

Breakup of ^7Be on ^{12}C at 5 MeV/u

R. Mitra^{1,*} D. Gupta^{1,†} S. Maity¹, K. Kundalia¹, Sk M. Ali^{1,‡}

Swapan K. Saha^{1,§} O. Tengblad², A. Perea²,

I. Martel³, J. Cederkall⁴, and A.M. Moro^{5,6}

¹*Department of Physical Sciences, Bose Institute,
EN-80, Sector V, Bidhannagar, Kolkata-700091, India*

²*Instituto de Estructura de la Materia – CSIC,
Serrano 113 bis, ES-28006 Madrid, Spain*

³*University of Huelva, Avenida Fuerzas Armadas sin
numero Campus “El Carmen”, 21007, Huelva, Spain*

⁴*Department of Physics, Lund University, Box 118, SE-221 00 Lund, Sweden*

⁵*Departamento de Física Atómica, Molecular y Nuclear,
Facultad de Física, Universidad de Sevilla,
Apartado 1065, E-41080 Sevilla, Spain and*

⁶*Instituto Interuniversitario Carlos I de Física Teórica y
Computacional (iC1), Apdo. 1065, E-41080 Sevilla, Spain*

Introduction

Breakup reaction studies of loosely bound stable and unstable nuclei may provide deeper insights into nuclear physics and nuclear astrophysics. Measurements of the breakup of ^7Li have been carried out extensively [1, 2]. For ^7Li (breakup threshold 2.467 MeV), both direct and sequential breakup through the 4.63 MeV state have been measured using several targets ranging from ^{12}C to ^{208}Pb [3–5]. Despite the fact that breakup studies with ^7Li has received lots of attention, there are very few works involving its mirror counterpart ^7Be . The ^7Be nucleus has a prominent $\alpha+^3\text{He}$ cluster structure with a lower breakup threshold of 1.587 MeV. Mazzocco *et al.*, [6, 7] carried out experiments involving ^7Be on ^{58}Ni and ^{208}Pb targets at energies around the Coulomb barrier leading to very low exclusive breakup events. Also, in the work of Amro *et al.*[8], no significant coincidence counts were observed for $^7\text{Be}+^{12}\text{C}$ stud-

ies. Direct and sequential breakup through the 4.57 MeV and 6.73 MeV resonant states of ^7Be have been carried out via the transfer reaction $^{112}\text{Sn}(^6\text{Li},^7\text{Be})$ [9]. However, breakup data of ^7Be on ^{12}C does not exist. A detailed study of breakup of ^7Be in comparison to ^7Li will shed light on the relative importance of direct and sequential breakup.

Experiment

The experiment was carried out at HIE-ISOLDE, CERN with a ^7Be beam of intensity $\sim 10^5$ pps. A CD_2 target of thickness 15 μm was used. The detector setup for charged particle detection consisted of 5 double sided 16×16 silicon strip detectors (W1, DSSD) in a pentagon geometry covering 40° - 80° in the lab. These were backed by unsegmented silicon-pad detectors in $\Delta\text{E-E}$ telescope configuration. The forward angles $\sim 8^\circ$ - 25° were covered by an annular detector (S3). The back angles $\sim 120^\circ$ - 165° were covered by two DSSDs (BB7) backed by unsegmented silicon-pad detectors. The details of the experimental setup are given in Ref.[10, 11].

Results and Discussion

The Monte Carlo simulations for the breakup of ^7Be from $^7\text{Be} + ^{12}\text{C}$ reaction were carried out using NPTool [12]. Clear bands of ^3He and

*Electronic address: ritankar@jcbose.ac.in

†Electronic address: dhruba@jcbose.ac.in

‡Present Address: FRIB, Michigan State University,
East Lansing, MI 48824, USA

§Present Address: Visiting faculty, School of Astrophysics, Presidency University, Kolkata

α can be seen from the experimental ΔE - E spectra. Since ^3He and α may also come from transfer reactions, suitable gates and conditions were applied to identify the events only from breakup. Coincident detection of ^3He and α with multiplicity 2 in the pentagon detectors were applied. Fig. 1 represents the experimental energy spectra for coincident ^3He and α from the ^7Be breakup. The energy

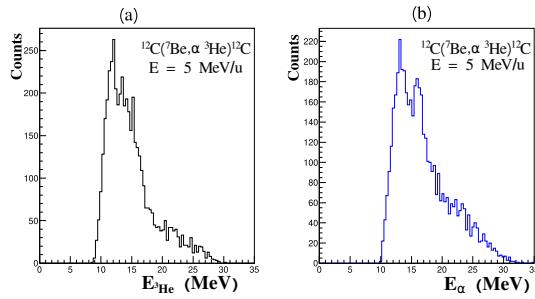


FIG. 1: The coincident energy spectra for (a) ^3He (b) α from ^7Be breakup on ^{12}C at 5 MeV/u.

correlation spectrum of coincident ^3He and α (Fig. 2) shows significant breakup events from $^7\text{Be} + ^{12}\text{C}$ reaction. This work reports the first

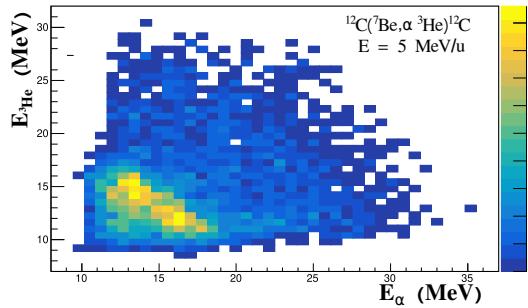


FIG. 2: Energy correlations of coincident ^3He and α from ^7Be breakup on ^{12}C at 5 MeV/u.

exclusive measurement of the breakup of ^7Be

on ^{12}C at 5 MeV/u over a wide angular range. Analysis is in progress to study the contribution of direct and sequential breakup of ^7Be .

Acknowledgments

The authors thank the ISOLDE engineers in charge, RILIS team and Target Group at CERN for their support. D. Gupta acknowledges research funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 654002 (ENSAR2) and ISRO, Govt. of India under grant no. ISRO/RES/2/378/1516. R. Mitra acknowledges the support of DST-INSPIRE fellowship (DST/INSPIRE/03/2021/000155, IF No. IF200499).

References

- [1] A. C. Shotter et al., Phys. Rev. Lett. 46, 12-15 (1981).
- [2] H. Utsunomiya et al., Phys. Rev. Lett. 65, 847-850 (1990).
- [3] D. Gupta et al., Nucl. Phys. A 646, 161 (1999).
- [4] D. Gupta et al., Nucl. Phys. A 683, 320 (2001).
- [5] D. Gupta et al., Pramana J. Phys., Vol. 57, No. 1 (2001)
- [6] M. Mazzocco et al., EPJ Web of Conferences 163, 00035 (2017).
- [7] M. Mazzocco et al., Phys. Rev. C 92, 024615 (2015).
- [8] H. Amro et al., Eur. Phys. J. ST 150, 1 (2007).
- [9] D. Chattopadhyay et al., Phys. Rev. C 102, 021601(R) (2020).
- [10] Sk M. Ali et al., Phys. Rev. Lett. 128, 252701 (2022)
- [11] K. Kundalia et al., Phys. Lett. B 833, 137294 (2022)
- [12] A. Matta et al., J. Phys. G: Nucl. Part. Phys. 43, 045113 (2016).