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Nonlinear Stability of the Bardeen–De Sitter Wormhole in
f (R) Gravity

A. Eid

Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU),
Riyadh 11623, Saudi Arabia; amaid@imamu.edu.sa

Abstract: This paper discusses the nonlinear stability of a thin-shell wormhole from a
regular black hole in Bardeen–de Sitter spacetime in the f (R) gravity framework. The
stability is examined under the linear perturbation about static solution and a nonlinear
variable equation of state, such as the modified generalized Chaplygin gas. The stability
solutions for a suitable choice of different parameters included in the variable equation of
state and f (R) gravity models, as well as the metric space–time, are illustrated.
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1. Introduction

In 1988, Morris and Thorne [1] analyzed traversable wormholes as a geometrical
object which, by joining two manifolds, may be similar or different. Afterward, Visser [2]
investigated the concept of thin-shell wormholes (TSWs) formed by Visser’s cutting and
pasting two spacetimes. The construction of these wormholes required the presence of an
exotic matter at the wormhole throat, which violates energy conditions [3]. Various forms
of equation of state (EoS), such as linear and nonlinear EoS, have been discussed in the
framework of TSWs [4–6].

Furthermore, Bardeen [7] introduced the concept of a non-singular regular black
hole (RBH) model, called the Bardeen black hole model, which has an event horizon and
precludes singularity at the origin. Afterward, several authors discussed the other RBH
models depending on the conception of the Bardeen model.

For instance, Ayon-Beato and Garcia [8] studied a non-linear magnetic monopole
via the Bardeen model. Recently, Shamir [9] analyzed the charged massive compact star
under conformal motion via Bardeen geometry. Sharif and Javed [10] studied the Bardeen
wormholes’ stability, and also analyzed the anti-de Sitter Bardeen TSWs’ stability [11].
Similarly, Haywad [12] investigated a similar stability type model of RBH. Furthermore, Ra-
haman et al. [13] studied the TSW stability formed from charged RBH. In addition, Eid [14]
discussed the dynamics of Bardeen–de Sitter TSWs and stability. Further, Fernando [15]
analyzed the Bardeen–de Sitter BH properties. Li et al. [16] discussed anti-de Sitter–Bardeen
BH thermodynamics. Alshal [17] analyzed the Bardeen–de Sitter TSWs’ stability.

The observed phenomenon of the accelerated expansion of the universe may be
explained according to the modified gravity theories or the dark energy models [18,19].
In 1970, Buchdal [20] introduced the concept of a modified theory of f (R) gravity as a
modified version of general relativity. This modification is based on replacing the action R

with an arbitrary scalar curvature function of f (R) [21–23].
In several articles, the stability of TSWs and BHs in the framework of f (R) theory

has been discussed. For instance, Shamir and Fayyaz [24] discussed a wormhole model in
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f (R) theory via the Karmarkar condition. Godani [25] discussed the linear and nonlinear
stability of charged TSWs in f (R) gravity and studied TSWs in a nonlinear f (R) theory [26].
Furthermore, Samanta and Godani [27] studied the stability of f (R) models with physical
parameters. Shamir and Malik [28] studied the compact Bardeen stars in f (R) theory. Also,
Eid [29] analyzed the stability of TSW in f (R) gravity. Godani [30] discussed the Heyward
wormhole stability in f (R) gravity, and he also studied the Bardeen wormhole stability in
the theory of f (R) [31].

This article discusses the Bardeen–de Sitter TSW stability in the theory of f (R) through
linear perturbation via a nonlinear EoS, such as the variable modified generalized Chap-
lygin gas (VMGCG). Section 2 presents a short description of the Bardeen–de Sitter TSW
formalism in f(R) gravity. Section 3 addresses stability analysis through linear perturba-
tion via a quadratic–cubic model of f (R) gravity. In Section 4, a remarkable conclusion
is considered.

2. Bardeen–De Sitter Formalism

The Bardeen–de Sitter BH metric is described by [15]

ds2
± = G−1

± dr2
± − G±dt2

± + h±dΩ2
±, (1)

with

G±(r±) = 1 −
2m±r2

±
(

r2
± + q2

±
)3/2

− 1
3

r2
±Λ±, h±(r±) = r2

±, (2)

and dΩ2
± =

(

dθ2
± + sin2θ±dφ2

±

)

.
In this metric, q±, m±, and Λ± denote the charge, mass, and cosmological constant of

a black hole for the exterior (+) and interior (−) regions, separately. Let m− = m+ = m,
Λ+ = Λ− = Λ and q = q− = q+. According to Visser’s approach (cut and paste),
two identical copies of manifold M± (M = M− ∪ M+) can be glued together at their
hypersurface Σ (where Σ = Σ− ∪ Σ+ represents a throat that connects both manifolds M±).
Furthermore, the evolution time of the shell is described by the relation r± = b(τ), with
the proper time τ. Then, the metric induced on the boundaries Σ is described by

ds2 = −dτ2 + h(b)dΩ2. (3)

Moreover, the extrinsic curvature K±
ij of the two regions across Σ [32] is described by

K±
ij = −n±

µ

(

∂2Y
µ
±

∂ζ i∂ζ j
+ Γ

µ
αβ

∂Yα
±

∂ζ i

∂Y
β
±

∂ζ j

)∣

∣

∣

∣

∣

Σ

, (4)

where ζ i and Y
µ
± are the coordinates on Σ and in M±, respectively. Also, Γ

µ
αβ and n±

µ

represent the Christoffel symbols and four-unit normal vector. Furthermore, Equations (2)
and (4) can be used to obtain

K±
ττ = ∓ 2

..
b + Ǵ

2

√

.
b

2
+ G

, K±
θθ = ± h′

2h

√

G +
.
b

2
≡ K±

φφ. (5)

where dot and prime represent the derivative with regard to τ and b, respectively.
Afterward, the field equation in the theory f (R) [33] is described by

4πtij = − f ′(R)
[

Kij

]

, (6)
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where tij =
(

σ, pθ , pφ

)

represents the intrinsic stress–energy tensor, with energy density σ

and principal pressures (pθ , pφ). Moreover, the continuity conditions
[

hi
j

]

= 0 and
[

Ki
j

]

= 0

must hold [34]. Consequently, the constraint condition
[

Ki
i

]

= 0 and Equation (5) can be
used to obtain

..
b = −1

2
G′ − h′

h
(

.
b

2
+ G). (7)

Therefore, (5) can be inserted into (6) to obtain

σ =
fR

4π





2
..
b + G′

√

.
b

2
+ G



, . (8)

p ≡ pθ ≡ pφ = −
h′ f R

4πh

√

.
b

2
+ G. (9)

In addition, inserting Equation (7) into (8) gives

σ = − h′ fR

2πh

√

.
b

2
+ G, (10)

where fR = d f (R)
dR . Consequently, the single dynamical equation of motion, derived from

Equation (10), becomes
.
b

2
+ ψ(b) = 0, (11)

where ψ(b) represents the effective potential and is written in the form

ψ(b) = G −
(

2πσh

h′ fR

)2

. (12)

3. Stability Analysis

Accordingly, the equation of state is of great importance in order to analyze the stability
of TSW and violation of energy conditions. It is clear from Equation (10) that if fR > 0,
then the negative of σ < 0 indicates the existence of exotic matter at the throat of the
wormhole, which means that the presence of a repulsive gravitational force prevents it from
contracting. It is observed that the matter distribution at the throat violates both the weak
energy condition (σ ≥ 0, σ + p ≥ 0) and the null energy condition (σ + p ≥ 0), due to the
negativity of σ. It also violates the strong energy condition that requires (σ + 3p ≥ 0) [25].

Consequently, due to the negativity of energy density (10), and in order to study the
dynamical characterization, we assumed exotic matter EoS, such as variable modified
generalized Chaplygin gas (VMGCG) which is described by [35,36],

p(σ, b) = νσ − µ

bnσα , (13)

where µ > 0, υ < 0, 0 ≤ n ≤ 1 and 0 < α ≤ 1 are EoS parameters.
In addition, from Equation (13), different types of EoS are recovered, such as a variable

generalized Chaplygin gas, which is recovered when ν = 0 is used, and Chaplygin gas is
recovered with (ν = 0 and α = 1) [37,38], while the phantom energy is recovered when
µ = 0. Also, when (υ = 0 and n = 0), the generalized Chaplygin gas is recovered. In
addition, the derivative of (13) becomes

p′ =
∂p

∂σ
σ′ +

∂p

∂b
≡ χ2σ′ − β, (14)
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where χ2 and β represent a derivative of pressure with σ and b, respectively. This EoS
has two parameters; the first one is χ2, which represents the sound speed, and the second
parameter is β, which represents the dependence of pressure on the throat radius.

Accordingly, the conservation energy equation is defined by

d

dτ
(Yσ) + p

dY
dτ

= 0. (15)

Inserting Y = 4πh into Equation (15) produces

σ′ = − h′

h
(σ + p) ≡ − h′

h

[

(ν + 1)σ − µ

σαbn

]

. (16)

Consequently, the solution to (16) is given by

σ1+α =
1

(2δ − n)bn+2δb
n
◦

[

2µ(α + 1)
(

b2δbn
◦ − bnb2δ

◦

)

+ (2δ − n)σα+1
◦ bn

◦bnb2δ
◦

]

(17)

with δ = (α + 1)(ν + 1), and b◦ representing the constant of integration. Moreover, using
Equations (8) and (9) with h = b2 and (13), the dynamical evolution becomes

.
b

2
+ G +

νh

h́
(2

..
b + G′)− µh

h́b
n f−α−1

R

(

k

√

.
b

2
+ G

)α+1
(

2
..
b + G′

)−α
= 0. (18)

In addition, after inserting Equations (9) and (10) into (13), the constraint equat-
ion becomes

bn

(

1
2
− ν

)





fR

(

2
..
b + G′

)

k

√

.
b

2
+ G





α+1

+ µ = 0. (19)

Inserting Equation (7) into (18) produces

.
b

2
=

(

−h

2h́
k f−1

R

)2(2µb−n

2ν − 1

)
2

α+1

− G. (20)

For the stability analysis, one can use the Taylor series of ψ(b) at b◦, up to the sec-
ond order:

ψ(b) = ∑
2
i=0 ϕi(b − b◦)i,ϕi =

1
i!
ψ(i)(b◦). (21)

Consequently, both the first and the second derivatives of ψ(b) (12) are described by

ψ′(b) = G′ −
(

k

2 f R

)2(2hσ

h′

){

hσ′

h′
+ σ

(

1 − hh′′

h′2

)}

, (22)

ψ′′ (b) = G′′ −
(

k√
2 f R

)2 {

σ2

(

1 − 3
hh′′

h′2
+ 3

h2h′′ 2

h′4
− h2h′′′

h′3

)

+4σσ′
(

h

h′
− h2h′′

h′3

)

+

(

h2

h′2

)

(

σσ′′ + σ′2
)

}

(23)

Furthermore, inserting (13), (16), and the derivative of (16) into Equations (22) and (23)
produces

ψ′(b) = G′ +

(

k

2 f R

)2(hσ

h′

)

(2p + σ), (24)
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and

ψ′′ (b) = G′′ −
(

k

2
√

2 f R

)2
{(

σ + 2p)2 + 2σ(σ + p)
(

1 + 2χ2
)

+ 2bσβ
}

. (25)

where χ2 = dp/dσ denotes the square sound speed and β = dp/db denotes the dependence
of p on b.

As is evident, the effective potential ψ(b) is linearized around the static solution b = b◦.
Therefore, the conditions ψ(b◦) = 0 and ψ′(b◦) = 0, are gratified by inserting Equation (14)
into Equations (24) and (26). Thus, ψ(b) = 1

2 ψ′′ (b◦)(b − b◦)2. For this, the dynamical

equation becomes
.
b

2
(τ) = − 1

2 ψ′′ (b◦)(b − b◦)2 + O
[

(b − b◦)3
]

.
Moreover, the stability condition is examined by considering a radial perturbation,

which depends on the sign of ψ′′ (b◦) across the throat radius. Thus, stability is achieved
when ψ′′ (b◦) > 0, while ψ′′ (b◦) < 0 indicates instability. Accordingly, the dynamical

Equation (20) in static solution (
..
b =

.
b = 0) becomes

(

bk f−1
R

)2
(−4)

−2α
α+1

(

µb−n

2(1 − 2ν)

)
2

α+1

− G = 0. (26)

Consequently, Equations (8) and (9) in static solution become

σ◦ =
fR

k

G′
√

G
, p◦ = − fR

k

h′

h

√
G. (27)

Therefore, Equation (19) becomes

bn

(

1
2
− ν

)(

fRG′

k
√

G

)α+1

+ µ = 0. (28)

Furthermore, rearrange Equation (27) in terms of Equation (2) to obtain

σ◦ =
2b fR

k





m
(

b2 − 2q2
)(

b2 + q2
)−5/2 − 1

3Λ
√

1 − 2mb2(b2 + q2)
−3/2 − 1

3Λb2



, (29)

and

p◦ = −2b fR

b2k

√

1 − 2mb2(b2 + q2)
−3/2 − 1

3
Λb2. (30)

Furthermore, insert Equation (2) into (28) to obtain

(

1
2
− ν

)

bn





2b fR

k





m
(

b2 − 2q2
)(

b2 + q2
)−5/2 − 1

3Λ
√

1 − 2mb2(b2 + q2)
−3/2 − 1

3Λb2









α+1

+ µ = 0. (31)

Therefore, inserting Equations (2) and (17) into Equation (12) produces

ψ(b) =

(

1 − 2mb2
(

b2 + q2
)−3/2

− 1
3

Λb2
)

−
(

bk

4 fR

)2( H

(2δ − n)bn+2δb
n
◦

) 2
α+1

. (32)

with
H = 2µ(α + 1)

(

b2δbn
◦ − bnb2δ

◦

)

+ (2δ − n)σα+1
◦ bn

◦bnb2δ
◦ .
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Consequently, assume ψ′′ (b) = 0, and insert into (25), to obtain

χ2 = −1
2
+ (4σ(σ + p))−1



G′′

(

k

2
√

2 f R

)−2

− (σ + 2p)2 − 2bσβ



. (33)

Consequently, let χ2 = 0 and the second parameter β becomes

β = (2bσ)−1



G′′

(

k

2
√

2 f R

)−2

− (σ + 2p)2 − 2(σ + p)σ



, (34)

with

G′′ = −2m
(

2b4 + 2q4 − 11q2b2
)(

b2 + q2
)−7/2

− 2
3

Λ.

Consequently, TSWs can be studied under the effect of f (R) gravity, by taking the
general model form of f (R), which is described by

f (R) = R + ξRn − ζR−ς, (35)

where n and ς represent real numbers and ξ and ζ are parameters of the f (R) model. As-
suming that ζ = 0 in Equation (35), the specific form of the f (R) type model is described by

f (R) = R + ϵRn. (36)

Accordingly, the specific configuration model of f (R) gravity is discussed by taking
the quadratic–cubic type model given by

f (R) = R + γR2 + ωR3. (37)

This is a well-known model that explains the accelerated universe and is consistent
with the recent observation [39,40], where γ andω represent dark source parameters that
are real numbers.

Also, this model has several applications in astrophysics and cosmology [41,42]. For
this, when γ = ω = 0, Einstein’s theory is recovered. Accordingly, insert Equation (37) into
constraint Equation (31) to obtain

R± =
1

3ω

(

−γ ±
√

γ2 + 3ω(ϕ − 1)
)

, (38)

where

ϕ =
k

2b

(

b2 + q2
)5/2

(

2µ

(2ν − 1)bn

)1/α+1




√

1 − 2mb2(b2 + q2)
−3/2 − 1

3Λb2

m(b2 − 2q2)− 1
3Λ(b2 + q2)

5/2



.

From Equations (33) and (37), the graphs of χ2 versus b are shown in Figures 1–3 by
taking various values of the free parameters m, q, R, Λ, ω, γ, and β.

From Equations (34) and (37), the graphs of β against b are shown in Figure 4 by taking
various values of the free parameters m, R, Λ, ω, γ, and q.
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𝑓 𝑅 𝑅 𝛾𝑅ଶ 𝜔𝑅ଷ
γ ω

𝛾 𝜔
𝑅 ଵଷఠ ൫−𝛾 ඥ𝛾ଶ ω 𝜙 − ൯

𝜙 ௞ଶ௕ 𝑏ଶ 𝑞ଶ ହ ଶ ቀ ଶఓଶఔିଵ ௕೙ቁଵ ఈାଵ ቌටଵିଶ௠௕మ ௕మା௤మ షయ మିభయ௸௕మ௠ ௕మିଶ௤మ ିభయ௸ ௕మା௤మ ఱ మ ቍ
𝜒ଶ 𝑏𝑚, 𝑞,𝑅,Λ,𝜔, 𝛾, 𝛽

 
  

  𝜒ଶ 𝑏 𝛽 = 0 𝑞 = 0, 0.1,𝑚 𝑅 𝜔 𝛾 Λ 𝑚 𝑅 𝜔 𝛾 Λ 𝑚 𝑅𝜔 𝛾 Λ 𝑚 𝜔 𝑅 𝛾 Λ −
Figure 1. The graphs of χ2 against b according to β = 0 and q = 0, 0.1, 0.5, 1 for various val-
ues of (a) m = 1, R = 1, ω = 1, γ = 1, Λ = 1, (b) m = 1, R = 1, ω = 1, γ = 1, Λ = 0.1,
(c) m = 2, R = 10, ω = 1, γ = 1, Λ = 0.1, and (d) m = 1, ω = 1, R = 1, γ = 1, Λ = −0.1.

  

 𝜒ଶ 𝑏 𝛽 = 1 𝑞 = 0, 0.1,𝑚 𝑅 𝜔 𝛾 Λ 𝑚 𝑅 𝜔 𝛾 Λ 𝑚 𝑅𝜔 𝛾 Λ 𝑚 𝑅 𝜔 𝛾 Λ −

𝜒ଶ 𝑏 𝛽 − 𝑞𝑚 𝑅 𝜔 𝛾 Λ 𝑚 𝑅 𝜔 𝛾 Λ 𝑚𝑅 𝜔 𝛾 Λ 𝑚 𝜔 𝛾 𝑅 Λ −

Figure 2. The variation in χ2 versus b according to β = 1 and q = 0, 0.1, 0.5, 1 for various
values of (a) m = 1, R = 1, ω = 1, γ = 1, Λ = 1, (b) m = 1, R = 1, ω = 1, γ = 1, Λ = 0.01,
(c) m = 2, R = 10, ω = 1, γ = 1, Λ = 0.01, and (d) m = 1, R = 1, ω = 1, γ = 1, Λ = −0.01.
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𝜒ଶ 𝑏 𝛽 𝑞𝑚 𝑅 𝜔 𝛾 Λ 𝑚 𝑅 𝜔 𝛾 Λ 𝑚 𝑅
10 𝜔 = 1 𝛾 = 1, Λ = 0.01, 𝑚 = 1, 𝑅 = 1 𝜔 = 1, 𝛾 = 1, Λ = −0.01.

 

 
 𝜒ଶ 𝑏 𝛽 = −1 𝑞 = 0, 0.1,𝑚 𝑅 𝜔 𝛾 Λ 𝑚 𝑅 𝜔 𝛾 Λ 𝑚𝑅 𝜔 𝛾 Λ 𝑚 𝜔 𝛾 𝑅 Λ −

Figure 3. The variation in χ2 against b according to β = −1 and q = 0, 0.1, 0.5, 1 for various
values of (a) m = 1, R = 1, ω = 1, γ = 1, Λ = 1, (b) m = 1, R = 1, ω = 1, γ = 1, Λ = 0.01,
(c) m = 2, R = 10, ω = 1, γ = 1, Λ = 0.01, and (d) m = 1, ω = 1, γ = 1, R = 1, Λ = −0.01.

From (38), the graphs of R versus b are shown in Figure 5 by taking various values of
the free parameters m, n, γ, α, ω, Λ, µ, ν, and q.

Insert Equation (37) into (32); the graphs of ψ(b) versus b with various values of these
parameters (m, n, σ◦, b◦, R, γ, α, ω, q, Λ, µ, ν) are shown in Figure 6.

The graphs of χ2 versus b are plotted in Figures 1–3 for β = 0, β > 0, and β < 0
with various values of the free parameters m, q,ω, R,γ, and Λ. As illustrated, the graphs
of β = 0 show a noticeable change with β > 0 and β < 0. The stability configuration
increases with decreasing Λ. Likewise, this also happens with increasing q. Moreover, the
stability regions increase with increasing m. Likewise, the plots are expanded by changing
the values of these parameters: ω, R, and γ. Also, for γ = 0, the cubic model is recovered,
while the quadratic model is recovered when ω = 0.

In addition, the graphs of β against b are plotted in Figure 4. The plots exhibit a notable
change in the shape and range with respect to m, γ, ω, q, and Λ parameters. The stability
regions increase with decreasing mass m, and also such regions decrease with increasing Λ.
Likewise, this happens with increasing q, and also it is extended with R. It is observed that
the range and shape are significantly extended due to increasing ω and γ.

Moreover, the graphs of curvature R against b are shown in Figure 5. The stability
region changed with various values of α, n, µ, and υ, and increased by increasing m and
Λ. Similarly, such a region increases by decreasing q, and also the plots are extended by
changing bothω and γ. Also, the stability region exists with ν < 0.5 and is unstable with
ν ≥ 0.5.
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Figure 4. The graphs of β versus b according to (a) m = 1, ω = 1, γ = 1, Λ = 1, R = 1,
q = 0, 0.1, 0.5, 1, (b) m = 1, R = 1, ω = 1, γ = 1, Λ = 0.1, q = 0, 0.1, 0.5, 1, (c) m = 0.5, R = 1,
ω = 1, γ = 1, Λ = 0.1, q = 0, 0.1, 0.5, 1, (d) ω = 1, m = 1, q = 1, R = 1, Λ = 0.1, γ = 1, 3, 5, 10,
(e) m = 1, q = 1, γ = 1, Λ = 0.1, R = 1, ω = 1, 3, 5, 10, and (f) m = 1, R = 1, ω = 1, γ = 1,
Λ = −1, q = 0, 0.1, 0.5, 1.

Afterward, the graphs of the potential ψ(b) versus b were plotted in Figure 6. The
stability regions exhibit a great extension by increasing the values of both m and q parame-
ters. Likewise, the stability configuration increases with decreasing Λ, and it also happens
due to changes to the parameters ω, γ, and R. The stability is significantly enhanced when
changing parameters µ, α, and υ, and this also happens when changing n.
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Figure 5. The graphs of R against b according to (a) m = 1, ω = 1, γ = 1, n = 1,α = 1,
µ = 1,ν = −1, Λ = 1, q = 0, 0.1, 0.5, 1, (b) m = 1, ω = 1, γ = 1, n = 1,α = 1,µ = 1,ν = −1,
Λ = 0.1, q = 0, 0.1, 0.5, 1, (c) m = 2, ω = 1, γ = 1, n = 1,α = 1,µ = 1,ν = −1, Λ = 1,
q = 0, 0.1, 0.5, 1, (d) m = 1, ω = 1, q = 1, n = 1,α = 1,µ = 1,ν = −1, Λ = 1, γ = 1, 5,
−1, −5, (e) m = 1, γ = 1, q = 1, n = 1,α = 1,µ = 1,ν = −1, Λ = 1, ω = 1, 5, −1, −5, and
(f) m = 1, γ = 1, q = 1, n = 1,α = 1,µ = 1, ω = 1, Λ = 1,ν = 0.1, 0.6, −1, −5.

Eventually, as is evident, the influence of the cosmological constant Λ, mass m, and
charge q increases the stability regions of the shell. Similarly, the presence of curvature R

and dark sources (γ, ω), as well as EoS parameters, may have a great impact on the stable
regions. It is worth noting that, from a comparison with [14], the influence of parameters in
the f (R) model and R increases the stability regions of the shell.
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 𝜓(𝑏) 𝑏 𝜎∘ = 1, 𝑏∘ = 1𝑚 𝜔 𝛾 α μ ν − Λ 𝑞 𝑚Figure 6. The graphs of ψ(b) against b according to σ◦ = 1, and b◦ = 1 for the following various
values (a) m = 1, ω = 1, γ = 1, R = 1, n = 1,α = 1,µ = 1,ν = −1, Λ = 1, q = 0, 0.1, 0.5, 1,
(b) m = 2, ω = 1, γ = 1, n = 1,α = 1,µ = 1,ν = −1, R = 1, Λ = 1, q = 0, 0.1, 0.5, 1, (c) m = 2, ω = 1,
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γ = 1, n = 1,α = 1,µ = 1,ν = −1, Λ = 0.1, R = 1, q = 0, 0.1, 0.5, 1, (d) m = 1,
ω = 1, q = 1, n = 1, γ = 1,µ = 1,ν = −1, R = 1, Λ = 1,α = 1, 5, −1, −5,
(e) m = 1, γ = 1, q = 1, ω = 1,α = 1,µ = 1, R = 1,ν = −1, Λ = 1, n = 0, 0.5, 1, 2,
(f) m = 1, γ = 1, q = 1, ω = 1,α = 1, n = 1,ν = −1, R = 1, R = 1, Λ = 1,µ = 0, 0.5, 1,
2, (g) m = 1, γ = 1, q = 1, n = 1,α = 1,µ = 1, ω = 1, R = 1, Λ = 1,ν = 0,−0.1, −0.5,
−1, (h) m = 1, γ = 1, q = 1, n = 1,α = 1,µ = 1, ω = 1, ν = −1, Λ = 1, R = 0, 1, 5, 10,
(i) m = 1, q = 1, n = 1,ν = −1,µ = 1, ω = 1, R = 1, Λ = 1,α = 1, γ = 0, 1, 5, 10, and
(j) m = 1, γ = 1, q = 1, n = 1,α = 1,µ = 1,ν = −1, R = 1, Λ = 1, ω = 0, 1, 5, 10.

4. Conclusions

In this article, the mechanical stability of Bardeen–de Sitter TSW was studied within
the context of f (R) theory by using the familiar quadratic–cubic type model. The main
focus point is stability, using Visser’s (cut-and-paste) approach and linear perturbations.
Furthermore, nonlinear EoS, such as variable MGCG, is considered to investigate the
stability analysis.

The solution is stable if ψ′′ (b◦) > 0, while the solution is unstable if ψ′′ (b◦) < 0 for
every b = b◦. Consequently, the presence of both stable and unstable configurations, which
are discussed numerically in Figures 1–6, depends on a suitable choice of various values
of Bardeen–de Sitter metric (m, q, Λ) parameters and the variable MGCG EoS (µ, ν, n, α)
parameters, as well as the dark source (γ, ω) parameters.

Finally, it is worth mentioning that the stability region is considerably enlarged by
increasing R, ω, and γ; also, it increases with increasing m, q, and Λ. Similarly, the effect of
variable EoS parameters (α, n, µ, υ) increases the stable configurations.
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