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Abstract. Data integrity and privacy are critical concerns in the financial sector. Traditional methods of
data collection face challenges due to privacy regulations and time-consuming anonymization processes.
In collaboration with Banco BV, we trained a hybrid quantum-classical generative adversarial network
(HQGAN), where a quantum circuit serves as the generator and a classical neural network acts as the
discriminator, to generate synthetic financial data efficiently and securely. We compared our proposed
HQGAN model with a fully classical GAN by evaluating loss convergence and the MSE distance between
the synthetic and real data. Although initially promising, our evaluation revealed that HQGAN failed
to achieve the necessary accuracy to understand the intricate patterns in financial data. This outcome
underscores the current limitations of quantum-inspired methods in handling the complexities of financial
datasets.

1 Introduction

Data is essential for artificial intelligence development,
increasing the demand for high-quality data [1–3]. How-
ever, stricter data privacy regulations have made the
collection and labeling of real data more difficult [4–
6]. In the financial sector, sensitive customer data is
used for software testing and fraud detection, neces-
sitating strict data management protocols. This can
delay access to anonymized data, introducing errors and
compromising quality. Synthetic data offers a solution
by protecting training data, as it only reveals synthetic
variants in case of security breaches [7,8]. It is also
cheaper to produce, automatically labeled, and avoids
many privacy issues [9]. The challenge is to generate
synthetic financial datasets that maintain the statistical
characteristics of the original data without traceability
to individuals.

Generative Adversarial Networks (GANs) [10] stand
out as a powerful tool for data generation. They have
gained significant traction in the field of generative
learning and find application in an extensive variety
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of domains [11–13]. In the finance domain, applications
of GANs include financial data generation [12,14,15],
stock market prediction [16,17], credit scoring [18]
and fraud detection [19,20]. In the image process-
ing domain, GANs are used notably for image super-
resolution (ISR) [21,22] that can also improve early
medical diagnosis in clinical pathology [23] to name a
few. Furthermore, GANs have been applied for tasks
such as protein engineering sequential data based appli-
cations [24], molecule development [25], drug discov-
ery [26], music genre fusion and music generation [27],
video generation and prediction [28], autonomous driv-
ing [29], weather forecasting [30], astronomy imaging
[31], among others. The goal of GANs is to simultane-
ously train two neural networks: a generator G, and a
discriminator D, through an adversarial learning strat-
egy [32].

At present, quantum computers hold the promise of
tackling problems that are deemed unsolvable by clas-
sical computers. Moreover, there is ongoing progress
in extending these concepts and algorithms into the
domain of quantum machine learning [33]. Recent the-
oretical studies indicate that quantum generative mod-
els might possess an exponential advantage over their
classical counterparts [23,34,35]. However, a pivotal
question that requires attention in the field of quan-
tum GAN is whether existing quantum devices possess
the capability for real-world generative learning. This
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capacity is directly linked to the practical application
of quantum GANs on near-term quantum devices [36].

We propose a hybrid model that uses a quantum
circuit as generator and a classical neural network as
discriminator following the model proposed in [36].
Our main objective is the generation of synthetic data
related to the approval of money withdraw from Banco
BV, a brazilian bank. For precise evaluation of our gen-
erative models, we employ the Mean Squared Error
(MSE) as a quantitative distance metrics to assess the
disparity between real and generated distributions.

Therefore, the primary novel aspects and contribu-
tions of this research to the contemporary state of the
art in this field are outlined as follows:

1. The proposal, development and investigation of a
hybrid quantum-classical generative adversarial net-
work model for synthetic financial data generation;

2. A comprehensive examination and comparison of
the effectiveness of the proposed model in contrast
to a conventional classical GAN, evaluating both
using the loss function convergence and the MSE
distance between the synthetic data generated by
both models and the original dataset;

3. The application of the proposed quantum model and
the baseline model in a case study scenario utilizing
real financial data offered by Banco BV.

This work is organized as follows. First, in Sect. 2, we
present the necessary information to understand GANs,
complemented in Sect. 2.1 which describes the quantum
version of the model. We describe our proposed solution
in Sect. 3. In Sect. 4, we describe our experiments and
analyse the results. Finally, we close with a conclusion
and future works in Sect. 5.

2 Generative adversarial networks

A Generative Adversarial Network is a deep learning
technique introduced by Goodfellow et al. [10], which
aims to generate synthetic data from a given dataset
using a pair of neural networks, namely the discrimina-
tor and the generator. The discriminator network learns
to distinguish between real and synthetic data, while
the generator network learns to produce synthetic data
that closely resembles the real data. Through an adver-
sarial training process, the two networks engage in a
competitive interplay two-player minmax game, contin-
ually improving their performance iteratively. This pro-
cess aims to reach a Nash equilibrium, where the gen-
erator creates high-quality synthetic data that is indis-
tinguishable from real data [37]. However, this point is
rarely achieved in practice apart from the most simple
tasks [38].

The adversarial learning process starts by defining
a random distribution represented as a latent vector z
sampled from a probability distribution p(z), such as a
uniform or Gaussian distribution. As the term implies,

the latent vector is defined in the latent space: a space
proficient in compactly representing data [39]. Thus,
instead of dealing with a more complex space, such as
the data space, the latent space is a manageable alter-
native, once the data representation is packed.

The generator then maps this latent vector to the
data space, generating synthetic samples denoted as
G(z), where G represents the mapping from the latent
space to the data space. On the other hand, the discrim-
inator network takes both real samples from the dataset
and synthetic samples generated by the generator as
inputs. Its objective is to distinguish between real and
synthetic samples and assign a probability value indi-
cating the likelihood of each sample as being real. If the
probability value is 1, then the data is taken as real; if
it is 0 the data is taken as fake. The expected proba-
bility value is 0.5, which indicates that the discrimina-
tor is unable to differentiate fake and real samples. In
mathematical notation, we can write the discriminator
function D(x) as the probability of the discriminator to
classify the real data as real and D(G(z)) as the proba-
bility of the discriminator to classify the synthetic data
as real.

An efficacious approach to evaluate these probability
values is using functions able to measure the discrep-
ancy between the real and synthetic data, also called
objective functions [37]. Some authors have proposed
different models for these functions such as f-Divergence
to quantify the differences between two distributions
with a particular convex function, Integral Probability
Metric (IPM) to get the maximal measure between two
arbitrary distributions, and Auxiliary Object Functions
for both reconstruction object function and classifica-
tion object functions [40]. In the original GANs paper,
Goodfellow et al. [10] formulated the following objective
function:

min
G

max
D

V (D,G) = Ex∼pdata(x)[log(D(x))]

+Ez∼pg(z)[log(1 − D(G(z)))] (1)

where G must be trained simultaneously to minimize
log(1 − D(G(z))).

Currently, there are a notable number of GAN
variants, which require particular objective functions.
Among these variations, some have gained prominence,
such as Deep Convolutional GAN (DCGAN), in which
introduces convolutional layers for learning hierarchi-
cal features [41]; Conditional GAN (CGAN), extended
to a conditional model in the event that the genera-
tor and discriminator networks are dependent on addi-
tional information [42]; Bidirectional GAN (BiGAN),
in which learns the inverse mapping and semantics of
data distribution [43]; and others. A comparative sum-
mary of GAN variants can be found in reference [44].

2.1 Quantum GAN

The initial idea of a quantum GAN arose from Goodfel-
low’s proposal, which was based on classical GANs [11].
A quantum GAN uses the same training principle as a
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Fig. 1 Quantum GAN structures

GAN, where it has a generator G and a discriminator D
which are adversaries and can be fully quantum, hybrid
or based on tensor networks [11] the scheme (Fig. 1)
shows how they can be characterized.

In the case of a fully quantum system, both the gen-
erator and the discriminator are quantum. A minimum
margin of error will always be associated with them,
due to operators having a norm greater than or equal
to 1.

The GAN models known as Tensor Network are
based on a tensor that describes the quantum wave
function in a multi-partite system, reducing it to ten-
sors of lower rank [11]. This model boasts a distinctive
advantage: it establishes a unified framework enabling
both quantum and classical computing to leverage iden-
tical development techniques. Tensor Network models
are trained in classical environments, but it is possible
to transfer them to a quantum environment without
the need for modifications. Their use is feasible in envi-
ronments that handle both classical and quantum data,
making them ideal for assisted machine learning appli-
cations [45].

And the third type are hybrid GANs, where we can
have two configurations, the classical dataset genera-
tor and the quantum discriminator, a detail that we
must pay attention to in this case is that the classical
generator can never generate the statistics of a set of
data similar to those of a source of quantum data [46].
Therefore, the discriminator will act in this situation,
similar to the fully quantum case, and will always find
a measurement smaller than 1

2 , and will never reach the
Nash equilibrium [34].

The second type of hybrid GANs are quantum
dataset generators and classical discriminators. This
model is the most used in hybrid GANs, as in the oppo-
site situation it is impossible for the generator to be able
to estimate and learn a distribution that can defeat
the discriminator. Therefore, the hybrid GAN model
adopted in this work provides better performance than
compared to traditional GANs. Another advantage is
that, as the discriminator is classic, data coding is not
necessary. In the Fig. 2 we can see a schematic of how
the hybrid GAN works.

3 Method

In this research, we focus on the application of a
Hybrid Quantum-Classical Generative Adversarial Net-
work (HQGAN) for the generation of financial data per-
tinent to the approval of money withdraw by a Brazilian
bank.

3.1 Case study

The dataset used in our study is provided by Banco
BV and encompasses the profiles of bank clients who
request to withdraw money from the Fundo de Garan-
tia do Tempo de Serviço (FGTS) (English: Length-of-
Service Guarantee Fund) [47]. The FGTS is a fund
established to protect workers in Brazil who are dis-
missed without just cause. The data spans from April
2022 to July 2022 and includes over 13 million sam-
ples. Among these samples, only 54,490 (approximately
0.4%) represent clients classified as eligible to withdraw
money from the FGTS.

Given the significant class imbalance in the dataset,
conventional machine learning models face challenges
in accurately learning the patterns needed to predict
eligibility. The issue of imbalanced datasets can be
addressed by Downsampling and Upweighting tech-
niques [48], but even so they have limited capabilities
in extreme imbalanced data, where the minority class is
< 1% of the data set. To address this issue, we use syn-
thetic data generation to increase the number of sam-
ples from the minority class (approved clients) to create
a more balanced dataset for training future classifica-
tion models.

The dataset contains 16 features, two of which are
initially discarded. The discarded features are the tar-
get value, indicating whether the client is approved (1)
or not (0), and the time feature, indicating the period
of the request. We exclude the target feature because
all synthetic data generated would have the same value
(1) for this feature. We also consider the time period of
the request irrelevant to the classification problem.

Preprocessing is essential for our quantum model.
Only one feature in the dataset is categorical, so we
use an ordinal encoder to convert its values into inte-
gers. Subsequently, we normalize all features by scaling
them within a range of 0 to 1 using the min-max scaler
procedure. In min-max normalization, each data point
is adjusted to lie between 0 and 1:

x′ =
x − xmin

xmax − xmin
(2)

where x′ is the normalized data set and xmin and xmax

are the minimum and maximum values of the original
data x, respectively.
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Fig. 2 Hybrid quantum-classical GAN

3.2 Proposed method

Our proposed HQGAN architecture consists of a quan-
tum generator paired with a classical discriminator.
Our quantum generator is inspired by the resource-
efficient implementation proposed by Huang et al. [36],
which is detailed at [38]. This implementation, known
as the Quantum Patch GAN, employs multiple quan-
tum generators to construct small patches of the final
data, which are subsequently concatenated to form the
complete dataset. However, given the relatively small
number of features in our dataset, the patch strategy
was deemed unnecessary, resulting in a final generator
with a single sub-generator. The overall quantum gen-
erator consists of N qubits, which are decomposed into
two parts, where the first NG data qubits are used to
generate feature vectors and the remaining NA ancilla
qubits are used to introduce nonlinearity [36].

One constraint of our proposed model is that the
quantum generator’s capacity to generate data points is
contingent upon the number of data qubits NG, specif-
ically constrained to 2NG . Consequently, to accommo-
date this constraint, we padded our dataset with two
additional features initialized to 0, resulting in a total
of 16 features for NG = 4 and NA = 1.

The quantum generator in our HQGAN is based on
a Quantum Neural Network (QNN) model, consisting
of a feature map and parameterized quantum circuits,
also known as an ansatz, as depicted in Fig. 3. Our
feature map includes an angle embedding circuit with
Ry rotations, specifically designed to encode classical
data into a quantum state by representing each feature
with a corresponding rotation angle applied to a qubit.

The ansatz in our model utilizes the same circuit
structure as the angle embedding feature map across
its layers, enhanced by a sequence of controlled-Z oper-
ations to induce entanglement. We chose a linear entan-
glement scheme, employing controlled-Z gates between
neighboring qubits arranged in a linear configuration to
generate entanglement [49]. The structure of the ansatz
can be repeated to create deeper circuits and to improve
the learning capabilities of the model.

By incorporating these components, our quantum
generator efficiently encodes and processes classical
data, leveraging the advantages of quantum comput-
ing to enhance the data generation capabilities of our
HQGAN architecture.

A recognized limitation in employing a quantum
model for synthesizing data is rooted in the quantum
circuit model, where quantum gates operate as unitary
transformations, inherently linear in nature. To enable
the quantum generator to perform more complex gen-
erative tasks, non-linear transformations are essential.
This can be achieved through the use of partial mea-
surements and ancilla qubits [36]. For a given generator,
the pre-measurement quantum state is represented as

|ψ(z)〉 = UG(θ)|z〉,

where UG denotes the overall unitary of the generator
and |z〉 is a quantum state encoding the latent vec-
tor. Upon a partial measurement Π and tracing out the
ancillary subsystem, A,

ρ(z) =
TrA(Π ⊗ I|ψ(z)〉〈ψ(z)|)
Tr(Π ⊗ I|ψ(z)〉〈ψ(z)|

=
TrA(Π ⊗ I|ψ(z)〉〈ψ(z)|)

〈ψ(z)|Π ⊗ I|ψ(z)〉

the resultant post-measurement state, ρ(z), exhibits
non-linear transformation characteristics dependent on
the input latent vector z.

The discriminator employed in our HQGAN is a neu-
ral network with a single hidden layer. The detailed
architecture of this network is shown in Table 1. Our
discriminator utilizes a straightforward linear architec-
ture, featuring ReLU activation functions for the input
and hidden layers, and a sigmoid activation function
for the output layer. This configuration is standard for
binary classification tasks, where the sigmoid function
at the output layer provides a probability score, indicat-
ing the likelihood that the input belongs to a particular
class.

The linear layers in the network apply a linear
transformation to the input data. As described in the
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Fig. 3 Quantum circuit design for a quantum generator used in the proposed HQGAN architecture. The circuit is divided
into two main sections: the Feature Map and the Ansatz. The feature map is implemented using an angle embedding circuit
with Ry rotations, which are applied to both the data qubits and an ancilla qubit. The ansatz is a parameterized quantum
circuit defined by independent parameter vector θ, that utilizes the same circuit structure as the angle embedding feature
map across its layers, enhanced by a sequence of controlled-Z operations to induce entanglement. The figure depicts a circuit
with depth k = 1, deeper circuits would repeat the structure of the ansatz, adding new trainable parameters to the circuit

PyTorch documentation [50], this transformation fol-
lows the rule:

y = xAT + b

where y is the output, x is the input, A is the weight
matrix, and b is the bias term. This transformation is
essential for mapping the input features to the next
layer in the network, enabling the model to learn and
make accurate predictions.

3.3 Experimental design

The evaluation of our proposed model’s performance
involves comparing it with a fully classical GAN. Our
implementation is based on the Deep Convolutional
GAN (DCGAN) for image generation, as detailed in
[51]. The full descriptions of both the generator and
discriminator can be found in Tables 2 and 3, respec-
tively.

The generator employs a combination of linear trans-
formations and batch normalization across multiple lay-
ers, with ReLU activation functions throughout the hid-
den layers to introduce non-linearity. The batch normal-
ization layers stabilize and accelerate the training pro-
cess by normalizing the inputs of each layer, mitigating
issues of internal covariate shift [52]. The final layer
uses the Tanh activation function. This configuration
is designed to progressively reduce the dimensionality
of the data while applying transformations to generate
new data points.

The discriminator utilizes a linear architecture with
Leaky ReLU activation functions for both the input and
hidden layers. The final output layer employs a sigmoid
activation function. The Leaky ReLU activation helps
prevent the dying ReLU problem by allowing a small
gradient when the unit is not active.

To evaluate how well the model has learned the prob-
ability distribution of the data, various distance met-
rics between probability distributions can be used. For

example, 2-norm distance, Hellinger distance, Kolmogorov-
Smirnov statistic, or Wasserstein distance are all possi-
ble choices [53]. Here, we use the Mean Squared Error
(MSE) distance between the synthetic data generated
by the model and the original dataset.

The training parameters used by both the hybrid and
classical GANs are described in Table 4. The HQGAN
uses Stochastic Gradient Descent (SGD) as the opti-
mizer, with a generator learning rate of 0.3 and a dis-
criminator learning rate of 0.01. It has 30 generator
parameters and 2145 discriminator parameters, utiliz-
ing a latent vector size of 5. The classical GAN employs
the Adam optimizer, with both the generator and dis-
criminator learning rates set to 0.0002, consisting of
805,600 and 183,969 parameters for the generator and
discriminator, respectively, with a latent vector size
of 100. Both models use Binary Cross-Entropy (BCE)
Loss, a batch size of 10, and are trained for 5449 epochs.

All simulations were conducted in Python utilizing
the Torch and Pennylane frameworks and executed on
the quantum simulator Kuatomu provided by SENAI-
CIMATEC. Kuatomu comprises 192 processing cores
(CPU) with 384 threads, 3 TB of RAM memory, and 4
NVidia V100 32 GB GPU accelerator cards.

4 Results and discussion

In this section, we provide an in-depth overview of the
results, followed by an extensive discussion.

In Fig. 4, you can see the learning dynamics of our
quantum GAN and the classical GAN. The classical
GAN follows a typical pattern, with the Generator loss
starting higher than the Discriminator loss and remain-
ing close throughout training. Around the halfway point
of training, there is a noticeable change where the Dis-
criminator loss becomes higher than the Generator loss.
After this point, both losses stay relatively stable until
the end of training. Conversely, for the quantum GAN,
the Generator and Discriminator losses initially exhibit
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Table 1 Classical discriminator used for the HQGAN

Discriminator

Layer Layer type In features Out features Activation function

Input layer Linear 16 64 ReLU
Hidden layer Linear 64 16 ReLU
Output layer Linear 16 1 Sigmoid

Table 2 Detailed architecture of the generator in the classical GAN model, illustrating each layer’s type, the number of
input and output features, and the activation functions employed

Generator

Layer Layer type In features Out features Activation function

Input layer Linear 100 1024 ReLU
Hidden layer Linear 1024 512 ReLU
Hidden layer Batch norm 1D 512 512 ReLU
Hidden layer Linear 512 256 ReLU
Hidden layer Batch norm 1D 256 256 ReLU
Hidden layer Linear 256 128 ReLU
Hidden layer Batch norm 1D 128 128 ReLU
Hidden layer Linear 128 64 ReLU
Hidden layer Batch norm 1D 64 64 ReLU
Hidden layer Linear 64 32 ReLU
Hidden layer Batch norm 1D 32 32 ReLU
Hidden layer Linear 32 16 ReLU
Hidden layer Batch norm 1D 16 16 ReLU
Output layer Linear 16 16 Tanh

The generator uses a combination of linear transformations and batch normalization across multiple layers with ReLU
activation functions in the input and hidden layers and a Tanh activation function in the output layer

Table 3 Detailed architecture of the Discriminator in the classical GAN model, showing each layer type, the number of
input and output features, and the activation functions used

Discriminator

Layer Layer type In features Out features Activation function

Input layer Linear 16 512 Leaky ReLU
Hidden layer Linear 512 256 Leaky ReLU
Hidden layer Linear 256 128 Leaky ReLU
Hidden layer Linear 128 64 Leaky ReLU
Hidden layer Linear 64 32 Leaky ReLU
Hidden layer Linear 32 16 Leaky ReLU
Hidden layer Linear 16 8 Leaky ReLU
Hidden layer Linear 8 4 Leaky ReLU
Output layer Linear 4 1 Sigmoid

The discriminator employs a linear structure with Leaky ReLU activation functions across the input and hidden layers, and
a sigmoid activation function at the output layer for binary classification

stability, with the Generator loss consistently lower
than that of the Discriminator. However, as training
progresses, the Generator loss begins to increase, result-
ing in a divergence between the two loss values.

The comparative analysis of the outcomes produced
by both GANs, assessing the MSE distance for the orig-
inal dataset, is depicted in Fig. 5. In the case of the
classical GAN, there is a consistent reduction in the
gap between the synthetic and original data, ultimately

reaching a stabilized state towards the end of the learn-
ing process. In contrast, the quantum GAN exhibits
erratic behavior, failing to demonstrate a clear trend
indicating convergence towards the real data. Addition-
ally, the MSE value for the quantum GAN is higher
than that of the classical counterpart, further highlight-
ing the disparities in performance.

As the quantum GAN exhibited a divergence mid-
way through training, we hypothesized that it might
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Table 4 Comparison of training configurations and parameters for hybrid quantum-classical GAN and classical GAN
models

HQGAN Classical GAN

Optimizer SGD Adam
Generator learning rate 0.3 0.0002
Discriminator learning rate 0.01 0.0002
Generator parameters 30 805.600
Discriminator parameters 2145 183.969
Latent vector size 5 100
Loss function BCE loss
Batch size 10
Epochs 5449

Fig. 4 Binary cross entropy loss comparison between quantum and classical models: classical GAN shows standard behavior
while the quantum GAN shows a divergence around halfway through training

have encountered overfitting, potentially due to the
excessive number of training iterations. To validate this
assumption, we conducted additional experiments in
which we limited the maximum number of iterations
to just before the observed divergence, approximately

2500 steps. We applied the same adjustment to the clas-
sical GAN in this renewed set of experiments to ensure
consistency in the evaluation process.

The new results are depicted in Fig. 6. As anticipated,
both quantum and classical GANs exhibited indications
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Fig. 5 Mean square error comparison between synthetic and original data: classical GAN displays decreasing distance
between synthetic and original data, stabilizing towards end of training. Conversely, quantum GAN exhibits erratic behavior,
failing to approach real data. quantum GAN’s Moreover, quantum GAN’s MSE is consistently higher than the classical
counterpart’s

of convergence in their loss graphs. However, when ana-
lyzing the MSE distance, the quantum GAN continued
to display erratic behavior, with no clear indications
of improvement. On the other hand, the classical GAN
still demonstrated an improvement in its MSE.

4.1 Discussion

The unexpected behavior observed in our hybrid quantum-
classical GAN could be influenced by multiple fac-
tors warranting detailed investigation. While the quan-
tum component of the GAN may struggle with pat-
tern recognition within this specific dataset regime, we
refrain from attributing it as the primary cause and
instead consider it as part of a comprehensive analysis.
An essential consideration is the possibility of incom-
plete preprocessing steps applied to the data, suggest-
ing the need for further refinements to enhance learn-

ing efficacy. Moreover, optimizing the partial measure-
ment operation on the state ρ(z) used by the generator
may be crucial for accurately estimating probabilities
of basic states as faithful data representations.

Another critical consideration is the absence of Batch
Normalization in the generator of our hybrid quantum-
classical GAN, unlike the classical GAN. This architec-
tural difference raises the crucial question: could the
lack of Batch Normalization be a decisive factor con-
tributing to the hybrid GAN’s struggle to converge to
optimal solutions? Batch Normalization is renowned for
normalizing activation functions within neural network
layers, thereby accelerating convergence, reducing inter-
nal covariate shift, and facilitating smoother gradient
flow during training. The absence of Batch Normaliza-
tion in our hybrid model may lead to instability in train-
ing dynamics, slower convergence rates, and potentially
inferior quality in generated samples.
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Fig. 6 Results obtained after truncating training at 2500 iterations. Both quantum and classical GANs show a convergence
patterns in their loss graphs. However, while the classical GAN demonstrates improvement in mean squared error (MSE),
the quantum GAN still exhibits erratic behavior with no discernible signs of enhancement

The necessity of exploring and understanding the
nuanced differences in architecture and training dynam-
ics between classical and quantum models in GAN
frameworks is useful in future research endeavors that
could explore novel normalization layers specifically
for quantum models. Such investigations aim to bol-
ster convergence rates, stabilize training dynamics, and
ultimately improve the generation quality of hybrid
quantum-classical GANs across a spectrum of gener-
ative tasks.

5 Conclusions

In conclusion, this study explored the feasibility of
using a hybrid quantum-classical generative adversar-
ial network (HQGAN) to generate synthetic finan-
cial data reliably, where a quantum circuit serves as
the generator and a classical neural network acts as
the discriminator, for synthesizing financial data essen-
tial for money withdraw approval. Our research arti-
cle contributes in three key ways: first, it proposes
a hybrid quantum-classical generative adversarial net-
work (HQGAN) for synthetic financial data generation.
Second, it comprehensively compares HQGAN with a
conventional classical GAN, evaluating both models
using loss function convergence and MSE distance met-
rics. Third, we apply these models to real financial data,
demonstrating their practical applicability and high-
lighting their potential in addressing data privacy and
integrity challenges in the financial sector.

Our model was applied to a case study utilizing
real financial data provided by Banco BV. The dataset
encompasses the profiles of bank clients who request
to withdraw money from FGTS, a Brazilian govern-
mental fund established to protect workers. The data

showed a high imbalance, with only 0.4% of the samples
belonging to the minority class. The challenge was to
increase the number of samples from the minority class
(approved clients) to create a more balanced dataset
for training our classification models. We conducted a
comparative analysis between our method and a clas-
sical GAN to gain insights into the performance of our
quantum model. For precise evaluation, we utilized the
Mean Squared Error (MSE) as a quantitative measure
to gauge the discrepancy between real and generated
distributions, alongside analyzing the convergence of
loss in both models.

Despite its initial promise, our evaluation showed
that HQGAN did not achieve sufficient accuracy to
learn the complex patterns present in financial data.
This result highlights the current limitations of quantum-
inspired approaches to dealing with the complexities
of financial datasets. Future research should focus on
revisiting our methodology to address the unresolved
issues. In addition, we intend to explore alternative
research routes, including investigating hybrid GAN
architectures with a quantum discriminator instead of
a quantum generator or even exploring the potential
of fully quantum GANs. These alternative approaches
hold promise for possibly capturing the intricate pat-
terns present in financial data.
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43. J. Donahue, P. Krähenbühl, T. Darrell, Adversarial fea-
ture learning. Preprint arXiv:1605.09782 (2016)

44. S. Hitawala, Comparative study on generative adversar-
ial networks. Preprint arXiv:1801.04271 (2018)

45. W. Huggins, P. Patil, B. Mitchell, K.B. Whaley, E.M.
Stoudenmire, Towards quantum machine learning with
tensor networks. Quantum Sci. Technol. 4(2), 024001
(2019)

46. J. Preskill, Quantum computing in the NISQ era and
beyond. Quantum 2, 79 (2018)

47. Visão Geral-Sobre o FGTS. https://www.fgts.gov.br/
Pages/sobre-fgts/visao-geral.aspx. Accessed on 06 June
2024 (2024)

48. Datasets: Imbalanced datasets. https://developers.
google.com/machine-learning/crash-course/
overfitting/imbalanced-datasets. Accessed on 23
August 2024 (2024)

49. E. Combarro, S. Gonzalez-Castillo, A Practical Guide
to Quantum Machine Learning and Quantum Optimiza-
tion: Hands—On Approach to Modern Quantum Algo-
rithms, 1st edn. (Packt Publishing, London, 2023)

50. Pytorch Documentation—Linear. https://pytorch.org/
docs/stable/generated/torch.nn.Linear.html. Accessed
on 09 June 2024 (2024)

51. N.I. PyTorch, DCGAN Tutorial. https://pytorch.org/
tutorials/beginner/dcgan_faces_tutorial.html. Accessed
on 07 June 2024 (2024)

52. S. Ioffe, C. Szegedy, Batch normalization: accelerating
deep network training by reducing internal covariate
shift (2015)

53. C.A. Riofr’io, O. Mitevski, C. Jones, F. Krellner, A.
Vuvckovi’c, J. Doetsch, J. Klepsch, T. Ehmer, A.
Luckow, A performance characterization of quantum
generative models. (2023). https://api.semanticscholar.
org/CorpusID:256105777

123

http://arxiv.org/abs/1902.08710
http://arxiv.org/abs/1902.03442
https://doi.org/10.1103/PhysRevA.98.012324
https://doi.org/10.1103/PhysRevLett.121.040502
https://doi.org/10.1103/PhysRevApplied.16.024051
https://doi.org/10.1103/PhysRevApplied.16.024051
https://doi.org/10.1109/MSP.2017.2765202
https://doi.org/10.1109/MSP.2017.2765202
https://pennylane.ai/qml/demos/tutorial_quantum_gans/
https://pennylane.ai/qml/demos/tutorial_quantum_gans/
http://arxiv.org/abs/1707.05776
http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1605.09782
http://arxiv.org/abs/1801.04271
https://www.fgts.gov.br/Pages/sobre-fgts/visao-geral.aspx
https://www.fgts.gov.br/Pages/sobre-fgts/visao-geral.aspx
https://developers.google.com/machine-learning/crash-course/overfitting/imbalanced-datasets
https://developers.google.com/machine-learning/crash-course/overfitting/imbalanced-datasets
https://developers.google.com/machine-learning/crash-course/overfitting/imbalanced-datasets
https://pytorch.org/docs/stable/generated/torch.nn.Linear.html
https://pytorch.org/docs/stable/generated/torch.nn.Linear.html
https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html
https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html
https://api.semanticscholar.org/CorpusID:256105777
https://api.semanticscholar.org/CorpusID:256105777

	Synthetic data generation with hybrid quantum-classical models for the financial sector
	1 Introduction
	2 Generative adversarial networks
	2.1 Quantum GAN

	3 Method
	3.1 Case study
	3.2 Proposed method
	3.3 Experimental design

	4 Results and discussion
	4.1 Discussion

	5 Conclusions
	Author contributions
	References
	References


