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I – Introduction

For a few decades, supersymmetry has been subjected to extensive theoretical and phe-
nomenological research in the field of high energy physics. Initially discovered as a possible
non–trivial extension of the Poincaré symmetry of interacting quantum field theories, it has
been met with considerable enthusiasm largely due to its several appealing characteristics,
such as the facts that it offers a stabilization of the hierarchy problem and that it predicts
the existence of new elementary particles, some of which hold the status of dark matter
particle candidates. Other than that, it has been been found to be a necessary ingredient of
the worldsheet construction of consistent string theories, with string theory, as a framework,
attracting significant scientific attention in its own right as a possible theory of quantum
gravity. Nevertheless, as of today, there has been no experimental evidence that supersym-
metry exists in nature. In this regard, new insights might be gained via a re–examination of
the breaking of supersymmetry, especially at low energy scales, given that the Large Hadron
Collider at CERN has already probed the range of several TeV.

Spontaneously broken N = 1 supersymmetry is nonlinearly realized at low energies. A
simple way to realize such a scenario is to consider a chiral superfield X with components
(x,G, F ), which correpond to a complex scalar, a fermion and an auxiliary complex scalar
respectively. At low energies, x becomes supermassive and decouples from the spectrum, or,
equivalently, a nilpotent constraint is imposed on X [1, 2, 3, 4]

X2 = 0 , (I.1)

whose solution is
x ∼ G2

F
. (I.2)

The constraint (I.1) thus eliminates x as a function of G, so that the final spectrum consists
of a single physical field, the fermion G. A general Lagrangian for the constrained X can
then be written with use of a Kähler potential and a superpotential that are quadratic and
linear in X respectively. Upon substituting for F via its equation of motion, one obtains a
Lagrangian for G that is on–shell [1, 5] the Volkov–Akulov Lagrangian [6] and (the action
corresponding to) it is invariant under the nonlinear transformation of G, which is a remnant
of the N = 1 invariance; G is thus identified with the Goldstino particle. To generalize
this description, supersymmetry is said to be nonlinearly realized when there is a linear
combination of fermions of the original theory that transforms nonlinearly and the fermionic
and the bosonic degrees of freedom of the final spectrum are unequal in number, as is the
case in the example of the constrained X.

Nonlinear realizations of supersymmetry have underwent substantial study in recent
years. To begin with, to accommodate couplings of X to other incomplete N = 1 mul-
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4 Chapter I. Introduction

tiplets, further contraints involving X and the latter have been proposed [4, 7], all of which
have been shown to arise from a single constraint imposed on X and another chiral multiplet,
upon suitable choice of the latter [7]. However, the constraint (I.1) does not universally de-
scribe the Goldstino multiplet at low energies: cases in which the Goldstino chiral multiplet
satisfies a weaker constraint, such as X3 = 0, in the presence of matter multiplets, have been
discovered [8, 9, 10].

Furthermore, the constraint (I.1) has been used to embed the Starobinsky model of R+R2

gravity [11], whose linearized version [12] is interestingly a model for single–field inflation
currently favoured by PLANCK data, in N = 1 supergravity [13], in such a way that N = 1
supersymmetry is nonlinearly realized during the inflationary phase [14]. In addition, in
[15], we couple the nilpotent Goldstino multiplet to N = 1 supergravity, which gives rise
to the super–Brout–Englert–Higgs mechanism, and show that the geometric formulation of
the coupling is pure N = 1 supergravity with its chiral curvature superfield R satisfying the
constraint

(R− λ)2 = 0 , (I.3)

where λ is an appropriate parameter, the special case λ = 0 of which was used in [14]. We
also show how the nilpotent constraint arises in a class of modified supergravity models of
the f(R) type at the low energy limit.

Another instance of nonlinear supersymmetry finds itself in particular vacua of type I
string theory, when D–branes are combined with anti–orientifold planes. In such setups there
exist a massless Goldstino in the open string spectrum but not the superpartners of brane
excitations [16, 17, 18, 19], so that supersymmetry is nonlinearly realized without taking the
low–energy limit. The string–theoretic origin of variousN = 1 superfield constraints in terms
of component fields has been widely under investigation, see for example [20, 21, 22, 23], but
a complete classification has not yet been given.

Nonlinear realizations may also appear in the case of N = 2 supersymmetry. Due to
the SU(2)–automorphism of its algebra, N = 2 may be viewed as a set of two N = 1
supersymmetries. If N = 2 is broken at two different energy scales, then one has to consider
first the partial breaking N = 2→ N = 1. This breaking is induced by means of “electric”
[24] and “magnetic” Fayet–Iliopoulos terms introduced at the Lagrangian level of a theory
of an N = 2 Maxwell multiplet W [25]. In terms of N = 1 superfields, the components of
W are a chiral multiplet X and a spinor multiplet W , which is the field–strength of a vector
multiplet; X and W transform to each other via the second N = 1 supersymmetry. The
coefficient of the magnetic FI term is a constant parameter that appears as

• a deformation of the superfield transformations under the second (upon an SU(2)–
rotation) N = 1 supersymmetry, such that the closure of the corresponding algebra is
maintained [26, 27, 28]

• a deformation of W itself, yielding a deformed Maxwell multiplet Wdef [29].

The first N = 1 supersymmetry remains intact, so that the final spectrum is organized in
multiplets of it, while the second N = 1 is nonlinearly realized, with the corresponding
Goldstino identified with the fermion whose transformation in the vacuum is proportional to
the deformation parameter. It is thus reasonable to refer collectively to a set of two N = 1
supersymmetries, one of which is linearly and the other nonlinearly realized, as nonlinear
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N = 2 supersymmetry. In the context of string theory, nonlinear N = 2 supersymmetry
appears in the case of D–branes in an N = 2 bulk.

At this point, it is important to highlight a qualitative difference between the breaking
N = 1 → N = 0 and the partial breaking N = 2 → N = 1. In the first case, the breaking
is generated by the vacuum expectation values of auxiliary fields, which can be either the
complex scalar F of a chiral multiplet, or the real scalar D of a vector multiplet [30]. In
the second case, F , its conjugate, and D also appear as the auxiliary fields of the Maxwell
superfield W, but in the form of an SU(2)–triplet. Due to this restriction, to generate
the partial breaking, magnetic parameters have to be introduced by hand and cannot be
absorbed in vacuum expectation values of the auxiliary fields. Moreover, there are three
possible N = 1 multiplets in which the Goldstino may reside: apart from the chiral and
the vector [25, 26, 31], it may also be part of the linear multiplet L [32], which additionaly
contains a real scalar and the field–strength of an antisymmetric tensor and, together with a
chiral superfield Φ, is naturally part of an N = 2 single–tensor multiplet Z [33, 34, 35, 36].

Now let us return to the partial breaking with the use ofW. At low energies, X becomes
supermassive and decouples from the spectrum, or, equivalently, a nilpotent constraint is
imposed on Wdef [28]

W2
def = 0 , (I.4)

whose lowest component is in fact a constraint of the type (I.1). The solution of (I.4)
determines X as a function of superspace derivatives of W [26] and the Lagrangian of the
remaining W contains, interestingly, the Born–Infeld Lagrangian of a D3–brane with gauge
coupling and tension that depend on the electric and the magnetic parameters respectively
[26, 28]. Upon coupling the constrainedWdef to anN = 2 single–tensor multiplet, it has been
discovered [29] that a novel version of the super–Brout–Englert–Higgs mechanism without
gravity takes place, via which W becomes massive by absorbing the linear multiplet and the
Born–Infeld Lagrangian aquires a coefficient depending on Φ. Importantly, since W and Z
have opposite chiralities under the second N = 1 supersymmetry, the coupling is formulated
with the use of a “long” representation Ẑ of the single–tensor mutiplet, which admits a gauge
transformation with another Maxwell multiplet playing the role of the corresponding gauge
parameter [29].

In [37], motivated by the above results, we formulate a new partial breaking mechanism
by means of a single–tensor multiplet, or, upon dualization via a Legendre transformation,
a hypermultiplet with a shift symmetry. Note that the hypermultiplet does not enjoy an
(off–shell) superfield description in the standard N = 2 superspace that we use, but instead
in harmonic superspace [38, 39]. We also formulate the mechanism with the use of several
single–tensor multiplets. In addition, we study the most general magnetic deformations of
W and Z and derive a simple criterion as to when partial breaking occurs. We determine
the infinite–mass limit in which a nilpotent constraint is imposed on Zdef

Z2
def = 0 , (I.5)

whose lowest component is again a constraint of the type (I.1). To couple Zdef to the Maxwell
multiplet, we construct a new and “long” representation Ŵ of the latter, which admits
two gauge transformations whose gauge parameters are two other independent single–tensor
multiplets. Moreover, we show that deformations of long representations can only induce
total or no breaking, but never partial, which implies that the only couplings relevant to



6 Chapter I. Introduction

nonlinear N = 2 supersymmetry are N = 2 superspace integrals of

Wdef Ẑ , ZdefŴ (I.6)

As the former was explored in [29], we study the latter and find that it results again in a
super–Brout–Englert–Higgs mechanism without gravity, which comes with the subtlety that
the real auxiliary field D in W is replaced by the divergence of a vector field in Ŵ. Finally,
we investigate further N = 2 contraints that describe incomplete matter multiplets.

These advances could also be relevant to the partial breaking in N = 2 supergravity. In
particular, the pure N = 2 supergravity multiplet consists of the graviton, two gravitinos
and a vector commonly referred to as the graviphoton. It has namely the following spin
content

(2, 3/2, 3/2, 1) (I.7)

so that after the partial breaking the spectrum consists of the (massless) N = 1 pure super-
gravity multiplet

(2, 3/2) (I.8)

and a massive spin–3/2 N = 1 multiplet

(3/2, 1, 1, 1/2) (I.9)

which has become massive by combining with a vector, two fermions and two scalars [40].
These Goldstone modes are precisely the degrees of freedom of the N = 1 chiral and vector
multiplets. As would–be Goldstone bosons, the scalars are associated with two shift sym-
metries. These observations have led to the on–shell formulation of the partial breaking in
N = 2 supergravity, with the use of (at least) a Maxwell multiplet and a hypermultiplet that
has two commuting isometries; the breaking is induced by means of a gauging, that is U(1)
in the minimal case, of the isometries of the hypermultiplet scalar manifold [41, 42, 43] and
more recently [44, 45, 46]. At the moment, we are investigating [47] the off–shell generaliza-
tion of these results, as well as the interactions of the Goldstone degrees of freedom of the
massive spin–3/2 multiplet, for which the progress made in [29, 37] might be of use.

A U(1) gauging, but in the simplest case of the U(1) subgroup of the SU(2)–automorphism
of N = 2 and not necessarily of the isometries of a scalar manifold, may induce partial break-
ing in supergravity in five dimensions. We are interested in this possibility in light of the
recently proposed clockwork mechanism [48, 49, 50], further devoloped in [51, 52, 53, 54]
followed by a growing literature in regard to applications, which is a novel way of generating
an exponential scale hierarchy. In its continuum version, the clockwork spacetime has five di-
mensions, and, interestingly, its metric is identical to the metric of a 5D spacetime, in which
a real scalar has a dilaton coupling to five–dimensional gravity and a runaway potential, and
its background value is linear in the extra dimension. Remarkably, this linear dilaton model
is a 5D toy model [55] of the holographic dual [56, 57, 58, 59] of 6D Little String Theory
[60, 61], which is obtained from type IIB string theory in the limit

gS → 0 , (I.10)

where gS is the string coupling, namely the exponential of the dilaton background value.
Since the holographic dual preserves bulk spacetime supersymmetry, the effective supergrav-
ity of the 5D toy model must be in the simplest scenario N = 2, D = 5.
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This is precisely the subject matter of [62], where we show that gauged N = 2, D = 5
supergravity can accomodate the 5D linear dilaton model, see also [63]. In particular, we
consider pure N = 2, D = 5 supergravity [64, 65, 66] coupled to one vector multiplet, which
contains a vector in 5D, a symplectic fermion SU(2)–doublet and a real scalar [67]. The
gauging of the U(1) subrgoup of SU(2) generates a scalar potential, as well as fermion masses
and interactions [68, 69]. We find that the potential of the real scalar is precisely the runaway
dilaton potential for a specific choice of the parameters of the model and demonstrate that
supersymmetry is partially broken in the linear dilaton background, such that N = 1 is
preserved on 4D slices (namely at fixed values of the extra dimension) of the 5D spacetime;
we also give the final expression of the total Lagrangian. The linear dilaton coefficient is
now proportional to the U(1) gauge coupling g and, using the results of [55], according to
which the Kaluza–Klein spectrum of the relevant 5D fields exhibits a mass gap followed by
a near continuum, we observe that the mass gap is also proportional to g. Moreover, in [70],
in view of phenomenological applications, we compactify the extra dimension and introduce
one brane at each of the boundaries, one of which may accomodate the Standard Model.
Interestingly, we find that the presence of the branes is compatible with the direction of
the N = 1 supersymmetry that remains unbroken after the gauging and does not break it
further.

To conclude, the research conducted towards this thesis may be found in the following
publications

• I. Antoniadis and C. Markou, The coupling of Non-linear Supersymmetry to Supergrav-
ity, Eur. Phys. J. C 75 (2015) no.12, 582,
which is given as is in the appendix F, as part of it was developed during the Master’s
thesis of C. Markou

• I. Antoniadis, J. P. Derendinger and C. Markou, Nonlinear N = 2 global supersymme-
try, JHEP 1706 (2017) 052,
which corresponds to (the whole or large part of) sections III.6, III.7, IV.2, IV.3, IV.4,
IV.5, IV.6, as well as appendices B and C of the present manuscript

• I. Antoniadis, A. Delgado, C. Markou and S. Pokorski, The effective supergravity of
Little String Theory, Eur. Phys. J. C 78 (2018) no.2, 146
which corresponds to section V.5

and in two pieces of yet unpublished work

• I. Antoniadis, J. P. Derendinger and C. Markou, in preparation

• I. Antoniadis, A. Delgado, C. Markou and S. Pokorski, in preparation
which corresponds to section V.6 and V.7.



II – Résumé détaillé en Français

Au cours des dernières décennies, la supersymétrie a fait l’objet de recherches théoriques et
phénoménologiques approfondies dans le domaine de la physique des hautes énergies. Ini-
tialement découverte comme une extension possible et non–banale de la symétrie de Poincaré
des théories quantiques et interagissantes des champs, elle a rencontré un enthousiasme con-
sidérable, en grand partie à cause de ses plusieurs caracteristiques attrayantes, comme les
faits qu’elle offre une stabilisation du problème de la hiérarchie et prédit l’existence de par-
ticules élémentaires nouvelles, dont certaines ont le statut de candidates à la matière noire.
En dehors de cela, elle s’est révélée comme un ingrédient nécessaire, au niveau de la sur-
face d’univers, de la construction des théories des cordes cohérentes, alors que la théorie des
cordes elle-même a attiré une grande attention scientifique comme une théorie possible de
la gravité quantique. Néanmoins, à ce jour, il n’y a eu aucune preuve expérimentale indi-
quant que la supersymétrie existe dans la Nature. À cet égard, de nouvelles perspectives
pourraient être tirées par un réexamen de la brisure de la supersymétrie, en particulier aux
basses énergies, étant donné que le grand collisionneur de hadrons du CERN a déjà sondé la
gamme d’énergie de plusieurs TeV.

La supersymétrie N = 1 spontanément brisée est non–linéairement réalisée aux basses
énergies. Une façon simple de réaliser un tel scénario est de considérer un superchamp chiral
X des composantes (x,G, F ), qui correspondent à un scalaire complexe, un fermion et un
scalaire complexe auxiliaire respectivement. Aux basses énergies, x devient supermassif et
découple du spectre, ou, en équivalence, une contrainte nilpotente est imposée à X [1, 2, 3, 4]

X2 = 0 , (II.1)

dont la solution est
x ∼ G2

F
. (II.2)

La contrainte (I.1) élimine donc x comme une fonction du G, de manière à ce que le spectre
final consiste en un seul champ physique, le fermion G. Un Lagrangien général pour le X
contraint peut être écrit en utilisant un potentiel de Kähler et un superpotentiel qui sont
quadratique et linéaire en X respectivement. En remplaçant F en utilisant son équation
du mouvement, on obtient un Lagrangien pour G qui est sur la couche de masse [1, 5] le
Lagrangien de Volkov–Akulov [6] et (l’action qui correspond à) il est invariant sous la trans-
formation non–linéaire de G, qui est un vestige de l’invariance N = 1; par conséquent, G est
identifié au Goldstino. Pour généraliser cette description, la supersymétrie est dite être non–
linéairement réalisée quand il y a une combinaison linéaire de fermions de la théorie originale
qui se transforme non–linéairement et les degrés de liberté fermioniques et bosoniques du
spectre final ne sont pas égaux, comme c’est le cas dans l’exemple du X contraint.
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Des réalisations non–linéaires de la supersymétrie ont été récemment soumises à d’importantes
études. Tout d’abord, pour décrire des couplages entre X et d’autres multiplets incomplets
de N = 1, des contraintes supplémentaires comprenant X et les dernières proposées [4, 7]
sont toutes constituées d’une seule contrainte imposée à X et un autre multiplet chiral choisi
de façon approprié [7]. Cependant, la contrainte (II.1) ne décrit pas toujours le multiplet du
Goldstino aux basses énergies: des cas dans lesquels le multiplet chiral du Goldstino satisfait
une contrainte plus faible, comme X3 = 0, en présence de multiplets de matière, ont été
découverts [8, 9, 10].

En plus, la contrainte (II.1) a été utilisée pour incorporer le modèle de Starobinsky de
la gravité R+R2 [11], dont la version linéarisée [12] sert curieusement comme un modéle de
l’inflation en un seul champ actuellement favorisé par le données de PLANCK, dans la super-
gravitéN = 1 [13], de telle manière que la supersymétrieN = 1 soit non–linéairement réalisée
pendant la phase de l’inflation [14]. En outre, dans [15], nous couplons le multiplet nilpotent
du Goldstino avec la supergravité N = 1, qui donne lieu à la version supersymétrique du
mécanisme de Brout–Englert–Higgs, et nous montrons que la formulation géométrique du
couplage est la supergravité N = 1 pure, où le superchamp chiral R de la courbure satisfait
la contrainte

(R− λ)2 = 0 , (II.3)

où λ est un paramètre approprié, dont le cas particulier λ = 0 a été utilisé dans [14]. Nous
montrons aussi comment la contrainte nilpotente survient dans une classe de modèles de la
supergravité f(R) modifiée dans la limite de basse énergie.

Un autre exemple de la supersymétrie non–linéaire se trouve aux vides particuliers dans la
théorie des cordes de type I, quand des D–branes sont combinées aux plans anti–orientifolds.
Dans de telles configurations, il existe un Goldstino (sans masse) dans le spectre des cordes
ouvertes, mais pas les superpartenaires des excitations des branes [16, 17, 18, 19], de sorte
que la supersymétrie soit non–linéairement réalisée sans prendre la limite de basse énergie.
L’origine, dans la théorie des cordes, de differents N = 1 superchamps contraintes en ter-
mes des composantes a été examinée comme par exemple dans [20, 21, 22, 23], mais une
classification complète est toujours absente de la littérature.

Les réalisations non–linéaires apparaissent aussi dans le cas de la supersymétrie N =
2. Grâce à l’automorphisme SU(2) de son algèbre, N = 2 peut être perçue comme une
collection de deux N = 1 supersymétries. Si N = 2 est brisée à deux échelles différentes,
on doit d’abord considérer la brisure partielle N = 2 → N = 1. Cette brisure est induite
par le mécanisme APT [25] au moyen de termes de Fayet–Iliopoulos “électriques” [24] et
“magnétiques” introduits au niveau du Lagrangien d’une théorie d’un multiplet N = 2 de
Maxwell W [24, 71]. En termes de superchamps de N = 1, les composantes du W sont un
multiplet chiral X et un multiplet spinoriel W , qui contient (la courbure de jauge) le champ
de Maxwell; X et W se transforment sous la deuxième supersymétrie N = 1 de paramètre
ηα comme décrit dans [28]

δ∗X =
√

2i ηW , δ∗X =
√

2i ηW

δ∗Wα =
√

2i
[

1
4ηαD

2
X + i(σµη)α ∂µX

]
δ∗W α̇ =

√
2i
[

1
4ηα̇D

2X − i(ησµ)α̇∂µX
]
.

(II.4)
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En plus, le superchamp de N = 2

W(y, θ, θ̃) = X(y, θ) +
√

2i θ̃W (y, θ)− 1
4 θ̃

2D
2
X(y, θ) , (II.5)

où θα et θ̃α sont les cordonnées de Grassmann de la première et de la deuxième supersymétrie
N = 1 respectivement, contient les degrés de liberté du multiplet de Maxwell. Un Lagrangian
général pour W peut être écrit en utilisant une fonction holomorphe F(W) comme

LMax = 1
2

∫
d2θ d2θ̃F(W) + h.c.

= 1
2

∫
d2θ

(
1
2F
′′(X)W 2 − 1

4F
′(X)D2

X
)

+ h.c.
(II.6)

où FX = ∂F/∂X.
Selon le mécanisme APT, pour effectuer la brisure partielle, il faut ajouter des termes de

Fayet–Iliopoulos électriques m2X et magnétiques M2FX

LMax,def = 1
2

∫
d2θ

[
1
2FXXWW − 1

4FXDDX +m2X − iM2FX
]

+ h.c. (II.7)

où m2 et M2 sont de paramètres complexes. Curieusement, l’action correspondant à (II.7)
n’est pas invariante sous (II.4), mais sous les transformations deformées de la deuxième
supersymétrie N = 1 [26, 28]

δ∗X =
√

2 i ηW

δ∗Wα = −
√

2M2 ηα +
√

2 i
[

1
4ηαDDX + i(σµη)α ∂µX

]
,

(II.8)

En parallèle, (II.7) peut être écrit comme

L = 1
2

∫
d2θ

[∫
d2θ̃F(Wdef ) +m2X

]
+ h.c. (II.9)

en utilisant le superchamp W déformé

Wdef = X +
√

2i θ̃W + θ̃θ̃

[
−iM2 − 1

4DDX

]
. (II.10)

Le coefficient du terme magnétique de FI est donc un paramètre constant qui apparaît comme

• une déformation des transformations des superchamps sous la deuxième supersymétrie
N = 1 (en général sous une rotation de SU(2)), de telle manière que l’algèbre super-
symétrique correspondante soit toujours fermée [26, 27, 28]

• une déformation de W lui-même [29].

La première supersymétrie N = 1 reste intacte, afin que le spectre final soit organisé en
multiplets, tandis que la deuxième N = 1 est non-linéairement realisée, et le Goldstino
correspondant est identifié au fermion dont la transformation dans le vide est proportionnelle
au paramètre de la déformation. Il est alors raisonnable d’appeler collectivement la collection
de deux supersymétriesN = 1, dont une est linéairement et l’autre non–linéairement realisée,
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comme de la supersymétrie N = 2 non–linéaire. Dans le cadre de la théorie de cordes, la
supersymétrie N = 2 non–linéaire apparaît dans le cas de D–branes dans un “bulk” de
N = 2.

À ce stade, il est important de souligner une différence qualitative entre la brisure N =
1 → N = 0 et la brisure partielle N = 2 → N = 1. Dans le premier cas, la brisure
est générée par des valeurs d’espérance du vide de champs auxiliaires, qui peuvent être
le champ complexe F d’un multiplet chiral, ou le scalaire réel D d’un multiplet vectoriel
[30]. Dans le deuxième cas, F , son conjugué et D apparaissent aussi comme les champs
auxiliaires du superchamp de Maxwell W, mais sous forme d’un triplet de SU(2). À cause
de cette restriction, pour générer la brisure partielle, des paramètres magnétiques doivent
être introduits à la main et ne peuvent pas être absorbés dans des valeurs d’espérance du
vide des champs auxiliaires. En plus, il y a trois multiplets N = 1 possibles dans lesquels le
Goldstino peut se trouver: en dehors du chiral et du vectoriel [25, 26, 31], il peut faire partie
du multiplet réel et linéaire L [32], qui est défini par les contraintes

L = L , D
2
L = D2L = 0 . (II.11)

Outre le Goldstino, L contient un scalaire réel et la courbure d’un tenseur antisymétrique
et, avec un superchamp chiral Φ, fait naturellement partie d’un multiplet simple–tenseur Z
de N = 2 [33, 34, 35, 36, 29].

Sous la deuxième supersymétrie, Φ et L transforment comme

δ∗Φ =
√

2i ηDL , δ∗Φ =
√

2i ηDL

δ∗L = − i√
2
(
ηDΦ + ηDΦ

)
.

(II.12)

En plus, le superchamp de N = 2 construit par Φ et L est

Z(z, θ, θ̃) = Φ(z, θ) +
√

2i θ̃DL(z, θ)− 1
4 θ̃

2
D

2Φ(z, θ), (II.13)

pour lequel un Lagrangien général peut être écrit comme

LST =
∫
d2θ d2θ̃ G(Z) + h.c.

=
∫
d2θ

(
1
2G
′′(Φ)(DL)(DL)− 1

4G
′(Φ)D2Φ

)
+ h.c.

(II.14)

en utilisant une fonction holomorphe G(Z).
Revenons maintenant à la brisure partielle en utilisantW. Aux basses énergies, X devient

supermassif et découple du spectre ou, de manière équivalente, une contrainte nilpotente est
imposée à Wdef [28]

W2
def = 0 , (II.15)

ou, en composantes,
XWα = X2 = 0

WW − 1
2XDDX − 2iM2X = 0 .

(II.16)

On peut remarquer qu’en multipliant la deuxième égalité de (II.16) avecWα ou X, on obtient
la première égalité. La solution de (II.16) détermine X comme une fonction des dérivés de
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superespace de W [26] et le Lagrangien de W qui reste contient, de manière intéressante, le
Lagrangien de Born–Infeld d’une D3–brane, dont le couplage de jauge et la tension dépendent
des paramètres électriques et magnétiques respectivement [26, 28]. Sur un couplage deWdef

contraint avec un multiplet simple–tenseur de N = 2, il a été découvert [29] qu’une version
nouvelle du mécanisme de super–Brout–Englert–Higgs sans la gravité a lieu, par lequel W
devient massif en absorbant le multiplet linéaire et le Lagrangien de Born–Infeld acquiert
un coefficient qui dépend de Φ. Notablement, étant donné que W et Z sont de chiralités
opposées sous la deuxième supersymétrie N = 1, le couplage est formulé en utilisant une
représentation “longue” Ẑ du multiplet simple–tenseur, qui a une transformation de jauge
dont le paramètre est un autre multiplet de Maxwell [29]. En composantes,

Ẑ = Y +
√

2 θ̃χ− θ̃θ̃
[ i
2Φ + 1

4DDY
]
, (II.17)

où Y est un superchamp chiral et χα et un superchamp spinoriel lié au L par

L = Dχ−Dχ . (II.18)

Dans [37], inspirés par ces résultats, nous formulons un mécanisme nouveau de la brisure
partielle en utilisant un multiplet simple–tenseur. Le Lagrangien prend la forme

LST,def = i

∫
d2θd2θ

[
−L2(WΦ −WΦ) + ΦW − ΦW

]
+
∫
d2θ

[
m̃2Φ + M̃2W

]
+ h.c.

(II.19)

où m̃2 et M̃2 sont des paramètres complexes et G′(Φ) = iW (Φ). L’action correspondant à
(II.19) est invariante sous la première, linéairement réalisée, supersymétrie N = 1 et sous les
transformations déformées

δ∗Φ =
√

2i ηDL , δ∗Φ =
√

2i ηDL

δ∗ L =
√

2 M̃2 (θη + θη)− i√
2(ηDΦ + ηDΦ)

(II.20)

de la deuxième N = 1 qui est donc non–linéairement réalisée. Il faut noter que la défor-
mation de la transformation d’un seul L a été trouvée [32] en intervertissant la chiralité des
transformations déformées d’un seul W . En analysant le vide de (II.20), nous trouvons dans
ce cas que

M̃2 6= 0 6= m̃2 , WΦΦ 6= 0 , (II.21)
la supersymétrie N = 2 est partiellement brisée et Φ devient massif, tandis que L reste sans
masse. Par conséquent, nous observons une correspondence claire entre(

X,FX(X)
)
et
(
Φ,W (Φ)

)
, (II.22)

sous une inversion de la chiralité de Lorentz qui relie Wα à Dα̇L. Nous présentons aussi la
généralisation du mécanisme en utilisant plusieurs multiplets simple–tenseur.

Après dualisation par une transformation de Legendre, nous obtenons la théorie duale
d’un hypermultiplet, contenant Φ et un autre superchamp chiral T , qui a une symétrie de
shift de T

Ldual =
∫
d2θ

[
− i2WΦ(DH̃T )(DH̃T )− i

4WDDΦ + m̃2Φ + M̃2W

]
+ h.c. (II.23)
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dont l’action est invariante sous les transformations déformées

δ∗Φ = −
√

2i ηD H̃T , δ∗Φ = −
√

2i ηD H̃T ,

δ∗H̃T = −
√

2 M̃2 (θη + θη) + i√
2(ηDΦ + ηDΦ) ,

(II.24)

où
H̃T = − i2

T + T

WΦ −WΦ
. (II.25)

Nous remarquons que l’hypermultiplet n’a pas de description en superchamps (hors de la
couche de masse) dans le superespace ordinaire de N = 2 que nous utilisons, mais dans le
superespace harmonique [38, 39].

En plus, nous étudions les déformations les plus générales de W

Wnl = A2θθ +B2θ̃θ̃ + 2Γθθ̃ (II.26)

et de Z
Znl = Ã2 θθ + B̃

2
θ̃θ̃ , (II.27)

où les paramètres A2, Ã2, . . . sont en général complexes, et nous en déduisons que la brisure
partielle peut avoir lieu à condition que les relations

Γ = ±AB (II.28)

et
Ã2 = 0 ou B̃2 = 0 (II.29)

soient satisfaites. Nous déterminons la limite de masse infinie dans laquelle une contrainte
nilpotente est imposée au Zdef

Z2
def = 0 , (II.30)

ou en composantes

Φ = − 2(DL)(DL)

4B̃
2
−DDΦ

=⇒ ΦDα̇L = Φn = 0 (n ≥ 2) . (II.31)

Pour coupler Zdef au multiplet de Maxwell, nous construisons une représentation nouvelle
et “longue” Ŵ de ce dernier

Ŵ = U +
√

2 θ̃Ω− θ̃
2
[
i

2X + 1
4D

2
U

]
, (II.32)

où U est un superchamp chiral et Ωα est un superchamp chiral spinoriel

Ωα̇ = Dα̇L (II.33)

qui est lié à Wα = −1
4D

2
DαV par

V = 2(L + L) . (II.34)
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Nous notons que W est lié à Ŵ par

W = − i2 D̃
2
Ŵ + i

2 D
2Ŵ (II.35)

et que Ŵ a deux transformations de jauge dont les paramètres sont d’autres superchamps
simple–tenseur indépendants. Nous montrons que des déformations des représentations
longues peuvent induire une brisure totale mais pas une partielle, ce qui implique que les
couplages pertinents de la supersymétrie N = 2 non–linéaire sont des intégrales dans le
superespace N = 2 des

Wdef Ẑ , ZdefŴ . (II.36)

Comme le premier a été exploré dans [29], nous étudions le dernier et nous trouvons
qu’il donne lieu de nouveau à un mécanisme de super–Brout–Englert–Higgs sans gravité. En
particulier, le couplage

εµνρσH
νρσAµ , (II.37)

entre le tenseur antisymétrique bµν de courbure Hµνρ du L et le champ Aµ de jauge du
multiplet de Maxwell, donne une masse à Aµ. Le spectre final consiste en un multiplet
vectoriel qui absorbe le multiplet linéaire en devenant massif, et un multiplet chiral qui reste
sans masse. Contrairement à [29], il y a une subtilité concernant l’équation du mouvement
du champ auxiliaire dans la représentation longue du multiplet de Maxwell, parce que le
champ auxiliaire réel D de W est remplacé par la divergence d’un champ vectoriel dans Ŵ.
Enfin, nous étudions d’autres contraintes N = 2 qui décrivent des multiplets incomplets de
matière.

Ces avances pourraient être utiles pour la brisure partielle de la supergravité N = 2. Le
multiplet de la supergravité N = 2 pure comprend le graviton, deux gravitinos et un vecteur
connu comme le graviphoton. Il a donc le contenu de spin suivant

(2, 3/2, 3/2, 1) , (II.38)

de sorte qu’après la brisure partielle le spectre contienne le multiplet de la supergravité
N = 1 pure (sans masse)

(2, 3/2) (II.39)

et un multiplet de N = 1 de spin–3/2 massif

(3/2, 1, 1, 1/2) (II.40)

qui est devenu massif par une combinaison d’un vecteur, deux fermions et deux scalaires [40].
Ces modes de Goldstone sont associés à deux symétries de shift. Ces observations ont conduit
à la formulation sur la couche de masse de la brisure partielle dans la supergravité N = 2,
un utilisant (au moins) un multiplet de Maxwell et un hypermultiplet qui a deux isométries
commutatives; un jaugement, qui est U(1) dans le cas minimal, des isométries de la variété
des scalaires de l’hypermultiplet génère la brisure partielle [41, 42, 43] et plus récemment
[44, 45, 46]. Actuellement, nous explorons [47] la généralisation hors de la couche de masse
de ces résultats, ainsi que les interactions des degrés de liberté de Goldstone du multiplet du
spin–3/2 massif, pour laquelle le progrès réalisé dans [29, 37] pourrait être pertinent.

Un jaugement U(1), mais dans le cas minimal du sous–groupe U(1) de l’automorphisme
SU(2) de N = 2 et pas forcement des isométries d’une variété de scalaires, peut donner lieu
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à la brisure partielle en cinq dimensions. Nous nous sommes intéressés à cette possibilité à
la lumière d’un mécanisme nouveau qui génère une hiérarchie des échelles exponentielle, le
mécanisme du “clockwork”, récemment proposé [48, 49, 50] et ensuite développé dans [51, 52,
53, 54], suivi par une littérature de plus en plus abondante en ce qui concerne les applications.
Dans sa version dans le continu, l’espace–temps du clockwork a cinq dimensions, et, de façon
intéressante, sa métrique est identique à la métrique d’un espace–temps 5D, dans lequel
un scalaire réel a un couplage du dilaton à la gravité en cinq dimensions et un potentiel
“runaway”, et sa valeur moyenne est une fonction linéaire de la dimension supplémentaire.
Remarquablement, ce modèle du dilaton linéaire est un modèle 5D [55] du dual holographique
[56, 57, 58, 59] de la “Little String Theory” en six dimensions, [60, 61], qui est obtenue par
la théorie de cordes du type IIB dans la limite

gS → 0 , (II.41)

où gS est le couplage de cordes, à savoir l’exponentielle de la valeur moyenne du dilaton Φ.
Le modèle 5D est décrit par le Lagrangien

e−1LLST = e
−
√

3Φ
M

3/2
5
(1

2M
3
5R+ 3

2(∂Φ)2 − Λ
)
, (II.42)

où M5 est la masse de Planck en cinq dimensions et Λ est une constante. Puisque le dual
holographique préserve la supersymétrie du “bulk”, la supergravité effective du modèle 5D
doit être dans le cas minimal N = 2, D = 5.

Ceci est précisement le sujet de [62], dans lequel nous montrons que la supergravitéN = 2,
D = 5 jaugée peut incorporer le modèle 5D du dilaton, voir aussi [63]. En particulier, nous
considérons la supergravité N = 2, D = 5 pure [64, 65, 66] couplée à un multiplet vectoriel
qui contient un vecteur en cinq dimensions, un spineur symplectique qui est un doublet λi
de SU(2) et un scalaire réel [67]. Le jaugement du sous–groupe U(1) de SU(2) génère un
potentiel scalaire, ainsi que des masses de fermions et des termes d’interactions [68, 69].
Nous trouvons que le potentiel du scalaire réel est exactement le potentiel du dilaton de
(II.42) (après une transformation conforme) pour un choix approprié des paramètres et nous
montrons que la supersymétrie est partiellement brisée, parce que, à cause de la valeur
moyenne du dilaton linéaire, les composantes de λi transforment comme

δ̃
(
λ1 − iΓ5λ2

)
= 0

δ̃
(
λ1 + iΓ5λ2

)
∼ ε2 − iΓ5ε1 ,

(II.43)

où εi est le paramètre de la supersymétrie N = 2. Par conséquent, la combinaison λ1 + iΓ5λ2
correspond au Goldstino et la combinaison orthogonale correspond à la supersymétrie N = 1
qui reste intacte en quatre dimensions. Nous donnons aussi l’expression finale du Lagrangien
total.

Le coefficient du dilaton linéaire est proportionnel au couplage g de jauge de U(1) et,
en utilisant les résultats de [55], selon lesquels le spectre de Kaluza–Klein des champs 5D
démontre un écart de masse suivi approximativement par un continu, nous observons que
l’écart de masse est aussi proportionnel à g. La totalité des zéro modes forment les multiplets
de N = 1 suivants:
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• Le multiplet de la supergravité N = 1 pure (sans masse), qui contient le graviton 4D
et la combinaison linéaire ψ1

µ − iΓ5ψ2
µ des gravitinos en quatre dimensions.

• Un multiplet massif de N = 1 de spin–3/2, dont la masse est controlée par g. Il consiste
en la combinaison linéaire orthogonale des gravitinos ψ1

µ+ iΓ5ψ2
µ en quatre dimensions,

qui obtient une masse en absorbant le Goldstino λ1 + iΓ5λ2, ainsi que deux champs de
spin–1 et un de spin 1/2 massifs.

• Les degrés de liberté qui restent se trouvent dans un multiplet de spin–1 et un de
spin–1/2 de N = 1 sans masse.

Finalement, pour des applications phénoménologiques, dans [70] nous effectuons la com-
pactification de la dimension supplémentaire y sur un orbifold S1/Z2, aux points fixes duquel
nous introduisons deux branes de tensions V1 et V2, à savoir à y = 0 et à y = L respective-
ment. La partie bosonique de l’action sans les termes qui contiennent des champs de matière
est

Sdil =
∫
d5x

[√
−ge−

√
3Φ
(

1
2R+ 3

2(∂Φ)2 − Λ
)

−
√
−g1e

−α1ΦV1δ(y)−
√
−g2e

−α2ΦV2δ(y − L)
] (II.44)

où les paramètres α1, α2 sont en général arbitraires. Nous trouvons que le Modèle Standard
peut être introduit sur les deux branes et que la présence des branes est compatible avec la
direction de la supersymétrie N = 1 qui reste intacte après le jaugement et ne la brise pas.



III – Linear N = 2, D = 4 global
supersymmetry

III.1 N = 2 superspace
For a large part of the present thesis it will be convenient to write an N = 2 superfield in
terms of two N = 1 superfields; we thus start by explaining the construction in question,
following the approach of [28, 29]. N = 1 supersymmetry is generated by the fermionic
conserved charge Qα and its conjugate Qα̇ that satisfy the anticommutation relation

{Qα, Qα̇} = −2i (σµ)αα̇∂µ . (III.1)

Some useful N = 1 superspace identities may be found in appendix A. Consider now two
N = 1 superfields Vx, x = 1, 2. Under N = 1 supersymmetry, which relates the components
of V1 (or V2) to each other, the superfields transform as

δVx = (εQ+ εQ)Vx , (III.2)

where ε is the N = 1 supersymmetry parameter. Moreover, one may define the covariant
derivatives (that act as N = 1 superspace differential operators)

Dα ≡ ∂α − i(σµθ)α∂µ , Dα̇ ≡ ∂α̇ − i(θσµ)α̇∂µ , (III.3)

where
∂α ≡

∂

∂θα
, ∂α̇ ≡

∂

∂θ
α̇ , ∂µ ≡

∂

∂xµ
(III.4)

which satisfy the anticommutation relation

{Dα, Dα̇} = −2i (σµ)αα̇∂µ (III.5)

while
{Qα, Dβ} = {Qα̇, Dβ̇} = {Qα, Dβ̇} = 0 . (III.6)

The relations (III.6) allow us then to define a second N = 1 supersymmetry generated by
Dα and Dα̇, under which Vx transform as

δ∗V1 = (a ηD − a ηD)V2 , δ∗V2 = −(b ηD − b ηD)V1 , (III.7)

where a, b are complex numbers and η is the parameter of the second N = 1 supersymmetry.
Using the closure relation

[δ∗1 , δ∗2 ]V1 = −2i (η1σ
µη2 − η2σ

µη1)∂µV1 =
(
η1{D,D}η2 − η2{D,D}η1

)
V1 , (III.8)

17
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one finds that ab = 1. For convenience, we set

a = − i√
2

, b = −
√

2i . (III.9)

Note that in the above construction the SU(2)–covariance that arises as an automorphism
of N = 2 supersymmetry is no longer manifest.

Now let us turn to the superspace expression of N = 2 superfields. N = 2 superspace
[72] is defined by the coordinates

(
xµ, θi, θ

i), where xµ is the standard four–dimensional
spacetime coordinate as in (III.4) and θi is an SU(2)–doublet the contains two Grassmann
coordinates. Setting

θ1 = θ , θ2 = θ̃ , (III.10)

we may view θ and θ̃ as the Grassmann coordinates corresponding to the first and to the
second N = 1 supersymmetry respectively, which comprise the full N = 2. Note that, in a
similar fashion, theN = 2 supersymmetry parameter may be thought of as an SU(2)–doublet
consisting of ε and η. One may then define the covariant derivatives

D̃α ≡ ∂̃α − i(σµθ̃)α∂µ , D̃α̇ ≡ ∂̃α̇ − i(θ̃σµ)α̇∂µ , (III.11)

where
∂̃α ≡

∂

∂θ̃α
, ∂̃α̇ ≡

∂

∂θ̃
α̇ , (III.12)

as well as the coordinates

yµ ≡ xµ − iθσµθ − iθ̃σµθ̃ , yµ = xµ + iθσµθ + iθ̃σµθ̃

zµ ≡ xµ − iθσµθ + iθ̃σµθ̃ , zµ = xµ + iθσµθ − iθ̃σµθ̃ .
(III.13)

It is thus straightforward to see that

Dα̇y
µ = D̃α̇y

µ = 0 , Dα̇z
µ = D̃αz

µ = 0 , (III.14)

so that yµ is chiral under both N = 1 supersymmetries, while zµ is chiral under the first and
antichiral under the second N = 1 supersymmetry. Consequently, we can write the following
types of N = 2 superfields using N = 2 superspace:

• the “CC” superfield Z, that is chiral under both N = 1 supersymmetries

Z = Z(y, θ, θ̃) , Dα̇Z = D̃α̇Z = 0 (III.15)

• the “CA” superfield U , that is chiral under the first and antichiral under the second
N = 1 supersymmetry

U = U(z, θ, θ̃) , Dα̇U = D̃αU = 0 (III.16)

as well as their conjugate superfields, that are AA and AC respectively. These N = 2
superfields can be expanded in θ̃ or θ̃ according to their chirality and the components of
these expansions are N = 1 superfields transforming to each other via (III.7).
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III.2 N = 1 superfields

In the following, we briefly review several (independent) N = 1 superfields, mainly to set
our conventions. They will be promoted to N = 1 superfields belonging to N = 2 superfields
later on. As a reference we use [73] unless stated otherwise. Chiral N = 1 superspace is
defined by the coordinates (ỹµ, θ), where

ỹµ ≡ xµ − iθσµθ . (III.17)

All degrees of freedom (“d.o.f.”) given are counted off–shell.

• The chiral superfield, 4B + 4F

A (left-handed) chiral superfield X is defined by the constraint

Dα̇X = 0 (III.18)

which yields the following expansion in terms of component fields

X(ỹ, θ) = x(ỹ) +
√

2θκ(ỹ)− θ2F (ỹ) , (III.19)

where x and F are complex scalars (x is not to be confused with the superspace coordi-
nate xµ and F is the auxiliary) and κα is a left–handed Weyl spinor. The supersymmetry
transformations are

δx =
√

2εκ

δκα = −
√

2Fεα −
√

2i(σµε)α∂µx

δF = −
√

2i(∂µκσµε) .

(III.20)

• The complex linear superfield [74], 12B + 12F

The complex linear superfield L is defined by the constraint

D
2
L = 0 , (III.21)

which yields the following expansion in terms of component fields

L(x, θ, θ) = Φ(x, θ, θ)− θω(x)− θσµθ Vµ(x) + i
2θ

2θλ(x)

− i
2θ

2
θσµ∂µω(x) + i

2θ
2θ

2
∂µVµ(x) ,

(III.22)

where Φ is an N = 1 chiral superfield, ωα and λα are Weyl spinors and Vµ is a complex
vector, which at this point is not necessarily related to a gauge symmetry.

• The vector superfield, 8B + 8F → 4B + 4F

The vector or real superfield V is defined by the constraint

V (x, θ, θ) = V (x, θ, θ) (III.23)
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and its gauge transformation is given by a chiral superfield φ:

δgV = φ+ φ , (III.24)

under which the real vector Aµ, that is the θσµθ component of V , transforms as

δgAµ = −i∂µ(z − z) , (III.25)

where z is the lowest component of φ. In the Wess–Zumino (“WZ”) gauge, the expansion of
V reads

V (x, θ, θ) = θσµθ Aµ(x) + iθ2 θλ(x)− iθ2
θλ(x) + 1

2θ
2θ

2
D(x) , (III.26)

where λα is a Weyl spinor and D is an auxiliary real scalar, yielding 4B + 4F in total.

• The chiral spinor superfield [74, 75], 8B + 8F → 4B + 4F

A chiral spinor superfield χα is a left–handed Weyl spinor superfield that satisfies the con-
straint

Dα̇χα = 0 (III.27)

and its gauge transformation is given by a vector superfield Π:

δgχα = − i4D
2
DαΠ , (III.28)

under which the real antisymmetric tensor bµν , that is the θ component of χα, transforms as

δgbµν(x) = 2∂[µΛν](x) , (III.29)

where Λµ(x) is the vector field of Π. In a choice of gauge similar to the WZ gauge, the
expansion of χα reads

χα(ỹ, θ) = −1
4θαC(ỹ) + 1

4(θσµσν)α bµν(ỹ) + i

2θ
2 ϕα(ỹ) , (III.30)

where C is a real scalar and ϕα is a left–handed Weyl spinor, yielding 4B + 4F in total. Note
that (III.30) contains no auxiliary fields.

As an example, consider the chiral spinor superfield Wα, commonly utilized in order to
write a kinetic Lagrangian for V . Wα is defined as

Wα = −1
4D

2
DαV , (III.31)

which is gauge invariant under (III.24). Note, however, that Wα does not admit a gauge
transformation of the form (III.28) in the case of abelian gauge theories, but using (III.31),
(III.28) can be written as

δgχα = iWα , (III.32)

so that the gauge transformation of the spinor superfield χα is controlled by another, gauge–
invariant, spinor superfield that is related to an abelian vector multiplet. Notice also that,
due to (III.31), Wα satisfies the Bianchi identity

DW = DW , (III.33)
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which does not hold for a generic χα. In the WZ gauge, the expansion of Wα reads

Wα(ỹ, θ) = −iλα(ỹ) + θαD(ỹ)− i

2(θσµσν)αFµν(ỹ)− θ2(σµ∂µλ(ỹ))α , (III.34)

where
Fµν(ỹ) ≡ ∂µAν(ỹ)− ∂νAµ(ỹ) . (III.35)

In this gauge, Wα contains 4B + 4F as V .

• The real linear superfield [74, 75], 4B + 4F

The real linear superfield L is defined by the constraints

L = L , D
2
L = D2L = 0 , (III.36)

which yield the following expansion in terms of component fields

L(x, θ, θ) = C(x) + iθϕ(x)− iθϕ(x) + θσµθ υµ(x)

+1
2θ

2∂µϕ(x)σµθ + 1
2θ

2
θσµ∂µϕ(x) + 1

4θ
2θ

2
2C(x)

(III.37)

where C is a real scalar, ϕα is a Weyl spinor and υµ is a real vector satistfying

∂µυµ = 0 , (III.38)

which is a direct consequence of (III.36). Notice that the expansion (III.37) contains no
auxiliary fields. Let us also note that, up to a constant, the solution of (III.38) is

υµ = 1
2εµνρσ∂

νbρσ ≡ 1
6εµνρσH

νρσ , (III.39)

where bµν is a real antisymmetric tensor. This implies that Hµνρ is the field–strength of
bµν and is invariant under the gauge variation (III.29). Importantly, using the constraints
(III.27) and (III.36), the real linear superfield can be written in terms of a spinor superfield
as

L = Dχ−Dχ . (III.40)

Obviously, L is gauge invariant under (III.28).

III.3 The Maxwell multiplet

The Maxwell or gauge multiplet [24, 71] of N = 2, D = 4 supersymmetry contains a complex
scalar x, a fermion SU(2)–doublet λi and a gauge field Aµ. SU(2)–indices are lowered and
raised using the conditions

λi = εjiλ
j , λi = εijλj (III.41)

and their position indicates the chirality of the spinors, conventionally set as

λi = PLλi , λi = PRλ
i . (III.42)
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Note that spinor indices are here implicit. On–shell counting of the degrees of freedom (d.o.f.)
yields 4B + 4F , but off–shell gives 5B + 8F , which means that the off–shell representation
of the multiplet must contain three auxiliary bosonic d.o.f. The latter can be viewed as
components of an SU(2)–triplet, which we denote by the real vector ~Y or Y x, where x =
1, 2, 3. Equivalently, the auxiliary d.o.f. can be viewed as components of symmetric 2 × 2
matrices Y ij given by

Y ij = ~τ ij · ~Y , (III.43)

that satisfy the “reality” condition

Y ij ≡ εikεjlYkl = (Yij)∗ , (III.44)

with
~τ ij = εik~τ j

k ≡ iε
ik~σ j

k = ~τ ji , (III.45)

where ~σ j
i are the standard traceless hermitian SU(2) Pauli matrices, rendering the ~τ j

i

traceless and anti–hermitian.
The Maxwell multiplet has a superfield expression in terms of N = 1 superfields using

N = 2 superspace. To see this, we follow [28]. In particular, consider an N = 1 chiral X
and an N = 1 chiral spinor superfield Wα given by

Wα = −1
4D

2
DαV2 , (III.46)

where V2 is a vector superfield, so that Wα is gauge invariant under

δgV2 = Λc + Λc , (III.47)

where Λc is a chiral superfield. Now suppose that X and Wα are related under a second
N = 1 supersymmetry as follows

δ∗X =
√

2i ηW , δ∗X =
√

2i ηW

δ∗Wα =
√

2i
[

1
4ηαD

2
X + i(σµη)α ∂µX

]
δ∗W α̇ =

√
2i
[

1
4ηα̇D

2X − i(ησµ)α̇∂µX
]
.

(III.48)

Then, X and Wα form the N = 2 Maxwell multiplet, provided that X is invariant under a
gauge transformation involving the superpartner of Λc under the second N = 1 supersym-
metry. Using (III.7) and (III.48), one finds that

X = 1
2D

2
V1 , (III.49)

where V1 is a vector superfield. X is then invariant under the gauge transformation

δgV1 = Λl , (III.50)

where Λl is a real linear superfield. Note that Λc and Λl form an N = 2 single–tensor
multiplet that will be the subject of the next section.
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Moreover, the N = 2 superfield

W(y, θ, θ̃) = X(y, θ) +
√

2i θ̃W (y, θ)− 1
4 θ̃

2D
2
X(y, θ) , (III.51)

is gauge invariant
δgW = 0 (III.52)

under (III.47) and (III.50), it contains 8B + 8F d.o.f. and is CC. In particular, it contains
the degrees of freedom of the Maxwell multiplet upon requiring

W =
√

2θκ+
√

2θ̃λ− θ2F − θ̃2F +
√

2i θθ̃D + . . .

!=
√

2 θiλi − θiθjYij + . . .
(III.53)

and thus making the identification

λ1 = κ , λ2 = λ

Y11 = F , Y22 = F , Y12 = 1
i
√

2D .
(III.54)

A general Lagrangian for the Maxwell multiplet can be written with the use of a holo-
morphic function F(W) as

LMax = 1
2

∫
d2θ d2θ̃F(W) + h.c.

= 1
2

∫
d2θ

(
1
2F
′′(X)W 2 − 1

4F
′(X)D2

X
)

+ h.c.
(III.55)

To compute (III.55) in terms of component fields, we first calculate

W 2 = −λ2− 2i θλD+ λσµσνθ Fµν + θ2
(
D2− 1

2FµνF
µν − i

2FµνF̃
µν + 2i λσµ∂µλ

)
, (III.56)

where
F̃µν = 1

2ε
µνκλFκλ (III.57)

and
1
4D

2
X = F +

√
2i θσµ∂µκ+ θ2 2x . (III.58)

We then find that

LMax = 1
2F
′′(x)∂µx∂µx− 1

8F
′′(x)FµνFµν − i

8F
′′(x)FµνF̃µν

+ i
2F
′′(x)

(
λσµ∂µλ+ κσµ∂µκ

)
+ 1

2F
′′(x)

(
FF + 1

2D
2
)

+1
4F
′′′(x)

(
Fλ2 + Fκ2 + i√

2Dκλ
)

+
√

2
8 F

′′′(x)λσµσνκFµν + 1
8F
′′′′(x)κ2λ2 + h.c.

(III.59)

where we have explicitly written the four–fermion term and we have used the fact that

F ′(x)2x = −F ′′(x) ∂µx∂µx+ tot. deriv. (III.60)
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In order to break supersymmetry, one may in principle add the following terms to LMax

LFI = 1
2m

2
∫
d2θX + h.c. + ξ

∫
d2θd2θ V2 , (III.61)

wherem2 and ξ are a complex and a real parameter respectively, which we will be referring to
collectively as Fayet–Iliopoulos terms. The corresponding action is by construction invariant
under N = 2 supersymmetry. Note also that, using (III.49), the FI terms (III.61) can be
rewritten as

LFI =
∫
d2θd2θ

(
− 2 Re(m2)V1 + ξV2

)
+ tot. deriv. (III.62)

III.4 The single–tensor multiplet

The single–tensor multiplet [33, 34, 35, 36] of N = 2, D = 4 supersymmetry contains an
antisymmetric tensor bµν , three real scalar d.o.f. and two Weyl spinors ψα and φα, so that
2B auxiliary d.o.f. are needed in the off-shell construction. In terms of N = 1 superfields,
the totality of these d.o.f. is contained in a chiral superfield Φ with expansion

Φ = z +
√

2θψ − θ2f (III.63)

and in a real linear (gauge–invariant) superfield L whose expansion is given in (III.37). Notice
that ψα and φα do not form an SU(2)–doublet. Now suppose that Φ and L are related under
a second N = 1 supersymmetry as follows

δ∗Φ =
√

2i ηDL , δ∗Φ =
√

2i ηDL

δ∗L = − i√
2
(
ηDΦ + ηDΦ

)
.

(III.64)

A general N = 2 Lagrangian for Φ and L can then be written as

LST =
∫
d2θd2θH(L,Φ,Φ) , (III.65)

where H is a real function that must be a solution of the Laplace equation [34]

HLL + 2HΦΦ = 0 , (III.66)

where HLL ≡ ∂2

∂L2H and HΦΦ ≡
∂2

∂Φ∂ΦH, for the action corresponding to (III.65) to be
invariant under (III.64). In [37] we use such an example

H(L,Φ,Φ) = −L2 (iWΦ − iWΦ
)

+ iΦW − iΦW , (III.67)

where W is a function of Φ so that WΦ ≡ dW
dΦ . Then (III.65) becomes

LST =
∫
d2θ

[
i

2WΦ(DL)(DL)− i

4WD
2Φ
]

+ h.c. (III.68)

Moreover, the N = 2 superfield constructed from Φ and L [29]

Z(z, θ, θ̃) = Φ(z, θ) +
√

2i θ̃DL(z, θ)− 1
4 θ̃

2
D

2Φ(z, θ) (III.69)
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contains 8B + 8F d.o.f. and is CA. A general Lagrangian for Z can then be written with the
use of a holomorphic function G(Z) as

LST =
∫
d2θ d2θ̃ G(Z) + h.c.

=
∫
d2θ

(
1
2G
′′(Φ)(DL)(DL)− 1

4G
′(Φ)D2Φ

)
+ h.c.

(III.70)

so that
G′(Φ) = iW . (III.71)

To compute (III.70) in terms of components fields, we first calculate (in chiral coordinates)

Dα̇L = iϕα̇ − (θσµ)α̇
(
υµ + i∂µC

)
− θ2(∂µϕσµ)α̇

(DL)(DL) = −ϕ2 − 2i
(
υµ + i∂µC

)
θσµϕ

−θ2
[
2i (∂µϕ)σµϕ+ (υµ + i∂µC

)
(υµ + i∂µC

)]
1
4D

2Φ = f +
√

2i θσµ∂µψ + θ2 2z .

(III.72)

We then find that

LST = G′′(z) ∂µz∂µz − 1
2G
′′(z) (υµ + i∂µC

)
(υµ + i∂µC

)
+iG′′(z)

(
ψσµ∂µψ − (∂µϕ)σµϕ

)
+ G′′(z) ff

+1
2G
′′′(z)

(
fϕ2 + fψ2)

+ i√
2G
′′′(z) (υµ + i∂µC

)
ψσµϕ+ 1

4G
′′′′(z)ψ2ϕ2 + h.c.

(III.73)

Note that there is no term that couples ψα to ϕα as in (III.59), as the single–tensor multiplet
contains one real auxiliary d.o.f. less than the Maxwell multiplet. Other than that, (III.73)
can be obtained from (III.59) by performing a chirality inversion on ϕα and by replacing

F(x)→ 2G(z)
1
2Fµν(Fµν + iF̃µν)→ (υµ + i∂µC

)
(υµ + i∂µC

)
.

(III.74)

Furthermore, analogously to (III.61), in [37] we use the superpotential

L = m̃2
∫
d2θΦ + h.c. (III.75)

where m̃2 is a complex parameter, that may be added to LST . Obviously the action corre-
sponding to (III.75) is invariant under the first N = 1 supersymmetry. It is also invariant
under the second N = 1, since, using (III.64),

δ∗m̃2
∫
d2θΦ + h.c. = m̃2

∫
d2θ
√

2i ηDL+ h.c. = tot. deriv. (III.76)

where we have used the first of the expressions (III.72).
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Interestingly, there exists an alternative formulation of the single–tensor multiplet, in
terms of the chiral superfield Φ and an N = 1 spinor superfield χα, with the latter admitting
the gauge transformation (III.28)

δgχα = − i4D
2
DαV̂2 ≡ iWα,g , (III.77)

where V̂2 is a vector superfield, under which Φ is of course gauge invariant. In particular,
using (III.40) and (III.64), one finds the second N = 1 transformations [34]

δ∗χα = − i√
2Φ ηα

δ∗Φ = 2
√

2i
[

1
4 D

2
ηχ+ i∂µχσ

µη
]
.

(III.78)

However, additional degrees of freedom are needed in this representation [29]. More specifi-
cally, upon checking the closure relation (III.8) on χα, one finds

[δ∗1 , δ∗2 ]χα = −2i (η1σ
µη2 − η2σ

µη1)∂µχα

+ i
2D

2
Dα

(
iη1θ η2χ− iη1θ η2χ− iη2θ η1χ+ iη2θ η1χ

)
.

(III.79)

The existence of the second term in (III.79) implies that the algebra does not close on χα.
Note also that iη1θ η2χ−iη1θ η2χ−iη2θ η1χ+iη2θ η1χ is a vector superfield, which means that
the algebra closes on χα up to a gauge transformation of the latter. To restore the closure,
one may add a chiral superfield Y , with the second N = 1 transformations becoming

δ∗Y =
√

2 ηχ ,

δ∗χα = − i√
2Φ ηα −

√
2

4 ηαD
2
Y −

√
2i(σµη)α∂µY ,

δ∗Φ = 2
√

2i
[

1
4 D

2
ηχ+ i∂µχσ

µη
]
.

(III.80)

Note that this does not affect the transformation of L in (III.64), since

Dα
(
−
√

2
4 ηαD

2
Y +

√
2

2 ηα̇Dα̇DαY
)

+ h.c. = 0 . (III.81)

In addition, the superfields (Y , χα, Φ) can be viewed as components of an N = 2 CC
superfield Ẑ with expression [29]

Ẑ = Y +
√

2 θ̃χ− θ̃θ̃
[ i
2Φ + 1

4DDY
]
, (III.82)

which, as we point out in [37], is related to Z via

Z = − i2D̃
2Ẑ + i

2D
2
Ẑ . (III.83)

Moreover, it is natural to expect that the superpartner of iWα,g under the second N =
1 supersymmetry is a chiral superfield Xg; Xg and iWα,g form then an N = 2 Maxwell
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superfield Wg that acts a gauge parameter and generates the gauge trasformation of Ẑ [29],
namely

δgẐ =Wg , (III.84)

or, in components,
δgY = Xg , δχα = iWα,g , δgΦ = 0 . (III.85)

There exist thus two N = 2 superfields that describe the single–tensor multiplet: the gauge
invariant Z and the gauge varying Ẑ.

III.5 Dualization and the hypermultiplet

An antisymmetric tensor bµν whose field–strength υµ satisfies the constraint (III.38) can
be dualized to a real scalar that has a shift symmetry. To see this, let us write a general
gauge–invariant Lagrangian L for bµν

L = L(υµ)− σ(x)∂µυµ = L(υµ) + υµ∂µσ + tot. deriv. (III.86)

where L is a function of υµ and σ(x) is a real scalar field that plays the role of a Lagrange
multiplier that imposes the constraint (III.38). The e.o.m. of υµ is

∂L
∂υµ

= −∂µσ , (III.87)

which in principle can be solved to yield υµ = υµ(∂σ). Substituting this solution in L ,
one obtains the Legendre transform L̃ = L̃(∂σ) of L = L(υµ) that depends solely on ∂µσ.
Consequently, σ is massless and L̃ enjoys a shift symmetry

δshift σ(x) = c , (III.88)

where c is a real constant.
This duality is also true at the N = 1 level [34], namely a real linear superfield L that

contains the field-strength υµ of bµν can be dualized to a chiral superfield that contains a
real scalar with a shift symmetry instead. In particular, consider a general Lagrangian LL
for L

LL =
∫
d2θd2θL(L) , (III.89)

where L is a function of L. LL can be written as

LL =
∫
d2θd2θ

[
L(V )− (Q+Q)V

]
, (III.90)

where V and Q are a vector and a chiral superfield respectively. Note that (III.90) is invariant
under the shift symmetry

δshiftQ = ic , (III.91)

where c is a real constant. The e.o.m. of Q and its conjugate is

D
2
V = D2V = 0 , (III.92)
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so that Q and its conjugate play the role of Lagrange multipliers that impose the second of
the constraints (III.36) on V , thus rendering it a (real) linear superfield. Alternatively, the
e.o.m. of V is

L′(V ) = Q+Q , (III.93)

which in principle can be solved to yield V = V (Q+Q). Substituting this solution in (III.90),
one obtains the Legendre transform L̃ = L̃(Q + Q) of L = L(V ). L̃(Q + Q) enjoys a shift
symmetry under which one of the real d.o.f. of Q transforms as in (III.88) and is massless.

Similarly, a single–tensor multiplet with kinetic Lagrangian controlled by H(L,Φ,Φ) can
be dualized to a hypermultiplet with one shift symmetry [34]. A generic hypermultiplet
[24, 76] contains four scalars and two spin–1/2 fermions, that can be seen as components of
two N = 1 chiral superfields T and Φ. It does not, however, admit an off–shell description in
standard N = 2 superspace, there is namely no N = 2 superfield analogous to (III.69) that
corresponds to the hypermultiplet. This issue is associated with the fact that the N = 2
algebra allows for the existence of central charges. Nevertheless, there exists an off–shell
formulation for the hypermlutiplet in harmonic or projective superspace [38, 39]; yet this
implementation comes with the drawback that one has to introduce an infinite number of
auxiliary fields – we will not consider this case in the present thesis.

In regard to the dualization, the Legendre transform of H(L,Φ,Φ) is

H̃(T + T ,Φ,Φ) = H(V,Φ,Φ)− (T + T )V , (III.94)

where T and its conjugate play the role of Lagrange multipliers, with

HV (V,Φ,Φ) = T + T . (III.95)

H̃(T + T ,Φ,Φ) is then invariant under a shift symmetry of T and the kinetic Lagrangian is∫
d2θd2θ H̃ = −1

4

∫
d2θ

[
H̃T (T + T ,Φ,Φ)D2

T + H̃Φ(T + T ,Φ,Φ)D2Φ
]

+ · · ·+ h.c.

= −
∫
d2θ

[
H̃T (T + T ,Φ,Φ) θ22q1 + H̃Φ(T + T ,Φ,Φ) θ22q2

]
+ · · ·+ h.c.

= −
[
H̃T (q1) + H̃T (q2)

]
θ22q1 −

[
H̃Φ(q1) + H̃Φ(q2)

]
θ22q2

+ · · ·+ h.c.

= H̃TT ∂µq1∂
µq1 + H̃ΦT ∂µq2∂

µq1

+H̃TΦ ∂µq1∂
µq2 + H̃ΦΦ ∂µq2∂

µq2 + · · ·+ h.c.

(III.96)

where q1 and q2 denote the lowest components of T and Φ respectively and the dots stand
for terms not containing kinetic terms for q1 and q2. We thus identify the Hessian matrix
H̃′′ with the Kähler metric of the scalar manifold, namely the manifold whose coordinates
are the scalars q1 and q2.
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To find the analogue of (III.66) in this case, we first note that the solution of (III.95) is

V = V (T + T ,Φ,Φ) , (III.97)

with
VT ≡

∂V

∂T
, VT = ∂V

∂T
, VΦ ≡

∂V

∂Φ , VΦ = ∂V

∂Φ
. (III.98)

Then (III.95) yields

VΦ = −HV Φ
HV V

, VΦ = −
HV Φ
HV V

, VT = VT = 1
HV V

. (III.99)

Moreover,
H̃T = HV VT − V − (T + T )VT

H̃Φ = HΦ +HV VΦ − (T + T )VΦ ,
(III.100)

so that
H̃TT = − 1

HV V , H̃ΦΦ = HΦΦ −
HVΦHVΦ
HV V

H̃TΦ = H
VΦ
HV V , H̃ΦT = HVΦ

HV V .

(III.101)

Consequently, the determinant of the Kähler metric is given by

det
(
H̃′′
)
≡ H̃TT H̃ΦΦ − H̃TΦH̃ΦT = −

HΦΦ
HV V

, (III.102)

so, using (III.66), one finds that [34]

det
(
H̃′′
)

= 1
2 , (III.103)

which is a nonlinear 2nd order PDE of complex Monge–Ampère type. As a result, super-
symmetry imposes the constraint (III.103) on H̃, or, equivalently, the constraint (III.66) on
H. Moreover, the Ricci tensor of the Kähler manifold is given by

RIJ = −∂I∂J
[

log det
(
H̃′′
)]
, (III.104)

where ∂I (∂J) denotes derivation with respect to T or Φ (T or Φ). Using (III.103), one finds
that

RIJ = 0 , (III.105)
so the conclusion is that the scalar manifold is Ricci–flat. This property of the scalar manifold
of hypermultiplets in global supersymmetry is universal [77].

Finally, in [37] we use the particular example (III.67), so, with the replacement L→ V ,
we have that

HV = −2iV (WΦ −WΦ) , (III.106)
so (III.95) yields

V = i

2
T + T

WΦ −WΦ
. (III.107)

Substituting (III.107) in (III.94), we find that

H̃(T + T ,Φ,Φ) = − i4
(T + T )2

WΦ −WΦ
+ iΦW − iΦW . (III.108)
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III.6 A new Maxwell superfield
In this section, the formulation of a new N = 2 superfield that describes the Maxwell
multiplet is presented, which is part of: I. Antoniadis, J. P. Derendinger and C. Markou,
Nonlinear N = 2 global supersymmetry, JHEP 1706 (2017) 052.

The CC Maxwell superfield may be written as

W = − i2 D̃
2
Ŵ + i

2 D
2Ŵ , (III.109)

where Ŵ is a CA superfield. It is obvious that the relation (III.109) respects the chirality of
W. Generically

Ŵ = U +
√

2 θ̃Ω− θ̃
2
[
i

2X̂ + 1
4D

2
U

]
, (III.110)

where U and X̂ are chiral N = 1 superfields and Ωα̇ an N = 1 chiral spinor superfield. Using
(III.109), the components of Ŵ will be written in terms of the components ofW. First, note
that (the right–handed) Ωα̇ can be written as

Ωα̇ = Dα̇L , Ωα = −DαL , (III.111)

where L is a complex linear N = 1 superfield. We then find

1
4 D̃

2
Ŵ = i

2X̂ + 1
4D

2
U +

√
2i θ̃σµ∂µΩ + θ̃22U

1
4 D

2
Ŵ = 1

4D
2
U +

√
2

4 θ̃D
2Ω− θ̃2

[
− i

8D
2
X̂ + 1

16D
2
D2U

]
.

(III.112)

Substituting (III.112) in (III.109) and comparing with (III.51), we make the identifica-
tions

X̂
!= X

2(σµ∂µΩ)α + i
2D

2Ωα
!= iWα .

(III.113)

Using (III.5), (III.46) and (III.111), the second of equations (III.113) takes the form

− 1
2 D

2
Dα(L + L) != −1

4 D
2
DαV2 , (III.114)

which yields
V2 = 2(L + L) , (III.115)

which, using (III.22) and (III.26), gives

Aµ = −4 Re Vµ , D = −4∂µ Im Vµ . (III.116)

Moreover, the components of Ŵ transform under the second N = 1 supersymmetry as

δ∗U =
√

2 ηΩ,

δ∗Ωα̇ = − i√
2

[
X ηα̇ + iDα̇(ηDU + ηDU)

]
,

δ∗X = 2
√

2i
[1
4DDηΩ− i ησµ∂µΩ

]
.

(III.117)
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In addition, using (III.109), (III.113) and (III.115), we find that W is invariant under the
following gauge transformation of Ŵ

δgŴ = Zg , (III.118)

where Zg is a CA single–tensor superfield with components (Φg, iLg) that acts as a gauge
parameter and generates the transformation. In terms of component fields, (III.118) acts as

δgU = Φg , δgΩα̇ = iDα̇Lg , δgX = 0 . (III.119)

However, using (III.111) and (III.115), we observe that V2 does not transform under (III.119),
since

δgL = iLg ⇒ δgV2 = 0 , (III.120)

which is not (III.47). This means that the transformation (III.119) is not to be identified
with the standard gauge transformation of the Maxwell multiplet. To find the latter, we first
derive the transformations (III.117) in terms of the fields (U , L, V1):

δ∗U =
√

2 ηD L

δ∗L = i√
2
ηD V1 + 1√

2
(ηDU + ηDU)

δ∗V1 = − i√
2

(ηD + ηD) 2(L + L) .

(III.121)

Consequently, the combination of the transformations (III.47), (III.50) and (III.119) is
given by

δgU = Φg , δgL = 1
2Λc +iLg , δgV1 = Λl . (III.122)

Therefore, we conclude that the Maxwell multiplet admits two gauge variations that are
generated by two independent single–tensor multiplets: the standard Maxwell gauge trans-
formations generated by (Λl,Λc), which leave both W and Ŵ invariant, and another gauge
transformation generated by Zg, which leaves only W invariant. Finally, note that, in the
gauge U = 0, the second N = 1 algebra closes on L

[δ∗1 , δ∗2 ] L = −2i (η1σ
µη2 − η2σ

µη1) ∂µL

−i
[
i(η2Dη1D − η1Dη2D)L− i(η2Dη1D − η1Dη2D)L

] (III.123)

up to a gauge transformation of L, since i(η2Dη1D−η1Dη2D)L−i(η2Dη1D−η1Dη2D)L is a
real linear superfield. Thus, very similarly to the construction of the single–tensor multiplet
in terms of (Y , χα, Φ), the formulation of the Maxwell multiplet in terms of X and Ωα

necessitates the use of U . To summarize, the Maxwell multiplet can also be described by a
CA superfield Ŵ, alternatively to the CC W.



32 Chapter III. Linear N = 2, D = 4 global supersymmetry

III.7 The BF interaction

An antisymmetric tensor bµν may interact with a gauge field Aµ via the welll–known BF
term

εµνκλbµνFκλ , (III.124)

that is obviously invariant under the gauge transformation (III.29). Note that, upon du-
alization of bµν to a real scalar with a shift symmetry, the coupling (III.124) becomes a
Chern–Simons term multiplied by the derivative of the scalar. The N = 1 supersymmetriza-
tion of the BF term can be written [28, 29] in terms of the supefields L and V2 as

−g
∫
d2θd2θ LV2 = 1

2g
(
− CD + λϕ+ λϕ− υµAµ

)
= 1

2g
(
− CD + λϕ+ λϕ− 1

4ε
µνκλbµνFκλ

)
+ tot. deriv.

(III.125)

or, using (III.31) and (III.40), in terms of the χα and Wα

−g
∫
d2θd2θ LV2 = g

∫
d2θ χW + h.c. + tot.deriv. (III.126)

The BF term is thus accompanied by fermion interactions at the N = 1 level. Recalling
that L and Wα are gauge invariant, note that both descriptions are gauge–invariant under
(III.24) and (III.28), since∫

d2θd2θ LδgV2 = −1
4

∫
d2θD

2(LΛc) + h.c. + tot. deriv. = tot. deriv. (III.127)

or, equivalently,∫
d2θWδgχ+ h.c. = − i4

∫
d2θWD

2
DΠ + h.c. = tot. deriv. (III.128)

where we have performed a partial integration with respect to the derivative Dα̇ and its
conjugate.

The N = 2 supersymmetrization of the BF term can be written in terms of the CC
superfields W and Ẑ [28, 29]

LBF = ig

∫
d2θ d2θ̃WẐ + h.c.

= g

∫
d2θ

(
1
2XΦ + χW

)
+ h.c. + tot. deriv.

= −1
2g(xf + xf + zF + zF + κψ + κψ)

−1
8g εµνρσB

µνF ρσ − 1
2gCD + gλϕ+ gλϕ+ tot. deriv.

(III.129)

since
ig

∫
d2θd2θ (Y X +XY ) + h.c. = 0 . (III.130)
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Alternatively, in [37] we use the CA superfields Ŵ and Z as

LBF = ig

∫
d2θ d2θ̃ ŴZ + h.c.

= g

∫
d2θ

(
1
2XΦ + ΩDL

)
+ ig

∫
d2θd2θ (UΦ + ΦU) + h.c. + tot. deriv.

= g

∫
d2θ

(
1
2XΦ +DLDL

)
+ h.c. + tot. deriv.

= −1
2g(xf + xf + zF + zF + κψ + κψ)

−1
8g εµνρσB

µνF ρσ + 2g C∂µ Im Vµ + gλϕ+ gλϕ

−g ∂µϕσµω − g ωσµ∂µϕ+ tot. deriv.

(III.131)

where we have used that

ig

∫
d2θd2θ (UΦ + ΦU) + h.c. = 0 . (III.132)

The terms of the last line of (III.131) do not appear in (III.129) simply because, in computing
(III.131), we have used the full expansion (III.22) of L, while, in computing (III.129), we
have used the gauge–fixed expansion (III.34) of Wα.

Consequently, the supersymmetrization of the BF term (at the action level) does not
depend on U and Y . Note also that the actions corresponding to (III.131) and (III.129) are
gauge invariant under (III.118) and (III.84) respectively, since, for any pair of CC Maxwell
multiplets W1, W2 and for any pair of CA single–tensor multiplets Z1, Z2, the terms

Im
∫
d2θ

∫
d2θ̃W1W2 and Im

∫
d2θ

∫
d2θ̃Z1Z2

are total derivatives.



IV – Nonlinear N = 2, D = 4 global
supersymmetry

IV.1 The APT mechanism
Initially, it was thought that global N = 2 supersymmetry cannot be partially broken to
N = 1. The standard argument [78] for this no–go theorem was that the relation

H =
∑
α

Q2
αi , (IV.1)

where H is the Hamiltonian of the theory, which is a direct consequence of the N = 2
supersymmetry algebra (without central charges)

{Qαi, Q
j
α̇} = 2δji σ

µ
αα̇Pµ (IV.2)

with generators Qαi, where i = 1, 2 is the SU(2) index, implies that, if one N = 1 super-
symmetry is unbroken, then the other N = 1 must remain unbroken as well, since

Qα1|0〉 = 0 ⇒ H|0〉 = 0 ⇒ Qα2|0〉 = 0 . (IV.3)

A way to circumvent the no–go theorem in question is to realize that the algebra (IV.2)
is not the algebra of partially broken N = 2 supersymmetry. To see this, recall that the
conserved charges Qαi are determined by the supercurrents Jαi µ as

Qαi =
∫
d3~xJαi 0 , (IV.4)

a fact that offers an alternative expression for (IV.2), upon integrating over infinite volume

{Qjα̇,Jαi ν} = 2δji σ
µ
αα̇Tµν + S.T. (IV.5)

where Tµν is the energy–momentum tensor of the theory and S.T. stands for Schwinger terms
that do not appear in (IV.2) due to the integration. Notice now that one may modify (IV.5)
as

{Qjα̇,Jαi ν} = 2δji σ
µ
αα̇Tµν + σναα̇C

j
i + S.T. (IV.6)

since Tµν + Cηµν is conserved as Tµν is, namely the theory does not have a unique energy–
momentum tensor. However, integration of the term σναα̇C

j
i yields an infinity in (IV.2).

These observations where first made in [79, 80], where also the first instance of a realization

34
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of (IV.6) was discovered in the context of string theory, in which N = 2 is partially broken
on a four–dimensional membrane propagating in six dimensions.

Moreover, the APT model [25] was the first mechanism discovered that implements the
partial breaking using superspace techniques and a single Maxwell multiplet, but not string
theory. In particular, it was shown that the FI terms (III.61) are not sufficient to induce the
partial breaking; one needs to further add the term

M2FX , (IV.7)

where M2 is a complex parameter and FX = F ′(X), such that, using (III.55) and (III.61),
the total Lagrangian for a single Maxwell multiplet becomes

LMax,def = 1
2

∫
d2θ

[
1
2FXXWW − 1

4FXDDX +m2X − iM2FX
]

+h.c. + ξ

∫
d2θd2θ V2 .

(IV.8)

Interestingly, the action corresponding to (IV.8) is not invariant under (III.48), but it is
under the deformed second N = 1 supersymmetry variations [26, 28]

δ∗X =
√

2 i ηW

δ∗Wα = −
√

2M2 ηα +
√

2 i
[

1
4ηαDDX + i(σµη)α ∂µX

]
,

(IV.9)

according to which the fermion λα that resides in Wα transforms nonlinearly and is thus
identified with the Goldstino. Partial breaking arises if the following conditions hold: the
theory is interacting, FXXX 6= 0, M2 6= 0 6= m2 and ξ = 0, there is namely an N = 1
vacuum and the final spectrum consists of a massless N = 1 vector and a massive N = 1
chiral multiplet.

Alternatively, the APT model was written as [25]

LA = i

4

∫
d2θ d2θ̃[F(A)−ADA] + 1

2( ~E · ~Ω + ~M · ~YD) + h.c. (IV.10)

where A is a general N = 2 chiral superfield and AD is an N = 2 chiral superfield that
satisfies the reducing constraint

(εijDiσµνD
j)2AD = −962AD . (IV.11)

namely AD is a Maxwell superfield. AD plays the role of a Lagrange multiplier and its
equation of motion imposes (F.11) on A, namely A becomes a Maxwell superfield. ~Ω and
~YD correspond to the auxiliary fields of A and AD respectively and, by construction, the ~YD
satisfy the reality condition (III.44), while the ~Ω generically do not. The terms containing ~E
and ~M , which are three–component vectors (with complex and real parameters as compo-
nents respectively), are Fayet–Iliopoulos terms for A and AD that have been added for the
partial breaking. The latter occurs for non–zero ~E and ~M and in that case one can show
that [42]

Cji ∼ V δ
j
i + ~σji · (Re ~E × ~M) , (IV.12)

where V is the scalar potential of the theory. The APT model thus realizes precisely the
algebra (IV.6).
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In the remaining sections of the present chapter, the material presented is part of: I.
Antoniadis, J. P. Derendinger and C. Markou, Nonlinear N = 2 global supersymmetry,
JHEP 1706 (2017) 052, with occasional references to other literature.

IV.2 A new partial breaking mechanism
In the following, we present a new mechanism that implements the partial breaking of global
N = 2 supersymmetry by utilizing a single–tensor multiplet. First, let us consider a generic
N = 1 function W of the chiral superfield Φ of the single–tensor multiplet. Then under the
second N = 1 supersymmetry transformations (III.64), we have that

δ∗
∫
d2θW (Φ) =

√
2i
∫
d2θWΦ ηDL , (IV.13)

which is not a total derivative unless W (Φ) is linear in Φ. Moreover, we observe that the
following N = 1 equalities hold

DD (θη L) = −2 ηDL = DD (θηL+ θηL) , (IV.14)

so that, up to a total derivative, (IV.13) can be written as

δ∗
∫
d2θW (Φ) + h.c. = 2

√
2i
∫
d2θd2θ

[
WΦ −WΦ

]
(ηθ + ηθ)L . (IV.15)

We now add the generic generic superpotential

M̃2W (Φ) , (IV.16)

where M̃2 is a complex parameter, to (III.68) and (III.75), so that the Lagrangian for the
single–tensor multiplet takes the form

LST,def =
∫
d2θ

[ i
2WΦ (DL)(DL)− i

4W DDΦ + m̃2Φ + M̃2W
]

+ h.c.

= i

∫
d2θd2θ

[
−L2(WΦ −WΦ) + ΦW − ΦW

]
+
∫
d2θ

[
m̃2Φ + M̃2W

]
+ h.c.

(IV.17)

The action corresponding to (IV.17) is then invariant under the first, linearly realized,
N = 1 supersymmetry as well as under a second N = 1 that is nonlinearly realized. The
transformations corresponding to the latter are a deformed version of (III.64), namely

δ∗Φ =
√

2i ηDL , δ∗Φ =
√

2i ηDL

δ∗ L =
√

2 M̃2 (θη + θη)− i√
2(ηDΦ + ηDΦ) .

(IV.18)

Note that according to (IV.18)

δ∗Dα̇L = −
√

2 M̃2ηα̇ +
√

2i
[1

4ηα̇DDΦ− i(ησµ)α̇ ∂µΦ
]
, (IV.19)
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which implies that the spinor ϕα̇ in Dα̇L transforms nonlinearly and is thus to be identified
with the Goldstino. Moreover, δ∗Φ is not deformed, since

δ∗def LST = −i
√

2 M̃2
∫
d2θWΦ ηDL+ h.c. = −M̃2 δ∗

∫
d2θW (Φ) + h.c. (IV.20)

Notice that LST,def depends on two complex numbers, the deformation parameter M̃2 and
the parameter m̃2 in the linear N = 2 superpotential. In fact, the transformations (IV.18) for
the N = 1 linear multiplet were first found by performing a chirality switch on the deformed
transformations of the N = 1 Maxwell multiplet [32]. For an alternative derivation of
(IV.17), see the appendix B.

We now analyze the vacuum of the theory. The terms of (IV.17) involving auxiliary fields
are given by

Laux. = i(WΦ −WΦ)ff − m̃2f − M̃2WΦf − m̃
2
f − M̃

2
WΦf

− i2WΦΦ[f ψψ + f ϕϕ] + i

2WΦΦ[f ψψ + f ϕϕ] = −V + Lferm.
(IV.21)

so that the following scalar potential is generated

V = 1
i(WΦ −WΦ)

∣∣∣m̃2 + M̃2WΦ
∣∣∣2 , (IV.22)

to which L does not contribute. Moreover, the fermion mass terms are given by

Lferm. = −1
2M̃

2WΦΦ ψψ −
1
2
[
m̃2 + M̃2WΦ

] WΦΦ

WΦ −WΦ
ψψ + h.c.

−1
2
[
m̃2 + M̃2WΦ

] WΦΦ
WΦ −WΦ

ϕϕ+ h.c.
(IV.23)

We thus distinguish the following cases:

1. M̃2 = m̃2 = 0: N = 2 supersymmetry remains intact and linearly realized and all
fields are massless.

2. M̃2 = 0, m̃2 6= 0, WΦΦ = 0 (this last equality implies that the theory is canonical,
namely free): the potential is an irrelevant constant V ∼ |m̃|4 so that, again, N = 2
supersymmetry remains intact and linearly realized and all fields are massless.

3. M̃2 = 0, m̃2 6= 0, WΦΦ 6= 0 (namely the theory is not free): N = 2 breaks completely
to N = 0 with

〈f〉 = − m̃
2

2 Im〈WΦ〉
. (IV.24)

The theory has a vacuum state if 〈WΦΦ〉 = 0 has a solution, fermions remain then
massless and the splitting of scalar masses is controlled by 〈WΦΦΦ〉.

4. M̃2 6= 0, m̃2 = 0, WΦΦ 6= 0 : again N = 2 breaks completely to N = 0 with

〈f〉 = − M̃
2
〈WΦ〉

2 Im〈WΦ〉
. (IV.25)
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5. M̃2 6= 0 6= m̃2, WΦΦ 6= 0: The minimum of the potential (IV.22) is at

〈WΦ〉 = − m̃
2

M̃2
, 〈f〉 = 0 . (IV.26)

The linear superfield L remains massless, while the canonically normalized mass of Φ
is given by

M2
Φ = M̃2M̃

2 ∣∣∣∣ 〈WΦΦ〉
2 Im〈WΦ〉

∣∣∣∣2 . (IV.27)

Note that the scalar kinetic metric is −2 Im〈WΦ〉, which imposes Im〈WΦ〉 < 0. We
conclude that N = 2 breaks partially to N = 1. In principle, Φ can acquire a very
large mass by adjusting 〈WΦΦ〉 and decouple from the massless L.

Finally, comparing the Lagrangian (IV.8) to (IV.17), as well as and the deformed transfor-
mations (IV.9) to (IV.18), we observe that there is clearly a correspondence between(

X,FX(X)
)
and

(
Φ,W (Φ)

)
, (IV.28)

upon a Lorentz chirality inversion relating Wα to Dα̇L. Notice, however, that, due to the
absence of auxiliary fields in L, there is no “electric” FI term in (IV.17) analogous to the ξD
term in (IV.8).

Since the single–tensor multiplet can be dualized to a hypermultiplet with a shift sym-
metry, we now perform the dualization to find a partial breaking mechanism that makes use
of a single hypermultiplet. We thus use the Legendre transform (III.94), with H(V,Φ,Φ)
given by (III.67) with V in the place of L, so that equation (III.95) takes the form

T + T = HV = −2iV (WΦ −WΦ) . (IV.29)

Using (IV.29), the first of equations (III.100) is written as

H̃T = −V = − i2
T + T

WΦ −WΦ
. (IV.30)

The dual hypermultiplet theory is then

Ldual = i

∫
d2θd2θ

[
−1

4
(T + T )2

WΦ −WΦ
+WΦ−WΦ

]
+
∫
d2θ

[
m̃2Φ + M̃2W

]
+ h.c.

=
∫
d2θ

[
− i2WΦ(DH̃T )(DH̃T )− i

4WDDΦ + m̃2Φ + M̃2W

]
+ h.c.

(IV.31)
up to a total derivative. Since the superpotential depends on Φ only, the auxiliary component
fT of T does not contribute to the scalar potential. Its field equation

(WΦ −WΦ)fT − (T + T )WΦΦfΦ = 0 (IV.32)

is actually the θθ component of the duality relation (IV.29). The ground state in the partially
broken phase is again given by the relations (IV.26) with, in addition due to (IV.32),

〈fT 〉 = 0 . (IV.33)
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To find the analogue of (IV.18), notice first that, on–shell, the relations (IV.29) and
(IV.30) take the form

HL = T + T , H̃T = −L , (IV.34)

and are consistent using the field equations for L and T ,

DDDαHL = 0 , DDH̃T = 0 , (IV.35)

as integrability conditions. The N = 1 theory (IV.31) is then also invariant, up to a super-
space derivative, under a second, nonlinearly realized, N = 1 supersymmetry with transfor-
mations

δ∗Φ = −
√

2i ηD H̃T , δ∗Φ = −
√

2i ηD H̃T ,

δ∗H̃T = −
√

2 M̃2 (θη + θη) + i√
2(ηDΦ + ηDΦ) .

(IV.36)

This can be shown either by direct check, or by substituting for L via the second of the duality
relations (IV.34) in the deformed transformations (IV.18) of the single–tensor multiplet.
Notice that T appears implicitly in (IV.36) via H̃T . Note also that the second of equations
(IV.35) guarantees that δ∗H̃T and δ∗Φ are a linear and a chiral superfield respectively.

IV.3 The deformed Maxwell multiplet
In the previous sections, we have seen that a necessary condition for the partial breaking is
the appearance of a specific type of a FI coefficient, that can also be viewed as a deforma-
tion parameter of the transformations corresponding to the broken and nonlinearly realized
supersymmetry. However, in [29] it was shown that this deformation parameter can also be
thought of as a deformation of the CC Maxwell superfield W itself. Here we will study the
most general deformations of W that result in partial breaking. In particular, consider W
deformed by

Wnl = A2θθ +B2θ̃θ̃ + 2Γθθ̃ (IV.37)

where A, B, Γ are complex parameters, such that

Wdef =W +Wnl . (IV.38)

Indeed, (IV.37) are the most general deformations when it comes to the breaking, since
the fermions of W are its θi components, which implies that the deformations should be
introduced as the highest components of Wdef , were it for a fermion to be identified with a
Goldstino.

Identifying
Wnl

!= (Y2 + iY1) θθ + (Y2 − iY1) θ̃θ̃ − 2iY3 θθ̃ , (IV.39)

which yields
~Y =

(
− i2[A2 −B2], 1

2[A2 +B2], iΓ
)
, (IV.40)

we find that, under N = 2, the fermions of Wdef transform as

δκα =
√

2(A2εα + Γηα) + . . .

δλα =
√

2(B2ηα + Γεα) + . . .
(IV.41)
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where the dots stand for terms not involving the deformation parameters. By requiring that
one and only one linear combination of fermions transforms nonlinearly, we find that N = 2
is partially broken to N = 1 under the condition that

Γ = ±AB , (IV.42)

for which Wnl = (Aθ ±Bθ̃)2 and

δ(Bκα ∓Aλα) = 0 . (IV.43)

If (IV.42) holds, then the triplet (IV.40) does not satisfy the reality condition (III.44), which
implies that the deformation parameters cannot be absorbed in the vacuum expectation
values of F and D. This means that the vacuum expectation values of the auxiliary fields
cannot induce partial breaking.

Using an SU(2) rotation, one may set 0 = Y3 = iΓ. Partial breaking occurs then in the
following equivalent cases:

• if A = 0, for which λα is identified with the Goldstino, or

• if B = 0, for which κα is identified with the Goldstino.

Without loss of generality, we only consider the first case in which [29]

Wdef = X +
√

2i θ̃W + θ̃θ̃

[
B2 − 1

4DDX

]
, (IV.44)

for which (III.55) and (III.61) give

L = 1
2

∫
d2θ

[∫
d2θ̃F(Wdef ) +m2X

]
+ h.c.+ ξ

∫
d2θd2θ V2

= 1
4

∫
d2θ

[
FXXWW − 1

2FXDDX + 2m2X + 2B2FX
]

+ h.c.
(IV.45)

Note that this is precisely the case (IV.8), with B2 = −iM2.
Since 〈F 〉 = 〈D〉 = 0, the mass terms of the fermion κα in X are

−B
2

4 〈FXXX〉κκ−
B

2

4 〈FXXX〉κκ

and the mass of the canonically normalized X is

MX = B2 〈FXXX〉
2 Re〈FXX〉

. (IV.46)

X can thus decouple from Wα in the infinite–mass limit

〈FXXX〉 → ∞ , Re〈FXX〉 = constant . (IV.47)

Notice that the requirement in (IV.47), which is due to the fact that ReFXX is the kinetic
metric, disproves the claim made in [81].The field equation of X in the limit (IV.47) yields
the constraint

WW − 1
2XDDX + 2B2X = 0 , (IV.48)



IV.3 The deformed Maxwell multiplet 41

which was first given in [26]. Multiplying (IV.48) by Wα or X gives

XWα = X2 = 0 , (IV.49)

so that, in N = 2 language, the constraint (IV.48) is equivalent to [29]

W2
def = 0 . (IV.50)

The solution of (IV.48), and thus of (IV.50), was first given in [26]. In our conventions,
it is

X = −W
2

2B2

[
1−D2

(
W

2

4B4 + a+ 4B4
√

1 + a
2B4 + b2

16B8

)]
, (IV.51)

where

a = 1
2(D2W 2 +D

2
W

2) , b = 1
2(D2W 2 −D2

W
2) . (IV.52)

The bosonic part of lagrangian (IV.45) then takes the form

L|bos = 8m2B2
(
1−

√
1− 1

B4 (−FµνFµν + 2D2)− 1
4B8 (FµνF̃µν)2

)
. (IV.53)

The equation of motion for D is then
D = 0 , (IV.54)

and, substituting back into (IV.53), one arrives at [26], [28]

L|bos = 8m2B2
(
1−

√
1 + 1

B4FµνFµν − 1
4B8 (FµνF̃µν)2

)
= 8m2B2

(
1−

√
−det

(
ηµν −

√
2

B2Fµν
) )
.

(IV.55)

Note that if ξ 6= 0 in (III.61), the equation of motion for D becomes

− 2
B4D

2 = − ξ2

ξ2+2·162m4

(
1 + 1

B4FµνF
µν − 1

4B8 (FµνF̃µν)2
)
, (IV.56)

and substituting back to (IV.53), the latter becomes

L|bos = 8m2B2
(

1−
(
1 + ξ2

4·8·16m4

)√
1− 1

B4 (−FµνFµν + 2D2)− 1
4B8 (FµνF̃µν)2

)

= 8m2B2
(
1−

√
1 + ξ2

83m4

√
−det

(
ηµν −

√
2

B2Fµν
) )
.

(IV.57)
Comparing with (IV.55), we observe that the only difference is that the prefactor of the
Born–Infeld Lagrangian becomes dependent on ξ.
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IV.4 The deformed single–tensor multiplet
We now repeat the procedure described in the previous section for the single–tensor multiplet.
Again, the fermions of Z are its θi components, so

Zdef = Z + Znl (IV.58)

with
Znl = Ã2 θθ + B̃

2
θ̃θ̃ , (IV.59)

where Ã2 and B̃2 are complex parameters. Interestingly, there are only two, and not three
deformation parameters, as opposed to (IV.37) in the case of the Maxwell multiplet, because
θαθ̃α̇ is a space–time vector. This can be traced back to the fact that Z has two real auxiliary
d.o.f. and not an SU(2)–triplet, as W. The fermions of Zdef transform then as

δψα =
√

2 (Ã2 − f) εα + . . .

δϕα = −
√

2 (B̃2 + f) ηα + . . .
(IV.60)

As will become clear below after the analysis of the scalar potential, partial breaking occurs
in the following two cases:
• B̃2 = 0, for which ψ the Goldstino, or

• Ã2 = 0, for which ϕ is the Goldstino.
Finally, just as in the case of the Maxwell multiplet, a vacuum expectation value of f cannot
induce partial breaking.

A generic lagrangian for Zdef is

L =
∫
d2θ

[∫
d2θ̃ G(Zdef ) + m̃2 Φ

]
+ h.c. (IV.61)

and contains the following terms

Llin.,aux. = [G′′(z) + G′′(z)] ff +
[

1
2G
′′′(z)[f ψψ + f ϕϕ]− m̃2 f

]
−G′′(z)

[
B̃

2
f + Ã2 f + Ã2B̃

2]
− 1

2G
′′′(z)

[
B̃

2
ψψ + Ã2 ϕϕ

]
+ h.c.

(IV.62)

The e.o.m. of f is thus

2 [ReG′′(z)] f = G′′(z)B̃
2

+ G′′(z)Ã
2

+ m̃2 − 1
2G
′′′(z)ϕϕ− 1

2G
′′′(z)ψψ , (IV.63)

so that the scalar potential and the fermion bilinear terms read respectively

V (z, z) = 1
2 ReG′′

∣∣∣B̃2 G′′ + Ã2 G′′ + m̃
2∣∣∣2 + 2 Re[Ã2B̃

2
G′′],

Lferm. = 1
2ψψ

[ G′′′

2 ReG′′ (B̃
2
G′′ + Ã

2
G′′ + m̃2)− B̃

2
G′′′
]

+ h.c.

+1
2ϕϕ

[ G′′′

2 ReG′′ (B̃
2
G′′ + Ã

2
G′′ + m̃2)− Ã

2
G′′′
]

+ h.c.

(IV.64)

and do not depend on the real scalar C, which corresponds to a flat direction of the potential.
We then distinguish the following cases:
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1. ÃB̃ = 0: then in an N = 1 vacuum we must have

〈V 〉 = 0 ⇒ 〈B̃
2
G′′ + Ã

2
G′′ + m̃2〉 = 0 (IV.65)

which, using (IV.63), gives
〈f〉 = 0 . (IV.66)

To have partial breaking, Ã and B̃ cannot be equal to zero simultaneously, which
requires that m̃2 6= 0, given that 〈G′′〉 6= 0. Without loss of generality, we choose
Ã = 0, B̃ 6= 0, in which case the mass terms of z and ψα are

2〈ReG′′〉
[
MΦMΦ zz −

1
2MΦψψ −

1
2MΦ ψψ

]
,

so that the mass of Φ is

MΦ = B̃
2
〈G′′′〉

2〈ReG′′〉 . (IV.67)

Note that this is precisely the case (IV.17), with B̃
2

= −iM̃2; in this particular case

L =
∫
d2θ

[∫
d2θ̃ G(Zdef ) + m̃2 Φ

]

=
∫
d2θ

[
1
2 GΦΦ (DL)(DL)− 1

4GΦDDΦ− i M̃2 GΦ + m̃2 Φ
]

+ h.c.
(IV.68)

2. ÃB̃ 6= 0: then the first of equations (IV.64) implies that in general

〈V 〉 6= 0 , (IV.69)

so N = 2 is totally broken.

Using the deformed single–tensor superfield, we can also present a mechanism in which
several single–tensor multiplets induce the partial breaking. In particular, let us consider a
set of N deformed multiplets Zadef , where a = 1, . . . , N , namely

Zadef = Φa +
√

2i θ̃DLa − 1
4 θ̃θ̃

[
4i(M̃a)2 +DDΦa

]
. (IV.70)

The action corresponding to the Lagrangian

L =
∫
d2θ

∫
d2θ̃ G(Zadef ) + h.c.

=
∫
d2θ

[1
2Gab(DL

a)(DLb)− 1
4GaDDΦa − i(M̃a)2 Ga + m̃2

a Φa
]

+ h.c. ,
(IV.71)

where
Ga = ∂

∂Φa
G(Φc) , Gab = ∂2

∂Φa∂Φb
G(Φc) ,
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is invariant under the generalization of transformations (IV.18)

δ∗Φa =
√

2i ηDLa

δ∗La =
√

2(M̃a)2(θη + θη)− i√
2(ηDΦ + ηDΦ) .

(IV.72)

If m̃2
a 6= 0 6= (M̃ b)2, partial breaking occurs with the analogue of (IV.65) being

− i〈Gab〉(M̃ b)2 + m̃2
a = 0 . (IV.73)

In this vacuum, the mass matrix of Φa is

Mab = − i2〈ReG−1
ac 〉〈Gbcd〉(M̃d)2, (IV.74)

and is controlled by the third derivatives of G.
Now let us turn back to the case of one deformed Zdef , which we would like to investigate

in the infinite–mass limit. Due to (IV.67), this limit is

Gzzz(〈z〉)→∞ , ReGzz(〈z〉) = constant , (IV.75)

analogously to the limit (IV.47) for the Maxwell multiplet. In this limit,

Gzz(Φ) ∼ Gzzz(〈z〉)[Φ− 〈z〉] , Gzzz(Φ) ∼ Gzzz(〈z〉) (IV.76)

so that the e.o.m. of Φ

GΦΦ(Φ)
(
−1

4DDΦ + B̃
2)

+ 1
2GΦΦΦ(Φ)(DL)(DL) + m̃2 = 0 (IV.77)

becomes
1
2ΦDDΦ− (DL)(DL) = 2B̃

2
Φ , (IV.78)

where we have made use of the redefinition Φ− 〈z〉 → Φ. Note that (IV.78), which was first
given in [32], does not depend on the function G. The constraint (IV.78) takes the form

Φ = − 2(DL)(DL)

4B̃
2
−DDΦ

=⇒ ΦDα̇L = Φn = 0 (n ≥ 2). (IV.79)

In N = 2 language, (IV.79) is equivalent to

Z2
def = 0 , (IV.80)

since
Z2
def = Φ2 + 2

√
2iΦ θ̃DL− θ̃θ̃

[1
2ΦDDΦ− (DL)(DL)− 2B̃

2
Φ .
]
, (IV.81)

Note that the constraint (IV.78) transforms as a total derivative under the nonlinearly real-
ized supersymmetry:

δ∗
[1
2ΦDDΦ− (DL)(DL)− 2B̃

2
Φ
]

= −2
√

2 ∂µ(ησµDLΦ) . (IV.82)
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Following [26, 32], we now give the solution Φ = Φ(DL) of the constraint (IV.78) or
equivalently of (IV.80). In our conventions, it is

Φ = − 1
2B̃2

[
(DL)2 −D2

(
(DL)2(DL)2

4B̃4+ã+4B̃4
√

1+ ã

2B̃4 + b̃2

16B̃8

)]
, (IV.83)

where we have assumed that B̃ is real for simplicity and

ã = 1
2

(
D

2[(DL)2] +D2[(DL)2]
)

= ã

b̃ = 1
2

(
D

2[(DL)2]−D2[(DL)2]
)

= −b̃ .
(IV.84)

Due to (IV.80), only if G has linear dependence on Z will it contribute to (IV.61). However,∫
d2θ d2θ̃Z + h.c. ∼

∫
d2θ

(
B̃2 − 1

4 DDΦ
)

+ h.c. = tot. deriv. (IV.85)

Consequently, only the FI term contributes to (IV.61), which takes the form

L = m̃2
∫
d2θΦ + h.c.

= − m̃2

2B̃2

∫
d2θ (DL)2

[
1−D2

(
(DL)2

4B̃4+ã+4B̃4
√

1+ ã

2B̃4 + b̃2

16B̃8

)]
+ h.c.

(IV.86)

We also compute that

ã|bos = 4
(
υ2 − (∂C)2) , b̃|bos = −8i υ · ∂C , (IV.87)

so that

L|bos = m̃2B̃2
(
1−

√
1 + 2

B̃4

(
υ2 − (∂C)2)− 4

B̃8 (υ · ∂C)2
)

= m̃2B̃2
(

1−
√

1− 2
B̃4

(
1
6HµνρHµνρ + ∂µC∂µC

)
− 1

9B̃8 (εµνρσHνρσ∂µC)2

)
.

(IV.88)
which is the analogue of (IV.57).

IV.5 Interactions
We begin by summarizing and extending what we have explained so far in regard to the par-
tial breaking of N = 2 global supersymmetry. The Maxwell and the single–tensor multiplets
enjoy two representations in N = 2 superspace: the “short” superfields

W , Z (IV.89)

that are CC and CA respectively and contain 8B + 8F d.o.f. each, and the “long” superfields

Ŵ , Ẑ (IV.90)

that are CA and CC respectively and contain 16B + 16F d.o.f. each. With the use of gauge
variations one can remove half of the components of (IV.90) and obtain (IV.89).
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Long Short Gauge variation

Maxwell: Ŵ W δ Ŵ = Zg , δW = 0

Single–tensor: Ẑ Z δ Ẑ =Wg , δZ = 0

The Goldstino of the broken and nonlinearly realized N = 1 supersymmetry may belong
either to a deformed Maxwell multipletWdef , or to a deformed single–tensor multiplet Zdef ,
which are CC and CA respectively. At the low–energy limit, X and Φ decouple from the
spectrum of the respective theories, which is expressed via the nilpotent constraints

W2
def = 0 , Z2

def = 0 . (IV.91)

It is then natural to consider interactions ofWdef and Zdef , which might also prove to be use-
ful in the context of partial breaking of N = 2 local supersymmetry, as this implementation
necessitates the use of two N = 2 multiplets [40].

However, due to the fact that Wdef and Zdef have opposite chirality under the second
N = 1 supersymmetry, an (invariant) N = 2 interaction term for the two cannot be written.
A way around this argument would be to deform the long multiplets and consider interaction
terms of the type ∫

d2θ d2θ̃Wdef Ẑdef (IV.92)

and ∫
d2θ d2θ̃ ŴdefZdef . (IV.93)

Yet the long superfields cannot be deformed in such a way that they describe a single
Goldstino, namely they cannot be used for the partial breaking. To see this, consider for
example a general deformation Wnl of the short Maxwell superfield. Then (III.109), which
relates the short to the long superfield, implies that

Ŵnl = − i2A
2θ2θ̂

2
= − i2B

2
θ2θ̂

2
, Γ = 0 , (IV.94)

which violates the condition (IV.42) for the partial breaking. One can show that a similar
argument holds for the single–tensor multiplet. We conclude that we can only consider
interactions of the type ∫

d2θ d2θ̃Wdef Ẑ , (IV.95)

and ∫
d2θ d2θ̃ ŴZdef . (IV.96)

The first case (IV.95) has been studied in [29]. In terms of N = 1 superfields, it is given
by (III.129) plus additional terms that now depend on Y , because of the existence of the
deformation parameters:

Lnl = ig

∫
d2θ

∫
d2θ̃Wdef Ẑ + h.c.

= LBF + ig

∫
d2θ

[
B2Y −

√
2 Γ θχ−A2 θθ

(
i

2Φ + 1
4DDY

)]
+ h.c.

(IV.97)
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For the particular case of partial breaking in which A = Γ = 0, one obtains

Lnl = g

∫
d2θ

[1
2ΦX + χW + iB2Y

]
+ h.c. (IV.98)

Notice that the variation
√

2iB2ηχ of iB2Y under the second N = 1 supersymmetry is
cancelled by the deformed part −

√
2iB2ηα of the variation of Wα under the same N = 1.

The full Lagrangian for Wdef and Ẑ includes, apart from (IV.97), the kinetic terms (III.65)
and (III.55)

Lkin. =
∫
d2θd2θH(L,Φ,Φ) + 1

2

∫
d2θ

∫
d2θ̃F(Wdef ) + h.c. (IV.99)

as well as the FI terms (III.61). At the infinite–mass limit (IV.47), due the constraint (IV.50),
the dependence of the total Lagrangian on F disappears

Ltot =
∫
d2θd2θH(L,Φ,Φ) + ξ

∫
d2θd2θ V2 + 1

2m
2
∫
d2θ X

+g
∫
d2θ

[
1
2ΦX + χW + iB2Y

]
+ h.c.

(IV.100)

Ltot depends then only on the function H. The resulting theory has a linear N = 1 as well
as a second nonlinear N = 1 supersymmetry. Upon inserting the solution X = X(W 2)
(IV.51) of the constraint (IV.50), it has been discovered that a new version of the super–
Brout–Englert–Higgs mechanism but, importantly, without gravity, is in operation: the final
spectrum consists of a massive N = 1 vector multiplet, as the massless vector multiplet Wα

has absorbed the linear multiplet as a consequence of the BF interaction, and the massless
N = 1 chiral multiplet Φ [29].

As a final comment, notice that for B 6= 0 (so as to have partial breaking), the equation
of motion of Y is inconsistent. One can get around this problem by using l > 1 deformed
Maxwell multiplets instead of one, as then the e.o.m. of Y a would take the form of a
tadpole–like condition

gaB
2
a = 0 , a = 1, ..., l , (IV.101)

where ga would be the coupling of each BF interaction. This is in agreement with the
claim made in [82, 83], namely that one cannot couple hypermultiplets to a single Maxwell
multiplet in a theory with partial breaking induced by the latter.

We now turn to the second type of interaction (IV.96). In terms of N = 1 superfields, it
is given by (III.131) plus additional terms that now depend on U , because of the existence
of the deformation parameters:

Lnl = ig

∫
d2θ

∫
d2θ̃ Ŵ Zdef + h.c.

= LBF + ig

∫
d2θ

[
B̃

2
U − Ã2 θθ

(
i

2X + 1
4DDU

)]
+ h.c.

(IV.102)

In the particular case of partial breaking in which Ã = 0, we obtain

Lnl = g

∫
d2θ

[1
2ΦX + (DL)(DL) + iB̃

2
U
]

+ h.c. (IV.103)
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Notice that the variation
√

2i B̃
2
ηD L of iB̃

2
U under the second N = 1 is cancelled by the

deformed part −
√

2i B̃
2
ηα̇ of the variation of Dα̇L under the same N = 1 supersymmetry.

The full Lagrangian for Ŵ and Zdef includes then, apart from (IV.103), the kinetic terms
(III.55) and (III.70) as well as the superpotential (III.75) and an FI term for V2

L = Lnl +
[

1
2

∫
d2θ

∫
d2θ̃F(W) +

∫
d2θ

∫
d2θ̃ G(Z) +

∫
d2θ m̃2Φ

]
+ h.c.

+ξ
∫
d2θd2θ V2 .

(IV.104)

At the infinite–mass limit (IV.75), due to the constraint (IV.80), G does not contribute to
(IV.104) due to (IV.85), so (IV.104) depends on a single function F . Moreover, inserting the
solution (IV.83) of the constraint (IV.80), the bosonic part of (IV.104) becomes

Lbos = 1
2

∫
d2θ

∫
d2θ̃F(W)|bos + h.c.− 2ξ ∂µ Im Vµ

+2g
(
− 1

26εµνρσH
νρσAµ + C ∂µ Im Vµ − B̃2 ImFU

)
+(gRex+ 2m̃2)B̃2

·
(

1−
√

1− 2
B̃4

(
1
6HµνρHµνρ + ∂µC∂µC

)
− 1

9B̃8 (εµνρσHνρσ∂µC)2

)
,

(IV.105)
where B̃ has been assumed to be real and FU is the auxiliary field of U . Notice that
the Lagrangian (IV.88) has acquired a field–dependent coefficient (gRex + 2m̃2)B̃2 as its
analogue, the Born–Infeld Lagrangian, does in the case that the interaction term is (IV.95)
[29].

The solution of the e.o.m. of F of X is F = 0. Moreover, the equation of motion for the
auxiliary field Im Vµ is

∂µ
(
16 ReFxx ∂ν Im Vν + 2g C

)
= 0 , (IV.106)

whose solution is
16 ReFxx ∂ν Im Vν + 2g C = −λ , (IV.107)

where λ is in principle an arbitrary integration constant. There is, however, a subtlety: the
second of equations (III.116)

D = −4∂µ Im Vµ , (IV.108)

that replaces the real auxiliary d.o.f. of the short multiplet with the divergence of a vector
field in the long Maxwell superfield, implies that one has to impose that that the e.o.m. of
D and Vµ are compatible. Since the e.o.m. of the former is

2 ReFxxD2 + (2ξ − 2g C)D = 0, (IV.109)

with solution
4 ReFxxD + 2ξ − 2g C = 0, (IV.110)

we make the identification
λ = 2ξ , (IV.111)
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referring the reader to appendix C for more details. The scalar potential of the theory is
then

V = 1
32 ReFxx

(2g C − 2ξ)2 , (IV.112)

whose supersymmetric vacuum is at

< C >= ξ

g
. (IV.113)

In this vacuum, x corresponds to a flat direction of the potential and is massless. The
massM2

C,can that the (canonically normalized) C aquires is then

M2
C,can = 1

4
1

ReFxx
g2B̃2

2g Rex+ 4m̃2 . (IV.114)

Moreover, the interaction term − 1
12g εµνρσH

νρσAµ generates a mass term for Aµ for which

M2
Aµ,can =M2

C,can . (IV.115)

We thus discover that, similarly to the case of the interaction (IV.95), there a mechanism
analogous to the super–Brout–Englert–Higgs effect without gravity in operation, with the
final spectrum of the theory consisting of a massive N = 1 vector multiplet, since the vector
multiplet Wα has absorbed the Goldstino linear multiplet, and of the massless N = 1 chiral
multiplet X.

As a final comment, note that the equation of motion of U is inconsistent as was that of
Y previously. Again, this problem can be solved by coupling the long Maxwell multiplet(s)
to at least two short and deformed single–tensor multiplets. However, there is no reason to
identify the imaginary part of the auxiliary field of U with a four–form field as was done for
Y in [29]. To see this, recall that the gauge variation (III.85) of Y is

δgY = Xg = −1
2DD∆′ , (IV.116)

where ∆′ is a real superfield since Xg is part of a Maxwell multiplet, while the gauge variation
(III.122) of U is

δgU = Φg , (IV.117)

where Φg is part of a single–tensor multiplet and is thus not necessarily identified with
DD∆′′, where ∆′′ is a real superfield.

IV.6 General constraints
In nonlinear N = 1 supersymmetry, which in the simplest case is realized at low energies via
a nilpotent constraint imposed on a chiral superfield

X2 = 0 , (IV.118)

several constraints involving X and other N = 1 superfields have been proposed [4, 7], which
we give in the table below for reference. In view of generalizing these N = 1 constraints,
in what follows we study constraints involving the N = 2 Goldstino multiplet and other
incomplete multiplets of N = 2 nonlinear supersymmetry.
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Constraint Field eliminated

XQ = 0 complex scalar

XQ = chiral fermion

X(Q−Q) = 0 fermion and one real dof

XV = 0, XWα = 0 gaugino

XXL = 0 real scalar

XDα̇L = 0 fermion

XX(Dαχβ +Dβχα) = 0 tensor

IV.6.1 The goldstino in the Maxwell multiplet

Let us consider the case in which the Goldstino is in a deformed Maxwell multipletW0, given
by (IV.44)

W0 = X0 +
√

2i θ̃W0 + θ̃θ̃

[
B2 − 1

4DDX0

]
, (IV.119)

which satisfies the constraint

W2
0 = 0 ⇒ X0 = −2 W0W0

4B2 −DDX0
. (IV.120)

To describe an incompleteN = 2 vector multiplet with nonlinear supersymmetry, we consider
the N = 2 constraint

W0W1 = 0 , (IV.121)

where W1 is an undeformed short Maxwell superfield with expansion

W1 = X1 +
√

2i θ̃W1 −
1
4 θ̃θ̃ DDX1 . (IV.122)

The constraint (IV.121) then yields the following set of equations

X0X1 = 0 ,

X0W1α +X1W0α = 0 ,

X1B
2 − 1

4DD(X0X1 +X1X0) +W0W1 = 0 .

(IV.123)

We now use (IV.120) and the identity

(W0W1)W0α = −1
2(W0W0)W1α (IV.124)

to solve the second of equations (IV.123), which yields

X1 = −4 W0W1

4B2 −DDX0
+ hW0W0 , (IV.125)
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where h is a chiral superfield. This expression verifies the first eq. (IV.123) for all h and the
third eq. (IV.123) if

h = −2 DDX1

(4B2 −DDX0)2 (IV.126)

and thus
X1 = −4 W0W1

4B2 −DDX0
− 2 DDX1

(4B2 −DDX0)2 W0W0 . (IV.127)

One may further use the solution (IV.51) forX0 and solve (IV.127) to obtainX1 as a function
of W0, W1 and their derivatives; the constraint (IV.121) thus eliminates X1.

Interestingly, the constraint W2
0 = W0W1 = 0 is a particular case of the system of

equations
dabcWbWc = 0 ; a, b, c = 1, . . . , l (IV.128)

introduced in [84, 85] to obtain coupled DBI (Dirac–Born–Infeld) actions. In eqs. (IV.128),
all Wa are in general deformed with different deformation parameters Ba and the constants
dabc are totally symmetric. The set of constraints (IV.120) and (IV.121) is obtained from
(IV.128) in the case of two N = 2 vector multiplets with d000 = d001 = 1 and all other d’s
vanishing.

Next we consider the constraint
W0Z = 0 , (IV.129)

where Z is a short single–tensor superfield. However, due to the fact that W0 and Z have
opposite chiralities under the second N = 1 supersymmetry, (IV.129) leads to an overcon-
strained system of equations. We thus turn to the constraint

W0Ẑ = 0 , (IV.130)

where Ẑ is a long single–tensor superfield with expansion given by (III.82). Equation (IV.130)
then leads to the system

X0Y = 0 ,

X0χα + iY W0α = 0 ,

Y B2 − i
2 ΦX0 − 1

4DD(X0Y + Y X0)− iW0χ = 0 ,

(IV.131)

which, following the same steps as before, yield

Y = 4i W0χ

4B2 −DDX0
− 2 2iΦ +DDY

(4B2 −DDX0)2 W0W0 , (IV.132)

which again one may solve to eliminate Y = Y (W0, χ,Φ).
One can also check if the expression (IV.132) is covariant under the gauge variation

(III.84). Under the latter, the expression (IV.132) becomes

Xg = −4 W0Wg

4B2 −DDX0
− 2 DDXg

(4B2 −DDX0)2 W0W0 , (IV.133)

which, using (IV.127), is actually the consequence of

W0Wg = 0 , (IV.134)
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that is the variation of (IV.130) under (III.84). The expression (IV.132) is thus invariant
only under the reduced gauge transformations (III.84) subject to the constraint (IV.134),
which are not sufficient to eliminate all unphysical components of Ẑ.

Alternatively, let us rewrite (IV.130) and (IV.134) as the gauge–invariant constraints

W0(Ẑ −Wg) =W0Wg = 0 , (IV.135)

where Wg can be eliminated by a gauge transformation (III.84). One can then choose
Y −Xg = 0 and use eq. (IV.132) to eliminate χ− iWg in terms of the N = 1 chiral superfield
Φ:

χα − iWgα = Φ
(4B2 −DDX0)

W0α . (IV.136)

In the physically–relevant linear superfield L however, Wg disappears:

L = Dχ−Dχ = D(χ− iWg)−D(χ− iW g) ,

since Wg verifies the Bianchi identity.

IV.6.2 The goldstino in the single–tensor multiplet
Now let us consider the case in which the Goldstino is in a deformed single–tensor superfield
Z0, given by

Z0 = Φ0 +
√

2i θ̃DL0 + θ̃θ̃

[
B̃

2
− 1

4 DDΦ0

]
, (IV.137)

which satisfies (IV.80)

Z2
0 = 0 , Φ0 = −2 (DL0)(DL0)

4B̃
2
−DDΦ0

. (IV.138)

To describe another incomplete N = 2 single–tensor multiplet with nonlinear supersymme-
try, we consider the N = 2 constraint

Z0Z1 = 0 , (IV.139)

where Z1 is an undeformed short single–tensor superfield with expansion given by

Z1 = Φ1 +
√

2i θ̃DL1 −
1
4 θ̃θ̃ DDΦ1 . (IV.140)

Following the same steps as before, as well as the identity

(DL0DL1)Dα̇L0 = −1
2 (DL0DL0)Dα̇L1 , (IV.141)

we find
Φ1 = −4 DL0DL1

4B̃
2
−DDΦ0

− 2 DDΦ1

(4B̃
2
−DDΦ0)2

DL0DL0 , (IV.142)

which one may solve to eliminate the chiral component Φ1 in terms of L1 and the goldstino
multiplet L0. Note that the constraints (IV.138) and (IV.139) can be generalised to a system
of equations

d̃abcZbZc = 0 ; a, b, c = 1, . . . , l , (IV.143)
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Constraint Fields eliminated

W2
0 =W0W1 = 0 X0 and X1

W2
0 =W0(Ẑ −Wg) =W0Wg = 0 X0 and χα (Y : gauge–fixed)

Z2
0 = Z0Z1 = 0 Φ0 and Φ1

Z2
0 = Z0(Ŵ − Zg) = Z0Zg = 0 Φ0 and Ωα (U : gauge–fixed)

in analogy with the system (IV.128), where d̃abc are totally symmetric constants, in order to
obtain a coupled action of incomplete single–tensor multiplets.

Finally, we consider the constraint

Z0Ŵ = 0 , (IV.144)

where Ŵ is a long Maxwell superfield given by (III.110), and, using the same procedure as
before, we obtain

U = 4i DL0DL

4B̃
2
−DDΦ0

− 2 2iX +DDU

(4B̃
2
−DDΦ0)2

DL0DL0 , (IV.145)

which eliminates U . Using the same reasoning as before, one can show that the solution
(IV.145) is invariant under the reduced gauge variation (III.118) satisfying the constraint

Z0Zg = 0 . (IV.146)

Following the same procedure as for the solution of the constraint (IV.130), one can use the
full gauge invariance to set U = 0. Eq. (IV.145) can then be used to eliminate Ωα̇ = Dα̇ L
in terms of the N = 1 chiral superfield X:

Dα̇ L = X

4B̃
2
−DDΦ0

Dα̇ L0 . (IV.147)

Consequently, the constraint equation (IV.147) is invariant under the transformation of L
under the standard gauge transformations included in (III.122). In addition, the physically–
relevant V = 2(L + L) in invariant under the gauge ambiguity (III.118).

As a final comment, we have not found constraints that keep L of Z or Wα of W.
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V.1 Pure N = 2, D = 5 supergravity

In this section, we review the pure N = 2, D = 5 supergravity [64, 65, 66]. The pure
N = 2, D = 5 supergravity multiplet consists of the graviton emM (that is a fünfbein), the
SU(2)–gravitino doublet ψiM and the graviphoton AM that admits a gauge transformation.
The 5D spacetime metric gMN is written as

gMN = emMηmne
n
N , (V.1)

so that M,N, . . . are coordinate (curved) indices, m,n, . . . are frame (tangent) indices and
ηmn is the 5D Minkowski metric. Gamma matrices carry frame indices so that

ΓM = (emM )−1Γm . (V.2)

SU(2)–indices i are lowered and raised using the same conditions (III.41) as in global N = 2,
D = 4 supersymmetry

λi = εjiλ
j , λi = εijλj (V.3)

where λi is a symplectic Majorana spinor (with implicit spinor index), namely it satisfies the
condition

λ
i = λiTC , (V.4)

where C is the charge conjugation matrix, with

Dirac conjugate: λi ≡ λ†iΓ
0 , charge conjugation: CΓµC−1 = (Γµ)T . (V.5)

All spinors of N = 2, D = 5 supergravity including the gravitini are symplectic Majorana
spinors. As such, they have no chirality, so that the position of the SU(2)–indices does not
indicate chirality, unlike the N = 2, D = 4 case.

The pure N = 2, D = 5 supergravity Lagrangian is then written as

e−1L = 1
2κ2

[
R(ω)− ψiMΓMNPDNψPi

]
− 1

4FMNF
MN

+κe−1

6
√

6 ε
MNPΣΛFMNFPΣAΛ

− 3i
8κ
√

6

(
ψ
i
MΓMNPΣψNiFPΣ + 2ψMi

ψNi FMN

)
+ 4–gravitino terms

(V.6)

where κ is the gravitational coupling related to the 5D Planck mass M5 via

κ2 = 1
M3

5
(V.7)
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and FMN is the field strength of the graviphoton

FMN = ∂MAN − ∂NAM . (V.8)

Moreover,
e = det(emM ) (V.9)

and ωMmn(e) is the spacetime spin connection defined by

ω mn
M (e) ≡ 2e[mNe

n]
[N,M ] + emΛenP e l

[Λ,P ]eMl (V.10)

and the Ricci scalar R is defined by

R ≡ eMnRMn ≡ eMneNmRMNmn , (V.11)

where the Riemann tensor is defined by

RMNmn ≡ ∂MωNmn(e) + ω l
Mm (e)ωNln(e)− (M ↔ N) . (V.12)

Finally,
DNψP = ∂NψP + 1

4ωNmn(e)ΓmnψP . (V.13)

The action corresponding to (V.6) is invariant under the following N = 2 supersymmetry
transformations

δemM = 1
2ε
iΓmψMi

δψMi = DM (ω̂)εi + iκ
4
√

6
(
ΓNPM − 4δNMΓP

)
F̂NP εi

δAM = i
√

6
4κ ψ

i
M εi ,

(V.14)

where a hat over a quantity signifies that the respective quantity has been supercovariantized,
namely

ω̂Mmn ≡ ωMmn(e)− 1
4

(
ψ
i
nΓMψmi + 2ψiMΓ[nψm]i

)
F̂MN ≡ FMN + i

√
6

4κ ψ
i
[MψN ]i

DM (ω̂)εi = ∂Mεi + 1
4 ω̂Mmn(e)Γmnεi .

(V.15)

V.2 N = 2, D = 5 Maxwell–Einstein supergravity

Following [67], we now review N = 2, D = 5 Maxwell–Einstein supergravity. The N = 2,
D = 5 Maxwell multiplet contains a real scalar φ, a fermion SU(2)– (symplectic) doublet
λi and a gauge field Aµ (other than the graviphoton). The field content of N = 2, D = 5
Maxwell–Einstein supergravity, namely pure N = 2, D = 5 supergravity coupled to n vector
multiplets, is thus

{emM , ψiM , AIM , λai , φx} , (V.16)

where x = 1, . . . , n and a = 1, . . . , n. The notation AIM refers collectively to all gauge fields,
namely I = 0, 1, . . . , n, where I = 0 corresponds to the graviphoton. The scalars {φx} can
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be seen as coordinates of a Riemannian manifold M with metric gxy, while the fermions
{λai } transform as a vector of SO(N), that is the tangent space group ofM. We thus have

gxy = faxδabf
b
y , (V.17)

where fax is the n–bein, so that x, y, . . . are coordinate indices and a, b, . . . are frame indices.
The spin connection Ω ab

x ofM is a solution of the equation

fa[x,y] + Ω ab
[y f bx] = 0 (V.18)

and the Riemann tensor Kxyzu ofM is defined by

Kxyab ≡ Ωyab,x + ΩxacΩycb − (x↔ y) . (V.19)

The Lagrangian of N = 2, D = 5 Maxwell–Einstein supergravity is then written as

e−1LME = 1
2κ2

[
R(ω)− ψiMΓMNPDNψPi

]
− 1

4GIJF
I
MNF

MNJ

−1
2λ

ia( /Dδab + Ω ab
x /∂φx

)
λbi − 1

2gxy(∂µφ
x)(∂µφy)

− i
2λ

iaΓMΓNψMi f
a
x∂Nφ

x + 1
4h

a
I λ

iaΓMΓΛPψMi F
I
ΛP

+ iκ
4 ΦIab λ

iaΓMNλbi F
I
MN + κe−1

6
√

6 CIJK ε
MNPΣΛF IMNF

J
PΣA

K
Λ

− 3i
8κ
√

6hI
(
ψ
i
MΓMNPΣψNiFPΣ + 2ψMi

ψNi FMN

)
+4–fermion terms ,

(V.20)

where GIJ , hI , haI and ΦIab are generic functions of the scalars φx, with GIJ being symmetric
and ΦIab being symmetric over the last two indices. Moreover, CIJK is a totally symmetric
constant, so as for the action corresponding to (V.20) to be gauge invariant under

δAIM = ∂Mθ
I(x) , (V.21)

where {θI} are real scalars. The action is also invariant, under several conditions, under the
N = 2 supersymmetry transformations

δemM = 1
2ε
iΓmψMi

δψMi = DM (ω̂)εi + iκ
4
√

6
(
ΓNPM − 4δNMΓP

)
F̂NP εi

−κ2

12 ΓMN ε
j λ

b
iΓNλbj + κ2

48 ΓMNP ε
j λ

b
iΓNPλbj

+κ2

6 ε
j λ

b
iΓMλbj − κ2

12 ΓN εj λbiΓMNλ
b
j

δAIM = −1
2h

I
a ε

iΓMλai + i
√

6
4κ h

I ψ
i
M εi ,

δλai = − i
2f

a
x ( /̂∂φx)εi − i

2Ω ab
x fxc ε

jλcjλ
b
i + 1

4h
a
I ΓMN εiF̂

I
MN

− iκ
4
√

6

[
− 3εj λbiλcj + ΓM εj λ

b
iΓMλcj + 1

2ΓMN ε
j λ

b
iΓMNλcj

]
T abc

δφx = i
2f

x
a ε

iλai ,

(V.22)
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where Txyz is a totally symmetric tensor that generically depends on the scalars φx and

(∂̂Mφ)x = ∂Mφ
x − i

2f
x
b ψ

j
Mλ

b
j . (V.23)

Note that now
F̂MN ≡ FMN + i

√
6

4κ hI ψ
i
[MψN ]i + hIa ψ

j
[MΓN ]λ

a
j . (V.24)

The algebraic conditions are the following

hIxhI = hIxh
I = 0 , hIxh

J
yGIJ = gxy

GIJ = hIhJ + hxIh
y
Jgyx = hIhJ + hxIhJx

(V.25)

and
hIhI = 1 , hIxh

y
I = δyx

ΦIxy =
√

2
3

(
1
4gxyhI + Txyzh

z
I

)
CIJK = 5

2hIhJhK −
3
2G(IJhK) + Txyzh

x
Ih

y
Jh

z
k

(V.26)

while the differential conditions are

hI,x =
√

2
3hIx , hI,x = −

√
2
3h

I
x

hIx;y =
√

2
3
(
gxyhI + Txyzh

z
I

)
, hIx;y = −

√
2
3
(
gxyh

I + Txyzh
Iz
)
,

(V.27)

where , x = ∂
∂φx and “;x” denotes covariant differentiation with respect to the Christoffel

connection Γzxy ofM. Note that equations (V.25), together with the first of equations (V.26),
imply that the indices I are raised and lowered with the use of GIJ , namely

hIGIJ = hJ , hIxGIJ = hJx . (V.28)

These conditions imply thatM is embedded in an (n+1)–dimensional Riemann manifold
E with coordinates XI = XI(φx,N ), where N is a real scalar function. The equation

lnN = k , (V.29)

where k is a constant, defines a family of hypersurfacesMk of E . Upon making the identifi-
cation (strictly speaking onM only)

hI
!= αnI , hI

!= βXI , (V.30)

where α and β are real parameters, XI
,x is a vector tangent toM and nI is the vector normal

toMk given by
nI = ∂I lnN , (V.31)

the conditions
hIxhI = hIxh

I = 0 , hIxh
y
I = δyx (V.32)

of (V.25) and (V.26) can be interpreted as the orthonormality relations

XI
,xnI = 0 ,

3
2β

2XI
,xX

J,y = δyx (V.33)
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that arise naturally on E , where the first of equations (V.27) has been used. The equation

hIhI = 1 (V.34)

of (V.26) is then rewritten as

XI∂I lnN = (αβ)−1 ⇒ XINI = (αβ)−1N , (V.35)

where NI = ∂IN , NIJ = ∂I∂JN , etc, which implies that

N (λXI) = λ
1
αβN (XI) , (V.36)

where λ is a real parameter, namely (V.34) imposes the constraint that N be a homogeneous
function of order (αβ)−1. Differentiating (V.35) with respect to XI , one further deduces the
indentities

XINIJ =
[
(αβ)−1 − 1

]
NJ (V.37)

and
XINIJK =

[
(αβ)−1 − 2

]
NJK (V.38)

Upon differentiating equation (V.35) one obtains

(βXI)
(
− α

β
∂IJ lnN

)
= αnJ ⇒ hI

(
− α

β
∂IJ lnN

)
= hJ (V.39)

and comparing (V.39) to (V.28) the following identification can be made

GIJ
!= −α

β
∂IJ lnN (V.40)

Consequently, onM

ds2 = GIJdX
IdXJ = GIJX

I
,xX

J
,y dφ

xdφy
!= gxydφ

xdφy , (V.41)

namely gxy is the pull–back of GIJ , which, using the second of equations (V.25) as well as
the second of equations (V.27), yields

2
3β
−2GIJh

I
xh

J
y

!= GIJh
I
xh

J
y ⇒ β2 = 2

3 . (V.42)

Note that this requirement can also be seen from the second of equations (V.33).
Moreover, N can be restricted even further. In particular, it is straightforward to calcu-

late the Christoffel connection ΓKIJ corresponding to (V.40)

ΓIJK = − α

2β ∂IJK lnN . (V.43)

Using this result and the last of equations (V.26), as well as (V.27), (V.39) and (V.43), it
can be shown that onM

CIJK = α

2β2

[
NIJK + 9

(
αβ − 1

3
)(
N(IJNK) +

(
αβ − 2

3
)
NINJNK

)]
. (V.44)
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Multiplying (V.44) with XIXJXK we find

CIJKX
IXJXK = α

2β2 (αβ)−1
(
(αβ)−1 − 1

)(
(αβ)−1 − 2

)
N

+ 9α
2β2 (αβ)−2

(
(αβ)−1 − 1

)(
αβ − 1

3

)
N 2

+ 9α
2β2 (αβ)−3

(
αβ − 1

3

)(
αβ − 2

3

)
N 3 .

(V.45)

We may now redefine
XI → λXI (V.46)

in (V.45) and, using (V.36), one finds that

αβ = 1
3 , N = β3CIJKX

IXJXK , (V.47)

namely N is restricted to be a cubic polynomial function.
In addition, using the last of equations (V.26), as well as equations (V.27), one finds a

differential constraint imposed on Txyz

Txyz;u =
√

6
2
[
g(xygz)u − 2T w

(xy Tz)w
]
. (V.48)

Note that equation (V.47) implies that the only freedom one has in writing an N = 2, D = 5
Maxwell–Einstein theory is the choice of the constants CIJK : once they are determined, all
other functions can be computed, starting from (V.47) and using (V.40), (V.30), (V.41),
(V.48), etc. Furthermore, the integrability condition

Kxyzu = 4
3
[
gx[ugz]y + T w

x[u Tz]yw
]

(V.49)

can be derived from (V.48). At the same time, Kxyzu can be calculated for the familyMk

using (V.40) and (V.43). The result is identical to equaton (V.141) for k = 0, which means
thatM is defined by the equation

N = 1 ⇒ β3CIJKX
IXJXK = 1 , (V.50)

where we have used (V.47). Finally, let us note that, from the superconformal point of
view, the coordinate X0 of the embedding manifold E may be viewed as the real scalar
contained in an additional vector multiplet that is added to the n physical vector multiplets
as a compensator [86, 87]. The constraint (V.50) then eliminates X0 as a function of the
physical scalars φx and rendersM a very special real manifold.

V.3 The gauging

A particular case of (V.48) is
Txyz;w = 0 (V.51)

which, using (V.141), implies that
Kxyzu;w = 0 , (V.52)
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namely that M is a locally symmetric space. Note that then the differential constraint
(V.48) becomes algebraic

T w
(xy Tz)w = 1

2g(xygz)u . (V.53)

In what follows we will only consider the case thatM is a locally symmetric space.
Gauged Maxwell–Einstein supergravity arises when one promotes one or all Killing sym-

metries ofM, generated by Killing vectors kx, under which the scalars transform as

δIφ
x = θkx(φ) , (V.54)

where θ is a parameter, to gauge symmetries. We now review the U(1)–gauging of [68,
69] and refer the reader to [88, 89] for the coupling to tensor multiplets and more general
gaugings. To gauge a U(1) subgroup of SU(2), that is the automorphism group of the N = 2
supersymmetry algebra just as in the D = 4 case, one first chooses the respective gauge field
AM as a linear combination of the gauge fields AIM of the theory

AM = υIA
I
M , (V.55)

where υI is a generic constant vector. The gauge transformation of the scalars then becomes

δgφ
x = θ(x)kx(φ) = −θ(x)φx (V.56)

and the U(1)–covariant derivatives are defined by

DMφx = ∂Mφ
x − gAMkx = ∂Mφ

x + g υIA
I
Mφ

x

DMλai = DMλ
ai − gκ2AM

∂ka

∂φb
δijλbj = DMλ

ai + gκ2 υIA
I
M δijλaj ,

(V.57)

where g is the U(1) coupling constant.
The next step is thus to replace all derivatives by the respective U(1)–covariant deriva-

tives. To maintain the invariance of the total action under N = 2 supersymmetry, it is also
necessary to add the following terms to (V.20)

e−1L′ = − g2

κ4 P − i
√

6
8

g
κ3 ψ

i
MΓMNψjNδij P0

− 1√
2
g
κ2 λ

iaΓMψjMδij Pa + i
2
√

6
g
κ λ

ia
λjbδij Pab ,

(V.58)

namely a scalar potential and fermion mass terms arise, as well as the following terms to
(V.22)

δ′ψMi = i
2κ
√

6gP0 ΓM εjiδjkεk

δ′λai = 1
κ2
√

2gP
a εjiδ

jkεk ,
(V.59)

where P , P0, Pa and Pab are functions of the scalars φx that are subject to the conditions
given below

υI = 1
2P0hI + 1√

2P
ahIa

Pab = 1
2δabP0 + 2

√
2TabcP c

P = −P 2
0 + PaP

a

(V.60)
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Using the first constraint of (V.25) in the first of (V.60), one finds

P0 = 2hIυI , P a =
√

2hIaυI . (V.61)

Note that P0 and Pa can be viewed as the components of the (constant) vector υI expanded
in the (φ–dependent) basis defined by (hI , hIa). Moreover, upon differentiating the first of
equations (V.61) with respect to x and using the second of equations (V.27), the value of
b from equation (V.42) as well as the second of equations (V.61), one finds a differential
constraint imposed on P0:

P0,x = −
√

2β Px . (V.62)

Similarly, by taking the covariant derivative of the second of equations (V.61) with respect
to x, one finds a differential constraint imposed on Px:

Px;y = −β
(

1√
2
gxyP0 + TxyzP

z

)
(V.63)

Taking the covariant derivative of (V.62) and using (V.63) one finds a differential constraint
on P0 that does not depend on P x:

P0,x;y + βT z
xy P0,z − β2gxyP0 = 0 , (V.64)

which one may solve to find the value of P0 and then substitute in (V.62) in order to determine
Px.

V.4 Little String Theory and the linear dilaton

We now summarize the main properties of Little String Theories [60, 61, 56, 57, 58, 59] (see
also the reviews [90, 91]). 6–dimensional Little String Theory (“LST”) is the theory that
arises in the limit in which NS5–branes decouple from bulk dynamics. Such an example
appears in type IIB string theory in 10 dimensions, when one considers a stack consistiting
of N NS5–branes in the limit

gS → 0 , (V.65)

where
gS = eΦ0 (V.66)

is the string coupling that is identified with the exponential of the expectation value Φ0 of the
dilaton Φ. Indeed, closed string amplitudes are proportional to gS , so that they approach 0
in the limit (V.65). Interestingly, the limit (V.65) is not a low–energy limit: it is taken with
the energy scale E being kept constant with respect to the (finite) string scale MS = 1/lS ,
where lS is the string length. Note also that the presence of the NS5–branes breaks N = 2
supersymmetry partially in the bulk. Perhaps remarkably, LST shares properties with both
string theories and field theories, some of which are the following:

• It is non–gravitational.
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The 4D gravitational coupling approaches zero in the limit (V.65), since in type IIB

MPl ∼
MS

gS

gS→0−→ ∞ , (V.67)

where MPl is the 4D Planck mass. Upon compactification of the extra six dimensions, the
relation (V.67) takes the form

M2
Pl = 1

g2
S

M8
S V6

gS→0−→ ∞ , (V.68)

where V6 is the internal volume of the extra dimensions. In principle, it is possible to have
MS ∼ TeV and V6 ∼ TeV−6, so that LST may offer an alternative framework in regard to a
possible solution of the hierarchy problem, without postulating the existence of large extra
dimensions.

• It is non–local.

In particular, an LST compactified on a torus is T–dual to another LST, since T–duality
commutes with the limit (V.65). To see this, recall that T–duality on a type II string theory
compactified on a circle of radius R acts as

R→ l2S
R
, (V.69)

which is independent of gS and thus of the limit (V.65). Due to T–duality, LST may couple
to more than one gravitational backgrounds after toroidal compactification, as there is not
a unique energy–momentum tensor.

Other than that, LST exhibits a Hagedorn density of states at high energies

ρ(E) ∼ EαeβHE , (V.70)

where α is a negative parameter that is proportional to the volume of the NS5–brane and
the Hagedorn temperature TH is given by

TH ≡
1
βH

= MS

2π
√
N
. (V.71)

• It is interacting for N > 1.

The gauge coupling gN corresponding to the low–energy (E �MS) U(N) gauge theory
on the NS5–branes is given by

1
g2
N

= M2
S (V.72)

and is thus independent of gS and consequently of the limit (V.65) (note, however, that gN
depends on the geometric moduli upon compactification). One way to see this is to perform
an S–duality transformation

gS →
1
gS

, lS →
√
gS lS (V.73)
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on the U(N) gauge coupling gD of a stack of D–branes

1
g2
D

= M2
S

gS
. (V.74)

MS is the thus the only parameter of LST. At E ∼ MS , the (perturbative) gauge theory
description on the NS5–branes breaks down, so new d.o.f. are expected at this scale.

• By studying the near–horizon geometry of the stack of NS5–branes in the limit

(V.65), it can be shown [56] that its holographic dual is type II string theory on

IR5,1 × IRy × S3
N , (V.75)

where IR5,1 is the 6D Minkowski spacetime corresponding to the worldvolume of the NS5-
branes, IRy is the infinite real line parametrized by a coordinate y in which the dilaton is
linear with

Φ = − 1√
NlS

y (V.76)

and S3
N is the three-sphere of radius

√
N lS . Note that, on the three–sphere parametrized by

the angular coordinates, the corresponding superconformal field theory is a level k = N − 2
(for N > 1) Wess–Zumino–Witten model on the S3

N ' SU(2)k group manifold. Moreover,
the topology (V.75) can be thought of as that of an infinite “throat”, with the NS5–branes
located at y → −∞. Consequently, due to (V.66) and (F.66), the theory becomes strongly
coupled in the vicinity of the NS5–branes and weakly coupled far away from the latter,
namely at y → +∞. To treat the strong coupling singularity at y → −∞, as well as the
resulting breakdown of perturbation theory, the topology may be restricted to that of a
semi–infinite cigar (of circumference βH), upon replacing the infinite throat with the former,
namely removing the strong coupling region [92]. The cigar may be thought of as being
connected to a “Standard model brane”, located at its tip, where the extra dimension y has
been cut and where gS takes its maximal value, and an asymptotically flat “Planck brane’,
where gS approaches 0. To conclude, given that LST is non–local, strongly coupled and does
not admit a Lagrangian description, its holographic dual is a means of studying indirectly
its properties, without facing the aforementioned difficulties.

• It has a distinct Kaluza–Klein graviton spectrum.

The phenomenology of LST has been studied [55], see also [93, 94], in a 5D toy model
of its holographic dual, in which there is only one (infinite) extra dimension y, in which the
dilaton is linear. Note that, to explore the Planck mass hierarchy, y has to be compactified
on a S1/Z2 orbifold, at the fixed points of which the SM and Planck branes have to be
introduced. In the string frame, the bulk Lagrangian of the dilaton–gravity system in the
5D toy model is

e−1LLST = e
−
√

3Φ
M

3/2
5
(1

2M
3
5R+ 3

2(∂Φ)2 − Λ
)
, (V.77)

where Λ is a constant. The linear dilaton background in this setup produces a KK graviton
spectrum in which, under specific assumptions, there is a ∼ TeV mass gap followed by
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∼ 30 GeV–seperated narrow resonances. Note that this phenomenology significantly differs
from that of the Antoniadis–Arkani-Hamed–Dimopoulos–Dvali model [95, 96] of large extra
dimensions, were the KK spectrum is almost a continuum and there is no mass gap, as well
as from that of the Randall–Sundrum model [97] of warped extra dimensions, where the KK
resonances are TeV–seperated.

Interest in little string theories and, in particular, in their holographic duals with a
linear dilaton background, has been revived in view of the recently proposed “clockwork
mechanism” [48, 49, 50], that is a new way of generating an exponential hierarchy without
necessitating the existence of small parameters at the fundamental level. In the discrete ver-
sion of the mechanism, Ñ+1 particles in 4D spacetime that are of the same type, that can be
scalars, fermions, gauge bosons or gravitons, are accommodated in a one–dimensional lattice,
with the distance of the particles from one of the two boundaries of the lattice exhibiting an
exponential profile. It can be shown that the particle closest to the other boundary couples
to it with an exponentially supressed coupling. In the continuum version, one takes the limit
Ñ →∞ and treats the lattice as a dimension extra to those of 4D spacetime. Interestingly,
it turns out that the relevant 5D metric is identical to the one corresponding to (V.77) in
the linear dilaton background. Note that the factor of proportionality, namely the analogue
of 1√

NlS
in (F.66) in LST, is

√
−Λ in the clockwork (upon imposing the symmetry y → −y);

it may thus be thought of as a measure of the vaccum energy in the bulk. Finally, notice the
similarities in the ways LST and the clockwork address the hierarchy problem, as well as the
fact that the clockwork KK spectrum containts a mass gap followed by a near–continuum of
resonances just as the LST KK graviton spectrum.

V.5 The effective supergravity of LST
The material presented in this section corresponds to: I. Antoniadis, A. Delgado, C. Markou
and S. Pokorski, The effective supergravity of Little String Theory, Eur. Phys. J. C 78
(2018) no.2, 146.

We would now like to find and study the effective supegravity of the toy model (V.77)
which corresponds to a simplified version of the holographic dual of LST that preserves
spacetime supersymmetry. To this end, we first write (V.77) in the Einstein frame by means
of a conformal transformation

e−1LLST = 1
2R−

1
2(∂MΦ)(∂MΦ)− e

2√
3

ΦΛ , (V.78)

where we have set κ = 1, which obviously contains a runaway potential for the dilaton.
Naturally, gauged N = 2, D = 5 supergravity is the simplest extended supergravity that
may accommodate this setup, as it is the U(1) gauging that generates a scalar potential,
see (V.58). As an aside, note that a gauging of the SU(2) subgroup of the automorphism
group in N = 2, D = 5 supergravity also generates a scalar potential [98] that could perhaps
accommodate the linear dilaton. We thus have to write L+L′, namely the sum of (V.20) and
(V.58), for the case in which there is a single real physical scalar s, that will correspond to
the dilaton d.o.f., and consequently only one vector multiplet. Setting X0 ≡ t, we now need
an Ansatz for N = N (s, t) of (V.47). Motivated by results regarding the graviton–dilaton
system in the case of the compactification of heterotic string thery in 5D [99], we choose

N = ts2 + as3 , (V.79)
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where a is a constant parameter and 1/t can be identified with the 5D heterotic string
coupling. Note that the first and the second term of (V.79) correspond to the tree–level
contribution and the one-loop correction respectively. Comparing (V.47) to (V.79), we find
that

C000 = C001 = 0

C011 = 1
3β3 , C111 = a

β3 .
(V.80)

The solution of the constraint (V.50) is then

t = 1− as3

s2 (V.81)

and, using (V.40), we find

Gtt = 1
2s

4 , Gst = 1
2as

4 , Gss = 1
s2 + 1

2a
2s4 . (V.82)

Moreover, using (V.41), (V.43) and (V.53), we find that

gss = 3
s2 , fas =

√
3
s

, Γsss = −1
s

, Tsss = 3
β

1
s3 . (V.83)

The system made out of (V.62) and (V.64) thus takes the form

Ps = −
√

3
2 P

′
0

P ′′0 + 2
sP
′
0 − 2

s2P0 = 0 ,
(V.84)

whose solution is

P0 = AP s+BP
1
s2

Ps = −
√

3
2

(
AP − 2BP 1

s3

)
, P a = fas g

ssPs = −AP
2 s+BP

1
s2 .

(V.85)

where AP , BP are constant parameters. Using the third of equations (V.60), we also find
that

P = −3AP
(AP

4 s2 +BP
1
s

)
(V.86)

so that the kinetic term and the potential for s in L+ L′ take the form

e−1Ldilaton = −1
2

3
s2 (∂Ms)(∂Ms) + 3g2AP

(
AP
4 s2 +BP

1
s

)
. (V.87)

We now redefine √
3 ln s = Φ , (V.88)

so that Φ is described by

e−1Ldilaton = −1
2(∂MΦ)(∂MΦ) + 3g2AP

(
AP
4 e

2√
3

Φ +BP e
− 1√

3
Φ
)

(V.89)
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and is identified with the canonically normalized dilaton of (V.78) upon making the identi-
fication

3
4g

2A2
P = −Λ , BP = 0 . (V.90)

Note that, using (V.85), we have that

P0 = AP e
1√
3

Φ
, P a = −AP2 e

1√
3

Φ
. (V.91)

Furthermore, let us study how the linear dilaton background

Φ = Cy , (V.92)

where C a constant parameter which, using (F.66) is given by

C = − 1√
3NlS

, (V.93)

affects N = 2 supersymmetry. The background bulk metric is (see the appendix D for the
conventions and some calculations)

ds2 = e
− 2√

3
Cy(ηµνdxµdxν + dy2) , (V.94)

under the fine–tuning condition
C = ±gAP√

2
. (V.95)

Without loss of generality, we choose

C = gAP√
2
. (V.96)

To have at least one unbroken supersymmetry, the fermion transformations must vanish
in the vacuum for at least one linear combination of the supersymmetry parameters. Using
equations (V.91), the relevant terms of the fermion transformations given by (V.22) and
(V.59) take the following form in 4D spacetime (in the vacuum)

δ̃ψµi = i
2
√

3Γµ
(
iCΓ5εi + gAP√

2 εjiδ
jkεk

)
δ̃λi = −1

2e
1√
3
Cy
(
iCΓ5εi + gAP√

2 εjiδ
jkεk

)
.

(V.97)

Consequently, we find that

δ̃
(
λ1 − iΓ5λ2

)
= 0

δ̃
(
λ1 + iΓ5λ2

)
∼ ε2 − iΓ5ε1 .

(V.98)

We thus conclude that N = 2 supersymmetry is partially broken to N = 1 and identify
λ1 − iΓ5λ2 with the fermion residing in a multiplet of the unbroken N = 1 supersymmetry
that has direction

ε2 = iΓ5ε1 (V.99)
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and λ1 + iΓ5λ2 with the Goldstino of the broken N = 1 supersymmetry. To determine the
dependence of εi on y, we impose in the vacuum

δ̃ψ5i = ∂5εi + igAP

2
√

6
Γ5εjiδ

jkεk
!= 0 , (V.100)

which gives

ε1 = e
± C

2
√

3
y
ε̃ , ε2 = ∓e±

C

2
√

3
y
iΓ5 ε̃, (V.101)

where ε̃ is a constant spinor. We choose

ε1 = e
− C

2
√

3
y
ε̃ , ε2 = e

− C

2
√

3
y
iΓ5 ε̃ , (V.102)

so that (V.102) are compatible with (V.99).
In addition, using the second of equations (V.60), as well as (V.83) and (V.91) we find

that

Paa = 1
2P0 + 2

√
2(fas )−3TsssP

a = −AP2 e
1√
3

Φ
. (V.103)

Consequently, the terms (V.58) take the form

e−1L′ = 3g2A2
P

4 e
2√
3

Φ − i
√

6
8 gAP e

1√
3

Φ
ψ̄iMΓMNψjNδij

+gAP
2
√

2 e
1√
3

Φ
λ̄iΓMψjMδij −

igAP
4
√

6 e
1√
3

Φ
λ̄iλjδij .

(V.104)

Furthermore, using (V.61) and (V.91) we find that

hI = AP
2 υIe

1√
3

Φ
, hIa = − AP

2
√

2
υIe

1√
3

Φ
, (V.105)

where we have assumed that υIυI = 1 for simplicity. Then, using (V.28) as well as the
second of equations (V.26), we find respectively that

hI = AP
2 GIJυ

Je
1√
3

Φ
, haI = − AP

2
√

2GIJυ
Je

1√
3

Φ
,

ΦIaa = −AP
8

√
2
3GIJυ

Je
1√
3

Φ
.

(V.106)
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Putting everything together, the final Lagrangian L̃ = L+ L′ takes the form

e−1L̃ = 1
2R(ω)− 1

2(∂MΦ)(∂MΦ)− 1
8e

4√
3

Φ
F 0
MNF

MN0 − 1
4ae

4√
3

Φ
F 0
MNF

MN1

−1
4(e−

2√
3

Φ + 1
2a

2e
4√
3

Φ)F 1
MNF

MN1 − 1
2 ψ̄

i
MΓMNPDNψPi − 1

2 λ̄
i /̃Dλi

− i
2(∂NΦ) λ̄iΓMΓNψMi − AP υ̃

16
√

2 e
5√
3

Φ
λ̄iΓMΓΛPψMi F

0
ΛP

− AP
8
√

2

(
1
2aυ̃ e

5√
3

Φ + υ1e
− 1√

3
Φ)

λ̄iΓMΓΛPψMi F
1
ΛP −

iAP υ̃
64

√
2
3e

5√
3

Φ
λ̄iΓMNλi F

0
MN

− iAP
32

√
2
3

(
1
2aυ̃ e

5√
3

Φ + υ1e
− 1√

3
Φ)

λ̄iΓMNλi F
1
MN + e−1

6
√

6CIJKε
MNPΣΛF IMNF

J
PΣA

K
Λ

−3iAP υ̃
32
√

6 e
5√
3

Φ [ψ̄iMΓMNPΣψNiF
0
PΣ + 2ψ̄MiψNi F

0
MN ]

− 3iAP
16
√

6

(
1
2aυ̃ e

5√
3

Φ + υ1e
− 1√

3
Φ) [ψ̄iMΓMNPΣψNiF

1
PΣ + 2ψ̄MiψNi F

1
MN ]

+3g2A2
P

4 e
2√
3

Φ − i
√

6
8 gAP e

1√
3

Φ
ψ̄iMΓMNψjNδij

+gAP
2
√

2 e
1√
3

Φ
λ̄iΓMψjMδij −

igAP
4
√

6 e
1√
3

Φ
λ̄iλjδij

+(4–fermion terms) .
(V.107)

where A1
M corresponds to the gauge field of the vector multiplet and we have set υ̃ = υ0+aυ1.

Since the parameter AP appears only through the combination gAP in L′, we may set AP = 1
for simplicity. Moreover, bearing in mind the commentary after equation (V.79), at tree–level
we can set a = 0. The final Lagrangian then takes the form

e−1L̃ = 1
2R(ω)− 1

2(∂MΦ)(∂MΦ)− 1
8e

4√
3

Φ
F 0
MNF

MN0 − 1
4e
− 2√

3
Φ
F 1
MNF

MN1

−1
2 ψ̄

i
MΓMNPDNψPi − 1

2 λ̄
i /̃Dλi − i

2(∂NΦ) λ̄iΓMΓNψMi

− υ0

16
√

2 e
5√
3

Φ
λ̄iΓMΓΛPψMi F

0
ΛP −

υ1

8
√

2e
− 1√

3
Φ
λ̄iΓMΓΛPψMi F

1
ΛP

− iυ0

64

√
2
3e

5√
3

Φ
λ̄iΓMNλi F

0
MN − iυ1

32

√
2
3e
− 1√

3
Φ
λ̄iΓMNλi F

1
MN

+ e−1

24 ε
MNPΣΛ

(
2F 0

MNF
1
PΣA

1
Λ + F 1

MNF
1
PΣA

0
Λ

)
− 3iυ0

32
√

6e
5√
3

Φ [ψ̄iMΓMNPΣψNiF
0
PΣ + 2ψ̄MiψNi F

0
MN ]

− 3iυ1

16
√

6e
− 1√

3
Φ[ψ̄iMΓMNPΣψNiF

1
PΣ + 2ψ̄MiψNi F

1
MN ]

+3g2

4 e
2√
3

Φ − ig
√

6
8 e

1√
3

Φ
ψ̄iMΓMNψjNδij

+ g

2
√

2 e
1√
3

Φ
λ̄iΓMψjMδij −

ig

4
√

6 e
1√
3

Φ
λ̄iλjδij

+(4–fermion terms) .
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Notice that (V.108) has three free parameters: g, υ0 and υ1. The KK spectrum of every 5D
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field of the theory contains a 4D zero–mode and a mass gap

Mgap =
√

3
2 C =

√
3

2
√

2
g , (V.109)

where we have used (V.96) with AP = 1, followed by a near–continuum of narrow KK
resonances.

Since N = 2 is partially broken, the final spectrum must consist of multiplets of the
unbroken N = 1, D = 4 supersymmetry (V.99) that is left intact on the 4D slices of the 5D
bulk. Note that, in terms of representations of the 4D Lorentz–group, the 5D graviton zero–
mode, which has five helicity states, is made out of a 4D zero–mode graviton, a massless 4D
vector Ãµ and a massless scalar, the radion. The totality of zero–modes forms the following
N = 1 multiplets:

• A massless N = 1 pure supergravity multiplet, made out of the 4D graviton and the
linear combination of 4D gravitinos ψ1

µ − iΓ5ψ2
µ.

• A massive spin–3/2 N = 1 multiplet, with a mass controlled by g. It consists of the
orthogonal linear combination of 4D gravitinos ψ1

µ + iΓ5ψ2
µ, that acquires mass by

absorbing the Goldstino λ1 + iΓ5λ2, as well as two massive spin–1 and one massive
spin–1/2 field.

• The remaining degrees of freedom are neatly packaged in a massless spin–1 and a
massless spin–1/2 N = 1 multiplet.

Note that, upon breaking the remaining supersymmetry, the two gravitini might recombine
to form a Dirac gravitino [100] or not, and the exact freeze–out mechanism will depend on
the nature of their mass.

V.6 Introducing branes

In this section, we present part of the yet unpublished piece of work: I. Antoniadis, A.
Delgado, C. Markou and S. Pokorski, in preparation.

To begin with, we compactify y on a S1/Z2 orbifold, at the fixed points of which we
introduce branes, namely two branes with tensions V1 and V2 (in the string frame) at y = 0
and at y = L respectively. We perform the analysis in both the string and the Einstein
frame, as the former will be used in order to explore the Planck mass hierarchy and the
latter to study the breaking of supersymmetry due to the branes.

• String frame:

In the string frame, the dilaton action is (without using matter sources)

Sdil =
∫
d5x

[√
−ge−

√
3Φ
(

1
2R+ 3

2(∂Φ)2 − Λ
)

−
√
−g1e

−α1ΦV1δ(y)−
√
−g2e

−α2ΦV2δ(y − L)
] (V.110)
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where g1µν = gµν |y=0, g2µν = gµν |y=L and α1, α2 are generically arbitrary parameters.
Varying with respect to Φ, gµν and g55 we find the following e.o.m. respectively (see appendix
E for the derivation)

√
−ge−

√
3Φ
(√

3
2 R−

3
√

3
2 (∂Φ)2 + 32Φ−

√
3Λ
)

−α1
√
−g1e

−α1ΦV1δ(y)− α2
√
−g2e

−α2ΦV2δ(y − L) = 0 ,
(V.111)

√
−ge−

√
3Φ
(

1
2Gµν + 3

4gµν(∂Φ)2 −
√

3
2 gµν∇5∂

5Φ + 1
2gµνΛ

)
+1

2gµν
(√
−g1e

−α1ΦV1δ(y) +
√
−g2e

−α2ΦV2δ(y − L)
)

= 0 .
(V.112)

and
1
2G55 +

√
3

2 ∇5∂5Φ + 3
4g55(∂Φ)2 −

√
3

2 g55∇5∂
5Φ + 1

2g55Λ = 0 . (V.113)

Assuming 4D Poincaré invariance, we make the following Ansatz for the metric

gMN = e2A(y)ηMN (V.114)

where A is a function of y. The corresponding Ricci scalar is then

R = −
(
12A′2 + 8A′′

)
e−2A (V.115)

and the components of the Einstein tensor are

Gµν = 3
(
A′2 +A′′

)
ηµν , G55 = 6A′2 . (V.116)

Setting Φ′ = ∂5Φ, we have that

2Φ = e−2A(3A′Φ′ + Φ′′) , ∇5∂5Φ = Φ′′ + Γ5
55Φ′ = Φ′′ +A′Φ′ (V.117)

so that the e.o.m. of Φ, gµν and g55 take respectively the form
√

3
(
6A′2 + 4A′′

)
+ 3
√

3
2 Φ′2 − 9A′Φ′ − 3Φ′′ +

√
3Λ

α1e
A+(
√

3−α1)ΦV1δ(y) + α2e
A+(
√

3−α2)ΦV2δ(y − L) = 0 ,
(V.118)

3
√

3
(
A′2 +A′′

)
+ 3
√

3
2 Φ′2 − 3A′Φ′ − 3Φ′′ +

√
3Λe2A

+
√

3eA+(
√

3−α1)ΦV1δ(y) +
√

3eA+(
√

3−α2)ΦV2δ(y − L) = 0 ,
(V.119)

and
3A′2 + 3

4Φ′2 + 1
2e

2AΛ = 0 . (V.120)

One can also decouple A′′ and Φ′′, so that the equations (V.118)–(V.120) are rewritten as
√

3
(
3A′2 +A′′

)
− 6A′Φ′ +

√
3Λ(1− e2A)

(α1 −
√

3)eA+(
√

3−α1)ΦV1δ(y) + (α2 −
√

3)eA+(
√

3−α2)ΦV2δ(y − L) = 0 ,
(V.121)
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2
√

3A′2 −
√

3
2 Φ′2 + 15

3 A
′Φ′ + Φ′′ + 1√

3Λ(3− 4e2A)(
α1 − 4√

3

)
eA+(

√
3−α1)ΦV1δ(y) +

(
α2 − 4√

3

)
eA+(

√
3−α2)ΦV2δ(y − L) = 0 ,

(V.122)

3A′2 + 3
4Φ′2 + 1

2e
2AΛ = 0 . (V.123)

This is a nonlinear set of equations which is difficult to solve generically. A supersymmetry–
inspired method for finding the solution (in the Einstein frame) has been proposed in [101].

Given the above, let us assume that the general solution of (V.121)–(V.123) takes the
simple form

Φ =


a1y + b1 , y 6 0
a2y + b2 , 0 6 y 6 L

a3y + b3 , y > L

(V.124)

and

A =


c1y + d1 , y 6 0
c2y + d2 , 0 6 y 6 L

c3y + d3 , y > L .

(V.125)

As the solutions for the dilaton and metric should be continuous (but generically not their
derivatives also), we have that

b1 = b2 ≡ b , a2L+ b2 = a3L+ b3

d1 = d2 ≡ d , c2L+ d2 = c3L+ d3 .
(V.126)

Moreover, away from the branes, the solutions (V.124) and (V.125) should satisfy (V.121)–
(V.123), while at y = 0 and at y = L they should satisfy the jump conditions

Φ′|ri+εri−ε =
(

4√
3 − αi

)
eA(ri)+

(√
3−αi

)
Φ(ri)Vi

A′|ri+εri−ε =
(
1− α1√

3

)
eA(ri)+

(√
3−αi

)
Φ(ri)Vi ,

(V.127)

where ri = 0 or L.
Substituting (V.124) and (V.125) for y < 0, 0 < y < L and y > L in (V.121), we find the

following:
c1 = c2 = c3 = 0

e2d1 = e2d2 = e2d3 = 1 ,
(V.128)

so, using (V.126), we have that

d3 = d = πn , n = 0, 1, 2, . . . (V.129)

Moreover, substituting (V.124) and (V.125) for y < 0, 0 < y < L and y > L in (V.122), we
find the following:

c1 = c2 = c3 = 0
3
2a

2
1 = Λ(3− 4e2d1) , 3

2a
2
2 = Λ(3− 4e2d2) , 3

2a
2
3 = Λ(3− 4e2d3)

(V.130)
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and, using the second of equations (V.128), we find that

3
2a

2
1 = 3

2a
2
2 = 3

2a
2
3 = −Λ . (V.131)

Consequently,
a1 = ±a2 , a2 = ±a3 . (V.132)

Note that by substituting (V.124) and (V.125) for y < 0, 0 < y < L and y > L in (V.123),
we obtain the very same results (V.130).

Finally, substituting (V.124) and (V.125) in (V.127), we find that

• y = 0:

a2 − a1 =
(

4√
3 − α1

)
V1 exp

[
d+

(√
3− α1

)
b
]

c2 − c1 =
(
1− α1√

3

)
V1 exp

[
d+

(√
3− α1

)
b
] (V.133)

• y = L:

a3 − a2 =
(

4√
3 − α2

)
V2 exp

[
c2L+ d+

(√
3− α2

)
(a2L+ b)

]
c3 − c2 =

(
1− α2√

3

)
V2 exp

[
c2L+ d+

(√
3− α2

)
(a2L+ b)

] (V.134)

Using the first equation of (V.130) in the second equations of (V.133) and (V.134) we find
that

α1 = α2 =
√

3 . (V.135)

Consequently, using (V.128), (V.132) and (V.135) in the first equations of (V.133) and
(V.134) we find that

− a1 = a2 = −a3 ≡ a , (V.136)

where a is not to be confused with the parameter a of (V.79), and that

V1 = 2
√

3a = −V2 . (V.137)

Using (V.126) and (V.136) we also find that

b3 = b+ 2aL . (V.138)

To conclude, the dilaton solution is

Φ(y) =


−ay + b , y 6 0
ay + b , 0 6 y 6 L

−ay + b+ 2aL , y > L

(V.139)

while the solution for the factor A in the metric is

A(y) = πn , n = 0, 1, 2, . . . (V.140)

with
V1 = 2

√
3a = −V2 ,

3
2a

2 = −Λ . (V.141)
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To derive the Planck mass hierarchy, we begin by noting that the constant b that appears
in the dilaton background (V.139) can be absorbed by the y–coordinate via a redefinition,
so we set b = 0. From equation (V.72), which implies that the gauge coupling on the branes
is independent of the string coupling and thus of the dilaton, we deduce that the SM should
not couple to the dilaton in the model under consideration, which means that a priori we
can introduce, for example, the Higgs field H on any of the two (flat) branes as follows:

SHiggs =
∫
d4x

[
ηµν∂

µH†∂νH − λ(H†H − υ2
0)2
]
. (V.142)

Consequently, the Higgs vev, and thus all mass parameters, are at the TeV scale on both
branes. Moreover, the 4D Planck mass is

M2
Pl = M3

5

∫ L

−L
dy e−

√
3Φ = M3

5

∫ L

−L
dy e−

√
3a|y| = 2M3

5√
3a

(1− e−
√

3aL) , (V.143)

so, assuming that M5 is at the TeV scale, a should be negative in order to generate a large
MPl. The SM may be introduced on either of the two branes.

• Einstein frame:

We now switch to the Einstein frame by performing the conformal transformation

g̃MN = e
− 2√

3
Φ
gMN , (V.144)

which implies that the Ricci scalar in the string frame can be written as

R = e
− 2Φ√

3
(
R̃− 8√

3
2̃2Φ− 4(∂̃Φ)2

)
, (V.145)

where the tilde signifies that the respective quantity is calculated in the Einstein frame. Note
that in the previous section, by abuse of notation, we have used the same symbols for the
quantities calculated in the string frame and their counterparts in the Einstein frame. The
dilaton action then becomes

S̃dil =
∫
d5x

[√
−g̃
(

1
2R̃−

1
2(∂̃Φ)2 − e

2Φ√
3 Λ
)

−
√
−g̃1e

(
4√
3
−α1

)
Φ
V1δ(y)−

√
−g̃2e

(
4√
3
−α2

)
Φ
V2δ(y − L)

]
,

(V.146)

where we have discarded the total derivative 2̃2Φ. Treating Φ and g̃MN as independent
fields and using that √

−g̃1,2 =
√
−g̃
g̃55

, (V.147)

we find the e.o.m. of Φ, gµν and g55 to be respectively

√
−g̃ 2̃2Φ− 2√

3
√
−g̃e

2Φ√
3 Λ−

√
−g̃1

( 4√
3 − α1

)
e

(
4√
3
−α1

)
Φ
V1δ(y)

−
√
−g̃2

( 4√
3 − α2

)
e

(
4√
3
−α2

)
Φ
V2δ(y − L) = 0 ,

(V.148)
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√
g̃55
[
G̃µν + g̃µν

(
1
2(∂̃Φ)2 + e

2Φ√
3 Λ
)]

+g̃µν
(
e

(
4√
3
−α1

)
Φ
V1δ(y) + e

(
4√
3
−α2

)
Φ
V2δ(y − L)

)
= 0 ,

(V.149)

and
G̃55 + g̃55

(
1
2(∂̃Φ)2 + e

2Φ√
3 Λ
)
− (Φ′)2 = 0 . (V.150)

Similarly to the analysis in the string frame , we make the following Ansatz for the metric

g̃MN = e2Ã(y)ηMN (V.151)

where Ã is a function of y. Consequently,

G̃µν = 3
(
Ã′2 + Ã′′

)
ηµν , G̃55 = 6Ã′2 , 2̃Φ = e−2Ã(3Ã′Φ′ + Φ′′) . (V.152)

so that the e.o.m. of Φ, gµν and g55 take respectively the form

Φ′′ + 3Ã′Φ′ − 2√
3Λe2

(
Ã+ Φ√

3

)
−
( 4√

3 − α1
)
e
Ã+
(

4√
3
−α1

)
Φ
V1δ(y)

−
( 4√

3 − α2
)
e
Ã+
(

4√
3
−α2

)
Φ
V2δ(y − L) = 0 ,

(V.153)

3
(
Ã′′ + Ã′2

)
+ 1

2(Φ′)2 + Λe2
(
Ã+ Φ√

3

)
+

e
Ã+
(

4√
3
−α1

)
Φ
V1δ(y) + e

Ã+
(

4√
3
−α2

)
Φ
V2δ(y − L) = 0 ,

(V.154)

and
6Ã′2 − 1

2(Φ′)2 + Λe2
(
Ã+ Φ√

3

)
= 0 . (V.155)

Now let us assume that the general solution of (V.153)–(V.155) takes the form

Φ =


A1y +B1 , y 6 0
A2y +B2 , 0 6 y 6 L

A3y +B3 , y > L

(V.156)

and

Ã =


Γ1y + ∆1 , y 6 0
Γ2y + ∆2 , 0 6 y 6 L

Γ3y + ∆3 , y > L .

(V.157)

Due to continuity we have that

B1 = B2 ≡ b̃ , A2L+B2 = A3L+B3

∆1 = ∆2 ≡ d̃ , Γ2L+ ∆2 = Γ3L+ ∆3 .
(V.158)

Moreover, away from the branes, the solutions (V.156) and (V.157) should satisfy (V.153)–
(V.155), while at y = 0 and at y = L they should satisfy the jump conditions

Φ′|ri+εri−ε =
(

4√
3 − αi

)
e
A(ri)+

(
4√
3
−αi
)
Φ(ri)Vi

A′|ri+εri−ε = −1
3 e

A(ri)+
(

4√
3
−αi
)
Φ(ri)Vi ,

(V.159)
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where ri = 0 or L.
Substituting (V.156) and (V.157) in (V.153), we find the following:

• y < 0

3Γ1A1 −
2√
3

Λ exp
[
2
(
Γ1y + ∆1 + 1√

3
(A1y +B1)

)]
= 0 , (V.160)

which gives
Γ1 = − 1√

3A1

3
2A

2
1 = −Λe2

(
∆1+ 1√

3
B1
)
.

(V.161)

• 0 < y < L

3Γ2A2 −
2√
3

Λ exp
[
2
(
Γ2y + ∆2 + 1√

3
(A2y +B2)

)]
= 0 , (V.162)

which gives
Γ2 = − 1√

3A2

3
2A

2
2 = −Λe2

(
∆2+ 1√

3
B2
)
.

(V.163)

• y > L

3Γ3A3 −
2√
3

Λ exp
[
2
(
Γ3y + ∆3 + 1√

3
(A3y +B3)

)]
= 0 , (V.164)

which gives
Γ3 = − 1√

3A3

3
2A

2
3 = −Λe2

(
∆3+ 1√

3
B3
)
.

(V.165)

It is straightforward to verify that substituting (V.156) and (V.157) in (V.154) and in (V.155)
we obtain the very same results. Let us note that, comparing (V.161) to (V.163) and using
(V.158), we find that

A2 = ±A1 , (V.166)

while, comparing (V.163) to (V.165) we find that

A3 = ±A2 e
∆3−∆2+ 1√

3
(B3−B2) = ±A2 , (V.167)

where in the last step we have used (V.158).
Moreover, substituting (V.156) and (V.157) in (V.159) we find that

• y=0

A2 −A1 =
( 4√

3 − α1
)
e

∆1+
(

4√
3
−α1

)
B1V1

Γ2 − Γ1 = −1
3e

∆1+
(

4√
3
−α1

)
B1V1 ,

(V.168)

• y=L
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A3 −A2 =
( 4√

3 − α2
)
e

Γ2L+∆2+
(

4√
3
−α2

)
(A2L+B2)

V2

Γ3 − Γ2 = −1
3e

Γ2L+∆2+
(

4√
3
−α2

)
(A2L+B2)

V2

(V.169)

where the continuity conditions (V.158) have been assumed.
Comparing the two equations of (V.168) to each other and using (V.161) and (V.163) we

find that
α1 =

√
3 . (V.170)

Similarly, comparing the two equations of (V.169) to each other and using (V.163) and
(V.165) we find that

α2 =
√

3 . (V.171)

Using (V.170) in (V.168), we find that

A2 = A1 + 1√
3
e

∆1
1√
3
B1V1 , (V.172)

which, using (V.166), yields
A2 = −A1 ≡ ã (V.173)

and
V1 = 2

√
3ã e−d̃−

1√
3
b̃
. (V.174)

Furthermore, using (V.171) in (V.169), we find that

A3 = A2 + 1√
3
e

Γ2L+∆2+ 1√
3

(A2L+B2)
V2 , (V.175)

which, using (V.167), yields
A3 = −A2 ≡ −ã (V.176)

and
V2 = −2

√
3ã e−Γ2L−∆2− 1√

3
(A2L+B2) = −2

√
3ã e−d̃−

1√
3
b̃ = −V1 , (V.177)

where in the penultimate step we have used (V.163).
Finally, using (V.173) and (V.176) in (V.158) we find that

B3 = b̃+ 2ãL , ∆3 = d̃− 2√
3
ãL . (V.178)

Putting everything together, we find the dilaton solution to be

Φ(y) =


−ãy + b̃ , y 6 0
ãy + b̃ , 0 6 y 6 L

−ãy + b̃+ 2ãL , y > L

(V.179)

while the solution for the factor Ã in the metric is

Ã(y) =


1√
3 ãy + d̃ , y 6 0
− 1√

3 ãy + d̃ , 0 6 y 6 L
1√
3 ãy + d̃− 2√

3 ãL , y > L ,

(V.180)
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with
V1 = 2

√
3ã e−d̃−

1√
3
b̃ = −V2 ,

3
2
(
ãe
−d̃− 1√

3
b̃)2 = −Λ . (V.181)

Consequently, comparing (V.141) and (V.181), we have that

a = ã e
−d̃− 1√

3
b̃
. (V.182)

Note that, by comparing (V.92) and (V.179), the parameter C of the previous section is in
fact identified with ã.

V.7 Supersymmetry–preserving branes
As in the previous section, we present here part of the yet unpublished piece of work: I.
Antoniadis, A. Delgado, C. Markou and S. Pokorski, in preparation.

We now remain in the Einstein frame and set for simplicity

d̃ = b̃ = 0 ⇒ a = ã ,
3
2a

2 = −Λ . (V.183)

Comparing (V.183) to (V.90), we find that

a = ±gAP√
2
, (V.184)

as expected by equation (V.95). Note that we have not set AP = 1 here. Moreover, we have
that

emM = eÃδmM , (V.185)

so

e55 = e5
5g

55 = e−Ã , eaν = eaµg
µν = e−Ãηµνδaµ , eµb = eaµηab = eÃηabδ

a
µ . (V.186)

Consequenty,
ω a5
µ = Ã′δaµ , ω ab

5 = ω a5
5 = 0 (V.187)

Using (V.180), we compute that

ω a5
µ = δaµ


1√
3a , y < 0 , y > L

0 , y = 0, L
− 1√

3a , 0 < y < L ,

(V.188)

so that

Dµεi = ΓµΓ5εi


1

2
√

3a , y < 0 , y > L

0 , y = 0, L
− 1

2
√

3a , 0 < y < L ,

(V.189)

and
D5εi = ∂5εi . (V.190)
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In addition, we have that
fax /∂φ

x = e−ÃΓ5Φ′ (V.191)

and we also compute that

Φ′ =


−a , y < 0 , y > L

0 , y = 0, L
a , 0 < y < L ,

(V.192)

so that

fax /∂φ
x = e−ÃΓ5


−a , y < 0 , y > L

0 , y = 0, L
a , 0 < y < L .

(V.193)

Consequently, using (V.184), as well as the expressions (V.91), the (relevant parts of the)
fermion transformations are:

• y < 0 , y > L

δ̃ψµi = 1
2
√

3
gAP√

2 Γµ
(
± Γ5εi + iεjiδ

jkεk
)

+ . . .

δ̃λai = i
2
gAP√

2 e
−Ã
(
± Γ5εi + iεjiδ

jkεk
)

+ . . .

(V.194)

• y = 0, L

δ̃ψµi = i√
3
gAP√

2 Γµεjiδjkεk + . . .

δ̃λai = −1
2
gAP√

2 e
−Ãεjiδ

jkεk + . . .
(V.195)

• 0 < y < L

δ̃ψµi = 1
2
√

3
gAP√

2 Γµ
(
∓ Γ5εi + iεjiδ

jkεk
)

+ . . .

δ̃λai = i
2
gAP√

2 e
−Ã
(
∓ Γ5εi + iεjiδ

jkεk
)

+ . . .

(V.196)

Without loss of generality, we now choose the positive sign in (V.184). Then for y < 0 , y > L,
we have that

δ̃
(
λ1 − iΓ5λ2

)
∼ ε2 + iΓ5ε1

δ̃
(
λ1 + iΓ5λ2

)
= 0 ,

(V.197)

while for 0 < y < L, we have that

δ̃
(
λ1 − iΓ5λ2

)
= 0

δ̃
(
λ1 + iΓ5λ2

)
∼ ε2 − iΓ5ε1 .

(V.198)

We thus conclude that the supersymmetry corresponding to the linear combination λ1−iΓ5λ2
is preserved between the branes but broken “outside” of them, while the one corresponding
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to λ1 + iΓ5λ2 is broken between the branes but preserved “outside” of them. The direction
of the unbroken supersymmetry is thus

ε2 = iΓ5ε1 , between the branes

ε2 = −iΓ5ε1 , outside.
(V.199)

Interestingly, the direction of the preserved supersymmetry between the branes is identical
to that of the preserved supersymmetry (V.99) in the infinite line y in the treatment of the
previous section, namely before the introduction of the branes.

Finally, we have that everywhere

δ̃ψ5i = ∂5εi + i

2
√

3
gAP√

2
Γ5εjiδ

jkεk
!= 0 , (V.200)

which gives
ε1 = exp

(
± 1

2
√

3
gAP√

2 y
)
ε̃

ε2 = ∓ exp
(
± 1

2
√

3
gAP√

2 y
)
iΓ5ε̃ = ∓iΓ5ε1 ,

(V.201)

where ε̃ is a constant spinor. Consequently, between the branes we accept the solution

ε2 = exp
(
− 1

2
√

3
gAP√

2
y
)
iΓ5ε̃ = iΓ5ε1 , (V.202)

while outside the branes

ε2 = − exp
( 1

2
√

3
gAP√

2
y
)
iΓ5ε̃ = −iΓ5ε1 . (V.203)

Note that (V.202) is precisely the same as the corresponding equation (V.102) before the
introduction of the branes.

We would now like to explore supersymmetry on the branes. To this end, we start by
writing the dilaton and metric backgrounds (V.179) and (V.180) for y < L respectively as

Φ(y) = a|y| , Ã = − 1√
3
a|y| . (V.204)

From (V.22) we find that the dilaton trasforms under supersymmetry as

δΦ = 1
2 iε

iλi , (V.205)

so, using (V.170), we then find that the (relavant part of the) transformation of the brane
term at y = 0

L1 = −
√
−g̃1e

1√
3

Φ
V1δ(y) (V.206)

is
δL1 = − 1

2
√

3
i εiλi e

−
√

3a|y| V1δ(y) . (V.207)

Moreover, from (V.22) we compute the (relevant part of the) fermion transformation for
y < L

δλi = −1
2 ie

M
mΓm∂MΦεi = −1

2 i a sgn(y) e
1√
3
a|y| Γ5εi . (V.208)
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so that transformation of the bulk fermion kinetic term of (V.20) is

δLkin = −1
2 ia λ

i
εi e
−
√

3a|y| δ(y) . (V.209)

We now use the first of equations (V.181) to compare (V.207) to (V.209) and find that

εiλi
!= 1

2λ
i
εi . (V.210)

The LHS of (V.210) becomes

εiλi = ε1λ1 + ε2λ2 = ε1λ1 + (±iΓ5ε1)†Γ0(±iΓ5λ1) = ε1λ1 − ε1λ1 = 0 , (V.211)

where the signs± stand for the direction of the unbroken supersymmetry between and outside
of the branes respectively, according to (V.199). Similarly, the RHS of (V.210) vanishes for
both directions. The equation (V.210) is thus satisfied for both directions of the unbroken
supersymmetry. We, therefore, conclude that the brane at y = 0 does not break N = 1,
D = 4 supersymmetry further.

Now let us consider the dilaton and metric backgrounds (V.179) and (V.180) for y > 0

Φ(y) = −a|y − L|+ aL , Ã = 1√
3
a|y − L| − 1√

3
aL , (V.212)

for which
δλi = 1

2 i a sgn(y − L) e−
1√
3
a|y−L|+ 1√

3
aL Γ5εi . (V.213)

Consequently, the transformation of the fermion bulk kinetic term is

δLkin = 1
2 ia λ

i
εi e
√

3a|y−L|−
√

3aL δ(y − L) . (V.214)

Moreover, the brane term at y = L

L2 = −
√
−g̃2e

1√
3

Φ
V2δ(y − L) (V.215)

transforms as
δL2 = − 1

2
√

3
i εiλi e

√
3a|y−L|−

√
3aL V2δ(y − L) . (V.216)

Using the first of equations (V.181) to compare (V.216) to (V.214), we find again that the
condition (V.210) is satisfied for both directions of the unbroken supersymmetry, just as in
the case of the brane at y = 0. We thus conclude that the introduction of the two branes
preserves N = 1, D = 4 supersymmetry, which is related to the fact that the linear dilaton
can be thought of as a flux, as its derivative with respect to the extra dimension is a constant.



A – Some useful superspace identities

[. . .] denote antisymmetrization with weight one, for example

∂[µBνρ] = 1
6 ∂µBνρ ± 5 permutations .

For the conjugates we use the following conventions

(Dα̇)† = −Dα , W α̇ = −(Wα)∗ . (A.1)

Note also that several times throughout the thesis we write

θ2 = θθ = θαθα , D
2 = DD = Dα̇D

α̇ (A.2)

and ∫
d2x

∫
d2θ f = −1

4

∫
d4xD2f ,

∫
d4x

∫
d2θ g = −1

4

∫
d4xD

2
g . (A.3)

Moreover, the following identites hold

[Dα, DD] = −4i(σµD)α∂µ , [Dα̇, DD] = 4i(Dσµ)α̇∂µ .

2i ∂µχσµθ̃ = θ̃DDχ, DD θ̃χ = −2 θ̃DDχ,

2 θ̃σµ∂µω = i θ̃αDα̇Dαω
α̇, DD θ̃ω = θ̃αDα̇D

α̇
ωα ,

(A.4)

where χα (left–handed) and ωα̇ (right–handed) are N = 1 chiral spinor superfields, namely
Dα̇χβ = Dα̇ωβ̇ = 0. In addition, for a chiral superfield Y , which namely satisfies Dα̇ Y = 0,
the following identities hold

DαDα̇DαY = −1
2Dα̇D

2Y (A.5)

and
1
16 DDDDY = −2Y (A.6)

while for a complex linear superfield L

ηα̇DD = −2Dα̇ ηD , DDDαL = −2Dα̇DαD
α̇
L = 4i(σµD)α∂µL .
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B – Alternative derivation

In the following we give a derivation of the Lagrangian for the partial breaking with a
single–tensor multiplet alternative to the one presented in section IV.2. Let us consider the
N = 2 supersymmetric Lagrangian (III.65) and assume that the transformations take the
form (IV.18), such that there is a fermion transforming like a Goldstino. The deformation
induces a new term in the variation of the Lagrangian under the second supersymmetry:

δ∗defLkin. =
√

2 M̃2
∫
d2θd2θ HL(θη + θη) , (B.1)

where H satisfies the Laplace equation in the limit M̃2 → 0. The expression (B.1) selects
the θθθ and θθθ components of HL. To maintain N = 2 invariance, these components
must transform as derivatives under the first supersymmetry. This is the case if the highest
component of HL is zero or a derivative∫

d2θd2θHL = tot.deriv. (B.2)

whose solution is
HL = G̃(Φ) + G̃(Φ)− 2L

(
GΦΦ(Φ) + GΦΦ(Φ)

)
(B.3)

where G, G̃ are holomorphic functions of Φ and GΦ = d
dΦG(Φ) (we use the derivatives merely

for convenience). The prefactor −2 of L terms is conventional. Consequently,

H = K(Φ,Φ) + L
(
G̃(Φ) + G̃(Φ)

)
− L2

(
GΦΦ(Φ) + GΦΦ(Φ)

)
, (B.4)

where K(Φ,Φ) is a function of Φ, Φ and, using the Laplace equation, we obtain

H =
(
ΦGΦ(Φ) + ΦGΦ(Φ)

)
− L2

(
GΦΦ(Φ) + GΦΦ(Φ)

)
, (B.5)

since terms linear in L do not contribute to the integral
∫
d2θd2θ .

Now let us consider again the derformation (B.1) of the lagrangian. With the use of
(B.5), it becomes (since terms proportional to L0 do not contribute):

δ∗defLkin. = −2
√

2M̃2
∫
d2θd2θ L

(
GΦΦ(Φ) + GΦΦ(Φ)

)
(θη + θη)

= M̃2
√

2

∫
d2θ DD

[
LGΦΦ(Φ) θη

]
+ h.c.

= −M̃2√2
∫
d2θ (ηDL)GΦΦ(Φ) + h.c. = iM̃2 δ∗

∫
d2θ GΦ(Φ) + h.c.

(B.6)
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Consequently, the deformed lagrangian

Ldef,kin. =
∫
d2θd2θ H(L,Φ,Φ)− iM̃2

∫
d2θ GΦ(Φ) + h.c. (B.7)

is invariant under the first, linearly realized, supersymmetry as well as under the second,
nonlinearly realized, one. It is obvious that the Lagrangians corresponding to (III.67) and
(B.5) are equivalent upon identifying GΦ(Φ) = iW (Φ).



C – Auxiliary d.o.f. in the short and
long representations

In the version of super–Maxwell theory with the use of the short representation W which
contains the auxiliary scalar D, its lagrangian is quadratic in D:

LD = 1
2AD

2 + 1
2(B + ξ)D, A > 0, (C.1)

where A and B are functions of other scalar fields (with A being the gauge kinetic metric)
and the constant ξ is the FI coefficient. To integrate over D, it is legitimate to solve the field
equation 2AD +B + ξ = 0 and substitute the result into LD to obtain the scalar potential

LD = −(B + ξ)2

8A = −V. (C.2)

This theory does not have any symmetry and the (supersymmetric) ground state is at 〈B〉 =
−ξ. The contribution of LD to the field equations of the scalars, denoted collectively by z,
appearing as variables of A and B is of course given by

∂zLD = −∂z
(B + ξ)2

8A = −∂zV. (C.3)

To go to the long representation Ŵ of the Maxwell multiplet, one has to make the
replacement D = ∂µVµ, with Vµ = −4 Im Vµ, which yields a quadratic lagrangian for the
divergence of a vector field,

L = 1
2A(∂µVµ)2 + 1

2(B + ξ) ∂µVµ, A > 0, (C.4)

instead of expression (C.1). Now, the FI term is a derivative which does not contribute to
the dynamical equations and the field equation for Vµ is

∂µ[2A∂νVν +B] = 0. (C.5)

Its solution
∂νVν = −B + c

2A (C.6)

involves an integration constant c which replaces the FI coefficient ξ. The more subtle point
is the procedure to obtain the Lagrangian after the integration of ∂µVµ, since the right–hand
side of the solution is not a derivative of off–shell fields.
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This situation is not new in the literature. Redefine

Vµ = 1
6 εµνρσA

νρσ, Fµνρσ = 4 ∂[µAνρσ]. (C.7)

Since
∂µVµ = 1

24ε
µνρσFµνρσ, (∂µVµ)2 = − 1

24F
µνρσFµνρσ, (C.8)

the lagrangian (C.4) becomes

LF = − 1
48AF

µνρσFµνρσ + 1
48(B + ξ) εµνρσFµνρσ. (C.9)

It is part of N = 8 supergravity, with A = e, and the introduction of the ξ term has been
studied as a potential source for a cosmological constant [102]. Another example is the
massive Schwinger model [102, 103], where the Maxwell lagrangian

L = −1
4FµνF

µν + 1
2θ ε

µν∂µAν +Aµjµ (C.10)

(jµ is a conserved fermion current) does not propagate any field. In the gauge A0 = 0,

L = 1
2(∂0A1)2 + θ ∂0A1, (C.11)

and the field equation ∂2
0A1 = j1 implies the presence of a physically relevant arbitrary

integration constant in F01 = ∂0A1, to be identified with the parameter θ.
Returning to our lagrangian (C.4) and solution (C.6), if we substitute the solution into

the lagrangian, ∂µVµ becomes a function of the scalar fields z, it is not any longer a derivative
and the ξ–term would then become physically relevant and contribute to the field equation
of z. We obtain

L = −(B + ξ)2

8A + (ξ − c)2

8A = −V (C.12)

and the contribution of L to the field equations of the scalar fields z is of course ∂zL =
−∂zV. Comparing with expression (C.3), equivalence is obtained if we identify the integration
constant with the FI coefficient ξ,

c = ξ. (C.13)

except if A is constant (the super–Maxwell theory has then canonical kinetic terms), in
which case the second constant term in the potential is irrelevant. With this procedure,
both versions of the theory depend on a single arbitrary constant c = ξ, the FI coefficient of
the super-Maxwell theory.

Notice that a derivative term may in general contribute to currents. The canonical
energy-momentum tensor for a “Lagrangian” Lξ = ξ ∂µVµ is

Tµν = ξ [∂νVµ − ηµν ∂ρVρ] (C.14)

which is not zero, conserved (∂µTµν = 0) and an improvement term (so that the total
energy–momentum is zero, assuming the absence of boundary contributions):

T00 = ξ ~∇ · ~V , T0i = ξ ∂iV0. (C.15)



D – 5D conventions and calculations

Our convention for the five–dimensional Minkowski metric is

ηmn = diag(−,+,+,+,+) , (D.1)

where m,n, . . . are inert indices and m = 1, . . . , 5. For Γ–matrices we write

Γmn ≡ Γ[mΓn] ≡
1
2(ΓmΓn − ΓnΓm) . (D.2)

We also have that
Γ5 = Γ5 = γ5 = γ5 , (D.3)

where γ5 is the standard γ5 in four–dimensions, such that in the Dirac representation

Γ5 = γ5 =
(

02×2 12×2
12×2 02×2

)
. (D.4)

The five–dimensional bulk metric of the LST dual is given by

gMN =

e− 2√
3
Cy
ηµν 04×1

01×4 e
− 2√

3
Cy

 = e
− 2√

3
Cy
ηMN . (D.5)

In our conventions, the Einstein equation takes the form

GMN = TMN , (D.6)

where GMN and TMN are the Einstein and the energy–momentum tensor respectively. More-
over, we have that

GMN = 3
2
[1
2∂MΞ∂NΞ + ∂M∂NΞ− ηMN

(
∂l∂

lΞ− 1
2∂lΞ∂

lΞ
)]
, (D.7)

where Ξ = Ξ(y) = 2√
3Cy in our case. This gives

G55 = 3
2
(dΞ
dy

)2
= 2C2 . (D.8)

In addition,
TMN = (∂MΦ)(∂NΦ)− gMN

(1
2(∂KΦ)(∂KΦ) + e

2√
3

ΦΛ
)
, (D.9)
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so T55 = 1
2C

2 − Λ. The Einstein equation G55 = T55 then gives

C = gAP√
2
, (D.10)

where we have used (V.90).
In the linear dilaton background, the only non–vanishing components of the vielbein em

are
eaµ = e

− 1√
3
Cy
δaµ , e5

5 = e
− 1√

3
Cy
, (D.11)

where µ, ν, . . . are the coordinate and a, b, . . . the frame indices on the four–dimensional
brane respectively. Moreover,

ea5 = g55ea5 = 0 , e55 = g55e5
5 = e

2√
3
Cy
e5

5 (D.12)

and
eaν = gνκeaκ = e

2√
3
Cy
ηνκeaκ , eµb = ηabe

a
µ . (D.13)

Consequently,

/∂Φ = (∂MΦ)ΓM = (∂MΦ)eMmΓm = (∂MΦ)(emM )−1Γm = C(e5
5)−1Γ5 = Ce

1√
3
CyΓ5 . (D.14)

Using the second of the equations (V.91), the second of the equations (V.97) then takes the
form (in the vacuum)

δ̃λi = −1
2e

1√
3
Cy
(
iCΓ5εi + gA√

2
εjiδ

jkεk
)
. (D.15)

The components of the spacetime spin–connection are given by

ω mn
M (e) = 2e[mNe

n]
[N,M ] + emΛenP e l

[Λ,P ]eMl . (D.16)

Consequently,

ω ab
µ (e) =

(
− e[a5e

b]
µ,5 + 1

2e
aΛeb5e l

Λ,5eµl −
1
2e

bΛea5e l
Λ,5eµl

)
= 0 , (D.17)

since ea5 = 0. Moreover,

ω a5
µ (e) =

(
− e[a5e

5]
µ,5 + 1

2e
aΛe55e l

Λ,5eµl
)

=
(

1
2e

55eaµ,5 + 1
2e
aνe55ebν,5eµb

)
= e55

(
∂5e
− C√

3
y
)(

1
2δ
a
µ + e

1√
3
Cy
ηνκδaκδ

b
νηcbe

c
µ

)
= − C√

3δ
a
µ .

(D.18)

Similarly, we find that
ω ab

5 = ω a5
5 = 0 . (D.19)

Since ∂µεi1 = 0, we have that (in the vacuum) on the brane

Dµεi = 1
4ω

mn
µ Γmnεi = − C

2
√

3
ΓµΓ5εi . (D.20)



88 Appendix D. 5D conventions and calculations

Then, using the first of the equations (V.91), the first of the equations (V.97) takes the
following form on the brane

δ̃ψµi = i

2
√

3
Γµ
(
iCΓ5εi + gA√

2
εjiδ

jkεk
)
, (D.21)

while the 5–th component of the first of the equations (V.97) takes the form

δ̃ψ5i = ∂5εi + igA

2
√

6
Γ5εjiδ

jkεk . (D.22)



E – Derivation of e.o.m.

We use the following definitions

(∂Φ)2 ≡ gMN∂MΦ∂NΦ , (∂̃Φ)2 ≡ g̃MN∂MΦ∂NΦ

2Φ ≡ 1√
−g∂M [

√
−ggMN∂NΦ] , 2̃Φ ≡ 1√

−g̃
∂M [
√
−g̃ g̃MN∂NΦ] .

(E.1)

• Dilaton

We set
Ldil =

√
−ge−

√
3Φ
(

1
2R+ 3

2(∂Φ)2 − Λ
)

−
√
−g1e

−α1ΦV1δ(y)−
√
−g2e

−α2ΦV2δ(y − L)
(E.2)

so that the dilaton’s equation of motion is

∂Ldil
∂Φ − ∂M

∂Ldil
∂(∂MΦ) = 0 , (E.3)

which yields

−
√

3
√
−ge−

√
3Φ
(

1
2R+ 3

2(∂Φ)2 − Λ
)

+ α1
√
−g1e

−α1ΦV1δ(y)

+α2
√
−g2e

−α2ΦV2δ(y − L)− 3∂M [
√
−ge−

√
3ΦgMN∂NΦ] = 0 ,

(E.4)

namely
√
−ge−

√
3Φ
(√

3
2 R−

3
√

3
2 (∂Φ)2 + 32Φ−

√
3Λ
)

−α1
√
−g1e

−α1ΦV1δ(y)− α2
√
−g2e

−α2ΦV2δ(y − L) = 0 ,
(E.5)

where we have used (E.1) to show that

− 3∂M [
√
−ge−

√
3ΦgMN∂NΦ] = −3

√
−ge−

√
3Φ[2Φ−

√
3(∂Φ)2] . (E.6)

• Metric
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We now vary Sdil with respect to gMN

δSdil =
∫
d5x

[
1
2e
−
√

3Φ δ(
√
−gR)

δgMN + e−
√

3Φ δ
√
−g

δgMN

(
3
2(∂Φ)2 − Λ

)
+ 3

2
√
−ge−

√
3Φ δ[(∂Φ)2]

δgMN

− δ
√
−g1

δgMN e
−α1ΦV1δ(y)− δ

√
−g2

δgMN e
−α2ΦV2δ(y − L)

]
δgMN

=
∫
d5x

{√
−ge−

√
3Φ
[

1
2

(
δR

δgMN + R√
−g

δ
√
−g

δgMN

)
+ 1√

−g
δ
√
−g

δgMN

(
3
2(∂Φ)2 − Λ

)
+3

2
δ[(∂Φ)2]
δgMN

]
− δ
√
−g1

δgMN e
−α1ΦV1δ(y)− δ

√
−g2

δgMN e
−α2ΦV2δ(y − L)

}
δgMN

=
∫
d5x

{√
−ge−

√
3Φ
[

1
2GMN + 3

2∂MΦ∂NΦ− 3
4gMN (∂Φ)2 + 1

2gMNΛ
]
δgMN

+1
2gµν

[√
−g1e

−α1ΦV1δ(y) +
√
−g2e

−α2ΦV2δ(y − L)
]
δgµν

}
+ δSChris ,

(E.7)
where

δSChris = 1
2

∫
d5x
√
−ge−

√
3Φ∇P (gΣNδΓPNΣ − gΣP δΓMMΣ) (E.8)

and we have used that

δR = RMNδg
MN +∇P (gΣNδΓPNΣ − gΣP δΓMMΣ) , (E.9)

δ
√
−g = −1

2
√
−g gMNδg

MN , δ
√
−g1,2 = −1

2
√
−g1,2 gµνδg

µν , (E.10)

GMN = RMN −
1
2gMNR (E.11)

and that
δ[(∂Φ)2]
δgMN

= δgKΛ

δgMN
∂KΦ∂ΛΦ = ∂MΦ∂NΦ . (E.12)

We now have that

δSChris = −1
2
∫
d5x
√
−g∂P (e−

√
3Φ)(gΣNδΓPNΣ − gΣP δΓMMΣ)

= −1
4
∫
d5x
√
−g∂P (e−

√
3Φ)
[
gΣNgPΛ(∇NδgΣΛ +∇ΣδgNΛ −∇ΛδgNΣ)

−gΣP gMΛ(∇MδgΣΛ +∇ΣδgMΛ −∇ΛδgMΣ)
]

= −1
4
∫
d5x
√
−g∂P (e−

√
3Φ)
[
gΣNgPΛ(2∇NδgΣΛ −∇ΛδgNΣ)

−gΣP gMΛ∇ΣδgMΛ
]

=
√

3
2
∫
d5x
√
−g e−

√
3Φ
[
∇M∂NΦ−

√
3∂MΦ∂NΦ

−gMN∇P∂PΦ +
√

3gMN (∂Φ)2
]
δgMN

(E.13)

where we have performed integration by parts twice and we have used that

δΓPNΣ = gPΛ
(
∇(NδgΣ)Λ −

1
2∇ΛδgNΣ

)
, (E.14)
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(δgMN )gNΣ = −gMNδgNΣ (E.15)

and that
∇M∂NΦ = ∇N∂MΦ . (E.16)

We then combine (E.7) and (E.13) and find that the equation of motion of gµν is

√
−ge−

√
3Φ
(

1
2Gµν + 3

4gµν(∂Φ)2 −
√

3
2 gµν∇y∂

yΦ + 1
2gµνΛ

)
+1

2gµν
(√
−g1e

−α1ΦV1δ(y) +
√
−g2e

−α2ΦV2δ(y − L)
)

= 0
(E.17)

and that that of g55 is

1
2G55 +

√
3

2 ∇5∂5Φ + 3
4g55(∂Φ)2 −

√
3

2 g55∇5∂
5Φ + 1

2g55Λ = 0 , (E.18)

where we have assumed that the dilaton depends only on the extra dimension.



F – Nonlinear supersymmetry and
N = 1 supergravity

F.1 Two equivalent Lagrangians

The present appendix is with minor modifications: I. Antoniadis and C. Markou, The cou-
pling of Non-linear Supersymmetry to Supergravity, Eur. Phys. J. C 75 (2015) no.12, 582.

In the constrained superfield formalism of non-linear supersymmetry, the goldstino is
described by the fermionic component of a chiral superfield X, that satisfies the nilpotent
constraint X2 = 0 [1, 2, 3, 4]. The scalar component (sgoldstino) is then eliminated by the
constraint and is replaced by a goldstino bilinear. The most general low energy (without
super-derivatives) Lagrangian, invariant (upon space-time integration) under global super-
symmetry, is then given by

LV A = [XX̄]D + ([fX]F + h.c.) , (F.1)

where f 6= 0 is a complex parameter. The subscripts D and F denote D and F-term densities,
integrated over the full or the chiral superspace, respectively, and correspond to the Kähler
potential and superpotential of N = 1 supersymmetry. It can be shown [4, 5] that LV A is
equivalent to the Volkov-Akulov Lagrangian [6] on-shell.

The coupling to supergravity in the superconformal context [104], (F.1) takes the form

L = −
[
(1−XX̄)S0S̄0

]
D

+
(

[(fX +W0 + 1
2TX

2)S3
0 ]F + h.c.

)
, (F.2)

where we have used the superconformal tensor calculus [105, 13] with S0 being the super-
conformal compensator superfield. We have also used a Lagrange multiplier T in order to
impose the constraint X2 = 0 explicitly in L , while the factor 1

2 is put merely for conve-
nience. W0 is a complex constant parameter whose importance will appear shortly. The
Kähler potential corresponding to (F.2) is given by

K(X, X̄) = −3 ln(1−XX̄) = −3
[
−XX̄ − (−XX̄)2

2 + . . .

]
= 3XX̄. (F.3)

We would now like to find a geometrical formulation of (F.2), that is, to eliminate X
and write an equivalent Lagrangian that contains only superfields describing the geometry
of spacetime, such as the superspace chiral curvature R [14, 106, 107]. For that, we observe
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that the following Kähler potential K ′:

K ′ = −3 ln(1 +X + X̄) = −3
(
X + X̄ − (X + X̄)2

2 + . . .

)
= 3XX̄ − 3(X + X̄), (F.4)

is related to the Kähler potential K via a Kähler tranformation of the type

K → K ′ = K − 3(X + X̄)
W →W ′ = e3XW.

(F.5)

This tells us that L is equivalent to L ′, where

L ′ = −
[
(1 +X + X̄)S0S̄0

]
D

+
(

[(fX +W0 + 1
2TX

2)e3XS3
0 ]F + h.c.

)
. (F.6)

Using the constraint X2 = 0, we have

L ′ = −
[
(1 +X + X̄)S0S̄0

]
D

+
(

[(fX +W0(1 + 3X) + 1
2TX

2)S3
0 ]F + h.c.

)
= −[S0S̄0]D +

(
[(λX +W0 −X

R

S0
+ 1

2TX
2)S3

0 ]F + h.c.
)
, (F.7)

where we have set λ = f + 3W0 and we have used the identity [13]

[X ·R · S2
0 ]F =

[
S0S̄0(X + X̄)

]
D

+ total derivatives. (F.8)

In (F.7), X enters only in F-terms without derivatives and can be thus integrated out.
Solving the equation of motion for X, we have

λ− R

S0
+ TX = 0 ⇒ X =

R
S0
− λ
T

(F.9)

and substituting back into (F.7), we get

L ′ = −[S0S̄0]D +
(

[(− 1
2T ( R

S0
− λ)2 +W0)S3

0 ]F + h.c.
)

=
[
(−1

2
R

S0
+W0 −

1
2T ( R

S0
− λ)2)S3

0

]
F

+ h.c. , (F.10)

where we have used again the identity (F.8). We can now view 1
T as a Lagrange multiplier

that imposes the constraint
( R

S0
− λ)2 = 0 . (F.11)

Consequently, we have established an equivalence between the constrained Lagrangians (F.2)
and (F.10); they both describe the coupling of non-linear supersymmetry to supergravity,
with L ′ providing its geometric formulation with the use of a constraint imposed on R
instead of X. This constraint was proposed in [14] for λ = 0. In what follows we will confirm
the equivalence by writing these Lagrangians in terms of component fields.

• Constraining a chiral superfield X
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In the following we use the method and conventions of [108] except from a factor of 1/6
which we omit in the expression of R but introduce at the Lagrangian level. We also set
the gravitational coupling κ2 = 8πGN (given here in natural units) to be equal to one, in
accordance with the usual convention. After gauge-fixing the superconformal symmetry by
using the convenient gauge S0 = 1, the Lagrangian (F.2) can be written as follows:

L =
∫

d2Θ2E

{3
8(D̄D̄ − 8

6R)e−K/3 +W

}
+ h.c.

with W (X) = fX +W0 and X2 = 0 ,
(F.12)

where D is the super-covariant derivative and E the chiral superfield density that is con-
structed from the vielbein ema :

E = 1
2e
{

1 + iΘσaψ̄a −ΘΘ[M̄ + ψ̄aσ̄
abψ̄b]

}
. (F.13)

Here ψa is the gravitino, Θ the fermionic coordinates of the curved superspace and σa =
(−1, ~σ), σabβα = 1

4(σaαα̇σ̄bα̇β − σbαα̇σ̄aα̇β) with ~σ the Pauli matrices. Note that the Lagrange
multiplier T in (F.2) has been used to impose the constraint X2 = 0, which can be solved,
fixing the scalar component (sgoldstino) in terms of the goldstino G and the auxiliary field
F of X [4].

We now substitute X, E and R with their respective expressions in component fields:

X = G2

2F +
√

2ΘG+ (ΘΘ)F ≡ A+
√

2ΘG+ (ΘΘ)F

R ≡ −M −ΘB − (ΘΘ)C

Ξ ≡ (D̄D̄ − 8
6R)X̄ ≡ −4F̄ + 4

3MĀ+ ΘD + (ΘΘ)E .

(F.14)

The exact components of R and Ξ are computed in [108] (our convention for R differs by
1/6 with respect to [108]). M and ba are the auxiliary fields of the N = 1 supergravity
multiplet in the old-minimal formulation. Then

−3
4

[
E (D̄D̄ − 8

6R)X̄X
]
F

= −3
8[2E ΞX]F = −3

8e(EA− 4FF̄ + 4
3MFĀ−

√
2

2 (DG))

+ 3
16ie(yσaψ̄a) + 3

8e[M̄ + ψ̄aσ̄
abψ̄b][−4AF̄ + 4

3MAĀ] ,
(F.15)

where
y =
√

2G(−4F̄ + 4
3MĀ) +DA . (F.16)

This expression is simplified significantly if we choose to use the unitary gauge, setting G = 0
and thus A = y = 0:

− 3
4

[
E (D̄D̄ − 8

6R)X̄X
]
F

= 3
2eF F̄ . (F.17)

Moreover, also in the unitary gauge, one can compute

[2E (fX +W0)]F = efF − e
[
M̄ + ψ̄aσ̄

abψ̄b
]
W0 . (F.18)
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Now, using the property

(ψ̄aσ̄abψ̄b)† = 1
4
[
ψ̄a(σ̄aσb − σ̄bσa)ψ̄b

]†
= 1

4
[
ψb(σbσ̄a − σaσ̄b)ψa

]
= ψaσ

abψb , (F.19)

the Lagrangian (F.12) in terms of component fields becomes

L = −1
2eR−

1
3eMM̄ + 1

3eb
aba + 1

2eε
abcd(ψ̄aσ̄bD̃cψd − ψaσbD̃cψ̄d)

+efF − eW0[M̄ + ψ̄aσ̄
abψ̄b] + ef̄ F̄ − eW̄0[M + ψaσ

abψb] + 3eF F̄ , (F.20)

where R is the Ricci scalar. The equations of motion for the auxiliary fields ba, M , F are
then

ba = 0
M = −3W0, M̄ = −3W̄0

F = − f̄3 , F̄ = −f3 .

(F.21)

Substituting back into (F.20) we get

L = −1
2eR+ 1

2eε
abcd(ψ̄aσ̄bD̃cψd − ψaσbD̃cψ̄d)

−eW0ψ̄aσ̄
abψ̄b − eW̄0ψaσ

abψb + 3e|W0|2 −
1
3e|f |

2. (F.22)

In this form, it is obvious that the Lagrangian reduces to the usual N = 1 supergravity,
together with a gravitino mass term:

m3/2 = |W0| . (F.23)

Imposing that the cosmological constant (i.e. the vacuum expectation value of the scalar
potential) vanishes, one finds

3|W0|2 −
1
3 |f |

2 = 0⇒ |f |2 = 9|W0|2 . (F.24)

This means thatW0 6= 0, which justifies the use of the constant pieceW0 in the superpotential
in L . Then, the final form of L is

L = −1
2eR+ 1

2eε
abcd(ψ̄aσ̄bD̃cψd − ψaσbD̃cψ̄d)− eW0ψ̄aσ̄

abψ̄b − eW̄0ψaσ
abψb . (F.25)

It is important to notice that the use of the constrained superfield X is what has generated
the gravitino mass term: the final form of the Lagrangian in flat space is just the pure N = 1
supergravity, but with a massive gravitino. The use of the unitary gauge G = 0 results in
the gravitino absorbing the goldstino and becoming massive, in analogy with the well-known
Brout-Englert-Higgs mechanism.

• Constraining the superspace curvature superfield R
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After gauge-fixing the superconformal symmetry by imposing S0 = 1, the Lagrangian
(F.10) can be written as follows:

L ′ = −
∫
d2ΘE (R − 2W0) + h.c.,

(R − λ)2 = 0.
(F.26)

L ′ then yields

L ′ = −1
2eR−

1
3eMM̄ + 1

3eb
aba + 1

2eε
abcd(ψ̄aσ̄bD̃cψd − ψaσbD̃cψ̄d)

−eW0[M̄ + ψ̄aσ̄
abψ̄b]− eW̄0[M + ψaσ

abψb]. (F.27)

Now let us solve the constraint which is the second of the equations (F.26). For that, we
substitute the second of the equations (F.14) into the constraint and find the set of the
following equations:

(M + λ)2 = 0
(M + λ)Bα = 0

4(M + λ)C = (BB),
(F.28)

where

Bα = σaαα̇σ̄
bα̇βψabβ − iσaαα̇ψ̄α̇aM + iψaαba with ψab ≡ D̃aψb − D̃bψa

C = −1
2R+O{M, ba, ψa} 6= 0 .

(F.29)

Equations (F.28) yield:
M = −λ and ba = 0 . (F.30)

Indeed, B in this case depends only on the gamma-trace or the divergence of the gravitino,
σ̄aψa and D̃aψa (using the Clifford algebra property of sigma-matrices (σaσ̄b + σbσ̄a)βα =
−2ηabδβα) , that can be put to zero by an appropriate gauge choice. Alternatively, one can
show that B vanishes on-shell as will be demonstrated below.

Using (F.30), eq. (F.27) becomes:

L ′ = −1
2eR−

1
3e|λ|

2 + 1
2eε

abcd(ψ̄aσ̄bD̃cψd − ψaσbD̃cψ̄d)

+eW0λ̄+ eW̄0λ− eW0ψ̄aσ̄
abψ̄b − eW̄0ψaσ

abψb . (F.31)

Substituting now λ = f+3W0, one finds that the cosmological constant is given by 3e|W0|2−
1
3e|f |

2 and the Lagrangian (F.31) is identical to (F.22). Note that the vanishing of the
cosmological constant

− 1
3e|λ|

2 + eW0λ̄+ eW̄0λ = 0 (F.32)

gives two possible solutions for λ:

λ = 6W0 and λ = 0 , (F.33)

corresponding to f = ±3W0 that solve the condition (F.24).
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Now let us derive the equation of motion for the gravitino from (F.31):

1
2ε

abcdσbD̃cψ̄d = −W̄0σ
abψb . (F.34)

Contracting (F.34) with D̃a, we obtain the following equation:

σabD̃aψb = 0 . (F.35)

Moreover, contracting the hermitian conjugate
1
2ε

abcdσ̄bD̃cψd = W0σ̄
abψ̄b . (F.36)

of (F.34) with σa, we have that

εabcdσaσ̄bD̃cψd ∼ εabcdσabD̃cψd ∼ σcdD̃cψd = 0 , (F.37)

where we have used (F.35) and
εabcdσab = −2iσcd . (F.38)

Consequently,
σaσ̄

abψ̄b = 0⇒ σaψ̄a = 0 , (F.39)
where we have used the identity

σaσ̄bσc − σcσ̄bσa = 2iεabcdσd . (F.40)

Now let us consider Bα of eq. (F.29). Its last term iψaba vanishes due to the equation of
motion for ba, while its second term vanishes due to equation (F.39). Bα’s first term is:

σaσ̄bψab = σaσ̄b(D̃aψb − D̃bψa) = (σaσ̄b − σbσ̄a)D̃aψb = 4σabD̃aψb = 0 , (F.41)

where we have used the definition

σab ≡ 1
4(σaσ̄b − σbσ̄a) (F.42)

and the relation (F.35). Consequently Bα = 0 on-shell, which justifies the solution M = −λ
and ba = 0 we chose previously.

F.2 Without imposing direct constraints

In this section, we would like to start with a regular R2 supergravity and recover the con-
straint in an appropriate limit where the additional (complex) scalar arising from R2 becomes
superheavy and decouples from the low energy spectrum. Indeed, by analogy with ordinary
General Relativity in the presence of an R2-term (with R the scalar curvature), an R2 su-
pergravity can be re-written as an ordinary Einstein N = 1 supergravity coupled to an extra
chiral multiplet.1 Let us then consider the Lagrangian

L̄ =
[(
−1

2
R

S0
+W0 + 1

2ρ( R

S0
− λ)2

)
S3

0

]
F

+ h.c. , (F.43)

1Note that R2 supergravity is not the supersymmetrization of R2 gravity which is described by a D-term
RR̄, bringing two chiral multiplets to be linearized [105, 13].
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where ρ is a real parameter. In the limit |ρ| → ∞, one would naively expect to recover the
constraint (R − λ)2 → 0, and thus (F.43) should be reduced to (F.10). In principle, one
could linearize (F.43) with the use of a chiral superfield S and then demonstrate that in the
limit |ρ| → ∞, L , L ′ and L̄ are all equivalent. If this were true, one would expect that S
corresponds to the goldstino superfield and that supersymmetry is non-linearly realized (in
the limit |ρ| → ∞), as is the case for the chiral nilpotent superfield X. In other words, the
mass of the scalar component of S would approach infinity as |ρ| → ∞ and would, therefore,
decouple from the spectrum. However, upon computing the scalar potential and the scalar
mass matrix corresponding to (F.43), we found that this is not the case. This means that
the parameter space (λ,W0, ρ) does not allow for a supersymmetry breaking minimum that
realizes the sgoldstino decoupling and the equivalence between L̄ with L and L ′. The
detailed analysis can be found in the end of this section.

To solve this problem, we start with a more general class of f(R) supergravity actions.
More precisely, we modify L̄ with the addition of a suitable term that is supressed by ρ in
the limit |ρ| → ∞:2

L ′′ =
[(
−1

2
R

S0
+W0 + 1

2ρ( R

S0
− λ)2 + 1

ρ

(
S

R

S0
− F (S)

))
S3

0

]
F

+ h.c. , (F.44)

where S is a chiral superfield coupled to gravity and F (S) is a holomorphic function of the
superfield S. This extra term has already been studied in the literature and is known as
f(R) supergravity [109, 110]. Indeed, S can be integrated out by its equation of motion at
finite ρ:

R = F ′S0, (F.45)

where F ′ = ∂F
∂S . This equation can be in principle solved to give S as a function of R and

replacing it back in (F.44) one finds an f(R) theory.
We will now study the physical implications of L ′′ in the limit ρ→∞ so as to confirm

the equivalence between L , L ′ and L ′′ (without loss of generality, we take ρ positive). We
first use eq. (F.45) to replace R in terms of S in the third term of (F.44), instead of doing
the reverse as described above. Using then the identity (F.8), we get

L ′′ = −
[
(1− 1

ρ
(S + S̄))S0S̄0

]
D

+
{

[(W0 + 1
2ρ(F ′ − λ)2 − 1

ρ
F )S3

0 ]F + h.c.
}
. (F.46)

We now fix the gauge according to S0 = 1 and set φ to be the lowest component of S. Then
the Kähler potential and the superpotential corresponding to L ′′ are given by (we use the
same symbols K and W as in section (F.1) as there is no confusion)

K = −3 ln
(

1− 1
ρ

(φ+ φ̄)
)

W = W0 + 1
2ρ(F ′ − λ)2 − 1

ρ
F,

(F.47)

where now F ′ = ∂F
∂φ .

2In principle, we may replace 1/ρ by 1/ρ̂(ρ) with |ρ̂(ρ)| → ∞ when ρ → ∞. One can show however that
our results do not change and thus we make the simple choice ρ̂ = ρ.
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It follows that

exp(K) = ρ3

(ρ− φ− φ̄)3 (F.48)

and

gφφ̄ = ∂

∂φ

∂

∂φ̄
K = 3

(ρ− φ− φ̄)2 , gφφ̄ = (ρ− φ− φ̄)2

3 . (F.49)

Also

DφW = ∂φW +KφW = ρF ′′(F ′ − λ)− 1
ρ
F ′ + 3

ρ− φ− φ̄

(
W0 + 1

2ρ(F ′ − λ)2 − 1
ρ
F

)
.

(F.50)

Putting everything together, we get that the scalar potential V is given by:

V = exp(K)
[
gφφ̄(DφW )(D̄φ̄W̄ )− 3W̄W

]
= ρ2

3(ρ− φ− φ̄)2 Ṽ , (F.51)

where

Ṽ = ρ4|F ′′(F ′ − λ)|2 + ρ3
[
−(φ+ φ̄)|F ′′(F ′ − λ)|2 + 3

2 |F
′ − λ|2

(
F ′′(F̄ ′ − λ̄) + h.c.

)]
+ρ2

[
−F̄ ′F ′′(F ′ − λ) + 3W̄0F

′′ (F ′ − λ) + h.c.
)]

+ ρ
[
(φ+ φ̄)F̄ ′F ′′(F ′ − λ)− 3F̄F ′′(F ′ − λ)

− 3
2F
′(F̄ ′ − λ̄)2 + h.c.

]
+ ρ0

[
|F ′|2 − 3F ′W̄0 − 3F̄ ′W0

]
+ ρ−1

[
−(φ+ φ̄)|F ′|2 + 3F ′F̄ + 3F̄ ′F

]
.

(F.52)

For ρ→∞, the leading behaviour of V is given by

V = ρ4

3 |F
′′(F ′ − λ)|2. (F.53)

It is positive definite with a minimum at zero when F ′ = λ or F ′′ = 0. In the following, we
will analyze the case F ′ = λ; its curvature defines the (canonically normalized) scalar mass
given by

mφ = ρ3

3 (F ′′)2 (F.54)

which goes to infinity at large ρ and φ decouples. At the minimum F ′ = λ, the potential at
large ρ becomes constant, proportional to |λ|2− 3λW̄0− 3λ̄W0. This term vanishes precisely
if equation (F.32), or equivalently (F.24), holds. We conclude that in the model (F.44) the
cosmological constant can be tuned to zero (in the limit ρ→∞) by using the same condition
as for the model (F.10). As shown in Section 2.2, this is the case for two possible values of
λ:

λ = 6W0 or λ = 0 . (F.55)

Now let us investigate the minimum of the potential at finite but large ρ. We shall
construct the solution as a power series in 1/ρ around the asymptotic field value of the
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minimum φ = φ0 that solves F ′ = λ. A simple inspection of the potential (F.52) shows that
it is sufficient to consider only even powers in 1/ρ:

φ = φ0 + φ1
ρ2

F ′(φ) = F ′(φ0) + (φ− φ0)F ′′(φ0) + 1
2(φ− φ0)2F ′′′(φ0) + . . .

(F.56)

or equivalently,
F ′(φ) = λ+ c

ρ2 + d

ρ4 + ... (F.57)

where
c = φ1F

′′
0 , d = 1

2φ
2
1F
′′′
0 . (F.58)

We then compute the derivative of Ṽ with respect to φ and keep only the terms that do not
vanish in the limit ρ→∞:

Ṽφ = ∂Ṽ

∂φ
= ρ4(F̄ ′′F ′′′|F ′ − λ|2 + |F ′′|2F ′′(F̄ ′ − λ̄))− ρ3(φ+ φ̄)|F ′′|2F ′′(F̄ ′ − λ̄)

+ρ2[F ′′2(3W̄0 − F̄ ′)− |F ′′|2(F̄ ′ − λ̄) + F ′′′(F ′ − λ)(3W̄0 − F̄ ′)]
+ρF ′′2[F̄ ′(φ+ φ̄)− 3F̄ ] + ρ0F ′′[F̄ ′ − 3W̄0]. (F.59)

This expression vanishes if every coefficient at each order vanishes.
We now substitute the expansion (F.56), (F.57) into Ṽφ (ignoring orders that vanish as

ρ−2 and higher) and impose each coefficient to be set to zero so as to have an extremum.
Assuming for simplicity that W0, λ, φ0, c, d are real, we find the following constraints on the
function F :

cF ′′0 = λ− 3W0

F0 = 2W0φ0

c2F ′′′0 = 2
3(λ− 3W0) ,

(F.60)

which yield

F (φ) = 2φ0W0 + λ(φ− φ0) + λ− 3W0
2c (φ− φ0)2 + 1

3!
2(λ− 3W0)

3c2 (φ− φ0)3 + . . .

= 2φ0W0 + λ(φ− φ0)± 3W0
2c (φ− φ0)2 ± 1

3!
2W0
c2 (φ− φ0)3 + . . . , (F.61)

where in the second line above, we used the two possible values of λ (F.55), λ = 6W0 for the
+ sign and λ = 0 for the − sign, for which the potential vanishes at the minimum.

At the minimum, the F-auxiliary term of S, Fφ, is given by:

〈|Fφ|〉 = 〈
∣∣∣∣eK/2√gφφ̄D̄φ̄W̄

∣∣∣∣〉 ρ→∞−→ ρ2
√

3
〈
∣∣F ′′(F ′ − λ)

∣∣〉+ (subleading terms)

= 1√
3
〈
∣∣F ′′0 c∣∣〉+O(1/ρ2) = 1√

3
|λ− 3W0| (F.62)

=
√

3|W0| 6= 0 ,
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where in the third line we used λ = 0 or λ = 6W0. We conclude that supersymmetry is
spontaneously broken in this limit along the direction of φ, which can be identified with the
scalar superpartner of the goldstino that becomes superheavy and decouples. The super-
symmetry breaking scale remains finite and is given by f = 3|W0|. Therefore, we identify
the fermionic component of S with the goldstino and φ with its superpartner, the sgoldstino.
According to (F.54), the latter decouples from the spectrum in the limit ρ → ∞, which is
equivalent to imposing the nilpotent constraint for the goldstino superfield X2 = 0 on L .
Finally, the gravitino mass is given by

m3/2 = 〈|W |eK/2〉 → |W0| as ρ→∞, (F.63)

which completes the proof of equivalence between L , L ′ and L ′′.
We will now demonstrate why the Lagrangian

L̄ =
[(
−1

2
R

S0
+W0 + 1

2ρ( R

S0
− λ)2

)
S3

0

]
F

+ h.c. (F.64)

does not reproduce (F.10) with the constraint (F.11) in the limit ρ→∞. We first set

a = W0 + 1
2ρλ

2

b = 1 + 2ρλ ,
(F.65)

assuming again reality of all parameters for simplicity. We then introduce a chiral superfield

S = A+
√

2Θχ+ (ΘΘ)F

(A and F are not the same as in the previous sections) such that

L̄ =
[(
a− 1

2b
R

S0
+ 1

2ρ
R2

S2
0

)
S3

0

]
F

+ h.c.

=
[(
a− 1

2b
R

S0
+ S

S0

R

S0
− 1

2ρ
S2

S2
0

)
S3

0

]
F

+ h.c. (F.66)

It follows that b > 0 in order to have canonical gravity for a metric tensor with signature
(−+ ++). It is obvious from (F.66) that we have linearized our initial theory (F.64), which
now describes the coupling of supergravity to a chiral superfield S that satisfies the equation
of motion

S = ρR. (F.67)

Next, using the identity (F.8) and fixing the gauge at S0 = 1, we have

L̄ = −[b− S − S̄]D +
(

[a− 1
2ρS

2]F + h.c.
)

(F.68)

and the corresponding Kähler potential and superpotential are

K = −3 ln(b−A− Ā) , W = a− 1
2ρA

2 . (F.69)
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〈AR〉 −b 6 AR <
b
2 , b > 0

− b
2 true always

b+
√
b2 − 6aρ, b2 − 6aρ ≥ 0 never true

b−
√
b2 − 6aρ, b2 − 6aρ ≥ 0 true if b2 > 8aρ and b2 ≥ −2aρ

Table F.1: Possible values of 〈AR〉 for 〈AI〉 = 0.

The scalar potential V is given by

V = eK
[
gAĀ(DAW )(D̄ĀW̄ )− 3W̄W

]
. (F.70)

Note that positivity of the kinetic terms implies that b − 2AR > 0, where we have set
A = AR + iAI . We now compute

eK = 1
(b−A− Ā)3 , gAĀ = ∂

∂A

∂

∂Ā
K = 3

(b−A− Ā)2 , gAĀ = (b−A− Ā)2

3 , (F.71)

and

DAW = ∂AW +KAW = −A
ρ

+ 3
b−A− Ā

(a− 1
2ρA

2). (F.72)

Putting everything together, we get that

V = AĀ

3ρ2(b−A− Ā)
− A

ρ(b−A− Ā)2 (a− 1
2ρĀ

2)− Ā

ρ(b−A− Ā)2 (a− 1
2ρA

2)

= 1
ρ2(b− 2AR)2

{1
3(A2

R +A2
I)(b+AR)− 2aρAR

}
. (F.73)

The range of AR is given by

− b 6 AR <
b

2 , b > 0 , (F.74)

so that the scalar potential is bounded from below.
To find the minimum of the potential, we demand that

〈 ∂V
∂AR

〉 = 〈 ∂V
∂AI
〉 = 0. (F.75)

The second of the equations above gives

〈AI(b+AR)〉 = 0. (F.76)

If 〈AR〉 = −b, then
〈 ∂V
∂AR

〉 = 0⇒ 〈A2
I〉 = −2aρ− b2 ρ→∞−→ −∞, (F.77)

so this case is rejected. Consequently 〈AI〉 = 0. Then

〈 ∂V
∂AR

〉 = 0⇒ 〈(b+ 2AR)(A2
R − 2bAR + 6aρ)〉 = 0, (F.78)
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〈AR〉 −b 6 AR <
b
2 , b > 0

0 true always

− b
2 +
√
b2+24aρ

2 , b2 + 24aρ ≥ 0 true if b2 > 8aρ

− b
2 −
√
b2+24aρ

2 , b2 + 24aρ ≥ 0 true if aρ ≤ 0

Table F.2: Possible values of 〈AR〉 for 〈V 〉 = 0 and 〈AI〉 = 0.

gAĀ ∂2V
∂φi∂φj

AR AI

AR − 1
ρ2

b
9 0

AI 0 1
ρ2

b
9

Table F.3: The (canonically normalized) scalar squared-mass matrix for 〈AR〉 = − b
2 , 〈AI〉 =

0 and 〈V 〉 = 0.

which yields three solutions whose compatibility with the condition (F.74) is given in Ta-
ble F.1. Only the solutions 〈AR〉 = − b

2 and 〈AR〉 = b −
√
b2 − 6aρ are compatible with

the range of AR. Now we would like to check whether one of them is compatible with the
condition

〈V 〉 = 0. (F.79)

Equation (F.79) has two solutions whose compatibility with the condition (F.74) is given in
Table F.2.

It is straightforward to see that the solution 〈AR〉 = b −
√
b2 − 6aρ is compatible with

(F.79) only if b2 = 8aρ (for 〈AR〉 6= 0) or if a = 0 (for 〈AR〉 = 0). The first case is rejected,
since then 〈AR〉 = b/2 and the metric gAĀ diverges. The second case is rejected, because
then 〈DAW 〉 = 0 and there is thus no spontaneous supersymmetry breaking. On the other
hand, the solution 〈AR〉 = − b

2 is compatible with (F.79) for b2 + 24aρ = 0. It can also lead
to spontaneous supersymmetry breaking, as

〈eK/2
√
gAĀD̄ĀW̄ 〉 ∼ ab

−3/2 6= 0 for finite ρ . (F.80)

However, it is easy to see that the scalar squared-masses corresponding to AR and AI have
opposite signs and thus the point (〈AR〉 = − b

2 , 〈AI〉 = 0) is a saddle point of the potential
and not a minimum, see Table F.3. Moreover, all the eigenvalues of the scalar mass matrix
approach 0 as |ρ| → ∞ and thus the extra scalar (sgoldstino) does not decouple. We conclude
that neither of the two solutions for 〈AR〉 can be used to tune the cosmological constant to
zero for every value of ρ, consistently with the decoupling of the extra scalar.

Instead, we can investigate what happens if the condition (F.79) holds for the potential
only in the limit ρ→∞. For both possible solutions

〈AI〉 = 0 , 〈AR〉 = b−
√
b2 − 6aρ ≈ ρλ− 1 + 3W0

λ
, λ 6= 0

〈AI〉 = 0 , 〈AR〉 = − b2 = −1
2 − ρλ

(F.81)

we find that V → 0 for ρ → ∞; however, none of the eigenvalues of the scalar mass matrix
approaches ∞ at ρ → ∞ (they approach 0 instead), which is again incompatible with the
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sgoldstino decoupling. We conclude that the parameter space of the model (F.64) does not
allow for the realization of the non-linear supersymmetry coupled to gravity. Thus, (F.64)
has to be modified suitably which is what we have proposed using f(R) supergravity.
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Chrysoula MARKOU 2018

Sujet : Supersymétrie N = 2: réalisations non–linéaires, brisure
spontanée et dimensions supplémentaires

Résumé : Le sujet de cette thèse est la brisure partielle de la supersymétrie N=2 en quatres
et cinq dimensions de l’espace–temps. Dans le premiere cas, nous étudions hors de la couche
de masse la réalisation non–linéaire de la supersymétrie N=1 brisée en utilisant de superchamps
N=2 nilpotents qui contiennent les degrés de liberté de Goldstone du multiplet massif de N=1
de spin–3/2. Ces superchamps du Goldstino peuvent être de Maxwell ou de simple–tenseur. La
brisure partielle est généré par une combinaison des termes électriques et magnétiques de Fayet–
Iliopoulos, dont les coefficients peuvent être considérés comme de paramètres des déformations
des transformations de l’algèbre de la supersymétrie brisée, ou, en plus, comme de déformations
des superchamps eux–mêmes. D’interactions entre les multiplets du Goldstino deformés avec des
multiplets pas deformés donne lieu à un mécanisme de super–Brout–Englert–Higgs mais sans la
gravité, en raison duquel un multiplet N=1 vectoriel absorbe un multiplet N=1 linéaire et devient
massif. Dans le deuxième cas, nous étudions sur la couche de masse la brisure partielle qui est
généré par la valeur moyenne du dilaton qui est linéaire de la dimension supplémentaire et ce
dernier est un modèle du dual holographique de little string theory. Un jaugement particulier de
la supergravité N=2, D=5 peut incorporer cet modèle, et la supersymétrie N=1 reste intacte en
quatres dimensions. Après compactification de la dimension supplémentaire, nous trouvons que
l’introduction de branes est compatible avec la direction de la supersymétrie pas brisée.

Mots clés : Brisure partielle, supersymétrie non–linéaire, mécanisme de super–Brout–Englert–
Higgs, supergravité effective, modèles du dilaton linéaire, little string theory

Subject : N = 2 Supersymmetry: nonlinear realisations,
spontaneous breaking and extra dimensions

Abstract: The subject matter of the present thesis is the partial breaking of N=2 supersymmetry
in four and in five spacetime dimensions. In the first case, we study the off–shell nonlinear realiza-
tion of the broken N=1 superymmetry with the use of nilpotent N=2 superfields that contain the
Goldstone degrees of freedom of the massive spin–3/2 multiplet of N=1 supersymmetry. These
Goldstino superfields can either be the Maxwell or the single–tensor multiplet. The partial break-
ing is induced by a combination of magnetic and electric Fayet–Iliopoulos terms, the coefficients of
which can be seen as deformation parameters of the transformations of the broken supersymmetry
algebra or, futhermore, as deformations of the superfields themselves. Interactions of deformed
Goldstino multiplets with undeformed multiplets generate a super–Brout–Englert–Higgs effect
but without gravity, in which an N=1 vector multiplet absorbs an N=1 linear multiplet and
becomes massive. In the second case, we study on–shell the partial breaking that is induced
by the background value of the dilaton that is linear in the extra dimension, with the latter
being a toy model of the holographic dual of little string theory. A particular gauging of N=2,
D=5 supergravity can accommodate this model, with N=1 supersymmetry remaining intact in
four dimensions. Upon compactification of the extra dimension, we find that the introduction of
branes is compatible with the direction of the unbroken supersymmetry.

Keywords : Partial breaking, nonlinear supersymmetry, super–Brout–Englert–Higgs mecha-
nism, effective supergravity, linear dilaton, little string theory
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