15 but done for the maximum
brightness the cameras can take (550 MHz) and take the maximum in the map. This map
can be found in figure 2 in appendix A and the answer would be: We gain at most 715
additional hours/year with moonlight. Pointing the telescopes somewhere in between PKS
2155-304 and the Large Magellanic Cloud all year long...
But as already mentioned this is neither an option, nor the truth. Always pointing at that
single location does not make any scientific sense and there might be (and indeed are)
periods during the year where that particular spot is not visible during darkness. With a
specially optimized pointing schedule strategy the total amount of hours could in principle
be improved even more, by looking at the next best location when the first one is not
available etc. However all of this would most probably still not be relevant to the H.E.S.S.
collaboration, which pursues to observe γ-ray sources and not only random spots. Although
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Figure 3.15.: The potential extra time to be gained per year for every HEALPix, when
setting the brightness limit to 250 MHz, the minimum source altitude to 30◦
and allowing the Moon to be above the horizon.

Targets of Opportunity (ToO) are getting more and more important in the late phase of the
H.E.S.S. experiment, but since they are not predictable when and where to happen, another
method for a realistic estimate of the time gain is chosen.
For this, a typical H.E.S.S. observation schedule is considered. It is obtained by collecting all
coordinates of successful data runs over several past years from the collaboration database
and averaging the time spent on each. The result is an exposure map with mean hours taken
per HEALPix. The next step is to calculate the available dark time. This is done using the
already generated maps but without limits and excluding moon time. The corresponding
map is shown in figure 3 in appendix A.
Dividing the exposure data by the available dark time, one ends up with a map which will be
called sky usage (Fig. 3.17). It can be understood as: "Out of all the time a certain location
in the sky was visible to H.E.S.S., what percentage of that time did the telescopes typically
point there". Many prominent targets can be identified in this map and are labeled in the
corresponding figure.
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Figure 3.16.: Same as figure 3.15, but in equatorial map projection.
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Figure 3.17.: Sky usage map giving the fraction of observation time which was on average
used out of all available time per HEALPix.
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This sky usage can now be used as a mask for the allsky time gain map at different limits.
The observation times per year for moonlight and dark conditions at that specific brightness
limit x can be calculated as:

Tm(x) = 1
Afov

∑
pixel

[
Tm(x)�

( E
limx→∞Td(x)

)]
(3.36)

Td(x) = 1
Afov

∑
pixel

[
Td(x)�

( E
limx→∞Td(x)

)]
(3.37)

where Tm(x) is the map of moon time (excluding regular dark time), which is available per
spot allowing a maximum NSB limit of x MHz, Td(x) is the similar map for only dark time,
E is the exposure map and � denotes the element wise product of two maps. The summation
is performed over all pixels with normalization Afov which is the area of the telescope field
of view expressed in HEALPix. In the case of resolution index 6, it is Afov = 33.7.
The total observation time consisting of regular dark observations without limit (denoted
with d′) and moonlight observations up to the limit x, can be written as:

Td′+m(x) := lim
x→∞

Td(x) + Tm(x) (3.38)

The total dark observation time without limits is constant and will therefore be replaced
with

lim
x→∞

Td(x) = const := Td∞ (3.39)

Yielding

Td′+m(x) = Td∞ + Tm(x) (3.40)

Calculating the moon and dark time maps for many limits, the time gain data and other
implications can be obtained and will be discussed in the following.
Looking at the low NSB end of the time gain plot (Fig. 3.18), one can see that there is
nothing to be observed at 50 MHz, as what is usually considered very dark sky still has a
background brightness of roughly 100 MHz. Without moonlight (dark time Td, blue line) the
brightest regions in the night sky have a NSB of about 400 MHz and the total observation
time reaches a plateau of 730 hours/year (blue dashed line) at this point. Allowing higher
limits does not gain any more time, since everything is already covered. But there are many
possibilities to observe γ-ray sources up to that limit of 400 MHz when including moon time,
resulting in additional Tm(400) = 605.1 hours/year (green line). The direct conclusion would
be to set the limit here, since it would not require any major changes to the analysis chain.
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Figure 3.18.: Absolute dark and moon time per year for a typical H.E.S.S. schedule depending
on the allowed NSB limit.

Although analyzing the Eta Carina Region with roughly 420 MHz NSB proved to be difficult
[H.E.S.S. Collaboration et al., 2020], this was mainly due to strong lateral variability in the
background and not solely due to the high values per se.
Potentially stopping the H.E.S.S. collaboration from straight going for regular moonlight
observations up to that limit is the reduction in camera lifetime due to accelerated PMT aging
under brighter illumination. PMTs degrade over time proportionally to the total accumulated
charge, which is directly proportional to the integrated brightness over time. In parallel to
calculating the time gain maps, integrated brightness maps were produced, where every
HEALPix holds the information on how much total illumination the camera is exposed to, if
looking at that spot for the whole year. This map was then masked and summarized similar
to the time gain maps. Equation 3.23 which was used to calculate the background flux I

from the excess PMT current ∆HV I can now be used to convert back to the absolute charge
Q collected per PMT during a year:

∆HV I = I[Hz] · 3.158 · 105 · 1.6 · 10−19As (3.41)

∆HV I = I[MHz] · 5.0528 · 10−8As

Q = 5.0528 · 10−8As
∫
I[MHz]dt (3.42)

Q = 5.0528 · 10−8As ·∆t
∑

I[MHz] (3.43)

Since the brightness is calculated in discrete time steps of ∆t = 20 minutes, where it can be
considered constant, the integration over time can be replaced by a discrete sum multiplied
with the time interval. This can again be done depending on the maximum allowed brightness
limit and for dark and moon conditions, which is presented in fig 3.19.
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Figure 3.19.: Absolute charge accumulation per year for a typical H.E.S.S. schedule
depending on the allowed NSB limit.

At roughly 350 MHz the additional charge on the PMTs from moonlight observations (green
line) reaches the same value as regular dark observations without limit (blue dashed line)
and therefore would cut the lifetime into half. To better visualize this, one can calculate the
relative lifetime τ of the PMTs with respect to the NSB limit x compared to observations
without moonlight as the usually accumulated current in darkness (Qd∞, read as "charge
dark at infinite limit") divided by the usual total amount plus the extra charge due to
moonlight depending on the limit (Qm(x)):

τ(x) = Qd∞
Qd∞ +Qm(x) (3.44)

Equation 3.44 is displayed in figure 3.20. It is no surprise that moonlight observations will
reduce the PMT lifetime. The question is: Should one do it anyway? At which cost?
Using τ(x), one can convert the time gain into a lifetime corrected version, which accounts
for the lost time in PMT life, if one would stress them regularly with a certain amount of
additional moonlight until the end of their lifetime. It will be defined as the difference of
potential total time including moonlight observations up to the limit (Td′+m(x)), which is
scaled by the relative lifetime (τ(x)), and the regular time per year for dark observations
without limit (Td∞):

T ∗m(x) = τ(x) · Td′+m(x)− Td∞ (3.45)

T ∗m(x) = τ(x) · (Td∞ + Tm(x))− Td∞ (3.46)

The implications will be discussed in the following section.
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Figure 3.20.: Relative PMT lifetime with respect to moon less observations depending on
the amount of allowed additional moonlight observations.

3.3. Conclusions on Moonlight Observations

3.3.1. Nominal PMT Gain
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Figure 3.21.: Lifetime corrected time gain from moonlight runs as function of the maximum
NSB brightness.

Up to ≈230 MHz the net time gain is positive with a maximum at 125 MHz. Within this
window, one does gain more hours per year with moonlight observations than those put
stress on the PMTs. If the PMT supply is limited, i.e. they will not be exchanged, and one
has to get as much of time out of them as possible, moonlight observations up to 125 MHz
are the way to go. This would already mean 200 additional hours (400 data runs) in that
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particular year, which translates to an extra of 56 hours (112 data runs) if accounting for
the lifetime reduction (see Fig. 3.18 on page 53, or table 3 in appendix B with all results)
If the PMT’s end of life is far enough away and one can afford shortening it by 40 % or to
buy new ones, then moonlight observations up to 230 MHz are the most efficient use of the
hardware. Yes, they have to be replaced earlier than without moonlight observations, but
thanks to those extra data runs, the same amount of total hours of data is already on disk
after just 60% of the time it would have taken normally.
Observations beyond that brightness should not be considered for regular scheduling, as they
degrade the cameras too heavily, Targets of Opportunity however should definitely always
be observed as long as they fall bellow the technical limit of 550 MHz (see the runs taken on
the Crab Nebula in January 2019, figure 3.8).

3.3.2. Reduced PMT Gain

This previous discussion was based on the assumption that the PMT gain will be held
unchanged for both regular and moonlight observations at the nominal value of 80 ADC/p.e.
The picture looks different if the gain is allowed to be altered:

• The current in each PMT will change linear with the gain.

• The total remaining lifetime will change non-linear, since the relation between gain
(current) and the high voltage setting that produces that gain is non-linear, but the
lifetime depends on the gap between the momentary HV setting and the maximum
allowed HV for each pixel.

• NSB maps and the model will stay unchanged. Although the night sky background
rate data in MHz, which is the foundation of the model, is calculated from the pixel
currents, the results will remain consistent (The sky brightness does not care what
setting the cameras are in).

• The calculations of observable time with respect to certain limits will not be changed,
but

• The possible/allowed limits will change

• The relative PMT lifetime τ will change, since it depends on the charge collected during
moontime runs (Qm(x)).

• Thus, the lifetime corrected time gain T ∗m(x) will change.

To which extent a gain reduction makes sense will depend on the ability of the calibration
chain to still be able to resolve single photo electron signals and the tolerated shift in energy
threshold. A camera with lower gain will not trigger on faint images which directly translates
into a worse effective area at the low energy end of the spectrum.
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The in-depth calculations of those effects based on Monte Carlo simulations were out of the
scope of this work, but will certainly be pursued by H.E.S.S. research colleagues.
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Figure 3.22.: Relative PMT lifetime for different PMT gain settings.
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Figure 3.23.: Lifetime corrected time gain for different PMT gain settings

Figures 3.22 and 3.23 show plots of relative lifetime and lifetime-corrected time gain for
different HV gain settings. It is obvious that the relative PMT lifetime will only get better
and reaches a constant behavior of τ = 1.0 in the extreme case of zero gain for moonlight
runs. In the end, the cameras are not stressed at all if they are basically turned off and
one could point them anywhere and as long as desired. In this theoretical corner case, the
lifetime corrected time gain T ∗m(x)|gain=0 (gray line) is equal to the non corrected time gain
Tm(x) (green line in Fig. 3.18).

57



Chapter 3. Moonlight Observations with H.E.S.S.

Below a HV gain value of about 40 ADC/p.e. there is no negative lifetime-corrected time
gain any more. Moonlight observations would always bring more hours than they cost the
PMTs lifetime.

The two NSB limit recommendations for most effective time gain (maximum of T ∗m(x)) and
best compromise (second zero passing of T ∗m(x)) can now be calculated per PMT gain to
develop limit strategies and are presented in figure 3.24. Due to the numeric approach of
calculating the time gain values for binned values of limits, the maxima were not always
properly covered and are therefore derived from parabolic approximations of a few data
points around the numeric extreme points of T ∗m(x). In a similar fashion, the second zero
passing was calculated from a linear fit in the corresponding region.

The technical observable NSB limit in MHz depends on the difference in current between
hardware limit (HV Imax = 120µA) and dark Pedestal current HV Iped:

∆HV I = HV Imax −HV Iped (3.47)

And is calculated via equation (3.23):

I[MHz] = 19.791MHz
µA ·∆HV I[µA]

yielding the following relation

I[MHz] = (HV Imax[µA]−HV Iped[µA]) · 19.791MHz
µA (3.48)

The changed gain can be expressed with a factor g ∈ [0,1] and will affect the equation in the
following way:

I[MHz] = (HV Imax[µA]− g ·HV Iped[µA]) · 1
g

19.791MHz
µA (3.49)

The pedestal current will decrease with lowering the gain, whereas the scaling factor will
increase, e.g. with half the gain: 39.582 MHz NSB would induce 1 µA of current instead of
the previous 19.791 MHz. The hardware limit will stay the same. This can be rewritten to
be

I[MHz] = (1
g
HV Imax[µA]−HV Iped[µA]) · 19.791MHz

µA (3.50)

All the three limit strategies in terms of gain are shown in Fig. 3.24.
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The blue line of max(T ∗m) again describing the conservative save optimum of the lifetime
reduced time gain stays relatively low over a long range of gain values. A strong increase is
only observed for very low gain factors, where the PMTs are practically turned off.
The picture is different for the aggressive optimum (T ∗m = 0, green) which describes the
situation, where the same amount of data will be taken as without moonlight observations
but in a much shorter time. It is the balance between extra hours and lifetime reduction. This
limit increases rapidly and approaches a singularity at the point where the extra hours are
always greater than the PMT stress, which happens at a gain of 42 ADC/p.e. The technical
limit as well very rapidly shifts to high NSB values, since the dark pedestal current no longer
occupies the vast amount of the PMT’s working range.
Those three strategies of setting a NSB limit can now be used to look up the corresponding
time gains per year (absolut and corrected). They are presented in figure 3.25a.
The conservative approach has the least absolute gain, but by design maximizes the lifetime
corrected time gain. The aggressive one (balance between gain and aging, lifetime corrected
time gain per definition zero) seems the most applicable, as it yields enormous absolute time
gains per year in the range of 450 to over 650 hours per year for the shown gain reductions.
Going to the technical limit results as expected in the highest absolute time gains per year,
but puts maximum stress on the PMTs reducing their lifetime significantly. This can be seen
in the negative values of figure 3.25b.

Independent of the PMT gain reduction the H.E.S.S. collaboration decides on, my
recommendation would be to go for the balanced aggressive approach, which effectively
speeds up the absolute data taking every month and year without sacrificing the available
PMTs.
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Figure 3.24.: NSB limit strategies based on selected PMT gain.
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Figure 3.25.: Time gain per year for the three limit strategies (absolut and litetime corrected)
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3.4. Implementation Details

This Section will not provide any new results, but show the details on how the previous ones
were obtained. The less technical versed reader may skip over to the Deep Learning Chapter
4 on page 75.

3.4.1. Basic Usage of the NSB Python Tool

A major part of the work for this thesis went into the development of code. The source
for the NSB Python tool is openly available and its working principles have been discussed
extensively in the first sections of this chapter. Therefore no further source code explanations
will be given. However, the usage of the tool will now be explained in greater detail with the
hope to set the foundation for new work that can build on top.
The reader is encouraged to download, try and use the tool for them self. Macintosh and a
vast majority of Unix operating systems are supported. Unfortunately Microsoft Windows
is not, due to a non compatible dependency (pyEphem).
To get started, simply open a terminal shell and install the tool with:

1 ( sudo ) pip i n s t a l l nsb

The most recent version during the writing of this thesis was 0.5.1. Basic examples can
be found directly at the Python Package Index website https://pypi.org/project/nsb/,
where the module is published. In the following, the necessary additional code based on the
tool to reproduce the results from the previous sections will be presented and discussed.
The easiest way to interact with the tool is directly via the command line.
To generate the allsky images from the model based on the CCD images (figure 3.6 on page
34) the following command has been used (this example shows the case for half moon, the
other dates work accordingly):

1 python −m nsb −−skymap −−ve r s i on hess_bas ic −−fov 150 −−s a v e f i t s −−s i z e 431 −−time 2010/06/18
20 : 01 : 36 −−hp 8

It saves the result automatically as a fits file, which was then enhanced in contrast for this
thesis and exported as pdf.
The trend plot in figure 3.14 at page 47 of the night sky brightness of the galactic center
region can be reproduced with the following command. The observer’s location will default
to the H.E.S.S. site in Namibia and does not require an additional argument.

1 python −m nsb −−trend −−ve r s i on hess_currents −−t1 2018/05/19 12 : 00 : 00 −−t2 2018/05/26 12 : 00 : 00 −−
source " Ga lac t i c Centre "
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3.4.2. Obtaining the Time Gain Plots from Section 3.2.2

Next up are the more advanced plots, which require the Python tool being used as an
imported module. To obtain the time gain results, one has to calculate the brightness of the
sky for each possible location in the sky for as many time steps as possible. As mentioned
in the corresponding chapter, 49152 pixels (healpix resolution 6) and 26280 time steps (365
days, 20 minute interval) were chosen.

The raw data

Figure 3.26 shows the Python script. After the import statements of the NSB functions, the
configuration object is created by reading a text file from disc (see the example in figure
3.27). The important part for the current task are the three last settings of the horizon
values. These give the angles in degrees at which an object (moon/sun/source) is considered
setting or rising.

1 from nsb import c on f i g
2 from nsb . model import nsbModel
3 from nsb . mypycat import gammasource
4 from nsb . ga ia import Gaia
5
6 import numpy as np
7 from mul t ip ro c e s s i ng import Pool
8
9 con = con f i g . TheConfiguration ( )

10 con . readConf ig ( " t imegain_conf ig . c f g " )
11
12 time_and_date_1 = ephem . Date ( " 2019/01/01␣ 00 : 00 : 00 " )
13 time_and_date_2 = ephem . Date ( " 2020/01/01␣ 00 : 00 : 00 " )
14
15 l e v e l=6
16 gaiamap = Gaia ( l e v e l=l e v e l )
17 p i x e l_ l i s t = np . arange (12∗(2∗∗ l e v e l ) ∗∗2)
18
19 def c a l c u l a t e ( hea lp ix ) :
20 ra , dec = gaiamap . getRa ( hea lp ix ) , gaiamap . getDec ( hea lp ix )
21 dummy = gammasource ( [ "dummy_%s "%healp ix , ra , dec , "dummy" ] )
22 model = nsbModel ( con , gaiamap , time_and_date_1 , time_and_date_2 , ve r s i on=" hess_currents " ,

t ime r e s o l u t i on =20, verbose=False )
23 model . s e tSource ( source=dummy)
24 model . ca lcu lateTimespan_fast (moonallowed=True )
25 return np . array (model . b r i ght )
26
27 # s t a r t the p a r a l l e l c a l c u l a t i o n s
28 with Pool ( p r o c e s s e s =18) as pool :
29 r e s u l t s = pool .map( c a l cu l a t e , p i x e l_ l i s t )
30
31 np . save ( " skymap_timegain_data_moon_alt30 . npy " , r e s u l t s )

Figure 3.26.: Script to generate the raw data for the time gain calculations

Back in the script at lines 12-16, the parameters for start and end date are set and the gaia
map is initialized. This is done once before all the calculations take place, as it takes up
to a few seconds to load the star lookup file from disc. Because the following calculation is
quite extensive, a multithreading approach was used: 18 CPU cores work asynchronously in
parallel, each on a single healpix, to calculate the brightness for the whole timespan. Each
processor will therefore call the function calculate. The first lines of that function set up
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1 # al lskymaps Config F i l e
2 # Date and Time
3 time = today now
4 #time = 2017/01/18 23 : 30 : 00
5 # Observer Locat ion (HESS i s at 16.5028 −23.27280 @ 1800 .0 )
6 Lon = 16.5028
7 Lat = −23.27280
8 e l e v a t i on = 1800.
9 # model func t i on ve r s i on [ k r i s c i una s , hess_basic , hess_advanced ]

10 ve r s i on = hess_advanced
11 # output Images ize in P ix e l s ( i t s gonna be square )
12 image_size = 200
13 # observat ion po s i t i o n in the sky [ deg ]
14 a l t = 90 .0
15 az = 0 .0
16 # Level o f HealPixMap used f o r p l o t t i n g ga ia ca ta l og
17 h e a l p i x l e v e l = 7
18 # Gaussian smoothing ke rne l [ p i x e l ]
19 gauss = 0 .0
20 moon_above_horizon = 0.0
21 sun_below_horizon = −18.0
22 source_above_horizon = 30.0

Figure 3.27.: NSB tool standard configuration file

a dummy source for the model to be tracked. It is located at the given healpix center and
provides a convenient way of encapsulating a coordinate pair that can be read by the model
tool.
After that, the model can be initialized with the proper parameter options and finally
model.calculateTimespan_fast(moonallowed=True) is called in line 24. There exists a
corresponding function without the "_fast" in the name, which is used to generate seamless
plots. The fast version however will skip in time over periods where either the Sun is above or
the source is below the horizon in order to save calculation time. The passed option steers the
behavior in order to in- or exclude moonlight observations. For the time gain calculations,
both variants have to be calculated one after the other.
In the end, the results object is stored as a plain numpy file to be read and processed
later. In the case with 18 parallel threads, this script took 2 hours and 27 minutes on a
modern workstation PC to finish once, but of course both cases for moonlight and regular
observations have to be calculated. Luckily this only has to be done once, at least as long as
the model does not change.

The actual Plots

The next script to generate all the data-plots and results is presented here in five parts, but
of course originally is only one file. There is intentionally no pseudo code shown here, but
the actual Python code used during the work on this thesis, to maximize the transparency
and enable full reproducibility of the work for future research.
In part 1 of the script (figure 3.28), the previously calculated raw data maps are loaded (line
9 and 10) together with the exposure maps of H.E.S.S. for four consecutive years, which
are then averaged. The make_map(limit) function will be called in parallel for all the given
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limits. This happens in lines 74 and 75 with a total of 8 CPU cores and takes 1 hour and 2
minutes of computation time.
Every element in the moon and no_moon array is a list of brightness values. Each list
corresponds to a HEALPix of the sky and every list entry is a single measurement at time t
as shown in table 3.2.

moon = [ [b(hp=0,t=0), b(hp=0,t=1), b(hp=0,t=2), . . . b(hp=0,t=26280) ],
[b(hp=1,t=0), b(hp=1,t=1), b(hp=1,t=2), . . . b(hp=1,t=26280) ],

...
...

[b(hp=49152,t=0), b(hp=49152,t=1), b(hp=49152,t=2), . . . b(hp=49152,t=26280) ] ]

Table 3.2.: Raw data structure for the time gain calculations. The structure is identical in
the no_moon case.

The total amount of time a given spot is darker than the limit is the number of (in this
example visualization horizontal) list entries that is smaller than the given limit. It is
calculated for the moon- and moonless-case in lines 34 and 47 respectively. The expression
element<limit yields a boolean mask with entries either True or False with the same
dimension as the original element-array. In many programming languages, including Python,
"true" evaluates to 1 and "false" to 0 if reinterpreted as numerical values. This way, the sum()

expression can be used to count the number of true occurrences.
The accumulated charge is calculated from the integrated (summed) brightness values in lines
41 and 54. This Python expression is very similar to the one above, with the slight difference,
that the boolean mask is directly applied to the array in order to get a sub set. Therefore the
sum() expression actually sums up all the brightness values and not just zeros and ones. It
is then divided and multiplied with the necessary conversion factors. The expression directly
follows from equations 3.23 and respectively equation 3.43, where 5.0528 · 10−8 = 1

19.791·10−6 .
The other two factors are just 20 minutes and 60 seconds per minute representing the time
interval of each simulation step.
Finally, the time values are divided by 3 to get units of hours. In the end, everything is
returned in a storage class hpmap for convenience.
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1 import healpy as hp
2 import matp lo t l ib . pyplot as p l t
3 import matp lo t l ib . patches as patches
4 p l t . s t y l e . use ( ’ s c i e n c e ’ )
5 import numpy as np
6 import time
7 from mul t ip ro c e s s i ng import Pool
8
9 moon = np . load ( " skymap_timegain_data_moon_alt30 . npy " )

10 no_moon = np . load ( " skymap_timegain_data_nomoon_alt30 . npy " )
11
12 exposure1 = np . load ( " skymap_timegain_data/hess_exposure_level6_2013 . npy " )
13 exposure2 = np . load ( " skymap_timegain_data/hess_exposure_level6_2014 . npy " )
14 exposure3 = np . load ( " skymap_timegain_data/hess_exposure_level6_2015 . npy " )
15 exposure4 = np . load ( " skymap_timegain_data/hess_exposure_level6_2016 . npy " )
16 exposure = ( exposure1 + exposure2 + exposure3 + exposure4 ) / 4
17 exposure [ exposure==0] = np . nan
18
19
20 c l a s s hpmap( object ) :
21 def __init__( s e l f , time_moon , time_nomoon , charge_moon , charge_nomoon , l im i t ) :
22 s e l f . time_moon = time_moon
23 s e l f . time_nomoon = time_nomoon
24 s e l f . t ime_di f f = time_moon − time_nomoon
25 s e l f . charge_moon = charge_moon
26 s e l f . charge_nomoon = charge_nomoon
27 s e l f . charge_di f f = charge_moon − charge_nomoon
28 s e l f . l im i t = l im i t
29
30
31 def make_map( l im i t ) :
32 time_moon , time_nomoon , charge_moon , charge_nomoon = [ ] , [ ] , [ ] , [ ]
33 for element in moon :
34 s = sum( element<l im i t )
35 i f s > 0 :
36 time_moon . append ( s )
37 e l s e :
38 time_moon . append (np . nan )
39
40 # charge = sum MHz / 19.791 [MHz/uA] ∗ time
41 c = (sum( element [ element<l im i t ] ) / (19 . 791 ) ) ∗ (20 ∗ 60)
42 # get r i d o f the u and the r e s u l t i s i un i t s o f [ As=C]
43 c ∗= 10∗∗(−6)
44 charge_moon . append ( c )
45
46 for element in no_moon :
47 s = sum( element<l im i t )
48 i f s > 0 :
49 time_nomoon . append ( s )
50 e l s e :
51 time_nomoon . append (np . nan )
52
53 # charge = sum MHz / 19.791 [MHz/uA] ∗ time
54 c = (sum( element [ element<l im i t ] ) / (19 . 791 ) ) ∗ (20 ∗ 60)
55 # get r i d o f the u and the r e s u l t i s i un i t s o f [ As=C]
56 c ∗= 10∗∗(−6)
57 charge_nomoon . append ( c )
58
59 time_moon = np . array ( time_moon) / 3
60 time_nomoon = np . array ( time_nomoon ) / 3
61 charge_moon = np . array ( charge_moon )
62 charge_nomoon = np . array ( charge_nomoon )
63
64 return hpmap( time_moon , time_nomoon , charge_moon , charge_nomoon , l im i t )
65
66 l im i t s =[0 , 50 , 60 , 70 , 80 , 90 , 100 , 110 ,
67 120 , 130 , 140 , 150 , 160 , 170 , 180 , 190 ,
68 200 , 210 , 220 , 230 , 240 , 250 , 260 , 270 ,
69 280 , 290 , 300 , 325 , 350 , 375 , 400 , 425 ,
70 450 , 500 , 550 , 600 , 750 , 800 , 850 , 900 ,
71 950 ,1000 ,1250 ,1500 ,1750 ,2000 , 10000 , 100000]
72
73 from mul t ip ro c e s s i ng import Pool
74 with Pool ( p r o c e s s e s=8) as pool :
75 r e s u l t s = pool .map(make_map , l im i t s )

Figure 3.28.: Script for the time gain calculations (part 1)
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Part 2 in figure 3.29 produces the first plots, namely the allsky time map of figure 3.15 from
page 50 and the all-sky-usage plot of figure 3.17 from page 51.
For the sky-usage data, the total visibility map is needed. This is obtained in line 90 as the
last entry (index of -1) in the results object, which calculated the time every spot in the sky
is observable below an "infinite" limit of 100 000 MHz, representing the case of no limit. To
verify that this number was indeed chosen large enough, see the bottom two rows of table
3 on page 125, which lists the results calculated here (the LATEX source code for this table
itself is generated from data in part 5 of this script). The values do not change if going
from 10 000 MHz to 100 000 MHz. Then the sky-usage can simply be calculated as the mean
exposure divided by the total visibility (line 16).
After that, the time gain data will be calculated for every limit in line 103. The loop over
all limit values first performs an element wise multiplication with the sky usage map and
then sums up all spacial values before dividing by 33.76, the number of HEALPix in the
field of view of the camera for the given resolution. The expression np.nansum() is a special
variant, which ignores values that are not numbers (nan: not a number). It is used, because
the model will return such nan-objects in the cases it is not valid (e.g. source below the
horizon, sun above the horizon) as a safety measure, since any other numeric value as 0 or
-1 might be wrongly interpreted as brightness and enter the calculations unnoticed. After
this summation over all HEALPix, one is left with a single number containing the hours of
observation time for each limit. Those are stored in a list, e.g.:

total_time_moon = [ t(limit=0), t(limit=50), t(limit=60), . . . , t(limit=100000)]

Since moon time in this context was derived from the option moonallowed=True it contains
all moonless data as well. The true additional time points can be calculated per limit by
subtracting the two cases. Plain Python lists can not be subtracted, but converting them to
np.array() first will turn them into objects similar to vectors (or matrices in the case of
nested lists), which allows easy element wise operations.
The next loop iterates over PMT gain values and calculates the relative lifetime of the PMTs
as well as the lifetime corrected time gain, which are presented in figure 3.22 (page 57) and
figure 3.23 (page 57). The variable names connect to the formula symbols as follows:

delta_charge → Qm(x) (additional charge from moon observations for a given limit)

total_charge_nomoon[-1] → Qd∞ (total charge without limits from equation 3.44)

total_time_nomoon[-1] → Td∞ (total dark observation time defined at equation 3.39)

tau → τ(x) (relative PMT lifetime defined at equation 3.44)

cTG → T ∗m(x) (lifetime corrected time gain defined at equation 3.46).
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76 ras = [ 17 .75 , 22 . 0 , 5 . 5 , 8 . 5 , 6 . 5 , 5 . 5 , 1 0 . 7 5 ]
77 decs= [−29.0 , −30.0 , 22 . 0 , −45.0 , 17 .75 , −67.5 , −59.6]
78 l a b e l s = [ "GC" , " 2155 " , "Crab " , " Vela " , "Geminga " , "LMC" , " EtaCar " ]
79
80 timegain_250 = r e s u l t s [ 2 1 ] . t ime_di f f
81 hp . mollview ( timegain_250 , nest=True , coord=’CG’ , t i t l e=" ␣ " )
82 hp . g r a t i c u l e ( )
83 for ra , dec , l a b e l in zip ( ras , decs , l a b e l s ) :
84 hp . p r o j s c a t t e r ( ra∗ 360/ 24 , dec , marker=’∗ ’ , c=’ red ’ , l o n l a t=True , coord="C" )
85 hp . p r o j t e x t ( ra∗ 360/ 24 , dec , l abe l , l o n l a t=True , coord="C" , c o l o r=’ red ’ )
86 p l t . t ight_layout ( )
87
88 p l t . s a v e f i g ( " hpmap_timegain_250 . pdf " , dpi=300)
89
90 v i s i b i l i t y = r e s u l t s [ −1 ] . time_nomoon
91 sky_usage = exposure / v i s i b i l i t y
92 hp . mollview ( sky_usage , norm=’ log ’ , min=0.001 , max=0.20 , nest=True , coord=’CG’ , t i t l e=" ␣ " )
93 hp . g r a t i c u l e ( )
94 for ra , dec , l a b e l in zip ( ras , decs , l a b e l s ) :
95 hp . p r o j s c a t t e r ( ra∗ 360/ 24 , dec , marker=’∗ ’ , c=’ red ’ , l o n l a t=True , coord="C" )
96 hp . p r o j t e x t ( ra∗ 360/ 24 , dec , l abe l , l o n l a t=True , coord="C" , c o l o r=’ red ’ )
97 p l t . t ight_layout ( )
98 p l t . s a v e f i g ( " hpmap_skyusage_2013−16. pdf " , dpi=300)
99

100 # prepar ing the time gain data
101 total_time_moon , total_time_nomoon , total_charge_moon , total_charge_nomoon = [ ] , [ ] , [ ] , [ ]
102
103 for i , l im i t in enumerate ( l im i t s ) :
104 time_moon = ( r e s u l t s [ i ] . time_moon) ∗ sky_usage
105 time_nomoon = ( r e s u l t s [ i ] . time_nomoon ) ∗ sky_usage
106 charge_moon = ( r e s u l t s [ i ] . charge_moon ) ∗ sky_usage
107 charge_nomoon = ( r e s u l t s [ i ] . charge_nomoon ) ∗ sky_usage
108
109 total_time_moon . append (np . nansum(time_moon) / 33 .762)
110 total_time_nomoon . append (np . nansum( time_nomoon ) / 33 .762)
111 total_charge_moon . append (np . nansum( charge_moon ) / 33 .762)
112 total_charge_nomoon . append (np . nansum( charge_nomoon ) / 33 .762)
113
114 delta_time = np . array ( total_time_moon ) − np . array ( total_time_nomoon )
115 delta_charge , tau , cTG = [ ] , [ ] , [ ]
116 gains_ADC = np . array ( [ 8 0 , 70 , 60 , 50 , 40 , 20 , 0 ] )
117 ga ins = gains_ADC/80
118
119 for gain in ga ins :
120 delta_charge . append ( ( np . array ( total_charge_moon ) − np . array ( total_charge_nomoon ) ) ∗ gain )
121 tau . append ( total_charge_nomoon [−1] / ( delta_charge [−1] + total_charge_nomoon [−1]) )
122 cTG. append ( tau [−1] ∗ ( delta_time + total_time_nomoon [−1]) − total_time_nomoon [−1])
123
124 p l t . f i g u r e ( )
125 p l t . y l ab e l ( " r e l a t i v e ␣ l i f e t im e " )
126 p l t . x l ab e l ( "NSB␣Limit ␣ [MHz] " )
127 p l t . gca ( ) . set_xlim (0 ,700)
128 p l t . gca ( ) . set_ylim ( 0 . 3 5 , 1 . 1 )
129 p l t . minorticks_on ( )
130 p l t . g r id ( )
131 for i , t in enumerate ( tau ) :
132 p l t . p l o t ( l im i t s , t , l a b e l=" $\\ tau$␣ ( gain=%.1 f ) " % gains_ADC [ i ] , l i n ew idth=2)
133 p l t . l egend ( )
134 p l t . s a v e f i g ( " l i f e t ime_ga in . pdf " , dpi=300)
135 p l t . show ( )
136
137 p l t . f i g u r e ( )
138 p l t . y l ab e l ( "Time␣ [ hours / year ] " )
139 p l t . x l ab e l ( "NSB␣Limit ␣ [MHz] " )
140 ax1 = p l t . gca ( )
141 ax1 . set_xlim (0 ,700)
142 ax1 . set_ylim (−200 ,800)
143 p l t . minorticks_on ( )
144 ax1 . g r id ( )
145 for i , tg in enumerate (cTG) :
146 ax1 . p l o t ( l im i t s , tg , l a b e l="$T_m^∗$␣ ( gain=%.1 f ) " % gains_ADC [ i ] , l i n ew idth=2)
147 ax1 . legend ( l o c=" upper␣ l e f t " )
148 p l t . s a v e f i g ( " l i f e t ime2_ga in . pdf " , dpi=300)
149 p l t . show ( )

Figure 3.29.: Script for the time gain calculations (part 2)
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Part 3 in figure 3.30 prepares the data for the PMT gain dependent plots. For this task, a
helper function is introduced in line 150, that can return a linear interpolated value for a list
of given NSB limits. This is required to transform the NSB limit recommendations of the
different approaches (conservative, aggressive, technical limit) to a corresponding time gain,
since the limit axis for the original calculations was discrete (see limits list in line 66 of part
1), which does not allow a continuous inverse of the functions depending on the limits.
Functions for parabolic and linear curves are introduced in lines 172 and 175, to be used in
a fit below. These fits are necessary to obtain the maximum and the second zero passing
values of the discrete calculated function T ∗m(limit), which represent the conservative and
aggressive limit recommendations.
Those recommendations are implemented as opt1 and opt2. The third one, opt3, the
technical possible NSB limit, is calculated with the according Python function (line 178),
which implements equation 3.50 from page 58.
To find the maximum of T ∗m(limit), the index of the maximum value of the discrete function
is taken as a starting point (line 195). From here, the parabolic fit is performed including
the data points with distance margin=3 around that index n. The curve_fit function
imported from scipy.optimize returns two objects: a list with the optimal parameters
and the covariance matrix. Line 202 therefore represents the use of the first derivative of the
parabola

f(x) = a · x2 + b · x+ c

f ′(x) = 2 · a · x+ b

to calculate the location of the maximum based on its parameters. With popt[0]== a,
popt[1]== b and popt[2]== c, it can be read as x0 = −b

2·a . Line 203 will calculate the
maximum value at that location using the fitted function and stores it in opt1_y.
To find the second zero passing, a similar approach is used. The starting point n for the (this
time linear) fit is found by incrementing it as long as the value of cTG at that index is still
greater than zero and the index is still within the valid range of limits (line 208). Since the
initial n is chosen at the rough maximum, this will always find the second zero passing as
long as the slope of the linear fit is negative, otherwise the fit result is discarded on line 219.
There is no opt2_y calculated, since it is always zero by definition.
The technical limit opt3 does not need to be fitted, but can simply be calculated using the
formula. Its corresponding time gain however again relies on the interpolation between the
discrete limit values. This is done in line 222.
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150 def get_inte rpo la t ed ( l im i t s_ l i s t , t imegain ) :
151 t = [ ]
152 for l im i t in l i m i t s_ l i s t :
153 index = np . d i g i t i z e ( l im i t , l im i t s )
154 i f len ( l im i t s ) > index > 1 :
155 #pr in t ( " l im i t %.1 f i s in between [% i :% i ] " % ( l im i t , l im i t s [ index −1] , l im i t s [ index ] ) )
156 upper = timegain [ index ]
157 lower = timegain [ index −1]
158 delta_t = upper − lower
159 de l ta_l = l im i t s [ index ] − l im i t s [ index −1]
160 temp = lower + ( ( l im i t − l im i t s [ index −1]) / ( de l ta_l ) ) ∗ delta_t
161 #pr in t ( " Value i s %.1 f out o f [%.1 f :%.1 f ] " % ( temp , lower , upper ) )
162 t . append ( temp)
163 e l s e :
164 #pr in t ( " out o f range ! " , l im i t )
165 t . append (np . nan )
166 return t
167
168 opt1 , opt2 , opt1_y , opt3_y = [ ] , [ ] , [ ] , [ ]
169
170 from s c ipy . opt imize import curve_f i t
171
172 def parabola (x , a , b , c ) :
173 return a∗x∗∗2 + b∗x + c
174
175 def l i n e a r (x , m, t ) :
176 return m∗x + t
177
178 def nsb_limit ( gain ) :
179 return ((120/ gain ) − 90) ∗ 19.791
180
181 c o l o r s = p l t . rcParams [ ’ axes . prop_cycle ’ ] . by_key ( ) [ ’ c o l o r ’ ]
182
183 delta_time = np . array ( total_time_moon ) − np . array ( total_time_nomoon )
184 delta_charge = [ ]
185 tau = [ ]
186 cTG = [ ]
187
188 ga ins = np . arange (0 , 1 . 1 , 0 . 01 )
189 gains_ADC = 80∗ ga ins
190
191 for gain in ga ins :
192 delta_charge . append ( ( np . array ( total_charge_moon ) − np . array ( total_charge_nomoon ) ) ∗ gain )
193 tau . append ( total_charge_nomoon [−1] / ( delta_charge [−1] + total_charge_nomoon [−1]) )
194 cTG. append ( tau [−1] ∗ ( delta_time + total_time_nomoon [−1]) − total_time_nomoon [−1])
195 n = np . argmax (cTG[−1])
196 margin = 3
197 i f n > margin and n < len ( l im i t s ) − margin :
198 y = cTG[ −1 ] [ n−margin : n+margin ]
199 x = l im i t s [ n−margin : n+margin ]
200 popt , pcov = curve_f i t ( parabola , x , y )
201
202 opt1 . append(−popt [ 1 ] / (2∗ popt [ 0 ] ) )
203 opt1_y . append ( parabola(−popt [ 1 ] / (2∗ popt [ 0 ] ) , ∗popt ) )
204 e l s e :
205 opt1 . append (np . nan )
206 opt1_y . append (np . nan )
207
208 while n < len ( l im i t s ) and cTG[ −1 ] [ n ] > 0 :
209 n += 1
210 i f n + margin < len ( l im i t s ) :
211 y = cTG[ −1 ] [ n−margin : n+margin ]
212 x = l im i t s [ n−margin : n+margin ]
213 e l s e :
214 y = cTG[ −1 ] [ n−margin : n ]
215 x = l im i t s [ n−margin : n ]
216 popt , pcov = curve_f i t ( l i n e a r , x , y )
217 i f popt [ 0 ] < 0 :
218 opt = −popt [ 1 ] / ( popt [ 0 ] )
219 e l s e : # s l ope p o s i t i v e −> no second zero pass ing
220 opt = np . nan
221 opt2 . append ( opt )
222 opt3_y . append ( ge t_inte rpo la t ed ( [ nsb_limit ( gain ) ] , cTG[−1]) )

Figure 3.30.: Script for the time gain calculations (part 3)
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Parts 4 and 5 (figures 3.31 and 3.32 do not calculate any new values, but create the remaining
plots using the values calculated before. The results are:

The absolute time gain depending on the NSN limit:
Figure 3.18 ("timegain.pdf") from page 53

The absolute accumulated charges depending on the NSB limit:
Figure 3.19 ("charge.pdf") on page 54

The relative lifetime of a PMT τ depending on the NSB limit:
Figure 3.20 ("lifetime.pdf") on page 57

The lifetime corrected time gain depending on the NSB limit:
Figure 3.21 ("lifetime2.pdf") on page 55.

The optimum NSB limit recommendations based on the PMT gain:
Figure 3.24a ("opt_gain.pdf") and the zoomed in version figure 3.24b ("opt_gain_zoom.pdf"),
both on page 60.

The resulting absolute time gains if using those limit recommendations: Figure 3.25a
("opt_gain_times.pdf") and the corresponding corrected time gains in figure 3.25b
("opt_gain_cor_times.pdf"). Both to be found on page 61.

Additionally, a table in LATEX format with all calculated values is generated in line 315,
which can be seen in the appendix at page 125. Using this table, all plots could in principle
be reproduced without any further calculations (except for the interpolation needed for the
inverse functions).

Final remarks on the tool usage

Modern data science often relies on writing code in any form. But since scientists are no
software engineers per se, this task often consumes a huge amount of their working time.
Explaining and sharing the code in such an explicit manner, I hope to set a good example
and provide a solid foundation for further work based on my findings for others so that
they do not have to redo the majority of the workload. I was myself pleased to find the full
(working) code of the pyASB tool developed by Nievas [2013] alongside the corresponding
thesis publicly available. It enabled me to very quickly get started developing the early model
versions using the available data at that time.
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223 p l t . f i g u r e ( )
224 p l t . minorticks_on ( )
225 p l t . g r id ( )
226 ax1 = p l t . gca ( )
227 ax2 = ax1 . twiny ( )
228 ax2 . s e t_y labe l ( "NSB␣Limit ␣ [MHz] " )
229 ax1 . s e t_y labe l ( "NSB␣Limit ␣ [MHz] " )
230 ax2 . s e t_x labe l ( "Gain␣ [ r e l a t i v e ] " )
231 ax1 . s e t_x labe l ( "Gain␣ [ADC/p . e . ] " )
232 ax2 . set_xlim (1 , 0 . 0 5 )
233 ax2 . set_ylim (0 ,5000)
234 ax1 . set_xlim (80 , 4)
235 ax1 . set_ylim (0 ,5000)
236 ax1 . add_patch (
237 patches . Rectangle (
238 (80 , 0) ,−0.4∗80 ,1200 , f i l l =False , zorder=2) )
239 ln s1 = ax2 . p l o t ( gains , opt1 , l a b e l="max($T_m^∗$ ) ␣␣ ( cons e rva t i v e ) " , l i n ew idth=2, c o l o r=c o l o r s [ 0 ] )
240 ln s2 = ax2 . p l o t ( gains , opt2 , l a b e l="$T_m^∗␣=␣0$␣␣ ( agg r e s s i v e ) " , l i n ew idth=2, c o l o r=c o l o r s [ 1 ] )
241 ln s3 = ax1 . p l o t (gains_ADC , nsb_limit ( ga ins ) , l a b e l=" t e chn i c a l ␣ l im i t " , l i n ew idth=2, c o l o r=c o l o r s [ 2 ] )
242 ln s = lns1+lns2+lns3
243 labs = [ l . ge t_labe l ( ) for l in l n s ]
244 p l t . l egend ( lns , labs , l o c=" upper␣ l e f t " )
245 p l t . s a v e f i g ( " opt_gain . pdf " , dpi=300)
246 p l t . show ( )
247
248 p l t . f i g u r e ( )
249 p l t . minorticks_on ( )
250 p l t . g r id ( )
251 ax1 = p l t . gca ( )
252 ax2 = ax1 . twiny ( )
253 ax2 . s e t_y labe l ( "NSB␣Limit ␣ [MHz] " )
254 ax1 . s e t_y labe l ( "NSB␣Limit ␣ [MHz] " )
255 ax2 . s e t_x labe l ( "Gain␣ [ r e l a t i v e ] " )
256 ax1 . s e t_x labe l ( "Gain␣ [ADC/p . e . ] " )
257 ax2 . set_xlim (1 , 0 . 6 )
258 ax2 . set_ylim (0 , 1200)
259 ax1 . set_xlim (80 , 0 .6∗80)
260 ax1 . set_ylim (0 , 1200)
261 ln s1 = ax2 . p l o t ( gains , opt1 , l a b e l="max($T_m^∗$ ) ␣ ( con s e rva t i v e ) " , l i n ew idth=2, c o l o r=c o l o r s [ 0 ] )
262 ln s2 = ax2 . p l o t ( gains , opt2 , l a b e l="$T_m^∗␣=␣0$␣ ( agg r e s s i v e ) " , l i n ew idth=2, c o l o r=c o l o r s [ 1 ] )
263 ln s3 = ax1 . p l o t (gains_ADC , nsb_limit ( ga ins ) , l a b e l=" t e chn i c a l ␣ l im i t " , l i n ew idth=2, c o l o r=c o l o r s [ 2 ] )
264 ln s = lns1+lns2+lns3
265 labs = [ l . ge t_labe l ( ) for l in l n s ]
266 p l t . l egend ( lns , labs , l o c=" upper␣ l e f t " )
267 p l t . s a v e f i g ( " opt_gain_zoom . pdf " , dpi=300)
268 p l t . show ( )
269
270 p l t . f i g u r e ( )
271 p l t . minorticks_on ( )
272 p l t . g r id ( )
273 ax1 = p l t . gca ( )
274 ax2 = ax1 . twiny ( )
275 ax2 . s e t_y labe l ( "Time␣ [ hours / year ] " )
276 ax1 . s e t_y labe l ( "Time␣ [ hours / year ] " )
277 ax2 . s e t_x labe l ( "Gain␣ [ r e l a t i v e ] " )
278 ax1 . s e t_x labe l ( "Gain␣ [ADC/p . e . ] " )
279 ax2 . set_xlim (1 , 0 . 6 )
280 ax1 . set_xlim (80 , 0 .6∗80)
281 ln s1 = ax2 . p l o t ( gains , ge t_ inte rpo la t ed ( opt1 , delta_time ) , l a b e l="$T_{m}$␣ ( cons e rva t i v e ) " ,

l i n ew idth=2, c o l o r=c o l o r s [ 0 ] )
282 ln s2 = ax2 . p l o t ( gains , ge t_ inte rpo la t ed ( opt2 , delta_time ) , l a b e l="$T_{m}$␣ ( agg r e s s i v e ) " , l i n ew idth

=2, c o l o r=c o l o r s [ 1 ] )
283 ln s3 = ax2 . p l o t ( gains , ge t_ inte rpo la t ed ( nsb_limit ( ga ins ) , delta_time ) , l a b e l="$T_{m}$␣ ( t e chn i c a l ␣

l im i t ) " , l i n ew idth=2, c o l o r=c o l o r s [ 2 ] )
284 ln s = lns1+lns2+lns3
285 labs = [ l . ge t_labe l ( ) for l in l n s ]
286 p l t . l egend ( lns , l abs )#, l o c="upper l e f t " )
287 p l t . s a v e f i g ( " opt_gain_times . pdf " , dpi=300)
288 p l t . show ( )
289
290 p l t . f i g u r e ( )
291 p l t . minorticks_on ( )
292 p l t . g r id ( )
293 ax1 = p l t . gca ( )
294 ax2 = ax1 . twiny ( )
295 ax2 . s e t_y labe l ( "Time␣ [ hours / year ] " )
296 ax1 . s e t_y labe l ( "Time␣ [ hours / year ] " )
297 ax2 . s e t_x labe l ( "Gain␣ [ r e l a t i v e ] " )
298 ax1 . s e t_x labe l ( "Gain␣ [ADC/p . e . ] " )
299 ax2 . set_xlim (1 , 0 . 6 )
300 ax2 . set_ylim (−200 , 200)
301 ax1 . set_xlim (80 , 0 .6∗80)
302 ln s1 = ax2 . p l o t ( gains , opt1_y , l a b e l="$T^∗_{m}$␣ ( con s e rva t i v e ) " , l i n ew idth=2, c o l o r=c o l o r s [ 0 ] )
303 ln s2 = ax2 . p l o t ( gains , np . z e r o s_ l i k e ( ga ins ) , l a b e l="$T^∗_{m}$␣ ( agg r e s s i v e ) " , l i n ew idth=2, c o l o r=

c o l o r s [ 1 ] )
304 ln s3 = ax2 . p l o t ( gains , opt3_y , l a b e l="$T^∗_{m}$␣ ( t e chn i c a l ␣ l im i t ) " , l i n ew idth=2, c o l o r=c o l o r s [ 2 ] )
305 ln s = lns1+lns2+lns3
306 labs = [ l . ge t_labe l ( ) for l in l n s ]
307 p l t . l egend ( lns , l abs )#, l o c="upper l e f t " )
308 p l t . s a v e f i g ( " opt_gain_cor_times . pdf " , dpi=300)
309 p l t . show ( )

Figure 3.31.: Script for the time gain calculations (part 4)72
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310 delta_time = np . array ( total_time_moon ) − np . array ( total_time_nomoon )
311 delta_charge = (np . array ( total_charge_moon ) − np . array ( total_charge_nomoon ) )
312 tau = total_charge_nomoon [−1] / ( delta_charge + total_charge_nomoon [−1])
313 cTG = tau ∗ ( delta_time + total_time_nomoon [−1]) − total_time_nomoon [−1]
314
315 for i in range ( len ( l im i t s ) ) :
316 print ( "%i ␣&␣%.1 f ␣&␣%.1 f ␣&␣%.1 f ␣&␣%.1 f ␣&␣%.1 f ␣&␣%.1 f ␣&␣%.2 f ␣&␣%.1 f ␣\\\\ "
317 % ( l im i t s [ i ] ,
318 delta_time [ i ] , total_time_nomoon [ i ] , delta_time [ i ] + total_time_nomoon [−1] ,
319 delta_charge [ i ] , total_charge_nomoon [ i ] , de lta_charge [ i ] + total_charge_nomoon [−1] ,
320 tau [ i ] , cTG[ i ] ) )
321 i f l im i t s [ i ] == 550 :
322 print ( " \\ h l i n e " )
323
324 p l t . f i g u r e ( )
325 p l t . y l ab e l ( "Time␣ [ hours / year ] " )
326 p l t . x l ab e l ( "NSB␣Limit ␣ [MHz] " )
327 p l t . gca ( ) . set_xlim (0 ,700)
328 p l t . minorticks_on ( )
329 p l t . g r id ( )
330 p l t . p l o t ( l im i t s , total_time_nomoon , l a b e l="$T_{d}$ " , l i n ew idth=2)
331 p l t . axh l ine ( total_time_nomoon [−1] , 0 , 700 , alpha =0.5 , l s="−−" )
332 p l t . p l o t ( l im i t s , delta_time , l a b e l="$T_{m}$ " , l i n ew idth=2)
333 p l t . p l o t ( l im i t s , delta_time + total_time_nomoon [−1] , l a b e l="$T_{d’+m}$ " , l i n ew idth=2)
334 p l t . l egend ( )
335 p l t . s a v e f i g ( " t imegain . pdf " , dpi=300)
336 p l t . show ( )
337
338 p l t . f i g u r e ( )
339 p l t . y l ab e l ( " Accumulated␣ charge ␣ [C/year ] " )
340 p l t . x l ab e l ( "NSB␣Limit ␣ [MHz] " )
341 p l t . gca ( ) . set_xlim (0 ,700)
342 p l t . gca ( ) . set_ylim (0 ,45)
343 p l t . minorticks_on ( )
344 p l t . g r id ( )
345 p l t . p l o t ( l im i t s , total_charge_nomoon , l a b e l="$Q_{d}$ " , l i n ew idth=2)
346 p l t . axh l ine ( total_charge_nomoon [−1] , 0 , 700 , alpha =0.5 , l s="−−" )
347 p l t . p l o t ( l im i t s , delta_charge , l a b e l="$Q_{m}$ " , l i n ew idth=2)
348 p l t . p l o t ( l im i t s , de lta_charge + total_charge_nomoon [−1] , l a b e l="$Q_{d’+m}$ " , l i n ew idth=2)
349 p l t . l egend ( )
350 p l t . s a v e f i g ( " charge . pdf " , dpi=300)
351 p l t . show ( )
352
353 p l t . f i g u r e ( )
354 p l t . y l ab e l ( " Re la t ive ␣ l i f e t im e " )
355 p l t . x l ab e l ( "NSB␣Limit ␣ [MHz] " )
356 p l t . gca ( ) . set_xlim (0 ,700)
357 p l t . gca ( ) . set_ylim ( 0 . 4 , 1 . 1 )
358 p l t . minorticks_on ( )
359 p l t . g r id ( )
360 p l t . p l o t ( l im i t s , tau , l a b e l=" $\\ tau$ " , l i n ew idth=2)
361 p l t . l egend ( )
362 p l t . s a v e f i g ( " l i f e t im e . pdf " , dpi=300)
363 p l t . show ( )
364
365 p l t . f i g u r e ( )
366 p l t . y l ab e l ( "Time␣ [ hours / year ] " )
367 p l t . x l ab e l ( "NSB␣Limit ␣ [MHz] " )
368 ax1 = p l t . gca ( )
369 ax1 . set_xlim (0 ,700)
370 ax1 . set_ylim (−160 ,60)
371 p l t . minorticks_on ( )
372 ax1 . g r id ( )
373 ax1 . p l o t ( l im i t s , cTG, l a b e l="$T_m^∗$ " , c o l o r=" green " , l i n ew idth=2)
374 ax1 . legend ( )
375 p l t . s a v e f i g ( " l i f e t im e 2 . pdf " , dpi=300)
376 p l t . show ( )

Figure 3.32.: Script for the time gain calculations (part 5)
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Chapter 4.

Machine Learning Data Analysis

4.1. Introduction

The history of machine learning reaches back to the 1950s. Therefore, the next section will
give an overview. The term machine learning was very well defined by Tom M. Mitchel in
his Book Machine Learning [Mitchel, 1997]:

A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T, as
measured by P, improves with experience E.

In general it is important to realize that all machine learning (ML) tasks can be understood
as functions that map an input vector x to an output value f(x). For a given input, there
is always a deterministic output. The often heard and read term of a "magical black box" is
inappropriate. For all ML algorithms, no matter how sophisticated or advanced, it holds that:
data encoded as numbers (measurement values, image pixel intensities, encoded letters, etc.)
coming in will undergo mathematical operations (vector, matrix, higher dimension tensor
calculations) and result in an output. Surely those operations can seem overwhelming to an
uneducated observer, but there is nothing unpredictable going on when performing those
calculations. We will come back to that topic later when talking about deep learning.

4.1.1. From Single- to Multi-Layer Perceptrons

In 1949, the Canadian psychologist Donald Hebb postulated the model of learning brain cells
in his book The Organization of Behaviour [Hebb, 1949] on page 62:

Let us assume that the persistence or repetition of a reverberatory activity (or
"trace") tends to induce lasting cellular changes that add to its stability. [...] When
an axon of cell A is near enough to excite a cell B and repeatedly or persistently
takes part in firing it, some growth process or metabolic change takes place in
one or both cells such that A’s efficiency, as one of the cells firing B, is increased.
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This idea of how one cell triggers another one and that learning means increasing their bond
and influencing each other, lead to the development of the first perceptron by Rosenblatt
[1958]. Initially the perceptron was meant to be a machine rather than an algorithm and the
IBM Mark 1 was a device with 200 × 200 photocells to classify images, where the weights
were built of potentiometers, and weight updates during learning were performed by electric
motors turning those knobs.

x1

x2

xn

b

w1

w2
∑

f(x) y

wn

Figure 4.1.: Schematics of the perceptron (blue). The input vector x, where the additional
entry x0 is set to 1, is multiplied with the weights vector (dot product, shown
here as element wise multiplication and sum) and then fed through the activation
function f(x).

The perceptron algorithm can be summarized as follows:
The underlying activation function is known as the Heaviside step function

y = f(x) =

1 if b+ w · x > 0,

0 otherwise
(4.1)

where w · x is the dot product of the weights vector and the input vector and b is the bias.
Given a set D of s training samples

D = {(x(1), d(1)), . . . , (x(s), d(s))} (4.2)

with d(i) being the desired output for a given input x(i), the algorithm will be trained. Note
that in practice the input vector could have one additional entry more than actual inputs,
which is set to be x(i)

0 = 1 for all input samples. In this way w0 = b of the weight vector
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takes the role of the bias term when multiplied with the input.
For every sample i of the training data set calculate the output

y(i) = f(b+ w · x(i)) (4.3)

= f(b+ w1x
(i)
1 + · · ·+ wsx

(i)
s ) (4.4)

and then update the weights for the next step using the learning rate r

w∗ = w + r · (d(i) − y(i))x(i) (4.5)

These two steps are altered until the model converges, which is only guaranteed for linearly
separable problems, since the perceptron is a linear classifier.
Here, Hebb’s idea can be clearly seen: Having an important feature within the input (a
specific entry in the vector x being a large number) will let the corresponding weight entry
"grow" with every time it is "excited", resulting in a bigger influence of that neuron to the
general outcome of the algorithm. In that sense, the memory of that important feature is
stored in the weights.
Nowadays this concept is called single-layer-perceptron and was rather unsuccessful despite
the hopes the scientists put on them. It took until the 1960s until the first multi-layer-
perceptron emerged. The idea was simple: instead of weighting features and mapping them
to an output, one introduced one or more layers of weights to combine features of features
(of features of ...) to an output. The advantage was that this construct is now able to solve
non-linear problems. The drawback on the other side: The weights could not be trained as
easily and efficiently as before. An algorithm known as backpropagation changed the game.
The origin goes back to Bryson and Ho [1969], in a following section, the modern version as
proposed by LeCun [1985] will be presented.
A multi-layer-perceptron as shown in figure 4.2 can be considered as one of the simplest
fully-connected feed-forward neural networks. Information flow is strictly in one direction
and every node is connected to all nodes in the previous layer. Every node is hereby a single
perceptron, with multiple inputs and a single output. The last layer is called the output
layer, and all others (in this case two) are so-called hidden layers. Only the number of nodes
in the output is dictated by the problem to be solved. The amount of hidden layers and
nodes per such are free to be chosen while building a neural network design.

4.1.2. Model Training

The task of any network is to calculate values which are as close as possible to a desired output
for every input. This truth value is often called the label and for classification problems most
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x1

x2

x3

xn

y1

y2

Figure 4.2.: The multi-layer-perceptron is built of perceptron blocks (blue) as described
above. Every perceptron takes multiple inputs from the layer before and outputs
a single value, which is then passed on to the next layer.

of the time encoded in a one-hot-vector. For a scenario composed of three classes this would
be:

class A −→ label: d0 = (1 0 0)T

class B −→ label: d1 = (0 1 0)T

class C −→ label: d2 = (0 0 1)T

For regression tasks, the value in question itself can be the label, although scaling might be
applied sometimes.
One has then to measure how well the output resembles the label by applying a cost function
per sample and then averaging over all samples n. A very simple cost function for regression
is the mean square error

C = 1
n

n∑
i=0

(y(i) − d(i))2 (4.6)

and a very popular one for classification is cross entropy

C = 1
n

n∑
i=0
−
classes∑
c=0

d(i)
c log(y(i)

c ) (4.7)

to name just two examples. Initially, the model weights are randomized, resulting in some
big cost value and the goal of the training is to minimize the cost by adjusting the weights.
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One strategy is to use gradient descent and slowly walk down the hyperplane in weight-space
to find a local minimum. For this the derivatives ∂C

∂wl
kj

with k × j weights and ∂C
∂bl
k

for all k
bias terms are needed for every layer l. Once they are computed, it is a matter of choosing
the step size (learning rate) and proper parameter initialization to calculate new weights
every step. Here I would like to come back to the "black box" mythology: Every output of a
network is calculated and the steps to be taken during learning are calculated using the true
derivatives. This was already possible with the computing power available to scientists in
the 1960s. The only "magical" part about this is the degree of efficiency modern (consumer
grade) computer hardware reached to perform such calculations with incredible speed for a
comparable low cost.

4.1.3. Forward- and Backpropagation

To understand the math of backpropagation, it is helpful to first understand the concept
of weight matrices. In figure 4.2, every black line corresponds to a weight value which is
multiplied with the value it originates from and is then fed into the summation and activation
of a blue perceptron block. In this example, there are two hidden layers with four and five
nodes respectively. With n inputs, the first layer has 4n weights. By writing them as a 4×n
matrix, the weighted sum of each perceptron node can be performed as a single matrix-
vector multiplication W1 · x. After adding the bias and applying the activation function to
each output of the first layer, the next step would be a multiplication with W2 which is of
size 5 × 4, and so on. Here and in the following, superscripts denote the layer number not
a power. Subscripts refer to indexes. Matrices are represented with bold upper case letters,
vectors with bold lower case letters.

In the general case, the output of all nodes in layer l after activation can be written as
a vector

al = σ(Wlal−1 + bl) (4.8)

al = σ(zl) (4.9)

with σ being an arbitrary but derivable activation function and zl the non activated sum
within a node.
Now consider three layers (l − 1, l and l + 1) in the middle of a network of depth L with j,
k and m nodes in each of those three. The two connecting matrices are denoted Wl

(k×j) and
Wl+1

(m×k).
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ll − 1

j k m

l + 1

zlk

alk

wlkj wl+1
mk

Figure 4.3.: Backpropagation single node

For the highlighted neuron k in layer l (figure 4.3) the pre-activation sum reads:

zlk =
∑
j

wlkja
l−1
j + blk (4.10)

with applied transfer function we can write:

alk = σ(zlk) (4.11)

Going one step ahead in the neural network (l→ l + 1) the corresponding sum reads:

zl+1
m =

∑
k

wl+1
mk a

l
k + bl+1

m (4.12)

(4.13)

Calculating the influence of the highlighted node onto the cost function using the chain rule
yields:

∂C

∂wlkj
= ∂C

∂zlk

∂zlk
∂wlkj

= ∂C

∂alk

∂alk
∂zlk

∂zlk
∂wlkj

= (4.14)

=
(∑

m

∂C

∂zl+1
m

∂zl+1
m

∂alk

)
∂alk
∂zlk

∂zlk
∂wlkj

= (4.15)
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with applied derivatives:

=
(∑

m

∂C

∂zl+1
m

wl+1
mk

)
σ′(zlk)al−1

j (4.16)

Here, σ′(z) is short for the derivative of the transfer function σ(z).

Defining the "error signal" δ as the amount the total cost changes under the influence of a
single node’s pre-activation sum:

δlk ≡
∂C

∂zlk
(4.17)

Which can be expanded in a similar fashion:

δlk =
(∑

m

∂C

∂zl+1
m

wl+1
mk

)
σ′(zlk) (4.18)

using the definition 4.17, we get the recursive formula:

δlk =
(∑

m

δl+1
m wl+1

mk

)
σ′(zlk) (4.19)

The input variables for obtaining the error signal are available from prior steps: wl+1
mk are the

weight values in the matrix, zlk is calculated during every forward pass through the network
and can be stored for the backwards pass and σ′ is the derivative of the activation function
which should already be known during model architecture design.

One must not forget the bias terms and their influence on the change in cost:

∂C

∂blk
= ∂C

∂zlk

∂zlk
∂blk

= ∂C

∂zlk
· 1 = δlk (4.20)

The gradient of the cost function with respect to the bias for every neuron is just the error
signal for that neuron.
Now we can start at the last layer L and from there on propagate backwards through the
network to calculate all error signals.

δLm = ∂C

∂zLm
= ∂C

∂aLm

∂aLm
∂zLm

= ∂C

∂aLm
σ′(zLm) (4.21)

Note that the only thing to calculate here is the derivative of the cost function with respect to
the last layer’s activation, which is the neural networks final output aL = y. It only depends
on the choice of cost function, e.g. using Eq. 4.6 for the mean square error and deriving it
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for y is easy to do. After that, it is a walk backwards through the model using the recursive
formula 4.19 to obtain all error signals and therefore all derivatives needed for a gradient
descent step.
All this can be written rather short with vector and matrix notations.

Error signal of the last layer:

δL = ∇aLC � σ′(zL) (4.22)

Recursion for all other layers:

δl = (Wl+1)Tδl+1 � σ′(zl) (4.23)

The derivatives of the cost function with respect to the biases and weights:

∂C

∂blj
= δlj (4.24)

∂C

∂wlkj
= δlka

l−1
j (4.25)

Luckily, these algorithms are available in a vast selection of software frameworks, ready to
be used. For this work, the Python library Tensorflow [Abadi et al., 2015] was used, which
was "developed by the Google Brain team for internal Google use. It was released under the
Apache License 2.0 on November 9, 2015." ∗

∗https://en.wikipedia.org/wiki/TensorFlow, as of April 2020
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4.1.4. Convolutional Neural Networks

Having introduced the basic principles behind model training, forward- and backpropagation,
it is time to talk about architectures. Because the list of possibilities is endless, this section
will focus on introducing Convolutional Neural Networks (CNNs) since they represent
modern deep learning and were used heavily during the work for this thesis.
Up to now, the input to a model was considered to be a vector x with all the entries being
features of the problem. A simple example classification on which a model can be trained
would be: Decide on an action for stock trading, based on the features:

• price change since yesterday

• price change since last year

• USD to EUR exchange rate

• time of the day

• and many more...

Using those inputs, a network can find dependencies in the data and then output a prediction:
Buy, hold or sell. Similar examples are possible for regression tasks, where a continuous value
has to be predicted. In this example it could be the estimated stock value for the next day.
When focusing on two-dimensional data like grayscale images, one could still imagine to just
flatten the pixel array and take every brightness value as an input. Indeed, that is what
IBM’s Mark 1 Perceptron was doing back in the days. This only works to a certain extend.
Since the connections between nodes are weighted linear combinations of the inputs, the
model could change it’s weights in the following manner:
If certain pixels in the image are bright, while specific others are dim or have some special
values, the decision is: output xy.
Inputting the exact same image data but shifted by one pixel will look extremely familiar for
a human observer, but requires completely different weights to be activated in the network.
This kind of architecture, by design, is able to recognize and label data on a pixel level only.
There is no way of learning concepts e.g. of shapes. For this, pre-processing is definitely
required. Applying kernels to the data by convolution is one such idea. These kernels could
be optimized to peak at edges, corners, gradients, etc. and then the network will be based
on those features instead of the raw pixel input, to make correlations between those and the
desired output.

Feature engineering has been and still is today a big research area, but will ultimately be
limited to a general understanding of the problem at hand. Convolutional Neural Networks
are different, as in this case the values that make up the kernels are trainable parameters
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themselves. For example, a specific network is not designed to extract circular features out of
an image which will then hint to the presence of two eyes and finally the detection of a face.
The total cost of the output is simply lower if during a training step the kernel is altered in
a subtle way according to its gradient with respect to the cost and in the case of detecting
facial features this might as well mean developing circular kernels. Or any other feature that
works and lowers the cost. Nobody told the algorithm to look for circles, it learned it by
itself ! ∗

The first time such an architecture was used in a neural network together with efficient
use of gradient descent was by no chance LeCun et al. [1989], who introduced the modern
backpropagation algorithm just a few years earlier.

1 5 9 8 7 6 3 1

2 3 0 7 5 7 9 4

6 2 1 0 2 5 0 7
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2 3 2 9 4 5 6 1

2 8 7 3 0 1 4 8
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7

1 0 0

0 2 1

0 1 0

1 0 0

0 2 1
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Figure 4.4.: Convolution with a 3 × 3 kernel at every location in the data. The output
dimensions will either be reduced or the original data has to be padded with e.g.
zeros at all four sides, otherwise the kernel cannot reach the edges.

Figure 4.4 shows a 3 × 3 kernel being applied to 8 × 8 × 1 dimensional data by taking the
sum of the element-wise product:

1 · 1 + 5 · 0 + 9 · 0 + 2 · 0 + 3 · 2 + 0 · 1 + 6 · 0 + 2 · 1 + 1 · 0 = 9

4 · 1 + 9 · 0 + 6 · 0 + 5 · 0 + 0 · 2 + 1 · 1 + 3 · 0 + 2 · 1 + 9 · 0 = 7

The result is stored at the center of the applied location. With this scheme the same kernel
is applied at every possible location resulting in the output being of dimension 6 × 6 × 1.

∗As already mentioned I do not like this terminology too much because it always triggers people that are
afraid of artificial intelligent algorithms and robots taking over the world. These algorithms are not clever in
the sense of having a high IQ, but rather are extremely clever designed mechanisms that are able to produce
results far beyond the creator intentionally thought of.
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Sometimes this reduction is not desired, e.g. when many layers of convolutions have to
be performed one after another. In this case, the original data can be augmented with
appropriate values like zeros. This is called (zero-) padding. After the convolution step, the
result is called the feature map, since every value represents how prominently the feature
expressed by the kernel is represented at this location. The convolution step per layer
is usually done with multiple kernels for them to each train on different features. Here,
initialization is key. All the different kernels always have to be initialized with different
(pseudo-) random numbers. Otherwise the optimization step would take the exact same
action on every kernel’s weights and they all developed redundant to extract the same feature.
In most modern CNN architectures the next step would be pooling, which introduces
translation invariance.

6 2 1 7

4 5 0 6

2 3 2 1

2 8 7 8

6 7

8 8

Figure 4.5.: The max pooling algorithm applied with a 2× 2 kernel and stride 2.

There are many pooling techniques possible, but the two most prominent are average pooling
and max pooling. To the proceeding layers it often only matters that there was a certain
feature present in a specific area and not always where it was exactly. A pooling step has
to be defined with the hyper-parameters of kernel size and stride (the offset where the next
kernel should be applied with respect to the previous one), but does not contain any trainable
weights. Max pooling is visualized in figure 4.5, where out of every 2× 2 field in the feature
map only the maximum value is kept. Average pooling and other variants of course work in
accordingly similar fashion.

These two steps are now altered several times, where deeper convolutional layers create
feature maps of feature maps (of feature maps ...) until the final set of features is found.
How deep, which kernel sizes, how many kernels per layer, which pooling method and stride
to use, etc., are all hyper-parameters the neural network designer has to decide on. There is
no general rule of thumb and every problem and every data type requires thorough testing.
The final feature map is then flattened into a vector and usually fed through a multi-layer
perceptron network like discussed above.
A successful implementation of such an architecture can be found in our publication [Shilon
et al., 2019], which will be discussed in the following.
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4.2. Analyzing IACT Data with CNNs

As already mentioned in chapter 2, gamma-ray data analysis faces three main tasks:

• Background rejection: Only gamma-ray induced shower images are of interest, but the
majority of triggered data is coming from cosmic rays.
→ classification

• Direction reconstruction: To study morphology of extended sources and to estimate
background contamination.
→ regression in two coordinate variables

• Energy reconstruction: Reconstructing a spectral energy distribution (SED) for further
scientific research of the source, like modeling the particle acceleration mechanisms.
→ regression

Before those problems can be tackled, some preparation is needed: Data preprocessing and
data simulation.

4.2.1. Preprocessing

Since the H.E.S.S. camera pixels consist of photomultiplier tubes which have a circular
footprint, they are stacked in a hexagonal grid. Unfortunately this means that the data
cannot easily be stored as a two-dimensional pixel grid as nearly all other image data.
Usually, image data has an underlying regular grid with square pixels and the only variation
besides the width and height of an image is the number of color channels. Typically this is
one (grayscale), three (red, green, blue; RGB) or four (red, green, blue and alpha; RGBa)
values per pixel.
Not only do available software frameworks expect the data to have this common format, the
concept of applying e.g. a 3 × 3 kernel to a honeycomb grid simply does not work out of
the box. One can either resample the data to a square grid, or adjust the framework and
convolutional concept to deal with hexagonal data. Within the H.E.S.S. collaboration both
paths were pursued and published. See Holch et al. [2018] and Shilon et al. [2019] for details
on resampling and a proposal of hexagonal convolutions, and Steppa and Holch [2019] for
details on the hexagonal convolution implementation. For this work, the resampling approach
was chosen using rebinning and linear interpolation.
The calibration and twofold tailcut cleaning as described in section 2.1.3 on p. 13 are
applied to all data using H.E.S.S. standard software tools. After that, the data is exported
using a custom exporter and saved to the open file format HDF5 to be then read with
the Python deep learning analysis chain. These files are basically one-to-one copies of the
original H.E.S.S. files, still with image data stored per hexagonal pixel (PMT). Figure 4.6
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Figure 4.6.: Telescope images of a gamma-ray (top row) and a hadronic (bottom row) event.
The images consist of numerous event images laid in a common camera plane,
for visualization. Left column : Original camera pixel intensities. The square
images show the same event obtained from rebinning the hexagonal histogram
(middle) and linear interpolation (right) with a resolution of 100× 100.

shows examples of the resampling methods applied to a hadronic and a gamma like induced
event image. Either method is used during training dataset creation. Depending on the task,
the images are normalized to have pixel values stored as floating point numbers in the range
0.0 to 1.0. For direction reconstruction and event type classification, the shape of the image
features and their location within the the camera plane are very important. The convolution
kernels that are trained to extract them do better with scaled images since these features
are relative to each other. An edge that doubles in intensity should be detected as the same
kind of edge, no matter if it transitions from 4 to 8 or 42 to 84 pixel units. For energy
reconstruction, however, the image amplitude is a key feature and must not be normalized.
Global scaling over the whole set of training images is anyway applied to bring down the
numbers while preserving the ratio within the dataset. This is necessary because the weights
are usually initialized with values O(1).
The decision whether to use rebinning or interpolation also depends on the task. The impact
on the performance of both methods is comparable [Holch et al., 2018], but rebinning is much
faster in terms of processing time, since it can be described as a vector matrix multiplication.
When overlaying a square grid of resolution n×n onto the hexagonal arrangement of k camera
pixels, each rebinned pixel will contain the amount of every underlying pixel weighted by the
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overlapping area of the pixels. The image data is expressed as a flattened column vector vhex,
where the order of the pixels within the vector does not matter as long as it is consistent.
Its dimension is therefore (k × 1). The new image is expressed similarly and will therefore
have dimension (n · n× 1). A (n · n× k)-rebinning matrix M will handle the transformation
and contains the fractions of contribution for each combination of old and new pixels. Since
naturally not all pixels will contribute to each other, the rebinning matrix will be sparse,
which further speeds up computation with the use of special software libraries for sparse-
matrix calculations.

v(n·n×1)
square = M(n·n×k) · v(k×1)

hex (4.26)

M(n·n×k) has to be calculated only once per combination of new and old image dimensions
and is then stored on disc to be used over and over again. During the development and
debugging phase, this method was preferred for its speed.
When working with actual H.E.S.S. data and not only simulations, the rebinning method
can only be used for classification tasks. The reason is the way H.E.S.S. handles pointing
corrections. These corrections contain deviations from an ideal telescope such as, for example,
mechanical bending of the structure depending on the zenith angle, slight twists, sheers
or rotations of the camera and the whole structure etc. To deal with all of that, special
Pointing Runs are taken regularly every month and a pointing model is calculated, which
adjusts the pixel coordinates within the camera frame to represent the true configuration.
This unfortunately means there is no longer a pixel map where every hexagon is on its
expected location, as it is the case in the simulations. A rebinning matrix would have to
be calculated on an event-per-event basis, which then clearly introduces a serious overhead
and linear interpolation between the pixel values comes to hand as the new best choice for
resampling the hexagonal images to square pixeled ones.
If the very precise location and orientation of a shower image in the camera does not matter,
as it is the case for the classification task, the fast and easy rebinning can still be used. ∗

∗With a small catch: the index numbering of the pixels in the real cameras is not the same as in the
simulations, which one has to be aware of. Once remapped, the rebinning algorithm works as expected.
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4.2.2. Monte Carlo Simulations

The deep learning method used in this work is supervised learning, meaning there has to
be an underlying ground truth from which the network can learn. In the field of IACT
astronomy, this ground truth will always come from simulations, since there is no calibrated
reference probe emitting gamma-rays in the range of 1 − 100TeV one could quickly place
above the atmosphere.
The software "COsmic Ray SImulations for KAscade" (CORSIKA [Heck et al., 1998]) was
originally developed for the particle detector experiment Kascade in Karlsruhe, Germany
and has become a standard in the field. With this, one is able to simulate over 50 different
particles, like leptons (e±, µ±, νe, νµ), mesons (π0, π±, K0, K±, ...), baryons ( p, n, Λ, Σ0,
Σ±, ...), resonance states (ρ0, ρ±, ∆0, ∆−, ∆+, ∆++) and all corresponding anti-particles
propagating through and interacting with the atmosphere, each other, and the magnetic
field of the Earth. All known particle interaction channels are taken into account based on
extrapolated models from accelerator experiments.
But how reliable is this extrapolated data of a 100 TeV proton, if the most powerful hadron
collider, the LHC at CERN, is "only" able to reach peak energies of 14 TeV at the time
of this writing? Furthermore this data is gathered from head-on collisions and not in pure
forward direction as it is the case with air showers. This further complicates the adaption of
the results.
The answer is: We don’t know for sure. We believe those calculations extrapolate sufficiently
well, depending on the used interaction model. See for example Knapp et al. [1996] or Parsons
et al. [2011] for an investigation of different commonly used models and their validity for
ultra high energy physics.

The CORSIKA output is directly piped to the software sim_telarray [Bernlohr, 2008] which
calculates the H.E.S.S. telescopes’ response to every air shower and finally stores the Monte
Carlo (MC) data to disc.
Simulations were done for gamma-ray and proton induced air showers in the energy range of
0.05 to 150 TeV. For both particle types these were carried out with diffuse emission origin
at 20◦ zenith and 180◦ azimuth with a cone of 5◦. For gamma-rays there are additionally
simulated point sources with various offsets from the pointing direction to be used for
direction reconstruction.
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4.2.3. Working with H.E.S.S. Data

The following section summarizes the findings reported in Shilon et al. [2019], which I am
a co-author of. In this section, all tables and figures showing results are taken directly from
that article.

Network architectures

The neural network for the classification task was called a CRNN, as it is a combination of
the traditional Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN)
architectures. As described before, the convolution part of the network generates the feature
maps. Because those features are the same in each of the four cameras, the images are fed
through it separately, while the kernels share the same weights. After that, the feature maps
of all telescopes have to be combined. A Long Short Term Memory (LSTM) layer is used in
this place. These are the key components in recurrent networks since they excel in analyzing
sequences.

Figure 4.7.: Illustration of the LSTM cell. Image credits: Guillaume Chevalier under the
CC-BY 4.0 license. ∗

The LSTM cell contains three so-called gates: Forget-, input- and output-gate. The index t
can be understood as timestamp in a timed sequence or just as sample index in an arbitrary
list of inputs xt. The internal state (the memory) is stored in ct and the output is labeled
ht. Even before diving into the understanding of the internals, one can see that each cell’s
output is related to the previous output and the previously stored internal cell state. The
cell state is altered and then passed on every time the cell is called.

∗Source: https://commons.wikimedia.org/wiki/File:The_LSTM_cell.png,
Creative Commons License: https://creativecommons.org/licenses/by/4.0/legalcode
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Taking the previous output ht−1 and the current input xt, the perceptron layer followed by
a sigmoid activation in the forget-gate outputs a vector with values in the rage 0 to 1 of the
same size as the internal state c, which is then multiplied element-wise with the passed cell
state ct−1. The forget-gate is therefore responsible in learning what to ignore of the previous
memory, based on the current input.
After cleaning up the internal memory state, it is the input-gate that updates the internal
state. This requires two separate tasks, namely identifying which information should be
stored and how important it is. Therefore, it consists of two trainable layers, one with again
the sigmoid as activation (to encode the importance per feature between 0 and 1) and the
other with the hyperbolic tangent function (to encode the feature in the range -1 to 1). They
get combined in order to apply the importance scaling and then the result is added to the
internal state, which herewith got updated.
At the output-gate, the last trainable layer will calculate a result based on the input. It is
then multiplied with the newly updated internal cell state, which is scaled beforehand by an
element-wise tangens hyperbolicus (tanh). This procedure is repeated for as many elements
t as there are in the sequence.
In the case of H.E.S.S. data classification, the sequence consists of the four feature maps
sorted by the total image amplitude of the original images. Ideally one would like to sort by
the arrival time of the shower front at each telescope, but unfortunately this data is only
available for the newly upgraded H.E.S.S. cameras. The simple assumption of a brighter
image coming from a shower closer to the telescope is therefore used. The full architecture
as used in the publication can be seen in figure 4.8a.
For the regression task of predicting the direction of gamma-ray showers, a much deeper
model was necessary. This can be understood by considering the fact that predicting a
continuous label is equivalent to doing classification with an infinite number of classes. In
this case, it turned out to be advantageous in terms of output accuracy to stack the four
camera images and treat them similar to color channels. Usually convolution and pooling
alternate each other, but since this reduces the dimension of the feature map each time
(roughly by a factor of two, depending on padding and kernel size), pooling is applied only
after every other convolution layer. Otherwise the network could not be of the desired depth,
e.g. if starting with inputs of dimension 64× 64 pixel as in Fig. 4.8b.
Both networks use dropout. This is a layer without trainable weights that randomly sets a
certain amount of inputs to zero. This technique is used as regularization and helps against
overfitting by forcing the network to learn broader, more complex feature relations and not
relying on individual (sometimes misleading) single features.
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(a) CRNN (b) CNN

Figure 4.8.: Neural Network architectures used for classification (CRNN) and regression
(CNN). FC x means fully connected with x neurons. n × n Conv, k stands
for a convolutional layer with k kernels, each of dimension n × n. (Figure as
published in Shilon et al. [2019])

Network training and data sets

Training was performed on dedicated Linux machines, equipped with powerful but still
consumer grade hardware (full system specifications in the appendix, table 4 on page 126).
No high performance computing cluster was used for training tasks. Only the simulations, if
not already provided by the H.E.S.S. collaboration, were carried out on a cluster, since for
this task CPU parallelization is the most profitable. Neural Network training on the other
hand benefits from Graphical Processing Units (GPUs) and their specialized hardware to
perform vector, matrix and higher order tensor operations.

The description of the used data sets is given in table 4.1.
For classification, there was one training and two different validation sets, while for regression
there have been two training and one validation set. The data sets with applied selection
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task preselection cuts # events energy range type

classification
training none γ: 1× 106

p: 1× 106
γ: 0.02 - 100 TeV
p: 0.2 - 200 TeV

diffuse
view cone 2.5◦

classification
validation none γ: 320,000

p: 320,000 see above see above

classification
validation

H.E.S.S.
standard

γ: 196,000
p: 196,000 see above see above

regression
training none 1× 106 0.05 - 100 TeV diffuse

view cone 3.0◦

regression
training

H.E.S.S.
standard 620,000 see above see above

regression
validation

H.E.S.S.
standard 500,000 see above point source

0.5◦ offset

Table 4.1.: Data sets for deep learning training and evaluation. The standard preselection
cuts are as explained in section 2.2.2: size > 60 p.e., local distance < 0.525 m and
multiplicity ≥ 2.

cuts are subsets of the original sets in both cases. Only the point source regression data set
was a completely different one, since all other Monte Carlo simulations were performed with
diffuse primary particle origin. It was chosen as a benchmark in comparison to gamma-ray
point source analysis of real data.

Results on Monte Carlo Data

The results for both network tasks can be seen in figure 4.9. Figure 4.9a shows the distribution
of the classifier output variable ζ, which is designed to be in the range 0 to 1, where higher
values mean the classified event is more likely to be a signal, e.g. a gamma-ray. In an ideal
scenario both distributions for signal and background would be completely disjoint and a
ζ threshold could be set in between to distinguish the two classes. With this distribution
however, one has to carefully decide where to put the threshold. A higher ζ-value will suppress
more false positives (the orange bump on the right) while losing true positives, whereas
a smaller value increases both the number of true positives and false positives (see the
contingency table 4.2 for the term definitions).
Since our research field is highly background dominated, it is in the best interest to suppress
as much background as possible, even at the cost of losing some of the precious signal
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Figure 4.9.: The main results as published in Shilon et al. [2019]. Top: Performance of the
CRNN measured on the diffuse simulation data set. Bottom: Performance of the
CNN measured on the point source simulation data set

events. Having some signal events over a negligible background is better than having some
more which in return get lost in an overwhelming majority of background.
One way to visualize the performance of a binary classifier is the receiver operating
characteristic∗ (ROC) curve. It is obtained by plotting the true positive rate against the
false positive rate while scanning the ζ threshold from 0 to 1. Every point in a ROC diagram
is equivalent to a binary classifier with fixed ζ threshold.
The further away from the diagonal a point is, the better. The diagonal line represents
random guessing. Being for example at point (0.7, 0.7) means the model predicted a signal
70% of the time independent of the input, hence it will automatically get a true positive rate

∗This term goes back to World War II, where the false and true positive rates of radio antenna receivers
trying to identify enemy aircrafts was investigated and tuned.

94



4.2. Analyzing IACT Data with CNNs

label signal label background
prediction signal True Positive False Positive
prediction background False Negative True Negative

sensitivity or true positive rate: TPR = TP

TP + FN

fall-out or false positive rate: FPR = FP

FP + TN

specificity or true negative rate: TNR = TN

TN + FP

miss rate or false negative rate: FNR = FN

FN + TP

precision or positive predictive value: PPV = TP

TP + FP

accuracy: ACC = TP + TN

TP + TN + FP + FN

Table 4.2.: Contingency table and metric definitions

of 0.7 but also a false negative rate of 0.7. A classifier in the top left corner (0.0, 1.0) is to
100% accurate without any errors.
This curve shows the possible trade-offs a classifier can take but yet alone is not sufficient
to rank one over the other. A metric that tries to do so is the Area Under the Curve (AUC).
It will be a number between 0 and 1, but no classifier should have a value below 0.5, which
would be below the guessing diagonal. Indeed, an algorithm producing a ROC curve on the
lower right of the plot would be worse than guessing. At first this sounds counter intuitive. It
can be understood as a classifier that is seeing the relations of the features, but using them
the wrong way. By negating its outcome, one would mirror the ROC at the diagonal and
turn the worse than guessing classifier into an actually working one.
The AUC can be interpreted as the probability that a randomly selected signal event will
have a higher ζ score than a randomly selected background event [Hanley and McNeil, 1982].
In contrast to other metrics like accuracy or precision, this metric does not depend on the
choice of a selected ζ threshold and is therefore suitable to compare the "raw" predictive
power of a given model [Hand and Till, 2001].
Now looking at Fig. 4.9b we can see that the CRNN classifier outperforms the standard
H.E.S.S. BDT even on the data set without preselection cuts. Notice that it was only trained
on data without cuts. The BDT performance on data without cuts is not shown, but would
be unfair anyway, since the BDT was trained on preselected events. The CRNN performance
gives hope for this technique to be able to loosen the cuts in general and increase the total
sensitivity of the H.E.S.S. experiment.
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The regression task on the other hand was not as clearly successful as its classification
counter part. Figure 4.9c shows the R68 plotted over energy. This value is calculated as
the 68% containment radius of the reconstructed events around the true source position and
usually serves as a measure of the point spread function (although this is normally calculated
by running point source simulations through the ray tracing simulation of the telescope
in sim_telarray). The performance is clearly better than the simple Hillas reconstruction,
but failed to beat the state of the art ImPACT reconstruction, even with training only on
preselected events.

Results on H.E.S.S. data

The interesting part of the evaluation of a new analysis chain is the performance on actual
data. However, also here the absence of calibration targets for IACT experiments constitutes
a challenge. Running a certain number of data events through a classifier and claiming one
tool found more signal than another is worthless if one does not know the precision (how
many of the claimed signal events really are true signal events) of the tool. Simply relying
on the Monte Carlo performance was not an option, since there were already hints that the
CRNN might react differently to real data than to simulated data.
The way this issue was addressed is by using the strong reconstruction power of ImPACT :
An analysis with ImPACT was performed twice on the same data set of 14 runs taken
on the strong gamma-ray point source PKS 2155-304, once with the class label prediction
coming from the standard BDT, and once with the predictions taken from the CRNN.
The runs have been carefully selected to pass the H.E.S.S. quality cuts and having a mean
zenith angle during the observation of 20◦ ± 0.5◦ to match the simulated training data
set. After reconstruction, the standard reflected background estimation [Berge et al., 2007]
was performed on both results. Since false positives (hadron induced showers classified as
gamma-ray showers) are uniformly distributed over the sky, their average contamination
can be estimated by looking on regions around the source position where no gamma-rays are
expected (On- and Off-regions). The results are summarized in table 4.3. The CRNN classifier
manages to increase the number of signal events detected over the amount of background
(Signal to Noise ratio) and improves the significance of the detection over the traditional
method similarly to the improvement seen on Monte Carlo simulations.
The direction reconstruction was tested on a single run of PKS 2155-304 during the
exceptionally bright flare in 2. The θ2 distributions for the different reconstruction algorithms
are presented 006 [Aharonian et al., 2007b]. This data set is very rich in gamma-rays, so the
effect of the background rejection method is minimal in figure 4.10. θ gives the angular
distance in degrees of a reconstructed event to the known source position from literature. In
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this case the CNN regression was no longer better than the Hillas method but on the very
same level (both have R68 = 0.102◦) and far behind ImPACT (with R68 = 0.067◦).

Configuration Non αNoff σ Signal / Background
ImPACT with BDT 704 55.8 46.1 11.6
ImPACT with CRNN 832 62.3 50.8 12.4

Table 4.3.: Results of the CRNN versus BDT comparison tested on PKS 2155-304.
Significance σ calculated after Li and Ma [1983]. (Table as published in Shilon
et al. [2019])

(a) θ2-histograms (b) Skymap

Figure 4.10.: Results of reconstructed events from the PKS 2155-304 flare as published in
Shilon et al. [2019]. a) Comparing the θ2-histograms of Hillas, ImPACT and
the CNN regressor. b) The generated skymap using the CRNN classifier and
CNN regressor.

This manifests the hypothesis that the features the neural network learns from Monte Carlo
simulations cannot be transferred one to one onto real data applications. There has to be
an underlying fundamental difference in the event images that is picked up by the networks,
but do not disturb the log likelihood fit or geometrical reconstruction methods.

To my knowledge, our article was the first peer reviewed publication on successful application
of deep learning techniques to the analysis of IACT data.
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4.2.4. Conclusions on Machine Learning

Using Machine Learning and explicitly Deep Learning as the state of the art representative
for IACT analysis tasks showed mixed results. In principle, given enough data and training
time, a model should always be as good as analytic counterparts with the additional potential
of outperforming it due to the absence of the restrictions from human feature engineering.
The Hillas parameters assume elliptical shapes and fail in anything deviating from that,
ImPACT is designed to fit templates, assuming there will always be a good match available,
etc. By training an algorithm on the actual data and letting it develop the necessary features,
this bias is gone. The classifier showed this behavior, as it was even able to separate event
images without the local distance cut and this way excelled the performance of the traditional
methods. However, since this was not actual data which it was trained on, but simulations,
the models were not able to generalize good enough in order to transfer that performance to
actual measurements.
Unfortunately, there is neither a gamma-ray nor proton calibration source or sample available
at ultra-high energies. A Gedankenexperiment would place or hover such a source (e.g. a
portable and more powerful version of the LHC) above the telescopes while shielding all
other radiation from reaching the cameras and collect its data. This would be a veritable
goldmine of information and all analysis techniques (deep learning as well as conventional)
could profit. As long as this stays science fiction, simulations based on extrapolated particle
models are everything that is available and in our case it turned out they serve sufficiently
well for the traditional methods but can only be used as a basis for deep learning to a certain
extend. It shall be noted, that when speaking of discrepancies in simulations, the simulation
of the telescope response is included.∗

As an analogy I like to think of a very faint watermark-like feature in the corner of the data,
a little dot or cross that is barely perceptible. Such a feature would not significantly influence
the image moments and therefore the Hillas parameters, but could easily be picked up by
one of the CNN kernels. If it is only present in one type of the simulation data, the neural
network will focus on that feature and yield a perfect prediction of the particle type without
even considering the actual Cherenkov light induced part of the image. When used on real
data without that watermark, it then surely will fail to do a prediction, whereas the inferior
Hillas parameters might be off by a bit, but still work as expected.
Of course it is not as simple and obvious like that, but some things in the simulations are
different to the data and that difference is picked up by the networks but does not majorly
disturb the traditional methods. In principle, this is one of the amazing characteristics of

∗From private communications with D. Jankowsky during the work on his PhD thesis on the cosmic ray
proton spectrum I learned, that this influence of the telescope response modeling might even be more severe
than the choice of the particle interaction model.
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those algorithms: To be able to recognize features a human would never have thought of.
But in our case it limits the applicability of those methods.
To showcase the problem, a CNN classifier was trained to separate gamma simulation, proton
simulation and real data events into the three classes. In the following it is assumed that the
data events are basically only of hadronic origin. To emphasize this, see table 4.3 on page
97. It lists the results of the previously presented classifiers and - depending on which one
to trust - states that there were roughly 700-800 signal events in the total of 14 runs used to
generate this result. With every data run containing in the order of 200.000 recorded events,
the fraction of signal "contamination" can be treated as negligible, even if one would account
for false negatives.
The final data set for this purpose ended up with 829537 images (267716 from gamma
simulation, 281821 from proton simulation and 280000 from data). 10% of each class was
randomly selected and set aside as validation data, which led to a final training sample size
of 746583.
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Figure 4.11.: Results from the three class model trained on gamma simulation, proton
simulation and real data events.

After training, the model was evaluated on the validation set. The results are presented in
figure 4.11. For this case of three classes, the concept of ROC and AUC are not applicable.
Instead, figure 4.11a shows the confusion matrix, which has been horizontally normalized
and shows the percentage of true class for every predicted class. Reading it from left to
right tells about the true nature of an event the classifier predicted to be of a certain class.
Reading it from the bottom to the top gives a feeling on what label an input got on average.
A confusion matrix from a perfect classifier does not contain any values off the diagonal. The
presented result of course is far from being perfect, but nevertheless astonishingly good. The
model could clearly distinguish gamma simulations from the other two classes, which was to
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be expected. But surprisingly it does perform far better than guessing when asked to decide
between proton simulations and data events. If the proton simulations were indistinguishable
from the data, the middle and bottom row would each read [0 50.0 50.0]. "This is not a gamma
event, but no idea whether it is simulated or recorded."
Another way to visualize the relation between the predictions is a ternary plot like in figure
4.11b. The data labels are one-hot-encoded vectors and the models prediction for every
event is a tupel of three values in the range zero to one. Those can be used to generate
such a plot, where every true label represents a corner of a triangle and the predictions are
scattered within according to the values they got assigned. The gamma events are clearly
concentrated in their corresponding corner and even the proton and real data points show a
clear indication of separation. Ideally the green and blue points would be completely mixed
up on a line from the bottom right corner to the middle of the opposite edge (equally likely to
be proton or data). Example images of the three classes together with their prediction scores
for correct and wrong cases can be found in the appendix (figures 13, 14 and 15 starting at
page 120).

This concludes the studies on machine learning with a grain of salt. Those algorithms can
perform incredibly well, but are not the magic answer to all data science problems as often
stated in public media.
The direction reconstruction via image moments is of pure geometric nature and could in
principle be done with pen and paper by intersecting the main axis of two or more elliptical
shower images. As discussed before, neural networks excel in finding feature correlations that
sometimes even surprise the developers. But if there already exists a good analytic description
of the problem, many times it is not advisable to use machine learning algorithms to solve
the problem. A nice toy example to demonstrate this is to train a model on a simple analytic
task: y = (x0 +x1) ·x2. Three inputs and one output with a clear relation between them. One
Million random numbers were generated for each x0, x1 and x2 in the range [0.0, 1.0] and a
small (4 fully connected layers with a total of 6945 trainable parameters) regression model
was trained to predict the output. The results on a test set, not included in the training
data, are shown below and a more complete visualization in form of the migration matrix
can be found in figure 4.12:

(0.823142 + 0.337086) · 0.843242 = 0.978353 → prediction: 0.973204

(0.021558 + 0.170060) · 0.615767 = 0.117992 → prediction: 0.124893

(0.001810 + 0.252883) · 0.074860 = 0.019066 → prediction: 0.025878

(0.152738 + 0.384317) · 0.619247 = 0.332570 → prediction: 0.334710

(0.204677 + 0.483588) · 0.842557 = 0.579902 → prediction: 0.582187

100



4.2. Analyzing IACT Data with CNNs

Already in this case the predictions are far from perfect, even though it was such a simple
task to perform. But one could argue that the model was successfully trained.
To show that the model did not learn how to add and multiply the inputs, but rather found
an approximation which is only valid in the given training range, it was evaluated on a set of
values in the ranges [0, 2]. In this case, the predictions could at most be called an "educated
guess":

(0.384909 + 0.738070) · 0.364378 = 0.409188 → prediction: 0.412907

(2.270194 + 1.418471) · 1.978805 = 7.299150 → prediction: 4.891516

(2.915166 + 1.519334) · 2.822722 = 12.517361 → prediction: 6.739827

(2.428426 + 1.751576) · 1.304653 = 5.453454 → prediction: 3.998297

(0.249571 + 0.293748) · 1.670190 = 0.907445 → prediction: 1.006051
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Figure 4.12.: Migration matrix of the toy example. The white dashed line shows the values
used during training 2 = (1 + 1) · 1, the blue line marks the diagonal where the
prediction equals the true value.
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In the case of IACT data, classification of event data can indeed be improved, but it was
not possible to prove superior performance in regression tasks. This is also the reason why
no results on energy reconstruction were included in the publication and this thesis. In the
classical analysis, the energy is obtained via lookups from the reconstructed shower geometry
and the measured amount of light intensity within the camera. As long as the networks are
not able to outperform the ImPACT and Model analysis in shower reconstruction, they will
always lag behind in energy estimation performance, since those tasks are so closely related.
And as demonstrated, not all problems are best solved with neural networks.

But this does not mean the end of neural network based astroparticle research. As an
example, two results of the master thesis from Hillig [2019], which I supervised are presented.
Her work examined the possibility to analyze the composition and spectra of heavier nuclei
within the H.E.S.S. data, which are usually taken together as "hadronic background".
Although the results on real data suffer from similar problems like presented in this work,
it shows that the best goal of neural network based research might not be to beat the
established techniques, but rather to grant access to topics that seem impossible with the
standard methods.
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Figure 4.13.: Regression results on iron simulations using neural networks.
a) The energy bias and resolution (shown as the error bars of the bias) of neural
network based reconstruction. The dashed lines mark the region where the bias
is within ±10% (29 TeV - 99 TeV).
b) Reconstructed total flux calculated using two different minimization routines
within the forward folding approach.
Figures from Hillig [2019], where additional information can be found.
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Summary

5.1. Moonlight Observations

In the first main chapter of this work, the night sky brightness model was developed and its
application presented. Starting with the simple model of Krisciunas and Schaefer [1991], a
pipeline was set up to extract photometric data from the available cloud monitor. These CCD
camera images of the complete night-sky, which are taken every few minutes regardless of the
observation conditions and the Cherenkov telescope schedule, proved to be a viable source of
input in the early stage of the model development. It was shown that the general functional
description of moonlight induced brightness over the sky and the angular dependencies were
carefully chosen by the original model’s authors. However, the lack of a proper background
description quickly became apparent. At low moon phases or in times where it is not visible at
all, the milky way clearly stands out as the brightest region in the sky. Although single stars
like e.g. Sirius or Vega do represent the absolute brightest spots, they were not too worrying
in first place, as the telescopes do a good job of masking their positions j by switching off the
few corresponding pixels those stars are visible in. This technique to protect the camera and
improve the data quality was already established within the experiment and the influence
of those small numbers of turned-off pixels was proven to have little to no impact on the
analysis by the collaboration. But instead of modeling the diffuse emission of the galactic
plane, a different, more complete approach was taken: The Python tool which calculates the
NSB model and produces the outputs was extended to query the publicly available GAIA
database API in order to retrieve photometric data of up to one billion stars. The main
properties of interest in each data line were the coordinates and visual magnitude of each
object. To combine them and generate a map with unit brightness per area, the sphere of
the sky was segmented with Hierarchical Equal Area isoLatitude Pixelisation (HEALPix).
This map is saved as a lookup for various resolutions and provides the new background for
the model.
Together with this new background description, a refit of the moonlight scattering function
f(ρ), with ρ being the angular separation between the point of interest in the sky and the
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Moon, was performed. This was done in a similar fashion as by Krisciunas et al. for their
original model. Instead of using the function to calculate the brightness of a certain spot
in the sky, the equation was rearranged to provide values for f(ρ) depending on measured
brightness values at various locations, separations and moon phases. With the photometric
data from the CCD images, an almost complete coverage of the parameter space could be
reached for this fit, since every pixel in an image represented a different coordinate in the
sky with available brightness data. The results of this advanced NSB model did not only
show great visual resemblance with the cloud monitor pictures, but significantly lowered the
model deviation from the data.
The final evolution of the NSB tool and its model was reached with the use of actual H.E.S.S.
camera monitoring data, when the collaboration started to schedule the first moonlight runs
in early 2019. Roughly every second the cameras are operating, the status of every pixel
is recorded. This includes the current drawn by the single PMTs, which can be converted
to perceived brightness. On the positive side, it allowed to further improve the model by
comparing its output directly to brightness measurements of the actual camera hardware,
but had the drawback of being stuck with the pointing nature of the telescopes. A typical
H.E.S.S. observation run is 28 minutes in tracking mode, where the telescopes follow a
coordinate in the sky. Unfortunately, the moon period is too long compared to that time.
During this half hour its position relative to the stars as seen from the Earth does not change
significantly, which means that on the one hand a run provides a lot of data due to the 1 Hz
monitoring rate, but on the other hand does not cover the parameter space (especially the
source moon separation) well. On top of that, the extreme cases like strong moon phases or
low source altitudes were not covered by these runs. Nevertheless, more than 70 runs with a
total observation time of 1610 minutes went into the calculations, with a big part being data
taken during the deeper, wider, faster campaign [Andreoni and Cooke, 2017] in June 2019.
With the newly fitted scaling parameters for the individual model parts and the introduced
moon horizon correction, the currents model outperformed the two previous versions. The
results of the relative deviation calculations for all three models were:

Basic model: µ = −0.2374 σ = 0.3843

Advanced model: µ = −0.0216 σ = 0.2250

Currents model: µ = −0.0046 σ = 0.1653

The values for µ and σ are the center and full width at half maximum of the distributions.
With this model, predictions of the brightness for all locations in the sky for all time slots over
a whole year have been produced. These were analyzed in order to calculate the amount of
available time each spot is observable below a certain threshold and the resulting theoretical
time gain maps have then been masked with an averaged H.E.S.S. observation pattern in
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order to quantify a realistic amount. Additionally, the integrated charge was calculated and
similar maps were produced. With those, the amount of (additional) PMT aging - if looking
at a specific spot - could be derived.
By comparing the lifetime reduction with the additional time through moonlight observa-
tions, a lifetime corrected time gain could be calculated. For nominal gain settings of 80
p.e./ADC, this value was positive up to a NSB limit of 230 MHz with a maximum of ≈ 56
h/year at 125 MHz. The corresponding maximal absolute time gain is 215 h/year. This is
called the conservative limit approach. The so called aggressive balanced approach sets the
limit at the point where the lifetime corrected time gain is equal to zero and turns out to
yield 446 h/year absolute extra time.
The average amount of total data runs with H.E.S.S. is 735 h/year in the considered years
(2013-2016), which means the aggressive balanced approach yields an extra of up to 60% at
nominal gain settings. One has to keep in mind that the definition of this strategy was to be
at zero lifetime corrected time gain, which means the PMTs reach their end of life up to 60%
faster as well. With this approach the same total amount of data will be taken as without
moonlight observations, but in a much quicker time.
The last discussed limit was the technical possible maximum. Pushing the PMTs to the edge
of their specifications, it would be possible to gain an absolute of 648.5 h/year but effectively
means losing 131.9 h/year if taking the lifetime reduction into account. This translates to
a theoretical increase of the duty cycle by 88%, but of course should only be considered if
money and PMT supply does not play a role, which it certainly does.
Finally, those three strategies were investigated depending on a reduction in gain. Naturally
all time gain values increase, since in the extreme case of zero gain, where the cameras are
turned off completely, one can point them anywhere - even at daytime.∗ To which extend
the gain might be reduced in the future is a decision beyond the scope of this work, as it
requires thorough MC studies of the calibration and analysis chain. The conclusion of this
work is that moonlight observations are not only feasible but indeed provide a huge increase
of available observation time, even at nominal gain setting. Those extra hours do not have
to be observed all the time, but they e.g. allow for many more targets of opportunity the
system could respond to. The famous GRB 190114C, which was observed by the MAGIC
collaboration during moonlight, would have been a viable target for H.E.S.S.

∗Except that having the sun being focused by 107m2 mirrors is generally spoken not a very sane idea.
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5.2. Machine Learning

The second main chapter of this work evaluated the possibility to use machine learning
algorithms as an alternative way of analyzing the data already recorded. We like to call our
data "images", as they can be easily visualized by color-coding every pixels (the single PMTs)
response and showing the result with the proper pixel arrangement on screen. However, this
arrangement is the main difference to conventional image data: Instead of orthogonal pixel
positions, the H.E.S.S. cameras have an underlying hexagonal grid since the PMTS are
simply spoken tubes that are most densely packed this way. In order to use any of the
available machine learning frameworks, one has to transform those images in a proper way
to be used as an input or rewrite the way the framework defines an image. In this work
the first approach of resampling the images was taken: Linear interpolation and rebinning.
Interpolation is slower but more versatile. Rebinning is by far the quickest method as it can
be described by a matrix-vector multiplication as long as the pixel map is unchanged. This
happens when dealing with real data, where each pixel location is virtually changed in order
to introduce the pointing corrections of the telescope.
These adjustments do not throw off the standard analysis techniques like the calculation of
the Hillas parameters via the image moments, since the input to those are the coordinate
pairs of each pixel anyway. They do not have to be in any special (or even a regular square)
grid for the calculations to work out. The same holds for the ImPACT and Model analysis.
After preprocessing, the next hurdle was the fact that an air shower event is seen by up to four
telescopes, which had to be combined somehow in order be analyzed together. Inspiration
was taken from other image based machine learning tasks and the two solutions were: Either
interpret the single images as a sequence or treat them as color channels of the same image.
The first showed to be better suited for classification tasks. This can be interpreted as the
model splitting its decision in four parts, where each is influenced by the ones taken before
and was implemented using Long Short Term Memory Cells. For the regression task of
predicting the shower origins as continuous coordinate values, expressing the event as an
image with four channels worked best.
A caveat which was not mentioned yet is the cases where not all four telescopes were
triggered. In those events, the corresponding images were set to pixel values of all zero.
This might not be the best technique and further investigation in that direction is needed.
The performance of the deep learning models at Monte Carlo simulations were very promising
and the classifier clearly outperformed the traditional H.E.S.S. method. This was shown
using the decision-threshold independent measure of Area Under the Curve, which can be
interpreted as the probability that a randomly chosen signal event gets a higher classification
score than a randomly picked background event. No classification threshold cut optimization
is needed. The results can be found in table 5.1:
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Classifier trained on tested on AUC
CRNN no cuts preselected 0.9915
CRNN no cuts no cuts 0.9875
ImPACT BDT preselected preselected 0.9642

Table 5.1.: AUC results of CRNN and BDT. To emphasize the possibility of successfully
classifying events, which the standard pipeline discards through preselection cuts,
the CRNN was trained without any cuts in local distance and size.

The model for direction reconstruction was clearly better than the Hillas analysis on
simulated events but could not outperform the two likelihood fitting methods, even if trained
only on preselected events. In fact, many of the development models during hyperparameter
optimization could not even reach Hillas level of reconstruction, which shows the limitations
of machine learning techniques.
When evaluating the two models with real H.E.S.S. data, the deep learning classifier was
still able to perform better than the standard one, increasing the signal to noise ratio of the
PKS 2155-304 analysis from 11.6 to 12.4. The network for direction reconstruction however
dropped to the level of the Hillas analysis with R68 = 0.102◦ for both, where ImPACT
manages to reach R68 = 0.067◦ on the data of PKS 2155-304.
The reasons for this lack of performance are still not fully understood, but possible
explanations include that the simulations are not suitable for machine learning training
(as a model was able to distinguish between simulated and real data), or the task cannot be
approximated well enough by these algorithms (demonstrated by the toy example of adding
and multiplying numbers).
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A. Plots and Images

Figure 1.: Illustration of possible 60 p.e. shower images that would survive the tailcut
cleaning. On the left two pixels at 10 p.e. surrounded by 8 pixels with 5 p.e.,
or on the right 6 pixels with 10 p.e.
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Figure 2.: The potential extra time to be gained per year for every HEALPix, when setting
the brightness limit to 550 MHz, the minimum source altitude to 30◦ and allowing
the Moon to be above the horizon.
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Figure 3.: The available dark time without moon per year for every HEALPix, when setting
the minimum source altitude to 30◦.
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(a)

(b)

(c)

Figure 4.: NSB data and model fit (DWF first night). Times with moon above the horizon
are shaded gray.
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(a)

(b)

(c)

Figure 5.: NSB data and model fit (DWF second night). Times with moon above the horizon
are shaded gray.
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(a)

(b)

(c)

Figure 6.: NSB data and model fit (DWF third night). Times with moon above the horizon
are shaded gray.
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(a)

(b)

(c)

Figure 7.: NSB data and model fit (DWF fourth night). Times with moon above the horizon
are shaded gray.
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(a)

(b)

(c)

Figure 8.: NSB data and model fit (auxiliary data 1). Times with moon above the horizon
are shaded gray.
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(a)

(b)

(c)

Figure 9.: NSB data and model fit (auxiliary data 2). Times with moon above the horizon
are shaded gray.
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Figure 10.: NSB data and model fit (auxiliary data 3). Times with moon above the horizon
are shaded gray.
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Figure 12.: Fit parameter distributions of the final, stable fit
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(a) correct prediction (b) correct prediction

(c) wrong prediction (d) wrong prediction

Figure 13.: Classification results of simulated gamma showers.
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A. Plots and Images

(a) correct prediction (b) correct prediction

(c) wrong prediction (d) wrong prediction

Figure 14.: Classification results of simulated proton showers.
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(a) correct prediction (b) correct prediction

(c) wrong prediction (d) wrong prediction

Figure 15.: Classification results of data showers.

122



B. Tables

B. Tables

run target date duration [minutes]
150635 HESS J1702-420 29.06.2019 02:06 28.0
151093 PKS 1510-089 05.07.2019 18:10 28.0
151096 PKS 1510-089 05.07.2019 18:39 28.0
151172 PKS 1510-089 07.07.2019 20:21 12.7
151174 PKS 1510-089 07.07.2019 21:07 18.0
151173 PG 1533+113 07.07.2019 20:36 28.0
151201 PG 1533+113 08.07.2019 21:48 28.0
145077 Crab Nebula 26.01.2019 21:29 28.0
145082 Crab Nebula 26.01.2019 21:58 28.0
145083 Crab Nebula 26.01.2019 22:26 0.8
145084 Crab Nebula 26.01.2019 22:28 28.0
145086 Crab Nebula 26.01.2019 22:56 10.5
145087 Crab Nebula 26.01.2019 23:07 0.7
145088 Crab Nebula 26.01.2019 23:11 0.1
145089 Crab Nebula 26.01.2019 23:13 8.1
146753 Eta Carinae 04.03.2019 22:24 28.0
146754 Eta Carinae 04.03.2019 22:53 28.0
146755 Eta Carinae 04.03.2019 23:22 25.1
146756 Eta Carinae 04.03.2019 23:50 28.0
146757 Eta Carinae 05.03.2019 00:19 28.0
153235 PSR J1723-2837 02.09.2019 17:59 28.0
153238 PSR J1723-2837 02.09.2019 18:28 28.0
153245 PSR J1723-2837 02.09.2019 18:57 28.0
153248 PSR J1723-2837 02.09.2019 19:26 28.0
153250 PSR J1723-2837 02.09.2019 19:54 11.2
153897 PKS 2155-304 22.09.2019 23:53 28.0
153898 PKS 2155-304 23.09.2019 00:22 28.0
153899 PKS 2155-304 23.09.2019 00:51 25.4

Table 1.: Run list of model fit data part 1 (auxiliary)
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run target date duration [minutes]
150504 NGC6101 24.06.2019 23:22 4.5
150505 NGC6101 24.06.2019 23:28 28.0
150506 NGC6101 24.06.2019 23:57 28.0
150507 NGC6744 25.06.2019 00:26 28.0
150508 NGC6744 25.06.2019 00:54 28.0
150509 NGC6744 25.06.2019 01:23 28.0
150510 NGC6744 25.06.2019 01:52 28.0
150511 NGC6744 25.06.2019 02:21 28.0
150512 NGC6744 25.06.2019 02:50 28.0
150513 FRB110626 25.06.2019 03:19 28.0
150514 FRB110626 25.06.2019 03:48 27.0
150534 NGC6101 25.06.2019 23:05 5.0
150535 NGC6101 25.06.2019 23:15 28.0
150536 NGC6101 25.06.2019 23:44 28.0
150537 NGC6101 26.06.2019 00:13 28.0
150538 NGC6101 26.06.2019 00:41 28.0
150539 NGC6744 26.06.2019 01:10 5.0
150540 NGC6744 26.06.2019 01:16 28.0
150541 NGC6744 26.06.2019 01:45 28.0
150542 NGC6744 26.06.2019 02:16 28.0
150543 NGC6744 26.06.2019 02:45 28.0
150544 FRB110626 26.06.2019 03:14 28.0
150545 FRB110626 26.06.2019 03:43 28.0
150568 NGC6101 26.06.2019 23:26 28.0
150569 NGC6101 26.06.2019 23:55 28.0
150570 NGC6101 27.06.2019 00:23 28.0
150571 NGC6101 27.06.2019 00:52 28.0
150572 NGC6744 27.06.2019 01:21 10.0
150573 NGC6744 27.06.2019 01:32 28.0
150574 NGC6744 27.06.2019 02:01 28.0
150575 NGC6744 27.06.2019 02:29 28.0
150576 NGC6744 27.06.2019 02:58 28.0
150577 FRB110626 27.06.2019 03:28 28.0
150578 FRB110626 27.06.2019 03:57 17.8
150596 NGC6101 27.06.2019 23:14 28.0
150597 NGC6101 27.06.2019 23:43 28.0
150598 NGC6101 28.06.2019 00:12 28.0
150599 NGC6101 28.06.2019 00:40 28.0
150600 NGC6744 28.06.2019 01:10 28.0
150601 NGC6744 28.06.2019 01:39 28.0
150602 NGC6744 28.06.2019 02:07 28.0
150603 NGC6744 28.06.2019 02:36 28.0
150604 NGC6744 28.06.2019 03:05 15.0
150605 FRB110626 28.06.2019 03:21 28.0
150606 FRB110626 28.06.2019 03:50 25.1

Table 2.: Run list of model fit data part 2 (DWF)
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Limit
[MHz]

Tm
[h/year]

Td
[h/year]

Td′+m
[h/year]

Qm
[C/year]

Qd
[C/year]

Qd′+m
[C/year]

τ T ∗m
[h/year]

0 0.0 0.0 735.1 0.0 0.0 17.9 1.00 0.0
50 0.0 0.0 735.1 0.0 0.0 17.9 1.00 0.0
60 2.2 17.7 737.3 0.0 0.2 17.9 1.00 1.2
70 27.9 124.6 763.0 0.3 1.5 18.2 0.98 14.0
80 68.0 230.9 803.1 0.9 2.9 18.8 0.95 30.4
90 106.2 293.2 841.3 1.5 3.9 19.3 0.92 42.3
100 139.2 328.8 874.3 2.0 4.5 19.9 0.90 49.7
110 170.0 363.7 905.1 2.6 5.1 20.5 0.87 54.1
120 200.0 401.6 935.1 3.3 5.9 21.1 0.85 56.0
130 229.8 440.8 964.8 3.9 6.8 21.8 0.82 55.8
140 256.8 473.1 991.9 4.6 7.6 22.5 0.80 54.0
150 283.4 508.1 1018.4 5.3 8.5 23.2 0.77 50.6
160 308.4 535.8 1043.4 6.0 9.3 23.9 0.75 46.1
170 331.9 560.8 1067.0 6.7 10.1 24.6 0.73 40.8
180 353.7 580.6 1088.8 7.4 10.7 25.3 0.71 34.9
190 373.0 594.8 1108.1 8.0 11.2 25.9 0.69 28.9
200 391.8 610.9 1126.8 8.7 11.7 26.6 0.67 22.4
210 410.6 629.0 1145.7 9.4 12.4 27.3 0.65 15.3
220 428.8 644.2 1163.9 10.1 13.0 28.0 0.64 7.8
230 445.4 655.8 1180.4 10.8 13.5 28.7 0.62 0.6
240 461.9 669.1 1197.0 11.5 14.1 29.4 0.61 -7.0
250 476.8 677.0 1211.9 12.2 14.4 30.0 0.59 -14.3
260 490.0 682.6 1225.1 12.8 14.7 30.7 0.58 -21.0
270 501.9 688.0 1237.0 13.4 14.9 31.2 0.57 -27.3
280 513.3 692.9 1248.4 13.9 15.2 31.8 0.56 -33.5
290 523.8 699.5 1258.9 14.5 15.5 32.3 0.55 -39.5
300 534.4 705.3 1269.5 15.0 15.8 32.9 0.54 -45.8
325 556.7 713.8 1291.7 16.3 16.3 34.2 0.52 -59.6
350 575.6 719.8 1310.7 17.5 16.7 35.3 0.51 -72.3
375 591.7 725.6 1326.8 18.5 17.1 36.4 0.49 -83.7
400 605.1 728.9 1340.2 19.5 17.3 37.3 0.48 -93.7
425 616.0 730.7 1351.0 20.3 17.4 38.2 0.47 -102.3
450 625.3 732.9 1360.4 21.0 17.6 38.9 0.46 -110.1
500 638.5 734.0 1373.6 22.2 17.7 40.0 0.45 -122.0
550 648.5 734.3 1383.6 23.1 17.7 41.0 0.44 -131.9
600 657.8 734.5 1392.9 24.1 17.7 42.0 0.43 -141.9
750 679.8 734.7 1414.9 26.8 17.8 44.6 0.40 -168.6
1000 700.9 735.0 1436.0 30.1 17.8 47.9 0.37 -199.8
10000 723.0 735.1 1458.1 35.5 17.9 53.4 0.33 -247.2
100000 723.0 735.1 1458.1 35.5 17.9 53.4 0.33 -247.2

Table 3.: Summary of all calculated values of the NSB chapter.
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Component Details
Mainboard Fujitsu (R) D3417-A2
CPU Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz, 4 cores / 8 threads
RAM 4× 16 GB DDR4 @ 2133 MHz
ROM 3× 2 TB HDD

2× 128 GB NVMe SSD in RAID 1
GPU NVIDIA (R) GeForce GTX 1080 with 8 GB VRAM

Table 4.: Specifications of the system used for all necessary computations on the NSB model
and the machine learning tasks
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