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Abstract

Quantum field theory allows more general symmetries than groups
and Lie algebras. For instance quantum groups, that is Hopf alge-
bras, have been familiar to theoretical physicists for a while now.
Nowdays many examples of symmetries of categorical flavor – cate-
gorical groups, groupoids, Lie algebroids and their higher analogues
– appear in physically motivated constructions and faciliate construc-
tions of geometrically sound models and quantization of field theories.
Here we consider two flavours of categorified symmetries: one coming
from noncommutative algebraic geometry where varieties themselves
are replaced by suitable categories of sheaves; another in which the
gauge groups are categorified to higher groupoids. Together with
their gauge groups, also the fiber bundles themselves become cate-
gorified, and their gluing (or descent data) is given by nonabelian
cocycles, generalizing group cohomology, where ∞-groupoids appear
in the role both of the domain and the coefficient object. Such cocy-
cles in particular represent higher principal bundles, gerbes, – possibly
equivariant, possibly with connection – as well as the corresponding
associated higher vector bundles. We show how the Hopf algebra
known as the Drinfeld double arises in this context.

1. Introduction

This is an overview for a general audience of mathematical physicists of
(some appearances of) categorified symmetries of geometrical spaces and
symmetries of constructions related to physical theories on spaces. Our
main emphasis is on geometric and physical motivation, and the kind of
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mathematical structures involved. Sections 2-4 treat examples in non-
commutative geometry, while 5-9 study nonabelian cocycles motivated in
physics, with a short content outline for block 6-9 at the end of section 5.

1.1. Categories and generalizations
We assume the reader is familiar with basics of the theory of categories,
functors and sheaves, as the mathematical physics community has adopted
these by now. At a few places for instance we use (co)limits in categories.
The concept of a category C is often extended in several directions [2, 4, 24].
Instead of a set C1 = ObC of objects and set C0 = MorC of morphisms,
with the usual operations (assignment of identity i : X �→ idX to X; do-
main (source) and codomain (target) maps s, t : C1 → C0; composition of
composable pairs of morphism ◦ : C1 ×C0 C1 → C1) one defines an inter-
nal category in some ambient category A by specifying objects C0, C1
in A, together with morphisms i, s, t, ◦ as above and satisfying analogous
relations; internal groupoids in addition have the inverse-assigning mor-
phism (·)−1 : C1 → C1 satisfying the usual properties. For instance smooth
groupoids (Lie groupoids) are internal groupoids in the category of man-
ifolds [2, 14, 23, 40]). A category may be given additional structure, e.g.
a monoidal category is equipped with tensor (monoidal) products and
tensor unit object (cf. [4, 24, 29] and section 3.). Given a monoidal cat-
egory D, a D-enriched category C has a set of objects, but each set of
morphisms homC(A,B) is replaced by an object D in D; it is required that
the composition be a monoidal functor. In particular D may be the cat-
egory of small categories, in which case a D-enriched category is precisely
a 2-category: it has morphisms between morphisms. This process may be
iterated and leads to n-categories of various flavour, with n-morphisms or
n-cells. It is natural to weaken the associativity conditions for composi-
tions of k-cells for 0 < k < n. This weakening is difficult to deal with,
but often required by applications. A strict (n + 1)-category is the same
as nCat-enriched category where nCat is the category of strict n-categories
and strict n-functors.

1.2. Basic idea of descent
Suppose we are given a geometric space and its decomposition in pieces with
some intersections, e.g. an open cover of a manifold. The manifold can be
reconstructed as the disjoint union modulo the identification of points in
the pairwise intersections. For this we need to specify the identifications
explicitly, and they may be considered as additional data. Suppose we now
want to glue not the underlying sets, but some structures above, e.g. vector
bundles. Bundles on each open set Uα of the cover form a category Vecα
and there are restriction functors from Vecα to the ’localized’ category
of bundles on Uαβ := Uα ∩ Uβ. A global bundle F is determined by its
restrictions Fα to each open set Uα of the cover, together with identifications

(Fα)|Uαβ

fαβ∼= (Fβ)|Uαβ
via some isomorphisms fαβ. These isomorphisms

satisfy the cocycle condition fαβ ◦ fβγ = fαγ and fαα = id. The data
{Fα, fαβ} are called descent data ([19, 9, 47]). Equivalence classes of descent
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data are cohomology classes (with values in the automorphism group of the
typical fiber) and they correspond to isomorphism classes bundles over the
base space. There are vast generalizations of this theory, cf. [19, 9, 46, 36,
40, 41]. Gluing categories of quasicoherent sheaves/modules (see section 2.
on their role) over noncommutative (NC) localizations which replace open
sets ([34, 33, 44]) is a standard tool in NC geometry. Localization functors
Qα for different α, usually do not commute, what may be pictured as a
noncommutativity of intersections of ’open sets”. In order to reconstruct
the module from its localizations (restrictions to localized ”regions”) we
need match at both consecutive localizations, QαQβ and QβQα.

2. From noncommutative spaces to categories

By a noncommutative (NC) space ([14, 34, 44]) we mean any object for
which geometrical intuition is available and whose description is given by
the data pertaining to some geometrical objects living on the ’space’. Sup-
pose we measure observable corresponding to some property depending on
a local position in space. If the position changes from one part to another
part of a space, we get different measurements, thus the measurements are
expected to be functions of the local position. If the space is made out
of points and we can make measurements closely about each point, then
we get a function on the underlying set of points. This corresponds to the
observables on phase space in classical physics; the quantum physics and
noncommutative geometry mean that we can not decompose some ’spaces’
to points, hence we can not really construct set-theoretic functions. Still,
one can often localize observables to some geometrical ’parts’ if not points.

The most standard case is when the ’space’ is represented by a C-valued
algebra A. If A is commutative then the points of the space correspond to
the characters (nonzero homomorphisms χ : A → C), or equivalently, to
maximal ideals I = Kerχ in A. Knowing all functions at all points, physi-
cally means being able to measure all local quantities, and mathematically
expresses the Gel’fand-Naimark theorem: from the C∗-algebra of contin-
uous C-valued functions on a compact Hausdorff space we can reconstruct
back the space as the Gel’fand spectrum of A ([14, 23]). The Gel’fand
spectrum can be constructed for NC algebras as well, but in that process
we lose information and get smaller commutative algebras – the spectrum
is roughly extracting the points, together with some topology, and there
are not sufficiently many points to determine the NC space. Instead one
is trying to express the geometrical and physical constructions we need in
terms of algebra A, at least for good A-s of physical interest. This strat-
egy usually works e.g. for small NC deformations of commutative algebras.
Thus such a quantum algebra is by physicists usually called a NC space. We
emphasise that there are more general NC spaces and more general types
of their description.
We often know how the local coordinate charts look like and glue them to-
gether. The global ring is in principle sufficient information in C∗-algebraic
framework, but many constructions are difficult as one has to make cor-
rect choices in operator analysis. Thus sometimes one resorts to algebraic
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geometry, that is algebras of regular (polynomial) functions; but even com-
mutative algebraic variety/scheme X is not always determined by its ring
of global regular functions O(X). Even if it is, we may find convenient to
glue together more complicated objects (say fiber bundles) over the space
from pieces. One way or another, we need to glue the spaces represented
by algebras of functions to an object which will not loose information as
the global coordinate ring sometimes does. If we have some sort of a cover
of the space by collection of open sets Ui where on each Ui the algebra of
functions determines the space, then having all of them together conserves
all local information; moreover we should be able to pass to other open sets.
Thus one needs a correspondence which to every open set gives an algebra
of observables, that is some sheaf of functions in the case of commutative
space; to do the same for fibre bundles means that we need to do the same
for sheaves of sections of other bundles. It seems reasonable to take a cate-
gory of all sheaves of suitable kind on the space as a replacement of space.
This point of view in geometry was advocated by A. Grothendieck in
1960-s (geometry of toposes). Gabriel-Rosenberg’s theorem states that
every algebraic scheme X (typical geometrical space in algebraic geometry)
can be reconstructed, up to an isomorphism of schemes, from the abelian
category QcohX of quasicoherent sheaves on X ([34]). For noetherian
schemes a smaller (tensor abelian) subcategory CohX of coherent sheaves
is enough, and in some cases even its derived category Db(CohX) in the
sense of homological algebra ([31]).
Examples suggest that instead of small deformations of commutative al-
gebras of functions, we may consider deformations and similarly behaved
analogues of categories QcohX . Principal examples appeared related to
mirror symmetry. Mirror symmetry is a duality involving two Calabi-Yau
3-folds X and Y , saying that N = 2 SCFT-s A-model on X and B-model
on Y and viceversa, A-model on Y and B-model on X are (nontrivially)
equivalent as N = 1 SCFT-s (the difference at N = 2 level is in a ±1
eigenvalue of an additional U(1)-symmetry operator, what is physically
not distinguishable). In 1994, Maxim Kontsevich (M.K.) proposed the
homological mirror symmetry conjecture [27], which is an equivalence of
A∞-categories related to topological A- and B-models. In A-model, the
A∞-category involved is the Fukaya category defined in terms of symplectic
geometry on X (Y ), and B-model is the A∞-enhancement of the derived
category of coherent sheaves on Y (X). M.K. also suggested a definition
of a category of B-branes in N=2 Landau-Ginzburg models ([21, 26]) which
have very similar structure to, but are different from, the derived categories
of coherent sheaves on quasiprojective varieties. There are known relations
between Hochschild cohomology (expressed in terms of Db(CohX)) and n-
point correlation functions in the corresponding SCFT. Around 2003, M.K.
and, independently K. Costello, found a way to go back and reconstruct
SCFT from sufficiently good, but abstract A∞-categories [15, 26], where
’good’ involves generalizations of certain properties of (A∞ enhancement
of) Db(CohX) where X is a Calabi-Yau variety. This shows that indeed
physically relevant generalizations and deformations of varieties of complex
algebraic geometry may come out of generalizations of algebraic geometry
in terms of categories of sheaves and their abstract generalizations.
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3. Monoidal categories as symmetries of NC spaces

The role of symmetry objects extends to the NC world: they help us sin-
gling out good candidates for the underlying space-time of a theory, and one
employs the covariance properties of the tensors built out of field variables
when constructing model Lagrangeans. In QFT, one wants not only that
the fields form a representation of a symmetry algebra, but also to describe
the second quantized systems, where the Hilbert space H is replaced by its
exponent – the direct sum of n-particle Hilbert spaces, for all n, which are
(in bosonic case, for simplicity) the symmetric powers of 1-particle Hilbert
space H. Thus the symmetry has to be defined on tensor products of rep-
resentation spaces (classical example: addition of angular momenta of sub-
systems). Hopf algebras have the structure sufficient to define the tensor
product of representations and the dual representations ([28, 29]), and each
finite group gives rise to a Hopf algebra (“group algebra”) with the same
representation theory. Locally compact groups considered in axiomatic
QFT, may also be generalized to Hopf algebra-like structures called locally
compact quantum groups. If the underlying space is undeformed and in
4D, the axiomatic QFT actually proves that the full symmetry is decribed
by a locally compact group, but in dimension 2, exotic braiding symmetries
and quantum groups are allowed; in NC case a generic model will have a
nonclassical symmetry. The symmetry algebra is here understood in usual
sense – consisting of all observables which commute with the Hamiltonian.
The natural Hamiltonians preserve the symmetries of the underlying space
geometry, but there are often other symmetries which are not the symme-
tries of the underlying space; there are also hidden symmetries not seen at
Hamiltonian level, but only in solutions.
Now we want to discuss the geometrical symmetries of “bare” underlying
noncommutative space. For this we need to discuss more carefully a role of
Hopf algebras. Recall ([29]) that a Hopf algebra H is an associative algebra
equipped with some other maps including coassociative coproduct, which is
an algebra map Δ : H → H ⊗ H. Starting with any (say finite) group one
may form its group algebra CG, which is a Hopf algebra whose represen-
tations coincide with the representations of the group. On the other hand,
the group itself may be replaced by a suitable algebra of functions O(G) on
it, and then the corepresentations of O(G) (linear maps ρ : V → V ⊗O(G)
with (ρ ⊗ id)ρ = (id ⊗ Δ)ρ) will correspond to the representations of G.
O(G) is commutative, and one may consider noncommutative Hopf alge-
bras instead. Mathematically, replacing the commutative algebras, by the
noncommutative, one should change the tensor product of commutative al-
gebras (a categorical coproduct in the category of commutative algebras)
by the so-called free product of noncommutative algebras, in all consid-
erations. This would yield straightforward transfer of many constructions
and their properties. However, examples of Hopf algebras with respect to
the categorical coproduct are just few, while usual NC Hopf algebras with
respect to ⊗ (e.g. quantum groups) are abundant in physical applications.
Recall that in commutative case, A-Mod is equivalent to QcohSpec A, and
that we took a viewpoint that the categories like QcohX are representing
spaces. H-Mod and H-Comod where H is a Hopf algebra are rigid monoidal
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categories. A monoidal category is a category equipped with a bifunctor
⊗ (monoidal or tensor product), which is associative up to coherent iso-
morphisms M ⊗ (N ⊗ P ) ∼= (M ⊗ N) ⊗ P , this category has a unit object
1 (satisfying 1⊗M ∼= M ∼= M ⊗ 1) and this category has dual objects M∗
with usual properties (rigidity/autonomous category). Not only QcohX
remembers scheme X (Gabriel-Rosenberg theorem), also in favorite cases
H-Mod as a rigid monoidal category remembers the underlying Hopf alge-
bra (or Hopf algebroids, appearing as symmetries of inclusions of factors
[8], relevant to CFT): this is an aspect of so-called Tannakian duality used
widely in physics, e.g. the Doplicher-Roberts duality dealing with recon-
struction of a QFT in 4d out of knowledge of full symmetry algebra is also
a form of Tannaka reconstruction theorem; some reconstructions in CFT
are as well ([29], Ch.9).
The reason why the usual Hopf algebras geometrically still fit into NC world
is that the Hopf actions H⊗A → A (i.e. when A is H-module algebra [29])
or Hopf coaction A → A ⊗ H (A is H-comodule algebra), give rise to an
action of the monoidal category of H-comodules (1st case) or H-modules
(2nd case) on A-Mod (cf.[45] for recipes how to induce the categorical
actions in these cases). Hopf coaction is hence replaced by action bifunctor
♦ : A-Mod×H-Mod → A-Mod. The action axiom is the mixed associativity
with product ⊗ in H-Mod, namely M♦(N♦P ) ∼= (M ⊗ N)♦P . Replacing
the Hopf algebra H by its monoidal category of left modules H-Mod, we can
as well, replace the Hopf coaction of H on A by the corresponding action ♦
of H-Mod. In some cases, we have no choice but to talk about categorical
actions instead of Hopf (co)actions, e.g. if we want to globalize the action
of Hopf algebra to nonaffine noncommutative varieties, then the latter may
not be represented by a single algebra, but rather by gluing data for several
of them. As the (co)action usually does not make the pieces invariant one
really needs to talk about an action of Hopf algebra on the entire category
of sheaves glued from pieces. But such action has no sense literally, unless
we replace the Hopf algebra by its category of modules as well.

4. Application to Hopf algebraic coherent states

There is a projective operator valued measure on the space of coherent
states (CS) which integrates to a constant operator: the CS are not mutu-
ally orthogonal but they are still involved in a resolution of unity operator
formula. The Schrödinger equation can therefore be written in CS repre-
sentation. Perelomov CS minimize generalized (covariant) uncertainty rela-
tions and transform in an appropriate covariant manner. Tensor operators
of various “spin” may be treated simulteneously by forming CS operators,
what is useful for discussing QFT on homogeneous spaces. I. Todorov

with collaborators ([20, 37]) has been taking advantage of CS in formu-
lating gauged WZNW models in Hamiltonian formalism; but their CS are
attached to quantum groups (cf. [28] for variants of Hopf algebras in 2dCFT
context) whose general and, particularly, geometric theory was lacking; the
open problem was to extend the ”projective CS measure” to the quantum
group case (existing formulas in simple cases in literature were just formal
identities and usually the claimed invariance is incorrect). Motivated by
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([20, 37]), one of us has shown in [43] that using NC localization and glu-
ing one can study the geometry of line bundles over the quantum group
homogeneous spaces and express the correct algebraic conditions for the
analogues of Perelomov CS and of the invariant ”projective” CS measure.
Local coordinates on quantum G/B are constructed from the coinvariants
(under the quantum Bq) in coaction-compatible localized charts on Gq as
we earlier introduced in [42].

5. Higher gauge theories

An n-groupoid is a n-category in which all k-cells for all 1 ≤ k ≤ n are
invertible (depending on the choice of context, this means strictly invertible
or weakly invertible, i.e. up to higher cells). An n-group is a one-object n-
groupoid. Smooth n-group(oid)s appear as analogues of Lie gauge groups
for parallel transport along higher dimensional surfaces. One can build
a theory of bundles with total space (which is now replaced by smooth
n-category), possesing local trivialization and differential forms which are
analogues of connection forms; two-torsors of [30], principal bigroupoid 2-
bundles of [5] and gerbes [9] are examples. The cocycle data of a gerbe
may be used to twist usual bundles and constructions with bundles, e.g. to
get twisted K-theory. Instead of looking at the total space and differential
forms, one may instead consider the effect of parallel transport to the points
in a typical fiber. Thus an n-bundle with connection gets replaced by trans-
port n-functor from some groupoid corresponding to the path geometry of
the underlying space (fundamental n-groupoid, path n-groupoid) to the
symmetry object of the fiber. The same formalism may incorporate gluing
of (hyper)covers, by replacing the path groupoids with Čech n-groupoids of
hypercovers: corresponding n-functors into symmetry n-group(oid) are the
appropriate cocycles. On the other hand, the fiber bundles may be pulled
back from the universal bundle over the classifying space of the group; the
classifying space BG of an n-group corresponds to regarding the n-group
G as a one-object (n + 1) − groupoid BG. Thus in the next few sections
we view cocycles as some weak maps into BG. In general we find useful to
employ some abstract homotopy theory of a certain model of ∞-categories
described in section 6. to express what sort of “weak maps” the cocycles
really are (for more details see [36]). We present two collections of defi-
nitions, one encoding the theory of nonabelian cocycles and ω-bundles in
section 7., the other describing the quantum theory of the corresponding
σ-models in section 8.. Some examples and applications are in section 9..

6. ∞-Categories and Homotopy Theory

We model ∞-categories as strict ∞-categories, usually called ω-categories.
This choice turns out to be not only convenient but remarkably sufficient
in our applications. In particular, we can translate back and forth between
simplicial sets and ω-categories by means of a fixed cosimplicial ω-categeory,
i.e. a functor O : Δ → ωCategories from the simplicial category Δ.
Given that we obtain an ω-nerve functor N : ωCategories → SimplicialSets
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by

N(C) : Δop Oop
�� ωCategoriesop

Hom(−,C) �� Sets

and its left adjoint F : SimplicialSets → ωCategories given by the coend
formula

F (S•) :=

[n]∈Δ∫
Sn · O([n]).

Ross Street defined ([46]) a particular cosimplical ω-category O called
the orientals, for which ’the n-th oriental’ O([n]) is the ω-category free on a
single n-morphism of the shape of an n-simplex. To obtain more inverses,
we can alternatively use the unorientals ([36]), for which O([n]) is the ω-
category with n-objects, 1-morphisms are finite sequences of these objects,
2-morphisms are finite sequences of such finite sequences, and so on.
Particular important ω-categories are the ω-groupoids, forming a full sub-
category ωGroupoids ↪→ ωCategories, of those ω-categories whose all cells
have strict inverses under all composition operations. Brown and Higgins

proved that the data of ω-groupoids are equivalent to crossed complexes of
groupoids, which are a non-abelian and many-object generalization of com-
plexes of abelian groups. This equivalence enables usage of (generalizations
of) tools familiar from homological algebra to the setup of ω-categories.
The category ωCategories is equipped with the Crans-Gray tensor product,
which is the extension to ω-categories of the tensor product on globular
sets; the latter is induced via Day convolution from the addition of natural
numbers. This means that the Crans-Gray tensor product is dimension
raising analogously to the cartesian product on topological spaces:

for instance the tensor product of the interval ω-category I = { a �� b }
with itself is the ω-category free on a single directed square

I ⊗ I =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(a, a) ��

��

(a, b)

��
(b, a) �� (b, b)

�� ���
���

��

���
���

��

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

Moreover, ωCategories is biclosed with respect to this monoidal structure.
We are particularly concerned with the internal hom-ω-categories of the
form AI := hom(I,A) which satisfy Hom(X ⊗ I,A) � Hom(X,AI), where
the set in question here is the set of lax transformations

X

f

��

g

��A
η

��

⇔ X
η ��

f×g

��
AI

d0×d1�� A × A or directed right homo-

topies between ω-functors from X to A.
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The 1-category ωCategories is really an ∞-structure itself as it is remem-
bered by a model category structure carried by it, due to [22], with respect
to which the acyclic fibrations or hypercovers f : C

� �� �� D are those ω-
functors which are k-surjective for all k ∈ N, meaning that the universal
dashed morphism in

Ck+1
fk+1

		

s×t
		

		�
���

(fk × fk)∗Ck+1

��

�� Dk+1

s×t
��

Ck × Ck fk×fk

�� Dk × Dk

is epi, for all k. The weak equivalences f : C
� �� D are those ω-

functors where these dashed morphisms become epi after projecting onto
ω-equivalence classes of (k + 1)-morphisms.
Using this we define an ω-anafunctor from an ω-category X to an ω-
category A to be a span

(g : X | �� A ) :=
X̂

�
����

g �� A

X

whose left leg is a hypercover (the terminology follows [25, 6]). In the
context of ωGroupoids such ω-anafunctors represent morphisms in the ho-
motopy category [g] ∈ Ho(X,A) which allows us to regard g as a cocycle
in nonabelian cohomology on the ω-groupoid X with coefficients in the ω-
groupoid A. Cocycles are regarded as distinct only up to refinements of
their covers. This makes their composition by pullbacks

( X |g �� A |r �� A′ ) :=

g∗Â ��

�
����

Â
r ��

�
����

A′

X̂

�
����

g �� A

X

well defined (noticing that acyclic fibrations are closed under pullback) and
associative.
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Definition 6..1 We write Ho for the corresponding category of ω-anafun-
ctors,

Ho(C,D) := colimĈ∈Hypercovers(C)Hom(Ĉ,D) .

(This is to be contrasted with the true homotopy category Ho, which is
obtained by further dividing out homotopies.)

While cocycles in nonabelian cohomology are morphisms in Ho, cobound-
aries should be morphisms between these morphisms. Hence Ho is to be
thought of as enriched over ωCategories.

Definition 6..2 Bifunctor hom : Hoop × Ho → ωCategories is given on
objects by hom(C,D) := F (Hom(C ⊗ O([•]),D)) .

7. Nonabelian cohomology, higher vector bundles and back-
ground fields

We consider fiber bundles whose fibers are ω-categories on which an ω-group
G acts in a prescribed way. Here we conceive ω-groups as the hom-objects
of one-object ω-groupoids.

Definition 7..1 (ω-group) Given a one-object ω-groupoid BG the pull-
back

G ��

��

(BG)I

(d0×d1)

��
pt �� BG × BG

is the corresponding ω-group.

For X an ω-groupoid – addressed as target space – and for G an ω-group
as above – the gauge ω-group or structure ω-group G – and given an ω-
category F – the ω-category of typical fibers – together with a morphism
ρ : BG �� F into a pointed codomain, ptF : pt → F – which we address
as a representation – of G, we can speak of

• G-cocycles g on G;

• the G-principal ω-bundle P := g∗EG on X classified by these;

• the ρ-associated ω-bundles V := g∗ρ∗EF

• the collection Γ(V ) of sections of V .
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7.1. Principal ω-bundles
Definition 7..2 (universal G-principal ω-bundle) The universal
G-principal ω-bundle EG �� �� BG is given by the pullback

EG
� �� ��

��



 



pt

��
(BG)I

�d1
����

�
d0

�� �� BG

BG

.

Proposition 7..3 The morphism EG �� �� BG defined this way is indeed
a fibration and its kernel is G: we have a short exact sequence

G
� � i �� EG

p �� �� BG .

Proof. That p is a fibration follows from a lemma in [13]. To see that G is
indeed the kernel of this fibration, consider the diagram

G ��

��

EopG ��

��

pt

��
EG ��

��

BGI
d1 ��

d0

��

BG

pt �� BG

.

The right and bottom squares are pullback squares by definition. Moreover,
G is by definition 7..1 the total pullback

G ��

��

���
��

��
��

� pt

��
BGI

d1 ��

d0

��

BG

pt �� BG

.

Therefore also the top left square exists and is a pullback itself and hence
so is the pasting composite of the two top squares. This says that i is the
kernel of p.
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Definition 7..4 (G-principal ω-bundles) For X an ω-groupoid and G
an ω-group, there is for every BG-cocycle on X represented by an ω-

anafunctor X ���� �
X̂

g �� BG the corresponding G-principal ω-bundle
πg : P �� �� X classified by g given by the pullback diagram

g∗EG ��

����

�� ��

EG

����
X̂

�
����

g �� BG

X

.

For n ≤ 2 this way of describing (universal) principal n-bundles was de-
scribed in [32].

Theorem 7..5 If G is a group or strict 2-group, this definition of G-
principal bundles is equivalent to the definitions in [6, 5, 48].

Remarks.
• This statement involves higher categorical equivalences: for G a 2-

group and g : X | �� BG a cocycle, the pullback g∗EG is a pri-
ori a 2-groupoid, whereas in the literature on 2-bundles one expects
this total space to be a 1-groupoid. But this desired 1-groupoid is
obtained by dividing out 2-isomorphisms in g∗EG and the result is
weakly equivalent to the original 2-groupoid g∗EG

� �� �� (g∗EG)∼ .

• For the purposes of this article we are glossing over the internalization
of the entire setup from a context internal to Sets to a context internal
to a category Spaces, for instance of topological spaces or of suitable
generalized smooth spaces. The above statements generalize to such
internal contexts by suitably lifting the model structure on ωGroupoids
to the structure of a category of fibrant objects on ωGroupoids(Spaces).
Further discussion of this point is relegated to [36].

7.2. Associated ω-bundles
Associated ω-bundles similarly arise from pullback along more general co-
cycles with prescribed factorization through BG. For that purpose let F
be some ω-category (not necessarily an ω-groupoid). An ω-anafunctor

ρ : BG | �� F

may be addressed as an ω-group cocycle with values in F . If F is equipped

with a point, pt
ptF �� F , we can address such a morphism ρ also as a
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representation of G. In analogy to the universal G-principal ω-bundle from
definition 7..2 we obtain the universal F -bundle (with respect to the chosen
point ptF ) as a pullback from the point:

Definition 7..6 (universal F -bundle) For F an ω-category with chosen

point pt
ptF �� F the universal F -bundle EF �� �� F is the pullback

EF �� ��

��

�� ��

pt

ptF

��
F I d0

�� ��

d1
����

F

F

.

Definition 7..7 (associated F -bundle) Given a representation morphism
ρ : BG → F we accordingly address the pullback

ρ∗EF ��

����

EF

����
BG

ρ �� F

as the F -bundle ρ-associated to the universal G-bundle. Correspondingly
the further pullback along a g-cocycle

g∗ρ∗EF ��

����

�� ��

ρ∗EF ��

����

EF

����
X̂

g ��

�
����

BG
ρ �� F

X

is the F -bundle ρ-associated to the specific G-principal bundle g∗EG.

7.3. Sections of associated ω-bundles
Definition 7..8 (section) A section σ of a ρ-associated ω-bundle V :=

ρ∗g∗EF coming from a cocycle X |g �� BG is a lift of the cocycle through
ρ∗EF �� �� BG or equivalently a morphism from the trivial F -bundle with
fiber ptF to V
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Γ(V ) :=

⎧⎪⎪⎨
⎪⎪⎩

ρ∗EF

����
X

g ��

σ


�

�
�

�
BG

⎫⎪⎪⎬
⎪⎪⎭

�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

X

����
��
��
�

Id

���
��

��
��

�

pt

ptF ���
��

��
��

X

ρ◦g
��		
		
		
		

F

σ
��













⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

Proposition 7..9 These two characterizations of sections are indeed equiv-
alent.

Proof. First rewrite
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

X

g

������
��
��
��

pt

ptF ���
��

��
��

� BG

ρ

��
F

σ ��







⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pt
ptF �� F

X
σ ����������

����������

g
���

��
��

��
� F I

d0

��

d1

��
BG

ρ �� F

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

using the characterization of right (directed) homotopies by the (directed)
path object F I . Using the universal property of EF as a pullback this
yields

· · · �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

EF

����
X g

��

σ

����������
BG ρ

�� F

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

�

⎧⎪⎪⎨
⎪⎪⎩

ρ∗EF

����
X

g ��

σ


�

�
�

�
BG

⎫⎪⎪⎬
⎪⎪⎭

.

8. Quantization and quantum symmetries

We want to think of an associated ω-bundle V �� �� X as a background
field (a generalization of an electromagnetic field) on X to which a higher
dimensional fundamental brane – such as a particle, a string or a membrane
– propagating on X may couple. If a piece of worldvolume of this funda-
mental brane is modeled by an ω-category Σ then, following [16], we say
that

• the space of fields over Σ is CΣ := hom(Σ,X), the “space” of maps
from the worldvolume to target space X;
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• the space of states over Σ is the space of sections Γ(τΣV ) of the back-
ground field V transgressed to the space of fields.

We now give a diagrammatic definition of transgression and of such spaces
of states.

8.1. Transgression of cocycles to mapping spaces

Following [40], we identify transgression to mapping spaces with the internal
hom applied to cocycles:

Definition 8..1 (transgression of cocycles) For X |ρ◦g �� F a cocycle
classifying a ρ-associated ω-bundle on X, and for Σ any other ω-groupoid,
we say that the transgression τΣ(ρ ◦ g) of ρ ◦ g to XΣ is its value under the
internal hom in Ho, definition 6..2:

τΣ(ρ ◦ g) := hom(Σ, ρ ◦ g) : hom(Σ,X) → hom(Σ, F ) .

8.2. Background field and space of states

Definition 8..2 A background structure for a σ-model is

• an ω-groupoid X called target space;

• an ω-group G, called the gauge group;

• a representation

ρ∗EG ��

��

EF

����
BG

ρ �� F pt
ptF��

called the matter content;

• the ω-bundle g∗ρ∗EG which is ρ-associated to a G-principal bundle on

X

X̂
g ��

�
����

BG

X

, called the background field.

Definition 8..3 Given a background structure (X, g, ρ) and for Σ any other
ω-groupoid we say that

• Ho(Σ,X) is the space of fields over Σ of the σ-model defined by the
background structure;

• Ho(Σ, g) : Ho(Σ,X) → Ho(Σ,BG) is the action functional of the
Σ-model over Σ.
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8.3. Branes and bibranes

From the second part of definition 7..8 one sees that spaces of states, being
spaces of sections, are given by certain morphisms between background
fields pulled back to spans/correspondences of target spaces. From the
diagrammatics this has an immediate generalization, which leads to the
notion of branes and bibranes.

Definition 8..4 (branes and bibranes) A brane for a background struc-
ture (X, ρ ◦ g) is a morphism ι : Q → X equipped with a section of the

background field pulled back to Q, i.e. a transformation

Q

�����
ι
���

��

pt

ptF
���

��
X

ρ◦g����
�

F

V ������ .

More generally, given two background structures (X, g, ρ) and (X ′, g′, ρ), a

bibrane between them is a span
Q

ι
����
� ι′

���
��

X X ′
equipped with a transforma-

tion

Q
ι
����
� ι′

���
��

X

ρ◦g ���
��

X ′

ρ′◦g′����
�

F

V ��



 .

Bibranes may be composed –“fused” – along common background struc-
tures (X, ρ◦g): the composite or fusion of a bibrane V on Q with a bibrane
V ′ on Q′ is the bibrane V · V ′ given by the diagram

Q ×X′ Q

����
��
��
��

���
��

��
��

�

X

ρ◦g
���

��
��

��
� X

ρ′′◦g′′����
��
��
��

F

s∗V ·t∗V ′
���������

���
���������

�

:=

Q ×X′ Q′
s

�����
��
� t

���
���

��

Q

����
��

���
��

��
� Q′

�����
���

���
��

�

X

ρ◦g  ���
���

���
�� X ′

ρ′◦g′��
X ′′

ρ′′◦g′′! ���
���

���
��

F

V
"����

����
�����

�� V ′
�������� ������

If Q carries further structure, the fused bibrane on Q×t,s Q may be pushed
down again to Q, such as to produce a monoidal structure on bibranes

on Q. Consider therefore a category Q
s ��

t
�� X internal to ω-groupoids,

equivalently a monad in the bicategory of spans internal to ωGroupoids,
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with composition operation the morphism of spans

Q ×t,s Q

#!   
  

�"!!
!!!

comp

$#

Q
s
����� t

"""

�$""
"

Q
s##
#

%%###
t
��$

$$

X X X

Q
s

&&









 t

������������

.

Definition 8..5 (monoidal structure on bibranes) Given an internal
category as above, and given an F -cocycle g : X → F , the composite of two

bibranes

Q

����� 

%
%%

X

g ���
��

X

g��		
	

F

	'&&&&&&
V,W

	'&&&&&&
on Q is the result of first forming their composite

bibrane on on Q ×t,s Q and then pushing that forward along comp:

V � W :=
∫

comp

(s∗V ) · (t∗W ) .

Here for finite cases, which we concentrate on, push-forward is taken to be
the right adjoint to the pullback in a proper context.
Remarks. Notice that branes are special cases of bibranes and that
bibrane composition restricts to an action of bibranes on branes. Also
recall that the sections of a cocycle on X are the same as the branes of this
cocycle for ι = IdX .
The idea of bibranes was first formulated in [18] in the language of modules
for bundle gerbes. We show in section 9.4. how this is reproduced within
the present formulation.

9. Examples and applications

We start with some simple applications to illustrate the formalism and then
exhibit some useful constructions in the context of finite group QFT.

9.1. Ordinary vector bundles
Let G be an orinary group, hence a 1-group, and denote by F := Vect
the 1-category of vector spaces over some chosen ground field k. A linear
representation ρ of G on a vector space V is indeed the same thing as a
functor ρ : BG → Vect which sends the single object of BG to V .
The canonical choice of point ptF : pt → Vect is the ground field k, re-
garded as the canonical 1-dimensional vector space over itself. Using this we
find from definition 7..6 that the universal Vect-bundle is EVect = Vect∗,
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the category of pointed vector spaces with Vect∗ �� �� Vect the canon-
ical forgetful functor. Using this one finds from definition 7..7 that the
ρ-associated vector bundle to the universal G-bundle is V//G �� �� BG ,

where V//G := ( V × G
p1 ��
ρ

�� V ) is the action groupoid of G acting on V ,

the weak quotient of V by G.

For g : X |g �� BG a cocycle describing a G-principal bundle and for V
the corresponding ρ-associated vector bundle according to definition 7..7,
one sees that sections σ ∈ Γ(V ) in the sense of definition 7..8 are precisely
sections of V in the ordinary sense.

9.2. Group algebras and category algebras from bibrane monoids
In its simplest version the notion of monoidal bibranes from section 8.3.
reproduces the notion of category algebra k[C] of a category C, hence also
that of a group algebra k[G] of a group G. Recall that the category algebra
k[C] of C is defined to have as underlying vector space the span of C1,
k[C] = spank(C1), where the product is given on generating elements f, g ∈
C1 by

f · g =
{

g ◦ f if the composite exists
0 otherwise

To reproduce this as a monoid of bibranes in the sense of section 8.3., take
the category of fibers in the sense of section 7.2. to be F = Vect as in
section 9.1.. Consider on the space (set) of objects, C0, the trivial line

bundle given as an F -cocycle by i : C0
�� pt

ptk �� Vect . An element
in the monoid of bibranes for this trivial line bundle on the span given by
the source and target map C1s

����
t
���

�

C0 C0

is a transformation of the form

C1s
�����

t
'(''

'

C0

i
����

� C0

i
�����

Vect

V
	'(((

( (((( . In terms of its components this is canonically identified

with a function V : C1 → k from the space (set) of morphisms to the ground
field and every such function gives such a transformation. This identifies
the C-bibranes with functions on C1.
Given two such bibranes V,W , their product as bibranes is, according to
definition 8..5, the push-forward along the composition map on C of the
function on the space (set) of composable morphisms

C1 ×t,s C1 → k

(
f→ g→) �→ V (f) · W (g) .
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This push-forward is indeed the product operation on the category algebra.

9.3. Monoidal categories of graded vector spaces from bibrane
monoids

The straightforward categorification of the discussion of group algebras in
section 9.2. leads to bibrane monoids equivalent to monoidal categories of
graded vector spaces.
Let now F := 2Vect be a model for the 2-category of 2-vector spaces.
For our purposes and for simplicity, it is sufficient to take F := BVect ↪→
2Vect, the 2-category with a single object, vector spaces as morphisms with
composition being the tensor product, and linear maps as 2-morphisms.
This can be regarded as the full sub-2-category of 2Vect on 1-dimensional
2-vector spaces. And we can assume BVect to be strictified.
Then bibranes over G for the trivial 2-vector bundle on the point, i.e.

transformations of the form
G

����
�

���
��

pt
����

� pt
�����

BVect

 ))))) ))))
canonically form the category

VectG of G-graded vector spaces. The fusion of such bibranes reproduces
the standard monoidal structure on VectG.

9.4. Twisted vector bundles
The ordinary notion of a brane in string theory is: for an abelian gerbe G
on target space X a map ι : Q → X and a PU(n)-principal bundle on Q
whose lifting gerbe for a lift to a U(n)-bundle is the pulled back gerbe ι∗G.
Equivalently: a twisted U(n)-bundle on Q whose twist is ι∗G. Equivalently:
a gerbe module for ι∗G.
We show how this is reproduced as a special case of the general notion of
branes from definition 8..4, see also [41].

The bundle gerbe on X is given by a cocycle g : X | �� BBU(1) . The co-
efficient group has a canonical representation ρ : B2U(1) → F := BVect ↪→
2Vect on 2-vector spaces (as in section 9.3.) given by

ρ : •
Id





Id

(* •c∈U(1)�� �→ •
C





C

(* •·c�� .

See also [41, 38].
By inspection one indeed finds that branes in the sense of diagrams

Q

�����
�� ι

����
���

pt

ptF
�"**

** X

ρ◦g��+++
+

BVect

V ��














 are canonically identified with twisted vector bundles on
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Q with twist given by the ι∗g: the naturality condition satisfied by the com-

ponents of V is

C

C

%%
%



%
%%

C

(π∗
1E)y

��

C ��

C���

(*���

C

π∗
3Ey

��
C C �� C

Id
��

π∗
13gtw(y)

)� ,,
,,
,,
,,
,,
,,
,,
,

,,
,,
,,
,,
,,
,,
,,
,

=

C

C

%%
%



%
%%

(π∗
2E)y

��

C

C���

(*���

π∗
1Ey

��

C

(π∗
3Ey)

��

C

C

%%
%



%
%%

C C ��

C���

(*���

C

·g(y)��

π∗
23gtw(y)

----

%�
π∗
12gtw(y)

..
..
..
.

..
..
..
.

*+ .
..
..
.

..
..
..

, for all

y ∈ Y ×X Y ×X Y ×X Y in the triple fiber product of a local-sections admit-
ting map π : Y → X whose simplicial nerve Y •, regarded as an ω-category,

provides the cover for the ω-anafunctor X Y •����� g �� B2U(1) repre-
senting the gerbe. See [41] for details. E → Y is the vector bundle on
the cover encoded by the transformation V . The above naturality diagram
says that its transition function gtw satisfies the usual cocycle condition for
a bundle only up to the twist given by the gerbe g: if Y → X is a cover
by open subsets Y = �iUi, then the above diagram is equivalent to the
familiar equation

(gtw)ij(gtw)jk = (gtw)ik · gijk .

In this functorial cocyclic form twisted bundles on branes were described
in [39, 41].

9.5. Dijkgraaf-Witten theory

Dijkgraaf-Witten theory [17] is the σ-model which in our terms is specified
by the data

• target space X = BG, the one-object groupoid corresponding to an
ordinary 1-group G;

• background field α : BG → B3U(1), a group 3-cocycle on G.

9.5.1. The 3-cocycle

Indeed, we can understand group cocycles precisely as ω-anafunctors

BG Y
����� α �� BnU(1) . This is described in [11]. Here it is convenient

to take Y to be essentially the free ω-category on the nerve of BG, i.e.
Y := F (N(BG)), but with a few formal inverses thrown in to ensure that
we have an acyclic fibration to BG:

1-morphisms of Y are finite sequences of elements of G; 2-morphisms are
freely generated as pasting diagrams from the 2-morphisms of the form
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

•
h



�
��

��
��

•
hg

��

g
(*							 •��

⎫⎪⎪⎪⎬
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together with their formal inverses. 3-morphisms in

Y are freely generated as pasting diagrams from the 3-morphisms of the
form ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

• h �� •

k

��•

g
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hg�����
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together with their formal inverses. 4-morphisms in Y are freely generated
from pasting diagrams of 4-morphisms of the form

•
k

���
��

��
��

�
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33
33
33

+,3
33
33
3•

h

����������
3

l
,-44
44
44

•
g

-.555555

lkhg
��

hg
666666

./666666

•

/0
77
7
77
7

��
88
88
88
8 8
8

88
8 8
8 8
8 8
8

�1 99
9

99
9

•
k

���
��

��
��

�

•

h

���������� •
l

,-::
::
::

•
g

-.;;;;;;

lkhg
��

hg
666666

./666666

khg<<<<<

02<<<<<

•

+�
55
5
55
5

13
==
==
==

==
==
==

*+ >>>>

•
k

���
��

��
��

�

lk

33
33
33

+,3
33
33
3•

h

����������

hkl
���

��

		��
���

•
l

,-::
::
::

•
g

-.;;;;;;

lkhg
�� •2�

;;;;
34 ?
??
??
??

??
??
??
?

*+ >>
>
>>
>

•
k

���
��

��
��

�

•

h

����������
kh �� •

l
,-::
::
::

•
g

-.;;;;;;

lkhg
��

khg<<<<<

02<<<<<

•%� ����
2�
;;
;;
;;
;;

4,
@@
@@

@@
@@

•
k

���
��

��
��

�

•

h

����������
kh ��

lkh
���

��

		��
���

•
l

,-::
::
::

•
g

-.;;;;;;

lkhg
�� •�$

���� �1 A
AAAA
A

4,
@@
@@

@@
@@

(hg,k,l) �""
""

""
""

""

(g,h,lk)

55#########

(g,h,k)

./>>>>>>>>>>>

(g,kh,l) ��

(h,k,l)

+,B
BB
BB
BB
BB
BB
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together with their formal inverses.
The ω-functor α : Y → B3U(1) has to send the generating 3-morphisms
(g, h, k) to a 3-morphism in B3U(1), which is an element α(g, h, k) ∈ U(1).
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In addition, it has to map the generating 4-morphisms between pasting
diagrams of these 3-morphisms to 4-morphisms in B3U(1). Since there are
only identity 4-morphisms in B3U(1) and since composition of 3-morphisms
in B3U(1) is just the product in U(1), this says that α has to satisfy the
equations

∀g, h, k, l ∈ G : α(g, h, k)α(g, kh, l)α(h, k, l) = α(hg, k, l)α(g, h, lk)

in U(1). This identifies the ω-functor α with a group 3-cocycle on G. Con-
versely, every group 3-cocycle gives rise to such an ω-functor and one can
check that coboundaries of group cocycles correspond precisely to transfor-
mations between these ω-functors. Notice that α uniquely extends to the
additional formal inverses of cells in Y which ensure that Y

� �� �� BG is
indeed an acyclic fibration. For instance the 3-cell

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩
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has to go to α(g, h, k)−1.

9.5.2. Chern-Simons theory
The details of extension of this framework to ω-categories internal to smooth
spaces is beyond the scope of this article. In light of the previous section
9.5. it should be however noted that in terms of nonabelian cocycles the
appearance of Chern-Simons theory is formally essentially the same as that
of Dijkgraaf-Witten theory:
if we take BG to be a smooth model of the classifying space of G-principal
bundles, then a smooth cocycle BG | �� B3U(1) , i.e. an ω-anafunctor
internal to (suitably generalized) smooth spaces is precisely the cocycle
for a 2-gerbe, i.e. a line 3-bundle. In nonabelian cohomology, the differ-
ence between group cocycles and higher bundles is no longer a conceptual
difference, but just a matter of choice of target “space” ω-groupoid.

9.6. Transgression of DW theory to loop space: the twisted
Drinfeld double

Proposition 9..1 The background field α of Dijkgraaf-Witten theory trans-
gressed according to definition 8..1 to the mapping space of parameter space
Σ := BZ – a combinatorial model of the circle –

τBZα := hom(BZ, α)1 : ΛG → B2U(1)
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is the groupoid 2-cocycle known as the twist of the Drinfeld double ([10, 29]):

(τBZα) : ( x
g �� gxg−1 h �� (hg)x(hg)−1 ) �→ α(x, g, h) α(g, h, (hg)x(hg)−1)

α(h, gxg−1, g)
.

Proof. According to definition 6..2 the transgressed functor is obtained on

2-cells as the composition of ω-anafunctors BZ |
(x,g,) �� BG |α �� B3U(1) ,

given by
(x, g, h)∗Y ��

�
����

Y

�
����

α �� B3U(1)

BZ ⊗ O([2])
(x,g,h)�� BG

,

where (x, g, h) denotes a 2-cell in ΛG
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��
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(hg)x(hg)−1
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comes from a prism
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hg
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(*			

•

in BG. The 2-cocycle τBZα evidently sends this to the evaluation of α on
a 3-morphism in the cover Y filling this prism. One representation of such
a 3-morphism, going from the back and rear to the top and front of this
prism, is

•
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��

��
����
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•��
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(g,h,(hg)x(hg)−1)��
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g
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h
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hgx�������
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��

>�
%%%%

�1 AAAA

.

This manifestly yields the cocycle as claimed.

9.6.1. The Drinfeld double modular tensor category from DW
bibranes

Let again ρ : B2U(1) → 2Vect be the representation of BU(1) from section
9.3. and let τBZα : ΛG → B2U(1) be the 2-cocycle obtained in section 9.6.
from transgression of a Dijkgraaf-Witten line 3-bundle on BG and consider
the the ρ-associated 2-vector bundle ρ ◦ τBZα corresponding to that. Its
sections according to definition 7..8 form a category Γ(τBZα).

Corollary 9..2 The category Γ(τBZα) is canonically isomorphic to the
representation category of the α-twisted Drinfeld double of G.

Proof. Follows by inspection of our definition of sections applied to this
case and using the relation established in 9.6. between nonabelian cocycles
and the ordinary appearance of the Drinfeld double in the literature.

In the case that α is trivial, the representation category of the twisted Drin-
feld double is well known to be a modular tensor category. We show in the
next section how the fusion tensor product on this category is reproduced
from a monoid of bibranes on ΛG.
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9.6.2. Fusion tensor product from fusion of bibranes on 2-groups

Consider any 2-group BG2 := ( G � H
p1 ��

(Id·δ)
�� G �� pt ).

Pullback to the single object of BEZ yields a canonical morphism from the
disk-space DG2 := hom(BEZ,BG2) to BG, p : DG2 → BG which inherits
from the 2-group the structure of a category internal to groupoids in that
on the span DG2p

����
� p

��'
''

BG BG

there is induced the structure of a monad

from the horizontal composition in G2. Notice that DG2 is very similar to
but in general slightly different from the action groupoid H//G obtained
from the canonical action of G on H in a 2-group. Both coincide in the
special case that G2 = EG, so that H = G. In this case the morphism
p exhibits DG2 as the action groupoid (as in section 9.1.) of G acting on
itself by the adjoint action.
For BG → 2Vect the trivial gerbe, the transformations DG2

�����
�

����
��

BG
��**

** BG
��+++
+

2Vect

 )FFFF
FF

FFFFFF

are representations of DG2 on vector spaces. In [7] representations of H//G
were considered and shown to always form pre-modular tensor categories
except in the case G2 = EG, in which case H//G = ΛG is again the loop
groupoid from section 9.6. whose representations actually form a modular
tensor category. Moreover, in precisely this case also DG2 = ΛG, so that,
by the above, bibranes on DG2 become representations of ΛG.
Direct check shows that the fusion product of bibranes using the internal
category structure on DG2 from 8..5 reproduces the familiar fusion tensor
product on representations of ΛG, hence of the Drinfeld double.

10. Conclusion

We argued that symmetries assembled into categories and higher analogues
help systematic and uniform treatment of many phenomena in noncommu-
tative geometry, geometry and physics. Emphasis has been put on monoidal
categories acting on categories of sheaves in NC geometry; and on higher
cocycle for ω-categories where the latter may be very generally defined in
terms of abstract homotopy theory of ω-categories. We sketched here gen-
eralized notions of backgrounds and (bi)branes for σ-models. We currently
study nonabelian cocycles, sections and bibranes in a more satisfactory,
while more general, context of enriched homotopical categories with path
objects.
Let us list some related topics not touched here. Some σ-models and cou-
plings can be defined using infinitesimal versions of gauge n-groupoids.
E.g. a remarkable AKSZ construction [1] utilizes essentially Lie algebroids
as gauge “Lie algebras”. The relation between higher groupoids and L∞-
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algebroids (particularly “integration”) is an active area of research (cf. its
role in our context in [36]).
With actions of higher groups, notions of equivariance for categorified ob-
jects (e.g. gerbes) under usual or higher groups need some treatment. The
first author has studied Z2-equivariant gerbes as an expression of so-called
Yandl structures in CFT; and the second author studied 2-equivariant ob-
ject in 2-fibered categories (presented at WAGP06, Vienna 2006; the basic
definition is sketched in [45]).
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