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Abstract: We demonstrate the emergence of the Polchinski–Strominger term in the string representation of
a Wilson loop in the confinement phase of the finite-temperature 3D Yang–Mills theory. At a temperature
which is roughly twice smaller than the deconfinement critical temperature, the value of the coupling of
that term becomes such that the string conformal anomaly cancels out, thereby admitting a fully quantum
description of the quark–antiquark string in 3D rather than 26D.

Keywords: effective string description of confinement; models of the quark–antiquark string;
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1. Introduction

It is nowadays generally accepted that the Wilson loop of a test heavy quark in confining gauge
theories should play the role of a partition function for the effective quark–antiquark string [1,2].
For instance, in a gauge theory with a non-Abelian symmetry group, like the Yang–Mills, the Wilson
loop is defined as

〈W(C)〉 = 1
N

〈
trP exp

[
ig
∮

C
dxµ Aµ(x)

]〉
. (1)

Here, “tr” is the trace over color indices, and P denotes the path ordering. Furthermore, g is
the gauge coupling, and Aµ ≡ Ta Aa

µ, where Ta is a generator of the fundamental representation of
the group SU(N); a = 1, . . . , N2 − 1, and the average 〈· · · 〉 is defined w.r.t. the action 1

4

∫
d4x(Fa

µν)
2,

where Fa
µν = ∂µ Aa

ν − ∂ν Aa
µ − g f abc Ab

µ Ac
ν is the Yang–Mills field-strength tensor. For sufficiently large

contours C, the so-called area law takes place in confining theories [3]. This law corresponds to an
exponential fall-off of the Wilson loop with the area |Smin| of the minimal surface Smin bounded by the
contour C, i.e., 〈W(C)〉 → e−σ|Smin| for |Smin| & 1

σ . Here, the coefficient σ of dimensionality (mass)2

is called the string tension, as it represents the energy-per-unit-length of the quark–antiquark string.
The minimal surface Smin is unambiguously defined by the contour C, regardless of whether that
contour is flat or not. Being the world sheet of the maximally stretched confining string, the minimal
surface should play a distinguished role in the representation of the Wilson loop in the form of an
integral over all surfaces S bounded by the contour C. For the case of |Smin| & 1

σ at issue, such an
integral representation reads

〈W(C)〉 ' e−σ|Smin| =
∫

dµ(S) e−A(S). (2)

Here, µ(S) and A(S) are, respectively, some integration measure and action associated with the
surface S. In the physically mostly interesting case of the Yang–Mills theory, by using the non-Abelian
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Stokes’ theorem and the cumulant expansion truncated at the second term, one can approximate
Wilson loop (1) as [4–6]

〈W(C)〉 ' 1
N

tr exp
[
− 1

22 2!

∫
Smin

dσµ1ν1(x1)
∫

Smin

dσµ2ν2(x2) 〈g2Fµ1ν1(x1)Fµ2ν2(x2)〉
]

.

The integration on the r.h.s. of this expression should be performed over Smin, since otherwise an
artificial dependence on an arbitrary surface S appears; only by retaining all the terms of the cumulant
expansion may one keep S instead of Smin on the r.h.s. Furthermore, on Smin, higher-derivative
terms in the derivative expansion of this expression vanish, and only the Nambu–Goto term remains,
yielding e−σ|Smin|. Accordingly, measure dµ(S) in this case has the form dµ(S) = δ(S − Smin)dS.
While retaining in the action A(S) only the quadratic cumulant, the expression for the measure
becomes less trivial once we account for the effect of the next, quartic, cumulant which contributes to
the action of the quark–antiquark string:

〈W(C)〉 ' 1
N

tr exp
[
− 1

22 2!

∫
Smin

dσµ1ν1(x1)
∫

Smin

dσµ2ν2(x2) 〈g2Fµ1ν1(x1)Fµ2ν2(x2)〉

+
1

24 4!

∫
Smin

dσµ1ν1(x1)
∫

Smin

dσµ2ν2(x2)
∫

Smin

dσµ3ν3(x3)
∫

Smin

dσµ4ν4(x4)×

×〈g4Fµ1ν1(x1)Fµ2ν2(x2)Fµ3ν3(x3)Fµ4ν4(x4)〉c
]

, (3)

where the subscript “c” stands for “connected” to distinguish the cumulant from the standard 4-point
correlation function. The corresponding expression for the measure then reads

dµ(S) = δ(S− Smin) exp
[
− 1

24 4!

∫
S

dσµ1ν1(x1)
∫

S
dσµ2ν2(x2)

∫
S

dσµ3ν3(x3)
∫

S
dσµ4ν4(x4)×

×〈g4Fµ1ν1(x1)Fµ2ν2(x2)Fµ3ν3(x3)Fµ4ν4(x4)〉c
]

dS.

In this paper, we show that accounting for the quartic cumulant in the finite-temperature 3D
Yang–Mills theory yields the so-called Polchinski–Strominger term [7] in the string representation
of a Wilson loop, which allows one to cancel string conformal anomaly at a particular temperature.
As is well known (see e.g., [8]), the conformal anomaly emerges in the course of quantization of
the Nambu–Goto string, thereby making quantization of the bosonic string in the space-time of any
dimensionality other than 26 impossible.

Formally, our observation is as follows. The Nambu–Goto string action has the form ANG(S) =
σ
∫

d2ξ
√

det gab, where gab = ∂axµ · ∂bxµ is the tensor of the induced metric corresponding to the
vector-function xµ = xµ(ξ), where the latter parameterizes the string world sheet S. Here, indices
a and b take the values 1 and 2, and ξ = (ξ1, ξ2) is a 2D-vector of flat dimensionless coordinates,
while index µ takes the values 1, . . . , D, where D is the dimensionality of the embedding Euclidean
space-time. The Nambu–Goto string action is semiclassically equivalent to the Polyakov string
action [8] AP = σ

2

∫
d2ξ
√

γγabgab, where γab is an auxiliary metric, and γ ≡ det γab. (To prove this
equivalence, one can use the following expression for the variation of the determinant of the metric:
δγ = −γ · γab · δγab, which yields δAP = σ

2

∫
d2ξ
√

γ · δγab · Tab, where Tab = gab − 1
2 gcdγcdγab is the

energy-momentum tensor. The stationary point in the functional integral over auxiliary metrics is
defined by the corresponding classical equation of motion, Tab = 0. For the solution of this equation,
which is γab = gab, the Polyakov action AP is indeed equal to the Nambu–Goto action ANG.) Due to
this equivalence, the string quantization can be performed by integrating over xµ, which returns the
string partition function in the form of a functional integral over γab. In the course of the quantization,
one notices that, since the Polyakov action stays invariant under the reparametrizations of the surface,
one has to fix some gauge in the group of reparametrizations. Such a gauge fixing results in the
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additional integration over the ghost fields. Usually, one adopts the so-called conformal gauge,
in which the metric γab has the diagonal form, namely γab =

√
γδab. In this gauge, the Polyakov

action takes the form AP = σ
2

∫
d2ξ (∂axµ)2, which is just the theory of a free massless bosonic field xµ.

Integrating then over xµ, one arrives at a Liouville theory,∫
Dxµ e−AP = e

D
48π

∫
d2ξ[ 1

2 (∂a ϕ)2+µ2eϕ],

where ϕ = 1
2 ln γ and µ2 = 48πσ

26−D . Integrating further over the ghosts, one obtains for the corresponding

Faddeev–Popov determinant a parametrically similar result: e−
26

48π

∫
d2ξ[ 1

2 (∂a ϕ)2+µ2eϕ]. Bringing these
two expressions together, one arrives at the following expression for the string partition function [8]:

Z =
∫
Dϕ e−

26−D
48π

∫
d2ξ[ 1

2 (∂a ϕ)2+µ2eϕ]. (4)

This result means that the conformal anomaly cancels out and the bosonic string can be
selfconsistently quantized only for D = 26. In this respect, the Nambu–Goto model of the bosonic
string drastically differs from the field-theoretical models of point particles, which can be quantized in
the space-time of any dimensionality as long as their renormalizability is provided. For this reason,
being used as a model of the hadronic string, the Nambu–Goto string admits at best a semiclassical
treatment. This yields the so-called Lüscher term [9], or even the full static potential in the large-D
limit [10], but the fully quantum treatment of the string remains missing.

An approach enabling the Nambu–Goto string to remain quantizable in the space-time of
dimensionality D other than 26 is based on the observation that the partition function (4) can be
represented in the form

Z =
∫
Dϕ e

−σ
∫

d2ξ
√

γ− 26−D
96π

∫
d2ξ

∫
d2ξ ′
√

γR
(
− 1

∂2

)
ξ,ξ′
√

γ′R′
.

Here, ∂2 ≡ ∂a∂a and R = −e−ϕ∂2 ϕ are the conformal-gauge expressions for the Laplacian
∆ = 1√

γ ∂a
√

γγab∂b and the scalar curvature of the world sheet, respectively;
(
− 1

∂2

)
ξ,ξ′ =

1
2π ln 1∣∣ξ−ξ′

∣∣
is the Green’s function of the Laplacian; γ′ = γ(ξ′), R′ = R(ξ′). Given the semiclassical equality
γab = gab (cf. the discussion above), one can say that, starting with an extension of the Nambu–Goto
model by a non-local term κ

∫
d2ξ

∫
d2ξ ′
√

γR
(
− 1

∂2

)
ξ,ξ′
√

γ′R′, one can hope to have the situation with

κ =
D− 26

96π
. (5)

Such a value of κ would make the corresponding string model quantizable in the space-time
of dimensionality D. The desired term can be viewed as a non-trivial 2D theory of gravity,
while Einstein–Hilbert gravity is trivial in 2D, since

∫
d2ξ
√

γ R is a full derivative. Being represented
in the form −κ

∫
d2ξ(∂a ln

√
γ)2, the desired non-local term is usually referred to as the

Polchinski–Strominger (PS) term [7]. This term could appear by means of the integration over some
scalar field Φ(ξ) coupled to the string world sheet as

∫
d2ξ Φ

√
gR, where from now on g ≡ det gab

and R = R[gab]. However, in the case of the Yang–Mills theory of interest, it is not clear where such a
scalar field existing only on the string world sheet could stem from.

Here, we put forward an alternative observation that the PS term in the string representation
of the Wilson loop can emerge due to the quartic cumulant, since this term can be viewed as a
non-local square of the Euler characteristic of the world sheet, χ = 1

4π

∫
d2ξ
√

gR. To come closer to
this observation, let us recall the emergence of the Euler characteristic in the course of the derivative
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expansion which involves only the quadratic cumulant. To that end, we parameterize the part of the
quadratic cumulant which yields the surface×surface interaction, as [4–6]

〈g2Fa
µ1ν1

(x1)Fb
µ2ν2

(x2)〉 = 〈(gFa
µν)

2〉 δab

(N2 − 1)(D2 − D)

(
δµ1µ2 δν1ν2 − δµ1ν2 δµ2ν1

)
D(x1 − x2).

Here, the dimensionless function D(x) obeys the normalization condition D(0) = 1 and falls
off at least exponentially fast at a distance equal to the correlation length λ ≡ 1/m of the Yang–Mills
vacuum, e.g., D(x) = e−m|x|. The corresponding contribution to the Wilson loop reads

〈W(C)〉 ' 1
N

tr exp
[
− 1

22 2!

∫
Smin

dσµ1ν1(x1)
∫

Smin

dσµ2ν2(x2) 〈g2Fa
µ1ν1

(x1)Fb
µ2ν2

(x2)〉 TaTb
]
=

= exp

[
−
〈(gFa

µν)
2〉

8N(D2 − D)

∫
Smin

dσµν(x1)
∫

Smin

dσµν(x2) D(x1 − x2)

]
.

One can further perform the derivative expansion [11,12] of the corresponding action

A(S) =
∫

S
dσµν(x1)

∫
S

dσµν(x2) D̃(x1 − x2), where D̃(x) ≡
〈(gFa

µν)
2〉

8N(D2 − D)
D(x).

A useful relation, which is utilized to perform the expansion, is the so-called Gauss–Weingarten
formula DaDbxµ = Ki

abni
µ for the covariant derivative DaDbxµ ≡ Da∂bxµ = ∂a∂bxµ − Γc

ab∂cxµ.
This formula enables one to replace the products of ordinary derivatives ∂a∂bxµ by the products
of covariant derivatives DaDbxµ. Here, Γc

ab is a Christoffel symbol defined w.r.t. the induced metric
gab, ni

µ’s are the unit normal vectors to the world sheet, Ki
ab is the second fundamental form of the

world sheet, and index i takes the values 1, . . . , D− 2. The normal vectors ni
µ’s obey the condition

ni
µ · ∂axµ = 0, which yields the following orthogonality relation: DaDbxµ · ∂cxµ = 0. In particular,

with the use of this relation, one can prove a complete mutual cancellation of the terms proportional
to
∫

d2ξ(∂a ln
√

g)2, to the unique order O(λ4) in which these terms could appear. This observation
obviously means that the derivative expansion does not yield the PS term and, consequently, it does
not provide the possibility to cancel the conformal anomaly for any value of D other than 26. By using
the above formulae along with the orthonormality relation ni

µnj
µ = δij, it is also possible to convert the

products of expressions DaDbxµ, emerging in the course of the derivative expansion, into the products
of the second fundamental form, e.g., as follows:

(gabgcd + gadgbc + gacgbd)DaDbxµ · DcDdxµ = 3(∂2xµ)
2 + 2(Ki

abKi,ab − Ki a
a Ki b

b ).

One can further use the relation Ki
abKi,ab − Ki a

a Ki b
b = −R to obtain all the terms which yield the

Euler characteristic χ. Altogether, to the order O(λ4), the derivative expansion yields:

A(S) ' σ
∫

d2ξ
√

g +
1
α

∫
d2ξ
√

g (∂2xµ)
2 + β

∫
d2ξ
√

gR, (6)

where

σ = 2λ2
∫

d2z D̃(z), 1
α
= −λ4

8

∫
d2z z2 D̃(z), and β =

λ4

12

∫
d2z z2 D̃(z) (7)

are the string tension, the coupling of the rigidity term, and the coefficient at 4πχ, respectively.
The leading terms that have been omitted in Equation (6) are those whose coefficients are proportional
to the next even-order integral moment of the function D̃, i.e., these coefficients have the order
of λ8

∫
d2z |z|4 D̃(z). Altogether, the derivative expansion converges provided that λ .

√
|Smin|,

which means that confinement in the Yang–Mills theory takes place and admits an effective string
description as long as the quark–antiquark separation stays larger than the vacuum correlation length λ.
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In the next section, we will see how the PS term in the derivative expansion can emerge from the
quartic cumulant in Equation (3) in the case of the finite-temperature 3D Yang–Mills theory.

2. PS Term from the Quartic Cumulant

We consider only the part of the quartic cumulant, which yields in Equation (3) four surface
integrals, none of which can be reduced to the contour integral by means of the (Abelian) Stokes’
theorem. That part does not contain derivatives in its tensor structure, and can be parameterized as
follows [13]:

〈g4Fa1
µ1ν1(x1)Fa2

µ2ν2(x2)Fa3
µ3ν3(x3)Fa4

µ4ν4(x4)〉c = C 〈(g2Fa
µνFa

µν)
2〉×

×
[
δa1a2 δa3a4(δµ1µ2 δν1ν2 − δµ1ν2 δµ2ν1)(δµ3µ4 δν3ν4 − δµ3ν4 δµ4ν3)+

+δa1a3 δa2a4(δµ1µ3 δν1ν3 − δµ1ν3 δµ3ν1)(δµ2µ4 δν2ν4 − δµ2ν4 δµ4ν2)+

+δa1a4 δa2a3(δµ1µ4 δν1ν4 − δµ1ν4 δµ4ν1)(δµ2µ3 δν2ν3 − δµ2ν3 δµ3ν2)
]

e−m(|z12|+|z13|+|z14|+|z23|+|z24|+|z34|). (8)

Here, zij = xi − xj are the relative coordinates of the points x1, . . . , x4, so that the whole expression
vanishes with the increase of any of the corresponding relative distances |zij|, as it should be for
a cumulant. Under the assumption that the amplitude of the listed tensor structure significantly
exceeds the amplitudes of all the omitted structures, which contain derivatives and therefore do
not contribute to the string tension and, hence, to confinement (This assumption is motivated by
the corresponding lattice results [14,15] for the quadratic cumulant.), one can further readily find
the normalization coefficient: C = {(N2 − 1)(D2 − D)[(N2 − 1)(D2 − D) + 4]}−1. Accordingly,
the correction produced to the string action by the quartic cumulant (8) reads

A(S)−
∫

S
dσµν(x1)

∫
S

dσµν(x2) D̃(x1 − x2) =

= − C
244!
〈(g2Fa

µνFa
µν)

2〉 1
N

tr
4

∏
k=1

∫
S

dσµkνk (xk)T
ak [· · · ] e−m(··· ) = − C

244!
〈(g2Fa

µνFa
µν)

2〉
(

N2 − 1
2N

)2

×

×4
∫

S

∫
S

∫
S

∫
S

[
dσµν(x1)dσµν(x2)dσλρ(x3)dσλρ(x4) + dσµν(x1)dσµν(x3)dσλρ(x2)dσλρ(x4)+

+ dσµν(x1)dσµν(x4)dσλρ(x2)dσλρ(x3)
]

e−m(|z12|+|z13|+|z14|+|z23|+|z24|+|z34|). (9)

We proceed now to the 3D Yang–Mills, where the coupling g has dimensionality (mass)1/2. There,
being inspired by the exact result for the function D(~x) in the London limit of the dual superconductor
or in the 3D compact QED, which is proportional to the propagator of a dual gauge boson [11,16],
we replace e−m|zij | in Equation (8) by e−m|~zij |/(m|~zij|). We notice that the relative coefficient between

these two functions should stay equal to 1, since
∫

d2x e−m|x| =
∫

d2x e−m|x|

m|x| , which means that the
corresponding replacement in the function D(~x) would leave the string tension unchanged. Moreover,
we consider the 3D Yang–Mills at finite temperature T, which leads to the decomposition e−m|~x|

|~x| =

2T
+∞
∑

n=−∞
K0
(
m|x|

√
1 + (ωn/m)2

)
, where ωn = 2πTn is the n’s Matsubara frequency, and K0(x) is the

Macdonald function. Due to the exponential fall-off of K0(x) at large x, it suffices to keep in the above
sum only the zeroth term, which yields e−m|~x|

|~x| ' 2TK0
(
m|x|

)
at temperatures T & m

2π . We have then
e.g., for the first term on the r.h.s. of Equation (9) the following expression:

4
∫

S

∫
S

∫
S

∫
S

dσµν(~x1)dσµν(~x2)dσλρ(~x3)dσλρ(~x4)

(
2T
m

)6
K0(m|z12|) · K0(m|z34|) ·

1
4

K0(4m|z13|),

where we have used the proximity of ~x1 to ~x2 and of ~x3 to ~x4 to approximate e−m(|~z13|+|~z14|+|~z23|+|~z24|)

by e−4m|~z13| and, consequently, by 2T
4m K0(4m|z13|). By using further the value of coefficient β from
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Equation (7), we find that the above expression yields, in particular, the following contribution to the
string action:(

4π

3

)2
λ8
(

2T
m

)6 1
4

∫
d2ξ

∫
d2ξ ′

√
g(x)R(x)K0(4m|x− x′|)

√
g(x′)R(x′),

where 4π
3 = 1

6

∫
d2z z2K0(|z|), x ≡ x(ξ), x′ ≡ x(ξ′). Furthermore, it is natural to parameterize

x as x = Lξ, where the parameter L has the dimensionality of length. (For example, for a flat
circular contour C, the parameter L is just the radius of C, while ξ is the vector parameterizing the
disc of radius 1.) As is known [8], string conformal anomaly occurs at short distances, ξ → ξ′,
where K0(4m|x− x′|)→ ln 1

4mL
∣∣ξ−ξ′

∣∣ → 2π
(
− 1

∂2

)
ξ,ξ′ , which yields the PS term.

To calculate the PS-term coupling κ in terms of g2 and T, we use the following expressions, which

are exact in the 3D Yang–Mills [17,18]: m = g2 N
2π and σ = g4 N2−1

8π . On the other hand, by using

Equation (7) with D(z) = e−|z|
|z| , we have σ = π

12N
〈(gFa

µν)
2〉

m2 , which yields 〈(gFa
µν)

2〉 = 3
2π2 N(N2 −

1)m2g4. Having noticed that both sides of this expression consistently scale at large N as O(N),
we henceforth set N = 3. Furthermore, to evaluate 〈(g2Fa

µνFa
µν)

2〉, we use the so-called factorization
hypothesis, also called vacuum dominance [19], which states that the dominant contribution to
condensates like 〈(g2Fa

µνFa
µν)

2〉 is the factorized one: 〈(g2Fa
µνFa

µν)
2〉 ' 〈(gFa

µν)
2〉2. Bringing everything

together, we have: κ = − 16
39π

g8T6

m10 . Equating this expression to Equation (5) at D = 3, and substituting

m = 3g2

2π , we obtain the value of the temperature at which the string conformal anomaly cancels out:

T∗ =
(

299
512

)1/6 ( 3
2π

)5/3
· g2 ' 0.267g2. (10)

Comparing this expression with m
2π ' 0.076g2, we notice that T∗ exceeds m

2π by a factor ' 3.5,
thereby justifying the above-used approximation of the sum over Matsubara modes by its zeroth term.
On the other hand, one can compare T∗ with the available lattice data for the deconfinement critical

temperature Tc in the 3D Yang–Mills. According to Refs. [20,21], Tc '
√

σ = g2
√

π
' 0.56g2, which is

larger than T∗ by a factor ' 2.1. This check confirms that the obtained possible cancellation of string
conformal anomaly occurs “deeply enough” in the confinement phase, where the effects of string
broadening, which take place at T → Tc, can be safely disregarded.

3. Summary

In conclusion, we have shown that the PS term can emerge in the string representation of the
Wilson loop in the confinement phase of the finite-temperature 3D Yang–Mills theory, with the origin
of that term being the quartic cumulant (8). At the particular temperature (10), the value of the
coupling of the PS term becomes such that this term can lead to the cancellation of the bosonic-string
conformal anomaly, thereby providing a fully quantum description of the quark–antiquark string
at that temperature (as opposed to the well-known semiclassical treatments of the Nambu–Goto
quark–antiquark string [9,10], which account for small fluctuations of the string around its classical
configuration). It is, however, worth noticing that the suggested approach is specific for the 3D
case at finite temperature, where the surface×surface interaction in the zeroth-Matsubara-mode
approximation becomes two-dimensional. For this reason, it is unfortunately not applicable to the
physically mostly interesting case of the 4D Yang–Mills at zero temperature, where other possible
sources of the PS term are still to be discovered. There, the approach suggested in Ref. [22] for the case
of the Abelian Higgs model looks especially promising, provided that one manages to identify in the
Yang–Mills integration measure those degrees of freedom which can be unambiguously related to the
string world-sheet coordinates.
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