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Quantum properties of nanostructured semiconductors: Spin-orbit,
entanglement and valley physics

by

José Carlos García-Abadillo Uriel

Abstract

Silicon is the most important semiconducting material, being present in all the electronic
devices around us. Silicon has also drawn attention for its very interesting properties for the
construction of a scalable quantum computer which, at the same time, would be compatible
with classical devices. Among these properties, its extraordinary quantum coherence, due to
the negligible spin-orbit interaction for electrons and the ability to get rid of nuclear spins
by isotopic purification, stands out. However, quantum state manipulation requires the
application of oscillating magnetic fields and, often, localized magnetic fields which require
too much power while being experimentally challenging. Besides, the original proposals for
entanglement protocols impose complex restrictions to the devices, which are technologically
challenging.

In this thesis, alternatives for quantum computation in semiconductors are proposed. The
first of these alternatives is the use of hole bound states instead of electron states. Holes
bound to acceptors in Silicon are inherently susceptible to the spin-orbit interaction, which
allows the possibility to define an electrically manipulable quantum bit (qubit), potentially
much more efficient than magnetic field manipulation. At the same time, it paves the way
for new possibilities to generate entanglement between qubits. The effects of spin-orbit
interactions on the qubit coherence will also be addressed.

When electrons are considered, the degenerate minima (valleys) in the conduction band add
a new degree of freedom which has to be taken into account. In this thesis, the valley physics
of quantum dot bound states is analyzed in two different geometries. These states also allow
the interaction with electric fields, simplifying the scalability. In exchange, the coherence
properties can be affected. The valley degree of freedom is affected by the nanostructure
confinement and electric fields, which gives a particular flexibility that can be used to improve
the coherence properties.

Finally, the use of two dimensional materials will be proposed as another alternative. Two
dimensional materials are being studied for their many interesting properties and potential
applications. We explore the feasibility of using dopants in these materials to define qubits.

Keywords: Qubit, holes, spin-orbit, entanglement, magic angles, confinement, valley physics,
electrical manipulation, 2D materials



Propiedades cuánticas de semiconductores nanoestructurados:
Espín-órbita, entrelazamiento y física de valles

por

José Carlos García-Abadillo Uriel

Resumen

El Silicio es el material semiconductor mas importante, estando presente en todos los aparatos
electronicos que nos rodean. El Silicio también ha llamado la atención por tener propiedades
interesantes para la construcción de un ordenador cuántico escalable y compatible con dis-
positivos clásicos. Entre estas propiedades, destacarían sus extraordinarias propiedades de
coherencia cuántica debidas a una interacción espín-órbita despreciable para electrones y la
posibilidad de purificar isotópicamente. Sin embargo, la manipulación de los estados cuán-
ticos requiere aplicar campos magnéticos oscilantes y, en muchos casos, localizados, lo que
requiere mucha energía y es experimentalmente muy complicado. Además los protocolos de
entrelazamiento propuestos inicialmente imponen restricciones muy complicadas de superar
tecnológicamente.

En esta tesis se proponen alternativas para la computación cuántica en semiconductores. La
primera de estas alternativas es el uso de estados ligados de huecos en lugar de electrones.
Los huecos ligados a aceptores en Silicio son inherentemente susceptibles a la interacción
espín-órbita, lo que permitiría la posibilidad de definir un qubit manipulable con campos
eléctricos, potencialmente mucho mas eficientes que campos magnéticos. A su vez, abre
nuevas posibilidades para generar entrelazamiento entre qubits. Se discutirán también los
efectos de espín-órbita en la coherencia de los qubits.

Se analizan también de la física de valles en estados ligados a puntos cuánticos en distintas
geometrías. Estos estados también permiten la interacción con campos eléctricos, facilitando
la escalabilidad. A cambio, las propiedades de coherencia se ven afectadas. Sin embargo, la
complejidad de la banda de conducción en Si añade un nuevo grado de libertad: los valles.
Este grado de libertad es influenciado por el confinamiento en la nanoestructura, así como
campos eléctricos, lo que le da cierta flexibilidad que se podrá utilizar para mejorar las
propiedades de coherencia.

Finalmente, se propondrá el uso de semiconductores en dos dimensiones como alternativa.
Este tipo de materiales han sido estudiados recientemente, demostrando propiedades cuánti-
cas muy interesantes. Exploramos la posibilidad de usar estados ligados a dopantes en estos
materiales para definir qubits.

Palabras clave: Qubit, huecos, espín-órbita, entrelazamiento, ángulos mágicos, física de
valles, manipulación eléctrica, materiales 2D
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Chapter 1
General Introduction

1.1 Quantum computation

Since the development of the metal-oxide-semiconductor field effect transistor (MOSFET) in
the late fifties [1], silicon (Si) has become the most important semiconductor material, leading
the digital and electronics revolution of the 20th century. In this period the development of
the semiconductor industry has followed with great accuracy Moore’s law which states that
every two years the number of transistors in a single wafer is doubled [2]. These transistors are
used to encode the information of computers in bits with electrical signals, and calculations
our computers make are performed by applying logic gates to these bits.

Nowadays, Moore’s law is still alive and both server and high-end graphics cards processors
contain around 20 billions of transistors, which is more than the double of the global pop-
ulation, being the size of the node of 14 nm [3]. In 2018 both Intel and AMD expect to
commercialize transistors of 7 nm, but the shrinking of transistors has an expiration date.
Once the transistor dimensions start to go below 5 nm the semiclassical approximation used
to describe this devices will start to fail, and other quantum mechanisms such as tunneling or
entanglement will become relevant, dramatically affecting the reproducibility of the electrical
properties from device to device [4].

When the laws of quantum mechanics become relevant, we can reconsider how to cipher the
information in quantum bits (qubits) which, instead of simply encoding the information in
two classical values 0 and 1, would store the information in two possible quantum states
|0〉 and |1〉 [5–7]. These two states can be built from any quantum two level system (TLS),
which in practice requires the existence of a ground and excited state separated from higher
excited states such that the latter can be considered irrelevant states. This construction
can be extremely powerful since a classical bit can only take two possible values while the
quantum states of a qubit can be written as the general expression

|ψ〉 = cos θ|0〉+ eiφ sin θ|1〉 . (1.1)

This means that a qubit can encode any quantum superposition of the two classical states
in the Bloch sphere characterized by the phases φ and θ [8], see Fig. 1.1.

Quantum computers also allow the possibility of addressing some problems that are in-
tractable with classical computers. The most known example is the prime factorization of

1
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Figure 1.1: Bloch sphere representing the state of a qubit. The qubit can take any value
in the surface of the sphere, including any superposition of the two allowed classical states
0 and 1.

large numbers: with the current classical algorithms this problem can not be solved in poly-
nomial time, particularly for prime numbers used in classical cryptography such as the RSA
algorithm [9] the decryption with classical algorithms would require more time than the age
of the universe. However, Shor’s quantum algorithm could solve this type of problems in
polynomial time, eventually breaking the most reliable classical algorithms for cryptography
[10]. At the same time, several schemes for quantum cryptography have been developed
[11, 12]. This kind of algorithms would theoretically be unbreakable due to the no-cloning
theorem of quantum mechanics [13]. Speed up of database searching would also be possible
due to Grover’s algorithm [14].

A more interesting application for scientists would be the possibility of performing quantum
simulations [15]. Since a quantum computer obeys the laws of quantum mechanics, its
efficiency simulating specific quantum systems would be overwhelming in comparison to
their classical counterparts. Quantum simulators could help in the calculation of complex
molecules, with applications on material science, biology and medicine among many others
[16, 17]. Constructions with several qubits have already been successfully built to simulate
the 2D Ising model, magnetism frustration and quantum magnets, among others [18–20].

However, the construction of a quantum computer is a herculean task. A quantum computer
not only needs to be able to manipulate each qubit individually with high precision but
it also must beat the decoherence of the quantum states due to the interaction with the
environment. In 2000 D. P. DiVincenzo proposed the criteria that an experimental device
must satisfy in order to efficiently work as a working quantum computer [21]. These criteria
consists of five conditions. (1) Scalability is the capacity of a system to accommodate
as many qubits as possible: a quantum computer must be able to store and manipulate
hundreds or thousands of qubits. (2) Initialization is the capacity of a quantum computer
to initialize each qubit to a reference state. (3) It would also need a universal set of gates,
meaning that the quantum computer must be able of manipulating the qubits with a set of
gates such that every quantum operation can be performed. In general, this requires the
ability to perform both single- and two-qubit operations in any qubit pair. For single qubit
operations, it is enough with implementing Pauli operators σx, σy, σz, and the Hadamard
gate (UH). Two-qubit operations, require the implementation of the quantum controlled
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NOT (UCNOT ), that changes the second qubit depending on the first qubit state:

UH = 1√
2

(
1 1
1 −1

)
(1.2)

UCNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (1.3)

(4) Long coherence times, which means that the quantum states must endure decoherence
and relaxation processes long enough to allow for a sufficiently large number of operations
such that quantum error algorithms can be applied. (5) Qubit specific measurement,
which means that each qubit can be measured at any time during the execution of a quantum
algorithm. These criteria is often extended with two more conditions for quantum communi-
cations: (6) The ability to take the quantum computer qubits to interconvert stationary
and flying qubits. (7) These flying qubits would also need the ability to be transmitted
to other quantum computing devices.

The physical realization of a quantum computer that fits into DiVincenzo’s criteria has led
to several possible implementations in the scientific community. Some of the most known
examples are: (I) trapped ions, where the qubit is encoded in the states of ions confined by
electromagnetic fields [22]. (II) Nitrogen-vacancy centers in diamond (N-V centers), where
the spins can be addressed by using optical transitions [23]. (III) Superconducting circuits,
where the information can be encoded in the charge, phase or flux degrees of freedom [24].
(IV) Topological quantum computation [25], where the degrees of freedom of anyonic systems
are used to define the qubit. (V) Semiconductor quantum devices, where the qubit is often
defined in the charge or spin degrees of freedom [26, 27]. This last platform is the one that
will be treated in this thesis, particularly silicon based quantum devices.

In Si, qubits can be constructed with the different degrees of freedom of electrons or holes
confined to dopants or quantum dots [28]. Each approach could be suitable for satisfying
DiVincenzo’s criteria, mainly due to the extraordinary coherence times in this material and
its compatibility with the current semiconductor microelectronics.

1.2 Semiconductor based quantum computing

Semiconducting quantum devices can take advantage of the current fabrication technology
for microelectronics. There is a powerful industry behind that makes this field grow rapidly.
In the quantum limit, however, semiconductor devices present too many degrees of freedom
hence its applicability to quantum computing devices is not trivial. The most widely inves-
tigated semiconducting materials for quantum computation are Si and GaAs. GaAs devices
grew rapidly due to the maturity of its lithographically design quantum dots while Si has
overall better coherence properties due to the presence of zero nuclear spin isotopes. The
fast growth of GaAs slowed down due to the short coherence times and, nowadays, quantum
control over Si devices is almost at the same level. However, Si also presents a more complex
bandstructure that gives rise to certain electronic properties that need to be considered.
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Figure 1.2: Silicon unit cell. The lat-
tice constant is 0.543 nm.

Figure 1.3: Silicon band structure.
From [29].

1.2.1 Basic electronic properties of Si

Before getting into details of the most known proposals and the state of the art in the field, it
is convenient to enumerate some basic electronics properties of Si. This way, the advantages
and disadvantages of the different proposals will be easier to understand.

As shown in Fig. 1.2 Si has a diamond structure with lattice constant a = 0.543 nm [30].
Each atom has four nearest neighbors and since it is part of the group IV of semiconductors,
it has four valence electrons. The group symmetry of this lattice is the cubic group Oh. Once
a silicon atom is replaced by a group III atom, this atom adds an extra hole, behaving as an
acceptor. On the other hand, if replacement is made with a group V atom, this new atom
donates an extra electron, becoming a donor. Independently of which of these two types of
dopant atoms we add to our system, from Fig. 1.2 it can be deduced that the symmetry is
locally reduced to the tetrahedral symmetry Td.

Important properties of both electrons and holes in Si can be deduced from the band structure
in Fig. 1.3. Si has an indirect gap, with the maximum of the valence band at Γ but the
minimum of the conduction band close to the zone boundary in the crystallographic (100)
directions. This implies that there are six equivalent conduction band minima, named valleys.
In these valleys the effective mass of the electron is anisotropic, with different longitudinal
and transverse effective masses. This is represented by the conduction band ellipsoids in Fig.
1.4.

The valence band in Si does have its maximum at the Γ point, hence holes avoid the valley
degeneracy. However, there is still a four-fold degeneracy at the top of the valence band due
to the confluence of the light-hole (LH) and heavy-hole (HH) bands [31], named accordingly
to their effective masses. There is another band, the split-off band, separated by the spin-
orbit coupling (44 meV in Si). In comparison, the binding energy of a boron acceptor in Si is
45 meV, meaning that the spin-orbit interaction in the valence band of Si is a very relevant
interaction.

Electrons and holes in Si inherit the behavior of the conduction and valence band respectively.
The bound states of a donor lie below the conduction band while the bound states of acceptors
are on top of the valence band.
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Figure 1.4: Valley ellipsoids of same
energy.
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ΔSO

Bound levels

Figure 1.5: Scheme of the valence
band and the acceptor bound states.

1.2.2 Kane Quantum Computer

In his 1998 seminal paper, Bruce Kane introduced the idea of using dopants in Si for de-
veloping a quantum computer [27]. The proposal, see Fig. 1.6, consisted in an array of
phosphorus donors in a Si device, 20 nm below a SiO2 interface approximately. The metallic
gates A and J are there to perform different operations on the donors in order to implement
single- and two-qubit gates.

The phosphorus donors behave as effective gigantic hydrogen atoms with Bohr radius around
2.5 nm [32]. Both the electron and the nucleus of the donor have spin 1/2 so both spins offer
obvious TLS than can be used potentially to encode a qubit. In this particular proposal the
nuclear spin was chosen to be the qubit, following the Nuclear Magnetic Resonance schemes
[33]. Interestingly, since the most common isotope of Si is 28Si, whose nuclear spin spin is
I = 0, each qubit would be isolated from the potential noise of a spin bath [34], quite common
in group III-V semiconductors such as GaAs. Moreover, the remaining 4.7% abundance of
natural 29Si, whose nuclear spin is 1/2, can be removed by isotopic purification techniques
[35]. The removal of the nuclear spin bath further increases the coherence properties of
the nuclear spin in a way that its coherence times can be beyond 30 seconds, which is the
most extraordinary coherence times in a solid state device [36]. The extraordinary coherence
properties of Si were not a big surprise, as relaxation times of the nuclear spin, already being
measured in the late fifties [37], were also remarkable, exceeding 10 hours. This extraordinary
coherence and relaxation times give this platform a great advantage over other quantum
computing proposals.

Scalability was another of the advantages of Kane’s scheme. Thousands of dopants can be
placed in a silicon wafer, potentially allowing the manipulation of all these qubits by correctly
applying gate voltages. Not to mention the intrinsic compatibility with microelectronics that
would make possible the interaction between classical and quantum information processors.

The hyperfine interaction between the electron spin and the nuclear spin is a key ingredient
of Kane’s proposal for both single- and two-qubit manipulation. The magnetic Hamiltonian
of the electron spin-nuclear-spin system is

H = geµeBσ
e
z − gnµnBσnz +Aσe · σn , (1.4)

being µe, µn and ge, gn the Bohr magneton for electron and nuclear spins, and the g-factors of
electron and nuclear spins. B is the magnetic field, σ are the Pauli matrices for each spin and



Chapter 1. General Introduction 6

Figure 1.6: Scheme of Kane’s quantum computer. The left electron is attracted by the
activated A-gate, tuning the hyperfine interaction. The J-gate can be used to activate the
exchange interaction between neighboring electrons.

A is the hyperfine coupling. By inspection of Eq. 1.4 it is clear that a static magnetic field
can be applied to split the two states of both the electron and nuclear spins with different
Larmor energies. Interestingly, the hyperfine coupling is a function of the electron probability
density at the nucleus:

A = 4
3geµBgnµn|ψe(0)|2 . (1.5)

We can look at Fig. 1.6 to understand the role of the A-gate. By applying a gate voltage
the electron wavefunction can be pushed towards the SiO2 barrier, which plays the role
of preventing ionization. Through this operation, the electron probability density at the
nucleus is changed and, by virtue of Eq. 1.5, the hyperfine coupling is modified, so as the
frequencies of the different possible transitions between the different eigenstates of Eq. 1.4.
In other words, the A gate can be used to tune the different frequencies of each single-qubit
subsystem individually. An in-plane AC magnetic field can then be applied in resonance
with the particular transition that we want to perform in an individually selected qubit.

The two-qubit gates are more complicated, requiring the action of both the A and J gates.
It is important to note that, in order to fulfill DiVincenzo’s universality criterion, two-qubit
operations together with single-qubit operations are necessary. In this original scheme, the
donors are expected to be distanced by 20 nm, long enough to avoid direct interaction
between the nuclear spins. Again, the electron spin plays an important role for two-qubit
operations. By correctly applying the A-gate voltage, the nuclear spin can be transferred
into the electron spin. By applying a gate voltage in the J-gate two nearest neighbor donor
electrons can be drawn into an intermediate region, where they can interact via exchange
interactions. The effective Hamiltonian of such interaction is

Hee = Jσ1
e · σ2

e (1.6)

Where J is the exchange coupling, proportional to the overlap between electrons. In this way,
by controlling the J gate, a SWAP operation (swaps two qubit states) between the electron
spins can be performed. With more complex pulses in the J gate, the CNOT two-qubit gate
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can be performed. The electron spins are then translated again into the nuclear spins by the
action of the magnetic field and the A gate. For universality, it is enough to perform any
single qubit operation together with SWAP or CNOT operations [6].

Still, there are two requirements for a potential quantum computer yet to be fulfilled: ini-
tialization and readout of the qubits. Both of them can be done by the same mechanism.
Phosphorus donors can bind two electrons but, due to the Pauli exclusion principle, in order
to bind two electrons at the same time they must have opposite spin orientations. It is
possible to take advantage of this mechanism by applying electric fields with the gates to
encourage tunneling between the donors. If the electron spins have opposite spins tunneling
is allowed and a charge signature can be projectively measured using sensitive electrometers.
With this mechanism not only would be possible to measure the states but also to initial-
ize the computer by carefully injecting electrons into the donors and rejecting those with
opposite spin.

In summary, this proposal fulfills DiVincenzo’s criteria. Both single- and two-qubit gates are
addressable to perform multiple operations within the remarkable coherence times that the
Si platform provides. The platform itself, as some other solid state proposals, does have good
scalability prospects. A quantum computer with this characteristics could be initialized and
individual measurements are feasible.

However, after almost two decades, several challenges have aroused. Some of them were
already pointed out by Bruce Kane in its original paper, and some others were discovered
later. The most important of them are related to the two-qubit operations and the initializa-
tion/readout mechanism. As it was pointed out in the previous section, donors in Si have an
extra degeneracy due to the valley degree of freedom. As a result, the electron wavefunction
is affected, its hydrogenic envelope is modified by extremely fast oscillations that change
sign in the order of magnitude of atomic steps [38]. This is of capital relevance for two-qubit
operations because the exchange interaction is proportional to the overlap between electrons.
If these electrons have extremely fast oscillations its overlap will also oscillate, implying a
very complicated dependence of the exchange interaction with the donor position. Solving
this problem would require perfect atomic precision in the placement of donors. The other
major issue, comes from the original proposal for the readout mechanism itself. When the
tunneling between neighboring donors happens, one of the donors goes to the D− charge
state, which strongly couples to the environment. Its short coherence time together with the
short lifetime (it has a very small binding energy and hence easily tunnels into the conduction
band) dramatically reduces the probability of success for this readout mechanism [39].

Still after this issues, the scientific community considers Si as one of the most promising
candidates for solid state quantum computing and a lot of effort has been made to dodge
this problems or even overcome them as challenges.

1.2.3 Loss-DiVincenzo Quantum Computer

The other relevant architecture for this thesis is the Loss-DiVincenzo quantum computer [26].
Proposed in 1998 too, it also shows a possible way towards the construction of a quantum
computer with a solid state device, see Fig. 1.7. In this case, the spins of electrons confined
in electrostatically defined quantum dots encode the qubits. In this platform, each quantum
dot contains a single electron. The electrons of different quantum dots are separated by a
tunnel barrier, whose height can be modified by applying different gate voltages to a tunnel
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SL SR

Figure 1.7: Sketch of Loss and DiVincenzo’s quantum computer. Electrons with spin SL
and SR are confined in the left and right dots. The spin is manipulated via oscillating local
magnetic fields.

gate in between the dots. The scalability of this platform would be guaranteed since it is
potentially possible to place thousands of quantum dots in a semiconductor device.

Each individual electron spin is addressed via local oscillating magnetic fields, allowing any
single-qubit operation. The individual application of magnetic fields can also be used to get
reliable individual qubit initialization. This method has the challenging requirement of being
able to apply localized magnetic fields for each quantum dot.

Two-qubit operations are performed in a similar manner to Kane’s proposal: using the
exchange interaction. In this case a pulsed gate voltage in the tunnel barrier between two
quantum dots is applied such that the exchange constant J becomes time dependent. By
carefully choosing the pulse duration and time dependence, it is possible to make a SWAP
operation. Single-qubit gates together with this SWAP operation can be used to perform
more complex two-qubit gates like the CNOT.

This proposal started to evolve much faster in GaAs devices. During the first few years Si
quantum dots lagged behind the rapid growth of this field in GaAs devices [40–42]. This
rapid growth was limited by the problem of non-zero nuclear spins in the natural isotopes
of its constituents, leading to a big susceptibility to magnetic noise decoherence processes
[43]. The GaAs nuclear spin bath can be seen schematically in Fig. 1.8. On the other hand,
electrons in Si have a larger effective mass, making harder to confine them in electrostatically
defined quantum dots. Once this problem was solved, this approach could take advantage of
the good coherence properties due to the existence of zero nuclear spin natural isotopes in
Si.

Finally, the last DiVincenzo’s criterion was the ability to perform high precision measure-
ments. This again is made with spin-to-charge conversion schemes that take advantage of the
Pauli spin blockade. The tunnel barrier could be tuned to allow electron tunneling, which
would be suppressed if the two electron spins are in the same quantum state, otherwise there
would be a charge signature measurable by high precision electrometers.

Time has shown that this scheme is not perfect either. In this case the individual single-
qubit operations require local magnetic fields. This kind of magnetic fields are hard to control
experimentally and require too much power, complicating the scalability of the scheme. For
two-qubit gates Si quantum dots do not have the same problem as the Kane proposal since
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Figure 1.8: Cartoon of the nuclear spin-bath in GaAs.

the quantum dots have no pinning center (dopant), still the valley degeneracy increases the
complexity of the Hilbert space giving rise to valley related relaxation mechanisms. GaAs, on
the other hand, has a direct bandgap at Γ so the valley degeneracy would not be a problem
but, as stated before, the magnetic nuclei bath is a detrimental hazard for the coherence of
the qubits.

Just like Kane’s proposal, the experimental challenges have not intimidated the scientific
community and this scheme has evolved since the original paper, giving rise to several mod-
ifications both in Si and GaAs that could potentially overcome the original difficulties.

1.3 State of the art

In this section a small review of the current research in the field of semiconductor based
quantum computer proposals. For the curious reader, a more throughout review of the Si
quantum nanoelectronics field, in both dopants and quantum dots, can be found in [28].

1.3.1 Dopants

Since Kane’s proposal there has been a general and constant improvement of the theoretical
approaches for understanding the physics of the donors in the experimental conditions of
the scheme. The first approaches used variational gaussian or hydrogenic wavefunctions
adapted to the phosphorus Bohr radius in silicon. These wavefunctions were used to solve
the Hamiltonian of the donor under the effective mass approximation (EMA) [32, 44–52].
The potential of the A-gate was included so the Stark effect of the donor was also taken into
account [53, 54]. Tight-binding methods were also developed in parallel to include the Bloch
components of the wavefunctions [55–58].

For the single electron control, realistic effects that appear in the experiments also had to be
taken into account, such as the presence of an insulating interface due to the presence of a
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perpendicular electric field. The confining potential of the A-gate together with the presence
of this interface gave rise to three different regimes: (i) electron confined to the Coulomb
impurity, (ii) electron confined to the effective triangular well formed at the interface, (iii)
hybridization of both confinement regimes [59–63]. Central cell corrections had also to be
included to account for the differences between donor species too [64–67]. Some early [32, 68]
and recent works [53, 69] also showed that the valley degeneracy was not a real problem for
the single electron physics, since the strong confinement of the donor potential already lifts
the valley degeneracy, separating a non degenerate ground state from a three-fold degenerate
valley excited state. Donor molecule dynamics were also necessary for the understanding of
the readout process [39, 70–72] and spin-to-charge conversion mechanisms [39, 73]. Improve-
ments in the understanding of the donor physics were also necessary for the interaction with
magnetic fields. The g-factor was found to be valley and gate voltage dependent [74].

Regarding electron-electron interactions, the real applicability of the exchange coupling to
generation of entanglement and the construction of two-qubit gates has been extensively
investigated [66, 75–79]. However, as previously stated, the valley degeneracy gives rise to
oscillations in the exchange as a function of position [38, 49, 80–83]. These oscillations are
not commensurate with the atomic lattice and hence exact positioning of the dopants would
be required for reproducibility. Strain can be used to partially break the degeneracy, but
it still requires atomic precision in the donor placement [84]. The strict characterization
of two qubit gates [79, 85–87] can optimize the fidelities for the Kane scheme despite the
valley oscillations. Another issue with the exchange interaction is its inherent charge noise
susceptibility. Since the exchange interaction depends on the overlap of the two electrons,
electric field fluctuations could potentially modify the exchange coupling, requiring a higher
control and optimization of the interface and gates [88, 89].

These difficulties led to alternative proposals where some of the problems were removed.
Some of the mechanisms that this proposals consider are: electric manipulation of the g-factor
in a SiGe heterostructures [90], resonant transferring of the a single electron for qubit-qubit
coupling [91], qubit encoding in electron and nuclear spins at the same time [92], optical
transitions of qubits [93], magnetic dipolar coupling for two-qubit operations [94], qubit
encoding in the charge degree of freedom [95], 2D spin transport with non-local qubit-qubit
interactions [96].

In all the cases, the accurate positioning of the impurities is, at least, an important factor.
In particular, in the original scheme, the exchange oscillations require lattice site precision
of donor implantation so this became an experimental challenge. One way to overcome this
challenge was the use of the already standard technique of ion implantation [97–103]. With
this technique a P ion (or any other ion) can be shot into a Si device, but the dopant position
is only approximated. By carefully applying external electric fields, the vertical positioning
of the donor ion can be adjusted with a precision of ±10 nm [104]. The main issues of this
method are the difficulty of achieving and registering individual ion shots, and that once the
ions are implanted, the surface is reconstructed by an annealing process that inevitably causes
diffusion and segregation of the dopants [105]. Single dopant implantation was demonstrated
in a MOSFET [106, 107], and it is still under constant improvement [108].

An alternative to single-ion implantation is the Scanning tunnelling microscopy (STM) tech-
nique. This technique not only allows imaging of surfaces with high resolution, it also allows
to pattern surfaces at the atomic scale [109–113]. The atomic position of dopants in Si with
STM follows a multiple step process: (i) First, a monolayer of hydrogen is positioned on the
surface of the Si device. (ii) The STM tip is used to remove selected H atoms, leaving several
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empty spots in the surface. (iii) Phosphine (PH3) molecules are then sent to the interface,
the molecule then fuses with the surface, leaving the P atoms in the empty spots. (iv) A
new silicon overgrowth process is done to bury the P atoms. Again, some accuracy is lost
during the overgrowth process. This method is also under constant improvement [114].

Regarding spin-readout, the first experiments of using high precision electrometers to measure
the spin states of qubits were done in GaAs quantum dots [40]. In this case a quantum point
contact was coupled to the qubit to perform the measurement, however, the charge sensitivity
can be enhanced by employing a single electron transistor tunnel coupled to the qubit, like
in this work in Si [115]. Soon after that, high-fidelity single shot readout of the electron
spin was achieved in a Si device. Since this milestone, the field rapidly grew and some other
key milestones in the Kane quantum computer were achieved such as the manipulation of
the electron spin to perform Rabi oscillations and work as a qubit [116]. The high fidelity
measurement of the nuclear spin [117]. The electron spin coherence of the electron spin
was shown to be above 2s [35]. Even higher coherence times were achieved for the nuclear
spin [36], allowing the storage of quantum information for 30 seconds. Experimental proof
of a high-fidelity A-gate operation has been obtained[118]. Extraordinary gate fidelities of
99.95% and 99.99% were achieved for the manipulation of the electron spin and the nuclear
spin [119].

Still, after the remarkable experimental growth of the field, multiple qubit operations are
still hard to achieve due to the exchange oscillations problem. Some new alternatives have
aroused, for example the use of hybrids of quantum dots and dopants would open new paths
for two-qubit operations [120, 121], the use of electric dipole-dipole interactions between dif-
ferent donors [104], coupling to superconducting resonators [122] or interactions with photons
(dressed states) [123].

One alternative, particularly important for this thesis, is to use acceptor dopants instead
of donors [124–126]. Since the top of the valence band is at the Γ point there is no val-
ley degree of freedom, so there are no exchange oscillations as a function of the acceptor
position. Instead, as the top of the valence band is four-fold degenerate, the ground spin
state behaves effectively as a spin 3/2 system. Strain and confinement can be used to
partially lift this degeneracy and keep a two level system that works as a qubit. Some in-
teresting features of this approach are the higher spin-orbit interaction of the valence band,
that would allow all-electrical single-qubit manipulation without local magnetic fields, or the
dipole-dipole coupling between acceptors, which can be potentially used for entanglement
generation or multi-qubit gates. Experimental work involving holes in semiconductors is a
vibrant field [127–136]. Particularly on acceptor spin qubits many of the experimental mile-
stones have already been achieved, from the measurement of single-acceptor states [137], the
Stark effect [138], strain induced lifting of the four-fold degeneracy [139], and the placement
of acceptors near an interface [140], to the measurement of the coupling between two accep-
tors [141, 142]. More details on acceptor based proposals and its physics will be presented
along Chapters 2-4.

1.3.2 Quantum dots

Soon after Loss and DiVincenzo’s proposal, there were several experimental advances in
GaAs/AlGaAs quantum dots. Single-shot readout of the electron spin was achieved [40],
coherent control of single-qubit [41], and even two-qubits [42]. This brilliant start was slowed
down by the inevitable presence of a bath of nuclear spins in GaAs, leading to relatively short
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relaxation and coherence times. Several techniques have been developed to suppress this type
of noise and increase their coherence times [143–145]. On the other side, the large effective
mass of electrons in Si made single electron occupation in quantum dots an experimental
challenge. Despite of the existence of Coulomb blockade measurements [146], it was not
until 2007 that single carrier occupation was achieved for both electrons [147] and holes
[148, 149].

In contrast to dopant devices where the valley degeneracy for electrons is lifted such that the
ground state is non-degenerate and separated 11 meV from excited valley states, the valley
physics in quantum dots requires more analysis. The majority of Si quantum dot devices are
made of Si grown on a SixGe1−x substrate alloy, or based on Si MOS (with a SiO2 interface).
Strain in these devices gives rise to a huge lifting of the degeneracy from a six-fold degenerate
valley states to a two-fold degeneracy. This two-fold degeneracy would correspond to the
valleys in the growth direction [150]. The confinement of the electron wavefunction in the
heterostruture also favors this separation, that can be up to tens of meV. The presence
of sharp interfaces and gate voltages further reduce the symmetry, lifting the remaining
degeneracy. The lowest two-valley states are then separated by an energy quantity called the
valley splitting, which can be in the order of hundreds of µeVs as calculated from both tight
binding methods and the effective mass approach [151–156]. In general, it was shown that
valley splitting has a complicated dependence on disorder and other structural conditions
[156, 157]. For instance, since the interface of both Si/SiO2 and Si/SiGe quantum dots is not
perfectly flat, interfacial disorder strongly changes the valley physics from device to device
[158]. In general, and again due to the disorder of realistic devices, the ground states of
electrons in Si quantum dots are never purely valley states. Instead, mixing of the valley
and orbital degrees of freedom occurs [159]. The valley degree of freedom generates fast
oscillations in the confinement direction, the presence of steps in an interface creates a local
position dependent the valley phase of this oscillations, which is responsible for the mixing
of valley and orbit degrees of freedom.

Due to the small value of the valley splitting in quantum dots, the valley physics is a very
relevant degree of freedom, affecting the relaxation times [160, 161], the exchange interaction
[162] or the g-factors anisotropies [163]. This complex physics of the two-fold valley states in
quantum dots, has also given rise to different proposals of using the valley degree of freedom
to encode qubits [164, 165].

Independently on the kind of quantum computation scheme, quantum dots need a way for
non-invasive measuring the spin states of the confined electrons. Quantum point contact
sensors have demonstrated its use in both Si/SiGe and Si/SiO2 quantum dots [166–168].
Just like for dopants, Single Electron Transistors (SET) can also be used [169].

To achieve quantum computation, two-qubit interactions are necessary too. Double quantum
dots have also been constructed [170, 171], and now there are even proposals and experiments
involving more quantum dots [172]. The first reported double quantum dot in Si [170] was
coupled to a SET that was used to identify the charge state of each quantum dot but single
electron occupation was not achieved. The first Si/SiGe double quantum dot was made
in 2009 [173], and by carefully applying gate voltages on each dot and a tunnel gate the
demonstration of singly occupied dots was done [174]. Finally, quantum dots have also
taken advantage of the isotopic purification methods, giving rise to an enriched 28Si double
dot [175]. Eventually, Pauli spin blockade was observed in different Si double quantum dot
systems [176–179].
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Figure 1.9: (Left) Hybrid qubit double quantum dot device. (Right) Its energy level
diagram.

Once double quantum dots are formed, charge occupation is controlled and the Pauli spin
blockade mechanism is observed, there are enough ingredients to try to implement a universal
set of quantum operations in quantum dot systems. The need of local magnetic fields for spin
qubits like those in the Loss and DiVincenzo’s proposal gave rise to other different approaches
like charge-qubits and singlet-triplet qubits. For a charge-qubit the information is encoded
in the position of the electron in the double dot, for example one left localized electron in
the left dot (configuration (1,0)) can be considered the |0〉 state while the localization at
the right dot (charge configuration (0,1)) is considered the |1〉 state [180]. In this case the
manipulation is done by electric means only: carefully tuning the dot gate voltages and the
tunnel coupling it is possible to perform Landau-Zener transitions between one state and the
other, or even create superposition of states. The biggest problem with this kind of qubits
is its inherent sensitivity to charge noise: while the manipulation can be made in a very fast
way, this sensitivity makes the qubit to decohere easily under small fluctuations of the gate
voltages or by fluctuating defects. In contrast, singlet-triplet qubits use the two-electron
spin states to encode the qubit. This gives rise to four possible configurations, one singlet
state |S〉 and three triplet states |T−〉, |T0〉, |T+〉. The Pauli exclusion principle creates a
spin dependent Coulomb repulsion that can be used in the readout since the singlet states
can be obtained in the (0,2) charge configuration while the triplet states are obtained in the
(1,1). This qubit can be manipulated by changing the detuning of the system to perform
rotations between the singlet and triplet states. This type of qubits are also sensitive to
charge noise due to its dependence on detuning and Coulomb repulsion, however they are
not as susceptible as the charge qubit, though their manipulation is slower than that of
charge qubits.

Spin qubits have the problem of slow manipulation and local magnetic fields. Charge and
singlet-triplet qubits can be faster and do not need local magnetic fields but are more suscep-
tible to charge noise. This gave rise to a search for new types of qubits for quantum dots. In
particular, systems with high spin-orbit couplings could be interesting due to the possibility
of electric manipulation of the spin. Examples of this include new geometries [120, 179, 181]
or interfacial induction of spin-orbit interaction due to the Rashba mechanism or valley-orbit
mechanisms [159, 182, 183]. Two relevant approaches for this thesis are the hybrid qubit
[165] and the corner dots [181] defined in Si nanowires.
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Figure 1.10: From [184]. Cross section of the Nanowire Field Effect Transistor. Top left
and top right angles have localized electron states.

In the hybrid qubit proposal, a double quantum dot is occupied with two electrons localized
in the left dot and the other in the right dot, see Fig. 1.9. The qubit is encoded in the
states |0〉 = |S〉| ↓〉 and |1〉 =

√
1/3|T0〉| ↓〉 −

√
2/3|T−〉| ↑〉, being |S〉, ‖T0〉, |T−〉 the singlet

or triplet spin states of the doubly occupied dot. Qubit manipulations are made through
tunneling events between the left and right dot. Single qubit rotations can then be done by all
electrical means by changing the tunnel gates and detuning. This process does not require
the application of oscillating magnetic fields, enabling fast qubit operation. Particularly,
near the anticrossings this qubit effectively works as a charge qubit while for large values of
detuning it works as an effective spin qubit. These two regimes have different properties. In
the "charge" regime the operations can be made faster but the sensitivity to charge noise is
more important in comparison to the "spin" regime. In the latter the singlet-triplet splitting
is related to the valley splitting of the right dot so the far detuning regime inherits the valley
physics of the double quantum dot system.

The other interesting system for this thesis consist of a nanowire based transistor [120, 179,
181], similar to FinFETs, where application of different gate voltages allows the confinement
of electrons in a double quantum dot system in the two top corners, see Fig. 1.10. Charge
occupation, charge dynamics and Pauli spin blockade have already being observed in this
system. One of the particularities of this system is that the quantum dot is confined against
two interfaces rather than one (corner state), making more relevant the physics of not only
the two valleys in the growth direction, whose valley splitting would be now affected by
two interfaces, but also the two valleys in the horizontal direction of confinement. Charge
manipulation can be made between the dots and dopants can also be inserted in this system
to make use of a donor nuclear spin as a quantum memory. The now relevant two extra valley
states can be of great importance for pure electrical manipulation and tunneling events.

1.4 Theoretical description

In this section the key basic mathematical background for this thesis is introduced. More
specific analysis will be presented in the following chapters as required.

1.4.1 Effective mass theory

Near each of the conduction band minima of silicon k0, the energy dispersion relation can
be expanded in terms of parabolic functions of the wavevectors whose curvature is directly
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related to the effective mass [32, 44], see Fig.1.3:

E = E0 + ~2
(

(kl − k0)2

2ml
+
k2
t1 + k2

t2

2mt

)
(1.7)

Where k0 is the value where the conduction band has a minimum for a certain valley index,
l indicates the longitudinal component while t1 and t2 indicate the transversal components.
For example, for the valley minimum in the [100] direction, l = x, t1 = y and t2 = z. The
longitudinal mass is 0.916me and the transversal mass is 0.19me.

An electron state then satisfies the equation:(
− ~2

2m∇
2 + V (r) + Vc(r)

)
Ψ(r) = EΨ(r) (1.8)

Where V (r) is the potential felt by an electron in the periodic lattice of Si, and Vc(r) is the
confinement potential. This confinement potential can be, for example, the donor potential
or SiGe barriers in a quantum well.

Using the Bloch theorem it is clear that the solutions of Eq. 1.8 are combinations of envelope
functions Fµ(r) and periodic Bloch wavefunctions uµnk(r)eikr, where µ indicates the valley
index. Putting the pieces together we have

Ψµ(r) = Fµ(r)uµnk(r)eikr (1.9)

The envelope functions must be properly normalized
∫
space |Fµ(r)|2dr = 1 and so must the

Bloch part to the lattice volume Ω:
∫
lattice |u

µ
k(r)eikr|2dr = Ω.

This is called the single-valley effective mass theory. Generalizations can be made to include
interactions between different valleys and valley-orbit mechanisms. To do so the wavefunction
in 1.9 has to be generalized to include the contribution of each valley:

Ψ(r) =
6∑

µ=1
αµF

µ(r)uµnk(r)eikr (1.10)

This multi-valley effective mass method can be used, for instance, to correctly obtain the
valley splitting in donors and, adapted to quantum wells by applying the correct confinement
potential [67, 154].

For donors Vc(r) = − e2

4πεSir , it can be shown that the envelope functions for each valley state
satisfy the hydrogenic wavefunction(

−~2
( 1

2ml
∂2
l + 1

2mt
∂2
t1 + 1

2mt
∂2
t2

)
− e2

4πεSir

)
Fµ(r) = EFµ(r) (1.11)

It is possible to use group theory to obtain the valley combinations αµ with correct symmetry.
From the irreducible representations of the group Td it follows that the six-fold degenerate
ground state splits into a ground state with A1 symmetry, three excited states with T2
symmetry and two excited states with E symmetry. The valley combinations for these states



Chapter 1. General Introduction 16

are:

αA1 = 1√
6

(1, 1, 1, 1, 1, 1) (1.12)

αTx2 = 1√
2

(1,−1, 0, 0, 0, 0) (1.13)

αT y2 = 1√
2

(0, 0, 1,−1, 0, 0) (1.14)

αT z2 = 1√
2

(0, 0, 0, 0, 1,−1) (1.15)

αExy = 1
2(1, 1,−1,−1, 0, 0) (1.16)

αEz = 1√
12

(1, 1, 1, 1,−2,−2) (1.17)

These combinations together with Eq. 1.11 are then used to obtain the energies and wave-
functions of the ground state donor.

In quantum wells, strain and confinement in the z-direction split the in-plane valley states
from the z-valley states, hence only the latter are relevant for the analysis:

Ψ(r) =
∑
µ=±z

αµF
µ(r)ukµ(r)eikµz (1.18)

For perfectly flat interfaces |αz| = |α−z| = 1/
√

2 and the envelope functions for each val-
ley state are the same. Hence, the two eigenstates are the symmetric and anti-symmetric
combinations of z-valley states. The envelope function is then determined by

∑
µ=±z

αµe
ikµz

[
−~2

( 1
2mt

∂2
x + 1

2mt
∂2
y + 1

2ml
∂2
z

)
+ Vc(r) + Vv(z)− E

]
Fµ = 0 (1.19)

where Vv(z) is the valley coupling potential that can be described within the effective mass
approximation as a delta function at the interface, located at zi:

Vv(z) = vvδ(z − zi) (1.20)

The value of the coupling vv can be determined from experiments or atomistic simulations
[185, 186]. When the quantum wells consider realistic effects such as atomistic disorder at
the interfaces the valley and orbital degrees of freedom become mixed and the effective mass
approximation requires some improvements [159, 187].

1.4.2 Kohn-Luttinger Hamiltonian

The atomic p states in group IV semiconductors contribute predominantly to the valence
band, which means that spin-orbit effects are relevant [31]. Once the SOC is included, the
total angular momentum J associated to the valence band is made of the orbital angular
momentum L = 1 and the spin angular momentum S = 1/2. This gives rise to two different
bands: the one with J = 1/2, known as the split-off band, the other, with J = 3/2, is
four-fold degenerate at the top of the valence band and is often divided in two subbands
according to the effective masses of the holes. These are the light-hole (LH) and heavy-hole
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(HH) subbands. These two subbands are separated from the split-off band by the SOC (44
meV in Si, 290 meV in Ge).

Unlike the bottom of the conduction band, the top of the valence band of both Si and Ge
can not be approximated by a single band. Both the LH and HH subbands converge to a
four-fold degenerate valence band maximum at the Γ point and, due to the proximity of the
split-off band, the latter also needs to be considered for accurate calculations of acceptor
states.

The development of an effective mass theory requires then the use of Löwdin’s degenerate
perturbation method in the k.p framework [182, 188]. In total, this theory gives rise to a
Hamiltonian that includes the HH, LH and split-off bands, including their spin counterparts.
The resulting 6× 6 Hamiltonian is

HKL =



P +Q L M 0 i√
2L −i

√
2M

L∗ P −Q 0 M −i
√

2Q i
√

3
2L

M∗ 0 P −Q −L −i
√

3
2L
∗ −i

√
2Q

0 M∗ −L∗ P +Q −i
√

2M∗ − i√
2L
∗

−i
√

2L∗ i
√

2Q i
√

3
2L i

√
2M P + ∆SO 0

i
√

2M∗ −i
√

3
2L
∗ i
√

2Q i
√

2L 0 P + ∆SO


(1.21)

After defining the effective Rydberg unit as Ry∗ = e4m0/2~2ε2sγ1 and the effective Bohr
radius as a∗ = ~2εsγ1/e

2m0 [44]. The differential operators in Eq. (1.21) are

P = −k2

Q = −γ2
γ1

(k2
x + k2

y − 2k2
z)

L = i2
√

3γ3
γ1

(kx − iky)kz (1.22)

M = −
√

3γ2
γ1

(k2
x − k2

y) + i2
√

3γ3
γ1
kxky ,

with m0 the free electron mass, εs the semiconductor static dielectric constant, ∆SO the
SOC of the semiconductor, and γ1, γ2 and γ3 material dependent Luttinger parameters.
The values of the Luttinger γi can be easily related to the effective masses of light- and
heavy-holes in different directions [31].

The Kohn-Luttinger Hamiltonian can be used as an effective mass approach to describe the
HH, LH and split-off bands. To include the Coulomb potential of an acceptor it is possible
to proceed like in the effective mass approach for electrons including directly the Coulomb
potential with possible central cell corrections if necessary.

1.4.3 Tight-Binding methods

In this subsection the basic 1D tight-binding method to describe the fundamental properties
of the valley states, is shown. Despite of its simplicity this model already captures the basic
physics of the valley oscillations and can be applied for the simulation of valley states in 2D
and 3D devices. This method was developed by Boykin et al. in Ref. [151], and improved in
the following years [156, 157].
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Consider a chain of 2N+1 Si atoms, for the tight binding method we can use a position basis
in which |n〉 denotes the nth atom such that the wavefunction |Ψ〉 of an electron can be
represented as

|Ψ〉 =
∑
n

bn|n〉 (1.23)

Once we add a Hamiltonian with t1 as a nearest neighbor hopping, its action on the wave-
function is

H|Ψ〉 =
∑
n

bnt1(|n+ 1〉+ |n− 1〉) (1.24)

We can assume periodic boundary conditions such that applying a Fourier transform with a
lattice constant a we have

|q〉 =
j=N∑
j=−N

eijqa

H|q〉 = t1(eiqa + e−iqa)|q〉 = ε|q〉 (1.25)

Its eigenvalues are then ε = 2t1 cos(qa). Since this dispersion relation has its minimum
at q = 0, this nearest neighbor tight-binding can only be used to describe the physics in
directions where the valley degree of freedom is not relevant. In order to describe indirect
bandgap semiconductors, at least hopping terms to second nearest neighbors t2 are required.
In this case the action of the Hamiltonian becomes

H|Ψ〉 =
∑
n

bn(t1|n+ 1〉+ t1|n− 1〉+ t2|n+ 2〉+ t2|n− 2〉) (1.26)

Imposing again periodic boundary conditions, the dispersion relation is now

ε = 2t1 cos(qa) + 2t2 cos(2qa) (1.27)

Now this dispersion relation has a minimum that depends on the values of t1 and t2. We can
choose this values to get the Si parameters of longitudinal effective mass ml = 0.916m0 and
the minimum position in the dispersion relation q0 = 0.82(2π/a). The obtained values for
the hopping parameters that describe a band with valley degeneracy in Si are t1 = 0.683eV
and t2 = 0.612eV. To account for the effective mass in transversal directions the single band
tight binding can be used. The hopping value that gives the correct transversal effective
mass mt = 0.191m0 is t = 10.91. An on-site energy of 23.23 eV can be used such that the
energy minimum is zero.

In this way we can get a tight binding method that reproduces the longitudinal mass and
oscillations of two-valley states in one direction and the transversal mass in other direction.
This method is particularly suited to account for fast variations that are relevant for the
valley physics and are hard to account in effective mass theories, like atomic disorder at the
interface.

1.5 This thesis

As has been stated along this introduction, the silicon quantum computing field has grown
very rapidly in the last few years. However, there are still several remaining challenges as the
need for faster operations while keeping the extraordinary coherence properties of Si or the
search for new ways to overcome the lattice precision donor placement to get repeatability



Chapter 1. General Introduction 19

entanglement or multi-qubit gates. In this thesis we propose the use of 2D materials to
overcome the donor placement problem, and high spin-orbit systems in Si will be studied such
as acceptors, corner states in nanowires and valley states in quantum dots. The contents are
divided in three parts, each one divided in chapters with its own introduction and conclusion.

1.5.1 Part I: Acceptor bound states

This part is divided in three chapters: (2) description of all the relevant parameters of
acceptor states under different confinement conditions. (3) Manipulation of acceptor states
in SiGe quantum wells. (4) Anisotropies in the g-factor and experimental consequences.

In Chapter 2 we deal with the basic physics and calculations of acceptor states. Since acceptor
states lie near the valence band, they can take advantage of the SOC of Si. This SOC could
in principle be used to perform all-electrical qubit manipulation and two-qubit procedures
in which the valley degeneracy of the conduction band is not relevant. The Kohn-Luttinger
Hamiltonian is solved together with the Coulomb impurity with a variational effective mass
method to obtain the HH-LH splitting due to the quantum confinement of interfaces and
quantum wells. The HH-LH splitting due to the presence of strain in Si/SiGe quantum
wells is also calculated. Other relevant parameters like the Td symmetry coupling p and the
effective g-factors are also calculated.

In Chapter 3 the three different possible manipulation methods are analyzed for acceptors
in Si/SiGe quantum wells. The parameters calculated in Chapter 2 are used to develop
an effective Hamiltonian for the low energy states, relevant for qubit operations. Magnetic
field induced manipulation through direct Electron Spin Resonance (ESR), electrical ma-
nipulation by Electric Dipole Spin Resonance (EDSR), and g-Tensor Modulation Resonance
(g-TMR) are discussed. The strong spin-orbit coupling and tunability of the g-tensor allow
fast electrical manipulation of both LH and HH based qubits.

In Chapter 4 the relevance of the Td symmetry terms of acceptors is analyzed and its conse-
quences for the manipulation and coherence of single- and two-qubit operations are discussed.
It is shown that the spin 3/2 physics of the lowest energy states, together with the Td sym-
metry gives rise to an anisotropic magnetic field dependence. This anisotropy is relevant for
qubit manipulation since it modulates the existence of sweet spots and can give rise to a De-
coherence Free Subspace (DFS). The two-qubit coupling is also affected by this anisotropy,
allowing the activation and deactivation of two-qubit operations by just applying vertical
electric fields.

1.5.2 Part II: Quantum dots

This part is divided in two Chapters: Chapter 5 on valley tunneling physics of double quan-
tum dots, and Chapter 6 on the theory of corner states.

In Chapter 5 the valley physics in Si/SiGe double quantum dot system is analyzed. This
double quantum dot system has analogies with the more complex system of the hybrid
qubit double quantum dot, where all electrical fast manipulation is feasible. A tight binding
method is used to describe the valley physics of a single electron inside a double quantum dot
in the presence of interfacial disorder. The valley physics of this system is analogous to the
valley and spin physics in the hybrid qubit. The tight binding method is used to understand
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how disorder can affect the different relevant parameters of double quantum dot qubits. In
particular, the tunneling rates between dots for same and different valley states is calculated,
so is the valley splitting, showing how different disorder realizations can dramatically change
their values and its dependence on electric fields. Consequences for the manipulability and
coherence are discussed.

In Chapter 6 the valley physics of an electron based quantum computing device with strong
spin-orbit interaction is analyzed. In the relevant device, the electrons are tightly confined
against not only one, but two interfaces forming corner dots. The gate voltages of the
system can be used to tune some devices from a regime of confinement where only two valley
states are relevant, like in other devices, to regimes in which four valley states are physically
relevant. The interaction with the excited valley states, even in the two valley approximation,
gives rise to a strong SOC that has already shown to be relevant for all-electrical electron
spin qubit manipulation in Si.

1.5.3 Part III: 2D materials

In the last part of this thesis the use of 2D materials to overcome the placement of donors in
Si devices will be analyzed. The purpose of this chapter is to analyze the viability of donor
states in 2D materials assuming the stability of the materials themselves. The energies of
different donor atom and molecule states are obtained as a function of different parameters
of the 2D host. The viability of these states for quantum computation purposes is discussed.
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Chapter 2
Confinement effects on acceptor
levels 1

2.1 Introduction

Most spin-qubits rely on the use of time dependent magnetic fields to perform operations,
but experimentally it is quite difficult to localize a time dependent magnetic field on a single
qubit. This makes desirable to look for ways to manipulate the qubit states only by electric
fields. The search for electric field manipulable qubits has focused the attention in the recent
years to high spin orbit systems [125, 126, 191–195]. These systems mix the spin with the
orbital degrees of freedom. As the orbital wavefunction is sensitive to electric fields, this
mixing allows the possibility of manipulating spins entirely by electric means. In silicon and
germanium, the conduction band has a small spin orbit interaction, but in the valence band
this interaction can be much stronger. As holes in group IV semiconductors have an orbital
momentum I = 1 and spin S = 1/2 in their atomic wavefunctions, holes can be described by
a total effective spin J = 3/2 [31, 44], which implies inherently high spin orbit interactions.
Confined hole systems are then very interesting platforms to explore spin orbit coupling
effects for quantum computing. Moreover, since the total spin of the hole is not the usual
value 1/2 but 3/2, there is physics in holes with no equivalent for electrons [182, 196–199].

Acceptors provide a natural way of confining holes in Si and Ge. Proposals of acceptor-based
qubits may make use of the long range strong dipolar inter-qubit coupling [124], and exploit
the spin-orbit interaction to couple spin to phonons [200], or to oscillating electric fields
[125, 126]. The relative importance of the different sources of decoherence is different in
electrons and holes: spin-orbit interactions would make holes more sensitive to charge noise
while hyperfine interaction (which can cause spin decoherence due to coupling to nuclear
spins [43]), while not entirely suppressed, is smaller for holes than for electrons [201–206].
The effective suppression of the latter by Si isotopic purification, which gets rid of nuclear
spins in Si, leads to very long electron coherence times [35]. In practical dopant-based
quantum computer proposals, dopants are introduced in nanostructures and close to surfaces
or interfaces, where their bound states can be manipulated by applying gate voltages. Under
these conditions, the energies of bound carriers can be shifted by quantum confinement

1Results published in [189] and [190].
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and dielectric mismatch [48, 207, 208] potentially modifying the working parameters of the
devices.
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Figure 2.1: (Left) Schematic view of the of the hard wall geometry. The acceptor A is at a
distance d from the (001) interface between the semiconductor (Si or Ge) and an insulating
barrier. Image charges appear due to the dielectric mismatch between the semiconductor
and the barrier. (Right) Sketch of the quantum well heterostructure and the bound hole
envelope wave-function along the perpendicular z direction. L is the width of the well, z0
determines the acceptor position from the well center, ∆QW is the barrier height, and x1, x2,
and x3 indicate the proportion of Germanium on each of the layers. x1 > x2 for defining the
quantum well for holes. The substrate (with composition Si1−x3Gex3) is relaxed and fixes
the lattice parameter in the whole heterostructure. This determines the sign of the strain
on the quantum well and is hence related to whether the doublet ground state is heavy-hole
(x3 = x2) or light-hole (x3 > x1) like.

Quantum confinement may alter the shape of the wavefunctions through the boundary con-
ditions, consequently affecting the binding energy. For instance, in a very thin (compared
to the bound state wave-function size aB) nanowire, the extra confinement enhances the
binding energy deactivating the dopants as carrier providers [209, 210]. However, when the
dopant is close (compared to aB) to one interface/surface but not confined in other directions,
the wave-function can be deformed in such a way that the density probability of the bound
state decreases on the dopant, leading to a reduction of the binding energy. The dielectric
mismatch gives rise to image charges which, depending on the relative magnitude of the
dielectric functions of the nanostructure components, can lead to an enhanced or decreased
binding. In the case of a semiconductor surrounded by insulators, the image charges have
the same sign as the charges originating them, enhancing the binding energies.

Not only the energies but also the symmetry of the bound states may be modified. To
develop an understanding of the low energy physics of acceptor states, we then need to
account for the confinement, since it breaks the ground state degeneracy. At the same time
the lack of inversion symmetry gives rise to a Rashba spin orbit interaction [125]. Strain
[139, 198, 211, 212] and electric fields [54, 138] also affect the ground state degeneracy.
Important terms are also those that come from the local Td symmetry of the acceptor [199],
since they can couple the spin degree of freedom to linear electric fields.
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Figure 2.2: Sketch of the valence subbands. HH indicates the heavy hole subband while
LH indicates the light hole subband. The energies of the bound states are positive and
defined with respect to the top of the valence band.

Characterization of dopants embedded in nanostructures can be performed via transport
measurements [213, 214] while STM can give information of the wave-function of subsurface
dopants [140, 215, 216].

Here we consider an acceptor under two types of confinement: near a hard wall interface
and within a SiGe quantum well, see Fig. 2.1. We perform an analysis of all the relevant
parameters of each type of confinement, and evaluate their effects on the energy spectrum
and the symmetry of the bound states for substitutional acceptors (group III elements). Our
study is based on effective mass theory (EMT) with the Kohn Luttinger Hamiltonian, see
1.4.2, for a bulk acceptor in a group IV semiconductor host [44, 217–219]. EMT exploits the
analogy with free atoms but includes information about the host crystal through the bands.
Both quantum confinement and dielectric mismatch are included. Central cell corrections
[219] are also considered in order to reproduce the energy spectra of different acceptor species.
We study the energy spectra of acceptors, including the Kramers doublet splitting of the
ground state observed recently experimentally [140]. Our approach allows a complete analysis
of the symmetry breaking induced by the interface. The effects of strain, due to the lattice
mismatch in SiGe quantum wells, is also taken into account for the analysis. Other relevant
parameters to the construction of an effective Hamiltonian for the quantum dynamics, such
as the Rashba coupling due to the lack of inversion symmetry and the change in the coupling
to the Td symmetry term, are considered.
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Si Ge
Ry∗ (meV) 24.8 4.4
a0 (nm) 2.55 10.85
γ1 4.22 13.35
γ2 0.39 4.25
γ3 1.44 5.69
∆SO (meV) 44 290
εs 11.4 15.36
a (nm) 0.5431 0.5658
C11 (MN/cm2) 16.772 13.112
C12 (MN/cm2) 6.498 4.923
b (eV) -2.2 -3.0
g1 -1.07 6.82

Table 2.1: Relevant parameters for Si and Ge. From [31].

2.2 Confined acceptors Hamiltonian

From 1.4.2 we know that the description of the valence band in group IV semiconductors
requires the inclusion of the HH, LH and split-off bands, see Fig. 2.2, through the Kohn-
Luttinger Hamiltonian in the basis |J, Jz〉:

HKL =



|3/2, 3/2〉 |3/2, 1/2〉 |3/2,−1/2〉 |3/2,−3/2〉 |1/2, 1/2〉 |1/2,−1/2〉
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(2.1)

Being these differential operators in Rydberg units (see 1.4.2):

P = −k2

Q = −γ2
γ1

(k2
x + k2

y − 2k2
z)

L = i2
√

3γ3
γ1

(kx − iky)kz (2.2)

M = −
√

3γ2
γ1

(k2
x − k2

y) + i2
√

3γ3
γ1
kxky ,

See table 2.1 for the relevant parameters of Si and Ge. The effect of the proximity to interfaces
is considered also by including in the Hamiltonian the image charges that arise due to the
dielectric mismatch between the host crystal and the barrier [220, 221]. We consider two
different types of confinement Hconfinement: In one case a (001) interface is considered at a
distance d from the acceptor, while in the other the acceptor is inside a quantum well at a
distance z0 from the center, see Fig. 2.1. Finally, the Coulomb potential produced by the
acceptor impurity is given by Hc = e2/(4πεsε0r), with the relative permittivity εs.
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Together, HKL+Hconfinement+Hc are enough to describe the physical effects of an interface on
the acceptor bound states. However, as can be seen in Refs.[125, 126] and will be discussed in
the following Chapters, an acceptor based quantum computer will be also affected by strain,
electric and magnetic fields.

The Bir-Pikus Hamiltonian HBK[198, 199] includes the effect of strain in the nanostructure

HBP = aε1

+ b

(
(J2
x −

5
41)εxx + (J2

y −
5
41)εyy + (J2

z −
5
41)εzz

)
+ d/

√
3 ({Jx, Jy}εxy + {Jy, Jz}εyz + {Jx, Jz}εxz) . (2.3)

The parameters a, b and d are the deformation potentials, J is the angular momentum, εii
are the deformation tensor components, and 1 is the identity matrix. In this thesis, only
uniaxial strain will be considered, hence, the deformation tensor is diagonal with components
ε = εxx = εyy, and

εzz = −2C12
C11

ε (2.4)

where C12 and C11 are the elasticity moduli. The uniaxial strain breaks the fourfold degen-
eracy of the valence band at the Γ point, separating the HH, LH subbands [222]. For ε > 0
(tensile strain) the top of the valence band has HH character, while it is LH like for ε < 0
(compressive strain).

The electric field interaction with the hole is given by the Stark Hamiltonian HF = eF · r
whose in-plane components, when the inversion symmetry is lost in the heterostructure, act
like a Rashba-type interaction [125, 126].

The interaction with magnetic fields is given by

HB = µB (g1B · J + g2B · J ) (2.5)

where g1 and g2 are the linear and cubic bulk g-factor of the host material. The operator
J is J = (J3

x , J
3
y , J

3
z ). The cubic term can be neglected for most of the cases as, in general,

g1 � g2 [223].

Finally, due to the local Td symmetry of the acceptor, there are some allowed electromagnetic
extra terms [198, 199]. We consider here the only allowed term with a coupling constant big
enough to be of relevance for the order of magnitude of the electric (MV/m) and magnetic
fields (T). This is the term HTd , which is an interaction that couples the acceptor spin with
electric fields F.

HTd = p/
√

3 ({Jy, Jz}Fx + {Jx, Jz}Fy + {Jx, Jy}Fz) . (2.6)

This linear coupling is only possible because the local Td symmetry of the acceptor central
cell does not fulfill the inversion symmetry. This coupling is hence stronger the larger the
probability density at the acceptor [223]. A very relevant particularity of this term is that it
allows the mixing of HH and LH states in the presence of an electric field. The parameter p
is an effective dipole moment that can be estimated [223] by p = e

∫ a
0 f
∗(r)rf(r) with a the

lattice constant of the host material, and f(r) the radial envelope function. In bulk silicon
p = 0.26 Debye for a B acceptor and it would be larger for deeper acceptors.
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The total Hamiltonian of a confined acceptor is then given by:

Htotal = HKL +Hc +Hconfinement +HBP +HTd +HF +HB. (2.7)

2.2.1 Selection rules and effective mass model

In bulk, Si has cubic with inversion symmetry so the transformation elements form the Oh
group. The three double irreducible representations (IRs) Γ6 and Γ7 with dimension two and
Γ8 with dimension four are all allowed in this group. As a result, the acceptor states are
doubly or four-fold degenerate. Due to the inversion symmetry, parity is conserved and the
states can be separated in well defined parity states (Γ+

6 , Γ−6 , Γ+
7 , Γ−7 , Γ+

8 and Γ−8 ). However,
central cell effects break the inversion symmetry, reducing the symmetry of the system to
the tetrahedral double group T d. The T d group also has IRs Γ6, Γ7 and Γ8 but in this case
parity is not a good quantum number. A consequence of the inversion symmetry breaking
is the appearance of weak transitions between states with nominally identical parity, which
would be forbidden if inversion symmetry were actually preserved [224]. However, as will be
shown in the following sections, without external fields the central cell corrections are only
important at small distances from the acceptor (see Table 2.2), their effect is very local and
hence the parity can be in general considered a good quantum number in bulk.

The selection rules of the Hamiltonian Eq. (2.1) can be obtained after examining the differ-
ential operators and the couplings between different sets of the pseudo-angular momentum
|J, Jz〉. Being the dopant orbital angular momentum L, we can define a total angular mo-
mentum K as K = L + J [218, 224]. The selection rules for the quantum numbers K and
Kz = Lz + Jz, which can be obtained applying the Wigner-Eckart theorem to the terms of
cubic symmetry, are

〈K′,K ′z|Hacceptor|K,Kz〉 ∝ δK′z ,(Kz+(0,±4)) . (2.8)

We can use these selection rules to relate the quantum numbers K and Kz to the IRs of
the Oh (or T d) group. Doubly degenerate eigenstates of the cubic symmetry with Kz =
±1/2 + 4n transform under the group Oh as Γ6 states, while two-fold degenerate states with
Kz = ±3/2 + 4n transform like Γ7 symmetry states. The four-fold degenerate eigenstates of
the cubic symmetric terms in the Hamiltonian correspond to the Γ8 representation and can
have any half-integer Kz, always according to the selection rules.

The confinement will be assumed to be in the (001) direction. The considered confinement
conditions imply that neither L nor the parity can be well defined quantum numbers. An
immediate consequence is that the total angular momentum K = L + J is not well defined
and states with different K are not orthogonal to each other. However, the z projection
of the atomic angular momentum is associated to the ϕ spherical coordinate so Lz is not
affected by the presence of a nearby interface and, since Kz is the sum of Lz and Jz, the
selection rule Eq. (2.8) holds. In terms of symmetry, the global Oh symmetry is reduced.
The Γ8 symmetry becomes a reducible representation, but the IRs Γ6 and Γ7 remain. This
implies that, under confinement in one direction, the four-fold degeneracy of the Γ8 states
is broken into two doubly degenerate states with symmetries Γ6 and Γ7 respectively. This
effect of symmetry reduction by the interface is analogous to the effect of uniaxially strained
silicon in the (001) direction [211, 212, 222]. The ground state split doublets with Γ6 and
Γ7 symmetry are often referred as light-hole states and heavy-hole states, due to the higher
contribution of states coming from the LH and HH valence bands respectively.
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The selection rules are useful then to define uncoupled variational basis sets to solve the
total Hamiltonian of the problem. A variational wavefunction basis can already be built to
fulfill the confinement conditions and selection rules while being based on the solutions of
the Coulomb potential, since those are the most relevant terms in the Hamiltonian.

2.2.2 Application to hard wall interfaces

For an acceptor near a hard wall interface, such as a SiO2 interface the confinement potential
becomes Hconfinement = Hinterface:

Hinterface = VbΘ(z − d)− 2Q′√
ρ2 + (z + 2d)2 + Q′

2(z + d) (2.9)

The hard wall boundary condition of the single interface is equivalent to making the ap-
proximation Vb →∞. The second and third terms are the acceptor and hole image charges
respectively with Q′ = (εb − εs)/(εb + εs). εb is the barrier static dielectric constant [220].
Note that for an insulating barrier Q′ < 0, namely the acceptor image is attractive for holes,
and hence an enhancement of the binding energy is expected.

The total Hamiltonian, now with the hard wall interface confinement in Eq. 2.7, is then:

HHW = HKL +Hc +Hinterface +HBP +HTd +HF +HB. (2.10)

2.2.2.1 Variational method

The barrier potentials considered for this case are much larger than the typical binding
energies and hence a hard-wall boundary condition Ψ(z ≤ −d) = 0 is assumed for the wave
function. The interface boundary condition implies that the spherical symmetry usually
assumed for the bound hole variational wave-function in bulk is not valid and it is more
appropriate to work in cylindrical variables with the z-axis perpendicular to the interface.
With the information of the symmetries and the selection rules we can define a hydrogen-like
variational basis set in cylindrical variables and with quantum numbers J and Jz:

ψ(ρ, z, ϕ, αi) = (z + d)zl′ρ|Lz |rn′e−αir+iLzϕ|J, Jz〉 , (2.11)

where l′ = L−|Lz| and n′ = n−L−1 with n > L. A set of different αi values is considered. ρ is
the cylindrical variable ρ =

√
r2 − z2. The (z+d) prefactor assures that the basis set satisfies

the hard wall boundary condition. Given an Lz, the quantum number Jz is chosen such that
Kz belongs to a given IR. For example, for calculating Γ7 states, given Lz = 1, the possible
Jz are 1/2 and 3/2 (Kz = 3/2, 5/2 respectively), while for Γ6 states Jz can be both -1/2 and
-3/2 (Kz = ±1/2). This basis set is truncated at a certain Lmax with nmax = Lmax + 1.
Lmax is chosen such that the condition for the energy (ELmax − ELmax−1) = 0.1 meV is
fulfilled in bulk, which in silicon corresponds to Lmax = 11. The number of different αi
considered is not as determinant for the convergence as the value of Lmax. For instance, for
the ground state energy of an acceptor in bulk silicon, including α1 = 1 and α2 = 2 with
Lmax = 11 gives (ELmax −ELmax−1) = 0.1 meV. However, the excited states require a larger
set of different αi due to their different Bohr radii. Adding α3 = 0.5 and α4 = 0.25 gives
results with (ELmax −ELmax−1) < 0.2 meV for the first 8 states. For Ge, the set is truncated
at Lmax = 11 for the J = 3/2 states while for the J = 1/2 states Lmax = 6 since the split-off
band is less relevant in this case (∆Ge

SO = 290 meV) and the convergence is faster.
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Figure 2.3: Value of the linear g-factor g1 in Si1−xGex as a function of the Ge content.
The bulk g-factors in Silicon and Germanium have opposite signs, hence around x = 0.4 the
Si1−xGex g-factor goes through zero.

Since the basis set defined in Eq. (2.11) is not orthonormal, it is necessary to consider the
overlap matrix Si,j

Si,j = 〈ψ(αi)|ψ(αj)〉
Hi,j = 〈ψ(αi)|Hacceptor|ψ(αj)〉 , (2.12)

and the problem becomes a generalized eigenvalue problem

Hi,j |Ψ〉 = ESi,j |Ψ〉 . (2.13)

Most of the integrals used to obtain the matrix elements of Hi,j and Si,j can be solved
formally, as detailed in Appendix A.

2.2.3 Application to SiGe quantum wells

Now consider an acceptor acceptor is placed in a quantum well of width L, see Fig. 2.1.
Starting from the total Hamiltonian in Eq. 2.7, the confinement potential is now

HQW = ∆QW(Θ(z − L/2) + Θ(−z − L/2)) +Hic, (2.14)

being ∆QW is the quantum well barrier. The image charges and hole self-energy are included
in Hic and are more complex in this case than in the hard wall case [225]. However, this
contribution is negligible as the dielectric constants of the well and barrier materials are
similar (Q ≈ 0) and is not considered here. The Hamiltonian for this confinement is then

HSiGe = HKL +Hc +HQW +HBP +HTd +HF +HB. (2.15)
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To obtain the values of the Luttinger γi parameters for Si1−xGex we use the interpolating
functions given in Ref. [226]:

γ1 = 4.22 + 1.234x+ 3.988x2, 0 ≤ x ≤ 0.8,
γ1 = −104.315 + 447.266x− 601.113x2 + 271.542x3, 0.8 ≤ x ≤ 1,

γ2 = 0.39− 0.185x+ 2.203x2, 0 ≤ x ≤ 0.8, (2.16)
γ2 = −58.16 + 238.533x− 318.8x2 + 142.667x3, 0.8 ≤ x ≤ 1,

γ3 = 1.44 + 0.266x+ 1.928x2, 0 ≤ x ≤ 0.8,
γ3 = −59.74 + 250.855x− 366.675x2 + 151.25x3, 0.8 ≤ x ≤ 1.

The relaxed lattice constant of a generic Si1−xGex alloy can be obtained using the interpo-
lating function [227] a0(x) = 0.541(1 − x) + 0.5658x − 0.00188x(1 − x), where the lattice
parameter increases with the Ge content. While for SiO2 interfaces we use the hard wall ap-
proximation, justified since the barrier height is 3 eV, the barrier height of the quantum well
∆QW is related to the valence band offset of the SiGe heterostructure, and hence depends on
both the quantum well and barrier compositions. It is given in eV by (see Refs. [226, 227]):

∆QW = (0.74− 0.06x2)(x1 − x2) (2.17)

The deformation potential b, dielectric constants and elasticity moduli C11, C12 are calculated
by linear interpolation [228]. The g-factors are calculated by interpolation of the bulk data
from Ref. [229], see Fig. 2.3. In comparison to hard wall confinement conditions, for SiGe
quantum wells show several new features: the material dependence of several parameters,
the barrier height and the inherent uniaxial strain. The acceptor Coulomb potential now
has an extra z dependence Hc = e2/(4πεs(z)ε0r), due to the different value of εs(z) in the
barrier and in the quantum well.

Due to the lattice mismatch between well and barrier, there is an intrinsic uniaxial strain in
SiGe quantum wells. The εii depend on the relative values of x1, x2 and x3 (see Fig. 2.1), the
Ge content of each of the layers of the heterostructure. For a Si1−x1Gex1 layer with lattice
constant a0(x1) grown on a relaxed Si1−x3Gex3 substrate with lattice constant a0(x3) the
deformation tensor is diagonal with components:

εxx = εyy = a0(x3)− a0(x1)
a0(x1)

εzz = −2C12
C11

εxx. (2.18)

In general, x2 < x1 is required to define a p-type quantum well. When x3 < x1 strain is
compressive and Γ7 symmetry (HH) ground states are favored, so the simplest case x3 = x2
implies a HH ground state. On the other hand, if x3 > x1, strain is tensile and always favors
Γ6 symmetry ground states (LH). The latter case is more complex in terms of fabrication,
but allows a LH ground state and, as will be shown in the following chapters, the competition
between strain favored LH states and confinement favored HH states gives an extra flexibility
to define the qubit, giving rise to very interesting properties for quantum computation.

The only remaining term that includes an extra dependence is the magnetic field, due to the
material dependence of the g-factor:

HB = µB (g1(z)B · J + g2(z)B · J ) (2.19)
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However, as the linear g-factors of confined heavy holes are known to be suppressed for
in plane magnetic fields [130], there can be situations in which the cubic g-factors (g2)
dominate. This cubic term is also important when considering a heavy-hole qubit as it can
mix the ground state heavy-hole Kramer doublet through in-plane magnetic fields. This is
particularly the case when x3 = x2 and x2 < x1.

2.2.3.1 Variational method for quantum wells

We split the total Hamiltonian in Eq. (2.15) into a static Hamiltonian H0 and an interacting
Hamiltonian Hint

H = H0 +Hint

H0 = HKL +Hc +HQW +HBP +H(Fz)Td

+ HFz +HBstatic +Hic

Hint = HF‖ +HBint (2.20)

H0 includes the contribution of the terms related to the well parameters – length, uniaxial
strain and acceptor position. It also includes static contributions of both the vertical electric
field, which due to the acceptor ion term gives an extra mixing of HH and LH, and the static
magnetic field, which breaks time reversal symmetry lifting the remaining degeneracy. This
static magnetic field is in the perpendicular direction for the HH case, and in the in-plane
direction for the LH case. The interacting Hamiltonian Hint includes the oscillating in-plane
electric and, in the HH case, also in-plane magnetic fields. These terms mix the HH and
LH subspaces such that after solving the static Hamiltonian their contribution is mostly
off-diagonal in the qubit subspace.

The variational basis set used for solving the static Hamiltonian for the acceptor bound states
is

|ψi(ρ, z, ϕ)〉 = Niρ
ne−αiρφi(z)eiLzϕ|J, Jz〉 , (2.21)

where Ni is the normalization coefficient. The set of αi parameters is chosen to be α1 = 4,
α2 = 2, α3 = 1 and α4 = 0.5. The functions φi(z) are odd and even solutions to the finite
quantum well problem, including excited states with different depths outside the quantum
well in the form:

φ+
kc

(z) =


NLe

βz x ≤ −L/2
NC cos(k+

c z) −L/2 ≤ x ≤ L/2
NRe

−βz x ≥ L/2
(2.22)

φ−kc(z) =


NLe

βz x ≤ −L/2
NC sin(k−c z) −L/2 ≤ x ≤ L/2
NRe

−βz x ≥ L/2
(2.23)

where NL, NR, NC and β are chosen to normalize and fulfill boundary conditions of the
wavefunctions. The value of kc is split into the number of nodes l and a phase θ ∈ (0, 1)
that can be related to the relative density of wavefunction inside and outside the well: k+

c =
(2l + θ)π/L and k−c = (2l + θ + 1)π/L. The values of θ are chosen to maximize the energy
for each case. This value is usually in between 0.7 and 0.99 and strongly depends on the
vertical electric field and dopant position. The number of different αi and θi parameters are
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B Al Ga In Tl
EGS (meV) 45.83 69.03 74.16 157 246

Si
rcc (nm) - 0.078 0.082 0.12 0.15

EGS (meV) 10.82 11.15 11.32 11.99 13.45
Ge

rcc (nm) - 0.077 0.089 0.12 0.16

Table 2.2: Central cell parameter rcc [219] that reproduces the measured bulk ground
state energy EGS for the different acceptor species [30]. A single rcc suffices to reproduce
the full spectrum [67]. Boron binding energies are well reproduced without the central cell
correction.

not as important for the energy convergence as the value of n and l at which the basis set
is truncated. We take nmax = 8, lmax = 10. The difference in energy between the calculated
ground state using lmax = 10 and nmax = 9 is smaller than 0.1 meV.

An acceptor bound ground state in bulk is fourfold degenerate (due to the degeneracy of the
top of the valence band at the Γ point). In these heterostructures this degeneracy is not only
broken by the mechanisms described in chapter 2 but also by strain (tensile strain gives rise
to a LH ground state while compressive strain leads to a HH ground state [222, 230]) and
quantum confinement in one direction (which, as will be shown, always favours a HH ground
state). A LH ground state may then be produced if the tensile strain splitting overcomes the
one produced by the quantum confinement.

2.3 Central cell corrections

In order to account for the dependence of the binding energy on the acceptor species, the
so-called central cell corrections have to be included [219]. We adopt here a central cell
potential which takes into account the incomplete screening of the Coulomb potential at
very short distances from the dopant [67]

Vcc = 2(εs − 1)e−r/rcc

r
, (2.24)

with rcc a semiempirical parameter [67] calculated such that for a given acceptor the measured
bulk ground state energy is reproduced, see Table 2.2. A single rcc characteristic of each
dopant species is sufficient to get also the excited spectrum. The values are very similar
for Si and Ge. However, due to the much smaller binding energies of the acceptor states in
Ge (which corresponds to much more extended wave functions) the effect of the central cell
correction on the binding energies is not as large in Ge as in Si. The central cell correction is
not needed to reproduce the energy spectrum for the boron acceptor (namely, rcc for boron
is negligibly small). A larger binding energy corresponds to a larger rcc. Typical central-cell
parameter values are very small, rcc ∼ 1 Å, and hence we do not expect it to be affected by
the presence of the interface.

Other relevant central cell corrections correspond to the value of the coupling p in Eq. 2.6.
In this thesis, coupling to electric fields is only calculated with a boron acceptor whose value
is p = 0.26D. The value for deeper acceptors can be found in Ref. [223] and table 2.3.
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Figure 2.4: Energy dependence on distance to the hard wall interface of the ground
state and some excited states of an acceptor in Si. The highest energy corresponds to the
ground state which is four-fold degenerate in bulk and split in two Kramers doublets near
the interface. Dashed lines indicate Γ7 states while solid lines indicate Γ6 states. The red
dots are the experimental values for the bulk energies of the lowest three states [30, 31]. As
the excited states have a less localized wave function than the ground state, they become
affected by the interface at larger distances. (a) For B acceptors, neglecting the image
charges. (b) Same as (a) including the image charges corresponding to a SiO2 barrier. Note
the enhancement of the binding energies in (b) with respect to (a) due to the attractive
character of the acceptor image. (c) Same as (a) for Al acceptors. Holes are more strongly
bound for Al in bulk, see Table 2.2, but the energies at small d are very similar to the B
case in (a), indicating a suppression of the central cell effects.

2.4 Interface effects on the spectrum

Fig. 2.4 illustrates the effect of a hard wall interface on the energy spectrum as a function
of the interface-acceptor distance d in Si. The superimposed dots at large d correspond
to the three lowest energies measured in bulk for the corresponding acceptors [30, 31]. The
bulk energies are well reproduced but the interface boundary condition and the image charges
affect the calculated energies up to the distances shown in the figure. Fig. 2.4 (a) corresponds
to a B acceptor and neglects the image charges (namely, Q′ = 0). Fig. 2.4 (b) considers a SiO2
barrier (Q′ = −1/2), and Fig. 2.4 (c) is the result for Al acceptors with Q′ = 0. Fig. 2.5(a)
shows the corresponding results for B acceptors in Ge with Q′ = 0. There are two main
qualitative interface induced effects on the energy levels: (i) the binding energies are smaller
close to the interface and (ii) the ground state (which is four-fold degenerate in bulk) splits
in two Kramers doublets [140].

The reduction of the binding energies close to the interface is due to the quantum confine-
ment [207, 208, 221] produced by the boundary condition on the wave function, which has
to be zero at the interface. The wave-function is hence deformed with its probability density
shifting away from the interface, see Fig. 2.6. This effect is more significant for the levels
coming from the four-fold degenerate bulk ground-state than for the excited states leading
to the compression of the full energy spectrum [231]. This compression also appears in bulk
strained systems [211, 212] due to the splitting of the heavy-hole and the light-hole bands.

The reduction of the ground state binding energy due to the quantum confinement is partially
compensated by the dielectric mismatch with the insulating barrier [208], compare panels (a)
and (b) in Fig. 2.4: the holes are more strongly bound when the image charges are included
(because Q′ < 0). The extra binding effect of the acceptor image can be still appreciated
at the longest distances shown in Fig. 2.4 (b) by comparing to the bulk values. A vacuum
barrier, with Q′ = −0.84, would further increase the ground state binding energy such that,
for d = 2 nm, EGS = 40.3 meV, consistent with the reported experimental values in Ref. [208].
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Figure 2.5: (Left) Spectrum of a B acceptor in Ge. The notation for the curves is the same
as in Fig. 2.4. The binding energy is much smaller in Ge than in Si, however, the ground
state splittings are of the same order. (Center) Splitting of the B ground state in Si as a
function of the distance d. The red dots are the experimental values taken from Ref. [140].
Although an interface with vacuum has been considered in this plot (Q′ = −0.84), the value
of the splitting is basically independent of Q′ down to the distance d considered here. (Right)
Comparison of the splitting of the ground state in Si (with two different acceptors) and Ge
in effective units of distance.

For doped Si, the energy difference between the two doublets and the excited spectrum can
be lowered (for Q′ = 0) to values < 8 meV, a significant reduction from the > 25 meV typical
splitting in bulk. This energy splitting is enhanced when the dielectric mismatch is included,
as in Fig. 2.4 (b), but it is still smaller than its bulk value. The compression of the spectrum
should be kept in mind when interpreting experimental measurements of bound states in field
effect transistor geometries where SiO2 is a common barrier material. A strong compression
could bring the excited states closer to the HH LH manifold ground states, although this
energy separation is expected to still be several meV long.

Qualitatively similar results are found for Al acceptors in Fig. 2.4 (c). In the bulk limit, the
energies of the two first levels are enhanced with respect to B by the central cell corrections.
However, the third level has a binding energy very similar to that in B. This difference is due
to the first 2 energy levels being s-like (and hence more affected by central cell corrections).
Notably, although the Al acceptors have much larger binding energies in bulk, close to the
interface the values are very similar to B acceptors. This is a consequence of the hole
probability density shifting away from the dopant, significantly reducing the effect of the
central cell correction on the energy. Therefore, distinction among different acceptors in
terms of measured binding energies may be blurred by the proximity to an interface.

The splitting of the ground state is due to the symmetry reduction produced by the interface.
As explained in subsec. 2.2.1, the Γ8 IR becomes reducible and hence the states with Γ8
symmetry in bulk acquire a Γ6 or Γ7 symmetry. This is the case in particular of the four-
fold degenerate bulk ground state which is split in two doublets. The two doublets have a
predominant LH (Γ6) or HH (Γ7) character. Both corresponding wavefunctions have s-like
envelopes, however, the light-hole ground state is more affected by the interface because it
has a higher contribution of high order spherical harmonics parallel to the surface as shown
in Fig. 2.6. The slightly different shapes of the heavy-hole and light-hole wave functions leads
to the energy splitting of the two doublets [140].

The solid and dashed lines in Fig. 2.4 correspond to Γ6 and Γ7 symmetries respectively.
Whenever those curves are degenerate towards the bulk (increasing d), the Γ8 symmetry is
recovered. The level crossings (anticrossings) in the excited spectrum occur between states
with different (same) symmetry. For small values of d there are some near degeneracies
between Γ6 and Γ7 states which are accidental and not related to the (reducible) Γ8 symmetry.
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Fig. 2.5(b) shows the energy difference between the two lowest doublets for B in Si. The
energies for this plot have been obtained considering an interface with vacuum (Q′ = −0.84)
but results are qualitatively (not quantitatively) independent of the value of Q′ considered.
The energy difference is enhanced as the acceptor gets closer to the interface. Distances
d ≤ 0.5a∗ require the inclusion of higher spherical harmonics L ≥ 11 to maintain the accuracy
due to the relatively larger weight of interfacial states.

The dots with error bars in Fig. 2.5(b) are experimental values as reported in Ref. [140]. The
agreement with the calculated splitting is very good even in comparison to more sophisticated
tight-binding calculations [140]. The giant splitting ∼ 6 meV found at very short distances
d ∼ 0.5 nm < dmin in Ref. [140] is not included in this figure. We stress that the doublet
splitting barely depends on Q′, namely it is independent of the nature of the insulator, but
the energy spectrum compression does, see discussion of Fig. 2.4. Therefore, in order to keep
the excited states away from the lowest doublet in case of a giant splitting, an insulator with
a very low dielectric constant should be used.

The same considerations can be made in the case of doped Ge, see Fig. 2.5(c) for the energy
spectrum. The main difference with Si is that holes are much less bound in Ge, leading to a
larger effective Bohr radius and hence the effect of the interface is more noticeable for much
deeper acceptors.

Although the energy spectrum is quantitatively affected by the host crystal and the acceptor
species, the interface induced ground state splitting is very similar in different systems, as
illustrated in Fig. 2.5(c). Here the doublet splitting is shown for B in Si, Al in Si and B in
Ge as a function of the distance in effective units. The three curves are very similar and, in
all cases, splittings & 1 meV can be found.

2.5 Hard wall effective Hamiltonian

In bulk the four-fold degenerate ground state of the acceptor is separated by 21 meV from
the following excited states. Although this splitting can be reduced to ≈ 10 meV, it is still
enough for quantum computation since the thermal energy in the dilution fridge would be
below 1 µeV. This allows us to build the effective low energy Hamiltonian for the four-fold
ground state in Ref. [125]. This effective Hamiltonian will be used to understand the qubit
dynamics in Chapter 4.

We split the total Hamiltonian Eq. (2.10) into the variationally solved Hamiltonian H0,
related to the static terms, and the interacting terms Hint that will be accounted by a
Schrieffer-Wolff (SW) transformation (see Appendix B)

H = H0 +Hint

H0 = HKL +Hc +Hinterface +HBP +HFz

Hint = HB‖ +HE‖ +HTd (2.25)

H0 includes the contribution of the terms related to static terms, such as the interface and
strain, and also the effect of a vertical electric field that could be used to further confine the
hole wavefunction. The interacting Hamiltonian Hint includes the in-plane magnetic field,
that will be used in chapter 4 to lift the remaining degeneracy, the oscillating in-plane electric
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Figure 2.6: Spatial probability distribution of the two ground state doublets for B in Si
considering a SiO2 interface: (left) Γ6 state with a predominant light-hole (LH) character,
and (right) Γ7 state with a predominant heavy-hole (HH) character. The acceptor is located
at (0, 0, 0). Top figures are the in-plane (x − y) images for d = 2 nm. The shape of the
wave-functions is the same at all distances. Differences with d can be noticed in the x − z
plane (images are equivalent in the y − z plane). The middle panels correspond to d = 7.5
nm and the bottom ones to d = 1.5 nm. The red line in the bottom panels represents the
interface position. The wave-functions are deformed by the interface proximity. The LH
wave-function is more affected than the HH one leading to the energy splitting.
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field and the Td symmetry terms that mix the HH and LH subspaces such that after solving
the static Hamiltonian their contribution is mostly off-diagonal in the qubit subspace.

An acceptor bound ground state in bulk is fourfold degenerate (due to the degeneracy of
the top of the valence band at the Γ point). As seen in the previous section, quantum
confinement lifts this degeneracy favoring a Γ7 (HH) ground state. Strain also lifts this
degeneracy: tensile strain gives rise to a LH ground state while compressive strain leads to a
HH ground state [222, 230]. Different strain conditions will be considered in chapters 3 and
4.

H0 is solved variationally as in the previous sections, obtaining both the energies and eigen-
functions of the first eight states. The interaction with in-plane electric and magnetic fields
is evaluated taking into account this first eight states manifold through a SW transformation
up to third order. Due to the lack of inversion symmetry these in-plane electric and mag-
netic fields will give off-diagonal terms in the heavy-hole ground state manifold, allowing the
manipulation of the qubit state.

SinceH0 does not mix Γ6 and Γ7 states, the only relevant term in the effectiveH0 Hamiltonian
is the HH-LH splitting. Since HH are associated to states with mJ = ±3/2 and LH with
mJ = ±1/2, the effective low energy Hamiltonian of H0 in the basis {3/2, 1/2,−1/2,−3/2}
is

Heff
0 =


0 0 0 0
0 ∆HL 0 0
0 0 ∆HL 0
0 0 0 0

 , (2.26)

where ∆HL can be divided into the contribution from the interface, the vertical electric field
and strain. Following Refs. [125, 126] we set the zero of energy at the HH ground state. This
way the sign of ∆HL determines whether the ground state is HH or LH like. The value of
∆HL as a function of Fz, d and strain will be discussed in the following subsection.

Note that for the numeric results we are considering an 8 × 8 effective Hamiltonian. The
highest four states are important for the quantitative results since they can be close in energy
to the lowest LH and HH states, however the qualitative picture can already be understood
in terms of this effective 4 × 4 Hamiltonian involving the Kramer doublets of the first HH
and LH states. In the same basis, the effective Hamiltonians of the Hint terms are:

Heff
E‖ =


0 αF− −ipFz 0

αF+ 0 0 −ipFz
ipFz 0 0 −αF−

0 ipFz −αF+ 0

 (2.27)

Heff
Td =


0 −ipF+ 0 0

ipF− 0 0 0
0 0 0 −ipF−
0 0 ipF+ 0

 (2.28)

Heff
B‖ = gµBB


0

√
3

2 e
iφ 0 0√

3
2 e
−iφ 0 eiφ 0

0 e−iφ 0
√

3
2 e

iφ

0 0
√

3
2 e
−iφ 0

 (2.29)
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Figure 2.7: HH-LH splitting for three different distances d from the interface as a function
of the electric field.

The in-plane electric field is defined in tensorial spherical coordinates F± = Fx ± iFy, while
the in-plane magnetic field is in polar coordinates B (cos(φ), sin(φ)) for convenience. Here
α is the Rashba coupling parameter that appears as an effective interaction with in-plane
electric fields due to the lack of inversion symmetry [125]. The g-factor in this submanifold
g, is similar to the bulk g ≈ 1.07. Finally, the value of p is obtained by using the formula
from [223] p = e

∫ a
0 f
∗(r)rf(r). The values of both p and α are affected by confinement and

the applied vertical field. Both parameters will be discussed in the following subsections.

From the form of Eqs. 2.27, 2.28, and 2.29, it is clear that these terms are of particular
relevance for the dynamics since all of them mix HH and LH degrees of freedom. Eq. 2.27
is telling that manipulation of qubit states can be performed by performing transitions from
the HH to the LH states. Eq. 2.28 also has this interaction terms, but also implies that the
vertical electric field is already mixing HH and LH, which means that this interaction might
be enhanced by Fz, see Eq. 2.6. Finally, Eq. 2.29 shows the typical structure of an in-plane
magnetic field interacting with a spin 3/2 system. It also mixes naturally HH and LH.

In the following subsections the values of the different parameters as a function of d and Fz are
discussed. Since these values are relevant for Chapter 4, where quantum computation with
acceptors near a SiO2 interface is discussed, the main purpose of the following subsections
is the comparison with the values of the effective Hamiltonian obtained by finite difference
calculations in Ref. [126].

2.5.1 HH-LH splitting

As thoroughly discussed in this Chapter, the Γ7 ground state, related to a higher HH composi-
tion, splits away from the Γ6 ground state Kramer doublet under the confinement conditions.
While this splitting can be already seen in Fig. 2.5(b), it can be modified by the application
of a vertical electric field. This field can further increase the confinement by pushing the hole
wavefunction towards the interface.

To obtain results with a similar precision as those obtained with a finite differences method in
Ref. [126], where they include a high electric field, we require the inclusion of higher angular
momentum wavefunctions. This way it is possible to compensate the lack of triangular
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Figure 2.8: Td symmetry dipolar coupling p for three relevant distances from the interface
as a function of the electric field.

well wavefunctions within the variational basis set. These results were then obtained with
Lmax = 16. By comparison with Ref. [126], the values with this variational method are in
good agreement with those obtained with a finite difference method, though the high electric
fields requires a higher variational basis set that reduces the effectiveness of the simulations.

In figure 2.7 the value of the HH-LH splitting for three different values of d are shown as a
function of the vertical electric field. As expected, by increasing the vertical electric field the
splitting is enhanced. The reason for this is the increased confinement against the interface
with Fz. It can also be seen that the farther the acceptor is from the interface, the easier
to push the wavefunction against the interface. The reason for this is that the same vertical
electric field for two different distances from the interface the same electric field can induces
a bigger voltage difference for the most separated acceptor. The results for these three
distances are in very good agreement with those in Ref. [126].

2.5.2 Dipolar coupling p

B Al Ga In
p(D) 0.26± 0.06 0.8± 0.12 0.6± 0.1 0.9± 0.12

Table 2.3: Value of the dipolar coupling p for acceptors in bulk Si. From [223].

The value of the dipolar coupling p related to the Td symmetry terms in Eq. 2.28 is tabulated
in Tab. 2.3. Its value can be estimated by accounting for the wavefunction density at the
acceptor central cell [223]

p = e

∫ a

0
f∗(r)rf(r). (2.30)

In this formula f(r) is the envelope of the hole ground state wavefunction while a is the lattice
constant. Since the density of the wavefunction at the central cell is altered by the presence
of the interface, see Fig. 2.6, it is also expected that the deformation due to the presence of
vertical electric fields is also going to affect strongly this value. To calculate the value of p
we first use the variational method to obtain the ground state envelope wavefunction f(r),
and then Eq. 2.30. A large number of variational wavefunctions is again required to obtain
accurate results (Lmax = 16), such as described in subsection 2.2.2.1.
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Figure 2.9: Estimation of the Rashba coupling α for three different distances as a function
of the vertical electric field.

The results can be seen in Fig. 2.8. The value when no field is applied, Fz = 0, is very close to
the bulk value of p = 0.26D, being slightly affected by the wavefunction position. Distances
below 2 nm start to deviate from this behavior since the wavefunction starts to be repelled
away from the acceptor due to the close presence of the interface. This effect was already
found in the previous central cell subsection 2.3, where the central cell effects are lost for
acceptors very close to the interface. Higher electric fields move the hole wavefunction away
from the impurity and, as a result, the value of p is increased. When the acceptor is at a
distance d ≤ aB, the wavefunction is repeled by the interface and an increasing electric field
pushes it back to the interface, hence increasing the density at the acceptor center. Acceptors
at larger distances can be partially ionized by the electric field, reducing the value of p with
Fz. In particular, in the case d = 6.9 nm, the value is very close to zero for > 20 MV/m.
This implies that the hole wavefunction is almost totally ionized from this value, the effects
of the Hamiltonian term in Eq. 2.28 becomes irrelevant (p ≈ 0), and the hole becomes bound
to the interface in the z direction.

2.5.3 Rashba coefficient

Since the silicon lattice does have inversion symmetry, the Rashba coupling is, in this case,
a consequence of the presence of the interface [125]. This Rashba coupling allows spin-
orbit interactions with in-plane electric fields, which can then be used to manipulate a qubit
encoded in the degrees of freedom of the acceptor. As can be seen in Eq. 2.27, this Rashba
interaction is off-diagonal in the |mJ〉 basis of the four-fold ground state. It couples the HH
submanifold with the LH submanifold, in a similar way to the Td symmetric terms. The
calculation of this coupling is performed by perturbation theory. After obtaining the results
from the variational method of the first eight states, the value of α is obtained by mapping
onto Eq. 2.27 by a SW transformation, see Appendix B.

The values of α can be seen in Fig. 2.9. The stronger dependence on Fz for acceptors farther
from the interface is clear again. For d = 6.9 nm this Rashba coefficient strongly grows with
Fz since in this case the electric field is further reducing the inversion symmetry. Interestingly,
in the other two cases there is change of sign in α. This is due to the interplay between the
interface and the vertical field. For small d the interface repels the wavefunction, while the
vertical electric field pushes the wavefunction against the interface. For these two regimes
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Figure 2.10: Acceptor energy levels in a quantum well versus z0 for x1 = 0.05 and
L = 10 nm. No external fields applied in the two cases. Solid (dashed) curves correspond
to heavy-hole (light-hole) like states. Note that the energy is calculated from the top of the
valence band being the bound states positive in energy. In (Left) the ground state is heavy-
hole like. The plot corresponds to x2 = x3 = 0. In (Right) the ground state is light-hole like
for centred acceptors (small z0) but the level crosses the heavy hole excited one when the
acceptor gets close to the barrier due to the effect of quantum confinement. This plot uses
x2 = 0 and x3 = 0.06. Larger values of x3 would increase the LH-HH splitting.

the inversion symmetry is broken in opposite ways for low Fz and high Fz. Alternatively, this
effect can be already seen in Fig. 2.8 since the maximum of the density of the wavefunction,
related to p, is expected to happen near the sign flip of α. The obtained values are again in
good agreement with those in Ref. [126].

2.6 Confinement and strain effects on acceptors in quantum
wells

We have seen that the proximity of an acceptor to an interface decreases its binding energy
due to the repulsion of the wave-function produced by the hard wall. In a narrow well, this
competes with the fact that the confinement between the two walls increases the binding
energy. This increase, which could seem good news in terms of robustness of the ground state,
limits very strongly the sensitivity of the wave-function shape under external fields, limiting
its manipulability. An extra ingredient that arises here is the uniaxial strain produced by
the different lattice parameters on the x1, x2, and x3 layers. This uniaxial strain induces
the dominating HH-LH splitting. As has been discussed in the previous section, by choosing
the parameters of the heterostructure, the ground state can become of HH or LH character
(see Fig. 2.1). HH and LH acceptor qubits in Si have been discussed in Refs. [124–126, 200].
In fig 2.1 two spectra, with different strain configurations in a L = 10 nm quantum well,
are shown. In (a) x2 = x3 = 0 while the well is Si0.9Ge0.1, which already corresponds to
several meV separation between HH and LH. On the other hand, in (b) the parameters are
chosen to obtain a LH ground state for certain distances. In this case the HH-LH splitting
from strain competes against the splitting from the quantum confinement. Basically, the
strain induced splitting is constant while increasing the confinement by getting closer to the
interface reduces the binding energy of LH states. In the following we will consider two
regimes for acceptors confined in quantum wells: (i) x2 = x3 < x1, will give a HH ground
state, independently on the degree of confinement. (ii) x3 > x1 > x2, but with a small
difference between x3 and x1, implying a LH ground state. Increasing the confinement by
vertical electric fields recovers the HH ground state.
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2.7 Effective low energy Hamiltonian for SiGe quantum wells

Similarly as with hard wall interface conditions, H0 includes the contribution of the terms
related to the confinement parameters – strain and acceptor position. It also includes static
contributions of both the vertical electric field, which due to the acceptor Td term gives an
extra mixing of Γ6 and Γ7, and the static magnetic field, which breaks time reversal symmetry
lifting the remaining degeneracy. This static magnetic field is in the perpendicular direction
for the HH case, and in the in-plane direction for the LH case. The reason for this is the
different anisotropy of the effective g-factors for HH and LH states: Vertical magnetic fields
are coupled strongly to heavy-holes since |mJ(HH)| = 3|mJ(LH)|, while in-plane fields only
couple to HH via LH states, implying a suppressed effective in-plane g-factor for pure HH
states. The interacting Hamiltonian Hint includes the oscillating in-plane electric and, in the
HH case, also in-plane magnetic fields. These terms mix the HH and LH subspaces such that
after solving the static Hamiltonian their contribution is mostly off-diagonal in the qubit
subspace.

H0 is solved variationally, obtaining both the energies and eigenfunctions of the first eight
states. Note that, unlike the unstrained bulk acceptor states, the excited states beyond the
first two doublets are close in energy (see Fig. 2.1) and hence should not be neglected. The
interaction with in-plane electric and magnetic fields is evaluated taking into account this
first eight states manifold through a SW transformation up to third order, see Appendix B.
Due to the lack of inversion symmetry in the well (except when z0 = 0 and Fz = 0) and
the extra mixing of HH-LH states via the Td symmetry interaction with electric fields, these
in-plane electric and magnetic fields will give off-diagonal terms in the heavy-hole ground
state manifold, allowing the manipulation of the qubit state.

For clarity we separate the perpendicular and parallel terms of the effective Hamiltonian.
This Hamiltonian accounts for the low energy physics of only the first four bound states
(lowest LH and HH Kramer doublets) in the mJ basis {3/2,−3/2, 1/2,−1/2}:

Heff
⊥ (Fz,Bz) =


EHH(Fz) 0 0 −ipFz

0 EHH(Fz) ipFz 0
0 ipFz ELH(Fz) 0

−ipFz 0 0 ELH(Fz)



+ µBBz


gHH
⊥ 0 0 0
0 −gHH

⊥ 0 0
0 0 gLH

⊥ 0
0 0 0 −gLH

⊥

 . (2.31)

Where the values gHH
⊥ , gLH

⊥ are the perpendicular g-factors of the first HH and LH bound
states respectively. These g-factors include the contributions of both the linear and cubic
g-factors. The energies EHH and ELH depend on L, z0 and the electric field applied in
the z direction Fz. Note that for the numeric results we are considering an 8 × 8 effective
Hamiltonian. The last four states are important for the quantitative results as they can be
close to both the first LH and HH states, however the qualitative picture can already be
understood in terms of this effective 4× 4 Hamiltonian involving the Kramer doublets of the
first HH and LH states.
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In the same basis, the effective Hamiltonian of the in-plane terms is, neglecting small non-
linear terms for simplicity,

Heff
‖ (E‖,B‖) =


0 0 −ipE+ + αE− 0
0 0 0 −ipE− − αE+

ipE− + αE+ 0 0 0
0 ipE+ − αE− 0 0



+ µB


0 g̃′‖B+

√
3

2 g̃‖B− 0
g̃′‖B− 0 0

√
3

2 g̃‖B+√
3

2 g̃‖B+ 0 0 g̃‖B−

0
√

3
2 g̃‖B− g̃‖B+ 0

 . (2.32)

Here α is the Rashba coupling parameter, and the g-factors g̃‖ and g̃′‖ are the effective linear
and cubic g-factors, respectively.

When the confinement and strain conditions are such that our ground state allows the def-
inition of a HH qubit, we will consider the Hamiltonian Eq. (2.31) as an effective static
Hamiltonian, with Eq. (2.32) the interacting Hamiltonian. When these conditions lead to
a LH ground state however, the static magnetic field will be in the in-plane direction since
LHs couple strongly to in-plane fields, and it will be manipulated only by electric means.

From Eq. 2.32 it can be seen that the linear g-factor does not couple heavy-hole states.
This occurs because it is only coupled to the linear spin operator J, see Eq. 2.19. Under
compressive strain in the SiGe quantum well, the HH and LH subbands are separated by
a few meV, and the ground state g-factor in the in-plane directions is suppressed as it is
off-diagonal, being proportional to the HH-LH mixing. This implies that the linear in-plane
g-factor in the ground state manifold is tunable through the electric field mixing of HH and
LH.

On the other hand, the cubic g-factor couples magnetic fields with the operator J =
(J3
x , J

3
y , J

3
z ). This third order spin operator is the only term in the total Hamiltonian

Eq. (2.15) that directly couples HH Kramer doublets. Although the cubic g-factor is small,
it is not negligible when the linear g-factor is suppressed and can even be the dominant term
for an in-plane magnetic field.

Regarding the interaction with electric fields, in the effective static Hamiltonian Eq. (2.31) it
can be seen that non-zero vertical electric fields already mix the HH and LH states through
the off-diagonal Td symmetry interaction with the acceptor ion. This extra mixing is quite
important in the case of electric manipulation of a HH state, as it allows the interaction
with in-plane electric fields via both the Rashba and the Td symmetry terms in Hamiltonian
Eq. (2.32).

2.7.1 HH-LH splitting

The HH-LH splitting is sensitive to confinement and strain. This implies that this parameter
is strongly affected by several of the fixed conditions of the quantum well and acceptor such
as the difference in composition between the quantum well and the barrier x1, x2 and x3, the
quantum well width L, the relative acceptor position z0 and even the vertical electric field
Fz. The strain conditions are determined by the quantum well composition and, as discussed
previously, can favor HH or LH ground states depending on whether strain is compressive or
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Figure 2.11: HH-LH (∆LH = EHH − ELH) splitting as a function of different parameters
assuming x2 = x3 = 0. (Left) The acceptor is positioned at the center of the quantum
well (z0 = 0) and no electric field is applied. The splitting is shown as a function of the
Germanium composition in the quantum well x1. (Center) For x1 = 0.05 and zero electric
field, the splitting is shown as a function of the acceptor position in units of L/2. (Right)
x1 = 0.1 and z0 = 0.6L/2 are constant and the splitting is shown as a function of the vertical
electric field. Positive electric field pushes the wavefunction against the closest interface in
this case.

tensile respectively. On the other hand, as discussed for hard walls, confinement also splits
the four-fold degeneracy but in this case, it always favors the HH ground state.

In Fig. 2.11 the dependence on all these parameters is shown for different cases for which
the ground state is HH like. In the left-hand figure the effects of strain are shown. Simply
by going to x1 = 0.05 the strain induced splitting is bigger than 5 meV. This splitting
grows fast with x1 and, for x1 ≥ 0.25 (keeping x2 = 0) the first LH Kramer doublet is no
longer the first excited state. The acceptor position slightly modifies the splitting from the
strain conditions by increasing the splitting when getting closer to an interface. There is
now a new effect coming from the difference in effective masses between Si and SiGe. This
difference in effective masses reduces the binding energy in the SiGe barrier and gives rise
to a reduction in the binding energy that competes against the increase coming from the
confinement conditions. Finally, the vertical electric field can be used to further increase the
confinement against one of the interfaces. In Fig. 2.11(c) x1 = 0.1, reducing the wavefunction
density inside the SiGe barrier even for high fields so the reduction of the binding energy in
the quantum well is not relevant in this case. The increasing confinement translates again
into an increase in the energy separation. Another general effect in these figures is the effect
of the quantum well width. In the three cases it can be seen that a quantum well with smaller
L has intrinsically a higher HH-LH separation, due to the increased confinement. It has also
an effect on the dependence on z0 and Fz since the tight confinement reduces the freedom of
movement in the hole wavefunction, which is translated into a reduced effect of z0 and Fz in
comparison to wider quantum wells where the hole only sees a single interface.

In Fig. 2.12 two cases where x3 > x1 are shown. The dependence of ∆LH on the parameters
z0 and Fz is the same than in Fig. 2.11, being the tensile strain the main difference. In
these cases it can be seen how the tensile strain forces a LH ground state (∆LH < 0) but an
increased confinement via vertical fields can be used to change the sign of ∆LH and get to a
HH ground state.

In summary, the strain conditions imposed by the quantum well composition dominate the
value of ∆LH = EHH−ELH in Si/SiGe quantum wells but other effects coming from the hole
wavefunction confinement can slightly modify this behavior. In particular under compressive
strain the ground state is always HH like, but carefully selecting x3 to create tensile strain
conditions allows the possibility of getting a LH ground state. In the latter case, the ability
to increase confinement via electric fields allows a higher tunability since both HH and LH
ground states can be achieved.
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Figure 2.12: HH-LH (∆LH = EHH − ELH) splitting as a function of different parameters
assuming x3 = x1 + 0.05 and x2 = x1 − 0.1. (Left) For two values of x1 and Fz = 5 MV/m,
the splitting is shown as a function of the acceptor position in units of L/2. (Right) For two
values of x1 and z0 = 0 the splitting is shown as a function of the vertical electric field.
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Figure 2.13: Effective g-factor gHH
⊥ as a function of different parameters assuming x2 =

x3 = 0. (Left) The acceptor is positioned at the center of the quantum well (z0 = 0) and no
electric field is applied. The g-factor is shown as a function of the Germanium composition
in the quantum well x1. (Center) For x1 = 0.1 and zero electric field, the g-factor is shown
as a function of the acceptor position in units of L/2. (Right) x1 = 0.1 and z0 = 0.3L/2 are
constant and gHH

⊥ is shown as a function of the vertical electric field.

2.7.2 g-factor

In this subsection the focus is on the perpendicular g-factor gHH
⊥ for simplicity, since all other

effective g-factors behave similarly. At the same time HHs are more susceptible to this g⊥
than g‖, so g⊥ already gives the qualitative picture. As can be seen in Fig. 2.13 the effective
g-factor gHH

⊥ is affected by all the parameters of the quantum well. Fig. 2.13(Left) shows
how this g-factor changes with x1 for an acceptor in the middle of the well and no electric
field. The behavior is analogous to the observed in Fig. 2.3, as expected. Si has a negative
g-factor, and it is smaller than in Ge in absolute value. The effective g-factor inherits the
properties of the bulk values. Comparing with Fig. 2.3 the value of gHH

⊥ is enhanced. This
is because the effective g-factor of a HH state is expected to be around 3/2gbulk since HH
is associated to the mJ = 3/2 state. More interestingly, the value of the g-factor strongly
depends on the density of the wavefunction in the barriers. 2.13(Left) shows how by placing
the acceptor near a single barrier, the g-factor is modified. In general since the bulk g-factor
is negative for x < 0.4 and positive for x > 0.4 we can expect that an acceptor close to the
interface is going to have a reduced (more negative) effective g-factor near the interface in
all the cases, being bigger in absolute value when x < 0.4 and smaller when x > 0.4. This
behavior is also obtained under the influence of a vertical electric field. By increasing Fz
the density of the wavefunction inside the barriers is increased, allowing the tunability of
the g-factor by electrical means. This will be of particular interest for manipulation via the
g-Tensor Modulation Resonance technique that will be discussed in the following chapter.
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Figure 2.14: Estimate of the dipolar coupling p. (Left) The acceptor is positioned at the
center of the quantum well (z0 = 0) and no electric field is applied. The value of p is shown
as a function of the Germanium composition in the quantum well x1. (Center) For x1 = 0.1
and zero electric field, p is shown as a function of the acceptor position in units of L/2.
(Right) x1 = 0.1 and z0 = 0.6L/2 are constant and p is shown as a function of the vertical
electric field.

2.7.3 Dipolar coupling p

The value of the dipolar coupling is calculated using the formula in Eq. 2.30. For a B acceptor
in Si, its value is 0.26D. Its value for other acceptors are tabulated in [223] and can be seen
in Table 2.3, but there is no available data for acceptors in Ge or SiGe. In any case, Eq. 2.30
already has a material dependent component since it is a measurement of the wavefunction
density at the central cell. In Ge the hole wavefunction is more spread due to the much
bigger Bohr radius compared to Si. As a result, the obtained value for Ge will be suppressed
in comparison to the value in Si.

This can be seen in Fig. 2.14(Left). The value of p is strongly reduced by increasing the
Ge content of the quantum well x1. Narrower wells show an increased value of p. This is
due to the fact that a narrower well further compresses the hole wavefunction, increasing the
density wavefunction near the acceptor impurity. As the position of the acceptor is closer
to one of the interfaces, p is reduced due to the repulsion of the hole wavefunction away
from the interface, similar to what happens with a single interface. The electric field in
Fig. 2.14(Right) can strongly affect its value too. By pushing the wavefunction away from
the impurity, p is reduced. On the other hand p can be enhanced when Fz compensates the
position of the acceptor, reaching a maximum. It is important to note that, depending on
parameters such as L and z0, under strong electric field conditions, such as when Fz < −15
MV/m in Fig. 2.14(Right), the hole can be completely ionized from the acceptor impurity
making p = 0.

2.7.4 Rashba coefficient

The Rashba coefficient α is non-zero as a result of the lack of inversion symmetry. This
means that an acceptor in the center of the quantum well with no electric field applied has
α = 0. The value of α is particularly relevant for manipulation because it couples in-plane
electric fields with the spin degree of freedom. The Rashba coefficient can be increased by
placing the acceptor away. Its value is obtained by a SW transformation, see Appendix B.

Fig. 2.15 shows the value of this coefficient as a function of several parameters. Fig. 2.15(Left)
shows a material dependence through the parameter x1. This is related to the same material
dependence mechanism in the dipolar coupling p. The more Ge content, the bigger Bohr
radius of the hole wavefunction, and the wavefunction becomes more sensitive to the presence
of interfaces such that the inversion symmetry is easily reduced. While a hole in Si may start
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Figure 2.15: Rashba coupling α as a function of different parameters. (Left) The acceptor
is positioned at z0 = 0.3L/2 and no electric field is applied. The value of α is shown as a
function of the Germanium composition in the quantum well x1. (Center) For x1 = 0.1 and
zero electric field, α is shown as a function of the acceptor position in units of L/2. (Right)
x1 = 0.1 and z0 = 0 are constant and α is shown as a function of the vertical electric field.

feeling the interface at a distance around 5 nm, in Ge it starts to feel it more than 10 nm
away. Another clear dependence comes from L: the narrower the quantum well, the more
confined the wavefunction is and then the harder its inversion symmetry is affected by the two
interfaces. This gives higher α for wider quantum wells and higher x1. In Fig. 2.15(Center)
the value of z0 shows that the closer the acceptor to a single interface the higher α. The
large value of α is not only due to the Ge content but also because the two interfaces reduce
the symmetry further than a single interface, although this mechanism is detrimental when
z0 ≈ 0 due to an increase in the symmetry. Fig. 2.15(Right) shows that even for an acceptor
near z0 = 0 big values of α can be obtained by moving the hole wavefunction against one
interface. Here it is also shown that narrow quantum wells are not only detrimental due to
the higher symmetry that provides the further confinement but also because the envelope
becomes more insensitive to electric fields in comparison to wider wells.

2.8 Conclusions

In this chapter we have used an effective mass approach to study the effect of confinement
on the group III acceptor energy spectra and bound states symmetry in group IV semi-
conductors. This method, though computationally less demanding than tight-binding, has
been proven to be very reliable not only for the calculation of binding energies but also for
the wavefunctions [232]. A semiconductor/insulator interface introduces a specific boundary
condition and the corresponding dielectric mismatch implies new attractive potential terms
in the Hamiltonian. The combined effect of the quantum confinement and the dielectric
mismatch gives rise to energy shiftings which depend on the distance between the acceptor
and the interface and the value of the insulator dielectric constant. In general terms the
full energy spectrum is compressed, namely, the distance between the ground state and the
excited states is reduced by the confinement but this reduction is partially compensated by
the dielectric mismatch [208]. Central cell effects, which account for the binding energies
dependance on the acceptor species, become less important when acceptors get closer to
the interface with the insulator. Therefore, different acceptors close to an interface may be
difficult to distinguish by the values of their binding energies.

We have also followed the modifications on the symmetry of the bound states which can be
qualitatively understood via the analysis of the symmetry breaking induced by the interface.
One of the consequences of this symmetry reduction is the splitting of the four-fold ground
state in two Kramers doublets, as reported in Ref. [140]. This doublet splitting is independent
of the dielectric mismatch for a particular host:acceptor combination. Different acceptors lead
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to comparable values of the interface induced doublet splitting, which is typically & 1 meV.
Our results are in very good agreement with the measurements in Ref. [140].

The variational method was also adapted for SiGe quantum wells, allowing us to perform
a similar analysis for a different type of confinement. In this case the results can be easily
related to those obtained from the single interface case, being the natural appearance of strain
the biggest difference. This strain dominates the ground state splitting and depending on
the difference between lattice constants between the well and the substrate, both tensile and
compressive strain can be achieved. When the well is under compressive strain the ground
state is inevitably of HH nature. On the other hand, tensile strain favores LH states and
competes against the quantum confinement. This competition is interesting since it allows
the possibility of tuning the nature of the ground state by changing the confinement within
the well via external fields, which is useful to define a flexible qubit where the interaction
between LH and HH states is also tunable.

Finally, together with the Schrieffer-Wolff transformations described in Appendix B, this
method allows the mapping of the four-fold ground state onto an effective Hamiltonian that
includes the effect of the interface, electric fields and magnetic fields. The values of the
different parameters for a single interface are in excellent agreement with those obtained
with a finite differences method in Refs. [125, 126]. These effective Hamiltonians are the
cornerstones of Chapters 3 and 4.



Chapter 3
Qubit manipulation in SiGe
quantum wells 1

3.1 Introduction

In the previous chapter we justified the interest in acceptor states by the intrinsic spin-orbit
interaction in the valence band in silicon. It was shown that confinement can strongly affect
the effective Hamiltonian of the lowest states, but it is in this chapter where the impact of
quantum confinement on holes for manipulating the quantum states is characterized. The
strong spin-orbit interaction of this system makes desirable to look for ways to manipulate
the qubit states only by electric fields, in particular, we focus on techniques such as electric
dipole spin resonance (EDSR) [191, 233] or g-tensor modulation resonance (g-TMR) [234].

Quantum confinement has an important influence on the ground state mixing between light
holes mJ = ±1/2 and heavy holes mJ = ±3/2 [127]. The manipulation by electric means
of holes in silicon has been recently achieved in nanowires [235]. Acceptors in silicon have
an intrinsic Td symmetry term that allows an extra heavy hole - light hole mixing under
the application of electric fields [198, 199]. This Td symmetry term, together with the lack
of inversion symmetry that can be provided through electric fields or by the nanostructure
confinement itself, can lead to the enhancement of the SOI via a Rashba type interaction.
This interaction can create a sweet spot for specific values of the electric field in an EDSR
manipulated light-hole acceptor qubit, allowing both fast operations and high coherence
times [125, 126].

A strong SOI, together with quantum confinement, can also result in electrically tunable
g-factors [127, 131]. It has also been shown that the confinement can generate an anisotropy
in the g-factor for different states [128–130]. A heavy hole state in a quantum well has a
suppressed g-factor in the plane parallel to the quantum well, while in the case of a light
hole the g-factor is suppressed in the perpendicular direction. Both the anisotropy and
the tunability of the g-factor are requirements for an electrically manipulated spin qubit by
g-TMR [234, 236]. Indeed, the control of g-factors of holes in silicon nanowires has been
proven [237].

1Results published in [190].
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Figure 3.1: Sketch of the quantum well heterostructure and the bound hole envelope
wave-function along the perpendicular z direction. L is the width of the well, z0 determines
the acceptor position from the well center, ∆QW is the barrier height, and x1, x2, and
x3 indicate the proportion of Germanium on each of the layers. x1 > x2 for defining the
quantum well for holes. The substrate (with composition Si1−x3Gex3) is relaxed and fixes
the lattice parameter in the whole heterostructure. This determines the sign of the strain
on the quantum well and is hence related to whether the doublet ground state is heavy-hole
(x3 = x2) or light-hole (x3 > x1) like.

Good coherence and relaxation times together with the different possibilities of manipulation
with electric fields is what make hole systems in silicon an interesting platform for quantum
computing. The intrinsic Td symmetry of the acceptor together with the symmetry reduction
due to the quantum confinement allows the possibility of manipulation by electric means. In
this chapter we are interested in exploring spin qubit manipulation with acceptors in SiGe
heterostructure quantum wells. The different germanium content of the barrier and quantum
well allows g-factor manipulation and also changes the sensitivity to Rashba interacting terms
due to a larger Bohr radius. Depending on the type of strain in the Si1−xGex quantum
well, HH or LH qubits can be defined. For HH qubits, we explore three different ways of
manipulating the acceptors: electron spin resonance with magnetic fields (ESR),EDSR and
g-TMR. For LH qubits, we focus on pure electric manipulation (EDSR).

To explore all these alternatives, we use the effective mass approach described in the previous
chapter with the Kohn-Luttinger Hamiltonian for a bulk acceptor in a group IV semiconduc-
tor host [44, 217–219], together with the effects of the quantum well barriers, the Bir-Pikus
Hamiltonian [198, 199] for including the strain in the quantum well, and the effect of electric
and magnetic fields. The result of these EMT simulations is mapped onto the effective Hamil-
tonian obtained in subsection 2.7. We will show how strain, which dominates the HH-LH
splitting, hinders the manipulation by both electric and magnetic fields, while the asymme-
try due to the acceptor position within the well or the presence of a vertical electric field
facilitates the electric field manipulability. The g-factors dependence on the heterostructure
composition is also an important factor for both magnetic and electric field manipulation.
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We find that a LH qubit can be manipulated much faster than a HH one but the latter ben-
efits of much longer relaxation times due to a larger HH-LH splitting. On the other hand,
the presence of sweet spots in the LH qubit protects it from charge noise.

3.2 Heavy-hole based qubit

Typically, p-type SiGe quantum wells are compressively strained as they require x2 < x1,
and the strain is maintained in the simplest experimental case x3 = x2. In this case both
the quantum confinement and strain favor the HH states over LH states, see Fig. 2.10(Left),
with a few meV HH-LH splitting. As the HH in-plane g-factors are known to be suppressed
under these circumstances we will consider a perpendicular magnetic field to split the HH
Kramer doublet. From Eq. 2.31, we know that the effective static Hamiltonian of a HH
qubit in the {3/2,−3/2, 1/2,−1/2} basis is:

HHH
0 (Fz,Bz) =


EHH(Fz) 0 0 −ipFz

0 EHH(Fz) ipFz 0
0 ipFz ELH(Fz) 0

−ipFz 0 0 ELH(Fz)



+ µBBz


gHH
⊥ 0 0 0
0 −gHH

⊥ 0 0
0 0 gLH

⊥ 0
0 0 0 −gLH

⊥

 . (3.1)

The Hamiltonian for the interaction with in-plane magnetic and electric fields is then:

HHH
int (E‖,B‖) =


0 0 −ipE+ + αE− 0
0 0 0 −ipE− − αE+

ipE− + αE+ 0 0 0
0 ipE+ − αE− 0 0



+ µB


0 g̃′‖B+

√
3

2 g̃‖B− 0
g̃′‖B− 0 0

√
3

2 g̃‖B+√
3

2 g̃‖B+ 0 0 g̃‖B−

0
√

3
2 g̃‖B− g̃‖B+ 0

 . (3.2)

from which we can already tell that the two HH states can only be coupled to first order with
in-plane magnetic fields. In order to manipulate a HH or LH Kramer doublet through electric
fields, a HH-LH coupling is required. From Eq. (3.1) it can be seen that vertical electric fields
can increase this coupling via the local Td symmetry term, however the interaction is inversely
proportional to the HH-LH energy separation.

The Rabi frequencies for each type of manipulation can be obtained by applying a SW
transformation to get the effective Hamiltonian of the qubit levels. The off-diagonal terms
can be used to perform rotations in the qubit basis. The energy of these off-diagonal terms
can be trivially transformed into the Rabi frequency (E01 = ~ωRabi). The linear terms in the
in-plane magnetic field give the Electron Spin Resonance (ESR) Rabi frequency, while the
linear terms in the in-plane electric field give rise to the EDSR Rabi frequency.
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Figure 3.2: ESR Rabi frequency (a) as a function of the perpendicular electric field for
L = 5 nm (solid lines) and L = 10 nm (dashed lines) and different values of z0. x1 = 0.05,
and x2 = x3 = 0; (b) for L = 10 nm as a function of x1 with x2 = x3 = 0, z0 = 0.6L2 and
Fz = 10 MV/m; (c) same as (b) with x3 = x2 = x1 − 0.05. The amplitude of the in-plane
oscillating magnetic field applied is 0.1 mT and the constant magnetic field applied in the
z-direction is 1 T.

3.2.1 Electron Spin Resonance

Spin manipulation can be readily achieved by applying oscillating in-plane magnetic fields,
see Eq. 3.2, which directly couple the two heavy hole states proportionally to g̃‖. Therefore,
the Rabi frequency can be enhanced by increasing the in-plane g-factor. As the quantum
well and the quantum barrier have different g-factors, increasing the density of the hole
wavefunction in the region with a larger g-factor in absolute value will also increase the Rabi
frequency of the ESR manipulation. Here we evaluate the effect on the in-plane effective g-
factors of three different parameters: The proportion of Germanium x in the SiGe alloy, the
applied perpendicular electric field Fz, and the position of the acceptor within the quantum
well z0.

The dependence of the (bulk) g-factor on the Germanium content x is shown in Fig. 2.3
and is clearly inherited by the effective g-factors, see Fig. 2.13(Left). This implies that,
for instance, for x1 < 0.4 and x2 < x1, increasing the wavefunction density in the barrier
enhances the g-factor. The opposite happens for x1 > 0.6 and x2 < x1. On the other hand,
as x1 − x2 increases so does the barrier height due to the strain (see Eq. 2.17), making it
harder for the wavefunction to penetrate the barrier. z0 also affects the penetration in the
barriers: the closer the acceptor is to the barriers, the larger the density probability in them.

The role of Fz is more complex. On one hand, it can modulate the wave-function probability
density in the different layers. However, the electric field has more consequences on the
acceptor physics as it changes the HH-LH mixing through the Td symmetry term (the ipFz
components in Eq. 3.1). In principle, increasing Fz would increase the linear g-factor but
the effective dipole moment p, which is proportional to the wave function probability density
near the acceptor, can be simultaneously reduced, limiting the effect of this term in the total
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Figure 3.3: EDSR Rabi frequency as (a) a function of the perpendicular electric field for
L = 5 nm (solid lines) and L = 10 nm (dashed lines) and different values of z0. x1 = 0.05,
and x2 = x3 = 0; (b) for L = 10 nm as a function of x1 with x2 = x3 = 0, z0 = 0.6L2 and
Fz = 10 MV/m; (c) same as (b) with x3 = x2 = x1 − 0.05. The in-plane oscillating electric
field is taken as 50 kV/m and the constant magnetic field applied in the z-direction is 1 T.

Hamiltonian. The value of p can also be affected by L (smaller widths increases probability
density) and by x (as the Bohr radius in Ge is larger than in Si), see Fig. 2.14.

Fig. 3.2 illustrates the previous remarks. For small values of L (L = 5 nm for the solid lines
in Fig. 3.2(a)) the effect of Fz is small as the wave function is more constrained. Off-centered
acceptors (z0 6= 0) are more easily manipulated by electric fields which push the wave-
function towards the farthest away interface. With Si barriers (x2 = 0), Fig. 3.2(b), the Rabi
frequency is suppressed as a function of x1 but a significant enhancement can be achieved in
all-SiGe heterostructures, as Si1−(x1−0.05)Gex1−0.05/Si1−x1Gex1/Si1−(x1−0.05)Gex1−0.05, once
x1 > 0.6, as shown in Fig. 3.2(c). In summary, the best conditions to enhance the ESR
Rabi frequency are achieved by quantum wells with large x1 and by choosing the acceptor
position and electric fields such that most of the wavefunction density is in the region with
larger g-factor. Wider quantum wells make it easier to tune the Rabi frequency with electric
fields.

Note that the Rabi frequencies achieved by magnetic field manipulation are orders of magni-
tude smaller than the ones obtained by electric field manipulation, as shown in the following,
so in practice the magnetic field manipulation would not be advisable.

3.2.2 Electric Dipole Spin Resonance

Spin-orbit interaction provides us with an electric knob to manipulate spins. The spin-orbit
interaction is produced by the inversion symmetry breaking (Rashba α terms in Eq. 3.2)
in the heterostructure and by the acceptor Td symmetry (p terms in Eq. 3.2). These terms
induce an extra mixing between the HHs and LHs allowing a purely electric field manipulation
with in-plane oscillating fields.
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Figure 3.4: g-TMR Rabi frequency as (a) a function of the perpendicular electric field for
L = 5 nm (solid lines) and L = 10 nm (dashed lines) and different values of z0. x1 = 0.05,
and x2 = x3 = 0; (b) for L = 10 nm as a function of x1 with x2 = x3 = 0, z0 = +3 nm,
Fz = −10 MV/m, and |B| = 1T; (c) same as (b) with x3 = x2 = x1 − 0.05.

The HH-LH coupling is limited by excessive strain and by large x1 − x2, both splitting the
HH-LH manifolds by several meV and hence reducing drastically the EDSR term. As shown
in Fig. 3.3 the absence of a perpendicular electric field Fz leads to zero coupling.

As discussed in the previous chapter the Rashba term gets stronger by reducing the inversion
symmetry. This symmetry is broken by placing the acceptor on an off-centered position
and by applying a perpendicular electric field. The barrier height can also increase the
Rashba coupling but in exchange this implies higher strain and lower HH-LH coupling. The
quantum well width can also be important: the wider the quantum well, the more room the
wavefunction has to shift, allowing higher Rashba couplings. Another interesting factor is
the Bohr radius in the material. Contrary to the Td term, which is suppressed when the
Bohr radius is big (namely, for large Ge content), the Rashba term is enhanced due to the
higher sensitivity to the inversion asymmetry induced by one of the barriers.

Figs. 3.3 (b) and (c) show the dependence of the EDSR Rabi frequency on x1 for a Si and
a Si1−(x1−0.05)Gex1−0.05 barrier, respectively. A large Ge content in the well, together with
a small x1 − x2 difference, gives rise to a significant enhancement of the Rabi frequency due
to the increasing Bohr radius.

3.2.3 g-Tensor Modulation Resonance

The quantum confinement and the strain suppresses the in-plane g-factor in comparison
to the out of plane g-factor of heavy-holes, creating an anisotropy in the g-tensor. This
anisotropy depends on applied perpendicular electric fields by means both of the spin-orbit
interaction and the different content of Ge on the heterostructure layers. The dependence
of the Rabi frequency on the g-factor modulation g-TMR by Fz can be obtained using the
Bloch equations, as was done in [236]:
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Figure 3.5: Sketch of the first four energy levels under tensile strain and an in-plane
constant magnetic field as a function of an electric field Fz. For larger values of Fz, due
to the proximity to a barrier interface, the quantum confinement competes with strain and
eventually the ground state becomes of HH character. The anticrossing occurs due to the
LH-HH mixing induced by the applied fields. For simplicity, the g-factor is assumed to be
constant. In practice, it can decrease (increase) as a function of Fz in the concave (convex)
case.

fgTMR
R = µBEac

2h

[ 1
g‖

(
∂g‖
∂Fz

)
− 1
g⊥

(
∂g⊥
∂Fz

)]
g‖g⊥|B|
|g‖|+ |g⊥|

(3.3)

where Eac is the oscillating component of the applied perpendicular electric field, assumed
to be small enough to consider a linear dependence of the g-tensor. This oscillating field is
superimposed to the static vertical electric field Fz (already considered in the Hamiltonian
H0) and is taken as Eac = 1 MV/m in the following. The magnetic field is applied in a

direction that maximizes the Rabi frequency, θ = arctan
(√

g‖
g⊥

)
where θ is defined with

respect to the in-plane direction [236]. As g‖ < g⊥, θ ≈ 0.

In order to enhance the g-TMR Rabi frequency, the derivatives of the g-factors with respect
to the electric field Fz have to be maximized. This condition is fulfilled for large values of
x1 and small x1 − x2 as Ge g-factors are larger. A narrow quantum well would restrain
the effect of Fz on the wave-function so wide quantum wells are more desirable. For the
same reason, off-centered acceptors give larger frequencies. These results are summarized in
Fig. 3.4 where it is also patent that the frequencies achieved with this method are at least
one order of magnitude larger than with EDSR.

3.3 Light-hole based qubit

To form a p-type quantum well with SiGe, x2 < x1 is required. If we take a substrate with
different Germanium content x3 (see Fig. 3.1) it is possible to get a tensile strained p-type
quantum well when x3 > x1. In this case, the splitting caused by the tensile strain competes
against the one from quantum confinement such that when the strain is large enough the
ground state in the quantum well is of LH nature. Here we will focus on a regime where the
ground state is LH for Fz = 0, but the HH-LH splitting can be tuned with the vertical field
such that the ground state can become of HH character, see Fig. 2.10(Right). Proximity to
the interface with the barrier (by choosing a particular z0 or by applying large electric fields)
tend to favour a HH ground state. This LH-HH proximity can lead to sweet spots in the LH
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qubit subspace [125] when in-plane magnetic fields are applied to break the Kramers doublet
degeneracy.

As the magnetic field here is applied in the x − y plane and gives rise to an off-diagonal
interaction, LH and HH are naturally mixed under in-plane magnetic fields. We consider
this magnetic field in the x direction for simplicity. In the qubit subspace then, neither in-
plane nor out-of-plane magnetic fields will give purely off-diagonal interaction. Moreover, as
the first four states are close in energy and have different g-factor dependences, the g-TMR
manipulation gives rise to complex four state dynamics, which is not considered in this thesis.
Therefore, for a LH qubit we focus only on purely electric field manipulation through EDSR.

The effective Hamiltonian for a LH qubit is, in the {3/2,−3/2, 1/2,−1/2} basis:

HLH
0 (Fz,Bx) =


EHH(Fz) 0 0 −ipFz

0 EHH(Fz) ipFz 0
0 ipFz ELH(Fz) 0

−ipFz 0 0 ELH(Fz)



+ µB


0 0

√
3

2 g‖Bx 0
0 0 0

√
3

2 g‖Bx√
3

2 g‖Bx 0 0 g‖Bx

0
√

3
2 g‖Bx g‖Bx 0

 , (3.4)

where the g-factor is mostly determined by the linear g-factor (g‖ ≈ g̃‖) since the in-plane
g-factor of LH is not suppressed. The interaction with in-plane electric fields is

HLH
int (E‖) =


0 0 −ipE+ + αE− 0
0 0 0 −ipE− − αE+

ipE− + αE+ 0 0 0
0 ipE+ − αE− 0 0

 (3.5)

Following [125] we can perform a rotation to the Hamiltonian in Eq. 3.4 to the qubit basis
in the operating point Fz:

HLH
qubit =


El − 1

2εZl 0 Z1 Z2
0 El + 1

2εZl Z2 Z1
Z1 −Z2 Eu − 1

2εZu 0
−Z2 Z1 0 Eu − 1

2εZu,

 (3.6)

Being El, Eu the lower (qubit) and upper (excited) branches, with Larmor energies εZl and
εZu respectively. Naming aL and aH the amplitude probability of a LH or a HH in the qubit
branch, these Larmor energies are:

εZl = 2g‖(z0, Fz)µBB
√

3a2
La

2
H + a4

L

εZu = 2g‖(z0, Fz)µBB
√

3a2
La

2
H + a4

H . (3.7)

Which means that the Larmor energy of each branch is the Zeeman energy modulated by
the HH-LH composition of the branches (tunable by Fz). The coupling between branches is
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quantified by Z1 and Z2:

Z1 = 1
2εZo cos(θl/2− θu/2− θo)

Z2 = i

2εZo sin(θl/2− θu/2− θo), (3.8)

where θl, θu and θo are phases related to the HH-LH mixing of each branch; whose physical
meaning will be discussed in the next chapter. More importantly, εZo is the Zeeman coupling
between branches:

εZo = 2g‖(z0, Fz)µBB
√

3(a4
H + a4

L)− 2a2
La

2
H (3.9)

Using a SW transformation (see Appendix B) we can now obtain the effects of the interacting
Hamiltonian 3.5 in the qubit subspace. This becomes:

H
(2)
int = DE‖σx (3.10)

Which means that an oscillating in-plane electric field can be used to perform single-qubit
rotations with a dipolar moment D:

D = 1
2

εZo
El − Eu

(
α cos(θo − θ‖) + p sin(θo − θ‖)

)
, (3.11)

being θ‖ the EDSR angle E‖(cos θ‖, sin θ‖). θo is the phase associated to the qubit-excited
coupling and whose value is θo ≈ π/4 in the sweet spots, regions in the Fz parameter space
where the qubit is insensitive to charge noise, that are going to be considered. Since in general
α � p, choosing θ‖ = π/4 maximizes the coupling D in Eq. 3.11. The main difference with
previous work [125, 126] is the electric field dependence of the g-factor. Depending on the
behavior of the g-factor as a function of the electric field (which can push the wave-function
inside the barriers) we will distinguish two cases: The convex LH qubit, where the g-factor
grows when increasing the density wavefunction within the barriers (for x1 . 0.4), and the
concave LH qubit where the g-factor decreases when increasing the density wavefunction in
the barriers (for x1 & 0.4). This behavior shows in the Larmor frequency and affects the
conditions for the sweet spots.

3.3.1 Convex LH qubit

The Larmor frequency inherits the convex behavior of the g-factor as long as the ground
state is LH (namely, for small values of Fz). The implications are shown in Fig. 3.6: there
is a sweet spot at the minimum of the g-factor and from there the qubit frequency grows
due to both the g-factor increasing and the interaction with the Td symmetry term. For
larger values of Fz, there is a HH-LH anticrossing at which the g-factor decreases because
the HH in-plane g-factor is suppressed, giving rise to another sweet spot. This last sweet spot
appears both at positive and negative electric fields due to the symmetry of the quantum
well. In total there might be up to three sweet spots, with positions that depend on several
parameters, particularly the acceptor position z0.

Regarding the Rabi frequencies, the off-diagonal terms in the qubit subspace come mostly
from the Rashba interaction so they grow by reducing the inversion symmetry, becoming
maximal at the HH-LH anticrossing. Near the sweet spots, this gives rise to very large Rabi
frequencies compared with the HH qubit ones.
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Figure 3.6: (Left) Larmor frequency of the convex LH qubit in µeV as a function of the
electric field for x1 = 0.1, x2 = 0, x3 = 0.06, B = 1 T, L = 10 nm. (Right) Rabi frequency of
the LH qubit for the same parameters as (Left) and assuming an in-plane oscillating electric
field of 50kV/m.

3.3.2 Concave LH qubit
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Figure 3.7: (Left) Larmor frequency of the concave LH qubit in µeV as a function of
the electric field for x1 = 0.8, x2 = 0.7, x3 = 0.82, B = 0.1 T, L = 10 nm. (Right) Rabi
frequency of the LH qubit for the same parameters as (Left).

In this case the Larmor frequency inherits the concave behavior of the g-factor. The derivative
of the Larmor frequency has now two opposite contributions as a function of the electric field:
the decreasing g-factor, and the small positive contribution from the Td symmetry. If the
contribution to the derivative of the g-factor is larger than the contribution of the Td term,
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Figure 3.8: (Left) Inverse of the relaxation times of a HH qubit as a function of x1 when
L = 10 nm and the acceptor is at z0. (Right) Inverse of the coherence times due to the
charge noise induced by a defect at 40 nm from the acceptor. Dashed lines correspond to
L = 10 nm.

which is the case for high magnetic fields, there is only one sweet spot which corresponds to
the maximum of the g-factor. When the contribution from the g-factor is small such that
the Td term can partially surpass it near the anticrossing, there will be two extra sweet
spots. In total there can be up to five sweet spots: at the maximum of the g-factor, when
the Td term surpasses the g-factor in the derivative, and at the final decrease just before the
anticrossing due to the mixing with the HH component. Note that the last two might appear
both for positive and negative Fz due to the quantum well symmetry. This kind of behavior
can be seen in the case z0 = 0 in Fig. 3.7 where there are five sweet spots. The five sweet
spots appear only for small enough magnetic fields: for instance, in the case of Fig. 3.7, with
x1 = 0.8 and B = 0.1 T, in the case of negative electric field and z0 = +1.5nm, the five
sweet spots cannot be attained. Higher x1 would increase the effective g-factor, reducing
even further this maximum magnetic field. On the other hand, a smaller x1 could allow
higher magnetic fields.

The Rabi frequencies have the same behavior as in the convex case: the reduction of inversion
symmetry clearly increases the Rabi frequencies, being maximal near the sweet spots. The
numbers however can be larger as the Rabi frequency of the EDSR in a LH qubit is directly
proportional to the Zeeman field, and in this case the effective g-factors are much larger.

3.4 Decoherence processes

For the HH qubit, the Rabi frequencies obtained by electric field manipulation are of the order
of MHz, see Figs. 3.3-3.4. The magnetic field manipulation, see Fig. 3.2, is around three orders
of magnitude slower. The manipulation frequency has to be benchmarked against relaxation
and coherence times in order to get an estimate of the number of qubit rotations allowed
before losing coherence. Hence, the faster electric field manipulation is more advisable.
Estimates of the relaxation times using the formula for small temperature phonon-induced
spin relaxation of acceptor heavy hole qubits in Ref. [126]:

1
T1

= [~ω]3

20~4πρ
Cd

[
εZo
∆

]2
, (3.12)
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and using the relevant parameters for the considered materials [238], are of the order of
miliseconds in the worst case scenario (small quantum well barriers) and can be significantly
improved by increasing x1 − x2 as the relaxation times are directly proportional to the HH-
LH splitting, see Fig. 3.8(Left). Since the relaxation times are proportional to the HH-LH
splitting, T1 grows very fast with x1 due to strain. Experiments in natural Ge/Si nanowires
double quantum dots have measured coherence times in the order of tenths of microsec-
onds [239], more than one order of magnitude longer than for III-V semiconductors. These
measurements show a dominant nuclear-spin dephasing, but isotopic purification is expected
to make charge noise the dominant source of dephasing.

The Larmor frequency is, for the HH qubit, mostly determined by the Zeeman splitting,
other factors, such as the HH-LH mixing due to the spin-orbit terms, are negligible in com-
parison. This means that the largest contribution to charge noise dephasing comes from the
fluctuations in the g-factor. The regions in which the g-factors vary more strongly under the
effect of an electric field are also those in which the qubit is more sensitive to charge noise
dephasing. On the other hand, as the quantum well is symmetric, there is a value of Fz at
which the g-factor is not sensitive to variations of the electric field. This value is Fz = 0
when the acceptor is placed at the center of the quantum well. Therefore, the best conditions
for g-TMR coincide with a large effect of charge noise dephasing and a compromise between
the two has to be achieved. This can be seen in Fig. 3.8(Right) where the dephasing times
due to charge noise fluctuations coming from a defect 40 nm away from the acceptor are
estimated [240]:

1/T ∗2 = ∆E2
Larmorτ

2~2 , (3.13)

being τ the fluctuating times (considered τ = 1 µs in this case) and ∆ELarmor the change
in Larmor energy due to the fluctuating charge. The charge noise effects in dephasing are
minimized (T ∗2 →∞ to first order) where dgHH1

⊥ /dFz = 0 since in this case the qubit energy
is insensitive to charge noise to first order. The curvature of this sweet spots are depends a
lot on the quantum well width. This is because a narrower quantum well makes the g-factor
less sensitive to electric fields and hence, the sweet spots are wider in Fz.

Regarding the LH qubit, there are two desirable properties: strong couplings that allow fast
EDSR manipulation together with the existence of sweet spots [125]. The estimated Rabi
frequencies are much higher in the LH qubit than in the HH one. In return, relaxation
and coherence times are expected to be much smaller. For instance, applying the phonon-
induced spin relaxation formula in Eq. 3.12, we get T1 of the order of microseconds or tens
of microseconds. Up to five sweet spots can be achieved depending on the heterostructure
composition. In the case in which the g-factor is smaller in the barrier (concave LH qubit),
the sweet spots near the anticrossing are very close to each other and a better resilience
against electric field noise is expected.

The Ge content in the heterostructure has an important effect on the achieved Rabi frequen-
cies and coherence times. The larger Bohr radius in Ge gives rise to an enhanced Rashba
coupling, and hence increases EDSR couplings in both HH and LH qubits. On the other
hand, the larger Bohr radius reduces the effective dipolar coupling p which, together with
the larger effective g-factor, suppresses T1 [125], particularly for the LH qubit. This nega-
tive impact on T1 can be reduced in two ways: (i) applying small Zeeman fields, which is
also a requirement for obtaining the five sweet spots in the concave LH qubit, and (ii) using
deep acceptors, such as Al, Ga, In or Tl, as they are affected by non-negligible central cell
corrections [189] that produce higher dipolar couplings p [223].
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It is experimentally advantageous to use Si (x3 = 0) or Ge (x3 = 1) as substrates. In the
case of Si the compressive strain would produce a HH qubit while in the case of Ge both HH
and LH are possible, depending on the interplay between the tensile strain, which favours
LH, and the confinement, which favours HH giving rise to good relaxation times. In the
case of a Ge substrate, high concentrations of Ge are also needed within the well in order to
reach the LH-HH anti crossing condition as a function of the applied vertical electric field.
This LH type of qubit would have several sweet spots where charge noise is suppressed but
T1 is not as big as in a HH qubit since the energy difference between branches is small (near
an anti-crossing). In the next chapter the improvement of T1, among other things, will be
addressed for an acceptor near a SiO2 interface.

3.5 Conclusions

We have calculated the Rabi frequencies of three different ways of manipulating a single qubit
for a hole bound to an acceptor inside a quantum well. Depending on the strain conditions,
the acceptor ground state has a heavy-hole or light-hole character. The results show that
it is possible to get Rabi frequencies for a HH ground state in the range of MHz for the
electric field based manipulation methods while it is possible to reach the GHz in the case
of an electrically manipulated LH state. In comparison the Rabi frequencies obtained with
magnetic field manipulation are only in the order of kHz.

The Rabi frequency of the electron spin resonance of a HH state can be enhanced by increasing
the g-factor in the heterostructure (this can be achieved by a large Ge content) and by raising
the hole density wave-function in the barriers, which have a larger g-factor. It is hence
interesting to use small barriers, for instance Si1−x2Gex2/Si1−x1Gex1/Si1−x2Gex2 quantum
wells with x2 = x1 − 0.05. An electric field can shift the hole wave-function within the
heterostructure and hence can be applied to increase or decrease the Rabi frequency.

Purely electric field manipulation of a HH spin-qubit via electric dipole spin resonance can
also produce MHz frequencies thanks to the presence of the acceptor Td symmetry and spin-
orbit Rashba terms. The required lack of inversion symmetry can be obtained by applying
a vertical electric field. The HH-LH mixing given by this electric field and the Td symmetry
term is also very important. The Rabi frequencies are proportional to the asymmetry of the
hole wave function. A large Bohr radius (or smaller binding energy) allows an easier manip-
ulation of the wave-function by electric field. The HH-LH mixing is inversely proportional
to the strain, hence large strains are not desirable as they reduce the Rabi frequency.

The g-TMR method of spin qubit manipulation is the one that gives the best Rabi frequencies
for HH qubits. In exchange, this method is also the most exposed one to charge noise. The
quantum well composition is not very important as long as the g-factors are not suppressed
(this happens around x ≈ 0.4) and the barrier is not very high. The best Rabi frequencies
are obtained when the acceptor is close to one barrier and pushed by an electric field to the
opposite barrier. At the sweet spots, however, the Rabi frequencies are much smaller but
still larger than those obtained through EDSR.

The LH qubit, can be easily manipulated by electrical means with frequencies of the order of
GHz around the sweet spots, allowing both fast manipulation and good coherence properties.
Several sweet spots can be found and the qubit becomes limited by the relaxation time T1
due to the small energy separation between the qubit branch and the excited branch.
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In general, the presence of the spin-orbit terms due to the acceptor (Td symmetry) and lack
of inversion symmetry (Rashba type) allow the possibility of several ways of manipulating
the spin state of a hole bound to an acceptor inside a quantum well. Due to the HH-LH
splitting in the HH case, the relaxation and coherence properties are expected to be optimal,
making this type of quantum wells good candidates as quantum memories. The LH ground
states have good properties of coherence and still high manipulatibility near the sweet spots,
making this type of quantum wells good candidates for quantum computation. This type of
devices would also have good compatibility with electrically defined quantum dots, allowing
the possibility of hybrid dot-acceptor qubits.



Chapter 4
Full tunability, coherence and
entanglement of acceptors near an
interface 1

4.1 Introduction

One of the main issues with solid state quantum computing is generating high fidelity en-
tanglement protocols. Some of the proposals for long range entanglement require complex
circuitry to couple different devices. Proposals to simplify the circuitry to create entangle-
ment often involve dipolar interactions [94, 104, 242, 243] since exchange is a too short range
interaction. The main problem with dipolar interactions is that it behaves as an always
on Ising or XY type interaction between neighboring qubits, meaning that the two-qubit
interactions are always generating dynamics. Detuning one qubit with respect to the other
can be used to reduce the two-qubit dynamics [243], but this does not entirely suppresses
the mechanism. Reducing the dipole of one of the qubits deactivates that qubit for single-
qubit interactions too [104, 242]. For magnetic dipolar interactions, particular choices of
the magnetic field can be used to turn off the coupling [94], but this requires the ability to
dynamically change the magnetic field orientation.

In this chapter we propose a new mechanism that allows to turn on and off the electric
dipolar coupling of two-acceptor based qubits. To do so, we generalize the theory of the
acceptor qubit defined in Ref. [125]. In this reference, an acceptor-based quantum informa-
tion platform was introduced, in which inversion symmetry breaking by the SiO2 interface
(Fig. 4.1) gives rise to a Rashba interaction that couples the spin to in-plane electric fields,
enabling fast electrical manipulation via electric dipole spin resonance techniques (EDSR).
Sensitivity to charge noise is suppressed to first order at particular values of the electric field
(sweet spots). Two qubit operations can be performed by using the electric dipolar inter-
action between acceptors. There are two main limitations in this scheme: (i) in the sweet
spots the coherence time is limited by T1, controlled by phonons and hence, cannot be easily
enhanced, and (ii) entanglement, performed via electric dipole-dipole interactions, shares the
same problem of other dipolar based entanglement protocols, it can only be turned off by
deactivating one of the qubits.

1Results published on [241].
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Figure 4.1: Sketch of the device geometry and layered heterostructure in the (001) direc-
tion. The orientation of the magnetic field within the plane is given by φ, the angle with
respect to the (100) direction. d denotes the depth of the acceptor beneath the top gate
interface.

By generalizing the theory of this acceptor qubit with the EMT used in Chapter 2, we show
that a magnetic field in a fixed in-plane orientation away from the main crystal axes can
be used to overcome these limitations for an acceptor based Si quantum computer with full
electrical control. The Td symmetry of the acceptor in the Si lattice enables an unconven-
tional interaction between the acceptor bound hole and the in-plane magnetic field. Certain
magnetic field orientations make qubits insensitive to charge noise to second order, and a
decoherence free subspace (DFS) is found, where the qubit is insensitive to both charge noise
and phonon-induced relaxation. More importantly, particular orientations of the magnetic
field (magic angles) can be chosen beforehand to switch off entanglement, which can then
be reestablished purely by electrical means. In this way, single qubit operations can still be
performed while entanglement is switched off. As a result, optimal magnetic field orienta-
tions at magic angles can both enhance T1 and allow for a maximum electric based tunability
of the two qubit coupling. We propose two possible protocols for full electrical control of
acceptor entanglement that do not require atomic placement accuracy, exploiting the DFS
in one case and reducing the exposure to charge noise in the other.

4.2 Qubit basis

The effective Hamiltonian given in Ref. [125] is obtained here by applying the effective mass
approach from 2.5. As described in that section, this Hamiltonian is given by the contribution
of different terms in Eqs. 2.26, 2.27, 2.28, 2.29. Now we consider a magnetic field B with an
arbitrary in-plane orientation characterised by an angle φ. This angle is defined such that
φ = 0 corresponds to the (001) direction. The qubit is defined under a vertical electric field
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Figure 4.2: In both plots B = 0.5 T and d = 4.6 nm. (Left) Eigenenergies of Heff as a
function of the vertical field when the magnetic field is aligned to the (001) direction. Up to
a field Fz ∼ 20 MV/m, the lower branch is of LH character, the LH-HH mixing increasing
with Fz. After the anticrossing, the lower branch is of HH character. (Right) Larmor energy,
when the magnetic field is aligned to the (001) direction, as a function of the vertical electric
field. The Larmor energy has a local minimum at Fz = 0 and a maximum at Fz = 18.1
MV/m. At these values of Fz the Larmor energy is flat, indicating insensitivity to charge
noise.

and a fixed in-plane magnetic field. The total effective Hamiltonian of the qubit is:

Heff =


0

√
3

2 εZe
−iφ −ipFz 0√

3
2 εZe

iφ ∆HL εZe
−iφ −ipFz

ipFz εZe
iφ ∆HL

√
3

2 εZe
−iφ

0 ipFz
√

3
2 εZe

iφ 0

 (4.1)

Where the Zeeman term is εZ = g1µBB. Note that here the HH energy is set to zero for
Fz = 0. The qubit is defined by the two levels making up the spin-split ground state (qubit
branch), defined this time as the more negative energies. The excited branch is then formed
by the next two excited states. At zero fields, the strain conditions are ∆HL < 0 such that
the qubit branch is of LH character. As shown in Fig. 4.3(a) the HH and LH branches are
clearly separated by the magnitude of ∆HL, which decreases as Fz increases. At large gate
fields, as the bound hole wave-function is pushed towards the interface, the LH and HH levels
eventually anticross and the qubit branch acquires a predominantly HH character [125].

As Fig. 4.1 shows, the local tetrahedral symmetry of the acceptor makes a clear distinction
between the main crystal axes and any other direction. It is represented by the term HTd

in the Hamiltonian, which governs the qubit interaction with electric fields, and becomes
more pronounced as the top gate voltage is increased, generating a mixing between HH and
LH in the two branches. The interplay between the terms with tetrahedral symmetry HTd

and the usual Zeeman interaction HB gives rise to a new and counterintuitive magnetic field
orientation dependence of the qubit properties with no analog for spin-1/2 electrons. This is
due to the quadrupolar spin operators involved in the Td terms, not allowed for spin 1/2 (spin
quadrupolar terms are reducible to either a dipolar Pauli matrix or the identity matrix). In
Fig. 4.3 this magnetic field orientation dependence can already be seen, the eigenvalues and
hence, the qubit frequency, strongly depend on the magnetic field orientation.
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To define the qubit, we consider first the action of the vertical electric field only:

Hop(εZ = 0) =


0 0 −ipFz 0
0 ∆HL 0 −ipFz

ipFz 0 ∆HL 0
0 ipFz 0 0

 (4.2)

Defining El = 1
2(∆HL −

√
∆2
HL + 4p2F 2

z ), Eu = 1
2(∆HL +

√
∆2
HL + 4p2F 2

z ), the previous
Hamiltonian is diagonalized being El and Eu the energies of the lower and upper branches
respectively. The eigenstates are then:

|l−〉 = aL| − 1/2〉+ iaH |3/2〉 (4.3)
|l+〉 = aL|1/2〉 − iaH | − 3/2〉 (4.4)
|u−〉 = iaH |1/2〉+ aL| − 3/2〉 (4.5)
|u+〉 = −iaH | − 1/2〉+ aL|3/2〉, (4.6)

being aL = El/
√
E2
l + p2F 2

z and aH = pFz/
√
E2
l + p2F 2

z . Physically, the values of aL and
aH can be associated to the probability amplitudes of LH and HH of the qubit branch
respectively. The amplitudes aL and aH change with the vertical electric field. In particular,
due to the strain conditions, when Fz = 0 the composition is aL = −1 and aH = 0, and
each branch has a clear LH and HH behavior. By increasing Fz, each branch increases the
mixing of HHs and LHs, until the qubit branch starts to become more HH-like (aH > aL).
Eventually, when Fz is large enough, the lower and upper branches become mostly HH-like
and LH-like respectively. The unitary transformation that diagonalizes to the new basis
{l−, l+, u−, u+} is:

U0 =


−iaH 0 0 aL

0 aL iaH 0
aL 0 0 −iaH
0 iaH aL 0

 (4.7)

Applying this unitary transformation to the original Hamiltonian we get:

Ĥop =


El

1
2λ
∗
Zl

1
2λ
∗
Zo 0

1
2λZl El 0 1

2λZo
1
2λZo 0 Eu

1
2λ
∗
Zu

0 1
2λ
∗
Zo

1
2λZu Eu

 (4.8)

In this basis the Zeeman interaction is the only off-diagonal term, with

λZl = 2εZ(a2
Le
−iφ − i

√
3aLaHeiφ)

λZu = 2εZ(−a2
He

iφ + i
√

3aLaHe−iφ) (4.9)
λZo = 2εZ(−iaHaLe−iφ +

√
3(a2

L − a2
H))eiφ/2)

Physically, the absolute value of λZl and λZu is the Zeeman splitting of the lower and upper
branches respectively, while the absolute value of λZo indicates a Zeeman coupling between
branches. These off-diagonal couplings are orientation dependent. We can now do the last
transformation to define the qubit. The Larmor energy of each branch is included in this
transformation while the coupling between branches is considered a perturbation. Let the
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unperturbed Hamiltonian be:

U †0Hop,0U0 =


El

1
2λ
∗
Zl 0 0

1
2λZl El 0 0

0 0 Eu
1
2λ
∗
Zu

0 0 1
2λZu Eu

 (4.10)

This Hamiltonian is diagonalized by UZ0 to give the eigenenergies E± = El ± 1
2 |λZl| and

Eu± = Eu± 1
2 |λZu|. Writing λZl = εZl exp(iθl), λZu = εZu exp(iθu), and λZo = εZo exp(iθo),

θl = arctan(a2
L cos(φ) +

√
3aLaH sin(φ),−a2

L sin(φ)−
√

3aLaH cos(φ))
θu = arctan(−a2

H cos(φ) +
√

3aLaH sin(φ),−a2
H sin(φ) +

√
3aLaH cos(φ)) (4.11)

θo = arctan(−aLaH sin(φ) +
√

3/2(a2
L − a2

H) cos(φ),−aLaH cos(φ) +
√

3/2(a2
L − a2

H) sin(φ))

εZl = 2εZ
√

3a2
La

2
H + a4

L + 2
√

3a3
LaH sin(2φ)

εZu = 2εZ
√

3a2
La

2
H + a4

H − 2
√

3a3
HaL sin(2φ) (4.12)

εZo = 2εZ
√

3(a2
L − a2

H)/4 + a2
Ha

2
L +
√

3aHaL(a2
H − a2

L) sin(2φ)

The unitary transformation that diagonalizes the previous Hamiltonian is then:

UZ0 = 2−
1
2


e−iθl/2 e−iθl/2 0 0
−eiθl/2 eiθl/2 0 0

0 0 e−iθu/2 e−iθu/2

0 0 −eiθu/2 eiθl/2

 (4.13)

The Hamiltonian in this basis is:

Hqubit =


El − 1

2εZl 0 Z1 Z2
0 El + 1

2εZl Z2 Z1
Z1 −Z2 Eu − 1

2εZu 0
−Z2 Z1 0 Eu − 1

2εZu

 (4.14)

where

Z1 = 1
2εZo cos(θl/2− θu/2− θo)

Z2 = i

2εZo sin(θl/2− θu/2− θo) (4.15)

Here Zi are the Zeeman interactions between the lower and upper branches. Note that Z1
is a real number while Z2 is a purely imaginary number. The lower branch with Zeeman
energy εZl is the qubit branch while the upper branch with εZu can be seen as a leakage
excited states branch that interacts with the qubit branch via Z1 and Z2. Noting that the
next excited states are at least 10 meV away from this 4 × 4 manifold, this means that all
the dynamics and decoherence of a qubit defined in the lower branch will be dominated by
the interaction terms Z1, Z2 with the upper branch.
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In the original proposal the magnetic field is assumed along one of the main crystal axes
[125]. In this case, the values of the different parameters in Eqs. 4.11 and 4.12 are simply:

θl = arctan(
√

3aHaL, a2
L)

θu = arctan(
√

3aHaL,−a2
H) (4.16)

θo = arctan(
√

3
2 (a2

L − a2
H), aLaH)

εZl = 2εZ
√

3a2
La

2
H + a4

L

εZu = 2εZ
√

3a2
La

2
H + a4

H (4.17)

εZo = 2εZ
√

3(a2
L − a2

H)/4 + a2
Ha

2
L

The value of the qubit Larmor frequency is given, to first order, by εZl. Its value depends
explicitly on the electric field via aH and aL. We can find the sweet spots for φ = 0 by simply
finding the solutions to dεZl/dF = 0:

dεZl
dFz

= εZ
(−3 + 4a2

L)a′L(Fz)√
3− 2a2

L

= 0 (4.18)

This has two solutions for Fz ≥ 0: aL = −
√

3/2 and a′L = 0. The values of the electric field
corresponding to these sweet spots are at Fz = 0 and Fz ≈ 18 MV/m, for an acceptor at
d ≈ 5 nm and with a strain splitting of ∆strain

LH = −0.6514 meV, corresponding to ε‖ ≈ 0.1%.
The sweet spot at Fz = 0 only requires aL = −1 so it is independent of the exact amount
of strain as long as the ground state is LH like. The sweet spot at large field, however,
happens when the quantum confinement partially compensates the strain splitting such that
aL = −

√
3/2 and aH = 1/2. It can also be proven, that the qubit is also insensitive to

first order to in-plane charge noise. This is the reason why, the qubit is operated at these
sweet spots. In the large field sweet spot, the values of the Rashba coefficient can be high
enough to allow single qubit operations in 0.2 ns while the dipolar two qubit operations can
be performed in 2 ns. Since the sweet spot with Fz = 0 has a suppressed α, qubits with
Fz = 0 could be potentially used as quantum memories with improved coherence times (in
the order of hundreds of /mus).

For φ = nπ/2 (main crystal axes) the qubit is limited by phonon-induced relaxation, with a
T1 estimate of 20 µs. This means that 105 single-qubit and 104 two qubit operations could
be performed during the qubit lifetime [125]. The phonon-induced relaxation can not be
significantly improved simply by changing Fz, like with charge noise, so this mechanism can
be considered the main limitation.

4.3 In-plane anisotropy

The Zeeman couplings εZl, εZu and εZo in Eq. 4.12 dominate the qubit physics and depend
on φ. This means that the Larmor energy of both the qubit and upper branches, and the
coupling between them, are anisotropic in the xy plane. This can be seen in Fig. 4.3, where
the energy diagram and the Larmor energy are shown as a function of the electric field for
different magnetic field orientations. It can even be seen that particular orientations can give
rise to a crossing between the levels within one of the branches.
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Figure 4.3: In all plots B = 0.5 T and d = 4.6 nm. (Left) Eigenenergies of Heff as a
function of the vertical field for two particular cases φ = π/4 (black lines) and φ = −π/4
(red lines). (Right) Larmor energy for different magnetic field orientations as a function of
the vertical electric field. The Larmor energy at the isotropic sweet spot (Fz = 18.1 MV/m)
is enhanced for π/2 < φ < π and depressed for 0 < φ < π/2 with a minimum at φ = π/4. At
this point the two lowest levels cross. The dashed lines correspond to the numerical results.
When φ = 1/2 arcsin(1/3) the isotropic and anisotropic sweet spots coincide in a single one
which is robust to charge noise up to second order.

This anisotropic behavior has no analog for spin 1/2 electrons. As Fig. 4.1 shows, the local
tetrahedral symmetry of the acceptor makes a clear distinction between the main crystal
axes and any other direction. It is represented by the term HTd in the Hamiltonian, which
governs the qubit interaction with electric fields, and becomes more pronounced as the top
gate voltage is increased (HTd ∝ pFz), generating a mixing between HH and LH in the two
branches. This is a spin quadrupolar term, product of two J matrices (spin dipoles), that is
not allowed in a spin 1/2 Hilbert space since the product of two spin dipolar operators in spin
1/2, the Pauli matrices, can only give another dipole (Pauli matrix) or the identity. Without
this term, the Zeeman interaction would be perfectly isotropic. The interplay between the
terms with tetrahedral symmetry HTd and the usual Zeeman interaction HB gives rise to
this new and counterintuitive magnetic field orientation dependence. Since the HTd mixes
the HH and LH through the action of Fz, this in-plane anisotropy is a clear signature of the
LH-HH mixing.

4.3.1 Sweet spots

This in-plane anisotropy not only affects the splittings but can also affect other properties
such as the sensitivity to charge noise. In particular, Fig. 4.3 shows the Larmor energy as
a function of the vertical electric field, and the different orientations of the magnetic field φ
also change the derivative dELarmor/dFz. As a consequence the values of Fz for which the
qubit energy is insensitive to charge noise are affected by φ. As calculated in Eq. 4.18, we
can obtain the sweet spots as a function of φ:

dεZl
dFz

= εZ
(−3 + 4a2

L)(aH +
√

3aL sin(2φ))a′L(Fz)

aH

√
3− 2a2

L + 2
√

3aLaH sin(2φ)
= 0 (4.19)

One of the solutions corresponds to the isotropic sweet spot that occurs when aL = −
√

3/2
(aH = 1/2). This corresponds to the large field sweet spot for φ = 0 and has no magnetic
field orientation dependence. Considering that a′L ∝ aH , the other solution is equivalent to
solve aH +

√
3aL sin(2φ) = 0. Considering positive electric fields, there is a φ dependent
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Figure 4.4: Value of the electric field Fz at which the sweet spots occur as a function of
the in-plane magnetic field orientation for d = 4.6 nm. The isotropic sweet spot is fixed at
18.1 MV/m while the anisotropic one is a non-monotonic function of φ. The maximum value
of Fz for the anisotropic sweet spot is ≈ 22.5 MV/m, where aL = −1/2 and aH =

√
3/2.

The sweet spots merge at φ = 1/2 arcsin(1/3) and φ = π/2 − 1/2 arcsin(1/3) where the
qubit energy is particularly flat and insensitive to charge noise up to second order, see
Fig. 4.3(Right).

sweet spot solution for 0 ≤ φ ≤ π/2 and π ≤ φ ≤ 3π/2. This sweet spot is then called the
anisotropic sweet spot. Solutions in the other two quadrants in φ can be found for a electric
field that pulls the wavefunction away from the interface, but in this case the acceptor would
ionize due to the lack of a close interface. The position of both sweet spots as a function of
the vertical field is shown in Fig. 4.4.

Particularly, at φ = π/4 + nπ, this sweet spot is at aH =
√

3/2 and aL = −1/2 while, for a
magnetic field aligned with the main axes of the crystal, this sweet spot corresponds to the
value Fz = 0. Also, when φ = π/4 + nπ the value of the Larmor frequency at the isotropic
sweet spot is zero. At this point there is an inversion of the effective spin polarization of the
lower branch, meaning that an effective g-factor flip occurs in this particular case.

4.3.2 Induced spin-polarization

movie

When separating the absolute value and the phase of each Zeeman coupling in Eq. 4.2 we
wrote λZl = εZl exp(iθl), λZu = εZu exp(iθu), and λZo = εZo exp(iθo). To understand better
what are physically the values of the phases, we can construct an analogy with a spin 1/2
electron under an in-plane magnetic field B(cosφ, sinφ) whose Hamiltonian is:

Ĥe =
(

E0
1
2gµBBe

−iφ
1
2gµBBe

iφ E0

)
(4.20)

The diagonalization of this simple Hamiltonian gives two eigenvalues separated by the Zee-
man energy of the magnetic field. These energies are associated to eigenstates with well
defined spin polarization. In particular, the ground state spin points towards the magnetic
field direction while excited state points against the magnetic field direction (assuming g > 0).
Analogously, the values of θl and θu can be associated to spin polarizations of each branch.
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Figure 4.5: (Quicktime Movie in the pdf version.) Spin polarization of the lower branch
as a function of the vertical electric field via aH(Fz). Click to see this for different values
of φ. At the isotropic sweet spot (aH = 1/2) this spin polarization is fixed in one direction,
independently of the magnetic field orientation. When the magnetic field orientation is at
φ = π/4 + nπ the value is not defined and shows a jump discontinuity, this is because the
qubit cannot see the magnetic field as geff = 0. On the other hand, when φ = −π/4 + nπ
the spin polarization is a constant of motion.

Rigorously however, these spin polarizations can only be considered effective spin polariza-
tions of each branch, in the sense that this is a spin 3/2 system and its spin polarization is
more complex. For instance, the value of θo would be an interacting spin polarization with no
real physical meaning in this picture. The HH-LH splitting that separates the two branches
is what makes this effective spin polarization physical picture of these phases a powerful tool
to understand the behavior of each branch under the presence of magnetic fields in analogy
with the dynamics of a spin 1/2 doublet.

This picture of the effective spin polarizations of each branch is particularly interesting due
to the intrinsic dependence of θl, θu and θo not only on the magnetic field orientation φ but
also on the vertical electric field Fz via aL and aH . The spin polarization of the ground state
as a function of the vertical electric field when changing φ can be seen in the movie 4.5. At
Fz = 0 the Td symmetry term is zero and the effective spin polarization is simply φ just like
for a single electron. This is clearly modified for different values of Fz.

At the two sweet spots the spin polarization is spin-orbit induced and, in particular cases,
independent of the magnetic field. At the isotropic sweet spot (aL = −

√
3/2, aH = 1/2) the

spin of the qubit is polarized in the −π/4 + nπ direction while, when aL = −1/2 and aH =√
3/2 it is the upper branch the one with fixed spin polarization in the π/4 + nπ direction.

In this latter case, applying the magnetic field in the spin polarization corresponds to the
anisotropic sweet spot. The fixed spin polarization has several consequences as can be seen in
Fig. 4.6. When a magnetic field is applied perpendicularly to the induced spin polarization
the effective g-factor goes to zero, see Fig. 4.3(c), and these states cannot sense the magnetic
field. In this case the effective spin polarization is not defined (jump discontinuity). On the
other hand, the effective g-factor is maximized when the in-plane magnetic field is parallel
to the spin polarization. As will be shown, this case corresponds to a decoupling of the qubit
and upper branches in a decoherence free subspace (DFS), with εZo = 0.
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Figure 4.6: Polar plot of the effective g-factor. The black curve corresponds to when
Fz = 0 and the g-factor is perfectly isotropic. The blue curve shows the effective g-factor
of the qubit branch at the isotropic sweet spot. The blue curve corresponds to the effective
g-factor of the upper branch when aL = −1/2 and aH =

√
3/2.

4.4 Manipulability: EDSR

As shown in the previous chapter, the qubit operations are performed by applying in-plane
oscillating electric fields. The presence of the interface breaks the inversion symmetry of
the envelope wavefunctions allowing the mixing of states with different behavior under the
parity operator. This lack of inversion symmetry allows the action of an in-plane linear
Stark effect HE = e(Exx+ Eyy) = eE‖(cos θ‖ + sin θ‖). The effect of this interaction of the
acceptor hole is calculated considering several excited states and mapped onto the effective
4× 4 Hamiltonian in the |mJ〉 basis:

HE = E‖


0 αeiθ‖ 0 0

αe−iθ‖ 0 0 0
0 0 0 −αeiθ‖
0 0 −αe−iθ‖ 0

 (4.21)

Where α is an effective Rashba coupling, associated to the lack of inversion symmetry, and
related to the applied vertical electric field and the distance to the interface. This effective
Rashba Hamiltonian, rotated into the qubit basis becomes

ĤE =


0 0 E1R E2R
0 0 E2R E1R

−E1R E2R 0 0
E2R −E1R 0 0

 (4.22)

Being

E1R = iαE‖ sin(θ‖ + θ)
E2R = −αE‖ cos(θ‖ + θ) (4.23)
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Where θ = θu/2 − θl/2, see Eq. 4.11. Note that E1R is a purely imaginary number while
E2R is real.

We can use a SW transformation to obtain the action of an in-plane electric field in the qubit
submanifold. The off-diagonal terms of the effective Hamiltonian in the qubit basis provide
the EDSR coupling:

H
(2)
−+ = 2εZuRe(−Z1Z2)

(El − Eu)2 + 2εZuRe(−E1E2)
(El − Eu)2 + 2Re(E2Z1 − E1Z2)

(El − Eu) (4.24)

The first two terms are identically zero because Z1 and E2 are real numbers while Z2 and
E1 are purely imaginary. The last term in linear in the electric field so it can be used to
perform operations via EDSR. This off-diagonal term can be written:

H
(2)
−+ = DE‖ = 1

2
εZo(φ)
El − Eu

E‖(α cos(θo(φ)− θ‖) + p sin(θo(φ)− θ‖), (4.25)

being D the EDSR dipolar coupling. At the sweet spot θo does not depend on φ so the only
dependence on φ comes from εZo. Substituting the expressions at the isotropic sweet spot
we get:

Diso =
√

3/2 εZ
El − Eu

√
1 + sin(2φ)(α cos(π/4− θ‖) + p sin(π/4− θ‖)) (4.26)

Which in the high-field approximation, where α� p becomes:

Diso = α
√

3/2 εZ
El − Eu

√
1 + sin(2φ) cos(π/4− θ‖) (4.27)

This means that the off-diagonal term can be shut down when φ = −π/4 or φ = 3π/4, killing
EDSR. At the same time EDSR can be maximized, for a given φ, by choosing the angle of
the in-plane electric field θ‖ = π/4. Being φ = π/4 the in-plane magnetic field orientation
with higher EDSR coupling.

In the anisotropic sweet spot the EDSR term is more complex due to the intrinsic φ depen-
dence of the sweet spot. In the limit α� p it reduces to:

Daniso = α
√

3/2 εZ
El − Eu

| cos 2φ|√
2− 3/2 cos 4φ

cos
(
θ‖ − arctan(2 cosφ− cos 3φ+ 3 cos 5φ, 2 sinφ+ sin 3φ+ 3 sin 5φ)

)
(4.28)

In this case the ideal θ‖ depends on φ. In any case this interaction can be switched off for
φ = π/4.

This EDSR coupling can be calculated with the parameters obtained from the effective
Hamiltonian and, by optimizing the magnetic field, can improve the Rabi frequencies that
in the original case allowed a π rotation in 0.2 ns. Particularly at the anisotropic sweet spot
where α is bigger than in the isotropic sweet spot in a big φ window, the EDSR coupling
can be even bigger, allowing faster single-qubit operations.
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4.5 Coherence

As already shown, there are two sweet spots in Fz where the qubit is insensitive to charge noise
δFz to first order. In [125] it was also shown that the qubit is also insensitive to any in-plane
charge noise δF‖ to first order. The main coherence limitation was then the phonon-induced
relaxation, estimated around 20 µs for realistic parameters. In this section, the magnetic
field orientation is shown to affect second order charge noise and phonon-induced relaxation,
allowing the extension of the qubit lifetime.

4.5.1 Charge noise

The analysis of charge noise can be performed similarly to the previous section but with
an in-plane electric field coming from a fluctuation (δEx, δEy, 0) = δE‖(cos(θ‖), sin(θ‖)). Its
Hamiltonian in the qubit basis is:

Ĥnoise =


0 0 E1 E2
0 0 E2 E1
−E1 E2 0 0
E2 −E1 0 0

 (4.29)

where now

E1 = iδE‖(p cos(θ‖ − θ) + α sin(θ‖ + θ)) (4.30)
E2 = −δE‖(p sin(θ‖ − θ) + α cos(θ‖ + θ)) (4.31)

We focus now on the diagonal terms to get the dephasing produced by these terms. The
dephasing term is then:

∆H(2)
−− − ∆H(2)

++ = (E1 + Z1)(E∗1 + Z∗1 )( 1
El − Eu − εZl/2 + εZu/2

− 1
El − Eu + εZl/2− εZu/2

)

+ (E2 + Z2)(E∗2 + Z∗2 )( 1
El − Eu − εZl/2 + εZu/2

− 1
El − Eu + εZl/2− εZu/2

) (4.32)

As for a given i the terms Zi and Ei are one purely imaginary and the other purely real, we
have:

(Ei + Zi)(E∗i + Z∗i ) = |Ei|2 + |Zi|2 + (EiZ∗i + E∗i Zi) = |Ei|2 + |Zi|2 (4.33)

This means that terms linear in the in-plane electric fields are identically zero. Moreover,
the terms involving |Zi|2 are static so they do not dephase the qubit and can be ignored.
Expanding to first order the denominator terms, the expression for second order charge noise
dephasing becomes:

∆EnoiseLarmor = |E1|2
εZl − εZu

(El − Eu)2 + |E2|2
εZu + εZl

(El − Eu)2 (4.34)

Which, after substituting expressions becomes:

∆EnoiseLarmor =
δE2
‖

(El − Eu)2

[(
α sin(θ + θ‖) + p cos(θ − θ‖)

)2(εZl − εZu)

+
(
α cos(θ + θ‖)− p sin(θ − θ‖)

)2(εZu + εZl)
]

(4.35)
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In the limit of large α, which is valid for example at the isotropic sweet spot and within a
big window of the anisotropic sweet spot, we can further simplify this expression:

∆EnoiseLarmor = α2 δE2
‖

(El − Eu)2

[
εZl(φ) + εZu(φ) cos(2(θ(φ)− θ‖))

]
(4.36)

This expression can be set to zero by carefully choosing φ for several values of θ‖ but not
always. For those cases in which this is not possible it is still possible to minimize as a
function of φ.

One minimal condition to have noise insensitive to second order is εZl ≤ εZu. Substituting
expressions this is equivalent to the condition:

∆HL + 2
√

3pFz sin(2φ) ≥ 0 (4.37)

This means that in the small electric field limit the mitigation is not possible but for high
enough Fz it could be. For example, we take again the sweet spot values and this condition
is equivalent to:

1
2 arcsin(1

3) ≤ φ ≤ π

2 −
1
2 arcsin(1

3) (4.38)

This is indeed the window where the anisotropic sweet spot is at bigger or equal electric field
than the isotropic sweet spot. Within this window it is possible to find an orientation φ such
that the in-plane noise is canceled out.

Another interesting limit is Fz = 0. In this case aL = −1 and aH = 0. Taking the corre-
sponding limits we get:

∆EnoiseLarmor(Fz = 0) = εZ
δE2
‖

(El − Eu)2 (α2 + p2 + 2αp sin(2θ‖)) (4.39)

At Fz = 0 the limit |α‖ � |p| holds for several values of d, so:

∆EnoiseLarmor(Fz = 0) ≈ α2εZ
δE2
‖

(El − Eu)2 (4.40)

This means that at Fz = 0 the in-plane noise is independent on the magnetic field orientation.
This is an expected result because at Fz = 0 there is no mixing of HH and LH that can create
the magnetic field anisotropy.

In Fig. 4.7 we assume a particularly harmful defect at 40 nm from the acceptor such that it
induces a fluctuation with δE‖ = 3 kV/m oriented in the (001) direction. In the worst case
scenario we can assume a correlation time of this defect of 1 µs (slower fluctuating defects
can be suppressed by a well coordinated pulse sequence and faster defects decohere slower
than slow defects.). We can relate this parameters to the dephasing time [244]:

1/T2 = ∆E2
Larmorτ

2~2 (4.41)

Using Eq. 4.36 to obtain the change in Larmor energy, T2 is obtained. It can be seen that it
depends on φ and for both sweet spots there are values for which 1/T2 = 0.
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Figure 4.7: Estimate of dephasing due to second order charge noise for a given defect with
δE‖ = 3x̂ kV/m with τ = 10−6 s. It can be seen that both sweet spots have values of φ
where the qubit is insensitive to this particular defect.

4.5.2 Phonon-induced relaxation

At low temperatures the expression for the relaxation times of the acceptor qubit is [125]:

1
T1

= (~ω)3

20~4πρ

[∑
i

|〈−|Dii|+〉|2( 2
v5
l

+ 4
3v5
t

) +
∑
i6=j
|〈−|Dij |+〉|2( 2

3v5
l

+ 1
v5
t

)
]

(4.42)

Where the parameters ρ, vl and vt are material dependent parameters, see [30]. Going to
second order in the SW transformation we get:

〈−|Dij |+〉 = 1
El − Eu

(Ĥ ′−,u−Ĥ ′u−,+ + Ĥ ′−,u+Ĥ
′
u+,+) (4.43)

Where Ĥ ′ can be split into the off-diagonal Zeeman and the phonon contributions Ĥ ′ =
Ĥ ′B + Ĥ ′ph. The elements of the Hamiltonian Ĥ ′ph are:

Dii = b′(J2
i −

5
4)

Dij = 2d′/
√

3{Ji, Jj} i 6= j (4.44)

Where the values of b′ and d′ are deformation potential constants of Si [30]. The values of
|〈−|Dij |+〉|2 at the isotropic sweet spot are independent of the angle φ except for the intrinsic
dependence of εZo. These values are

|〈−|Dxx|+〉|2 = |〈−|Dyy|+〉|2 = 3b2ε2
Zo/64∆2

|〈−|Dzz|+〉|2 = 3b2ε2
Zo/16∆2

|〈−|Dxy|+〉|2 = d2ε2
Zo/16∆2 (4.45)

|〈−|Dxz|+〉|2 = |〈−|Dyz|+〉|2 = d2ε2
Zo/8∆2
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Figure 4.8: Estimate of the relaxation times as a function of φ for both sweet spots.
Two mechanisms allow the suppression of this decoherence mechanism which corresponds to
different values of φ for which T1 →∞ to first order.

In the case of the anisotropic sweet spot the values of |〈−|Dij |+〉|2 are

|〈−|Dxx|+〉|2 = |〈−|Dyy|+〉|2 = 3b2ε2
Zo/64∆2

|〈−|Dzz|+〉|2 = 3b2ε2
Zo/16∆2

|〈−|Dxy|+〉|2 = d2ε2
Zo/16∆2 (4.46)

|〈−|Dxz|+〉|2 = d2ε2
Zo cos2 θo/4∆2

|〈−|Dyz|+〉|2 = d2ε2
Zo sin2 θo/4∆2

Collecting terms, the new dependence on the phase θo cancels out so we arrive to the original
formula in Ref. [125], except for the intrinsic φ dependence of of εZo and the energy difference
~ω.

The general formula for phonon-induced relaxation, valid at both sweet spots, is then

1
T1

= (~ω(φ))3

20~4πρ

(
εZo(φ)
El − Eu

)2 [3b′

32 ( 2
v5
l

+ 4
3v5
t

) + 5d′

48 ( 2
3v5
l

+ 1
v5
t

)
]

(4.47)

Interestingly, as shown in Fig. 4.8 the phonon-induced relaxation can be suppressed under
certain circumstances. These are those for which εZo = 0 and when ~ω(φ) = 0. The former
corresponds to when the qubit and upper branches do not interact in such a way that the
qubit branch is isolated not only from phonon-induced relaxation but also from any charge
noise to first order. This is the case of the isotropic sweet spot when φ = −π/4, while in
the anisotropic sweet spot it happens when φ = π/4. The latter mechanism corresponds
to when the magnetic field points perpendicularly to the fixed effective spin polarization of
the isotropic sweet spot, in this case the qubit is insensitive to the magnetic field and the
phonon-induced relaxation is irrelevant. In this case however, other mechanisms would arise
since the temperature is not exactly zero and kBT > ~ω.

4.5.3 Decoherence Free Subspace

As previously shown, under certain circumstances the qubit becomes isolated from the excited
states and εZo = 0. This only happens when one of the branches has a fixed spin polarization
and the magnetic field points in parallel to this polarization. We distinguish then two ways of
achieving this DFS: (i) magnetic field pointing in the same direction of the spin polarization
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of the qubit branch in the isotropic sweet spot. In this case θl becomes a constant of motion
and the Zeeman interaction is perfectly diagonal. This happens when φ = −π/4 + nπ; (ii)
magnetic field pointing in the same direction of the spin polarization of the upper branch in
the anisotropic sweet spot. In this case θu becomes a constant of motion and the Zeeman
interaction is again perfectly diagonal. This happens when φ = π/4 + nπ.

Compared to conventional DFSs, where decoherence is suppressed via the symmetries of the
encoded states, the DFS here is achieved by actively controlling the strength of its interaction
with the environment. The magnetic field orientation can be chosen beforehand, and Fz can
be used to go to the DFS in a particular sweet spot. Both cases correspond to a particular
mixing of HH-LH in one of the branches. In both branches, when the amplitude probability
of LH is |aL| =

√
3/2 and the amplitude probability of HH is |aH | = 1/2 the particular

branch becomes decoupled from the other branch. It is a property of the states with this
particular mixing of HH and LH. Any interaction term that allows such mixing would have
similar properties.

We can see this by trying to find the DFS from the Hamiltonian level. As the qubit interacts
with the upper states through the Zeeman interaction, we can see this subspace as a leakage
submanifold. The interaction terms between the qubit states and the leakage states are
then given by the off-diagonal Zeeman terms in the qubit Hamiltonian. A decoherence free
subspace would be a subspace in which the Zeeman interaction is purely diagonal in the
qubit basis, or equivalently [HTd +Hinterface, HB] = 0. In this subspace, all the interactions
would be suppressed to first order. To find such subspace we use the following elements that
form part of a bigger basis of the space of spin 3/2:

e1 = 1

2
e2 = 1/6(2J2

z − J2
x − J2

y )
e3 = 1/

√
5Jx

e4 = 1/
√

5Jy (4.48)
e5 = 1/

√
12 {Jx, Jy}

e6 = 1/
√

12 {Jy, Jz}
e7 = 1/

√
12 {Jz, Jx}

In this basis the elements of the effective Hamiltonian are

Hinter = ∆HL(e1 − e2)
HTd = 2pFze5 (4.49)
HB =

√
5(Bxe3 +Bye4)

The commutators are then

[Hinter, HB] = i2
√

3∆HL(Bye7 −Bxe6)
[HTd , HB] = −4ipFz(Bxe7 −Bye6) (4.50)

The total commutator is

[Hinter +HTd , HB] = e7(−4ipFzBx + i2
√

3∆HLBy)
+ e6(4ipFzBy − i2

√
3∆HLBx) (4.51)
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As e7 and e6 are different elements of the basis, [Hinter +HTd , HB] = 0 is equivalent to solve
the following system

∆HLBy −
2pFz√

3
Bx = 0

∆HLBx −
2pFz√

3
By = 0 (4.52)

The system has non-trivial solutions if and only if Bx = ±By which corresponds to the
orientations ±π/4 + nπ. These are the most symmetric directions as the main axes of the
crystal remain indistinguishable.

In the case Bx = −By, the solution requires ∆HL = −2pFz√
3 which corresponds to the isotropic

sweet spot. The case Bx = By requires ∆HL = 2pFz√
3 corresponding to the anisotropic sweet

spot. These conditions are indeed equivalent to the previous conditions of the amplitude
probabilities of LH and HH being |aL| =

√
3/2 and |aH | = 1/2 respectively. In these two

cases the Zeeman interaction can be diagonalized simultaneously with the interface and Td
symmetry terms, so the qubit becomes isolated from the upper branch.

It is also interesting to express the different contributions in terms of the spherical tensors
J+ and J−

HTd +Hinter = −3
41−

i

8(∆HL + 2pFz/
√

3)(J+ + iJ−)2

+ i

8(∆HL − 2pFz/
√

3)(J+ − iJ−)2

HB = 1 + i

4 (Bx −By)(J+ − iJ−) (4.53)

+ 1− i
4 (Bx +By)(J+ + iJ−)

From here it can be seen how for the sweet spots, and for particular values of the magnetic
fields, the non-magnetic and the magnetic terms share eigenvectors. The operators of HTd +
Hinter form a spin quadrupole which is the square of the dipolar spin interaction with the
magnetic field. Consequently, both operators commute.

4.6 Two-qubit coupling: Entanglement

In this section the dipolar coupling between two acceptors is calculated for an arbitrary φ.
Due to the spin-orbit interaction and the electric dipole moment of each acceptor a spin-
dependent dipolar interaction is expected between the two acceptors. Let the subspace of
the two qubits be {|l−a, l−b〉, |l−a, l+b〉, |l+a, l−b〉, |l+a, l+b〉}. The total Hamiltonian is
HΣ = Ha

op + Hb
op + V ab, where Hop are the single acceptor Hamiltonians and V ab is the

Hamiltonian of the electrostatic interaction given by V ab(ra − rb) = e2/4πε|ra − rb|.
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Here we assume that each qubit may have different energies and applied fields. The single
qubit Hamiltonians are:

〈m|H i
op|m′〉 =


− εil

2 0 Zi1 iZi2

0 εil
2 iZi2 Zi1

Zi1 −iZi2 ∆i − εiu
2 0

−iZi2 Zi1 0 εiu
2 + ∆i

 (4.54)

Where the superindex i indicates acceptor a or b.

We assume two acceptors separated by a distance R. When the two acceptors are far enough
we can use the multi-pole expansion for the Coulomb interaction:

〈mn|V 12|m′n′〉 = R2〈m|er′1|m′〉 · 〈n|er′2|n′〉 − 3(〈m|er′1|m′〉 ·R)(〈n|er′2|n′〉 ·R)
4πεR5 (4.55)

Being r′i = ri−Ri the hole coordinate relative to the ion, and assuming an arbitrary relative
position in the xy plane R = R cos(θE)x̂+R sin(θE)ŷ, so

〈mn|V 12|m′n′〉 = (1− 3 cos2 θE)〈m|ex′1|m′〉 · 〈n|ex′2|n′〉+ (1− 3 sin2 θE)〈m|ey′1|m′〉 · 〈n|ey′2|n′〉
4πεR3

+ 〈m|ez′1|m′〉 · 〈n|ez′2|n′〉
4πεR3 (4.56)

The dipole matrix elements relevant for the Coulomb interaction are:

〈m|e(x′, y′)i|m′〉 =


0 0 iqi1x,y qi2x,y
0 0 qi2x,y iqi1x,y

−iqi1x,y qi2x,y 0 0
qi2x,y −iqi1x,y 0 0

 (4.57)

where qi1x = αi sin θi, qi2x = −αi cos θi, qi1y = αi cos θi, and qi2y = αi sin θi (assuming the
approximation α� p valid for both qubits).

We can project the interactions into the 4×4 subspace using a SW transformation. Working
out H(2) gives a spin-independent shift:

H(2) = −
[((qa1)2 + (qa2)2

)((
qb1

)2
+
(
qb2

)2
)

∆a + ∆b
+

(Za1 )2 +
(
Zb2

)2

∆a
+

(
Zb1

)2
+
(
Zb2

)2

∆b

]
1 (4.58)

The third-order correction is

H
(3)
mm′ = −1

2
∑
l,m′′

[ H ′mlH
′
lm′′H

′
m′′m

(Em′ − El)(Em′′ − El)
+ H ′mm′′H

′
m′′lH

′
lm′

(Em − El)(Em′′ − El)
]

+ 1
2
∑
l,l′

H ′ml′H
′
ll′H

′
l′m′

[ 1
(Em − El)(Em − El′)

+ 1
(Em′ − El)(Em′ − El)

]
(4.59)
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The result of the third order correction to zeroth order in εi is

H(3) = Jdd


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 (4.60)

where

Jdd =
4 (qa2Za1 + qa1Z

a
2 )
(
qb2Z

b
1 + qb1Z

b
2

)
∆a∆b

(4.61)

Which is an Ising type spin-spin interaction
H(3) = Jdd(σa+ + σa−)(σb+ + σb−).

After adding all the contributions and substituting, the value of Jdd is:

Jdd = αaαbεaZoε
b
Zo(sin θao sin θbo(1− 3 sin2 θE) + cos θao cos θbo(1− 3 cos2 θE))

4πεR3(Eal − Eau)(Ebl − Ebu)
(4.62)

This dipole-dipole coupling Jdd is inversely proportional to the qubit-upper branch energy
separation ∆, and it is directly proportional to the qubit-upper branch couplings εZo of each
qubit, and their Rashba couplings α, such that

Jdd = αaαbεaZoε
b
Zo

8πεR3∆a∆b
G(F az , F bz , φ, θE), (4.63)

with G(F az , F bz , φ, θE) a modulating function that depends on the operating point of each
qubit, the magnetic field orientation φ and the relative orientation θE . In the original proposal
[125], with φ = 0, this coupling allows 104 two qubit operations per qubit lifetime when both
qubits are at the isotropic sweet spot and separated by 20 nm. Since each qubit is operated
at a sweet spot, we can consider three ideal situations: (i) both qubits at their isotropic sweet
spots; (ii) one qubit at the isotropic and the other at the anisotropic one; (iii) both qubits at
their anisotropic sweet spots. Note that gate voltages alone can switch between these cases.
Substituting for each case we get:

Case (i): We get:

Jdd = 3
2ε

2
Z (1 + sin(2φ)) αaαb

8πεR3(Eal − Eau)(E2
l − E2

u)
(4.64)

Case (ii): Omitting the complex dependence in the dynamic sweet spot of θo on φ:

Jdd = 3ε2
Z

√
1 + sin(2φ)αaαb| cos(2φ)|2

×
(3 cos(3φ− θao )− cos(φ+ θao )− 3 cos(2θE)(cos(φ− θao )− 3 cos(3φ+ θao ))

]
16πεR3(Eal − Eau)(Ebl − Ebu)

√
7 + 4 cos 4φ− 3 cos 8φ

(4.65)

Case (iii):

Jdd = 3ε2
Z

αaαb cos2(2φ)
[
(1− 3 cos2 θE) cos θao cos θbo + (1− 3 sin2 θE)

]
sin θao sin θbo

8πεR3(Eal − Eau)(Ebl − Ebu)(3 cos(4φ)− 5)
(4.66)
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Figure 4.9: Normalized function G(F az , F bz , φ, θE) that modulates the entanglement cou-
pling, see Eq. 4.63. In case (i) G(F az , F bz , φ, θE) = 1 independently of the relative orientation.
(Left) Case (ii): Qubit a is at the isotropic sweet spot while qubit b is at the anisotropic. The
black dashed lines indicate 15◦ and 75◦, orientations for which the coupling is suppressed
in one main axis while enhanced in the other. (Right) Case (iii): Both qubits are at the
anisotropic sweet spot. The black dashed line shows that 15◦ and 75◦ maintain their behav-
ior qualitatively. The yellow lines correspond to 40◦ and 50◦, which have now a qualitative
behavior similar to 15◦ and 75◦ in case (ii) respectively.

The normalized angular distribution of cases (ii) and (iii) as a function of the relative orienta-
tion θE can be seen in Fig. 4.9. An alternative way of visualizating this coupling dynamically
as a function of θE is in movie 4.10, where the blue and red curves correspond to case (ii)
and (iii) respectively.

4.6.1 Magic angles

movie

The coupling Jdd can be suppressed by two mechanisms that do not involve deactivating any
of the qubits: (i) eliminating the qubit dynamics in a DFS (namely, making εZo = 0), though
this mechanism is not efficient as the Jdd suppression with ε2

Zo is as fast as the increase in T1,
thus the number of allowed two qubit operations is maintained; (ii) by choosing parameters
such that G(F az , F bz , φ, θE) = 0 (see purple areas in Fig. 4.9). The latter corresponds to magic
angles of the magnetic field that depend on the relative orientation between acceptors and
the operating point of the qubits.

In case (i) the dipolar coupling is perfectly isotropic G(F az , F bz , φ, θE) = 1, hence neighboring
qubits at isotropic sweet spots will always be coupled. Cases (ii) and (iii) are anisotropic and
for certain relative orientations θE there are certain values of phi (magic angles) at which
this dipolar coupling is zero even though the individual dipoles of each qubit are activated
due to the high vertical field.

Interestingly, the existence of magic angles for different operating points also means that it
is possible to turn on and off the two-qubit couplings by going from different combinations
of sweet spots. This only requires the election of a particular orientation φ in a magic angle
beforehand and then use the top gate voltage of the qubits to move adiabatically among
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Figure 4.10: (Quicktime Movie in the pdf version) Jdd(θE) angular distribution for a given
magnetic field. The red curve corresponds to case (iii) while the blue curve corresponds to
the case (ii). The specific angles for protocols 1 and 2 are labeled as P1 and P2 respectively.

the different sweet spot combinations to switch on and off the two qubit interactions. This
mechanism is the cornerstone that allows us to define protocols for entanglement based on
all electrical interactions. In general, since this magic angles only suppress the coupling in
one direction these protocols assume one direction for fast entanglement operations using
this mechanism with a linear array while the other direction is used for entanglement via
cQED with any qubit from other arrays.

4.6.2 Protocol 1

For this case we choose φ = 40◦ (φ = 50◦) and locate acceptors ≈ 20 nm away in the x
(y) direction, such that we keep the ratio of two qubit operations per qubit lifetime ≈ 104.
We place acceptors at ≥ 100 nm away in the y (x) direction. Sweeping the local gates such
that two neighboring qubits in the x (y) direction are taken to their anisotropic sweet spots
(case (iii)), the coupling Jdd is suppressed in that particular direction and each qubit can be
addressed individually, see Fig. 4.11(Left). Then, taking adiabatically one or both qubits
to the isotropic sweet spot, the coupling is reactivated. In the perpendicular direction, Jdd
cannot be turned off without deactivating one of the qubits at this particular φ, so acceptors
need to be more separated and entanglement between any pair of qubits is performed via
cQED [125]. An easy way to visualize the coupling distribution for each case in this protocol
can be seen in the movie 4.10 where P1 indicates the first protocol angles.

4.6.3 Protocol 2

The acceptors are placed in a similar 2D array, choose φ = 15◦ (φ = 75◦). Sweeping the local
gates such that two neighboring qubits in the x (y) direction are taken to the anisotropic-
isotropic sweet spot combination (case (ii)), the coupling Jdd is suppressed in that particular
direction and each qubit can be addressed individually, see 4.11(Right). Then the qubit
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Figure 4.11: (Left) Scheme of protocol 1. The anisotropic-anisotropic combination is used
for single qubit operations. Two-qubit operations are activated in the isotropic-isotropic
combination. (Right) Scheme of protocol 2. The isotropic-anisotropic combination is used
for single qubit operations. Two-qubit operations are activated in the isotropic-isotropic
combination..

at the anisotropic sweet spot is adiabatically swept to the isotropic sweet spot and Jdd is
reactivated. Again, cQED is performed in the y (x) direction.

4.7 Discussion: Experimental implications

4.7.1 Single-qubit operations

With the coupling in Eq. 4.25 and the limiting factor T1 in Eq. 4.47 we can calculate the
number of π single qubit rotations per qubit lifetime, see Fig. 4.12. The number of qubit
operations diverges when T1 tends to infinity, since T1 ∝ 1/ε2

Zo while D ∝ εZo. A similar
tendency can be seen when the Larmor energy goes to 0. In this case the EDSR coupling
is maximized while T1 is minimized. Other processes, such as temperature, would limit
this scenario since kBT > ~ω at the isotropic sweet spot when φ = π/4. Moreover, for
the particular values φ = 1/2 arcsin(1/3) + nπ, and φ = 1/2 (π − arcsin(1/3)) + nπ, the
isotropic and anisotropic sweet spots fuse into a single sweet spot that would make the qubit
insensitive to charge noise up to second order, see Fig 4.3. In this case the energy dispersion
is particularly flat at the sweet spot within a 2-3 MV/m window. Hence, tuning the qubit to
this second order sweet spot would further increase the coherence properties of the system,
eventually allowing the observation of atomic clock transitions. Outside this second order
sweet spot the magnetic field orientation provides an experimental knob to minimize the
effects of second order charge fluctuations, see Fig. 4.7. In that figure the effect on the qubit
strongly depends on φ and can be minimized and even removed at certain orientations that
depend on the particular position of the charge trap relative to the acceptor. This can be
used to characterize the different noise sources for a given device by measuring T ∗2 for several
magnetic field orientations. The information obtained from such measurements would also
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Figure 4.12: Number of single qubit operations per qubit lifetime as a function of φ for
an acceptor at 4.6 nm and B = 0.5T.

be relevant for donor based qubits or Si/SiO2 confined quantum dots, since those qubits
operate in similar environments, as well as shedding light on 1/f noise.

In particular, we can use the different possible regimes in Fz and φ to devise a way to fully
characterize how different contributions of noise affect the qubit. The most interesting con-
figurations to analyze the noise in a particular device would be:

(a) Fz = 0, φ = nπ/2: With this orientation Fz = 0 corresponds to the anisotropic sweet
spot. Since there is no vertical field applied, α is very small so charge noise is suppressed
in the z direction to first order. This small value of α also implies that charge noise is also
suppressed to second order in the horizontal directions. However, a slight variation in the
direction of the magnetic field would move the position of this sweet spot so the qubit is
sensitive to magnetic noise. With natural Si, this configuration could be used to estimate
how sensitive the qubit is to this magnetic noise since, even under these circumstances, holes
are expected to be more insensitive to magnetic noise than electrons.

(b) Fz = 0, φ 6= nπ/2: By moving φ when Fz = 0 we move the anisotropic sweet spot position
and hence, we modify the sensitivity to vertical charge noise dFz. In this configuration, in-
plane charge noise would be suppressed to second order and, together with the information
obtained from (a), the vertical charge noise could be characterized as a function of φ.

(c) Fz at the merged sweet spot, φ = 1/2 arcsin(π/3): In this configuration the qubit
is insensitive to vertical charge noise up to second order but, second order charge noise is
relatively high due to the high value of α. The strenght of second order in-plane charge noise
could be characterized in this case.

(d) Fz at the isotropic sweet spot: With the information from (a), (b), and (c), second
order in-plane charge noise could be characterized as a function of φ. This is particularly
interesting since, using Eq. 4.36 with the experimental information, the relative positions of
potentially harmful interfacial defects could be estimated.

(e) Fz at the anisotropic sweet spot: Changing φ the position of this sweet spot is
modified. While the sensitivity to vertical charge noise will be suppressed, by moving the
value of the sweet spot to higher Fz the value of α will smoothly increase and, hence, the
sensitivity to second order in-plane charge noise would also increase. This would help to
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characterize how strong the in-plane charge noise can increase with α and, together with the
information of the other configurations and Eq. 4.25 could be used as a way to estimate how
α changes.

(f) Fz at the isotropic sweet spot, φ ≈ π/4: In this case ~ω would be suppressed, but it
could be used to obtain information about other mechanisms affecting T1.

(g) Fz at the isotropic sweet spot, φ ≈ −π/4 or Fz at the anisotropic sweet spot,
φ ≈ π/4: This corresponds to the DFS. To first order the qubit would be disconnected from
the environment and only second order processed would affect the qubit.

4.7.2 Entanglement

Both entanglement protocols require adiabatically sweeping the vertical electric field to move
among sweet spots. This raises the issue of decoherence exposure during the procedure.
The answer to this question allows to discern the advantages of each protocol. Since the
exact amount of charge noise is device dependent, we account for the charge noise exposure
qualitatively. In the original proposal for entanglement in the acceptor qubit [125, 126] the
electric field is adiabatically swept from Fz = 0 to Fz at the isotropic sweet spot. Hence,
the simplest qualitative way of comparing protocols is to account for the ratio T ∗2 (φ)/T ∗2 (0).
Here T ∗2 (φ) would be related to the amount of charge noise accumulated when going from
the anisotropic sweet spot to the isotropic sweet spot for a given φ, and T ∗2 (0) the exposure
to charge noise in the original proposal. Given a fluctuating charged defect with field δFz we
compute the change in energy δELarmor for a given value of Fz in the qubit. How much the
defect affects the qubit energy depends on the derivative of the Larmor energy on Fz. From
[244] we know that 1/T ∗2 ∝ δE2

Larmor. Defining F ∗z and F̃z as the values of the vertical electric
field at the isotropic and anisotropic sweet spots respectively, we account for the total charge
noise exposure by integrating the Larmor energy change along the path from F̃z to F ∗z :

I(φ) =
∫ F ∗z

F̃z
δE2

Larmor(Fz)dFz (4.67)

By assuming a constant sweep rate, the time of exposure to charge noise is proportional to
the difference between the initial and final electric fields. In total we get

T ∗2 (φ)
T ∗2 (0) = | I(0)F ∗z

I(φ)(F ∗z − F̃z)
| (4.68)

Intuitively, this ratio is simply proportional to the charge noise sensitivity along the path and
its length. The values of this ratio can be seen in Fig. 4.13 From Fig. 4.13 it is clear that any
φ 6= 0 reduces the charge noise exposure by sweeping between sweet spots. The explanation is
simply that the closer the sweet spots are the less time the qubits are exposed to charge noise.
Moreover, when the two sweet spots are closer, the derivative dELarmor/dFz also becomes
smaller. As a result, the exposure to charge noise by sweeping between sweet spots goes to
zero when the two sweet spots merge at φ = 1/2 arcsin(1/3) and φ = π/2− 1/2 arcsin(1/3).

Protocol 1 requires a magnetic field orientation very close to the DFS of the anisotropic
sweet spot, which means single-qubit operations per qubit lifetime are extremely enhanced.
However, the exposure to charge noise in the adiabatic sweeping is higher than in protocol
2 due to the difference in Larmor frequency between sweet spots. Protocol 2 is not close
to the DFS, hence the single-qubit operations are not particularly enhanced, though T1 is
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Figure 4.13: Ratio T ∗2 (φ)/T ∗2 (0) as a function of φ. Note that the charge noise exposure
is always better for any φ 6= 0, T ∗2 (φ)/T ∗2 (0) ≥ 1.

still enhanced with respect to the φ = 0 case. Exposure to decoherence during the adiabatic
sweep is strongly minimized since the value of φ is close to the one that merges the isotropic
and anisotropic sweet spots (they are barely separated by ≈ 1.5 MV/m). We also note
that both protocols are robust against acceptor placement imprecision. Specifically, for an
accuracy of ±5 nm in an the in-plane positioning, for an inter-acceptor distance of 20 nm,
the angle variation would be of ±15◦. Under these circumstances, Jdd would be small (see
Fig. 4.9) rather than completely switch off in one direction. Still the ratio between the
coupling enhancement in one direction and the suppression in the perpendicular one would
be ≈ 10.

4.8 Conclusions

In conclusion, we have shown that the in-plane magnetic field orientation is an effective con-
trol parameter for acceptor based qubits which is of particular relevance to experiment. As a
reorientation of the magnetic field would be slow compared to typical manipulation times, it
would be advisable to keep the orientation fixed during qubit operation. A particular orien-
tation would hence be chosen beforehand in order to tune the physical system to a particular
working regime. For instance, near a DFS (i.e. φ = −π/4 + nπ at the isotropic sweet spot)
it would be possible to increase the number of operations per qubit lifetime. An orientation
0 ≤ φ ≤ π/2 would allow us to get two sweet spots, at two close values of Fz, each one
with different manipulability and coherence properties. For φ = 1/2 arcsin(1/3) + nπ, or
φ = 1/2(π − arcsin(1/3)) + nπ, the two sweet spots merge making the qubit insensitive to
charge noise up to second order, eventually allowing the observation of atomic clock tran-
sitions. The magnetic field orientation could be also used to characterize the noise sources
affecting quantum computing at Si/SiO2 interfaces. Finally, the coupling between neighbor-
ing qubits can be switched on and off by the electric field for particular values of the magnetic
field orientation. This allows us to devise protocols where the exposure to charge noise is
suppressed and still the qubits can be individually addressed. In summary, this unexpected
parameter dependence can be used to perform experiments in different regimes, with different
manipulability and coherence properties, within the same single physical system.
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Chapter 5
Disorder effects on Tunneling and
Valley physics in Si Double
Quantum Dots.1

5.1 Introduction

In recent years, control over Si quantum dot electronic devices has improved rapidly. For
instance, controlled population has been proven not only in single quantum dots [147], but
also in double dot systems [176–179]. In several quantum dot qubit systems, such as charge
qubits, fast manipulation can be done solely by electric means [170]. This is a desirable qual-
ity since manipulation by local oscillating magnetic fields is experimentally more challenging
and requires more power. However, manipulation via electric fields is often accompanied
by sensitivity to charge noise, which limits the qubit coherence times. Charge noise has
been shown to affect quantum-double-dot qubits, principally through the detuning control
parameter [246], resulting in dephasing that depends on the energy dispersion as a function
of detuning [247]. One method to reduce charge noise is to take advantage of the physical
degrees of freedom to define a qubit with stronger coherence properties.

For Si dots, the energy dispersion is strongly affected by the physics of the conduction band
minima, or valleys [187, 248]. Notably, atomic-scale disorder at the quantum well interface
affects the valley degree of freedom, allowing mixing with the orbital degrees of freedom
(valley-orbit mixing), strongly affecting the tunnel coupling between dots [155, 159, 164,
187, 249–254], and thus the qubit frequency.

We focus on a specific qubit implementation based on Si/SiGe quantum wells: the quantum
dot hybrid qubit,[165, 255–261] which behaves as a charge qubit when the detuning is close
to zero, and has a spin-like character for large detuning values, ε� 0. The double dot device
considered for comparison in this chapter was described in ref [262]. The relevant low energy
Hamiltonian is

Heff =

ε/2 ∆1 ∆2
∆1 −ε/2 0
∆2 0 −ε/2 + ∆R

 . (5.1)

1Article in preparation [245].
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Figure 5.1: (Left) A scanning electron microscope image of a device nominally identical to
the one used in the experiments of the quantum dot hybrid qubit. The gate voltages are tuned
to form two quantum dots, located approximately within the dashed circles, where red dots
represent electrons in a (1,2) charge configuration. (Right) Schematic cartoon illustrating the
two-dimensional, single-electron theoretical model employed in our tight-binding simulations.
The quantum well heterostructure is taken to be Si0.7Ge0.3/Si/Si0.7Ge0.3, and atomic-scale
step disorder is added to the top interface. The lateral confinement potential is defined to
be biquadratic, and the two dots are offset by energy ε. The low-energy eigenstates of the
isolated dots are labelled |L0〉, |L1〉, |R0〉, and |R1〉, while the interdot tunnel couplings are
labelled ∆1 and ∆2. We refer to ∆R as the “valley splitting," although |R1〉 can represent a
valley-orbit excitation.

Specifically, the quantum dot spin-charge hybrid qubit’s main advantage is that all operations
can be performed via electric fields, without any magnetic fields, resulting in fast operations
and reducing the experimental complexity. WThis system is a double-dot device with three
electrons operating near the (2,1)-(1,2) anticrossing with tunnel coupling ∆1, see Fig.5.1. For
three spin 1/2 electrons the resulting total spin space is formed of a spin quadruplet S = 3/2,
and two doublets with S = 1/2. The logical qubit is encoded in the two states with S = 1/2,
Sz = −1/2 and, since both states have same spin quantum numbers electrical operations
are allowed. Regarding the charge degree of freedom, for negative values of detuning, the
configuration is the (2,1). At ε = 0 there is a charge transition (2, 1) → (1, 2). This is the
charge qubit regime, where electrical manipulation can be fast but, it is also more susceptible
to charge noise. In the far detuning regime, however, the qubit states are encoded in the
logical qubits |0〉 = | ↓〉|S〉 and |1〉 =

√
1
3 | ↓〉|T0〉 −

√
2
3 | ↑〉|T−〉. Being |S〉, |T0〉, and |T1〉

the singlet |S〉 = 1/
√

2(| ↑↓〉 − | ↓↑〉), the triplet |T0〉 = 1/
√

2(| ↑↓〉 + | ↓↑〉), and the
triplet |T−〉 = | ↓↓〉. The energy difference between the two qubt states in the far detuning
regime, ∆R, is mostly determined by the valley splitting of the right-hand dot, although other
contributions such as the exchange interaction or the Coulomb repulsion are also relevant. In
this regime the qubit behaves as a spin qubit, with slower transitions and better coherence
properties since the qubit energy has a very stable energy dispersion. However, in this regime
the derivative of the qubit energy with detuning ∂fQ/∂ε is only zero asymptotically when
ε→∞, hence, no true sweet spots are expected. Nonetheless, full and fast electrical control
of such qubit has recently been demonstrated in this large detuning region [263].

In this chapter we theoretically show that random disorder in the position of the quantum
well interface, combined with the ability to electrostatically manipulate the dot positions,
allows us to find sweet spots in the energy dispersion, even in the spin-like regime. In order
to simulate the low energy physics of the quantum dot hybrid qubit, we employ spinless
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single electron 2D tight binding simulations that captures all the relevant physics, see Fig.
5.1(Right). The relevant states of each dot in this case are the ground and excited valley-
orbit states. The electron can tunnel from the ground state of the left dot to the ground and
excited states of the right dot, similar to the charge-qubit dynamics of the hybrid qubit. In
the far detuning regime, the relevant states are the two right localized valley states being
the qubit energy dominated by the valley splitting. As will be shown in this chapter, this
simple model of a single electron in a double quantum dot captures the relevant physics
both qualitatively and quantitatively. At the same time, the problem becomes much cheaper
computationally and still allows to analyze the relevant valley physics.

We also compare our theoretical results with recent experiments that show evidence for
a sweet spot occurring in an unexpected regime of control space, as well as the converse
effect where decoherence is strongly enhanced by a hotspot [264]. We also provide potential
explanations for these phenomena in the form of specific disorder profiles that generate
similar energy dispersions in the 2D tight-binding simulations of a double-quantum dot in a
SiGe/Si/SiGe quantum well.

5.2 Tight binding model

Figure 5.2: Schematic representation of the tight binding model. The SiGe barrier atoms
have a higher on-site energy than the Si atoms. In the horizontal direction the atoms are
connected to nearest neighbors, while in the vertical direction they are connected up to
second nearest neighbors to include the valley oscillations. Atomic disorder is accounted by
the vertical position of the SiGe barrier.

Here, we focus on atomic step disorder that arises during heterostructure growth, due to the
underlying miscut of the substrate wafer, or the presence of dislocations caused by strain
relaxation. Since the disordered interface has an atomistic nature, a simple EMA would
overlook the atomic details that change from site to site. A TB approach is expected to give
more accurate results.

This TB approach is represented schematically in Fig. 5.2. We consider a vertical direction
ẑ as the growth direction, which we assume here to be aligned with the (001) crystal axis.
In this direction there is a top and a bottom SiGe barriers that confine the electron. We
consider a vertical electric field Fz that further confines the electron wavefunction against
the top interface, where the interfacial disorder is going to be accounted for.
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For a strained Si quantum well, the two low-lying conduction band valleys are centered at
positions k0 = ±0.82(2π/a)ẑ in the Brillouin zone, where a = 0.543 nm is the length of
the (unstrained) Si cubic unit cell. The double-dot confinement potential in the x-y plane
is obviously three-dimensional (3D). However, an interfacial step is a planar feature, which
generates coupling between the valley and orbital degrees of freedom (valley-orbit coupling)
in the same plane[159]. If we define this as the y-z plane, and further orient the double-dot
along ŷ, then the essential physics of our problem is all contained within a single plane,
and inclusion of the third dimension (x̂) only provides quantitative corrections, but no new
physics. Our minimal model can therefore be reduced to two dimensions, corresponding to
the y-z plane.

5.2.1 Valley degree of freedom

Following the theoretical background subsection 1.4.3, the minimal tight-binding model
captures the valley positions as well as their longitudinal and transverse effective masses
(ml = 0.916m0 and mt = 0.191m0, respectively) by introducing nearest- and next-nearest-
neighbor hopping parameters in the z direction [151, 152] (uz = t1 = 0.68 eV and vz = t2 =
0.61 eV, respectively), and a separate nearest-neighbor hopping parameter in the x-y plane
[186, 251, 265] (uy = t = −10.91 eV).

The hopping parameters, described above, account for the kinetic energy, HK , of an electron
in a strained Si quantum well. The electronic potential energy is described via on-site terms,
involving several contributions that include the confinement potential. A uniform on-site
term ε = 23.23 eV sets the band minimum to zero inside the quantum well.

5.2.2 Confinement and fields

We introduce a quantum well with a barrier of height VQW = 0.15 eV, as appropriate when
Si is sandwiched between strain-relaxed Si0.7Ge0.3. In all cases, we consider a quantum well
width of 9.85 nm. We include a vertical electric field F , as consistent with experiments,
which pulls the electron wavefunction up against the top interface:

HF = −eFz. (5.2)

Ideally, this field should be large enough that the electron feels no confinement effects from
the bottom of the quantum well. We model the two dots, centered at positions yL and yR,
with a biquadratic potential, see Fig. 5.1(Right):

HDD = min
[1

2mtω
2(y − yL)2,

1
2mtω

2(y − yR)2
]
, (5.3)

where ω represents the orbital excitation frequency of the individual dots. For simplicity
here, we assume both dots have the same frequency. Model parameters including yL, yR, F ,
and ω are chosen randomly, within a range of values consistent with the experiments [262].
These correspond to interdot distances around 100 nm ≤ yR − yL ≤ 200 nm, 0.5 MV/m
≤ F ≤ 5 MV/m , and 0.2 meV ≤ ~ω ≤ 0.6 meV.

Finally, we include the effects of a detuning parameter ε via an in-plane electric field:

Hε = − ε

2(yR − yL)y. (5.4)
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5.2.3 Disordered interface

If we define the position of the bottom interface as zb, and assume the top interface zt(y) is
a function of position (disorder), then the barrier potential can be written as

HQW = VQW [θ(zb − z) + θ(z − zt(y))] . (5.5)

The full Hamiltonian of the system is then written as

H = HK +HQW +HF +HDD +Hε. (5.6)

We find that the effect of a given profile on the energy dispersion can be difficult to predict,
a priori. We have therefore performed a large number (>2500) of simulations incorporating
randomly generated step profiles, such as those shown in Figures 5.9, 5.11, and 5.13. The
disorder models we employ include steps of one or two different widths, ranging from narrow
to wide (Figure 5.8), and we allow the interface position zt(y) to deviate from its average
value by a standard deviation of 1 to 2 atomic steps.

5.3 Effective Hamiltonian

|0〉

|1〉

|L0〉

2Δ1

2Δ2

ΔR
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Figure 5.3: Low energy diagram of the lowest states obtained from the tight binding
simulations as a function of detuning. ∆1 and ∆2 represent the two relevant tunnel couplings
while ∆R represents the asymptotic value of the right dot valley splitting.

The simulations with random parameters are evaluated as a function of ε to obtain the low
energy physics. Our analysis is focused in a regime in which the left localized dot excited
state |L1〉 is more energetic than the two lowest right localized states, see Fig. 5.1. In this
regime, all the dynamics can be understood in terms of the single electron tunneling dynamics
and the valley splitting of the right localized states. In Fig. 5.3 we can see the detuning
dependence of the relevant states. The lowest state for negative detuning is the left localized
valley ground state |L0〉. When ε ≈ 0 an anticrossing between |L0〉 and |R0〉 with tunnel
coupling ∆1 occurs, corresponding to the tunneling from the (1,0) to the (0,1) configuration.
A second anticrossing corresponds to the tunnel from the left dot to the excited valley state
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of the right dot, with tunnel coupling ∆2. After this second anticrossing, the qubit states are
the right localized ground and excited valley-orbit states, with qubit energy asymptotically
defined by ∆R. As a result, the effective Hamiltonian corresponds to:

Heff =

ε/2 ∆1 ∆2
∆1 −ε/2 0
∆2 0 −ε/2 + ∆R

 , (5.7)

being ∆1, ∆2, and ∆R parameters that depend strongly on the different parameters of the
quantum well, defined in each simulation. More importantly, Eq. 5.7 is identical to the
effective Hamiltonian of the quantum dot hybrid qubit in Eq. 5.1. Being each parameter in
the single electron TB physically analogous to the relevant parameters of the quantum dot
hybrid qubit (QDHQ).

Two different methods were used to determine the fitting parameters ∆1, ∆2, and ∆R,
appearing in Eq. 5.7. The first method considers that the parameters are constants in ε.
In this case the parameters were determined by fitting the qubit frequency, obtained from
the two low-energy eigenvalues of Eq. 5.7 (hfQ ≡ E1 − E0), using the least-square method.
This is equivalent to obtaining an average of the different parameters in ε. As a result,
the obtained values of ∆1 and ∆2 are mostly determined by the values at their respective
anticrossings.

The second method was used for detuning dependent results, the fitting parameters for the
simulations were determined as a function of ε. In the far-detuned regime (ε � 0), where
the two low-energy eigenstates have charge configuration (0,1), we first determine the valley
splitting, ∆R(ε), by replacing the double-dot confinement potential, eq 5.3, with the right-
localized single-dot potential,

HSD = 1
2mtω

2(y − yR)2, (5.8)

and repeating the tight-binding simulation, assuming the same interface disorder potential.
Ignoring the left-hand dot in this way is acceptable, because the tails of the wave function do
not play a significant role in determining the valley splitting. On the other hand, the wave
function tails play an important role in determining the tunnel couplings ∆1(ε) and ∆2(ε).
We compute these quantities by straightforwardly solving the roots of the characteristic
polynomial of Eq. 5.7, using the previously computed function ∆R(ε).

We find that each one of the different parameters of the effective Hamiltonian strongly
depend, not only on the interdot distance or the dot confinement potential, but also on the
particular disorder profile at the interface.

5.4 Vertical electric field effects

In order to analyze the effects of atomic interfacial disorder on the relevant low energy physics
parameters, we can consider a single atom step (bump) at the top interface for simplicity.
This bump has a defined width w0 and is centered at y0. We can use the vertical electric
field Fz to modify the electron density wavefunction near this bump, allowing us to increase
or decrease its effects on the effective Hamiltonian.
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Figure 5.4: (Left) Tunnel couplings in GHz (1 GHz = 4.13 µeV) as a function of the
vertical electric field for a w0 = 40 nm single bump centered at y0. (Right) Value of the
right dot valley splitting as a function of Fz for a w0 = 40 nm bump.

5.4.1 Intervalley Tunneling

Disorder strongly affects the tunnel couplings between different valley states [251]. In a
device with a perfectly flat interface, left localized and right localized valley states have
coherent valley oscillations. This means that without any disorder distorting the envelope
of the electron wavefunction, the valley oscillations of each dot are in phase, and the ground
state of each dot oscillates coherently in z. As a result, the overlap between different valley
states of each dot is necessarily zero, hence ∆2 = 0, while ∆1 is mostly determined by the
interdot distance and the dot confinement.

Interfacial disorder distorts the envelope of the wavefunction and, as a result, the valley
oscillations are affected [251]. This valley-orbit effect results in a non-zero overlap between
intervalley states, implying ∆2 6= 0. Moreover, changing Fz the electron density wavefunc-
tion near a bump is strongly affected, modifying the relative phase between different localized
valley states. As a consequence, the different tunnel couplings may show a non-trivial de-
pendence on Fz, see Fig. 5.4(Left).

In particular, different realizations of a single bump (different widths and/or positions) will
result in different values of the tunnel couplings and different electric field dependence. In
general, the dependence is hard to predict due to the interplay between the valley and orbit
degrees of freedom. For example, a single bump implies that there is a small region where
the disorder is pushing away the wavefunction, but this may only be true for one of the
valley states because the atomic step occurs where this valley state has a minimum due to
the valley oscillations, this is schematically shown in Fig. 5.5. This may result in interesting
valley-orbit effects such as one valley state being repeled by the bump, while the other is
paradoxically attracted by the barrier.

As an example of these valley-orbit effects, in Fig. 5.4 there are cases where ∆2 = 0 even
under the effects of interfacial disorder. In these cases the valley oscillations are affected
differently as a function of the horizontal position, resulting in an overall destructive inter-
ference.
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Figure 5.5: Example of a valley-orbit effect. (Left) Valley ground state wavefunction being
pushed by detuning against a bump. The bump acts as a barrier, preventing the movement
of the wavefunction. (Right) Valley excited state wavefunction being pushed by detuning
against the bump. In this case the valley oscillations are such that the wavefunction does
not see the bump (minimum of the oscillation) and hence, the bump does not act as a barrier
and the valley state moves freely.

5.4.2 Valley splitting

As stated previously, different valley states are differently affected by atomic disorder. One
valley state may feel the bump while the other is barely affected depending on the valley
phase of each state. This implies that one valley state may be energetically displaced with
respect to the other, or that the valley splitting is affected.

This can be seen in Fig. 5.4(Right), where different realizations of disorder are shown.
Changing Fz changes how each valley state feels disorder and modifies the valley splitting.
At the same time, due to the different valley phase, one of the states will always have a higher
density inside the barrier so increasing the vertical field, also increases this wavefunction
density difference. As a result, the valley splitting increases with Fz even when no disorder is
present, until it reaches a saturation value ~ω related to the dot confinement potential [251].

5.5 Detuning effects

In Fig. 5.6(Left) the qubit frequency fQ = E1 − E0 of one QDHQ device as a function of
detuning is shown. The qubit frequency was obtained experimentally in Mark Eriksson’s
group. In Fig. 5.6(Right) the qubit frequency is obtained for three different disorder realiza-
tions. Interestingly, the values of the different effective parameters of the simulations and the
experiment are almost the same. However, the simulations show that even when the effective
parameters are almost identical on average, small features showing a detuning dependence
may arise. Indeed, these parameters are not always constant in experiments; in particular,
they have been found to depend on ε [246, 266].



Chapter 5. Disorder effects on Tunneling and Valley physics in Si Double Quantum Dots.97

0 225 450

8

10

12
f Q

 (G
H

z)

ε (μeV)
0 225 450

8

10

12

ε (μeV)

���������

f Q
 (G

H
z)

Figure 5.6: (Left) The experimentally measured qubit frequency of a quantum-dot hybrid
qubit as a function of detuning, ε (black dots). (Right) Three qubit frequency dispersions,
obtained from tight-binding simulations with different disorder profiles. The Hamiltonian
parameters used in the simulations are consistent with those in the experiments, and fits of
the qubit energy splitting yield results very close to (Left) but with very different detuning
dependences.
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Figure 5.7: (Left) Tunnel couplings as a function of detuning for a disorder configuration
with one narrow bump (7 nm) at y0 = −20 nm. (Right) Value of the right dot valley splitting
as a function of detuning for the same configuration.

We find that the different tunnel couplings, and the valley splitting depend on ε. In Fig.
5.7(Left) this tunnel coupling dependence is shown for a particular disorder realization. The
mechanism behind this dependence is different to the Fz dependence. While ε does not
directly push the wavefunction against an atomic step like Fz, it can move the center of mass
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(COM) of each wavefunction. By slightly moving the COM, the electron wavefunction may
feel different realizations of the interfacial disorder, strongly affecting the tunnel couplings
or the valley splitting as seen in the previous section.

In particular, due to valley-orbit effects, one valley state may be more sensitive to ε in
comparison to the other due to the different relative position of its valley oscillations and
the atomic steps. This results in valley dependent COM dynamics, which may result in an
interplay with the dot potential.

5.5.2 Valley splitting

In a similar way, the valley splitting is strongly affected by ε when there is interfacial disorder.
This can be seen in Fig. 5.7(Right) where the valley splitting reaches a minimum around
150 µeV. In this particular case the ground state increases its energy due to the atomic
step, while the excited valley state barely sees the step due to the minimum of its valley
oscillations. As a result the energy difference is reduced as long as the ground state can see
this bump.

More complex realizations, with a higher number of atomic steps with different heights may
result in more complex dependences. In most of the cases, even under complex disorder
profiles, the COM movement is usually slow with ε, resulting in smooth and monotonous
dependences of all the parameters in ε. These cases would be easy to average to a constant
value of the parameters for the relevant detuning region in the experiments. Other cases,
such as those that will be presented in the following section, with sharper behavior cannot be
explained within the constant parameter approximation and may strongly affect the charge
noise susceptibility of a particular device.

5.6 Comparison with experiments

In this section we compare our simulations with some experimental results obtained following
the methods from [262]. In that work, applies several types of pulse sequences are applied in
order to map out energy dispersions for the qubit. First, they perform a Ramsey sequence
that allows the energy dispersion to be mapped out over a wide range of detunings. The
qubit is initialized to its ground state, |0〉, corresponding to the north pole of the Bloch
sphere. A microwave voltage pulse is then applied to the gate labeled R in Figure 5.1(Left),
which is calibrated to perform an Xπ/2 rotation, onto the equator of the sphere. The dc
bias voltage on gate R is adjusted so that the detuning parameter has value ε, where free
induction ensues. After a fixed time period, tfree, the detuning is adiabatically returned to
its initial value, and a second Xπ/2 rotation is performed. Finally, the qubit is measured, and
the experiment is repeated as a function of tfree, to obtain Ramsey fringes. Repeating these
measurements for different ε yields a dispersion curve fQ(ε). The lower panels of Figures
5.8(Left) and 5.10(Left) show two such results, obtained at different tunings of the same
device, where fQ (→ ∆fQ) has been shifted by a constant value, for clarity. As in Ref [262],
we have also fit the Ramsey fringes to exponentially decaying sinusoids, yielding estimates
for the decay rates Γ∗2, which we plot in the top panels of those figures.

Secondly, they use a different pulse sequence to map the dispersion, a Larmor pulse sequence,
where they start by initializing the qubit with ε0 � 0, then they abruptly change the detuning
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of the qubit such that ε ≥ 0. This abrupt change makes the qubit state a superposition of
the qubit eigenstates and free induction ensues. After a fixed time period, tfree, detuning is
abruptly changed back to its initial value where the qubit is measured. By repeating this
measurement as a function of tfree Larmor fringes are obtained. The qubit Larmor frequency
fQ is obtained corresponding to the detuning value ε by Fourier transforming this data. The
dispersion relation is then mapped by repeating this measurements at different ε values as
shown in the bottom panel of Figure 5.12. Again, the qubit frequency has been shifted by a
constant amount.

Finally, a Rabi pulse sequence is performed. The qubit is first initialized at a detuning ε,
microwaves are then applied to gate R for a variable time tRF. The microwaves are then
turned off and the qubit is measured. This measurement is then repeated at different ε
values, by adjusting the voltage on gate L, yielding oscillations like those shown in the upper
panel of Figure 5.12(Left). As in ref [262], we fit the slowest oscillations to a exponentially
decaying sinusoid, yielding estimates for the Rabi decay rates ΓRabi = 5.4 MHz. There is
mounting evidence that the form of the dispersion relation plays a crucial role in determining
the qubit response to charge noise [263, 267–273]. In ref [262] it was demonstrated that a
strong correlation between the measured dephasing rate Γ∗2 = 1/T ∗2 and the dispersion fQ(ε),
via the relation [246, 247]

Γ∗2 =
√

2π|∂fQ/∂ε|σε, (5.9)

where σε represents the standard deviation of the quasi-static charge noise, which should be
a constant for a given device, at a given temperature. The current data in Figures 5.8,5.10,
and 5.12 exhibit correlations which are also consistent with Eq. 5.9, with remarkable detail.
Here, we observe three distinct types of dispersion phenomena.

5.6.1 Typical behavior
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Figure 5.8: (Left) Energy dispersion with the typically monotonous behavior as a function
of detuning. On the top panel it is shown that this monotonous behavior is inherited by
the coherence properties. (Center) Identical behavior obtained through the tight binding
simulations. On top the valley splitting is shown as a function of detuning. (Right) Center
of mass 〈y〉 (bottom) and relative center of mass ∆〈y〉 (top) of the lowest two valley states.
The COM physics also shows a monotonous behavior.

By far the most common type of behavior is shown in Figure 5.8(Left), where ∆fQ appears
smooth and monotonic as a function of ε. In this case, no strong features are observed in
Γ∗2, as expected.
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Similarly, the theoretical dispersion on the bottom of Figure 5.8(Center) is very similar to
Figure 5.8(Left). These results represent the most common behavior observed in our simu-
lations: smooth and monotonic dispersions. We note that a significant amount of disorder is
needed, to suppress the valley splitting to the levels shown in the figures; however, this does
not necessarily produce distinctive features in the data. The valley splitting, ∆R (top half
of Figure 5.8(Center)), the center of mass of the ground and excited states, 〈y〉0 and 〈y〉1,
and the differential center of mass ∆〈y〉 = 〈y〉1 − 〈y〉0 (Figure 5.8(Right)) also display no
distinctive features. This can be understood from Figure 5.9, where we note that the wave
function is centered at a location where it is not pressed against a step edge. Consequently,
parameters such as the energy dispersion do not experience sudden changes as a function of
detuning.

Figure 5.9: (Left) Lowest valley state at ε = 360 µeV corresponding to Fig. 5.8. (Right)
Excited valley state for the same configuration. In both cases the blue curve shows the
horizontal probability density. The red curve shows the dot confinement potential. The
white lines show the corresponding disorder profile.

5.6.2 Hotspot behavior

A more exotic behavior is observed in this case. The disorder profile in Figure 5.11 produces
the energy dispersion shown in Figure 5.10(Center), which closely approximates the experi-
mental hot spot in Figure 5.10(Left). In this case the corresponding sharp change in qubit
frequency is clearly related to the sharp increase of decoherence. Our simulations indicated
that the main contribution to this energy jump comes from the valley splitting, which ex-
hibits a similar jump on the top half of Figure 5.10(Center). Such behavior arises from the
fact that the eigenstates are spatially separated (a valley-orbit coupling effect) and rapidly
changing with respect to ε, as observed in Figure 5.10(Right), exposing them to different
local disorder potentials. The resulting valley compositions of the two eigenstates also vary
rapidly. An unexpected consequence of these effects is that the excited state |R1〉 actually
moves in opposition to the electric field, for detunings around ε ' 225 µeV, in a striking
example of valley-orbit coupling.
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Figure 5.10: (Left) Energy dispersion showing an anomalous sharp change with detun-
ing. On the top panel it is shown that this sharp change corresponds to a hotspot where
decoherence is enhanced. (Center) Identical behavior obtained through the tight binding
simulations. On top the valley splitting is shown as a function of detuning, showing the
same sharp change. (Right) Center of mass 〈y〉 (bottom) and relative center of mass ∆〈y〉
(top) of the lowest two valley states. The COM dynamics shows a very different behavior
for each valley state, being in both cases quite different from the typical case.

Figure 5.11: (Left) Lowest valley state at ε = 210 µeV corresponding to Fig.5.10. (Right)
Excited valley state for the same configuration. In both cases the blue curve shows the
horizontal probability density. The red curve shows the dot confinement potential. The
white lines show the corresponding disorder profile.

5.6.3 Sweet spot behavior

In the final example, the disorder profile in Figure 5.13 produces the energy dispersion
shown in Figure 5.12(Center), with a sweet spot similar in width to Figure 5.12(Left). This
is corresponded by an enhanced coherence as can be seen on the top half. In this case,
the eigenstate positions, indicated in Figure 5.12(Right), move rather quickly compared to
the typical case (Figure 5.8(Right)), yielding a differential center of mass with a dip, and a
corresponding dip in the valley splitting (Figure 5.12(Center)). When this valley splitting dip
is combined with the slowly increasing qubit frequency (similar to Figure 5.8(Center)), we
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Figure 5.12: (Left) Energy dispersion showing flat regions in detuning. On the top panel
it is shown that this flat region corresponds to a sweet spot where coherence is extremely
enhanced. (Center) Identical behavior obtained through the tight binding simulations. On
top the valley splitting is shown as a function of detuning, showing that the sweet spot
is related to a minimum of the valley splitting. (Right) Center of mass 〈y〉 (bottom) and
relative center of mass ∆〈y〉 (top) of the lowest two valley states. The COM of each valley
state is more affected than in the typical case but relatively monotonous except for the
relative center of mass that shows a local minimum.

Figure 5.13: (Left) Lowest valley state at ε = 225 µeV corresponding to Fig. 5.12. (Right)
Excited valley state for the same configuration. In both cases the blue curve shows the
horizontal probability density. The red curve shows the dot confinement potential. The
white lines show the corresponding disorder profile.

obtain a relatively flat dispersion, as shown in Figure 5.12(Center), over a 20 µeV detuning
window.



Chapter 5. Disorder effects on Tunneling and Valley physics in Si Double Quantum Dots.103

5.7 Conclusions

In this chapter we have shown that a simple spinless single electron 2D TB model is sufficient
to simulate the relevant physics of the more complex QDHQ. From this simple model, an
effective Hamiltonian allows us to identify how interfacial disorder affects the physics of
the QDHQ. In particular, it has been shown that different disorder profiles yield different
dependences on electric fields, which allows the possibility of tuning the valley splitting or
even the tunnel couplings electrically, within a single device.

In particular, we have shown that detuning can strongly modify the behavior of the different
relevant parameters. The displacement of the center of mass of the electron bound to the
quantum dot gives rise to regions of detuning where the sensitivity of the qubit to charge
noise is modified: it can be enhanced or suppressed. Even though the detuning dependence is
hard to predict a priori, due to the complex interplay between valley-orbit degrees of freedom
and the interfacial disorder, atomic-scale disorder is ubiquitous in Si heterostructures. This
suggests it could be possible to enhance the quantum coherence in future Si experiments by
electrostatically tuning the dots so they are exposed to desirable disorder profiles.



Chapter 6
Valley physics of corner dots in Si
nanowires. 1

6.1 Introduction

Prospective compatibility with microtechnology is one of the main advantages of using Si
as a platform for quantum computing purposes. Alternatively, the reverse process, where
current microtechnology can be adapted to quantum computation has proven to be possible
[179, 235, 274, 275]. In particular, in this Chapter we are interested in the applications of
derivatives of the FinFET such as the Nanowire Field Effect Transistor (NWFET) [213, 274].
NWFETs are fabricated in a CMOS platform starting from silicon on insulator wafers [181].
The nanowire and gate stack can be seen in Fig. 6.1. A Si nanowire is usually in the order
of hundreds of nm long, tens of nm wide, and around x10 nm thick. The nanowire is covered
by a trigate electrode generally made of SiO2, HfSiON, TiN and poly-Si. A voltage VTG
can be applied to this gate, allowing the 1D confinement of electron states near the top
corners [275]. These confined states can then be used as 1D confined quantum dots where
the electron population can be controlled [179, 181].

Quantum dots in NWFET have already been proven as interesting candidates for quantum
computation in experiments. Pauli spin blockade has already been achieved [179] which
can be used to remove the need for external charge sensors, simplifying the architecture.
Alternatively, a gate sensor based on cQED [184] with outstanding sensitivity can be used
for readout. Fast charge qubit dynamics between the two corner dots has been observed [276].
Scalability has already been shown to be possible with a quadruple quantum dot based in
this architecture [277]. Even purely electrical control has been shown by taking advantage
of the SOC arising from the interaction between spin and the different valley states [278].

Another possible advantage of this architecture is the possibility of adding dopants without
using extra gates to drive the different states. Coupling between dopants has already been
proven in this architecture by Landau-Zener-Stückelberg Interferometry [274]. This hybrid
approach can benefit of the advantages of each type of qubit. For example, the nuclear
spin of an implanted P donor nucleus could be used as a long-lived quantum memory while
fast single qubit operations can be performed in the quantum dots via EDSR[278] or charge

1Article in preparation.
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Figure 6.1: From [184]. (Left) Sketch of the NWFET device with a single top gate (orange).
(Center) Section of a nanowire with top and back gates, with gate voltages VTG and VBG,
respectively. The blue layer and the BOX will be assumed to be made of SiO2. The pink
corners illustrate the quantum dots that arise naturally in this geometry. (Right) Sketch of
a NWFET nanowire device with split gates. In this case the gate voltages of the left and
right corners can be independently adjusted.

oscillations [276]. In particular, charge dynamics and spin-blockade in this hybrid double
quantum dot-donor has been demonstrated [120].

One drawback of this geometry is the inability to operate on each corner dot separately since
the top gate is the same for both corner dots. While interfacial disorder and random charge
traps break this symmetry, allowing distinction between each corner dot [181], the relative
tunability on each dot is limited. One possibility to overcome this limitation is to split the
top gate into two well differenciated gates separated by a spacer (typically Si3N4) [179]. This
geometry can be seen in Fig. 6.1(Right). In this way, different gate voltages can be applied to
each corner dot, allowing us to increase or decrease the confinement of each dot separately, or
detune one dot respect to the other, recovering the flexibility of other quantum dot systems.

In this chapter the valley physics of corner dots is analyzed, similarly as in Chapter 5. Since
these dots are confined in two directions, it is easy to predict that, although geometry,
confinement and disorder will favor a particular pair of valley states, up to four valley states
are relevant for the low energy physics. Since all these valley states are expected to be in
a narrow range of energies, they will play a role in the qubit dynamics of each dot. The
spectrum of the lowest valley states will be obtained for different angles of the corners and
gate voltages. Both EMA and TB approaches will be used to understand the valley physics
of this geometry.

6.2 Nanowire simulations

In order to obtain the value of the valley splitting as a function of the different parameters
of the device, it is necessary to quantify how these parameters affect the voltage within the
nanowire. Not only different voltages in each gate will affect the voltage distribution within
the nanowire, other structural aspects such as the nanowire dimensions, the SiO2 barriers
width, or the angles at the corners are relevant. The effect of all these parameters cannot be
accounted analytically and, hence, a numerical approach is necessary. The method we use
to analyze the electrostatics of this geometry is a finite difference method using a software
suited for this purpose: COMSOL [279]. In Fig. 6.2 the structure of the device used in the
simulations is shown. This includes the backgate, top gate, BOX, the nanowire, and the
SiO2 barrier between top gate and nanowire. In the split gate case, a Si3N4 spacer is added
in between the left and right gates. The dimensions of each component are shown in Table
6.1.



Chapter 6. Valley physics of corner dots in Si nanowires 106

Figure 6.2: Discretized nanowire geometry simulated in the finite difference software COM-
SOL. The different parts are not in scale to help visualization.

NW L NW W NW D BOX SiO2 HfSiON TiN poly-Si Si3N4
Single gate 200 40 11 145 0.8 1.9 5 50
Split gate 200 40 11 145 1.3 5

Table 6.1: Dimensions used in the simulations, unless stated otherwise, in nm. Based on
[179] and [181].

In actual devices the nanowire cross section is not a square but, typically the nanowire top
width is narrower than the bottom one, see Fig. 6.2. This device variability is taken into
account by considering a left top angle deviation from π/2 (α) and a right top angle deviation
from π/2 (β).

The mesh in Fig. 6.2 was chosen to aid in the visualization. The actual mesh used in the
simulations to depends on position: The finest tetrahedra allowed in COMSOL are used
within the nanowire for accuracy, while, outside the nanowire, much thicker tetrahedra are
chosen to reduce complexity.

Gate voltages are chosen to be constants at the gate-barrier interface. The backgate voltage
would correspond to VBG at the bottom interface of the BOX, while the topgate voltage
would correspond to VTG at the top SiO2 interface barrier. The voltage within the nanowire
is obtained using these boundary conditions in the Maxwell equations

E = −∇V
∇ · (ε0εrE) = ρ, (6.1)

and the relation
n ·D = 0. (6.2)
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Figure 6.3: (Left) Simulated voltage distribution in a section of nanowire with right angles
(square cross section) when Vbg = 0 and VTG = −0.5V. (Right) Approximated voltage using
expression 6.5.

Since the gate voltage in the z direction is slowly varying (long nanowire and top gates),
being the bound states 1D corner states confined in x and y, the relevant directions for
valley physics are x and y. As a result the relevant information about the gate voltage
distribution can be seen already by plotting the nanowire middle section z = 0. In the
following, any figure showing a gate voltage distribution will be shown as a function of x and
y for z = 0.

6.2.1 Gate voltages

We start by simulating the simplest case where the top angles are right angles: α = β = 0.
The nanowire width is chosen to be w = 10 nm while the other parameters are chosen as
in table 6.1. The results of the simulations can be seen in Fig. 6.3(Left). In this case
VTG = −0.5V while the backgate is off Vbg = 0. The top gate is shown to generate a voltage
distribution in which the top corners are the most attractive or repulsive points, depending
on the voltage sign. The electric field can be obtained from the gate voltage using Eq. 6.1,
resulting in an electric field pointing towards the corners. As a result electrons can be bound
to these top corners to form quantum dot states.

In this particular case, all the boundaries are perfectly flat and no random charge traps are
considered so each corner has identical voltage distribution. In realistic devices, interfacial
disorder and charge trapping is the source of the different charging energy of otherwise
identical corners [181]. Another consequence of the lack of disorder is that the backgate
voltage induces a voltage distribution identical to the top gate, except for being proportional
to Vbg. This is a result of the superposition theorem in electrodynamics [280].

6.2.1.1 Analytical approximation

It can be useful to find an analytical approximation for the voltage distribution in the
nanowire section. This approximation can then be used to model an analytic Hamiltonian, or
to approximate the behavior of similar devices. In order to build an analytical approximation
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we can start with the solution of a rectangle whose faces have different gate voltages. The
solution to this problem can be found analytically in series form [280]. When we consider
two opposite faces (x faces) with the same gate voltages and the other two (y faces) with a
difference in gate voltage, the analytical solution is of the form:

V (x, y) =
∑
n

an sin
(
nπx

Lx

)
exp

(
−nπy
Ly

)
, (6.3)

where an are coefficients that can be obtained from the boundary conditions. According
to this equation, the solution in the x axis, where both faces have the same gate voltage,
is periodic and in the form of a trigonometric function, while in the y axis, where there is
difference of potential, the voltage exponentially decays from one face to the opposite.

In our case however, the result is more complex since the interfaces with constant voltage are
not the nanowire faces, and there are materials with different geometries and permitivitties.
In particular, the gate voltage at one corner is not the same potential as in the center of a face.
In any case, the qualitative behavior will be similar to that in the rectangular case: periodic
behavior in x and decaying behavior in y. The simplest ansatz with this characteristic can
then be chosen to be:

V (x, y) = A+B cos
(
π

2
x

Lx

)
exp

(
−γ y

Ly

)
, (6.4)

where the origin in x is in the middle of the nanowire, and the origin in y is at the bottom
interface. The fitting parameters are A, B, and γ.

Using the superposition method, we can fit the contributions of each gate voltage to the
values of the three fitting parameters. The resulting formula for the voltage in the nanowire
section is then:

V (x, y) = −8.30597·10−4Vbg+1.00008Vtg+1.23514·10−2(Vbg−Vtg) cos
(
π

2
x

Lx

)
exp

(
−1.84169 y

Ly

)
.

(6.5)
Being all voltages in the same units. The comparison of this formula with a simulation can
be seen in Fig. 6.3. As can be seen in this figure, this ansatz can give accurate results. We
can estimate the error defining:

Err = 100 max |Vsim(x, y)− V (x, y)
Vsim(x, y) |, (6.6)

and obtain an average relative error of 0.02%.

6.2.2 Corner angles

The simulations in COMSOL can be easily adapted to non right angles. As a direct effect the
width of the nanowire depends on the particular values of α and β. The result of a simulation
with α = β = 6◦ can be seen in Fig. 6.4(Left). The results are qualitatively similar to those
in Fig. 6.3, being the obvious difference the width variation with y. Consequently, the
voltages adapt to the geometry and the electric field points towards the corner angles.
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Figure 6.4: (Left) Simulated voltage distribution in a section of nanowire with angles
α = β = 6◦, when Vbg = 0 and Vtg = −0.5V. (Right) Approximated voltage using expression
6.8.

6.2.2.1 Adding angles to the analytical expression

Since the voltage distribution behavior with non right angles is qualitatively similar to the
one with right angles, it is possible to simply adapt the formula in Eq. 6.5 to consider the
non right angles. This can be easily done by considering the width dependence on the angle
and height. We can then redefine the width Lx(y, α, β) and define x0(y, α, β) as the center
of the NW at height y (x0 is not necessarily 0 now):

x0(y, α, β) = y

2(sinα− sin β)

Lx(y, α, β) = Lx − y(sinα+ sin β). (6.7)

We can use these expressions in Eq. 6.5 to obtain a good approximation to the gate voltage:

V (x, y, α, β) = A+B cos
(
π

2
x− x0(y, α, β)
Lx(y, α, β)

)
exp

(
−γ y

Ly

)
, (6.8)

where A, B and γ take the same values as before. The result of applying this formula is
shown in Fig. 6.4, which compares very well to the numeric results. The average error now
depends on the angles, getting a better approximation for positive α and β (≈ 0.03%) in
comparison with negative values (≈ 0.1%).

6.2.3 Split gates

Finally, it is possible to add a Si3N4 spacer in the middle of the top gate to have independent
left and right gates. Simulations have been performed in COMSOL, see Fig. 6.5. In particu-
lar, in Fig. 6.5(Left) the small difference in gate voltage between left and right dots is enough
to induce a voltage distribution where a single face dominates over the others. This effect
can be alleviated by the presence of a backgate voltage as in Fig. 6.5(Right), where a strong
backgate voltage is used. Unlike in previous cases, where the effect of the backgate voltage
was not very relevant due to the lack of disorder and charge traps, now a backgate voltage
can be used to modulate the voltage distribution, acting similarly to a tunnel gate. The split
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Figure 6.5: (Left) Simulated voltage distribution in a section of nanowire with right angles,
when Vbg = 0, VR = −0.5V, and VL = −0.55V. (Right) Voltage distribution in a section of
nanowire with right, when Vbg = 10V, VR = −0.5V, and VL = −0.55V.

gate device is then clearly more versatile in comparison to conventional NWFETs, allowing
to tune each corner separately with the left and right gates while the backgate voltage can
be used together with the others to increase or decrease the interactions between dots.

6.2.3.1 Analytical expression for the split gates

In this case we will focus on a regime where both corner dots are well defined, such as in
Fig. 6.5(Right). In this case, the voltage difference between left and right gates is a small
perturbation in comparison to the total voltage. Assuming VR = VTG and VL = VTG − Vdiff ,
the only new contribution to Eq. 6.8 can be approximated to:

Vleft = −Vdiff(x− Lx(y, α, β)/2)/Lx(y, α, β), (6.9)

which can be seen as a detuning voltage. As long as the difference between left and right gate
voltages is small enough to maintain dots at each corner, this expression can be accurate. The
relative errors in this regime are between 0.1% and 2%, depending on the relative difference
values.

6.3 Valley splitting in the EMA

Once we have calculated the voltage distribution within the nanowire, we proceed to calculate
the valley spectrum of the corner dots in the NWFET. First of all, it is useful to obtain a
simple analytical expression for the potential at a single corner. The results of the simulations
are then fitted to the following polynomial:

Vcorner(x, y) = V0 + a1x+ a2y + a3x
2 + a4y

2 + a5xy. (6.10)

The expansion is around the corner, meaning that the origin in x and y is set at the position
of the left or right corner. From here we can consider the physical meaning of each term:
(a) the constant V0 is a simple constant in the Hamiltonian and will be of no relevance to
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Figure 6.6: (Left) Energies of the four lowest valley states under the EMA as a function
of the angle, for a fixed modulus of the electric field F = 14.1MV/m. The energies were
calculated using the voltages obtained in the simulations. (Right) Same energies obtained
assuming the simplification in Eq.6.11.

the valley physics, (b) a1 and a2, the linear terms in x and y, are the electric fields in each
direction, (c) the quadratic terms a3 and a4 can be seen as corrections to the electric fields,
(d) a5 is a term mixing x and y, this term is very relevant since it will determine whether
the Hamiltonian and wavefunction can be separated into x and y terms with accuracy.

After fitting the different terms, we found that a5 is at least one order of magnitude smaller
than the next smallest parameter and thus, negligible. The problem can then be assumed
to be separable, as long as we consider the interaction between orthogonal valley states
negligible. The values of a3 and a4 are also smaller than a2 and a1, meaning that the
potential at the corners can be succesfully approximated by electric fields in each direction
corrected by smaller quadratic terms. Moreover, we find that, despite of the non constant
potential at the nanowire faces, the voltage near the corner can be approximated in the linear
approximation to a potential created by an equipotential corner of angle η in Ref. [280]:

Vcorner(x, y) ≈ V0 + F cos(η/2)x+ F sin(η/2)y (6.11)

We can now use the EMT to obtain the energies of the lowest valley states. Since the
wavefunction is confined in two directions, we need to consider four valley states. Assuming
a separable problem, both the Hamiltonian H = Hx + Hy and the wavefunction Ψ(x, y) =
ψ(x)ψ(y), are separable. The effective Hamiltonian of a single electron in each direction is

Hx = − ~2∂2
x

2meff
+ ea1x+ ea3x

2 + Vb(x)

Hy = −
~2∂2

y

2meff
+ ea1y + ea3y

2 + Vb(y). (6.12)

Where Vb is the potential at the barrier, which is Vb = 3eV inside the SiO2 barrier, 0
elsewhere. To solve this Hamiltonian we use the following variational guess for the envelope
wavefunction:

ψ(xi) = 1/N exp(−(xi − x0)2/l2), (6.13)

being N a normalization constant, and x0 and l variational parameters related to the wave-
function center of mass and dispersion, respectively. The problem is then reduced to ob-
taining the valley splitting of wavefunctions pushed against a single interface, which is a
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Figure 6.7: (Left) Valley splitting in the EMA as a function of the angle, for a fixed modulus
of the electric field F = 14.1MV/m. The energies were calculated using the voltages obtained
in the simulations. (Right) Same valley splittings obtained assuming the simplification in
Eq.6.11.

problem already addressed in the literature [156]. It is important to note that we have made
the approximation that Vb is also separable which is only exact if alpha = beta = 0. This
approximation can also be used if α and β are assumed to be small, allowing a great sim-
plification of the problem. Consequently, the valley-orbit coupling of each valley couple is a
direct measurement of the electron density of probability right at the interface (xi = 0). The
4× 4 effective valley Hamiltonian is then:

H =


Hx ∆x 0 0
∆∗x Hx 0 0
0 0 Hy ∆y

0 0 ∆∗y Hy.

 (6.14)

Using the electric fields from Eq. 6.10 and the variational ansatz in Eq. 6.13, we can minimize
the energy and obtain an upper bound to the valley states energy. The results are shown in
Figures 6.6 to 6.8.

In 6.6(Left) the energies of the lowest corner states are shown for a single top gate NWFET.
Note that the positive energy comes from the inclusion of the constant V0. For negative
values of α the valleys in the horizontal direction are the lowest states, while positive values
of α favor valley states in the vertical direction. This can be expected from the results of the
simulations since a negative angle is associated to Fx ≥ Fy, while a positive angle corresponds
to Fy ≥ Fx. Acute angles confine more the electron in the x direction while obtuse angles
confine more in the y direction. The plot also shows an asymmetry between negative and
positive angles which is associated to a different behavior of a3 and a4. Horizontal and vertical
valleys are easily split for non right angles, for instance, for α = 10◦ the energy difference
can be already of 5 meV, which is similar to the energy difference with higher orbital states
[181]. This would explain why in Ref. [181] the first excited states found above the lowest
valley couple were orbital excited states. Alternatively, the same calculation was performed
using the simpler formula in Eq. 6.11. The results in 6.6(Right) are qualitatively similar
to those obtained with the quadratic corrections, showing that the linear approximation
already gives the qualitative picture. Quantitatively however, there are some differences
such as the symmetry of α under reflections or the smaller energy difference between pairs of
valley states. We proceed now to calculate the valley splitting according to Ref. [156]. The
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Figure 6.8: (Left) Valley splitting in the EMA as a function of the Vbg for right angles and
Vtg = −0.5V . (Right) Valley splitting in the EMA as a function of the VL for right angles,
and VR = −0.5V . Vbg = 0 for solid lines and Vtg for dashed lines.

interface induced valley-orbit constant is

∆VO = −0.02907iVbaSi|ψ(0)|2. (6.15)

The valley splitting is shown in Fig. 6.7 as a function of the angle for the same device. Again,
for the sake of comparison, the results obtained in the linear approximation are shown in Fig.
6.6(Right). In both cases the valley splitting is shown to change linearly with α, indicating
how the electric field increases or decreases in each direction. In this case, a really big electric
field was chosen and the valley splitting is estimated to be around 0.3 meV.

Lastly, the valley splitting is shown for realistic gate voltages in Fig. 6.8. This shows a
highly tunable valley splitting by changing the different gate voltages. In 6.8(Left) the top
gate is fixed and the backgate is changed, the valley splitting ranges from ten µeV to 0.25
meV, which is in a similar order to those obtained in [181] or [179]. In Fig. 6.8(Right) a
split gate is considered where VL is changed (the voltage associated to the corner). Again
a linear behavior is shown, similar to the behavior under a single interface [156]. In both
cases the horizontal and vertical valleys show slightly different behaviors, this is due to the
different lengths in each direction and the different behavior of the quadratic terms since the
considered angles are right.

6.4 Valley splitting in TB simulations

The EMA is a good approximation to obtain the average behavior of the valley physics,
but it is inherently oblivious to atomistic details that may be relevant and depend on the
particular device. In particular we have considered the angular dependence through the
potential distribution, however, we have assumed a separable Vb(x, y), which is unrealistic.
The tight binding method described in the introduction, and used in Chapter 5, can take
into account atomistic details, such as the real orientation of the barriers, and is still easy to
implement computationally [152, 156, 251]. Its main drawback is the assumption that only
two valley states are relevant. In our case, we need to generalize the TB method to include
valley states in two confinement directions, being z the only irrelevant direction for the low
energy valley physics. Based on the experimental results from references [179, 181, 278], we
can assume that generally the valley states in each direction are separated by a few meV
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Figure 6.9: Valley states localized at the top left corner of the nanowire. An angle α = 5◦
is used. The white lines illustrate the boundary between the Si nanowire and the SiO2
barriers. Note that a significant amount of disorder is required to simulate α = 5◦. (Left)
X-valley. (Right) Y-valley.

due to different confinement conditions in the x and y directions. Consequently, we can
approximately say that the x and y valley states are non-interacting states, simplifying the
problem. Considering independent valley states allows us to separate a huge TB problem
including valley states in both directions, into two simpler TB problems for valley oscillations
in each direction.

The procedure to calculate valley states is then based in separating the TB Hamiltonians
for each pair of valleys Hx and Hy. Each Hamiltonian is then defined as in Chapter 5,
with the difference being in choosing the transverse or longitudinal masses. For Hx the
longitudinal mass and valley oscillations are in the x direction, being the transverse mass in
the y direction. On the other hand, for Hy the longitudinal mass and valley oscillations are
in the y direction, with transverse mass in the x direction. This means that for Hi, direction
i nearest- and next-nearest neighbor hopping parameters u(i)

i = 0.68eV and v(i)
i = 0.61eV are

required to account for the valley oscillations and the longitudinal mass, while in direction
j 6= i only requires the nearest neighbor term u

(i)
j = −10.91eV to account for the transversal

mass. In total these hopping terms contribute to the kinetic energy H i
K , while the barrier

energy of 3 eV is added to the SiO2 atoms. The on-site term of 23.23 eV is used to set the
minimum of the conduction band to zero. Lastly, the voltage distribution extracted from the
simulations is added directly as on-site terms that depend on the atom position. In total,
the valley Hamiltonian in direction i is simply:

Hi = H i
K +Hbarriers +HFields, (6.16)

where only the hopping terms in H i
K depend on the valley states to calculate.

With this simple method we can easily modify the position of Hbarriers to account for interfa-
cial disorder or to consider non right angles. In order to define the latter, atomic disorder is a
requirement since the TB method is inherently discrete while angles are continuous variables.
Non right angles require then the presence of atomic steps. However, multiple different step
distributions will give the same angle on average. We have then an extra freedom when
defining the disorder profile that, on average, corresponds to a given angle. We have chosen
to consider the disorder profile that best fits, locally and globally, a given angle: we fix the
height of the top face and atomic steps are distributed as in a stair in the lateral faces, with
step length chosen to get the corresponding corner angle, see Fig. 6.9. As a result the top
and bottom interfaces are disorder free, while the lateral faces are very disordered or full of
atomic steps when α and/or β are non zero.
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Figure 6.10: Energies of the four lowest valley states as a function of the angle, for a fixed
modulus of the electric field F = 14.1MV/m, using a TB. The discrete jumps of energy are
a result of the discretization of the corner angles.

The tight binding Hamiltonians are then diagonalized and the spectrum is obtained and
eigenfunctions are obtained. In Fig. 6.9 both horizontal and vertical valley states are shown.
The stair-like disorder profile in the lateral direction can also be seen. The electric fields
confining both wavefunctions are the same, however, the envelope function of each valley
state is different, showing the effects of the different anisotropy in the effective masses of
each valley state.

In Fig. 6.10 the resulting lowest valley-orbit energy levels of the top left corner are shown
as a function of the angle α. Unlike in Fig. 6.6, it shows clearly discrete jumps in energy as
the value of α changes. This can be easily understood when taking into account the discrete
nature of angles in the TB as discussed before. Slight changes of α correspond to sharp
changes in the disorder profile in the lateral faces of the nanowire and, as a result, sharp
jumps in energy are observed as a function of α. Apart from that difference, the energy
spectrum is similar. For acute angles the confinement is stronger in the x direction and
the lowest valley states are those corresponding to the oscillations in x. Obtuse angles on
the other hand, increase the confinement in the y direction, giving rise to y valley ground
states. The plot also presents a reflection asymmetry. As in the EMA case, this is due to
the different behavior of the quadratic terms in the voltage distribution.

Bigger differences are observed in the valley splitting in Fig. 6.11. Ignoring the sharp jumps
due to different disorder arrangements, the valley splitting for y-valleys can be considered
linear, similarly to the one obtained through EMT. This is again due to the increased electric
field in the y direction for obtuse angles: the more confined the wavefunction against the
top barrier, the bigger the valley splitting. On the other hand, the valley splitting in the
horizontal direction is clearly suppressed for angles far from α = 0, where it is maximized.
From the EMA calculations in Fig. 6.7 another linear behavior with increasing valley split-
ting for negative α would be expected. In the TB however, the lateral barriers are highly
disordered for α 6= 0, as a result the valley splitting is strongly affected. In particular for the
stair disorder pattern, the multiple steps affect, on average, in a similar way to the ground
and valley excited states in the horizontal direction. In consequence, the valley splitting is
strongly suppressed. This is particularly alleviated when disorder is reduced or non present
when α ≈ 0.
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Figure 6.11: Valley splitting obtained in the TB simulations as a function of the angle,
for a fixed modulus of the electric field F = 14.1MV/m.
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Figure 6.12: (Left) Valley splitting obtained in the TB simulations as a function of the
Vbg for right angles and Vtg = −0.5V and α = 5◦. (Right) Valley splitting obtained in the
TB simulations as a function of the VL for Vbg = 0, VR = −0.5V , and α = 5◦.

In Fig. 6.12 the valley splitting is shown for realistic device configurations. As in Fig. 6.8,
a linear behavior is shown for α = 5◦. The x-valley splitting is suppressed due to disorder
and, as in Fig. 6.12(Left), this may induce a non linear dependence. The biggest difference
compared to Fig. 6.8 is a higher estimation of the valley splitting. In this case, the non
suppressed valley splitting is still in the same order of magnitude but can range from 0.2 to 2
meV. This is in good agreement with experimental results such as in references [179, 181, 278].
This also shows a great tunability for non disoder suppressed valley states, even better when
using split gates such as in 6.12(Right).

6.5 Conclusions

We have analyzed the valley physics in NWFETs using both atomistic and effective mass
methods. The NWFET potential generated by the different gate voltages confines electronic
states near the top corners, creating 1D dots along the z direction. We have obtained the
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potential distribution within the nanowire using the COMSOL finite difference software as a
function of the different gate voltages and the angle in the corners. The numeric results can
be easily fitted to analytical expressions, simplifying the expressions for the valley analysis.

The effective mass method was used to calculate the lowest valley states by considering the
wavefunction penetration inside the two different barriers. In this case, we approximated
the Hamiltonian and wavefunctions to be separable, simplifying the problem. The results
show that acute angles correspond to lower valley states in the horizontal direction, while
obtuse angles correspond to vertical valley ground states. The energy difference between the
two types of valley states can go to several meV for non right angles, in the order of orbital
excited states, difficulting its finding. The different gates were shown to be able to tune
the valley splitting of the valley states in a wide range, which can be useful for quantum
computation purposes, where the valley splitting is a very important quantity.

Qualitatively similar results were found using more atomistic methods such as the described
TB. In this case, atomistic interfacial disorder had to be included in order to account for non
right angles. As a consequence, the TB results can be quantitatively different from those
obtained in the EMA. Sharp steps in the energies were found as a function of the angles,
due to the different disorder arrangements required for each angle. The valley splitting of
the horizontal valley states was shown to be suppressed for α 6= 0 due to the presence of
atomic disorder, but the vertical valleys shown behavior qualitatively similar to the one in
the EMA. In general, the vertical valley splitting was found to be higher, although in the
same order of magnitude, in the TB simulations. Consequently, the TB simulations reveal a
more tunable valley splitting than the EMA calculations.

The valley splitting tunability shows the potential of this architecture, particularly with split
gates. This implies that the properties of quantum dots in this devices would be electrically
tunable for quantum computation purposes. The developed methods also pave the way for
the calculation of other relevant quantities, such as tunnel couplings, energy diagrams as a
function of detuning, or charge noise susceptibility.
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Chapter 7
Dopants in 2D materials for
Quantum Computing. 1

7.1 Introduction

Defects are an essential ingredient in semiconductor technology as they provide proper carri-
ers to intrinsically insulating semiconductors, being the basis for transistor operations. The
miniaturisation of these devices has moved defects to the forefront research, as their number
and location may affect device performance and reproducibility [282]. Few-donor configura-
tions were explored by Kane [27] in his Si quantum computer proposal, based on an array
of donors in which each of them acts like a spin qubit. This in principle leads to a scalable
quantum computer, and would be compatible with the existing Si-based transistor industry.
For spin qubits, Si has the additional advantage of sustaining very long spin coherence times,
up to seconds for isotopically purified Si [35].

Figure 7.1: Dopant placed in a 2D structure, in this case, a Silicene layer. The structure
of Silicene is similar to a graphene honeycomb lattice, but slightly buckled. Blue and purple
dots indicate Si atoms in different sublattices, being the position in the third dimension the
main difference between them. The red dot indicates the donor atom.

1Published in [281].
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The effort to understand single donor behavior has led to progress on the manipulation and
control of states bound to donors in the last few years [28, 116, 283–285]. One problem of
using donors in Si for qubits is that interference among the multiple degenerate Si conduction
band minima states leads to a sensitive and oscillatory behavior of tunnel [52] and exchange
[38] coupling of electrons bound to pairs of donors as the relative positions of the donors
vary. Although no oscillatory behavior is expected for coplanar dopant pairs relative to
(001) planes under tensile stress, any individual dopant deviation in the z direction restores
the oscillations [84]. This problem can be deterrent to quantum computing implementa-
tion in Si due to the relative lack of control on the exact position of dopants in the bulk.
Alternative proposals suggested to overcome this difficulty include hybrid dopant-quantum
dot structures [286], a charge-spin hybrid qubit [165], optical manipulation [287] and dipole
coupling with electrons [104] or holes [125? ].

Here we propose an alternative which relies on 2D semiconductor materials instead of bulk Si
for host material, see Fig. 7.1, as precise positioning of donors on a surface may be simpler
than in the bulk, i.e., it involves control over two coordinates, avoiding the z-component
uncertainties. Moreover, many of the existing 2D materials have a direct gap at Γ which
naturally gets rid of oscillatory exchange and tunnel couplings [288]. Among the 2D materials,
graphene is the most studied but it has a zero-gap electronic structure. The structural
counterpart of graphene in Si, silicene, is a candidate to play the role of 2D host since it has
a direct gap for certain structural reconstructions [289]. There are alternatives of monolayer
compounds with nonzero direct gaps, such as SiC in its monolayer form [288].

The family of 2D materials comprises an increasing number of elemental and compound
semiconductors [290–292]. Many have been experimentally isolated already and the research
is very active in this area. In the case of non-metallic behaviour their band gaps range from
meV to a few eV. They can also be stacked in van der Waals heterostructures [291, 293, 294]
which favors miniaturization and device integration. Incorporation of dopants affects the
properties of isolated or stacked monolayers [295, 296], as they do in bulk systems. Here we
explore doping in the very low density limit such that electrons can be bound to single and
pairs of donors in a 2D environment in the context of quantum computation.

In order to analyze the behavior of the dopants in 2D materials we use the effective mass
approximation, discussed in 1.4.1. Single and double dopants, including ions, are taken into
account. These dopants are analogous in the EMA to the hydrogen atom H and ion H−,
and the hydrogen molecule H2 and ion H+

2 . The validity of the EMA will be discussed in the
context of different material properties such as the gap, electron effective mass and dielectric
permittivity.

7.2 Effective mass method

We consider neutral, negatively charged donors and donor pairs in 2D. Within EMA the
discrete crystal structure of the device is described by a continuum characterized by the
effective mass meff and the dielectric screening ε of the host materials. In atomic units, the
binding energy in 2D is larger than in 3D for a particular meff and ε. The effective Rydberg
is defined as

Ry∗ = meffe
4

2~2ε2
, (7.1)
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while the effective length unit is

a∗ = ~2ε

meffe2 . (7.2)

In 2D systems the dielectric function is non-local. As discussed in Ref. [297], it may be
written as ε(q) = 1+2πα , with α the polarizability. Hence for the description of the impurity
potential we should take into account the dependence of the screening ε with distance from
the donor. However, it has been recently found that the effect of a non-local dielectric
function can be reproduced by a dielectric constant given by its average within the radius
of the wave-function [298], dramatically simplifying the energy calculations. We adopt this
approach below. Finally, in order to simplify the discussion, an isotropic effective mass is
considered.

7.2.1 Hydrogen atom: H

A single donor impurity can be considered like a H atom in the EMA. The Hamiltonian of
the H atom is:

H = − ~2

2meff
∇2 − e2

εr
(7.3)

In terms of the effective units defined in Eqs. 7.1 and 7.2 the Hamiltonian becomes:

H = −∇2 − 2
r

(7.4)

In this case it is possible to obtain an analytical solution for the ground state, applying the
time independent Schrödinger equation with the Hamiltonian in 7.4. Separating variables in
the wavefunction we obtain that the wavefunction is:

Ψatom(r, θ) =
√

8
π
e−2r, (7.5)

which corresponds to an energy of −4Ry∗. The differences with the 3D case can already be
observed: The binding energy of the electron bound to a single dopant in 3D is E3D

B = Ry∗

while in 2D it is E2D
B = 4Ry∗. The respective Bohr radii are a3D = a∗ while a2D = a∗/2.

Which means that the electron in a 2D hydrogen atom is four times more bound than in 3D
and also more localized, since the electron wavefunction is forced to stay in 2D, enhancing
the effects of the attractive Coulomb potential.

7.2.2 Hydrogen ion: H−

The hydrogen atomic ion H− includes a second electron, which can be interesting for creating
readout protocols based on the Pauli spin blockade: Depending on the spin state, one dopant
will bind an extra electron, generating a charge signature that can be measured by a charge
sensor. Independently of the spin, we are interested in knowing whether a second electron
can be bound to a hydrogen atom in 2D. The Hamiltonian for this problem is:

H = − ~2

2meff
∇2

1 −
~2

2meff
∇2

2 −
e2

εr1
− e2

εr2
+ e2

εr12
, (7.6)

where subindexes 1 and 2 indicate the first and second electron, respectively. The term
proportional to 1/r12 is the repulsion between electrons, being r12 = |r1 − r2| the distance
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between electrons. In effective units the Hamiltonian becomes:

H = −∇2
1 −∇2

2 − 2/r1 − 2/r2 + 2/r12. (7.7)

Here we use a variational trial wavefunction with two parameters based on hydrogenic or-
bitals. In order to construct a wavefunction with two parameters we need to take into account
all the possible terms that come from the Slater determinants with the required symmetry.
It is also necessary to take the symmetric combination of all the terms because the ground
state is also a gerade state (symmetric under reflections):

Ψion(r1, r2) = N(e−αr1−βr2 + e−αr2−βr1 + e−α(r1+r2) + e−β(r1+r2)) (7.8)

With this wavefunction we minimize the energy and obtain that the minimum corresponds to
a = 1

α
= 0.287a∗ and b = 1

β
= 1.015a∗, and the upper limit for the energy is E ≤ −4.455Ry∗.

For the sake of comparison, using only the first two terms (single variational parameter) in
7.8 the resulting upper limit is slightly worse E ≤ −4.307Ry∗.

The two Bohr radii indicate that one electron stays closer to the Coulomb potential than the
other; this is due to the repulsion between electrons. The total energy of −4.455Ry∗ is only
0.455Ry∗ smaller than the energy of a hydrogen atom. This means that the binding energy
of the second electron is very small, thus, this electron is not very stable. The lifetime of a
D− donor state would be then very short.

7.2.3 Hydrogen molecule ion: H+
2
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Figure 7.2: (Left) Energy of the 2D hydrogen molecule ion in the EMA as a function of
the distance between dopants R, see Eq. 7.10. (Right) Bohr radius 1/α that minimizes the
energy as a function of R.

Two donors sharing a single electron are equivalent in the EMA to the hydrogen molecule ion
H+

2 . This state could be useful for quantum computation when considering qubits encoded
in the charge state rather than the spin state. The Hamiltonian of the hydrogen molecule
ion is:

H = − ~2

2meff
∇2 − e2

εra
− e2

εrb
+ 2/R, (7.9)

where now subindexes a and b indicate donors a and b respectively, and the term 2/R is
the respulsion between donors. Note that this term for the interaction between nuclei is
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irrelevant for dopants in semiconductors, where the distance would be determined by the
placement of the donors.

In effective units, the Hamiltonian is then:

H = −∇2 − 2
ra
− 2
rb

+ 2
R
. (7.10)

For this case it is possible to solve analytically the time independent Schrödinger equation
without any approximation for the wavefuncion or the Hamiltonian [299]. In this case the
Hamiltonian is written in spheroidal coordinates:

λ = ra + rb
R

µ = ra − rb
R

, (7.11)

which range 1 < λ < ∞ and −1 < µ < 1. In this variables, the Schrödinger equation
becomes: √

λ2 − 1 ∂

∂λ

(√
λ2 − 1∂Ψ

∂λ

)
+

√
1− µ2 ∂

∂µ

(√
1− µ2∂Ψ

∂µ

)
+

(
R2

4 E(λ2 − µ2) + 2Rλ
)

Ψ = 0, (7.12)

In these coordinates the Schrödinger equation is separable, hence, the wavefunction can be
written as:

Ψ(λ, µ) = L(λ)M(µ). (7.13)

Plugging Eq. 7.13 into Eq. 7.12, we get the following differential equations for each term of
the wavefunction:√

λ2 − 1 d

dλ

(√
λ2 − 1dL(λ)

dλ

)
+ (A+ 2Rλ+ R2

4 λ2E)L(λ) = 0√
1− µ2 d

dµ

(√
1− µ2dM(µ)

dµ

)
− (A+ R2

4 µ2E)M(µ) = 0, (7.14)

being A a separation constant. The solution to the first differential equation is obtained in
series form:

L(λ) = (λ+ 1)2/
√
−E−1/2e−

√
−ERλ/2

∞∑
n=0

an
λ− 1
λ+ 1 , (7.15)

The coefficients an can be obtained for a given E and A, see [299] for the recurrence relation.
Regarding the equation for M(µ), we can define the variable Z = arccosµ, and function
F (Z) = M(µ) such that the differential equation becomes:

d2F (Z)
dZ2 + (ω − 2q cos(2Z))F (Z) = 0, (7.16)

being ω = −C − R2E/8 and q = −R4E2/16. The solutions to this equation are known in
terms of the even and odd Mathieu functions C(ω, q, Z) and S(ω, q, Z), respectively:

F (Z) = c1C(ω, q, Z) + c2S(ω, q, Z), (7.17)

with c1 and c2 constants that depend on the boundary conditions.
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We can now use plug these solutions for a given R to obtain the values of R and A. The
ground state solution corresponds to an even solution under inversion symmetry (gerade
wavefunction).

In order to obtain a Bohr radius we try a variational wavefunction in the form:

Ψvar = N(e−αra + e−αrb) (7.18)

The resulting energies from the analytic method and Bohr radius (1/α) from the variational
wavefunction are shown in Fig. 7.2. The result shows that R = 0, which corresponds to the
He+ limit (hydrogen atom with twice the charge at the nucleus), has a binding energy of 16
Ry∗ (not considering the 2/R term) and Bohr radius 0.25 a∗. The binding energy decreases
with R and tends to 4 Ry∗ when R→∞, which corresponds to an electron bound to a single
donor (hydrogen atom).

7.2.4 Hydrogen molecule: H2
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Figure 7.3: Energy of the four low-
est molecular states in the EMA as a
function of R, see Eq. 7.20.
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Figure 7.4: Bohr radius of the two
electrons in the lowest states at large R.
(Top) Singlet gerade. (Bottom) Triplet
ungerade.

This case corresponds to a couple of dopants sharing two electrons, a very relevant case since
entanglement between pairs of qubits is a fundamental requirement for a quantum computer.
The Hamiltonian of the hydrogen molecule is:

H = − ~2

2meff
(∇2

1 +∇2
2)− e2

εr1a
− e2

εr1b
− e2

εr2a
− e2

εr2b
+ e2

εr12
+ 2/R. (7.19)
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In effective units it becomes:

H = −∇2
1 −∇2

2 −
2
r1a
− 2
r1b
− 2
r2a
− 2
r2b

+ 2
r12

+ 2
R
. (7.20)

This Hamiltonian cannot be solved analytically, thus, we use a variational approach. We
define a two parameter variational wavefunction based in hydrogenic orbitals. This approach
assumes that the 2-electron ground state wavefunction is just a combination of 1-electron
ground state orbitals. A naive generalization for two parameters such as Ψ = N(e−αr1a−βr2b±
e−αr2a−βr1b) breaks the symmetry under reflections (equivalent to a ↔ b symmetry) so we
need to generalize the wavefunction inserting more terms from the Slater determinants to keep
that symmetry. Consequently, we consider a basis set formed of four states with different
symmetry properties: singlet and triplet states, which are antisymmetric and symmetric
in the spin part, being symmetryc and antisymetric in their orbital part; and gerade and
ungerade states, symmetric and antisymmetric under inversion.

Ψg
singlet(r1, r2) = N [(e−αr1a−βr2b + e−αr2a−βr1b) + (e−αr1b−βr2a + e−αr2b−βr1a)

+eiφ(e−α(r1a+r2b) + e−α(r2a+r1b)) + eiθ(e−β(r1a+r2b) + e−β(r2a+r1b))], (7.21)
Ψu
singlet(r1, r2) = N [(e−αr1a−βr2b + e−αr2a−βr1b)− (e−αr1b−βr2a + e−αr2b−βr1a)] (7.22)

Ψg
triplet(r1, r2) = N [(e−αr1a−βr2b − e−αr2a−βr1b) + (e−αr1b−βr2a − e−αr2b−βr1a)] (7.23)

Ψu
triplet(r1, r2) = N [(e−αr1a−βr2b − e−αr2a−βr1b)− (e−αr1b−βr2a − e−αr2b−βr1a)

+eiφ(e−α(r1a+r2b) − e−α(r2a+r1b)) + eiθ(e−β(r1a+r2b) − e−β(r2a+r1b))], (7.24)

with α and β variational parameters. The inversion symmetry can be seen by exchanging
a and b, while the orbital symmetry can be seen by exchanging 1 and 2. The phases φ and
θ are added to consider the most general case with two variational Bohr radii. The most
symmetric wavefunction, hence best candidate for ground state, would then be the singlet
gerade. With Eqs. 7.21-7.24 we are able to approximate not only the ground state but also
the three first excited states.

Most of the integrals involved in the variational method are complex integrals of exponentials
that can be calculated analytically in spheroidal coordinates. The results, however, are quite
complex, involving combinations of hypergeometric and Bessel functions. In order to handle
these solutions the software Mathematica was used [300]. On the other hand, the integrals
related with 1/r12 are non trivial [301, 302], so instead of an analytical method a numerical
calculation was made by approxmating the exponentials in (7.21-7.24) by Gaussian functions
[303], whose integrals can be performed analytically in Mathematica. Naming φ(α, r) one
orbital with variational parameter α, the approximations to each orbital are made assuming
α = 1 and then, the orbitals are scaled:

φ(α, r) = αφ(1, αr). (7.25)

The single orbitals are then approximated by six gaussian functions:

ψ(1, r) =
6∑

k=0
ake
−γkr2

. (7.26)

The values of the fitting parameters were obtained using a least squares method. ak and γk
are tabulated in Table 7.1. The estimated relative error is 0.02% in six atomic units of length.
It is important to note that gaussians and exponentials decay differently, hence, the relative
error is higher at longer distances, however, after six atomic units both the exponential and
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Parameter k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
ak 0.094187 0.0183017 0.173445 0.284744 0.264034 0.14852
γk 91.613805 0.061649 8.649974 0.473985 1.723872 0.160028

Table 7.1: Values of the fitting parameters ak and γk used to approximate the electron
wavefunctions by Gaussians (see Eqs 7.25-7.26). This is a useful approximation in order to
calculate the electron-electron interaction.

gaussian wavefunctions are almost zero and then, irrelevant for the variational calculation.
The energy is calculated as a function of the variational parameters and R. For a given R
the variational parameters are chosen to minimize the energy. For the single gerade state we
get φ = θ = 0 while for the triplet ungerade we get φ = 0 and θ = π.

7.2.4.1 Binding energies

The energies as a function of R of the four lowest states are shown in Fig. 7.3. As expected
from symmetry arguments, the singlet gerade is the ground state. The singlet ungerade is
the highest excited state while the second and third excited states depends on the distance
between nuclei: For short distances R ≤ 0.6a∗ the triplet gerade is the first excited state,
while for longer distances the triplet ungerade becomes the first excited state. While both
states are triplet states, the different inversion symmetry of the states allows the crossing
between them.

For short distances the energy of the ground state is near 24 Ry∗, which corresponds to the
He limit. In the long distance, two clear limits are observed: The singlet gerade and triplet
ungerade tend to -8 Ry∗, while the singlet ungerade and triplet gerade tend to -4.5 Ry∗.
These limits can associated to physical cases already analyzed H and H−. In the case of
the singlet gerade and triplet ungerade the energy tends to two simple hydrogen atoms: by
separating the two nuclei, both electrons go with each one of the nuclei. On the other hand,
the singlet ungerade and triplet ungerade tend to the hydrogen atomic ion: both electrons
in a single atom.

7.2.4.2 Bohr radius

The Bohr radii obtained using the variational method are shown in Fig. 7.4. In the case of
the singlet gerade, there are two different Bohr radii, one closer to the nuclei than the other.
In particular, both Bohr radii tend to 0.5 when R goes to infinity. This is related to the
tendency of this state to divide into two hydrogen atoms for large R. In the triplet ungerade
however, both Bohr radii are identical and large for close distances, indicating an excited
state in comparison to the singlet gerade. Both radii tend to 0.5 as R grows, again, due to
the tendency to become two separated hydrogen atoms.

7.3 Parameters of 2D materials

The EMA host parameters meff and ε can be very different for 2D and 3D materials with the
same chemical composition and also for 2D materials with different number of layers [309].
They also depend on the distance between the layers [308] or the nature of the substrate.
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Material Effective mass (me) Gap (eV) Dielectric constant (ε0)
ZnS 0.187 2.58-4.5 -
CdS 0.167 1.72-3.23 -
CdSe 0.127 1.30-2.47 -
SiC 0.645 2.55-3.63 -
MoS2 0.37 [304]-0.45 [305] 1.3-1.9 [290] 4 [306]
h-BN 1.175 5.9 [290] 2.31 [307]

Table 7.2: Effective masses and gaps of some 2D materials. ZnS, CdS, CdSe and SiC
have a direct gap with their conduction band minimum at Γ. h-BN and MoS2 have it at
K. In the literature, values for the dielectric constants (mostly calculated) can be found for
only for a few cases and, as discussed in the text, they are dependent on external conditions.
Therefore, we consider the dielectric constant as a parameter. Unless otherwise stated, the
data are taken from Ref. [308].

Figure 7.5: Critical value of ε for the validity of the EMA when considering a single donor
atom.

The size and nature (direct-indirect) of the gap of a 2D material also depends on all these
factors and can be sometimes tuned with electric field, as for the buckled silicene and ger-
manene [310]. This variability on the physical properties can affect very strongly the possible
binding energies. It has been shown, using first-principles calculations, that the binding en-
ergy of dopants in transition metal dichalcogenides can be tuned from deep to shallow by
using different substrates [311]. This modulation of ionization energy has been studied in the
context of achieving p-type/n-type doping for transistor-like devices, but it certainly remains
relevant for the donor quantum manipulation proposed here.

The EMA is appropriate to describe shallow states in semiconductors, thus the gap of the
considered material has to be much larger than the binding energy EB. In order to do this
comparison, we consider the generally unknown dielectric constant ε as a free parameter and
estimate its minimum value required for the existence of isolated dopants and dopant pairs
as a function of the gap Eg and the effective mass on the conduction band. We use the
criterion that the binding energy has to fulfill EB < Eg/2. This is equivalent to

Eg(eV )
2 ≥ EB(eV ) = 13.6meff

ε2
EB(Ry∗). (7.27)
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Figure 7.6: Critical value of ε for the validity of the EMA when considering a donor pair.
(Left) R = 1a∗. (Right) R = 2a∗.

By imposing this criterion, we can get a critical value of the dielectric permittivity:

εcrit =
√

27.2EB(Ry∗)meff
Eg

. (7.28)

Below εcrit the EMA cannot be considered valid, since it implies that the binding energy
is more than half of the gap, and interactions with the valence bands should be taken into
account.

In order to put our results in the perspective of actual 2D materials, we introduce in Fig-
ures 7.5 and 7.6 the data corresponding to various 2D materials (see Table 7.2) showing the
feasibility, in terms of energetics, of using single and pairs of dopants for the definition of
qubits.

In Fig. 7.5 the value of εcrit for a single dopant is shown as a function of the electron effective
mass and energy bandgap of a material. Materials with heavy electrons and narrow bandgaps
would require larger ε than materials with light effective masses and wide bandgaps. In the
case of h-BN, the dielectric constant has been calculated, in the monolayer form, to be
2.31 [307] while the critical value is εcrit = 4.65. In the case of MoS2 the critical value
is 4.6 ≤ εcrit ≤ 5.56, which again is above its dielectric constant. In these two cases, the
dopants would be too deep to be described by EMA. Other materials, such as ZnS or CdSe
impose softer restrictions due to their small effective mass. Silicene and Germanene, since
they are expected to have a very small bandgap and effective masses (almost Dirac cone
energy dispersions) that strongly depends on the substrate, have a very wide potential critical
permittivities. In some 2D materials, the bandgap has been shown to be tunable [310, 312],
which would give an extra tunability.

Since the molecular states are more bound, the critical value of the permittivities is expected
to be more restrictive for the donor pair. This can be seen in Fig. 7.6 for two different
separations R = 1a∗ and R = 2a∗. For R = 1a∗ we get the worst case scenario, where only
CdSe, CdS, ZnS and, potentially, Silicene and Germanene would have critical values of the
permittivities below 5. This problem is alleviated at larger distances as can be seen in the
right side plot.
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In order to give an estimate binding energies and Bohr radii for 2D materials, we need to
assume a particular value for the dielectric constant. Assuming ε ∼ 5, the Bohr radii for
electrons bound to single dopants would be between 5Å and 1nm a factor of ∼ 3 smaller
than the typical Bohr radii in 3D silicon [67].

7.4 Application to quantum computing
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Figure 7.7: Exchange, as a function of R, defined as the energy difference between the
singlet gerade and triplet ungerade.

For a single donor with 2 electrons there are 2 low-energy levels well separated from the
next excited state, one singlet and one triplet, which allows to map the lower-energy states
problem to the Heisenberg spin-1/2 Hamiltonian. The spin states could then be addressed
by an oscillating magnetic field. On the other hand, since some of these 2D materials exhibit
spin-orbit interactions, single qubit manipulation might also be possible via electric fields.
In particular, for Silicene and Germanene the bandgaps are tunable via vertical electric
fields. As a result, a top gate could be used to tune the energy levels and Bohr radii of the
dopants. The ability to manipulate the Bohr radii could be very interesting to move between
regimes in which the radius is shorter or larger, associated to different binding energies.
In the small wavefunction radius regime, it would reduce the exposure to charge traps or
magnetic impurities that could induce decoherence. In the large wavefunction radius regime,
interactions with other qubits might become enhanced, switching on and off the two qubit
operations.

As already mentioned, the donor state with two electrons is not very stable, being the
ionization energy of the second electron of 0.5 Ry∗. The lifetime of this state would be short,
and potentially useful for readout in a Pauli spin blockade protocol. On the other hand, the
double donor state with a single electron could be used to define a charge qubit, where the
qubit can be encoded as |0〉 or |1〉, depending on the electron position at one nucleus or the
other.

With 2 donors and 2 electrons, there are 4 possible states, see subsection 7.2.4. We label
the expectation values of these states in increasing order E1, E2, E3 and E4, and assign
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a spin hamiltonian to this problem if E2 − E1 << E3 − E2 so that only the two lowest
levels are relevant at low temperatures, and the spin-1/2 hamiltonian may be defined as for
a 2-level system. It has been shown that the 2 lowest levels are a singlet (GS) and a triplet,
as illustrated in 7.3. The two lowest states can be used to define a single-qubit. This qubit
would not require magnetic fields, and electrical manipulation could be performed. On the
other hand, if the double donor is used to define two qubits in the spin degree of freedom of
each electron, two-qubit operations are driven by exchange gates, i.e., exchange coupling J
pulses between electrons bound to neighboring donors.

Fig. 7.7 shows the exchange interaction J , the difference between the lowest singlet and
triplet levels, as a function of R in a physically accessible range of inter donor distances. The
Hamiltonian in the two-qubit subspace of the exchange interaction is [26, 27]:

Hint = Jσ1 · σ2. (7.29)

This interaction can be used to perform a SWAP operation, and, together with single-qubit
operations, a CNOT gate. The time for performing a

√
SWAP operation is τ = h/4J . Using

the expression for the Rydberg unit in Eq. 7.1, we can get the expression of τ as a function
of ε and meff :

τ = 1
4 · 13594

hε2

meffJ(Ry∗) . (7.30)

For a separation of 2a∗ the exchange is J = 0.16Ry∗. To give an idea of the relevant numbers,
this corresponds to the order of ps for ε = 10 and an effective mass of 0.05m0. Larger values
of ε would make it slower, while a larger effective mass would make it faster. In any case,
the numbers for the exchange interaction indicate extremely fast two-qubit operations that
would need to be benchmarked against the coherence times. While this operations would be
fast, the small Bohr radius makes the exchange interaction to decrease strongly with R. At
the same time, while coherence times in this context are not available, the confinement of
the wavefunction in a small Bohr radius indicate potentially good coherence properties.

The stronger confinement in 2D than in 3D, requires closer dopants for 2-qubit exchange
coupling. This demands higher accuracy in the placement of gates on top and between
donors, and nano-electrodes (as for example carbon nanotubes) may be needed in the final
device.

7.5 Conclusions

Dopants in 2D imply stronger confinement and states more bound than in 3D. Consequently,
the donor states are, in general, more stable in 2D, and the small Bohr radius would imply
better coherence properties. At the same time, this would require closer dopants for multiple
qubit operations, which implies a higher accuracy in the placement of gates.

While single dopants can be manipulated with magnetic fields, the strong SOC in several 2D
materials could be used to induce transitions via EDSR. Two electrons bound to two donors
can be used to perform fast two-qubit operations via exchange gates, altough it also allows
to define a singlet-triplet qubit, which would not require a magnetic field to define the qubit.
The single donor ion state does not have a high binding energy for the second electron, which
allows to define a readout procedure based on the Pauli spin blockade.
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The variability of binding energies as a function of substrate or number of layers, opens up
a wide range of possibilities for the potential use of dopants in 2D materials for quantum
computation. The synergy of the different experimental techniques for dopant positioning
in 3D semiconductors and the recent quick advancement in 2D materials-based electronics
provides with all the technical ingredients required to explore the practical feasibility of this
proposal.



Chapter 8
Conclusions

We have studied several alternatives for quantum computing in semiconductor nanostruc-
tures. We have emphasized the importance of electric manipulation and tunability of the
quantum system since magnetic manipulations constraints the scalability of quantum de-
vices. Spin-orbit qubits, such as those that can be defined in the degrees of freedom of holes
bound to acceptors, are naturally susceptible to electrical manipulation. We also analyzed
the electrical tunability of quantum properties, due to the valley physics, in quantum dot
systems such as the quantum dot hybrid qubit and nanowire Field Effect Transistors. Finally,
an alternative platform based on 2D materials was presented and analyzed.

The main results of the thesis can be summarized as follows:

• In Chapter 2 we analyzed the effects of quantum confinement in the low energy physics
of acceptor bound states. We focused on the effects of hard wall interfaces, such as SiO2
barriers, and SiGe quantum wells. To quantify the effects of both types of confinement,
we developed an effective mass approach to variationally solve the total Hamiltonian.
The central cell radius rcc was obtained for each one of the group III acceptors in-
side both Si and Ge. Confinement against a single interface was found to reduce the
binding energy and compress the spectrum of the acceptors, while an acceptor inside
a quantum well can increase its binding energy due to the increasing confinement in
the impurity. The four-fold degenerate ground state of bulk acceptors is broken due
to the inversion asymmetry into two Kramer doublets with heavy-hole and light-hole
nature respectively. The effects of electric and magnetic fields, strain and tetrahedral
symmetry terms, were taken into account to obtain a low energy Hamiltonian that can
be used to analyze the physics of qubits defined in the lowest heavy-hole light-hole
manifold.

• The effective Hamiltonian of SiGe quantum wells obtained in Chapter 2, is used to
analyze the different forms of manipulation of a qubit in Chapter 3. Both heavy-
hole and light-hole qubits were considered. In the case where quantum confinement
and strain conditions implied a heavy-hole ground state, we found that manipulation
through g-tensor modulation resonance was the fastest method for manipulation. In
exchange, this method would make a heavy-hole qubit sensitive to charge noise that
would induce g-factor fluctuations. Electric dipole spin resonance, although not so
sensitive to charge noise, was found to be suppressed by the strain induced heavy-hole
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light-hole splitting. In the case of light-hole qubits, we considered electric dipole spin
resonance for two cases, depending on the curvature of the g-factor with electric fields:
Concave or convex light-hole qubits. In both cases, several sweet spots, where charge
noise is suppressed, were found. At the same time, the Rabi frequency in these sweet
spots was found to be maximized and one order of magnitude faster (≈ GHz) than in
the best case for heavy-holes (≈ 100 MHz).

• In Chapter 4 we generalize the theory of single acceptor qubits to increase the tunability,
coherence and entanglement properties of acceptors near an interface. We found that
the tetrahedral symmetry terms is responsible for a strong anisotropy in light-hole
qubits. This anisotropy can be used to tune the coherence properties in the different
sweet spots, by changing the curvature and finding a second-order sweet spot or by
finding a decoherence free subspace, where the qubit cannot decohere to first order
under any kind of perturbation. Moreover, the electric field was found to significantly
affect the spin properties of the four level system. The electrical tunability of this
spin properties allows to exploit the dipolar-dipolar interactions to define two different
protocols where entanglement can be switched on and off only by electric means. At the
same time, both entanglement protocols take advantage of the coherence properties:
One protocol reduces charge noise exposure during the entanglement procedure, while
the other exploits single-qubit operations near the decoherence free subspace.

• The valley physics of the quantum dot hybrid qubit was evaluated in Chapter 5. The
inevitable presence of interfacial disorder was considered in a 2D single-electron double
quantum dot tight-binding that captures the physics of a more complex system: the
quantum dot hybrid qubit. This simple tight-binding captured the relevant valley
physics, allowing us to simulate the effects of the electric fields on the valley degree
of freedom under multiple interfacial disorder profiles. This interfacial disorder was
found to induce changes in both the envelope and valley degrees of freedom of electron
wavefunction thus affecting the valley splitting and tunnel couplings under vertical
electric fields and detuning. Most importantly, this dependence was found to be similar
to the reported in the experiments, and predicted the existence of regions in detuning
where the coherence properties can be enhanced (sweet spots) or suppressed (hot spots).

• In Chapter 6 the effects of geometry and electric fields on the valley splitting in nanowire
Field Effect Transistors was analyzed. The electrostatics of the device was simulated
using a finite element method software. The results of these simulations were used
in both an effective mass approach and a tight-binding method to simulate the valley
physics of corner dots. We found that, although four valley states can be expected
to be relevant, defects in the geometry, such as non right angles, can separate the
horizontal and vertical valley states up to a few meV. Each valley couple in the corner
dot was found to behave similarly to valley doublets near a single interface, allowing
linear tunability of the valley splitting by further increasing the confinement against
the walls.

• In Chapter 7 we proposed the use of 2D materials as devices for quantum computation.
An effective mass approach was used to obtain the lowest levels of a single impurity
atom, and a molecule of two impurities sharing one or two electrons. We evaluated
the applicability of the effective mass approach for several 2D materials. Most of these
materials are direct bandgap semiconductors, with no valley degeneracy, which is a
property that would help to simplify the problems of entanglement since the exchange
interaction would not oscillate with defect position. In particular, Silicene and Ger-
manene are predicted to have a tunable bandgap, what would allow to change the
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effective mass, the binding energies, and the Bohr radius, thus modifying the Larmor
energies and exchange of the qubits. These platforms, while experimentally challeng-
ing, would have less restrictions than other semiconducting platforms for quantum
computing.



Chapter 9
Conclusiones

Hemos estudiado varias alternativas para computación cuántica en nanoestructuras semicon-
ductoras. Se ha dado importancia a la manipulación eléctrica y a la capacidad para modificar
las propiedades de los sistemas cuánticos dado que la manipulación por medios magnéticos
limita la escalabilidad de los dispositivos. Qubits basados en espín-órbita, son susceptibles
a la manipulación eléctrica de forma natural. También analizamos la capacidad para mod-
ificar las propiedades cuánticas, relacionadas con la física de valles, en sistemas de puntos
cuánticos tales como el qubit híbrido en puntos cuánticos o el nanohilo transistor de efecto
campo. Finalmente, una plataforma alternativa, basada en materiales bidimensionales fue
presentada y analizada.

Los resultados principales de la tesis se pueden resumir en los siguientes puntos:

• En el capítulo 2 analizamos los efectos del confinamiento cuántico en la física de baja
energía de estados ligados de aceptores. Nos centrmos en el efecto de intercaras, tal
como una barrera de SiO2, o pozos cuánticos de SiGe. Para cuantificar los efectos de
ambos tipos de confinamiento desarrollamos un método de masa eféctiva para resolver
variacionalmente el Hamiltoniano del sistema. El radio de celda central rcc fue obtenido
para cada uno de los aceptores del grupo III tanto en Si como en Ge. El confinamiento
cerca de una intercara demostró reducir la energía de ligadura y comprimir el espectro
de los aceptores, mientras que un aceptor dentro de un pozo cuántico puede aumentar su
energía de ligadura debido al aumento de la función de onda alrededor de la impureza.
El cuatro veces degenerado estado fundamental de un aceptor en bulk se degenera en
dos pares de Kramer de naturaleza hueco-pesado y hueco-ligero respectivamente. Los
efectos de los campos eléctricos y magnéticos, estrés o la simetr
’ia tetrahédrica, fueron considerados para obtener el Hamiltonian de baja energía que
puede ser usado para analizar la física de qubits definidos en la variedad de los estados
fundamentales de hueco-pesado y hueco-ligero.

• El Hamiltonian efectivo de aceptores en pozos cuánticos de SiGe obtenido en el capí-
tulo 2, es usado para analizar las distintas formas de manipulación de un qubit en
el capítulo 3. Tanto qubits basados en estados de hueco-pesado como qubits basados
en huecos-ligeros fueron considerados. En el caso en que el confinamiento y el estrés
implican un estado fundamental de hueco-pesado, encontramos que la manipulación
a través de resonancia de la modulación del tensor-g fue el método mas rápido para
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manipulación. A cambio, este método incrementaría la sensibilidad al ruido de carga,
a través de fluctuaciones del factor-g, a un qubit de huecos-pesados. La resonancia del
dipolo eléctrico de espín, aunque no tan sensible al ruido de carga, estaría suprimida
por la separación de energías inducida por estrés entre los estados fundamentales de
hueco-pesado y hueco-ligero. En el caso de los qubits de hueco-ligero, consideramos
la manipulación a través de la resonancia del dipolo eléctrico de espín en dos casos,
dependiendo de la curvatura del factor-g respecto al campo eléctrico: Qubits de huecos-
ligeros cóncavos o convexos. En ambos casos, varios puntos dulces, donde el efecto del
ruido de carga está suprimido, fueron encontrados. Además, la frequencia de Rabi en
estos puntos dulces está maximizada y es un orden de magnitud mayor (≈ GHz) que
en el mejor caso para huecos-pesados (≈ 100 MHz).

• En el capítulo 4 generalizamos la teoría de qubits aceptores para aumentar las posibil-
idades de manipulación, mejorar la coherencia y las propiedades de entrelazamiento de
aceptores cercanos a una intercara. Encontramos que los términos de simetría tetrahé-
drica son responsables de una fuerte anisotropía en las propiedades de los qubits basados
en huecos-ligeros. Esta anisotropía puede ser usada para modificar las propiedades de
coherencia en los distintos puntos dulces, cambiando la curvatura y dando lugar a un
punto dulce de segundo orden, o un subespacio libre de decoherencia, donde el qubit no
puede ser influido por procesos de decoherencia de primer orden. Además, encontramos
que el campo eléctrico afecta las propiedades de espín del sistema de cuatro niveles.
Esta capacidad para manipular las propiedades de espín eléctricamente nos permite
aprovechar la interación dipolo-dipolo para definir dos protocolos distintos en los que
el entralazamiento puede activarse o desactivarse por medios puramente eléctricos. A
su vez, ambos protocolos de entrelazamiento pueden aprovecharse de las propiedades
de coherencia: Un protocolo se puede usar para reducir la exposicón a ruido de carga
durante el procedimiento para entrelazar qubits, mientras el otro puede aprovecharse
del número de operaciones de un qubit cerca del subespacio libre de decoherencia.

• La física de valles del qubit híbrido de puntos cuánticos fue evaluado en el capítulo
5. La presencia inevitable de desorden en las intercaras fue considerada en un modelo
de aproximación de enlace fuerte bidimensional de un solo electron en un doble punto
cuántico que captura la física de un sistema mas complejo: el qubit híbrido de puntos
cuánticos. Este simple modelo captura la física de valles mas relevante, permitién-
donos simular los efectos de campos eléctricos en el grado de libertad de los valles bajo
múltiples perfiles de desorden en la intercara. Este desorden en la intercara induce
cambios tanto en la envoltura como en las oscilaciones de valle de la función de onda,
afectando por tanto la separación de energía de valles y los acoplos túnel bajo campos
eléctricos verticales como detuning. Aún mas importante, esta dependencia es similar
a la reportada en experimentos, y predice la existencia de regiones en detuning donde
las propiedades de coherencia pueden estar mejoradas (puntos dulces) o suprimidas
(puntos calientes).

• En el capítulo 6 los efectos de la geometría y el campos eléctricos sobre la separación de
energía entre valles en nanohilos de transistores de efecto campo fueron analizados. La
electrostática del dispositivo fue simulada usando un software del método de elemen-
tos finitos. Los resultados de estas simulaciones fueron usados tanto en un método de
masa efectiva como en la aproximación de enlace fuerte para simular la física de valles
de los puntos cuánticos en esquinas. Encontramos que, aunque se puede esperar que
hasta cuatro valles puedan ser relevantes, defectos en la geometría, tales como ángulos
no rectos, pueden separar los valles horizontales de los verticales en varios meV. Cada
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pareja de estados valle in los puntos cuánticos de esquinas se comporta de una forma
similar a los dobletes de valle confinados contra una intercara, dando lugar a la capaci-
dad para incrementar linealmente la diferencia de energía entre valles al incrementar
el confinamiento contra la intercara.

• En el capítulo 7 se propuse el uso de materiales bidimensionales como dispositivos para
la computación cuántica. El método de masa efectiva se usó para obtener los niveles
de energía mas bajos de una impureza atómica, así como de una molécula formada
por dos impurezas que comparten uno o dos electrones. Evaluamos la pertinencia del
método de masa efectiva para distintos materiales bidimensionales. La mayor parte
de estos materiales son semiconductores de gap directo, sin degeneración de valles,
propiedad que simplificaría los problemas de entrelazamiento dado que la interacción
de intercambio no oscilaría con la posición de los dopantes. En particular, se espera
que el gap en Siliceno y el Germaneno sea modificable, lo que permitiría cambiar la
masa efectiva, las energías de ligadura, o el radio de Bohr, modificando por tando
la energía de Larmor o la interacción de intercambio los qubits. Estas plataformas,
aunque complicadas experimentalmente, reducirían las restricciones para computación
cuántica que tienen que otras plataformas semiconductoras.
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Appendix A
Relevant integrals for Chapter 2

The calculation of the matrix elements Hi,j and Si,j have required the evaluation of integrals
involving products of wavefunctions (2.11) and the expected values of the different operators
2.3. The analytical solutions to these integrals are not tabulated. We summarize here most
of the integrals used in this work.

The general form of the integrals involved in the calculations of the matrix elements in the
hard wall case is

I(c, n, k′) =
∫ ∞
−d

dz

∫ ∞
|z|

dr zcrn
(√

r2 − z2
) k′

e−αr . (A.1)

The evaluation of this integral depends strongly on the parity of the exponent k′. When
k′ = 2k being k any positive integer and defining for convenience γ = 2k + n+ c+ 2:

I(c, n, 2k) = 1
αγ

[
k!Γ( c+1

2 )
2Γ( c+3

2 + k)

(
Γ(γ)(1 + (−1)c) + (−1)c+1Γ(γ, αd)

)
+

k∑
l=0

(−1)l+c
(
k

l

)
(αd)2l+c+1

2l + c+ 1 Γ(γ − 2l − c− 1)
]
, (A.2)

being Γ(a, z) the incomplete gamma function.

When k′ is an odd number k′ = 2k + 1, the parity of the exponent n becomes relevant. If n
is even

I(c, n, k′) =
k∑

m=0
(−1)m

γ−c
2 −m∑
u=1

(
u−1∏
l=0

2l + 1)
(
k

m

)
1
αu

(
n/2 + k −m

u− 1

)[ 2γ−u−1

αγ+u+1 Γ(γ + 1
2 )Γ(γ + 1− 2u

2 )

+(−1)c2−u−2dγ+1−u(αd)−uπ csc(uπ)
(

4uΓ(γ + 1− 2u
2 )1F̃2(γ + 1− 2u

2 ; 1− u, γ + 3− 2u
2 ; α

2d2

4 )

−(αd)2uΓ(γ + 1
2 )1F̃2(γ + 1

2 ; γ + 3
2 , u+ 1; α

2d2

4 )
)]
,(A.3)
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being F̃ the hypergeometric regularized function. And when n is odd

I(c, n, k′) =
k∑

m=0
(−1)m

γ−1−c
2 −m∑
u=1

(
u−1∏
l=0

2l + 1)
(
k

m

)
1
αu

(
n/2 + k −m− 1/2

u− 1

)[ 2γ−u−1

αγ+u+1 Γ(γ + 2
2 )Γ(γ − 2u

2 )

+(−1)c2−u−3dγ+1−u(αd)−u−1π csc(uπ)
(

4uΓ(γ − 2u
2 )1F̃2(γ − 2u

2 ;−u, γ + 2− 2u
2 ; α

2d2

4 )

−(αd)2u+2Γ(γ + 2
2 )1F̃2(γ + 2

2 ; γ + 4
2 , u+ 2; α

2d2

4 )
)]
.(A.4)

The exponent n can be negative for certain operators. When this is the case, the integrals
can be transformed into the previous integrals by using the method of differentiation on α
under the integral sign. For example, when n = −1

I(c,−1, k′) = −
∫
dα I(c, 0, k′) + C , (A.5)

where C is a constant that can be obtained using I(c, n, k) = 0 when α → ∞. The rest of
negative n integrals can be obtained using this method recursively.

Regarding the integrals for SiGe quantum wells, those integrals involving the z components
are simple combinations of trigonometric functions and exponentials. However, the inte-
grals involving the ρ coordinate can be complex. The most general integral involving this
coordinate is ∫ ∞

0
ρn exp(−αρ)dρ = Γ(n+ 1)

αn+1 . (A.6)

The Coulomb integrals can be performed analytically only in the z direction. The numerical
integral in the ρ coordinate is performed using Mathematica [300].



Appendix B
Schrieffer-Wolff transformation

. Let H be a total Hamiltonian that can be divided in two parts: H0, whose eigenvalues and
eigenfunctions are known, and H1, which can be considered as a perturbation to the total
Hamiltonian H:

H = H0 +H1 (B.1)
H0|ψn〉 = En|ψn〉 (B.2)

Assuming that we are not interested in the effect of the perturbation on all the eigenstates
but on a rather small subset, we can divide the eigenstates into those of our interest subset
A, with eigenfunctions |ψm〉, and those not relevant subset B, with eigenfunctions |ψl〉. A
unitary operator e−S can be found such that it transforms the total Hamiltonian to an
effective Hamiltonian H̃ where the states in A and B do not interact to a desired order in
H1. In this way, the effect of irrelevant excited states in subset B can be mapped onto an
effective Hamiltonian of the states we are interested in (subset A). This is particularly useful
for constructing low energy effective Hamiltonians. The construction of the matrix S can be
found in Ref. [182].

Here I summarize the relevant results for the construction of the construction of the effective
Hamiltonians in Chapters 2, 3, and 4, and the calculation of their parameters. Let the indices
m, m′ and m′′ correspond to subset A, indices l, l′ and l′′ to subset B, Hml = 〈ψm|H|ψl〉.
The effective Hamiltonian H̃ of subset A to order n is

H̃ = H(0) +H(1) +H(2) + . . . H(n) (B.3)
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Where the matrix elements, up to third order, to each Hamiltonian are (see Ref. [182] for
higher orders):

H
(0)
mm′ = H0

mm′ (B.4)

H
(1)
mm′ = H1

mm′ (B.5)

H
(2)
mm′ = 1

2
∑
l

H1
mlH

1
lm′ (B.6)

H
(3)
mm′ = −1

2
∑
l,m′′

[ H1
mlH

1
lm′′H

1
m′′m

(Em′ − El)(Em′′ − El)
+ H1

mm′′H
1
m′′lH

1
lm′

(Em − El)(Em′′ − El)
]

1
2

∑
l,l′

H1
ml′H

1
ll′H

1
l′m′

[ 1
(Em − El)(Em − El′)

+ 1
(Em′ − El)(Em′ − El)

]
(B.7)

This formulas are used with the first four states of the acceptor Hamiltonian in subset A and
the next four excited states in subset B. As an example of the use of this formula, the value
of the Rashba coefficient to first order is simply:

HRashba
1,2 = αF− = 〈3/2|eF−x+|1/2〉 (B.8)
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