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and TQD(G', '), can be realized as a PEM duality transformation, which exchanges the
N-charges and N-fluxes only. Via the PEM duality, we construct an explicit isomorphism
between the corresponding TQD algebras D®(G) and D (G’) and derive the map between
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(a) Triangulation T'. (b) Dual graph T

Figure 1. EM duality between an Abelian gauge theory defined on the triangulation lattice I" and
its dual model on the dual graph I'. Gauge charges on vertices and gauge fluxes on plaquettes for
gauge group G are mapped to dual fluxes and dual charges for the dual gauge group G on the dual
graph.

1 Introduction

As an important theme in modern physics, dualities weave together apparently different
physical theories, such that not only the theories can be understood from each other’s per-
spective but also they combined can deepen our understanding of the fundamental physics
underneath. Needless to mention the popular gauge-gravity duality and the dualities be-
tween gauge theories in different dimensions, in this work, we shall construct a duality
between certain types of lattice gauge theories in 2 + 1 dimensions, which can serve as ef-
fective models of topological orders in two spatial dimensions. We shall name this duality
a partial electric-magnetic (PEM) duality for reasons to be explained shortly.

A lattice gauge theory has EM duality if the gauge group G is Abelian. A well known
example is the Ising model [1]. Such duality is important to understand the matter phases
and phase transitions. Under the EM duality, the gauge charges and gauge fluxes are
exchanged in the dual theory. See figure 1 for an example. The dual gauge group is
G= Irrep(G) whose elements are unitary irreducible representations of G.

When the gauge group G is non-Abelian, there is no such EM duality for the entire
gauge group G because the irreducible representations of G do not form a group. Nev-
ertheless, if a normal Abelian subgroup N C G exists, there could be partial EM duality
which exchanges N-charges and N-fluxes only. Such a duality is what we mean by a PEM.

A large class of topological phases can be described by discrete topological gauge field
theories, such as the quantum double (QD) models [2], the twisted quantum double (TQD)
models [3-5], and the Levin-Wen model [6]. When QD models are extended (with the
defining finite groups generalized to Hopf algebras), EM dualities (that exchange charges
and fluxes for the gauge Hopf algebras) can be realized ([7-10]).

On the other hand, two TQD models TQD(G, «) and TQD(G', '), with G and G’ finite
groups and o € H3(G,U(1)) and o € H3(G',U(1)) the 3-cocycles, may be equivalent. An
example is the equivalence between the QD model with G = D4 and a TQD model with
G’ = 7Zy X Zy X Zs and some nontrivial 3-cocycle over G’ ([11]). The topological quantum
numbers (modular S, T matrices) are identical in both models.

In this paper, we show that such equivalences can be constructed via the PEM duality
in TQD models. In general, it is known whether two TQD models are equivalent [12-14],
in the sense that their corresponding quantum double categories, which characterize the



topological phases of the corresponding TQD models, are equivalent. We find that for
every such an equivalence of two TQD models, there exists a PEM duality transformation
between the two models.

Given an existing normal Abelian subgroup N C G, the PEM duality (if exists) maps
N-charges/fluxes to N-fluxes/charges in the dual model, while K-charges/fluxes remain
unchanged, where K = N\G is the right quotient group. Such a PEM duality should be
formulated by a Fourier transform over N and N , which we call a partial Fourier transform.

To derive the PEM dulaity, we require «|y = 1, such that the TQD(G, «) model
contains a QD(NN) model, which is mapped to the QD(N ) model on the dual graph T.
Hence the PEM dualtiy maps N-charges to N-fluxes (and vice versa). With some extra
condition on «, we show that the dual operators generate the TQD algebra Da/(G’ ) [15].

In general, a TQD model is not self-dual under the PEM duality transformation: not
only the lattice structure is changed (the triangulation is mapped to a reciprocal bilayer
graph) but also the gauge group G is mapped to a dual group G’, while the algebra of
the local operators are mapped from DG to D G'. Every equivalence between two TQD
models, say, TQD(G,«) and TQD(G’,d’), can be realized by a PEM duality transfor-
mation.

We derive an isomorphism between the TQD algebras D*(G) and D (G), which is
the mathematics behind the PEM duality. With such an isomorphism, we can explicitly
construct the duality transformation of the anyons in a TQD model to those of the dual
model, in terms of the representations of the corresponding TQD algebras.

The PEM duality begs to reformulate the TQD(G, o) model as a bilayer model, namely
a coupling of a QD(NN) model on the upper layer and a model on the lower layer. The
model on the lower layer may not be a TQD model in general because its input data does
contain any 3-cocycle in H3(K,U(1)). Under the PEM duality, the upper layer model is
mapped to the QD(N ) model on the dual graph [. The lower layer remains unchanged,
as defined on I'. We call the dual model a reciprocal bilayer model.

2 Review of EM duality in discrete Abelian gauge theories

In this section, we briefly review some known examples of EM duality in discrete gauge
theories.

We focus on the EM duality in the two-dimensional Ising model [1], which is defined
on a square lattice, while the dual model is defined on the dual lattice (see figure 2). The
duality transformation relates the observables in the Ising model at high temperature to
their counterparts in the dual model at low temperature.

Such an EM duality transformation is essentially a Fourier transform, which is better
understood by treating the Ising model as a discrete gauge theory. In the original Ising
model, the spins o7 at the vertices v of the lattice are the Pauli z-matrix. Each spin
yields a Zy group because (0%)? = 1, where 1 is the 2 x 2 identity matrix, such that
{0%,(0%)?} = Zs. To understand the Ising model as a gauge theory, we can gauge the
Ising model by trading the spins at the vertices by gauge degrees of freedom on the links.
For example, two neighbouring spins o7, and oy, are traded with the degree of freedom



Figure 2. The EM duality between the Ising model on the lattice (with solid lines), and the
dual model (with dashed lines) on dual lattice. The plaquettes p1, ps, ... in the original lattices are
identified as vertices on the dual lattice. The EM duality leads to the correspondence {oy} <> {0} }.
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o170 which is an abbreviation of the full tensor product that involves the

identity operators at all the other vertices of the lattice, on the link between v; and vs.
Z g% then g% = 1, the 4 x 4 identity

v v2)

Clearly, the gauge group is also Zs: if we define g = o
matrix as a submatrix of the full identity matrix.

In the dual Ising model, however, the spins at the vertices p are the Pauli z-matrix oy.
The gauge degrees of freedom on the dual links (dashed lines in figure 2) are thus o? o2 :=

p19p2 -
o, ®op,. The elements oy o, on the links and o, o, on the dual links are related by a
Fourier transform in the Hilbert space as follows. If we define s = (1 + 07, 05,)/2, then we

can specify the local basis |g) on a link in the Ising model (such that g|g¢’) = |g¢)), and
the local basis |s) in the dual Ising model respectively. The EM duality transformation
is then a Fourier transform between these two bases. Such a Fourier transform can be
conveniently formulated in the language of group representation theory. In the above local
basis, g effectively takes values in Zy = {+1,—1}, and s takes values of 0,1 that label
the two irreducible representations of Zs. The Fourier transform on the local basis of the
Hilbert space reads

1 -
|s) = ﬁgps(g)W- (2.1)

The ps(g) is the representation matrix of g in the irreducible representation s.

To study the duality transformation of the observables, we examine a Fourier trans-
form on the statistical weight of the model. For simplicity, we assume the absence of
external magnetic field. Each link contributes to the statistical weight a factor A(g), with
A(x) = exp(xf) at the inverse temperature (. Similarly, in the dual model, each link
contributes A(s) = exp ((—1)5 B) The Fourier transform (2.1) induces the transformation
of the statistical weight:

As) = |Z1| S ro) (2.2)

which reads \(0) = sinh 3, A(1) = cosh 3 (For derivation, e.g., see [16]). The relation
between (3 and 3 is derived from the identification 5\(3) = exp ((—1)S B)

sinh 23sinh 233 = 1, (2.3)

which is known as the Kramers-Wannier duality.



In the above example, We formulate the EM duality in the Ising model by a Fourier
transform on the local Hilbert space and on the observables of the model. Such an EM
duality can be generalized to Abelian gauge theories defined on a lattice (or on a simplicial
complex in general) and described by a similar Fourier transform (for example, see [16]).
Under the Fourier transform in eq. (2.1), the dual group is formed by all unitary one-
dimensional irreducible representations, denoted by G’, albeit G’ = G in Abelian cases.

The EM duality discussed above can not be generalized directly such that the dual
model is a gauge theory for certain group G’ because the irreducible representations in
such cases do not form a group.! In this paper, we propose a partial EM duality to solve
this problem. If there exists a normal Abelian subgroup N of the gauge group G, then the
EM duality could still exist via the partial Fourier transform over N, which is the reason
we call such duality a partial EM duality.

3 Conditions on PEM duality

In this section, we formulate the conditions on the existence of PEM duality.

Two TQD models with different input data (groups and 3-cocycles) may be equiva-
lent. For example, the QD model with G = D, is equivalent to the TQD model with
G' = 7o x 7o x s and certain nontrivial 3-cocycle o over G'. Two TQD models, TQD(G, )
and TQD(G', o), are equivalent if they yield the same set of topological quantum numbers,
characterizing the same topological order. Mathematically, this happens if the represen-
tation categories Rep(pag) and Rep par ) of the TQD algebras D*(G) and D (G') are
equivalent. The existence conditions of such equivalences as found by Naidu and oth-
ers [12, 13] are reviewed briefly as follows.

We follow the language in ref. [13]. Let Vecg be the fusion category whose objects are
vector spaces graded by G and associativity dictated by a. Two fusion categories Vecg
and Vec®, are weakly Morita-equivalent ([17]) if their categories centers are equivalent as
braided tensor categories, i.e.,

2(Vecd) = Z(Veek). (3.1)

Note that Z(Vecg) = Rep(pag) as braided tensor categories. Given a right-module category
M over the fusion category € = Vecg, we denote the dual category (see [18]) of € by C3, :=
Fune (M, M), whose objects are the C-module functors from M to itself and morphisms are
natural module transformations.

The weakly Morita-equivalence holds if there exists a right-module category M such
that the dual category €}, is equivalent to Vecd, for certain G’ and o, According to ref. [13]
such an M exists if

1. G contains a normal Abelian subgroup NN, such that «|y is trivial in the third coho-
mology group H3(N,U(1)).

'In non-Abelian cases, the EM duality discussed above can be generalized in the framework of generalized
gauge theory with gauge quantum groups. Then the EM duality following the above approach maps a non-
Abelian gauge group to a gauge quantum group [8].



2. There is a 2-cochain p € H?(G,Map(K,U(1))), such that 6’y = « with a €
H3(G,Map(K,C)) (where « is viewed as a constant valued 3-cocycle), and the coho-
mology class [1Y/p] is trivial in H2(G,Map(K,U(1))) Vy € K.

Here Map(K, U(1)) is a function space with the left G-actions defined by (¢g>f)(k) = f(k<g),
where f: K — U(1), g € G, k € K, and k<g is the right G-action on the quotient group K.
When these conditions are met, we can construct a module category M(K, i) whose simple
objects are given by elements in K and associativity given by u. The category G}“w( Kop) is

equivalent to Vec%, for certain G’ and o

Later, Uribe [14] formulated the conditions on the equivalence in terms of explicit
representatives of av and . In this formulation, the categories Vecg, and Vec%// are weakly
Morita-equivalent if and only if

1. There exists a normal Abelian subgroup N C G. Then, there exists certain 2-cocycle
F € H*(K, N) such that G can be written as a semidirect product G = N xp K.

2. There exists a 2-cocycle F' € H2(K, N), such that the 4-cochain F'AF defined by (FA
F)(ky, ko, ks, ka) := EF(k1,ko)(F(ks, ky)) is cohomologically trivial in H*(K,U(1)),
where N is the Abelian group whose elements are the unitary irreducible represen-
tations of N, and k; € K. In other words, there exists a 3-cochain ¢ € C3(K, U(1)),
such that e = FAF, ie.,

€(ka, k3, ka)e(ki, kaks, ka)e(k1, k2, k3)

= F'(ky, ko) (F(ks, ky)).
€(kiko, k3, ka)e(k, ko, kaka) (K1, k2)(F'(ks3, k1))

(3.2)

Ore(ki, ko, ks, ka) =

When there exists F and F satisfying these two conditions, there is a weakly Morita
equivalence Vecg = Vec%//, with G = N xp K, G' = K x4, N, and the 3-cocycles are (up
to a coboundary)

a((al, kl), (ag, kg), (CL3, kg)) = F(kl, kg)(ag)e(kl, k‘g, ]{73), (33)
o/ (21, p1), (x2, p2), (23, p3)) = p1(F (w2, 73))e(21, T2, 73). (3.4)

Note that a|y =1 and /| = 1.

In this paper, we will adapt the explicit representatives of a and ' in egs. (3.3)
and (3.4). We show that for every weakly Mortia equivalence Vecd 2 Vec%,, we can
derive a PEM dulaity by a partial Fourier transform to be defined. Note that since our
PEM duality is a local duality transformation, it does not induce any topological phase
transition.

4 Main results

In this section, we summarize the main result of this paper. We consider the quantum
double (QD) models and the more general twisted quantum double (TQD) models defined
on a graph I' as a triangulation of a closed surface. These models are discrete topological
gauge theories describing time-reversal invariant topological orders.
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Figure 3. The gg at the vertex and hg at the loop p.

The elementary excitations in these models are gauge charges, gauge fluxes, and dyons
(charge-flux composites) living on I'. Charges (fluxes) are local excitations at the vertices
(plaquettes) violating the Gauss law (flatness condition), which is implemented by local
gauge-transformation operators at the vertices (holonomy measurement operators). In
this section, we will explain these operators in a minimal setting, and leave the detailed
discussion in the later sections. In this minimal setting, we only consider one vertex v and
one plaquette adjacent to v in I'. The plaquette can be homeomorphically minimized to
a disk bounded by a single loop p attached to v (see figure 3). Then we can define the
Hilbert space and the local operators at v and on p as follows. The local Hilbert space is
spanned by two group elements, go at v, and hg on p. The hg is the holonomy along the
loop. We define the local gauge transformation operator by

A% g0, ho) = |990, ghog), (4.1)

and the holonomy measurement operator B" by

B"\g0, ho) = Sn.nol90, ho), (4.2)

where g, h, go, hg € G. Throughout this paper, we will denote the inversed group element
by a bar: a =a"".
The operators A9 and B" form the Drinfeld’s quantum double algebra D(G), whose

multiplication rule is
(A9 B")(A%B") = 64, gahags (A9 B"2). (4.3)

It is the algebra of local observables in the QD models, i.e., for all g, h € G, the A9 and
B" commute with the Hamiltonian (will be defined in later sections). In the TQD models,
we can generalize the operators A9 and B", which give rise to a TQD algebra DG, where
a € H3[G,U(1)]. The algebra multiplication rule becomes

(A9 BM ) (AQZBM) = 5h1,92h2§l_218h2 (91, 92)Aglngh27 (4.4)

where S, (g1, g2) is given by eq. (5.15). When a = 1, D*G reduces to a QD algebra. (For
the detailed definition of TQD algebras, see appendix B.)

We already know the EM duality transformation in Abelian gauge theories [1, 16]. In
the QD models with Abelian group G, the EM duality is essentially a Fourier transform
on GG and maps charges to dual fluxes and vice versa. When the group G is non-Abelian,
no gauge group structure survive under the Fourier transform on G.

Nevertheless, if G has a normal Abelian subgroup N, we may apply a partial Fourier
transform on N. This partial Fourier transform is called a PEM duality transformation if



the dual model can be identified as a topological gauge theory with observables forming the
TQD algebra Da/(G’ ) for certain finite gauge group G’. Nevertheless, in general, a partial
Fourier transform cannot be a PEM duality because a PEM duality is supposed to realize a
Morita equivalence Vec% 2 Vec%,, which is possible if and only if the conditions (3.2)(3.3)
and (3.4) are met. We assume hereafter these conditions are fulfilled.

Let N C G, such that G is a semidirect product G = N xp K where K = N\G is
the quotient group, and F € H?(K, N) is a 2-cocycle. The 3-cocycle o € H?(G,U(1)) has
the form in eq. (3.3) for some certain 2-cocycle F' € H2(K, N). For the semidirect product
structure, see appendix C. For (a,z) € N xp K, we define the partial Fourier transform:

a)la, ) (4.5)

|z, p) = FQGZNP

In the pair (z,p), p € N , where N is the Abelian group whose elements are the unitary
irreducible representations of V.

In what follows, we will define the dual local operators. The pairs (x, p) form the dual
group G/ = K x FN with the semidirect product structure specified by F. (See appendix C
for the details about the semidirect product structures of G and G'.) We will define the
partial Fourier transform on the local operators by

(:By{L‘,p) A(G»Z)B(b»y) 4 6
p(a : :
9.5 o)

where p,n € N. Then the dual local operators in the dual model are
Alen) — Zg(wyfﬁp)g(rm)j (4.7)
Bw») — Blwp) A(k:1y) (4.8)

In later sections, we show that the dual operators generate the TQD algebra D (G'),
where o/ € H3(G',U(1)) takes the form in eq. (3.4), i.e., they satisfy

~ h/
Agl 249 = O gtns g, B (91 g5)B; M j9% (4.9)
where _
o (W5, g1, 95)0 (g1, 9b. 91 M 9195 )
o (g, gihigt 0b)
with o/ € H3[G', U(1)] given by eq. (3.4). Here !, g, € G'.
By definition, the partial Fourier transform acts on the Hilbert subspace spanned by

, (4.10)

the elements of N. It is convenient to factorize the local operators into IV part and K part

by setting
A? = AV A7 = A00) b= N pbv) gy = N~ ply), (4.11)
yeK beN
and
A= A0 A = A0 o= ¥ Bwo) v = Y B, (4.12)
yeK pEN



As consequence of the partial Fourier transform (4.6), we have

A9 =Y pla)BP, B — |]1V| S () A (4.13)
pGN nEN
A* = A, BY = BY. (4.14)

In later sections, we show that the matrices of A" and B” in the dual basis of the Hilbert
space define a QD(N) model on the dual graph T' of the original graph I', where the
Hilbert subspace spanned by N elements. See figure 8 for the details how we define I'. The
identification of the dual model on T’ with the QD(N') model, together with that N-charges
are mapped to dual N-fluxes (and vice versa), justifies the terminology of the PEM duality,
whose definition is summarized as follows and to be derived in later sections.

The PEM duality transformation consists of three maps:

1. A partial Fourier transform (4.5) on local basis of Hilbert space,
2. a partial Fourier transform (4.6) on the local operators,

3. and a map from T to I'. For every triangulation T', we define the dual graph I in
which the direction of each dual edge is a 7/2 clockwise rotation of the corresponding
edge in I'. See figure 4 for an illustration,

such that

a. the matrices of the dual local operators A", B? in the dual basis define the QD(N)
Hamiltonian on the dual graph T,

b. and the dual operators A@" and B®#*) generate the TQD algebra Da/(G’ ).
We will show that the partial EM duality has the following features:

e In general, a TQD model is not self-dual under the PEM duality transformation:
not only the lattice structure is changed (the triangulation is mapped to a reciprocal
bilayer graph) but also the gauge group G is mapped to a dual group G’, while the
algebra of the local operators are mapped from DG to DY

e The charges and fluxes are exchanged with respect to the subgroup IV of the gauge
group G, via the duality transformation {A%} < {B*}.

e Every weakly Morita equivalence Vecg = Vec%l, can be realized as a PEM duality on
the TQD(G, @) model.

As alluded to earlier, we are able to derive the PEM dulaity based on the following
three conditions:

cl. There exists a normal Abelian subgroup N of G, such that the elements of G can
be written as pairs (a,x), and thus we can define the partial Fourier transform
over a € N,



(2) (b)

Figure 4. For the triangulation T in (a), we define the dual graph T in (b) in which the direction
of each dual edge is a m/2 clockwise rotation of the corresponding edge in T

c2. a|y = 1, such that the TQD(G, o) model contains a QD(N) model, which is mapped
to the QD(N) model on the dual graph T';

3. an extra condition (3.2) such that as in eq. (3.3), a((a1, z1), (a2, x2), (a3, x3)) can be
factorized into an N-K-mixed-factor F'(x1,22)(as) and a K-factor e(x1, zo, 23). Un-
der the partial Fourier transform, the K-factor is intact, while the N—K-mixed-part
is mapped to the N—K-mixed-factor pi(F(z2,x3)) as in eq. (3.4). Then the N-K-
mixed-factor renders the algebra of the dual local operators a TQD algebra DO‘/(G’ ).

The above conditions urge the TQD(G, a) model to be factorized into an N-part and a
K-part as well. Such factorization is manifest in a reformulation of the TQD(G, o) model
as a bilayer model.

Both layers have the same graph structure as I'. The upper layer accommodates a
QD(N) model because oy = 1; however, the model that inhabits on the lower layer may
not be a TQD model in general because its input data consists of the group K and the
3-cochain e. The original TQD(G, «) model is viewed as a coupling of the two models on
the two layers. Under the PEM duality, the upper layer model is mapped to the QD(N )
model on the dual graph T'. The lower layer remains unchanged, as defined on I'. We call
the dual model a reciprocal bilayer model.

We illustrate the bilayer structure and the PEM duality by the QD(Z;) model as a
quick example. Seen in figure 5, the QD(Z;) model is a bilayer model with the QD(Zs)
model on both layers. The QD(Z4) model has a trivial @ = 1, but the nontrivial semidirect
product structure in Z4 = Zo X Zg leads to a nontrivial coupling between the two layers.
Under the partial Fourier transform, the upper layer is mapped to the QD(Z2) on the dual
graph. The direct product structure in the dual group G’ = Zs X Zs has no contribution
to the coupling; however, the Fourier transform generates a nontrivial N-K-mixed factor
in o that leads to the nontrivial coupling.

~10 -
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(a) (b)

Figure 5. (a) The QD(Z4) model can be understood as a bilayer system. The both layers are
QD(Z3) models on I'. (b) The TQD(Zy x Z2) model can be understood as a bilayer system. On
the upper layer is a QD(Zy) model On T, while on the lower layer a QD(Z3) models on T'.

5 PEM duality in twisted quantum double models

In this section, we shall derive the PEM duality via a partial Fourier transform in TQD
models, which are exactly solvable Hamiltonian models of discrete topological gauge field
theories.

5.1 Quantum double model as discrete gauge field theories

We begin with a quick review of the Kitaev (QD) model [2].

The original QD model with a finite gauge group G is defined on a 2D directed graph
that is embedded in an oriented closed surface. The model can be extended to open surface
with boundaries, but we do not consider such cases in this paper [19, 20].

The Hilbert space of the model is spanned by the group elements of G on the edges of
the graph. Every local basis vector with ¢ € G on an edge e is invariant under simultaneous
reversion of the direction of e and the inversion of g as g. That is,

‘ | | >E‘ — > (5.1)

and hence the Hilbert space does not depend on the edge directions. For simplicity, here

we consider a square lattice, but the physics does not depend on the valence of the lattice.
The Hamiltonian consists of local gauge transformation and local holonomy measure-

ment operators. A local gauge transformation operator A9 at a vertex v is defined by

- . (5.2)

- 11 -
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Figure 6. (a) An example of (one part of) a triangulation of the surface. (b) Ordering labels are
assigned to vertices such that the arrows are directed from the greater number to the smaller one.

The local holonomy measurement operator B, is an projection operator defined as

By 1@ L ¢ ) = Opeal 1@ L e ), (5.3)

where dgpcq = 1 if abed = 1, the unit element of G, and d45,q = 0 otherwise. Here the
product abed of group elements around the plaquette p is called the holonomy around p.
Hence, B, projects onto the states with trivial holonomy around p. The Hamiltonian of
the model reads

H=-> A,—> B, (5.4)

where A, is a projection operator

1
Ay = — 3" A9, (5.5)
G| 2

geG

which projects onto the states that are gauge invariant at vertex v.

5.2 Twisted quantum double algebra in twisted quantum double model

The QD model with a finite group G can be extended to the TQD model [4] with the
input data (G, a), where a € H3(G,U(1)). The TQD model is defined on a particular
graph as a triangulation of an oriented closed surface (extension to open surfaces can be
found in [20]). The edges on the graph are directed, and the directions of the three edges
bounding every triangle can not be the same. Practically, we assign ordered numbers to
the vertices such that each edge is directed from the larger end to the smaller end of the
edge. See figure 6 for example.

Similar to that in the QD model, the Hilbert space of the TQD model is spanned by
the configurations of group elements on all edges. The Hamiltonian consists of two terms
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defined at the vertices v and on the triangles p, as defined by

H==% Qu-> B, (5-6)

1

Qv:@

geG
where B;, is the special case of B;}:l, where Bl’,‘ is a local holonomy measurement operator
defined by

g12 g12

h _
Bp g1 92 - 5h01’h g1 l’% ’ (5'8)

g 4
where hol = g1g12g3 is the holonomy of the triangle p, defined as follows. On each triangle,
we choose the vertex v labeled by the smallest number as the base point of the triangle. We
define the holonomy (e.g., hol = g1g12¢2 in the above equation) by the product of group
elements along the boundary edges of p in the counterclockwise direction starting from and
ending at v. We draw a loop inside the triangle to label the holonomy.

The operator Q9 acts on the local states at v. For a simple example,

g12 o
a(93§79791)a(9,917912)
Q7 w = (5.9)

913 923 04(93§> g, 92)

913 g9 923

For a detailed definition of QY, see ref. [4].

The algebra of local observables is the TQD algebra D*(G). To construct such an
algebra, we will first extend the operators QY to AJ as follows. The definition of AY
depends on the holonomy of each neighboring triangle. Every neighboring triangle that
has the base point at v contributes to a coefficient to the action of A9. For simplicity, we
assume only one neighboring triangle that has the base point at v. Such extension in the
situation with many such triangles will be straightforward. We define

912
A9 V _ (939.9:91)0(9. 91, 912) (gholg, 9. g) (5.10)
g3 923 (939, 9 92) a(g,hol, g2)
\%
See appendix D for a generic definition of AJ.
The operator Q) is related to A9 by
QY = AIB), (5.11)

where p refers to the triangle that has the base point at v in the above example. Through-
out the paper we assume that all 3-cocycles o € H3(G,U(1)) are normalized such that
a(g,h,1) = afg,1,h) = a(g,1,h) =1 for g,h € G.
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The operators A9 and B;,L generate the TQD algebra DG, with the multiplication rule
AJ B AP B = Oy ganags Bna (91, 92) AT B2, (5.12)
where

a(g1, g2, he)a (g192h2G241, 91, 92)
« (917 g2h2.g_27 92)

Bhy (91, 92) == : (5.13)

One immediate consequence is that AgBI’} = thg A9, which yields an alternative for-
mulation of the multiplication rule

BM AN B2 A9 = 5, o B (91, g2) B A9192 (5.14)

where

a(ht, g1, 92)a (91, 92, G291h19192)
a(g1,91h191, 92)

51/11 (91; 92) = 5§2§1h19192 (91792) = . (5'15)
This TQD algebra is the algebra of local operators that commute with Hamiltonian (5.6).

An alternative way is to choose the base point of every triangle by the vertex with
the greatest ordering number. The construction of operators B;‘ and AY, depends on the
choice, but the physics is independent of the choice, and hence we will stick to the current
choice throughout the paper.

5.3 PEM duality between QD models and TQD models

We first study the PEM duality in QD models with a finite group G. Let N C G be
a normal Abelian subgroup and K = N\G the corresponding quotient group. The G
can be written as a semidirect product group N xp K, which is specified by a 2-cocycle
F € H*(K,N),ie.,amap F: K x K — N, such that

Sx F(ky, ko, ks) = ¥ F(ko, k3)F(kiko, k3) " F (k1, koks) F'(ky, ko)™t = 1, (5.16)

where ¥1 F'(kg, k3) is a left action of k; on F(ko, k3) by conjugation (see appendix C for
details). The multiplication rule in G is given by

(al, k‘l)(az, k‘g) = (a1 (kl ag)F(k'l, k’g), k‘lk‘g), (5.17)

where a1,a0 € N and kq,ko € K.
For a local basis vector |a,k) on one edge in the Hilbert space, we define the partial
Fourier transform by

o) = S el ) (5.18)

where p € N and the bar means complex conjugation.

To define the dual operators, consider a vertex v and a neighboring plaquette p as
shown in figure 7. (The remaining part of the graph is neglected. In general, the number
of triangles neighboring to the vertex could be arbitrary.)
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Figure 7. A vertex v and a neighbouring triangle p.

The operator AJ acts as

g12 g12

W
AY = , (5.19)

913 923 913 923

and the operator B;} acts as
g12 912
h
BP = 591912§2,h ) (5.20)
91 P g1 g2

where g1g12g2 is the holonomy around the triangle p.

It is convenient to factorize the operators into two parts due to the semidirect product
structure. Let A% = A(®1K) A® = A(N.2) Bb doyek B®Y) and BY =3 "hen B®Y) Tt is
straightforward to show A7 A7 = A(a ) and BbBy BI(,b %) We define the dual operators

by the partial Fourier transform

|N‘ > pla) (5.21)

aeEN

Z n(b (5.22)

beN

The operators A* and BY remain the same, and we denote the corresponding dual opera-
tors by
Al = A%, BY=DBY. (5.23)

The matrix form of the dual operators in the basis |k, p) can be obtained as follows:

(5.24)
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Op1paps.p (5.25)

i PN

1N\ =
$1,$12)F(y,l’2) ) {5\ RQ ’ (526)
3/ \(gf\’\
(212, p12)
RY| 7 D )= _ | D
Byl = g = Ozrzim2y| 3 NG (5.27)
TAS TANS

The action of Ag is derived by the partial Fourier transform as follows.

(z12, p12)
Al = v
AN
1
|N|Zﬁ |N|3 > m al)p2(ﬂ2)P12(a12)|N‘ > pilar)ph(az)pia(ar2)
beN ai1a2a12 PLP5P 5
($127P/12) (528)
\N]Zn(m 'ay2) ($1,$12)5(y(f2)F(y7332)71> 2 @
NS

(z12,7" p12)

| = %
= n(F(x1, 12) F(y, 2) 7| =) R
’3_/ @f\;‘

The action of the other operators are derived in a similar way.

First, we observe that the matrices of flg and Bf in the dual basis of the Hilbert space
define a QD(N) model on the dual graph I', where we identify the dual vertex ¢ with
the original p, and the dual plaquette p with v. See figure 8. We thus rewrite the dual
operators flg and B? as A? and Bg , which form a QD Hamiltonian

. 1 ~ 1.
H=-) 7 STAT-S B (5.29)
v n

P

on the dual graph T.
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(a) (b) (c)

Figure 8. For the triangulation T in (a), we define the dual graph T in (b) in which the direction
Qf each dual edge is a m/2 clockwise rotation of the corresponding edge in I'. The double dual graph
I in (c), obtained as the dual graph of I, is the same as T’ but with all edge directions reversed.

Now we recombine the tilde operators by setting flq(fé”) = AZA? and Bl%p ) = B;)/Bg ,

and observe that

A(m,m)A(m,m)B(lK,lﬁ) —_ 1[1(331962,7]17]2)35(1}(71](,)’ (530)

where the pairs (x,7n) form a direct product group G' = K X N. As long as G has a

nontrivial semidirect product structure, i.e., F' is a nontrivial 2-cocycle, we have G # G’.
More generically, the dual operators form a new algebra, with the multiplication rule

being o o

22‘4%2 = 5h/1,g/1h/297151,z’1 (9179&)31’;114%1927 (5.31)

where o

o (W, g1, gb)e (91 gb, 9t ' 9195)

6;1’ (givgé) = - ’ (532)
' o (g, gihigh 0b)
where the 3-cocycle o/ € H3(G',U(1)) is given by
o' (21, p1), (22, p2), (23, p3)) = p1(F (22, 23)). (5.33)

Such an algebra is identified with the TQD algebra Da/(G’ ). See appendix B for the full
definition of Da/(G’ ). Hence, under the partial Fourier transform, the algebra of local
observables is mapped from D(G) to D' G'.

We summarize the main features of the derived PEM duality as follows. First, the
PEM duality always exists for any D(G) model, with the dual group G’ = K x N and the
3-cocycle o determined by the semidirect product structure F' in G. Second, under the
partial Fourier transform in eq. (5.18), we can construct the dual local operators An A®,
B?, and BY, such that A" and B? form the QD algebra on the dual graph.

We denote by T the PEM duality transformation defined by egs. (5.18), (5.21),
and (5.22). As a self-consistency check, we perform the PEM transformation twice T2,
which maps the graph I' to the double dual graph T, as the dual graph of [. T is the
same as I' but with all edge arrows reversed (see figure 8c). The transformation T2 on the
operators is given by

{A%, B0} on T T {42, BY} on T = {3, B} on T. (5.34)
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The last equality is due to the identification of @ on a directed edge e with a on a re-
versed edge.

5.4 Examples

We examine some examples of the PEM duality in the QD models.

5.4.1 EM duality in Zs QD model

In the QD model with G = Zs (known as the toric code model), the Hilbert space is spanned
by %—spins (to represent the group elements in Zy) on all edges, and the Hamiltonian terms

can be expressed in terms of the Pauli matrices

Ay= 1] o¢ B,= ][ o2 (5.35)

e into v e around p

T
€

where e denotes the edges. Indeed, compared to eq. (5.2), [] o2 is a Zo gauge trans-

e into v
formation where Zg = {1,0"}, and the delta function in eq. (5.3) becomes

1
e around p

In this case, where the normal subgroup of G is G itself, the PEM duality becomes a full
EM duality. This model is self-dual under the EM duality, where the vertices are mapped
to triangles on the dual graph and vice versa: v — p,p +— 0., and the local operators are

transformed as

Ay By, By — Aj. (5.36)

They can be written as in the same form as in eq. (5.35) where v is replaced by ¢ (and p
by p). Such an EM self-duality can be generalized to all QD models with Abelian G.

5.4.2 Example Ly — Lo X Lo

The simplest example of a nontrivial PEM duality is in the QD model with G = Z4. Let
G=74=1{0,1,2,3}, and N = Zy = {0, 2} is a normal subgroup of G. The quotient group
K = N\G consists of two elements [0] = N + 0 and [1] = N 4+ 1. The G is a semidirect
product N x K, whose product structure is given by F'(ki, k) = ki + ko — (k1 + k2)2 where
(k)2 = kmod 2. We find that G’ = Za x Zy = {(00), (01), (10), (11)}. By eq. (5.33), we
can derive a nontrivial 3-cocycle o/ € H3(Zy x Zo, U(1)):

o/ ((kv,ma), (Ko, ), (ks ng)) = exp %‘”ﬁi(lﬁ+k2—<k1+k2>2) . (5.37)

This duality is summarized in table 1.

~ 18 —



QD(G = Za) dual model
gauge group G=Zy=7ZoxZy G =77sx7Zs
algebra of observables D(Z4) DY (Zg x L)

Table 1. PEM duality in the QD model with G = Z,.

5.4.3 Example D,, — D,,

Let G = D,,, the m-th dihedral group. Denote the group elements by r%s* for k = 0,1
and a = 0,1,...,m, where s and r are the generators of reflections and 2 /3-rotations,
satisfying s> = 1 = ™ and rs = si. Let N = {1"0,7“1, ...,r™} be the normal subgroup
consisting of all rotations, and the quotient group is K = {N 9N sl}. Denote r*s* by
(a, k) and the semidirect product G = N x K has the product structure

(a1, k) (a2, ko) = (a1 (Man) ki) (5.38)

for k=0,1and a =0,1,...,m, where *a = (—1)*a mod m.

To compare with the generic formula, we set F(k1,k2) = 0 € N and ﬁ'(k‘l,kg) =1
hence we can choose €(k1, ko, k3) = 1 for all kq, ko, ks € K. The corresponding equivalence
is between QD(G = D3) and QD(G' = D3), where G = K x N is again Ds3. Since
F(aj,a2) =0 € N and F(kl,kg) =1, wehavea=1on G and o/ =1 on G.

Both G and G’ happen to be the same group D,,, in this case, but in general, they are
distinct.

5.4.4 Example Dy — Zo X Zgo X Zo

It is known [4] that the QD(Dy) and the TQD(Zg X Zg X Z3, /) model with a particular
type of o are equivalent and thus describe the same topological order. We derive the
PEM duality transformation as follows. Denote r®s* by (a, k). The semidirect product
G = N x K reads

(a1, k1)(az, k2) == (ar1a2F (k1, k2), k1ks) , (5.39)

where

F (N7 sVt Np®2g¥2) = pritaz—(zites)+2yiz2 (5.40)
Since o = 1, we can set ﬁ’(al,ag) = 1, such that e(ky, ko, k3) = 1 for all ky, ks, k3 € K.

The PEM duality maps the algebra of local observables from D(Dy = (Zg X Zgy) X Z3) to
D¥(Zg x Ly X Zy,d), where G' = K x N = Zy x Zs x Zs, and the 3-cocycle o is given by

o' (w1, p1), (22, p2), (23, p3)) = p1(F (2, 73)). (5.41)

According to the classification of the 3-cocycles on Z3 as listed in the appendix A,

/
o = arrragy.
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5.5 EM duality on the twisted quantum models

The previous subsections dealt with the PEM dualities in the QD models. In this subsec-
tion, we study the PEM duality in generic TQD models.

If there is an Abelian normal subgroup N of G such that ap is trivial, we can define
a partial Fourier transform

|z, p) Z pla)la, x) (5.42)
aGN

The main result of this paper is that this partial Fourier transform maps the original TQD
model to a dual model whose local operators form a TQD algebra D (G').

When the 3-cocycle a|y restricted to N is trivial, G can be written as a semidirect
product G = N xp K of the normal Abelian subgroup N and the quotient group K = N\G.
The semidirect product structure

(al, kl)(ag, kg) = (a1 (kl a2> F(kil, kg), k‘lkig) (543)
is characterized by a 2-cocycle F' : K x K — N satisfying
O F(ki, ko, ks) = le(k’Q,kg)F(kle,k3)71F(k)1,k2]€3)F(1€1, ko)l =1, (5.44)

where *a is the conjugation of a by k. See appendix B for detailed definition. The 3-cocycle
a is cohomologically to

a((al, /{1), (CLQ, k’g), (CL3, ]{33)) = F(/ﬂ, k‘g)(ag)e(lﬁ, k‘Q, /{3). (5.45)

We start with such a G and a. The local observables are characterized by the TQD algebra
D“G, with the multiplication rule given by

(A9 By ) (AP B,?) := Ony gohags Bna (91, 92) AT 2 By, (5.46)

where f,,(g1,92) is given in eq. (5.15). If we associate a 3-cocycle « to a tetrahedron, then
Bhy(91,92) is depicted in terms of tetrahedra as in figure 9a. See appendix D for detailed
explanation.

Define the partial Fourier transform of the operator (AgB;}) by

> pla)n(b) AL BHY), (5.47)
a,be N

1
(y,p) |7
where we rewrite g, h by the pairs: g = (a,z),h = (b,y).

We could derive the detailed matrix element of the new operators in a straightforward
way, as we did in the previous section. In the following, we will not dwell on the detailed
matrix form of the operators F(;’Z)) but follow a more convenient path by focusing on the
algebra of the operators.

Since the factor € in « is not involved in the partial Fourier transform, we will ignore

the parts involving e during the calculation and restore it only in the final results.

F(ﬂﬁl»@)( ) (x122y2%201, 1) (a2)
F(l‘l,@yﬂz) (az)

By (91, 92) = (5.48)
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Figure 9. (a) the multiplication coefficients S,(g1,¢g2) is depicted as three tetrahedra glued to-

gether. (b) The Fourier transformed factor F[f] EZ 119)6(17;(1:7)1 Y1) (par2) (12,0) GEPICE.

The algebra of the new operators I‘E Z)) can be obtained by the partial Fourier trans-

form as

(z1,m) (127772 (Pﬂ?) 7,9) _ (@)
F(yl,m (y2,p2) Z‘rf (p1,21)( 771@1)(%’2@2)(772,3/2)591’myﬂQF(y,P)’ (5.49)

where © = x1x9,y = y2, and the matrix elements of F[f] are given by the partial Fourier
transform

(p,)(n,y)
?[ﬁ](Pl:9«"1)(771,yl)(ﬂ2,x2)(n27y2)

1 -
=P > pilar)pa(az)m (b)ma(b2)p (a7 asF (21, 22)) n(bo)

aiazbibs

F(l‘la@)( ) (w122Y272T1, 1) (a2)
F($1,$2y2$2) (az)

5171 (12?‘/230,2)F(mzyg:Eiz,itg),a,;:2 bgF(l‘g,yz)

1 _— — - _
= NP > piar)pa(az)m (az(”bz) T2 a0 F (29, Y2 ) F (T2y272, T2) 1) n2(b2)

aiasbs
p(a1* agF (z1,22)) n(b2)

F(x1,2)(b2) F (2120y222771, 21) (a2)
F (21, 22y2T2) (a2)

= ‘;‘3 > pi(ar)pa(az)m (az)ni? (ba)n7>*2" (az) m (F(:vg,yz)F(xgyzaTQ, x2)—1)
ajazbs
12(b2) p(ar) p™ (az) p(F (w1, 22))1(b2)

(a
F(x1,29)(b2) F (21209272771, 1) (a2)
F($1,$2y25€2) (az)

ey

where in the first equality the delta function is an expansion of 5, g, g.1,, and in the second
equality (eb) = *(b) for all a,b € N. According to eq. (5.47), p1(a1)p2(az)n (by)na(b) is

(PR while p (aft agF (11, 72)) 1(b2)

the Fourier transform kernel that appears in T';”
(y1,01) " (y2,p2)°
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appears in I‘Ey’z)) The summation evaluates to

0p.p 0 - _ o ) N
PP1LE g1y B (w1 woy2aidn 1), 2Y2 72 po F (w1, 20y202) "0y 22 F (21,22)

m(F(x2,y2))p(F (21, 22)) (5.50)
m (F (zoy2®2,x2))

The new algebra of I’

—

;Z)) becomes another TQD DG, where ¢/ = K X » N, whose
multiplication rule is

(1,m) (22,m0) 1= (w122, 21 P (21, 25) ), (5.51)

and the 3-cocycle ' is given by (with e factor restored back)

o ((z1, p1), (2, p2), (23, p3)) = p1(F (w2, 23))e(21, T2, 23). (5.52)
Let
~( 2YZ) 7(nx) _ (77,93)
By A0 = pine) (5.53)

and relabel the group elements by ¢} = (x1,m), b} = (z1y121,p1), g1 = (x1,m), b =
(x2y2%2, p2), gh = (x2,12), then the algebra multiplication becomes

hl ~pn! h/ ~n! A
DAL =8y e B (9, 08) By AD, (5.54)

where —
o (W, g1, gb)el (1 gb, ghat h' g 65)
o/ (91, 91119t 5)

is extracted from the partial Fourier transform above, and ¢, h}, g5, hY, € G’ are the dual

B (91, 95) = (5.55)

group elements. The factor 3’ is depicted in figure 9.

Similar to eqs. (5.21) and (5.22), each dual operator has an N part. Since a|y =1 =
|, the operators A and Bg in the TQD(G, @) model have the same matrix forms as
those in the QD(G) model. Under the partial Fourier transform (5.42), A7 and B define
a QD(V) model on the dual graph, in the same way as described in subsection 5.3.

6 PEM duality transformation of anyons

The elementary excitations in the TQD(G, o) model are anyons (i.e., gauge charges, gauge
fluxes, and dyons) as the local topological quantum numbers. In this section, we study how
anyons are transformed under the PEM duality. The anyons of a particular type carries
an irreducible representation of D%(G). Anyons are transformed under the PEM duality
according the isomorphism D%(G) = DQI(G’ ) given by

Alaa) g ]N] Z pla B(wyaf ) Al@m) (6.1)
pmeN

Recall that the irreducible representations of D*(G) are labeled by pairs (A, u) [15]
described as follows. Denote by 4C the conjugacy classes of G, and for each 4C, we pick
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up a representative element 4h; € AC, and denote the centralizer of 4hy by Z4 = {g €
Glg”h1 = “hig}. Let (u,V,) be an irreducible projective representation of Z4 with the
cocycle Bay,, i.e.,

(g)p(h) = Bap, (g, h)u(gh), (6.2)

for all g,h € Z4. For every element in 4h; € AC, we introduce a unique representative
x; € G such that 2;(4hy)#; = “h;. We can conveniently set 27 = 1.

For every such pair (A, i), we define an irreducible representation (7‘(‘;?, V”A) of D*(G),
where the representation space is VMA = C[4C) ® V.., and the representation matrix is can
be obtained from

wH(AIBP) |25, v) = 6 4, W |y, p1(Fg:)0) (6.3)
where v € V), and x, is determined by g(*hi)g = Ahy, and § = @1.gx;. Here B, (g, x) refers
to Br(g,u(x)) where u(x) = (1, ), and By (z, g) refers to By (u(x), g). In the following, we
will present a more explicit formula of the representation (6.3) when G can be written as
a semidirect product.

Let G = N xp K as described in the previous sections. The charges are identified with
the irreducible representations (Aj, p), where A; is the trivial conjugacy class {1}, and
runs over all the irreducible representations of G. We have a more explicit formula of u for
G=N Xp K.

Fix £ € N. Let

Ke = {o € K|¢" = ). (6.4)
Let z; be the left coset representatives of K/K¢, i.e., unique representatives such that
£% # &% if x; # x;. Denote by r an irreducible projective representation of K¢ such that
r(k1)r(ka) = E(F (k1, ko))r(k1, ko) for ki, ko € K¢. Then we can construct an irreducible
representation £ ® r of N xp K¢ with ({ ® 7)(a, k) := £(a)r(k) for (a,k) € N xp K¢. It
induces an irreducible representation (RS, V,¢) of N xp K defined by
§ (F (@, 2:))
& (F(wp, Traws))
where v € V,, x), is determined by £%% = &% . One verifies that RS(a1,r1)RS(ag,z2) =
RE((ay,1)(az, x2)) by using the identity
E7(F (w1, 25)) €% (F (22, 1)) E(F (2122, 27))
§(F (zk, 21)) £%9 (F' (25, 72)) §% (F(w, 2122))

where z; and zj, is determined by (1'% = &% and %% = (%, 1 = Tpxir,, and

R (a,) |vi,v) = [k, €% () (Trwai)o) (6.5)

™ (F(an,22),  (6.6)

§(F(z1,72)) =

Ty = Tjz2x;. The representations R§ form a complete set of all (inequivalent) irreducible
representations of N xp K (e.g., see section 8.2 of ref. [21]). Hence, the charges can be
classified by the representations (A1, RS).

1

The representation Fgg induces an irreducible representation of DO‘/(G’ ) under the

Fourier transform (6.1), defined by

(B< A ‘N‘Zp A1 A(”)B( v)). (6.7)
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Since the Fourier transform is an isomorphism D®(G) 2 D (G") that preserves the product

structure, the representation ng must be an irreducible representation of DO‘/(G’ ), which

T

should be identified with a pair (fl, 1) for certain conjugacy class A of G’ and irreducible
projective representation fi of the centralizer Z; in G’.

To identify the pair (A, fi), we evaluate the matrix element of ng (Bw») A=) by

. (P (2 2)) oo a)r(Tprx;
W%}:P(a)n(b) <5y,1K5b,1NW€ (a)r(Tk z))
_ (6.8)
§* (F(x,24))

= 006 o Py, 7))

r(Tprz;),

where h = (y, p), g = (z,7n) and ¥ = Tyzz;. From the delta functions, we recognize that Ais
generated by (1, &). Let 4hy = (1x,£). One immediately sees that 4C' = {(1g, £%)} and
that the centralizer is Z ; = K¢ X FN , where K¢ is the subgroup defined in eq. (6.4), and xp,
is the corresponding coset representatives of K /K. ThereforetK [ K¢ = AC~, and we choose
() = (zk, 1) as the representative to label the element “hy, = @(zy) hia(zy) = £
i AC
in °C.

With the identification above, together with that Al Bly.p) — B(”yi’pi)fl(w’”), the

representation ﬂéé can be written in the standard form as in eq. (6.3), i.e.,

T (A BOD) a(2), 0) = 0y,1,0 5

(z))v), (69)

0
=
8

£
:_/
=
—~
=
8
£
N~—
JH
=
=g

where v € V; = V;., § = u(xy)gu(z;), and fi is an irreducible projective representation of
Zi=Kexp N with the 2-cocycle ﬁAhl, defined by

fi(z,n) = r(z). (6.10)

Note that in the derivation we used B4, (g, ;) = &% (F(x,x;)), which is a result of egs. (3.4)
and (5.15).

Loosely speaking, a charge (A1, RS) can be factorized into a trivial flux A;, a N-charge
&, and a K¢-charge r. Then, the PEM duality maps the charge to a dyon with a N-flux
with Ahy = (1x,€), a trivial N-charge, and the K¢-charge r.

We have explicitly shown how the charges are transformed under the PEM duality.
The derivation can be extended to all types of anyons.

7 Dual model: reciprocal bilayer model

The PEM duality in a TQD model naturally casts the model and its dual model in a bilayer
fomulation, which conversely makes the PEM duality more comprehensible.
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7.1 Duality transformation on observables
The PEM duality transformation on the algebra of the TQD algebra D*(G) reads
1 -
] Z ola a,7) pbw) — Blayt.p) f@n) (7.1)
a,beN
with its inverse transformation being

()
4 = X ole
pneN

) Blywp) Az, (7.2)
The individual operators are transformed as

(7.3)

ax) _ (Z p Z B(y’p)) A(xl

pEN yeK

where 1 in the pair (x, 1) on the r.h.s. is the identity element of N (identity representation
of N), and

by) _ (Z B(y,p)) i Z n(b)y AL, (7.4)

pGN nGN

where 1 in the (1,7) the r.h.s. is the identity element of K.

7.2 Reciprocal bilayer model

In this subsection, we will examine the algebra structure of the operators A(®*) B®:Y) and
A@m B, and show that the TQD(G, a) model or the dual model can be understood
as a bilayer system. The dual model, understood as a bilayer model, consists of an upper
layer that is a QD(N ) model with Hilbert subspace spanned by the configurations of N
elements on the edges of the dual graph, and a lower layer on which the Hilbert subspace
is spanned by the K elements on the edges of the dual graph. We will call such a bilayer
model a reciprocal bilayer model.

We start by examining the operators A&“’w), BI(Db’y) in the TQD(G, o) model and the
operators Agxm)’ Béy’p ) in the dual model TQD(G',a/). To reduce confusion, we will
suppress the subscript v, p in the sequel. These operators are parameterized by pairs of
group elements, so we can factorize each such operator into an N (or N ) part and a K
part. Define

A% = AleD) A* = AL2), BY = Z B, BY — Z Bbw), (7.5)

yeK beN
and define
Am = A(Lm) Ar = A4 Br — Bw») BY — Z Bwe) (7.6)
yeK pEN
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According to the formulas (5.45) and (5.52), we have

Al — fgoA", BbY) — BBY, (7.7)
Al@n) — gz An BW»r) — BYRP. (7.8)

Note that A® = A% and BY = BY.

The factorized operators in egs. (7.5) and (7.6) may be used to build a bilayer system.
The upper layer accommodates a QD model, whose local operators A%, B® form a QD
algebra D(N). More specifically, for every fixed configuration {k} of K elements on the
edges of the lower level, the concrete matrix forms of A%, B® depend on the configuration
{k}. This dependence reveals how the upper layer is coupled to the lower layer.

On the other hand, the lower layer model is neither a QD nor a TQD model defined
by K. The Hilbert subspace in the lower layer is spanned by the configurations of the K
elements. The local operators, A* = A% and BY = BY, in general do not form a quantum
double algebra or twisted quantum double. The set {A¥, B*} _, is even not closed under
the multiplication: A*AY yields an AF(#Y) A% term with F(z,y) € N. Nevertheless, we
can rearrange the labels (a,z) in the operators to make the set closed. In the following,
we shall introduce the rearranged operators A (®*)B(®%) which form a subalgebra on each
layer.

First, we introduce a new degree of freedom z, € K on every vertex v. The group
elements x, depends on the configuration of k’s on the edges of the triangulation, such
that x, can be viewed as a function z,({k}). Suppose {k} is a configuration, and z, is the
corresponding group element at a vertex v. If another configuration {k'} is related to {k}
by a gauge transformation at v, then the corresponding element z,({k'}) is given by

R ATA
W)

In short, z, transforms in the regular representation of K under the above mapping.

This implies that x,({k}) is a nonlocal function. The above constraint on z, does not
uniquely determine the function x,. In the following, we choose an arbitrary solution of
T, to the constraint.

It is convenient to introduce the projection operator P° as

PrORE}) = 00, (k)00 {E})- (7.10)
The above constraint on the function x, is expressed as
Pzgxxo)Az(}a@) _ 141()(1,90)P)15960)7 Pzgxo)BZ(?a,x) _ Aga,x)B](?xo)' (711)

We define the rearranged operators as

PoA@DBOY) = (g, 20)(b) P AP pFObY) (7.12)
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and

Bvme) A @) pro — 5 (F (5, ) B@6#™) A@:An) pro, (7.13)

where

Ag =0 <F(;;$)) (7.14)

Zo
3 n

A= | ==—— 7.15
! (F (, l’o)> (719

are defined by (1n,70)(Ae,z) = (a, 7o) and (z, \,)(v0, 1) = (z20,7).
The map a — A, is an automorphism on N, with an inverse map a — Kz (4,2) =
$0aF(x0, x). The X has the property that (1, :z:o)()\a,x)()\b, y) = (1,20)(Aap, zy). Similarly,
Ay is an automorphism on N satisfying (x, A n) (Y )\p)(:po,lN) = (zy, S\W)(xo,lN). See

and

appendix E for the detailed discussion about the rearranged operators.
Define

A*BY = A(L?) Z B®Y), (7.16)

BIWEAT — Z B(xyx,p (1), (7.17)

which are clearly identical operators: A*BY = B*% A”. These operators form a subalgebra:
AT BV AT BY P = 6y, wyynin Py (71, 72) By, (21, 22) AT T2 BY2 PO, (7.18)

where

Dy, (w1, 12) By, (71, 72)

€ (x20, ToT2, T2YoT2) € (T2X0, ToY2Lo, To) € (T12220, 0, Y2)
€ (x2x0, To, y2) € (T2x0, ToY2Zo, Tox2) € (X122X0, ToT2, L2Y2T2) (7.19)

€ (x12220, ToY2T0, ToT2) € (T2Y2T2, T2X0, ToT2) € (T1T2Y2T2TT, T1X2T0, T0)
€ (xlxgxo, ToY220, Tg) € (l’ggg@, ToXg, .’L‘i()) € (:L'lxgygwgl'l, T1T2X0, x():L'Q)

See appendix E for the derivation.
Let A® = Y, A@VBOY = 42 Bb = 37, AGUB® and A® = ¥, AL2IBOY),
BY =Y, ALVB® ). We have

ATBMA2BY = g AT2Bb2, (7.20)

Some immediate consequences are A* = A%, BY = BY, B*W?A”* = A*BY.

Having derived the two subalgebras above, one consisting of A% B? over N, and the
othe consisting of A*, BY over K, we can rewrite the TQD Hamiltonian in terms of these
operators.

Since (3, AY)(X, A?) = 3, A@®?) and BWWB!x = BID | we can rewrite the TQD
Hamiltonian as

Hbilayer — HN + HK7 (721)
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where

1 a
HN:—ZW ZAU—%:B;N (7.22)

v aEN
and 1
ok = IR Y AT Y B - B¥. (7.23)
zeK p around v p

The HY and HX describes two subsystems respectively. The first term H" defines
a QD model with N on the triangulation I', with the Hilbert subspace spanned by the
configurations of N elements on the edges of I'. In this model, the local operators A%, B
form the QD algebra D(IN). We call this subsystem the upper layer (or first layer). The
term HX defines a model with the Hilbert subspace spanned by the configurations of the
K elements on the edges on a duplicate of I'. In this model, the local operators A® BY
form the algebra given in eq. (7.18). We call this subsystem the lower layer (or second
layer).

The HP8er has the identical spectrum of eigenstates as that of the original Hamilto-
nian (5.7). We also observe that all the four terms in egs. (7.22) and (7.23) are commuting
projection operators and that >, AA*B¥Blx =3~ Aler) BUN:1K)

Under the partial EM duality, {A%} are mapped to {B{f }, while {B}’;} to {flg}. In

terms of the rearranged operators, {A¢} are mapped to {Bg} and {Bg} to {Ag}. We

introduce the dual trivalent graph T, and relabel the vertex v and plaquette p by the dual
plaquette p = v and the dual vertex o = p. The Hamiltonian of the dual model can be

written as R
H=0% + A", (7.24)
where 1
A = -3 % A7 - Y Bl (7.25)
and

o 1 _ -1
HN:—ZWZAQ—ZBI;N. (7.26)
v neH p
The HY defined on the original triangulation I' is the same as the first part of eq. (7.21)
because A? = A% and By = Bg. The operators are labeled by elements of K. The
Y defined on the dual graph T' (in dashed lines in figure 10), with operators labeled by
elements of N, forms a QD model defined by the finite group N. Similar to that in the
original TQD model, the restricted Hilbert space for every fixed configuration {ki, ko, ...}
of elements of K on the triangulation give rise to an individual Hilbert space of this QD
model.

The partial EM duality maps the upper layer (a QD(N) model) of the original model
to a the upper layer (QD(N) model) of the dual model, while preserves the lower layer
(K—e model). The graphs on the upper and the lower layer are graph-dual to each other,
we thus call the dual model the reciprocal bilayer model. The coupling of the two layers is
characterized by the semidirect product structure F' and the 3-cocycle o on G (F and o
on G’ on the dual model respectively). See figure 11. Since « is further determined by a
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(a) Triangulation T'. (b) Dual graph T

Figure 10. (a) The operators A, B}{ defined on the original triangulation I". (b) The operators
A?, Bg defined on the dual graph T.

A
Lad 14577
AT

QD model(H) QD model(H)
= I Paviraviy
K — e model K — € model
(a) (b)

Figure 11. (a) The TQD(G, @) model can be understood as a bilayer system. The upper layer is
a QD(N) model and the lower layer is a K—e model. Both layers are on the same graph. (b) Under
the EM duality, the upper layer is mapped to a QD(N ) model and K—e model on the lower layer
remains unchanged. The graphs on the upper and the lower layer is dual to each other.

and o' by F, we see that in both models, the coupling between two layers are characterized
by F and F.

As a special case, if we begin with a QD(G) model, the lower layer model is a QD (K)
model since ¢ = 1. The QD(G) is a QD(N)-QD(K) bilayer system, with the coupling
purely characterized by the semidirect product structure F. Under the PEM duality, the
QD(G) model is mapped to a TQD(G, o) model, where G/ = K x N is a direct product
and o’ is determined by the semidirect product structure F'. The coupling is characterized
by o (and finally by F' which determines the form of o).

7.3 Invariant ground states under the PEM duality

Under the EM duality, the ground states of the original model are mapped to the ground
states in the dual model. The ground states of the original TQD model are the simul-
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taneous +1 eigenvectors of ‘—61;' > A9B', while those of the dual model are the common

+1 eigenvectors of ﬁ > A9 B! = 1 in the dual model. Under the PEM duality, the
constraint operator is transformed as

1 1 =1 5g
@ZAQB ol > B'AY. (7.27)
g g’

Hence the EM duality preserves the ground states.

8 Isomorphism between two twisted quantum double algebras

We have derived the PEM duality via the partial Fourier transform. The mathematics
behind the derivation is that the Fourier transform over N induces an isomorphism of the
two TQD algebras dual to each other.

Given (G,a) and (G',a'), where G = N xp K with N an Abelian normal sub-
group of G, a((a1, k1), (as, k2), (a3, k3)) := F(k1,k2)(as)e(k1, ko, k3), G' = K x; N with
o/((ar:l,pl): (w2, p2), (13, p3)) = p1(F (22, 13))e(x1, 72, 23), and € € C3(K,U(1)) satisfying
drx(e) = F' A F, we have constructed an isomorphism via the partial Fourier transform
over N: )

F: DG — DG’
Aler) B p(a)n(b) BEvEr) A@m) (8.1)
!N | MZE:N
As an immediate consequence, the individual operators A9 = 3", AIB" and B" = A'B"
are mapped as

) (Z p(a) Z B(yw)) A1) (8.2)

pEN yeK
and

¥) (Z B(y»p)> > n(b) b) AL, (8.3)

pEN 77€N
The isomorphism preserves the quasi-Hopf algebra structure. In section 5.5, we have
concretely derived the partial Fourier transform of the product coefficient. The result can
be summarized as a proof that F preserves the product structure:

F(A9 BM)F(A92 Bh?) = F(A9 B A92 Bh2). (8.4)
The preservation of the coproduct structure is just dual to that of the product structure.

The proof can be done in a similar way, which is beyond this work.
The map of the key structures under the isomorphism is summarized in table 2
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TQD model Dual model
G=NxpK G'=KwxyN
semidirect product structure F dual 3-cocycle o/
3-cocycle a semidirect product structure F

Table 2. The mapping of the key structures under the isomorphism.

A 3-cocycles for Z2

The group elements are denoted by triples a = (a1, ag, a3) with a1, az,a3 =0,1,...,m— 1.
The cohomology group H? (Z3,,U(1)) = Z!, has seven generators,

i 27i
oé)(a, b, c) = exp {m2ai(bi +c¢i — (bj + cj>)}
i 2mi
agf)(a,b,c) :exp{m2ai(bj+cj — (bj—l—cj>)} (A.1)

o
arrr(a,b,c) = exp {T:aleC:g}

where 1 < ¢ <3 and 1 <17 < j < 3 are assumed respectively in the first two lines, and

() = x mod m.

B Twisted quantum double D*G

In what follows we briefly review the definition of the twisted Drinfeld’s twisted double of a
finite group [15] as a quasi-triangular quasi-Hopf algebra. Let D*G be a finite-dimensional
vector space with a basis {A9B%}, )eaxq- Define a product on D*G' by

(AYB*)(A"BY) := 6, .18y (g, h) A" BY. (B.1)
This product admits a unit
1= A'B". (B.2)
zeG

Define a coproduct A : DG — D*G ® D*G and counit € : D*G — C by

AAIBT) = Y pyla,b)(AB") ® (AIBP) (B.3)
a,beG:ab=x
and
e(AIB®) == 0,. (B.4)

Besides, set the Drinfeld associator by
®:= Y alz,y2) (A'B")® (A'BY) ® (A'B?) (B.5)
z,y,2€G

and the R matrix by
R:= Y (A'B")® (A"BY). (B.6)

z,yeG
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Finally, define the antipode by a linear map S : DG — D*G

S(A9B®) = ! A9 BIT9, (B.7)

Bz (9, 9) pg (2, T)

where (3;(g,h) and pg(x,y) are expressed in terms of a by

a(g, h,z)a (ghxﬁg,g, h)

+(g, h) == — B.8

S Q (g,hxh, h) (B-8)
and (907 av. ) o )
. «(grg,9Yyg9,9)\g, T,y

Hol,y) = a(gzg,9,y) (B:9)

for all g,h,z,y € G. As a special case, if G is Abelian and «(z,g,h) = a(x,h,g), then
Be(g,h) = a(x, g, h) and pg(z,y) = alg, . y).

C Semidirect structure in gauge group G and its dual group G’

Let N be a normal Abelian subgroup of a GG, and denote by K = N\G the quotient group.
Let p : G — K be the usual surjection: p(g) := Ng, Vg € G, with p(1g) = 1x. For each
x € K, choose a representative u(z) in G (such that pu(z) = x), with u(1x) = 1g. The
quotient group K is a right G-set with x <g := p(u(z)g), for x € K and g € G. Moreover,
the set u(K) = {u(x)|z € K} is a right G-set: u(z)<g =u(x<g), for x € K and g € G.
The elements u(x)g and u(x < g) differ by an element k, 4 € N, for x € K and g € G:

w(x)g = kg gu(x < g). (C.1)

The relation

Kz,g192 = Kx,g1Rzg1,92 (C.2)

holds for any « € K and g1,¢2 € G.
Since N is an Abelian normal subgroup G, there is an induced K-left action on N by
conjugation:
Fa .= u(k)au(k) for ke K and a€ N. (C.3)

The extension 1 - N — G — K — 1 can be classified by (the cohomology classes of)
2-cocycles F' € H?(K, N). Explicitly, F : K x K — N is a map such that

SicF(ky, ko, k3) = M F(ko, k3)F(k1ka, k3) " F(k1, koks) F(ky, ko)™t = 1. (C4)
With an appropriate choice of F, we can assume
G:=N xp K, (C.5)
where the product structure of G is given by the formula

(al, kl)(ag,kg) = (a1 (k1a2> F(kl,kg),klkz) . (Cﬁ)
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With this explicit choice of G, we choose the function u : K — G to be u(k) := (1n,k)
and therefore we have

K/kllv(avk2) = klaF(kl) k2)7 (C?)
leading to F'(k1,k2) = Kp, (1,ky)- For z € K and g = (a, k) € G, the action of G on K is
x<g=uxd(a,k) =k (C.8)

Denote the dual group of N by N := Hom(N,U(1)), consisting of the unitary irreducible
representations of N. It has an induced K action on N defined as

p(a) = (*a) (C.9)
forpENandk:EK.
Define a 2-cocycle F' € H?(K, N) by a function K2 — N satisfying
E(ka, k3) F(ky, koks)

S F(ky, ko, ks) = — X =1, C.10
kF(k1, ko, k3) Flhika, ka)E(hy. ko) ( )

where
F(ky, ko)*(a) = F(k1, ko) (Fa). (C.11)
Every 2-cocycle F' defines a semidirect product group G/ = K x P N , whose product
structure is given by

(k1, p1)(k2, p2) = (k1k2,p’f2pzp(k‘1, 762)) : (C.12)
In our convention, the group elements of G and G’ are denoted by pairs in the way that
((I, 1K)(1N7k) = (a,k)Aand (k7 IN)(lK,P) = (klp) ~
Suppose F' and F' are chosen such that F' A F defined by (F' A F)(ki1, ka, k3, k) 1=
F(ky, ko) (F(ks, ky4)) is cohomologically trivial in H*(K,U(1)). Then there exists a 3-
cochain e € C3(K,U(1)) such that dxe = F A F, ie.,
€(ka, k3, ka)e(kq, kaks, ka)e(ki, ka2, k3)
Oxe(ki, ko, ks, kyq) =
el K s ) e(Fha, ks, ka)e(kr, ko, kika)

Then we have two explicit (representatives of) 3-cocycles defines by

a((al, k‘l), (CLQ, ]432), (ag, k‘g)) = F(kl, ]432)(0,3)6(]{51, k‘g, k?g) (014)

= F(ky1, ko) (F(ks, ks)). (C.13)

and

o ((z1, p1), (22, p2), (23, p3)) = p1(F (w2, x3))e(21, 2, 23). (C.15)
The 3-cocycle conditions dga = 1 and dgra’ = 1 can be verified by the 2-cocycle conditions
of F and F , together with the condition (C.13). For example, we can check that

dao((ay, x1), (az, x2), (a3, x3), (a4, 24))

A

AF(xQ,xy,)(aél) @1, 2ox3)(as) F (21, 22) (a3)

7 (
F(x129, 23)(as) F (21, 22) (a3 (% ay) F (23, 4))

~ (5[(6(1’1,.7)2,%’3,1’4)
= 5KF(1'1, T, 1‘3)(&4) =
F(z1,20)(F (23, 74))

dre(x1, 2,3, 24)
(C.16)

=1.

Note also that |y =1 and o/| g = 1.

— 33 —



991912

913

(a) (b)

Figure 12. (a) We separate the triangles. Each solid dot denotes the vertex v. (b) Assigning
3-cocycles to the 5 tetrahedra.

D The TQD algebra in TQD model

Here We explain the definition of AY in eq. (5.10). We separate the three triangles near
the vertex v as in figure 12a. We also assign a triangle to the holonomy loop labeled by
hol = g1g12g2. Each of the four triangles has the trivial holonomy. We denote by a solid
black dot the vertex v of each triangle. For each solid black dot, we assign an « as follows.
We create a new vertex v’ near each v above the surface of the triangles (pointing out of
the paper), and denote it by a small circle. Each edge from the solid black dot to the
samll circle is labeled by g. Using the small circles, we extend the four triangles to five
tetrahedra, from which the five a’s in the action of AJ are derived. To see the detailed rule
how to assign a 3-cocycle to a tetrahedron, see ref. [4].

Now fix the hol. Using the tetrahedron presentation of 3-cocycles, we can prove that
the matrix entries of A9 A9? differ from those of A9'92 by She1(g1, g2), which is the product
of three a’s presented by the three tetrahedra in figure 9.

Let hol = ho € G, we derive the multiplication

Agl BII}1 Agz Bli?lz = 5h1,92h2§2 th (gla gQ)Agng Bgz . (D.l)

By writing down the three o’s presented by the three tetrahedra in figure 9a explicitly, the

[ reads
a(g1, 92, ha)a (9192029291, 91, 92)
a (g1, 92h282, 92)

By (91, 92) = : (D.2)

E Rearranged operators in the bilayer model

Since the partial Fourier transform only applies to the Hilbert subspace spanned by the
configuration of the N elements, the Hilbert subspace spanned by the K elements are
unaffected. On the other hand, the K-parts of the operators {A®, B*} _, are not closed
under the multiplication: A®AY yields an AF@Y A% term with F(x,y) € N. In the
following, we will introduce the rearranged operators such that the K-parts of operators
form a subalgebra.
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Let

progavz.p) f(zn) _ ola pfﬂoA(a z) g(by)
| o @
Zp (b) P70 APa:®) B0:y)
|N NI % (E.1)
= p(F(zo,x |N| Z p (a)n(b) P Ale®) Bb:y)
= p(F(zo, z)) P BEv®r" ) Alwm)
where p®(a) = p(*°a).
We define the rearranged operators by
B@yz.p) & (zn) pro — Fleyz,p) j(z ) pro (E.2)
and
Ale2)Bby) pro — |N| Z n(b)p(a)B@v@0) A @n) pro, (E.3)
The relations between the rearranged Operators and the original are:
A@IBOY) pro — (2 10)(b) APw®) BFOb) po (E.4)
and ) )
PrBEYE) @) = 5(F(zy, 2)) P BEv#r™) A(#:An), (E.5)

The algebra mapping {A@®), BG»)} — {Ale2) B} is an isomorphism, which however
does not preserve the algebra relations. These new operators depend on the configurations
of {k} nonlocally because z,({k}) is a nonlocal function.

For the tilde operators, the algebra is

prog W) A (@1,m)Byz2.02) X (T2.12)

— prog L) f(@1dn) Bu2.02) f(22.50,)

F(xg, z129 I TP WY E.6
= 5h1:91h2g_1/3h1(91792) ( (l'() ( 1)() ( (1‘())361 x2)) P OB(yl»Pl) 4( 1,201 )(T2,An5) ( )
('f l‘11}2)) 0T A (z12
= 6h1,glh2j15h1(91392) o (F o (351)) S (F oy xz))P o w1.p1) A (1 27771772)’

where g1 = (21, 5‘711)’92 = (o, 5\n2),h1 = (yl,p’f_o) yho = (yz,pgo’“) and

a (91,92, 9291h1 (9192)) a (h1, 91, 92)

Pra(01,02) = a(g1,91h191,92) 1)
_ Ay (P (w2, Tty (2122))) o7 (F (21, 22)) o < (a1, 22). '
Ay (F (219171, 72)) ,
We expand the delta function by
(E.8)

5h1791h2§1 = 5y1,ﬂc1y2f15 . < e
p2,p1 lnra) g
’ F(zl,yz)ﬂ,ﬁ
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and substitute p2° by
A~ Y 1
o = @(y”) . (E.9)
(z1,y2) A\ni

Using
p1(F (20, x122)) 1" (F' (21, 2))
p1(F (20, 1)) p1(F(zoz1, 22))
We can cancel all the factors involving p; except the delta functions in the coefficient. We

=1, (E.10)

p1(0x F(zo, x1,22)) =

obtain the algbera
Alanz) g b1y1) A (a2,22) g (b2,y2) pro

= 5y1,x2y252 5(Z2T0b2))\a2F(xg,yQ),(%IObl)(yl Aag ) F (11 ,mg)ﬁéz (xla 552) (E 11)

d (T’lylfl’ xl) ()\‘ZQ) F(l‘la 5L‘2l'0)350352 <F(y17 x2)(yl )‘a2)> A(a1a2,x1x2)B(b2vy2)P1’0‘
F(z1,y1)(Aaz) F(22,Y2)Aay

Similarly, we can compute the algebra of the dual operators:
B@vizie) A (@1,m) B(@2y222,02) A (x2.12) pro

€
= 51/171‘2312525 . _ < 120 /By2 (5317 .’Eg)
(F(1191I1’I1))\n1 )
pP2,P1\ —=—— =751

: U
F($17y1)>\7&

)‘771 (F(x% yQ)) (F F(xl’yl))\%} ) [zzmo (F(:f:ox_z,xz))] f’,(my1f1,Pl)A(x1:Jc2J]1n2)Pxo’

5‘771(F(?/1, 72)) (z191271, fCl)S\m
(E.12)
where

x2x0a2
Aay = , E.13
a2 z2xOF(:LTOIT2’ x2) ( )

- Tox2
Ap = — T — (E.14)

F(acl, acho)xof”?
Define

ATBY — A@D ZB(yJ? (E.15)
]:j)acyiAa: Z B(azym,p (z 1) (Elﬁ)

We immediately observe that they are identical: BY = B#¥ A%, These operators form a

subalgebra:
AT BV ATBY P = 6y goyem Pyy (21, 22) By, (21, 22) AT 2 BY2 PTO, (E.17)
where
F (a1, w310) (F (7673, 22)) F(21, w2w0) ( O7F (229573, v2) )
Dy, (71, 72) =

F(x1, 29w0) ( P72 F (29, y2)) F (21, m2w0) ( T0¥220 F (Tg73, 22) ) (.18)

F (21, 22y073) ( *2%0F (ToT3, ©2))

F (212907377, 71) ( #220F (To72, v2))
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By expanding the coefficient in term of €, we have

Dy, (21, 72) By, (71, 72)

€ (zox0, ToT2, L2Y2T2) € (X220, ToY2o, T0) € (£1Z2%0, To, Y2)
€ (x220, To, Y2) € (X220, ToY2To, Toxz) € (X1X2X0, ToT2, T2Y2T2) (E.19)

€ (12270, ToY2x0, Tox2) € (T2y2T2, T2Xo, Tx2) € (X1X2Y2T2T1, L1220, T0)
€ (x12220, ToY2o, To) € (T2y2T2, T2X0, T0) € (L122Y2T2T1, T122%0, ToL2)

Let A® = A@D and A® = A2) B = 3° B®%) and BY = 37, BY). We have

ATBMA2BYR = §,  A12BY2 (E.20)

which form the quantum double D(N), and

ATIBY AT BY = &y, (21, 22) 55, (21, 2)0y, rprs AT 2 B2, (E.21)
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

1]

2]

[9]

[10]

H.A. Kramers and G.H. Wannier, Statistics of the two-dimensional ferromagnet. Part 1,
Phys. Rev. 60 (1941) 252 [INSPIRE].

A. Kitaev, Fault tolerant quantum computation by anyons, Annals Phys. 303 (2003) 2
[quant-ph/9707021] [INSPIRE].

R. Dijkgraaf and E. Witten, Topological Gauge Theories and Group Cohomology, Commun.
Math. Phys. 129 (1990) 393 [INSPIRE].

Y. Hu, Y. Wan and Y.-S. Wu, Twisted quantum double model of topological phases in two
dimensions, Phys. Rev. B 87 (2013) 125114 [arXiv:1211.3695] [INSPIRE].

A. Mesaros and Y. Ran, Classification of symmetry enriched topological phases with exactly
solvable models, Phys. Rev. B 87 (2013) 155115 [arXiv:1212.0835] INSPIRE].

M.A. Levin and X.-G. Wen, String net condensation: A Physical mechanism for topological
phases, Phys. Rev. B 71 (2005) 045110 [cond-mat/0404617] [INSPIRE].

O. Buerschaper and M. Aguado, Mapping Kitaev’s quantum double lattice models to Levin
and Wen’s string-net models, Phys. Rev. B 80 (2009) 155136.

O. Buerschaper, M. Christandl, L. Kong and M. Aguado, Electric-magnetic duality of lattice
systems with topological order, Nucl. Phys. B 876 (2013) 619 [arXiv:1006.5823] [INSPIRE].

Y. Hu, N. Geer and Y.-S. Wu, Full dyon excitation spectrum in extended Levin- Wen models,
Phys. Rev. B 97 (2018) 195154 [arXiv:1502.03433] INSPIRE].

H. Wang, Y. Li, Y. Hu and Y. Wan, FElectric-magnetic duality in the quantum double models
of topological orders with gapped boundaries, JHEP 02 (2020) 030 [arXiv:1910.13441]
[INSPIRE].

- 37 —


https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRev.60.252
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2C60%2C252%22
https://doi.org/10.1016/S0003-4916(02)00018-0
https://arxiv.org/abs/quant-ph/9707021
https://inspirehep.net/search?p=find+J%20%22Ann.%20Phys.%2C303%2C2%22
https://doi.org/10.1007/BF02096988
https://doi.org/10.1007/BF02096988
https://inspirehep.net/search?p=find+J%20%22Commun.Math.Phys.%2C129%2C393%22
https://doi.org/10.1103/PhysRevB.87.125114
https://arxiv.org/abs/1211.3695
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CB87%2C125114%22
https://doi.org/10.1103/PhysRevB.87.155115
https://arxiv.org/abs/1212.0835
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CB87%2C155115%22
https://doi.org/10.1103/PhysRevB.71.045110
https://arxiv.org/abs/cond-mat/0404617
https://inspirehep.net/search?p=find+EPRINT%2Bcond-mat%2F0404617
https://doi.org/10.1103/PhysRevB.80.155136
https://doi.org/10.1016/j.nuclphysb.2013.08.014
https://arxiv.org/abs/1006.5823
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB876%2C619%22
https://doi.org/10.1103/PhysRevB.97.195154
https://arxiv.org/abs/1502.03433
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CB97%2C195154%22
https://doi.org/10.1007/JHEP02(2020)030
https://arxiv.org/abs/1910.13441
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.13441

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

M.D.F. de Wild Propitius, Topological interactions in broken gauge theories, Ph.D. Thesis,
University of Amsterdam, Amsterdam The Netherlands (1995) [hep-th/9511195v1]
[INSPIRE].

A.A. Davydov, Finite groups with the same character tables, Drinfel’d algebras and Galois
algebras, in Algebra, Y. Bahturin ed., De Gruyter, Berlin Germany (2000), pp. 99-111.

D. Naidu, Categorical Morita Equivalence for Group-Theoretical Categories, Comm. Algebra
35 (2007) 3544.

B. Uribe, On the classification of pointed fusion categories up to weak Morita equivalence,
Pacific J. Math. 290 (2017) 437.

R. Dijkgraaf, V. Pasquier and P. Roche, Quasi hope algebras, group cohomology and orbifold
models, Nucl. Phys. B Proc. Suppl. 18 (1991) 60.

C. Itzykson and J.-M. Drouffe, Statistical Field Theory, in Cambridge Monographs on
Mathematical Physics, Cambridge University Press, Cambridge U.K. (1989).

M. Miger, From subfactors to categories and topology I: Frobenius algebras in and Morita
equivalence of tensor categories, J. Pure Appl. Algebra 180 (2003) 81.

V. Ostrik, Module categories over the Drinfeld double of a finite group, Int. Math. Res. Not.
2003 (2003) 1507.

S. Beigi, P.W. Shor and D. Whalen, The Quantum Double Model with Boundary:
Condensations and Symmetries, Commun. Math. Phys. 306 (2011) 663.

A. Bullivant, Y. Hu and Y. Wan, Twisted quantum double model of topological order with
boundaries, Phys. Rev. B 96 (2017) 165138 [arXiv:1706.03611] [INSPIRE].

J.-P. Serre, Linear Representations of Finite Groups, in Graduate Texts in Mathematics 42,
Springer, New York NY U.S.A. (1977).

— 38 —


https://arxiv.org/abs/hep-th/9511195v1
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9511195
https://doi.org/10.1515/9783110805697.99
https://doi.org/10.1080/00927870701511996
https://doi.org/10.1080/00927870701511996
https://doi.org/10.2140/pjm.2017.290.437
https://doi.org/10.1016/0920-5632(91)90123-V
https://doi.org/10.1017/cbo9780511622779
https://doi.org/10.1017/cbo9780511622779
https://doi.org/10.1016/S0022-4049(02)00247-5
https://doi.org/10.1155/S1073792803205079
https://doi.org/10.1155/S1073792803205079
https://doi.org/10.1007/s00220-011-1294-x
https://doi.org/10.1103/PhysRevB.96.165138
https://arxiv.org/abs/1706.03611
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CB96%2C165138%22
https://doi.org/10.1007/978-1-4684-9458-7

	Introduction
	Review of EM duality in discrete Abelian gauge theories
	Conditions on PEM duality
	Main results
	PEM duality in twisted quantum double models
	Quantum double model as discrete gauge field theories
	Twisted quantum double algebra in twisted quantum double model
	PEM duality between QD models and TQD models
	Examples
	EM duality in Z(2) QD model
	Example Z(4) -> Z(2) x Z(2)
	Example D(m) -> D(m)
	Example D(4) -> Z(2) x Z(2) x Z(2)

	EM duality on the twisted quantum models

	PEM duality transformation of anyons
	Dual model: reciprocal bilayer model
	Duality transformation on observables
	Reciprocal bilayer model
	Invariant ground states under the PEM duality

	Isomorphism between two twisted quantum double algebras
	3-cocycles for Z**(3)(m)
	Twisted quantum double D**(alpha)G
	Semidirect structure in gauge group G and its dual group G'
	The TQD algebra in TQD model
	Rearranged operators in the bilayer model

