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ABSTRACT

The Standard Model (SM) of particle physics is widely taken as an elegant effective

theory of nature at the electroweak scale, with new physics expected at higher

energy. Collider searches and other experimental inputs play a vital role in our

hunt for the unknown physics, offering great insights along the way and eventually

establishing the extension to the SM. Here we present our studies on prospects of

direct and indirect searches for three types of models beyond the SM.

The Inert Doublet Model (IDM) extends the SM electroweak sector by an extra

Higgs doublet with a Z2-symmetry. We first examine the IDM dilepton signal at the

LHC with a center-of-mass energy of 14 TeV and find it exceeding SM backgrounds

at 3σ–12σ significance level, with 100 fb−1 integrated luminosity. We further show

that it is possible to obtain the IDM trilepton signal at the 5σ significance level,

with an integrated luminosity of 300 fb−1.

The Left-Right Twin Higgs (LRTH) model solves the little Hierarchy problem

by taking the SM Higgs as a pseudo-Goldstone boson from the spontaneous break-

ing of a global symmetry. We focus on the discovery potential of the heavy top

quark partner in the LRTH model at the LHC. With a luminosity of 30 fb−1 at the

early stage of the LHC operation, we conclude that the heavy top partner could be

observed at a significance level above 5σ.

Supersymmetric extensions of the SM enable cancellations among loop correc-

tions to the Higgs mass from bosonic and fermionic degrees of freedom, leading to

a solution to the well-known Hierarchy problem. However, the supersymmetry has

to be broken by certain mechanism. We present an exploration of the B-physics

observables and electroweak precision data in three distinct soft supersymmetry-

breaking scenarios. Projection for future sensitivities of the precision data is also

explored.
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CHAPTER 1

THE STANDARD MODEL AND BEYOND

The Standard Model (SM) of particle physics emerged almost half a century ago and

has ever since evolved into a spectacularly successful theoretical framework. Armed

with the SU(3)C × SU(2)L × SU(1)Y gauge structure and a symmetry breaking

mechanism along with other essential ingredients, the SM describes the the strong,

the weak and the electromagnetic (EM) interactions of all the elementary particles

observed so far (Table 1.1), with astonishing precision as demonstrated by numerous

experimental tests. Despite the legacy, the SM is not complete. It is now widely

argued that the SM is a low energy effective description of nature, with the more

fundamental physics yet to be found. A variety of interesting extensions to the SM

have been proposed, awaiting experimental verification.

In this chapter, we first briefly review the key ingredients of the SM framework

relevant to later discussion: symmetry and symmetry breaking. Next, the issues with

the scalar nature of the Higgs boson and the dark matter issue are discussed. In

the following section, we introduce several interesting extensions to the SM relevant

to our study: the supersymmetric extension of the SM along with several possible

supersymmetry breaking scenarios, the Left-Right Twin Higgs (LRTH) model and

the Inert Doublet Model (IDM). In the very last sections, we give an outline of the

rest of the dissertation.

1.1 The Standard Model

1.1.1 Gauge Structure and Symmetry Breaking

The history of the SM is a journey of seeking symmetry. Attempts to extend the SM

almost exclusively follow the trend with efforts to expand the symmetry embedded in

the SM. Here we only briefly review the gauge structure and the Higgs mechanism as
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Names Notation SU(3)C , SU(2)L, U(1)Y

quarks Q = (uL, dL) (3, 2, 1
3
)

(× 3 families) uR/dR (3̄, 2, +4
3
/ − 2

3
)

leptons L = (νeL
, eL) (1, 2,−1)

(× 3 families) eR (1, 1, 2)
gluons G (8, 1, 0)

W bosons W±, W 0 (1, 3, 0)
B boson B (1, 1, 0)
Higgs Φ (1, 2, 1)

Table 1.1: Field content of the SM. Right-handed neutrino is not relevant in this
work, thus not listed.

means of spontaneous symmetry breaking. We refer to Ref. [1] for a comprehensive

review of the SM.

The SM Lagrangian

The gauge principle in the SM serves as the basis to construct theories of interacting

fields [2, 3]. The electroweak (EW) part of the Standard Model is gauged by the

SU(2)L weak-isospin symmetry and the U(1)Y hypercharge symmetry, while the

QCD Lagrangian bears the SU(3)C gauge structure [4, 5, 6]. The gauge invariant

SM Lagrangian can be written down concisely as

LSU(3)×SU(2)×SU(1) = Lgauge + Lleptons + Lquarks. (1.1)

Four vector bosons are involved in the EW interaction: three weak bosons Wµ’s

of SU(2)L and the hypercharge boson Bµ of U(1)Y , while eight Yang-Mills gluon

fields Gµ’s of SU(3)C participate in the QCD interaction. For each of the group,

we have field strength tensors F a
µν = ∂µAa

ν − ∂νA
a
µ − gfabcAb

µA
c
ν for gauge fields Aa

ν ,

where fabc’s are the structure constants of the group and g is the corresponding

coupling constant. For the special case of U(1), fabc = 0. The kinetic term for each
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gauge group can now be specified as 1

Lgauge = −1

4
F a

µνF
aµν . (1.2)

Following the notation and the choice of representation in Table 1.1, the SM

leptonic and quark terms are

Lleptons = ēRiγµDµeR + L̄iγµDµL, (1.3)

Lquarks = ūRiγµDµuR + d̄RiγµDµdR + Q̄iγµDµQ, (1.4)

where the covariant derivative is defined generally as Dµ = ∂µ + igsT
aGa

µ/2 +

igτaW a
µ/2+ig′Y Bµ/2. 2 Here gs/g/g′ are the coupling constants of SU(3)C , SU(2)L

and U(1)Y respectively. T a/2 and τa/2 stand for the generators of SU(3)C and

SU(2)L.

The introduction of the gauge symmetry brings new fields along with interactions

into the Lagrangian. The gauge fields couple with the matter content of the SM,

as well as with the gauge fields themselves due to the local feature of the gauge

symmetry, leading to fascinating phenomenology as confirmed and tested by various

experiments.

Spontaneous Symmetry Breaking and the Higgs Mechanism

Gauge invariance guarantees gauge bosons to be massless, contrary to the short

range feature of the weak interaction, which requires the intermediate bosons to be

massive. The idea of spontaneous symmetry breaking (SSB) [7, 8, 9, 10] adapted in

the SM framework resolves the issue by preserving the symmetry of the Lagrangian

but not for the vacuum.

The starting point is an additional scalar field Φ with gauge invariant Lagrangian

Lscalar = (DµΦ)+(DµΦ) − V (Φ+Φ). (1.5)

1For brevity, summation over repeated indices and families are always understood unless ex-

plicitly stated.
2This is only true for left-handed quarks. For right-handed particles, the SU(2) term is dropped;

for leptons, the SU(3) term is dropped.
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This scalar field can live in any representation of SU(2)L × U(1)Y . The simplest

choice, as in the minimal Higgs mechanism [11, 12], is one complex doublet

Φ =





φ+

φ0



 , (1.6)

with hypercharge Y = +1. The potential term V is chosen to be

V (Φ+Φ) = µ2(Φ+Φ) + λ(Φ+Φ)2, (1.7)

such that with µ2 < 0 and λ > 0, φ0 ends up with non-zero vacuum expectation

(vev) v =
√

−µ2/λ.

As the original SU(2)L × SU(1)Y symmetry breaks down to U(1)EM , three

“would-be” massless Goldstone bosons associated with three broken generators be-

come the longitudinal degrees of freedom of the gauge bosons, making physical

bosons massive. During the process, gauge eigenstates W 1 and W 2 mix together to

form mass eigenstates W±, whereas W 3 mixs with B field to form neutral boson Z

and photon γ. In addition, one physical Higgs boson emerges once the symmetry

breaking is done.

To generate masses for leptons and quarks, a Yukawa interaction part is added:

LY ukawa = − yeL̄ΦeR + h.c.

− ydQ̄ΦdR − yuQ̄ΦcuR + h.c., (1.8)

where Φc = −iτ2Φ
∗ is the charge conjugate of the Higgs field. The leptons and

quarks acquire masses during the SSB, proportional to the individual coupling y to

the Higgs scalar. 3

Experimental supports for the EW sector are concrete and solid (see Sect. 1.1.2),

yet arguments could be made against its elegance. In short, the Higgs boson receives

quadratic loop corrections from other field content in the SM due to its scalar nature,

which requires an un-natural cancellation set by hand. This is the well known

3Neutrino masses are generated quite differently. See Ref. [1] for a review of various mechanisms.
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Hierarchy problem (see Sect. 1.1.3). Another related issue is the little Hierarchy

problem (also see Sect. 1.1.3).

In the minimal SM, only one Higgs doublet is presented which manages to render

masses for all gauge and matter particles. The minimal setting in the Higgs sector

presents an opportunity when it comes to extending the SM. Intentionally placing

the Higgs in a triplet or duplicating an extra doublet (see Sect. 1.2.2) have been

proposed in phenomenologically viable models beyond the SM (BSM). Moreover,

the introduction of another set of Higgs field might be consequence of an addition

symmetry, as in the case of supersymmetry (see Sect. 1.2.1).

1.1.2 Precision Tests

Precision experiments have been essential in establishing the SM, starting from the

discovery of the weak neutral current and the intermediate vector bosons. The re-

sults in the following decades confirmed the gauge structure and the representation,

tested the loop structure and the renormalization principle. By combining experi-

mental inputs and the EW theory, the existence of the top quark was predicted and

later confirmed [13]. As these tests march towards higher and higher precision, the

power of the SM in correlating experimental observables starts to be appreciated.

However, as people now firmly believe that the SM is simply not the end of the

story, it is reasonable to expect hints of new physics from precision observables.

The precision on the chosen experimental observables has been improved a great

deal beyond the predicting power of tree-level calculations [1]. In order for a sensi-

ble comparison, high order radiative corrections must be included when computing

these observables within the SM framework. Of particular interest are the radiative

correction to the W boson mass, the effective leptonic weak mixing angle sin2 θeff

and the anomalous magnetic moment of the muon aµ = (gµ − 2)/2, which are rel-

atively more sensitive to possible new physics corrections. In connection to later

discussion, current status of MW , sin2 θeff and aµ is briefly reviewed here [1]. Later

in Chapter 3, we will discuss about these quantities evaluated in the supersymmetric

framework.
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The W boson mass can be conveniently written down in terms of the fine struc-

ture constant α and the Fermi constant GF as

M2
W

(

1 − M2
W

M2
Z

)

=
πα√
2GF

(1 + ∆r), (1.9)

where ∆r summarizes radiative corrections from higher order loops. MW is now best

measured to be 80.420 ± 0.031 GeV, compared with SM prediction 80.384 ± 0.014

GeV with QED, QCD and EW corrections up to three-loop order [14, 1]. The

effective leptonic weak mixing at the Z-pole can be written as

sin2 θeff =
1

4

(

1 − Re
gV

gA

)

, (1.10)

where gV and gA are the effective vector and axial couplings of the Z boson to quarks

and leptons once the vertex correction to Zf̄f is included [15]. SM predicts a mixing

of 0.23146 ± 0.00012, compared with Z-pole extracted mixing of 0.2316 ± 0.0018

[15, 1].

Leptonic anomalous magnetic moments, especially ae of electron, have tradi-

tionally provided precision test of the SM. Compared with ae, the muon anomalous

magnetic moment aµ is measured experimentally a few hundreds time less precisely.

However, the fact that loop corrections are mostly proportional to mµ together with

the ratio m2
µ/m

2
e ≈ 40000, makes aµ a much better test of SM and probe of new

physics. aµ receives QED contributions, electroweak correction, hadronic vacuum

polarization, etc.:

aµ = aQED
µ + aEW

µ + ahad
µ . (1.11)

The QED and EW contributions have been computed (estimated) to 5-loop and

3-loop level respectively [1]. The hadronic corrections are not calculable from first

principle, but can be evaluated from corresponding hadronic cross sections via a

dispersion integral [16]. As in Chapter 3, we make use of aSM
µ = (11659180.5 ±

4.4± 3.5± 0.2)× 10−10 (with ahad
µ estimated from e+e− data) and the final result of

Brookhaven experiment aexp
µ = (11659208.0± 6.3) × 10−10.

The excellent consistency between the SM values and the precision measure-

ments, as demonstrated above in the example of MW , sin2 θeff and aµ, leaves little
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margin for possible new physics. Thus no matter how interesting and beautiful the

proposed extensions to the SM are, contributions to precision observables must not

violate current or future experimental bounds. The precision variables can thus be

used to constrain proposed extensions to the SM.

In Chapter 2, we will show how the application of current bounds onto the pa-

rameter space of BSM models facilitate collider searches. In Chapter 3, we will take

into account additional supersymmetric loop corrections when comparing theoreti-

cal predictions with experimental observables. We present there an exploration of

electroweak precision observables (EWPO) together with B-Physics observables in

various soft supersymmetry-breaking scenarios.

1.1.3 Problems with the SM

The Standard Model is by far the greatest achievement of particle physics, which

explains three distinct forces with different strengths/ranges and passes impressively

the most rigorous experimental tests. Though the experimental energy frontier has

advanced into TeV scale, there has been no convincing evidence of new physics.

However the SM still can not be regarded as complete: there are (more than)

27 arbitrary parameters that have to be manually set; the choice of the somewhat

complicated group structure and the charge quantization is not explained; the family

structure and mixing among families are not understood fundamentally; gravity is

not incorporated, etc. We focus in this section on issues concerning the EW sector

as well as the absence of the dark matter candidate.

Hierarchy Problem

The Standard Model requires a non-vanishing vev v for the scalar field introduced

in the spontaneous symmetry breaking of SU(2)L × U(1)Y down to the observed

U(1)EM at low energy. The mass of the physical Higgs boson H is related to the

vev by m2
H = 2λv2 = −2µ2, given that λ > 0 and µ2 < 0. Through the precision

measurement in the weak sector, particularly the Fermi constant GF , we know that
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H H

f

f

S

H H

Figure 1.1: One-loop quantum correction to the Higgs mass from fermion (left panel)
and scalar (right panel).

v = (
√

2GF )−
1

2 ∼ 246 GeV. Provided λ ∼ O(1), m2
H is roughly of order (100 GeV)2.

The problem now is that any scalar mass parameter receives quantum corrections

from loops of higher order. For the Higgs boson, m2
H gets contributions from all the

SM particles, no matter whether they couple directly or indirectly. For example,

fermions in the SM give rise to loop correction depicted in Fig. 1.1, with a mass of

mf and a coupling strength of yf .

The fermionic diagram in Fig. 1.1 can be easily evaluated and yields a correction

to m2
H of

∆m2
H = −|yf |2

8π2
Λ2

UV + · · · , (1.12)

where ΛUV is an ultraviolet cutoff in momentum space 4 to regulate the integral.

ΛUV should be understood as the energy scale where new physics comes in and takes

over the high energy behavior. The integral, proportional to Λ2
UV , is quadratically

divergent. Moreover, f can be any of the SM leptons and quarks (with an extra

factor of 3 for quarks to take into account color factor). Of all the contributions,

the dominant one comes from the top quark due to the large coupling strength

4If one uses the dimensional regularization, there will be unjustifiable tuning of counter-terms

as well. See Ref. [17] for detail.
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yt ∼ O(1), which is orders of magnitudes larger than others.

A natural scale for ΛUV is the Planck scale MP lanck, if one is willing to consider

the QCD and the electroweak theory as fundamental and no new physics exists till

the energy scale where the quantum gravity effect starts to manifest. Given that

MP lanck = (8πGNewton)
− 1

2 ∼ 1019 GeV, this quantum correction is about 30 orders

of magnitudes larger than the required m2
H ∼ (100 GeV)2.

To mitigate the fine-tuning, the first natural attempt is to lower the cutoff scale.

An alternative scale is the unification scale ∼ 1015 − 1016 GeV in a unified theory of

the strong, the weak and the EM interactions, which helps little with a fine-tuning

of more than 20 orders of magnitudes. A desperate rescue is an extreme fine-tuning:

set the bare mass squared in the Lagrangian to be close to this enormous correction,

so as to magically cancel it out, leaving us m2
H ∼ (100 GeV)2. Or rather cleverly,

we could introduce new symmetries or new dynamics beyond the ones presented in

current Standard Model.

Supersymmetry (SUSY) exploits the fact that bosonic loop corrections to m2
H

are also proportional to Λ2
UV , but of the opposite sign than that from the fermion

loop. A one-loop diagram of a complex scalar particle S with mass mS and coupling

vertex λS|H|2|S|2 is given in Fig. 1.1. With exact supersymmetry, the loop correction

from the bosonic super-partner cancels precisely the contribution from the fermion

loop. However, exact supersymmetry implies degenerate masses for a particle and

its super-partner. Since we do not observe experimentally any evidence of such

degenerate masses, the supersymmetry has to be broken somehow. However, as

long as SUSY breaking is “soft” (see Sect. 1.2.1) and the mass splittings are not too

large, supersymmetry still provides acceptable cancellation.

There are alternative solutions to the Hierarchy problem without relying on

symmetry. Models with extra dimensions [18, 19] assume that gravity propagates

in, on top of the 3+1 dimensional space, extra spatial dimensions. The fundamental

Plank scale in this case M might be a lot smaller, probably around weak scale,

than the effective four-dimensional Plank scale: M2
P lanck ≈ Mn+2Vn, where Vn is the

volume of the extra space. For compactified large extra dimensions, gravity becomes
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weak because of the loss of flux to extra dimensions. It is also possible that the extra

dimensions are warped [20], in which case the extra dimension is not required to be

extremely large. Gravity is weak on the visible brane because of the exponential

warp factor in metric. Another possibility is to eliminate the fundamental scalar,

with bilinear fermion condensate taking the role of the Higgs boson and dynamically

breaking the electroweak symmetry. Technicolor models [21] fall into this category.

Little Hierarchy Problem

The little Hierarchy problem refers to the “LEP paradox” derived from the precision

electroweak measurements at LEP. Though the hierarchy involved (5 - 10 TeV) is

no where as big as the hierarchy between the Plank scale and the EW scale, it still

leaves room for quite large radiative corrections to the Higgs mass, which again

requires a fairly large amount of fine-tuning.

The self-consistency of the Standard Model, particularly the perturbative uni-

tarity condition and triviality condition lead to upper bounds on the Higgs mass.

Perturbative unitary condition, in the analysis of two-body scatterings between lon-

gitudinal bosons WL, ZL and the Higgs, requires that [22]

mH ≤ (
8π

√
2

3GF
)

1

2 ≈ 1 TeV. (1.13)

Triviality condition [23, 24] requires Higgs potential to be stable up to the scale Λ

where new physics takes over: λ(Λ) > 0. The Renormalization Group Equation

(RGE),
1

λ(Λ)
=

1

λ(mH)
− 3

4π2
log

Λ2

m2
H

, (1.14)

then implies an inequality on λ(mH). Choosing the cutoff scale Λ to be around the

unification scale or the Plank scale leads to another upper bound mH < 170GeV

[22].

On the experimental side, precision electroweak measurements performed at LEP

over the past decades indicate a light Higgs as well. The Higgs mass enters into the

electro-weak precision test (EWPT) observables through the oblique parameter S
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[25] and ∆ρ, the correction to

ρ =
M2

W

M2
Z cos2 θ

. (1.15)

A global fit of the EWPT observables within the SM has constrained the Higgs mass

below 186 GeV at 95% C.L. [1], which is consistent with the upper bounds from

unitarity and triviality conditions.

On the other hand, one could examine the same EWPT data, taking the SM

as the effective low energy approximation of some new physics high above the

electroweak scale. The new physics affects the EWPT observables through non-

renormalizable operators of dimension ≥ 5, weighted by the corresponding inverse

orders of the cutoff scale Λ:

L(E < Λ) = LSM +
∑

i,p

ci

Λp
O4+p

i , (1.16)

where ci is some dimensionless coefficient taken to be of order 1 and 4 + p is the

dimension of the operator Oi. The analysis of EWPT data leads to Λ around 5 - 10

TeV [26], resulting in a “little” hierarchy above the EW scale.

There have been several attempts to address the little Hierarchy problem. In the

little Higgs model [27], the Higgs is the pseudo-Goldstone boson of an approximate

global symmetry[28, 29]. This global symmetry is broken when more than one

coupling in the Lagrangian are non-vanishing. The collective symmetry breaking

mechanism makes the radiative corrections to the Higgs at most logarithmic; the

fine-tuning is thus well controlled [30, 31, 32]. Twin Higgs model [33, 34, 35] employs

a similar idea of imposing a global symmetry for the Higgs sector. Upon invoking a

discrete left-right symmetry [36], the quadratic contribution to the Higgs potential

respects the global symmetry. Again the leading divergence in one-loop correction

to the Higgs mass squared is at most logarithmic.

Dark Matter

A variety of observational evidence support the existence of dark matter (DM) as

major constitutes of the universe (for a recent review, see [37]). The currently most
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precise measurement of matter density comes from Wilkinson Microwave Anisotropy

Probe (WMAP) experiment (Fig. 1.2). The observational data [1] so far indicate

a total matter density of Ωmh2 = 0.133 ± 0.006, out of which baryonic matter

contributes just Ωbh
2 = 0.0227 ± 0.0006, leaving the majority un-accounted for.

0.0 0.5 1.0

0.0

0.5

1.0

1.5
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tBAO

CMB

SNe

No Big Bang

Figure 1.2: Confidence level contours of 68.3%, 95.4% and 99.7% in the ΩΛ-Ωm

plane from the Cosmic Microwave Background, Baryonic Acoustic Oscillations and
the Union SNe Ia set. Plot extracted from Ref.[38].

Further analysis of the data indicates that most of the dark matter should be

moving non-relativistically, or “cold”, which agrees with the 95% C.L upper bound

for the neutrino type dark matter, Ωνh
2 ≤ 0.00067 [1]. Furthermore, DM can-

didates must be stable on cosmological scales to be seen today. They also must

be very weakly involved in electromagnetic interaction to qualify as dark matter.

The requirements above eliminate all SM particles as valid DM candidate. Alterna-
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tives include primordial black holes, axions and weakly interacting massive particles

(WIMPs), etc.[39].

Among all DM candidates, WIMPs naturally lead to a relic density close to

the observational value, which makes it one of the most popular. In the early

universe, temperature was way above the mass mX of the candidate particle X, so

particle X was thermally abundant at the equilibrium state of the creation and self-

annihilation processes. As the universe expanded, the number density of X dropped

to a threshold below which the annihilation process stoped - particle X froze out.

It can be shown that the freeze out density of X is approximately

ΩXh2 ≈ 10−10GeV−2

〈σXX̄ |v|〉 , (1.17)

where 〈σXX̄ |v|〉 is the average annihilation cross-section multiplied by the relative

velocity. The WIMP typically has a mass around the weak scale mweak, thus

〈σXX̄ |v|〉 ∝ α2

m2
weak

≈ 10−9GeV−2, (1.18)

which leads to a relic density (∼ 0.1) naturally at the order of the observed dark

matter density.

Many extensions of the SM addressing the electro-weak symmetry breaking

(EWSB) naturally contain WIMP candidates. The stability requirement is often

easily met, since most of the extensions have to impose a discrete symmetry to

avoid large proton decay rate or large electroweak correction. The lightest parti-

cle with different parity from the SM fields would then be stable. Examples are

the lightest supersymmetric particle (LSP) in SUSY with R-parity, the lightest KK

particle (LKP) with KK-parity, the lightest inert particle (LIP) with Z2 symmetry,

etc. Any legitimate candidate must result in the right relic density and satisfy the

bounds from all current direct and indirect searches, which can be used as another

constraint on new physics models, as is demonstrated in Chapter 2 and 3.
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1.2 Beyond the Standard Model (BSM)

With all the puzzles and missing pieces, it is plausible to claim extensions to the SM

to be inevitable. A great deal of efforts have been made towards a solution to issues

associated with the current SM framework. Out of all BSM models in the literature,

we focus on three, namely the supersymmetric extension of the SM (with different

SUSY-breaking mechanisms), the Inert Doublet Model and the Left-Right Twin

Higgs model. The phenomenology of aforementioned models will be the subjects of

the investigations carried out in Chapter 2 and Chapter 3.

1.2.1 Supersymmetry (SUSY) and SUSY Breaking

The idea that SUSY might serve to solve the SM fine-tuning problem or the Hierar-

chy problem was proposed by Witten [40], Veltman [41] and Kaul [42]. The radiative

corrections to ∆m2
H from bosonic one-loop diagram and fermionic one-loop diagram

are both quadratic in Λ2
UV , but of opposite signs. A systematic cancellation is pos-

sible if the couplings of the Higgs to the scalar field is made equal to that of the

fermionic field. This fact naturally alerts for a possible symmetry - supersymmetry

- that relates bosonic degrees of freedom to fermionic ones. Exact SUSY ensures

that the neat cancellation not only occurs at one-loop, but persists to higher orders.

MSSM and Soft Breaking

One supersymmetric extension of the SM is the Minimum Supersymmetric Standard

Model (MSSM), which postulates superpartner(s) for each of the SM particles with

spin differing by a half (Table 1.2 and 1.3). Exact SUSY implies equal mass among

the pair of particle and super particle. For example selectron ẽ, the superpartner of

electron would have the same mass as electron e. However, no superpartner for the

SM particles has yet been observed so far. Thus SUSY, if it exists as to solve the

Hierarchy problem, has to be a broken symmetry. And there is no exact cancellation

between the bosonic and fermionic radiative correction to the Higgs mass squared.

However, a “softly” broken SUSY with scale msoft still manages to solve the SM
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fine-tuning problem, by lowering the Λ2
UV correction down to logarithmic order

∼ m2
soft log(ΛUV /msoft), provided that msoft is no heavier than a few TeV.

Names spin 0 spin 1
2

SU(3)C , SU(2)L, U(1)Y

squarks, quarks Q (ũL, d̃L) (uL, dL) (3, 2, 1
3
)

(× 3 families) ū ˜̄uL ūL (3̄, 1,−4
3
)

d̄ ˜̄dL d̄L (3̄, 1, 2
3
)

sleptons, leptons L (ν̃eL, ẽL) (νeL, eL) (1, 2,−1)
(× 3 families) ē ˜̄eL ēL (1, 1, 2)

Higgs, Higgsinos Hu (H+
u , H0

u) (H̃+
u , H̃0

u) (1, 2, 1)

Hd (H0
d , H

−
d ) (H̃0

d , H̃
−
d ) (1, 2,−1)

Table 1.2: Chiral supermultiplets in the MSSM

Names spin 0 spin 1
2

SU(3)C , SU(2)L, U(1)Y

gluinos, gluons g̃ g (8, 1, 0)

winos, W bosons W̃±, W̃ 0 W±, W 0 (1, 3, 0)

bino, B boson B̃ B (1, 1, 0)

Table 1.3: Gauge supermultiplets in the MSSM

From a theoretical perspective, it is reasonable to expect SUSY to be an exact

symmetry at certain high energy scale but spontaneously broken at low energy, very

much similar to the electro-weak symmetry in the SM. The mechanism for SUSY

breaking is not clear (for various conjectured SUSY breaking scenarios, see the next

few sections), however a low energy effective parametrization of the soft SUSY-

breaking terms can be formulated for phenomenological purpose. The possible gauge
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invariant soft SUSY-breaking terms are

Lsoft = − 1

2
(M3g̃

ag̃a + M2W̃
aW̃ a + M1B̃

aB̃a + h.c.)

− m2
Q̃ij

Q̃†
i Q̃j − m2

˜̄uij
˜̄u†

Li
˜̄uLj − m2

˜̄dij

˜̄d†
Li

˜̄dLj

− m2
L̃ij

L̃†
i L̃j − m2

ẽij ẽ
†
LiẽLj

− m2
Hu

H†
uHu − m2

Hd
H†

dHd − (bHuHd + h.c.)

− aij
u

˜̄uLiQ̃jHu + aij
d

˜̄dLiQ̃jHd + aij
e
˜̄eLiL̃jHd + h.c., (1.19)

where each line includes respectively: gaugino mass, squark masses, slepton masses,

Higgs mass terms and triple scalar coupling terms. To keep the cancellation in

quadratic radiative corrections to the Higgs mass at a satisfactory level, these terms

must be “soft”, i.e. the coupling and mass parameters are associated with a char-

acteristic mass scale msoft ∼ TeV.

It has been shown [43] that there are a total of 105 new parameters (masses,

phases and mixing angles) in the above soft SUSY-breaking terms. Fortunately,

experiments on flavor-mixing or CP -violating processes constrain severely most of

the soft parameters. Usually the hypothesis of “soft SUSY-breaking universality” is

assumed, where masses of the squarks and sleptons with the same quantum numbers

are degenerate and the triple scalar coupling matrix is proportional to the corre-

sponding Yukawa matrix with no CP -violating phase introduced. Furthermore, the

above principle is assumed to hold at some very high SUSY-breaking scale specific to

the underlying SUSY-breaking mechanism. The relations among the SUSY-breaking

parameters should then be understood as the boundary conditions on the Renor-

malization Group (RG) running of the soft parameters. Once being evolved to the

EW scale, the relations no longer hold. But the violations are usually “minimal”,

in the sense that the resulting flavor-changing and CP -violating observables are

acceptably small.

For the supersymmetry to be spontaneously broken at the SUSY-breaking scale,

one could construct models where either the D-terms [44] or the F -terms [45] de-

velops a vev. However, it has been shown that the former does not lead to an



28

acceptable spectrum and there is no gauge singlet in MSSM with F -term that could

develop a vev [45]. Thus it is necessary to add a SUSY breaking sector (the hidden

sector), that is responsible for the breaking and communicates with the MSSM (the

visible sector). Three SUSY breaking scenarios are briefly examined below.

Constrained MSSM

In the constrained MSSM (CMSSM) [46], SUSY-breaking occurs in a hidden sector

where the auxiliary field F for certain chiral supermultiplet develops a vev 〈F 〉. The

hidden sector communicates with the visible sector through gravitational interaction

terms which are suppressed by the Planck scale MP lank. The soft terms in the visible

sector should be msoft ∼ 〈F 〉/Mplank, since msoft → 0 when there is no breaking

〈F 〉 → 0 and when gravity effect is negligible MP lank → ∞.

In the minimal form of CMSSM, the soft terms take a simple pattern:

M3 = M2 = M1 = m1/2, (1.20)

m2
Q̃

= m2
˜̄u = m2

˜̄d
= m2

L̃
= m2

ẽ = m2
01, (1.21)

m2
Hu

= m2
Hd

= m2
0, (1.22)

au = A0yu, ad = A0yd, ae = A0ye, (1.23)

where the high energy parameters satisfy

m1/2 ∼
〈F 〉

Mplank
, m2

0 ∼
〈F 〉2

M2
plank

, A0 ∼
〈F 〉

Mplank
. (1.24)

To have msoft around TeV scale,
√

〈F 〉 must be of order 1010 GeV.

The set of parameters that fully specify the CMSSM is thus

{m0, m1/2, A0, tanβ, sign(µ)}, (1.25)

where tanβ and sign(µ) are, respectively, the ratio of the two Higgs vev’s and the

sign of the coefficient µ of the Higgs mass term in the superpotential.
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mGMSB

In the minimal gauge-mediated supersymmetry breaking (mGMSB) [47], the scalar

S and corresponding auxiliary field FS acquire vev’s during SUSY breaking in the

hidden sector. The effect of SUSY breaking is then mediated by these messenger

particles through radiative correction to the MSSM masses and couplings.

For example, the gaugino masses at one-loop order and scalar masses at two-loop

order are

Ma =
αa

4π
ΛNmess, (1.26)

m2
φi

= 2Λ2Nmess

3
∑

a=1

Ca(i)
(αa

4π

)2

, (1.27)

where Nmess are the number of copies of messengers and Λ = 〈FS〉/〈S〉 is the ratio of

the SUSY breaking vev’s. In the above equation, the αa’s and Ca’s are the coupling

strength and the Casimir invariants of the SU(3)c × SU(2)L × U(1)Y groups. The

au, ad and ae can be taken as zero, since the messenger loop corrections are greatly

suppressed.

The general feature of this type of SUSY breaking scenarios is that the strongly

interacting sparticles are heavier than weakly interacting sparticles, due to the cou-

pling strength difference. Another interesting conclusion is that the LSP is most

likely to be the gravitino.

The complete set of parameters that fully characterize the mGMSB is

{Mmess, Nmess, Λ, tanβ, sign(µ)}, (1.28)

where Mmess is the overall mass scale of the messengers and Mmess ∼ 〈S〉.

mAMSB

In the minimal anomaly mediated supersymmetry breaking (mAMSB) [48], SUSY

breaking occurs in a hidden brane separated certain distance away from the MSSM

brane on an extra spacial dimension. During the spontaneous symmetry breaking,
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the auxiliary field develops a vev on the hidden brane:

〈F 〉
Mplank

∼ maux. (1.29)

The SUSY breaking is then transmitted to the MSSM brane through non-zero beta

functions and anomalous dimensions of the couplings and fields [47, 48, 17] in loop

diagrams:

Ma = mauxβga
/ga, (1.30)

(m2)i
j =

1

2
m2

aux

[

βga

∂γi
j

∂ga

+

(

βykmn

∂γi
j

∂ykmn
+ c.c.

)]

, (1.31)

aijk = −mauxβyijk , (1.32)

where the β’s are the beta-functions and γ’s are the anomalous dimensions [47, 48,

17].

It is however found that the slepton masses squared are negative. For remedy, a

common phenomenological ad-hoc parameter m2
0 is usually added to all the scalar

masses at SUSY-breaking scale.

The complete set of parameters that fully characterize the mAMSB is thus

{maux, m0, tanβ, sign(µ)}. (1.33)

1.2.2 Inert Doublet Model

In the SM, electroweak symmetry breaking is triggered by a single Higgs doublet

once the T3 = −1
2

component develops a vev. This is just the “minimal” version of

the Higgs mechanism. Higgs sector could take the form of a triplet [49] instead, or

multiple copies of the Higgs doublets, as in the MSSM where an extra doublet is

added.

The Inert Doublet Model extends the Higgs sector with a new Higgs doublet and

imposes a Z2 symmetry under which

Φ1 → Φ1, Φ2 → −Φ2. (1.34)
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Here Φ1 acts like the SM Higgs in EWSB with a vev for the neutral component

〈Φ0
1〉 = 246 GeV while the Φ2 does not contribute to the EWSB: 〈Φ2〉 = 0. The new

Higgs doublet does not couple to fermions in the SM due to the Z2 symmetry, thus

dubbed “inert”. However, the inert sector does couple to the gauge bosons.

The IDM, simple as it is, finds applications in explaining the neutrino mass

through a radiative seesaw mechanism [50], constructing loop-level electroweak sym-

metry breaking [51], rendering a natural candidate for the dark matter and solving

the naturalness problem [52] (the Little Hierarchy problem) posed by electroweak

precision data. Most interestingly, it accommodates naturally a heavy Higgs [52].

Scalar Potential and Mass Spectrum of the IDM

Upon imposing this Z2 symmetry, the most general CP -even scalar potential of

dimension up to 4 takes the form

V = µ2
1|Φ1|2 + µ2

2|Φ2|2 + λ1|Φ1|4 + λ2|Φ2|4

+ λ3|Φ1|2|Φ2|2 + λ4|Φ†
1Φ2|2 +

[

λ5

2
(Φ†

1Φ2) + h.c.

]

. (1.35)

After EWSB is triggered by the vev of Φ1,

Φ1 =





0

v+h√
2



 , (1.36)

the scalar spectrum of the model comprises the usual SM Higgs h (the neutral, CP -

even degree of freedom in Φ1), as well as four additional fields corresponding to the

four degrees of freedom in Φ2,

Φ2 =





H†

S+iA√
2



 . (1.37)

These include a pair of charged scalars H±, a neutral, CP -even scalar S, and a

neutral, CP -odd scalar A. The masses of these scalars, given in terms of the six
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free parameters5 {µ2
2, λ1, λ2, λ3, λ4, λ5} in Eq. (1.35), are

m2
h = 2λ1v

2, (1.38)

m2
H± = µ2

2 + λ3v
2/2, (1.39)

m2
S = µ2

2 + (λ3 + λ4 + λ5)v
2, (1.40)

m2
A = µ2

2 + (λ3 + λ4 − λ5)v
2/2. (1.41)

Also present in the potential, are the couplings from the inert scalars S and A

to the SM Higgs h:

λ3vhH+H− +
1

2
(λ3 + λ4 + λ5)vhSS +

1

2
(λ3 + λ4 − λ5)vhAA, (1.42)

which opens new decay channels for the SM Higgs:

h → SS, AA, H+H−. (1.43)

The SM Higgs decay width as well as the branching ratios can be significantly altered

in certain region of the parameter space [52, 53].

A Heavy SM Higgs

One of the fascinating aspects of the IDM is that it naturally accommodates a

heavy Higgs with mass up to 400 GeV – 600 GeV without violating the electroweak

precision data. Now since the Higgs mass is raised, a relatively larger cutoff scale in

the quadratic divergence can be regarded as tolerable, concerning the “naturalness”

of the model and the relative amount of fine-tuning. This is another approach of

addressing the “LEP paradox” [26].

It is often quoted that the electroweak precision observables indicate a light

Higgs: mh < 186 GeV at 95% C.L. [1]. This is obvious upon examining the mh

effect on the the oblique parameters S and T [25]:

∆T ≈ − 3

8π
log

mh

mZ
, (1.44)

∆S ≈ 1

6π
log

mh

mZ

. (1.45)

5The seventh parameter µ2
1 appearing in Eq. (1.35) is fixed by the constraint v2 = −µ2

1/λ1 from

EWSB.
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A sufficiently large mh would easily induce an escape from the experimental limits.

As shown in Fig. 1.3, a Higgs of 400 – 600 GeV walks away from the precision bound

by a ∆T ∼ −0.25. However it should be noted that, the aforementioned analysis of

the electroweak precision data which leads to the Higgs mass bound is performed

within the minimal SM framework, in absence of any new physics.
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Figure 1.3: STU contour in the SM. The solid ellipse represents the 68% C.L.bound.
Plot extracted from Ref.[38].

In the IDM, the story is different. The additional inert doublet brings T back

to the 68% C.L. ellipse by contributing another piece [38]:

∆T =
1

32π2αv2
[f(mH±, mA) + f(mH± , ms) − f(mA, mS)] , (1.46)

where the function f is defined as

f(m1, m2) =
m2

1 + m2
2

2
− m2

1m
2
2

m2
1 − m2

2

log
m2

1

m2
2

. (1.47)

To have a compensating ∆T ∼ +0.25, it is sufficient to require the masses squared

to follow

(mH± − mS)(mH± − mA) ≈ (120GeV)2. (1.48)
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As long as the charged inert scalar is heavier than both of the neutral scalars,

the inert sector produces a positive ∆T . It is shown that there exists regions in

the parameter space of the IDM where the above equation holds while being phe-

nomenologically viable.

The parameter space of the IDM is fairly high-dimensional, however it is sub-

ject to a number of constraints (details in Sect. 2.1). On the theoretical side, the

parameters are restricted by the vacuum stability requirement and perturbativity

consideration. Experimentally, electroweak precision measurements exclude pro-

cesses W± → SH±, AH±, Z → SA, H+H−, each leading to a restriction on the

masses of the S, A and H±. Bounds obtained from direct search for neutralino in

supersymmetric model at LEP can be translated [38] into that applicable to the

IDM. Fig. 1.4 shows the LEP exclusion region in the mS–mA plane. Lastly, the

IDM is also subject to limits from various dark matter detection/measurements.

The unbroken Z2 symmetry guarantees the lightest inert particle to be absolutely

stable, and due to the “inert” feature, it arises as a perfect candidate for a WIMP

dark matter.
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Figure 1.4: LEP exclusion region in the mS–mA plane. A different notation is
understood here: S for H0 and A for A0. Plot extracted from Ref. [38].
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The IDM manages to address the little Hierarchy problem by raising the mass

of the SM Higgs, such that the relative fine-tuning is tolerable. However, there are

other models with different mechanisms that also successfully reduce the level of

fine-tuning. The Left-Right Twin Higgs model, for example, is one of the promising

conjectures.

1.2.3 Left-Right Twin Higgs Model

The twin Higgs model employs the idea of the Higgs as a pseudo-Goldstone boson

from the spontaneous breaking of a global symmetry. The gauge interactions and

Yukawa interactions break the global symmetry, resulting in a potential for the

Goldstone bosons, in particular the Higgs boson. If an additional discrete symmetry

is imposed, the quadratic term in the radiative correction to the Higgs potential

would respect the global symmetry, such that it does not contribute to the Higgs

mass. The level of fine-tuning is greatly lowered, because now the leading divergence

is only logarithmic at most.

In the LRTH model, the left-right symmetry is chosen as the discrete symmetry.

Additional Higgs scalars are introduced into the model, as well as several heavy

particles, such as heavy gauge bosons, heavy top quark, which lead to rich collider

phenomenology.

Higgs as a Pseudo-Goldstone Boson

Consider a complex Higgs field H that resides in the fundamental representation of

a global U(4), with a scalar potential of the form

V = µ2H†H + λ(H†H)2. (1.49)

To embed the SM gauge structure, the SU(2)L × SU(2)R × U(1)B−L subgroup is

gauged. To make clear the gauge feature, the Higgs field can be expressed as

H =





HL

HR



 , (1.50)
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where HL is the SU(2)L doublet and HR is the SU(2)R one.

Once the global symmetry is spontaneously broken U(4) → U(3), the Higgs field

H would develop a vev

〈H〉 =















0

0

0

f















, (1.51)

with f = µ/
√

2λ and produce 7 massless Goldstone bosons. 〈HR〉 breaks the

SU(2)R × U(1)B−L down to the U(1)Y of the SM. Three of the seven Goldstone

bosons are absorbed into the longitudinal components of the gauge bosons associ-

ated with SU(2)R: W±
H and ZH . The subscript H reflects the fact that these gauge

bosons are quite heavy with mass ∼ gf , where g is the gauge coupling, so as to

avoid constraints from electroweak precision measurements. The remaining of the

Goldstones from HL would be identified as the SM Higgs, which is going to break

the electroweak symmetry when acquiring a vev.

Left-right Symmetry

The global U(4) symmetry of the Higgs potential is in fact explicitly broken by the

gauged subgroup or gauge interactions in the Lagrangian, thus the would-be Gold-

stone bosons are expected to receive masses proportional to the explicit breaking.

Gauge loops, for example, thus contribute to the Higgs potential quadratically

at the leading order

∆V =
9g2

LΛ2

64π2
H†

LHL +
9g2

RΛ2

64π2
H†

RHR + · · · , (1.52)

where the gL/R are the gauge couplings for the left and right SU(2) gauge group

and Λ is the cutoff of the theory.

Upon imposing a parity symmetry which equates gL = gR ≡ g, the correction to

the Higgs potential becomes

∆V =
9g2

LΛ2

64π2
H†H + · · · . (1.53)
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The quadratic piece now respects the global U(4), thus will not contribute to the

would-be Goldstone boson masses. The leading order divergence in the mass is then

logarithmic at most. The mirror symmetry [54] could take the role of the parity here,

however it would leads to an additional complete mirror copy of the SM particles.

The left-right symmetry [55] does a better job, introducing a minimum set of new

particles.

The fermions in the model are also made left-right symmetric:

QL = (u, d)L, LL = (ν, e)L,

QR = (u, d)R, LR = (ν, e)R. (1.54)

The up/down type Yukawa interactions arise from the non-renormalizable terms

Q̄LHRH†
LQL + L̄RHRH†

LLL

Λ
+ h.c.,

Q̄RH†
RHLQL

Λ
+ h.c., (1.55)

that reduce to the SM Yukawa interaction when HR acquires a vev. In particular,

small Dirac mass terms can be generated for the neutrino. It is also possible to

include large Majorana mass terms for νR, which renders small neutrino mass via

seesaw mechanism.

To obtain large Yukawa coupling for the top quark, added into the model are

new vector-like quarks TL and TR that transform as [1, 1, 4/3] and [1, 1, 4/3] under

SU(2)L × SU(2)R × U(1)B−L:

(yQ̄RH†
RTL + yQ̄LH†

LTR + MT̄LTR) + h.c.. (1.56)

The right-handed SM top quark is a mixture of the up-type in QR and TR, The

mass eigenstates in the top sector is a light SM top plus a heavy top tH .

The idea of the Higgs as a pseudo-Goldstone boson and the left-right symmetry

work well, except that it is necessary to have large mass for SU(2)R gauge bosons to

avoid the electroweak precision bounds, requiring f higher than ∼ 2 TeV [56], which

tends to have a fair amount of fine-tuning re-introduced by the contribution from
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the top sector. The solution is to add another Higgs field Ĥ = (ĤL, ĤR) exactly

like H , except that it couples only to the gauge sector, but not to the fermions,

in particular not to the top quark. Otherwise the heavy top obtains a mass ∼ yf̂

around a few TeV, which contributes excessively to the loop correction to the Higgs

mass due to the large Yukawa coupling of top, thus in turn increase the level of

fine-tuning. A matter parity is imposed to ensure the absence of coupling from Ĥ

to matter fields. It is then possible to have the vev f̂ of Ĥ around a few TeV in

order for large SU(2)R gauge boson masses, while keeping f around a few hundred

GeV.

The Heavy Top Quark

As mentioned earlier, to account for the O(1) top Yukawa coupling and a top mass

around the weak scale, a pair of vector-like quarks are introduced as in Eq.(1.56).

Once the Higgs field H = (HL, HR) develops a vev, a light SM top quark and a

heavy top quark emerge, with masses

m2
t ∼ y2f 2 sin2 x − M2 sin2 x ∼ (

yv√
2
)2, (1.57)

m2
tH

= y2f 2 + M2 − m2
t , (1.58)

where M controls the mixing between the light and heavy top quarks.

Direct search for the heavy top quark tH at the Large Hadron Collider (LHC)

might provide evidence for the twin Higgs mechanism and discrimination from the

little Higgs models. At the LHC, the heavy top quark could be produced via single

production or pair production process. Due to the large mass of tH , the phase space

for the pair production is severely limited.

The s–channel with resonances W/WH dominates the single production, as com-

pared to the t–channel W/WH exchange process. Once the heavy top quark is

produced, it primarily decays into φ+ + b, followed by φ+ decay into the SM final

states: pp → T b̄ → φ+bb̄ with φ+ → tb → l+νbb. The signal to look for at the LHC

is then l + 4 b-jets + 6ET . The heavy top quark production differs from the SM
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backgrounds with the same final states (such as tt̄ and QCD W + 4 jets) in that

the b-jet associated with the single heavy top quark production is very energetic.

Furthermore, b-tagging might also help reducing the SM backgrounds.

1.3 Outline

The rest of the thesis is organized as follows.

Chapter 2 presents comprehensive case studies of direct search for new physics at

the LHC. In Sect. 2.1, we first outline the IDM framework and present the investi-

gation of the discovery potential of IDM through dilepton channel, over a variety of

phenomenologically motivated regions. We further discuss the supplementary trilep-

ton signature of the IDM at the LHC. In Sect. 2.2, we review the setup of the LRTH

model and experimental constraints, followed by a study of the phenomenology, in

particular, the heavy top quark partner at the LHC. Part of the results presented

in Chapter 2 is published as in Ref. [57, 58].

In Chapter 3, we explore low energy B-physics observables and electroweak preci-

sion data in the CMSSM, the mGMSB and the mAMSB mechanism. The framework

and parameters of the three scenarios are first introduced in Sect. 3.2, followed by an

outline of the precision observables under consideration in Sect. 3.3. χ2 analysis of

the three scenarios is presented in Sect. 3.4. Finally, we discuss future sensitivities of

the precision observables in Sect. 3.5. This section is based on the paper published

as in Ref. [59].

In Chapter 4, we summarize the the results presented and conclude.
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CHAPTER 2

COLLIDER SIGNATURE OF THE BSM PHYSICS

With the Large Hadron Collider (LHC) turned on, the particle physics is entering

in to an exciting, unique era. Operating at a center-of-mass energy of 7 - 14 TeV –

far beyond the operating energy at Tevatron, the LHC is probing directly the TeV

territory, with the potential to reveal new physics beyond the Standard Model (SM).

One of the high hopes for the LHC is to unveil the missing Higgs boson in the

SM and the mechanism responsible for the electroweak symmetry breaking (EWSB).

There have also been alternative proposals concerning the EWSB to the minimal

Higgs mechanism, which are likely to show up at the LHC. Here we focus on two

of them: the Inert Doublet Model (IDM) and the Left-right Twin Higgs (LRTH)

model. In this chapter, we present the investigation of the collider signatures and

the prospects of uncovering these two models at the LHC.

2.1 The Inert Doublet Model at the LHC

The Inert Doublet Model [60] (IDM) is one of the simplest extensions of the Standard

Model (SM), yet it is also one of the most versatile. Perhaps the most intriguing of

these stems from the recent observation [52] that the fields of this additional scalar

doublet can provide a positive contribution to the oblique T parameter [61] sufficient

to render a SM Higgs mass of mh = 400−600 GeV consistent with precision data [62].

A host of other potential applications for inert1 doublets exist as well. These range

from explaining the lightness of neutrino masses via a one-loop radiative see-saw

1The descriptor “inert” is applied to the additional scalar doublet in the IDM in order to

indicate that it does not couple to the SM fermions. We will therefore continue to refer to the

fields this doublet comprises as “inert” particles, even though these particles are not truly inert in

the sense that they have SM gauge interactions.
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mechanism [50] to the loop-level induction of electroweak-symmetry breaking [51]

to engineering successful grand unification [63]. Furthermore, the model yields a

natural dark matter candidate in the form of the lightest inert particle (LIP), whose

absolute stability is guaranteed by an unbroken Z2 symmetry. Studies of the relic

abundance of LIP dark matter [64, 65], as well as its prospects for indirect detection

via neutrino [66], cosmic-ray positron and antiproton [67], and gamma-ray [68, 69]

signatures, and for direct detection [70] have also been performed.

Since the coupling structure of the fields of the additional scalar doublet in the

IDM differs from that of typical two-Higgs doublet models (2HDM) in the man-

ner discussed above, the collider phenomenology of the IDM also differs markedly

from that of such 2HDM. It is therefore worthwhile to investigate the prospects for

detecting the additional fields of the IDM via their decay signatures at the LHC.

In this section, we focus on the dilepton/trilepton (plus missing energy) channel,

which turns out to be one of the most auspicious channels in terms of its discov-

ery potential. Some preliminary, parton-level studies of this channel have been

conducted [71] within one particular region of parameter space. Here, we present

a more comprehensive, detector-level analysis in which we investigate a variety of

different benchmark regions motivated by dark-matter studies, etc., and assess the

prospects for observing ℓ+ℓ− + 6ET and ℓ+ℓ−ℓ± + 6ET signal at the LHC in each

regime. We note that the results of this analysis, although conducted in the context

of the IDM, should also be applicable to other extensions of the SM with similarly-

modified scalar sectors, as long as the extra scalars in those extensions have similar

decay patterns to those in the IDM.

We begin in Sect. 2.1.1, summarizing the theoretical and experimental con-

straints to which the model is subject. We outline a set of representative benchmark

points which correspond to phenomenologically interesting regions of the parame-

ter space in which all of these constraints are satisfied. In Sect. 2.1.2, we discuss

dilepton production in the IDM, as well as the SM backgrounds for ℓ+ℓ− + 6ET at

the LHC, and we outline the event-selection criteria we use to differentiate signal

events from those produced by these backgrounds and present our numerical results.
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In Sect. 2.1.3, we discuss trilepton production in the IDM and outline the event-

selection criteria we use to differentiate the trilepton signal from the SM background.

We then proceed to present our numerical results and discuss the LHC discovery

potential for each of our benchmark scenarios.

2.1.1 Model Constraints and Benchmarks

For pheonomenological purpose, it will be useful to parametrize the model using

the alternative parameter set {mh, mS, δ1, δ2, λ2, λL}, where δ1 ≡ mH± − mS, δ2 ≡
mA − mS, and λL ≡ λ3 + λ4 + λ5. This parametrization is particularly useful in

that it characterizes the model in terms of physically significant quantities such as

particle masses, mass splittings, and λL: the coefficient which controls the trilinear

hSS and quartic hhSS couplings.

A variety of considerations, stemming both from theoretical consistency 2 con-

ditions and from experimental bounds, constrain the IDM. Below, we briefly sum-

marize these constraints, which were discussed in detail in Ref. [65].

• Perturbativity:

λ2
3 + (λ3 + λ4)

2 + λ2
5 < 12λ2

1, λ2 < 1. (2.1)

• Vacuum stability:

λ1 > 0, λ2 > 0,

λ3 > −2
√

λ1λ2, λ3 + λ4 − |λ5| > −2
√

λ1λ2. (2.2)

• Limits from direct collider searches:

First of all, the excellent agreement between the experimentally-measured val-

ues for ΓW and ΓZ obtained from LEP and Tevatron data [72] and the pre-

dictions of the SM requires that

2mS + δ1 > MW , 2mS + δ1 + δ2 > MW ,

2mS + δ2 > MZ , 2mS + 2δ1 > MZ , (2.3)

2Of course, it is in some sense from personal aesthetic point of view.
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in order that the decays W± → SH±, AH± and Z → SA, H+H− are kine-

matically forbidden.

Second of all, bounds on the invisible decays of the Higgs boson from LEP

data [73] also serve to constrain scenarios in which the Higgs is light and

mh > 2mS. In this section, however, we will be primarily concerned with

cases in which mh > 114 GeV, for which the bounds from the searches on

invisible Higgs decay do not apply.

Third and finally, one can consider limits arising from direct searches for H±,

A, and S, both at LEP and at the Tevatron [74, 75]. It should first be noted

that the standard limits on additional charged and neutral Higgs scalars do

not apply, because the standard search channels from which they are derived

generally involve the couplings of such scalars to fermions, which are absent

in the IDM. On the other hand, bounds derived from the non-observation of

e+e− → χ0
1χ

0
2 [76] and e+e− → χ+

1 χ−
1 [77] decays in supersymmetric models

can be used to constrain the IDM parameter space, since e+e− → SA and

e+e− → H+H− in the IDM lead to similar signals. A detailed analysis of the

constraints on e+e− → SA in the IDM based on LEP II searches for e+e− →
χ0

1χ
0
2 was conducted in Ref. [38], which showed that regions of parameter

space with mS ≤ 80 GeV and mA ≤ 100 GeV for δ2 ≥ 8 GeV had been ruled

out. For δ2 ≤ 8 GeV, however, only the LEP I constraint mS + mA > MZ

applies. A rough bound of mH± ≥ 70 − 90 GeV [78] can also be derived

from the LEP e+e− → χ+
1 χ−

1 limit by making the necessary modifications to

account for the difference in cross-section between fermion-pair and scalar-

pair production. Taking these considerations into account, we will henceforth

restrict our attention to models for which mH± > 80 GeV.

• Electroweak precision constraints:

Electroweak precision measurements set limits on contributions from the ad-

ditional Higgs doublet to the oblique S and T parameters [61]. We consider a

given parameter choice to be consistent with electroweak precision constraints
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as long as the overall values of S and T it yields, once all contributions are

taken into account, lie within the 68% C.L. ellipse determined by the LEP

Electroweak Working Group [79]. For a light SM Higgs, with mh ≤ 200 GeV,

the constraint is weak as long as δ1 and δ2 are of roughly the same order. For a

heavy SM Higgs, a large splitting between H± and S is preferred, and δ1 > δ2.

• Dark matter relic density:

One of the attractive aspects of the Inert Doublet Model is that it can provide

a viable WIMP dark matter candidate in the form of a stable, neutral LIP. The

model is therefore constrained by experimental limits on the relic density of

dark matter in the universe. In what follows, we will assume that the LIP relic

density represents the dominant component of ΩDMh2 and falls within the 3σ

range of the dark-matter density of the universe as measured by WMAP [80]3:

0.085 < ΩDMh2 < 0.139. A detailed examination of the relic density of a

CP -even scalar LIP in the IDM was conducted in [65]. It was found that the

correct dark-matter relic density could be realized in several distinct regions of

parameter space in which all the aforementioned theoretical and experimental

constraints were also satisfied. For a light SM Higgs with mh ∼ 120 GeV, two

scenarios are possible. The first of these involves a light LIP with mS ∼ 40 −
80 GeV and mass splittings δ1 and δ2 which are sizable, but of the same order.

The second involves a heavier dark matter particle with mS ≥ 400 GeV and

relatively small mass splittings. For a heavy SM Higgs with mh ≥ 400 GeV,

the regions which the constraints leave open are those in which mS ∼ 80 GeV

and δ1 > δ2, with both δ1 and δ2 relatively large, or mS ∼ 50−75 GeV, δ2 ≤ 8

GeV with a large δ1.

In Table 2.1, we define a set of benchmark points, each designed to represent a

particular region of the remaining, “habitable” parameter space, with an eye toward

its collider phenomenology. We emphasize that each benchmark point in Table 2.1

3In the event that additional sources contribute to ΩDMh2, only the upper bound applies.
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Benchmark mh (GeV) mS (GeV) δ1 (GeV) δ2 (GeV) λL

LH1 150 40 100 100 −0.275
LH2 120 40 70 70 −0.15
LH3 120 82 50 50 −0.20
LH4 120 73 10 50 0.0
LH5 120 79 50 10 −0.18
LH6 130 40 100 70 −0.18
LH7 117 37 70 100 −0.14
LH8 120 78 70 35 −0.18
HH1 500 76 250 100 0.0
HH2 500 76 225 70 0.0
HH3 500 76 200 30 0.0

Table 2.1: A list of benchmark points used in our analysis, defined in terms of
the model parameters {mh, mS, δ1, δ2, λL}. Dark matter relic density and collider
phenomenology of the IDM depend little on λ2, which is set to 0.1 for all benchmark
points. The points LH1 − LH8 involve a light (120 GeV ≤ mh ≤ 150 GeV) Higgs
boson, while the points HH1 − HH3 involve a heavy (mh = 500 GeV) Higgs.

is consistent with all of the applicable constraints detailed above, and that each

yields an LIP relic density that falls within the WMAP 3σ range for ΩDMh2.

The first regime of interest involves a light SM Higgs with mh < 200 GeV. For

such Higgs masses, as discussed above, the electroweak precision constraints are not

terribly stringent, and a wide variety of possible particle spectra are permissible. We

have included five different benchmark points in our analysis which correspond to

this regime (labeled LH1−LH5 for “light Higgs”), the properties of which are listed

in Table 2.1. These points are representative of the set of possible scenarios which

differ qualitatively from the perspective of a dilepton-channel analysis at the LHC.

The points LH1 and LH2 both represent cases in which the LIP is light (∼ 40 GeV)

and δ1 and δ2 are large and of the same order. However, for the point LH1, δ1 > MW

and δ2 > MZ , meaning that both H± and A can decay on shell (to SW± and SZ,

respectively), whereas for LH2, δ1 < MW and δ2 < MZ , so only three-body decay is

kinematically accessible. A slightly larger Higgs mass mh = 150 GeV is mandated

in LH1 by perturbativity constraints. However, the collider phenomenology of S, A
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and H± — at least as far as the dilepton channel is concerned — does not depend

significantly on the value of mh, as will soon be made apparent.

Points LH3−LH5 all correspond to situations in which mS ∼ 80 GeV, but each

represents a different relationship between δ1 and δ2. The point LH3 represents a

situation similar to that embodied by LH2, in which δ1 and δ2 are on the same

order and on-shell decays to SA and SW± are inaccessible. Larger values of δ1,2 >

MW,Z are disfavored by the aforementioned battery of constraints. The point LH4

represents the case of intermediate δ2 and small δ1, while the point LH5 represents

the opposite situation, in which δ1 is of intermediate size and δ2 is small. It is also

possible to realize a situation similar to that of LH4, but with δ2 > MZ and hence

on-shell A decay. The dilepton-channel analysis in this case would be similar to

that in LH1 and HH1. Another possibility would be a point similar to LH5, but

with δ1 > MW , so that on-shell H± decays would be allowed. However, as will be

explained in more detail below, the dilepton-signal contribution from H+H− decay is

hard to disentangle from the SM W+W− background. Consequently, varying δ1 has

little effect on the observability of the dilepton signal via SA associated production,

by far the most useful production process for discovery at the LHC.

The second regime of interest involves a heavy SM Higgs with mh ≥ 400 GeV.

A large splitting between H± and S is required to satisfy the constraints from elec-

troweak precision measurements in this case. Broadly speaking, these constraints,

taken in tandem with relic-abundance considerations, prefer δ1 to be quite large

(and generally much larger than δ2) and the LIP mass to lie within the range

mS ≈ 70 − 80 GeV [65]. This parameter-space regime is represented by the bench-

mark points HH1−HH3 (where “HH” stands for “Heavy Higgs”) in Table 2.1. The

point labeled HH1 represents the case in which δ2 > MZ and A decays proceed

via an on-shell Z intermediary, while the point HH2 represents the case in which

δ2 < MZ , and the decay A → SZ is kinematically inaccessible. HH3 is similar

to HH2, but has a small δ2 = 30 GeV. Since precision constraints generally dic-

tate that m±
H > mA > mS if S is to be the LIP, these three cases encapsulate

the only qualitatively different possibilities in this regime from the perspective of
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dilepton-channel analysis. It is worth noting that another region of parameter space

does exist in which all the aforementioned constraints are satisfied: one in which

50 GeV ≤ mS ≤ 75 GeV and the mass splitting δ2 is very small (δ2 ≤ 8 GeV).

However, a dilepton signal tends to be exceedingly difficult to observe in scenarios

of this sort, due to the softness of the jets and leptons in the final states. For this

reason, we do not include a representative benchmark point for this region in the

present study.

For the other allowed region of parameter space — that in which mS ≥ 400 GeV

and the mass splittings δ1 and δ2 are relatively small — no benchmark points have

been included in this study. This is because a scenario of this sort does not yield

a detectable signal in the dilepton channel. One reason for this is that the pair-

production cross-sections for the inert scalars are highly suppressed due to their

heavy masses. Another is that the jets and leptons produced during H± and A

decays will be quite soft, owing to the small size of the mass splittings. Therefore,

although it remains a phenomenologically viable scenario, we will not discuss this

possibility further in this chapter.

2.1.2 Dilepton Signature at the LHC

Signals, Backgrounds, and Event Selection

Let us now turn to examine the signal and background processes relevant to an

analysis of the dilepton channel in the IDM at the LHC. The inert scalars H±, A,

and S can be pair-produced directly at the LHC by Drell-Yan processes involving

virtual photons and W±, Z bosons:

qq̄ → Z → AS, qq̄ → Z/γ∗ → H+H−,

qq̄′ → W± → AH±, qq̄′ → W± → SH±. (2.4)

In Table 2.2, we listed the production cross-sections for SA, H+H−, SH±, and

AH± at the LHC for the various benchmark points defined in Table 2.1. Once so

produced, the unstable H± and A bosons further decay to lighter states plus W (∗)
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Benchmark σSA σH+H− σSH± σAH±

(fb) (fb) (fb) (fb)
LH1 289.2 69.8 503.3 125.2
LH2 628.8 163.6 1055.1 299.0
LH3 179.9 86.0 319.0 154.9
LH4 248.9 440.2 1050.3 370.1
LH5 465.5 93.3 352.9 302.3
HH1 91.8 2.9 25.4 13.5
HH2 152.0 4.0 33.0 20.5
HH3 336.7 5.6 43.7 35.2

Table 2.2: Leading-order cross-sections for the associated production of SA, H+H−,
SH±, and AH± at the LHC, with center-of-mass energy

√
s = 14 TeV, for the

various benchmark points defined in Table 2.1.

or Z(∗). Depending on how H± and A decay, a number of final states are possible.

Each of these states, as required by matter parity, includes precisely two LIPs, as

well as a number of jets, charged leptons, and neutrinos.

The presence of sizable QCD backgrounds for final states involving one or more

jets renders such states difficult to use for discovery; final states involving charged

leptons alone, on the other hand, have far smaller SM backgrounds and hence are

far more auspicious in terms of their LHC discovery potential. A single lepton plus

missing ET signal would be difficult to resolve, due to the huge SM W background,

but a variety of multi-lepton signatures initiated by the electroweak processes enu-

merated above may be observable at the LHC. The trilepton + 6ET channel, for

example, which is of crucial importance for supersymmetry searches [81], can po-

tentially also be important in searching for an additional, inert scalar doublet. In

this section, we will focus on dilepton channel, which seems to offer the brightest

prospects for discovery.

The dominant signal contribution to ℓ+ℓ−+ 6ET in the IDM, where ℓ = {e, µ} , re-

sults from either pp → SA with A → Sℓ+ℓ−, or pp → H+H−, with H± → Sℓ±ν, de-

pending on the choice of parameters. These processes are depicted diagrammatically

in panels (a) and (b) of Fig. 2.1, respectively. Other processes that result in ℓ+ℓ−+ 6ET
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Figure 2.1: Diagrams corresponding to the contributions to the pp → ℓ+ℓ− 6ET in
the IDM discussed in the text.

final states, e.g. pp → H+H− with H+ → Sℓ+ν and H− → Aℓ−ν̄ → Sℓ−ν̄νν̄, gen-

erally contribute only a small amount to the signal cross-section and can there-

fore be safely ignored. Another contribution comes from processes in which a

leptonically-decaying pseudoscalar A is produced in association with some other

particle or particles which decay to jets or charged leptons too soft to register in

the detector. In general, the event rates for such processes (the most important

of which is pp → H±A → ℓ+ℓ−jj + 6ET ) are also small compared to that for

pp → SA → ℓ+ℓ− + 6ET . However, if δ1 is small (as it is in benchmark LH4), a

substantial fraction of the jets and charged leptons from H± decays will be suffi-

ciently soft that such processes do yield a considerable contribution and therefore

need to be accounted for in the analysis.

In addition to the pair-production processes discussed above, the electroweak

Higgs-associated-production process

qq̄ → hZ (2.5)

can also result in a ℓ+ℓ− + 6ET final state in the manner illustrated in panel (c) of
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Fig. 2.1, as long as the decay h → SS is permitted. The dilepton-channel con-

tribution from this process is significant only in cases in which λL is nonzero and

mh > 2mS — the conditions under which h can decay on-shell to a pair of LIPs. Of

the eight benchmark scenarios defined in Table. 2.1, these conditions are satisfied

only in scenarios LH1 and LH2, for which σhZ × Br(h → SS) = 343.12 fb and

706.65 fb, respectively. As these rates are roughly on the same order as those for

pp → SA production, it will be necessary to take this contribution into account in

the ensuing analysis.

A further contribution to the ℓ+ℓ− 6ET production cross-section in the IDM results

from pp → SSZ production via the four-point SSZZ interaction shown in panel (d)

of Fig. 2.1. However, this contribution is quite small in comparison with that from

SA pair production, as the former is a three-body process while the latter is only

two-body. Interference effects between the diagrams depicted in panels (a), (c), and

(d) of Fig. 2.1 are consequently tiny as well, and can be safely neglected.

In what follows, we will focus on pp → SA → ℓ+ℓ−SS as our signal process,

and treat pp → H+H− → ℓ+ℓ−νν̄SS as part of the background. The reason for

this is twofold. First, since the constraints in Sect. 2.1.1 (and especially those

from WMAP and electroweak precision data) typically prefer situations in which

2mH+ ≥ mA +mS , production cross-sections for pp → H+H− tend to be lower than

those for pp → SA. Second, a pp → H+H− → ℓ+ℓ− + 6ET signal turns out to be

far more difficult to distinguish from the dominant SM backgrounds (discussed in

detail below) on the basis of event topology. We will also treat pp → hZ → SSℓ+ℓ−

and pp → SSZ → SSℓ+ℓ− as a contribution to the background, because the event

topologies generally differ from those associated with pp → SA → ℓ+ℓ−SS.

The SM backgrounds relevant for the ℓ+ℓ− + 6ET channel are well-known from

studies of the supersymmetric process pp → χ0
1χ

0
2 → ℓ+ℓ−+ 6ET , where χ0

1 and χ0
2 are

the lightest and next-to-lightest neutralinos. These include irreducible backgrounds

from WW and ZZ/γ∗ production (with the contribution from off-shell photons [82]

properly taken into account), as well as reducible backgrounds from tt̄, WZ/γ∗, Wt,

and Zbb̄ processes; WW +n jets and ZZ+n jets; and Drell-Yan production of τ+τ−
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pairs.

In the present analysis, events were generated at parton-level, both for the signal

process and for the backgrounds discussed above, in MadGraph [83] and then passed

through PYTHIA [84] for parton showering and hadronization. Events were then

passed through PGS4 [85] to simulate the effects of a realistic detector. Subsequent

to event generation, in order to distinguish signal events from those associated with

these backgrounds and to account for the performance thresholds of the LHC de-

tectors, we impose three sets of cuts in our analysis. The first such set, henceforth

referred to as our Level I cuts, is designed to mimic a realistic detector acceptance:

• Exactly two electrons or muons with opposite charge.

• pℓ
T ≥ 15 GeV and |ηℓ| ≤ 2.5 for each of these charged leptons.

• For lepton isolation, we require ∆Rℓℓ ≥ 0.4 for the charged-lepton pair, and

∆Rℓj ≥ 0.4 for each combination of one jet and one charged lepton.

It should be noted that for ℓ = {e, µ}, the above lepton pℓ
T cut is sufficient to meet

the Level I triggering requirements for both ATLAS [86] and CMS [87].

The subsequent two sets of selection criteria we impose are designed to discrim-

inate efficiently between signal and background events. Our Level II cuts are aimed

at suppressing reducible backgrounds from processes such as tt̄, WZ/γ∗, Wt, and

Zbb̄, which tend to involve either hard jets, little missing transverse energy, or both.

We impose a veto on all events manifesting high-pT jet activity within the central

region of the detector, as well as a minimum missing transverse energy cut:

• No jets with pj
T > 20 GeV and pseudorapidity within the range |ηj| < 3.0.

• 6ET > 30 GeV.

The efficacy of this latter missing ET cut should not be overemphasized: while each

signal event necessarily includes a pair of LIPs, these particles tend to be produced

back-to-back. As a result, their contributions to the overall 6ET tend to cancel each

other out, to the end that the 6ET distributions for signal events tend not to differ
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radically from those for processes like ZZ/γ∗, WW , and tt̄ which involve energetic

neutrinos. Nevertheless, this 6ET cut is highly efficient in eliminating background

contributions from Zbb̄ and WZ/γ∗ events (with the W decaying hadronically) with

jets soft enough so as to survive the central-jet veto.

After imposing Level I and II cuts, contributions from Zbb̄ and Drell-Yan pro-

duction of leptonically-decaying τ+τ− pair, are effectively eliminated. The dominant

remaining backgrounds are the irreducible ones from WW and ZZ/γ∗ events, as well

as residual tt̄, WZ/γ∗ and Wt events which survive the Level II cuts. In Table 2.3,

we list the signal cross-sections for pp → SA → ℓ+ℓ− 6ET at the LHC for each of the

benchmark points presented in Table 2.1, after the application of the Level I and

Level II cuts discussed in the previous section. We also show the effect that these

cuts have on the cross-sections for those background processes, both reducible and

irreducible, which remain at non-negligible levels after the Level II cuts have been

applied: WW , ZZ/γ∗, tt̄, WZ/γ∗, and Wt. Results for pp → H+H− → ℓ+ℓ− 6ET

and pp → h(∗)Z → SSℓ+ℓ−, also treated as background processes in this analysis,

are shown here as well. It is evident from the data presented in Table 2.3 that the

application of the Level I+II cuts results in a substantial reduction of the reducible

backgrounds from tt̄, WZ/γ∗, and Wt. However, as efficient as these cuts are, the

rates for these background processes (and especially from tt̄) are large enough that

a substantial number of events still survive them. Consequently, these reducible

backgrounds cannot be neglected in the final analysis.

In order to differentiate the pp → SA signal from these remaining backgrounds,

it is necessary to impose a third level of event-selection criteria based largely on event

topology, whose thresholds can be adjusted to optimize significance of discovery in

any given benchmark scenario. For the benchmark points included in our survey, the

optimal pattern of Level III cuts generally falls into one of two categories, depending

primarily on whether or not the decay of A → SZ(∗) occurs on shell.

In all of our benchmark scenarios in which δ2 > MZ , the CP -odd scalar A decays

essentially 100% of the time to an LIP and an on-shell Z; thus the distribution of the

invariant mass Mℓℓ of the charged-lepton pair in such scenarios tends to peak sharply
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Level I Cuts Level I+II Cuts

Benchmarks σSA(fb) σH+H−(fb) σhZ(fb) σSA(fb) σH+H−(fb) σhZ(fb)
LH1 9.61 0.82 2.90 6.03 0.46 1.79
LH2 10.28 1.06 5.75 6.53 0.51 3.47
LH3 2.32 0.34 0.01 1.47 0.13 0.01
LH4 3.84 0.19 0 2.07 0.02 0
LH5 0.38 ∼ 0 0.01 ∼ 0 0.14 0.01
HH1 3.23 0.02 0 1.97 0.01 0
HH2 3.01 0.03 0 1.81 0.01 0
HH3 1.69 0.02 0 1.09 0.01 0

SM Backgrounds σBG(fb) σBG(fb)
WW 621.44 316.97

ZZ/γ∗ 132.09 76.46
tt̄ 4531.51 58.87

WZ/γ∗ 113.97 51.85
Wt 709.14 52.11

Total SM 6108.15 556.26

Table 2.3: Leading-order cross-sections for the signal processes pp → SA → ℓ+ℓ− 6ET

at the LHC with
√

s = 14 TeV after Level I and II cuts for each of the benchmark
points presented in Table 2.1. Also shown are the backgrounds pp → H+H− →
ℓ+ℓ− 6ET , pp → h(∗)Z → ℓ+ℓ− 6ET , WW , ZZ/γ∗, tt̄, WZ/γ∗, Wt after Level I+II
cuts, as well as a total background cross-section.
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Figure 2.2: Dilepton-invariant-mass distributions for the benchmark points LH1
(top panel) and LH3 (bottom panel) both for the signal process and for the most
relevant SM backgrounds.

around MZ . This is the case for points LH1 and HH1, the Mℓℓ distribution for the

former of which is shown in the top panel of Fig. 2.2. It is therefore advantageous

to select events on the basis of whether or not Mℓℓ falls within a window

• Mmin
ℓℓ ≤ Mℓℓ ≤ Mmax

ℓℓ ,

where the parameters Mmin
ℓℓ and Mmax

ℓℓ are to be adjusted to optimize the statistical

significance of discovery for each benchmark point. In cases of this sort, the best

results are generally obtained by imposing a window around 20 GeV wide, centered
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near MZ . Such a cut efficiently reduces the W+W−, Zγ∗, Wγ∗, tt̄ and Wt back-

grounds, leaving the ZZ and WZ backgrounds (which are little affected by such a

cut) as the dominant ones.
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Figure 2.3: Distributions of the angular separation variables ∆Rℓℓ (top panel) and
cos φℓℓ (bottom panel) for benchmark point LH3, in which decays of the pseudoscalar
A occur via an off-shell Z. These distributions justify the imposition of the minimum
cos φℓℓ and maximum ∆Rℓℓ cuts described in the text.

In cases where δ2 < MZ (LH2−LH5, HH2−HH3), the two body decay A → SZ

is kinematically inaccessible. Likewise, the decay channel A → H±W∓ is not open

unless δ2 > δ1 +MW — a condition which is difficult to realize, given the constraints

on the model, and which is not satisfied for any of the benchmark points in our
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study. When these decays are unavailable, the dominant leptonic decay channel for

the A involves the three-body process A → Sℓ+ℓ−, which proceeds through an off-

shell Z. As a result, the dilepton invariant mass distribution is peaked well below

MZ , around the value of δ2, as shown in the bottom panel of Fig. 2.2 for benchmark

point LH3. In cases of this sort, imposing an upper limit Mmax
ℓℓ ∼ δ2 on the dilepton

invariant mass can assist in improving the signal-to-background ratio. A cut of this

sort can effectively suppress the ZZ and WZ backgrounds, the Mℓℓ distributions

for which are peaked sharply around MZ .

To further suppress the Standard-Model WW , Zγ∗, Wγ∗, Wt, and tt̄ back-

grounds in cases in which δ2 < MZ , it is useful to select events on the basis of

observables related to the angular separation between charged leptons. The ℓ+ and

ℓ− produced by these SM background processes are typically energetic and well-

separated from one another. On the other hand, those resulting from A decay via

an off-shell Z tend to be soft, with small (and extremely so, if δ2 is quite small) an-

gular separation. This difference in event topology is readily apparent from Fig. 2.3,

which displays the ∆Rℓℓ (top panel) and cos φℓℓ ≡ cos(φℓ+ − φℓ−) (bottom panel)

distributions for benchmark LH3. It is therefore useful, in cases in which δ2 < MZ ,

to impose the additional cuts

• ∆Rℓℓ ≤ ∆Rmax
ℓℓ ,

• cos φℓℓ ≥ cos φmin
ℓℓ ,

where ∆Rmax and cos φmin
ℓℓ are to be optimized for each benchmark point.

In certain situations, the imposition of additional event-selection criteria can

also be helpful in distinguishing signal from background events. For example, it can

also be advantageous to impose a minimum cut on the total transverse momentum

variable

HT ≡ 6pT +
∑

i

pℓi

T , (2.6)

which can serve as an efficient discriminant in both the δ2 > MZ and δ2 < MZ cases:

• HT ≥ Hmin
T .
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Mmin
ℓℓ Mmax

ℓℓ ∆Rmax
ℓℓ cos φmin

ℓℓ Hmin
T 6Emin

T pmax
Tℓ

Benchmark (GeV) (GeV) (GeV) (GeV) (GeV)
LH1 80 100 − − 150 50 −
LH2 − 70 1.2 0.7 200 100 −
LH3 20 50 0.8 0.7 200 90 −
LH4 20 50 0.8 0.7 200 90 −
LH5 − 10 0.6 0.9 − 30 25
HH1 80 100 2.0 − 200 80 −
HH2 20 70 1.2 0.7 200 90
HH3 − 25 − − − 30 −

Table 2.4: A list of the optimized Level III cuts used in the analysis of each of
the benchmark points presented in Table 2.1. An entry of “−” indicates that the
corresponding cut is not imposed. Note that a 6Emin

T cut of 30 GeV has been applied
in each of these scenarios as a part of the Level II cuts, but that this threshold has
been raised for several of the points at Level III. For more details on the definition
of the thresholds used, see text.

Again, the threshold Hmin
T can be optimized to suit a given benchmark point. This

cut can be helpful in reducing the WW and Zγ∗ backgrounds, but is less so in

reducing the contribution from tt̄. In addition, it can sometimes also be useful

to tighten the minimum 6ET cut applied during the Level II cuts. Therefore, at

Level III, we allow for the imposition of an additional missing-transverse-energy cut

• 6ET ≥ 6Emin
T .

Furthermore, in cases in which δ2 is small and the charged leptons associated with

the signal process far less energetic than those associated with the SM backgrounds,

it can be useful to impose a ceiling pmax
Tℓ on the pT of each charged lepton, as we do

here for benchmark point LH5.

• pTℓ ≤ pmax
Tℓ .

In Table 2.4, we list the Level III cuts applied in each of the benchmark scenarios

listed in Table 2.1. The precise numbers appearing in this table have been selected

in order to maximize the S/
√

B ratio for each individual benchmark point. It should



58

be noted that the particular set of cuts applied in each case indeed depends primarily

on the relationship between δ2 and MZ .

Results

Now that we have discussed in detail the event-selection procedure to be used in

our numerical analysis of dilepton signals in the IDM, we next present the results of

that numerical analysis. In Table 2.5, we list the cross-sections for the signal process

and the most relevant backgrounds after the application of our Level I+II+III cuts.

The last two rows in the Table display the signal-to-background ratio S/B and

the statistical significance (as given by S/
√

B at an integrated luminosity of L =

100 fb−1) for each benchmark point4 in our analysis, after the implementation of

these same cuts. Note that the numbers quoted here for benchmark LH4 with

small δ1 include, in addition to the usual pp → SA → ℓ+ℓ− + 6ET contribution,

contributions from the processes pp → H±A → ℓ+ℓ−jj + 6ET and pp → H±A →
ℓ+ℓ−ℓ± + 6ET in which the additional jets or leptons from H± decay are sufficiently

soft as to escape detection. It should be noted that taking these contributions

into account results in an increase in the statistical significance of discovery in this

channel from 2.07σ to 3.29σ. For the other benchmark points listed in Table 2.1,

δ1 ≥ 50 GeV, and consequently the contribution from pp → H±A processes with

soft jets or leptons will be negligible.

Let us now turn to examine the results for each of the individual benchmark

scenarios in our study in more detail. We begin with the LH1, which involves a

light Higgs boson, a light LIP (mS ∼ 40 GeV), and a large mass splitting (δ2 = 100

GeV > MZ). The dominant backgrounds in this scenario are those from ZZ and

WZ, each of which also involves the leptonic decay of an on-shell Z and is therefore

difficult to differentiate from the signal process on the basis of kinematical variables.

The remaining backgrounds are efficiently suppressed after the imposition of the Mℓℓ

4One modification is made in the case of LH5. For this point, both signal and background event

rates are quite low, and consequently the significance value quoted in the last column of Table 2.5

was obtained using Poisson statistics rather than S/
√

B.
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LH1 LH2 LH3 LH4 LH5 HH1 HH2 HH3

σSA 3.42 0.89 0.18 0.19 0.004 0.65 0.37 1.01
σH+H− 0.04 ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0 0.01 ∼ 0

σhZ 1.28 0.01 ∼ 0 0 ∼ 0 0 0 0
σWW 11.59 0.07 0.03 0.03 0.13 0.45 0.08 17.49
σZZ/γ∗ 36.99 0.24 0.15 0.15 0.04 13.41 0.26 1.06

σtt̄ 4.55 0.11 0.05 0.05 ∼ 0 0.55 0.12 1.60
σWZ/γ∗ 19.52 0.08 0.04 0.04 0.04 5.85 0.09 0.76

σWt 3.82 0.07 0.06 0.06 0.01 0.45 0.12 1.65
σcomb

BG 77.79 0.58 0.34 0.34 0.23 20.71 0.67 22.56
S/B 0.04 1.53 0.52 0.57 0.02 0.03 0.56 0.04

S/
√

B 3.87 11.66 3.04 3.29 0.02 1.42 4.55 2.12

Table 2.5: Cross-sections for the processes pp → SA → ℓ+ℓ− 6ET , pp → H+H− →
ℓ+ℓ− 6ET , and pp → h(∗)Z → ℓ+ℓ− 6ET at the LHC for each of the benchmark points
presented in Table 2.1 after the application of our Level III cuts. Cross-sections
for the dominant SM backgrounds (WW , ZZ/γ∗, etc.) after the application of the
Level III cuts are also shown, as is the total background cross-section including
all of these individual contributions. An entry of “∼ 0” indicates a cross-section
less than 1 ab. The last two rows display the signal-to-background ratio S/B and
statistical significance (as given by S/

√
B) corresponding to an integrated luminosity

of L = 100 fb−1 after the application of these same cuts.
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cut near the MZ window. With 100 fb−1 of integrated luminosity, a significance level

of 3.87σ could be obtained in this benchmark scenario. The situation for the heavy-

Higgs benchmark HH1 is similar; however the smaller SA-production cross-section in

this case (due primarily to an increased LIP mass) translates into a lower statistical

significance.

Benchmark point LH2 also includes a 40 GeV dark matter particle, but involves

a smaller mass splitting than that of LH1: δ2 = 70 GeV. This scenario affords the

best opportunity for discovery at the LHC out of any of the benchmark points in

our analysis, yielding a statistical significance of 11.66σ with 100 fb−1 of integrated

luminosity. Two factors contribute to its success: a small production threshold

mS + mA, and the fact that δ2 < MZ , which implies that the CP -odd scalar A

decays via an off-shell Z. The latter consideration makes it possible to eliminate

ZZ and WZ background contributions quite efficiently by setting Mmax
ℓℓ comfortably

below the Z pole. Further cuts on the angular variables cosφℓℓ and ∆Rℓℓ serve to

reduce the remaining backgrounds to a manageable level. After all cuts are imposed,

events from the low-Mℓℓ tail of the ZZ distribution form the dominant background.

It should be noted, however, that while the aforementioned angular-separation cuts

are quite efficient in reducing background events, this efficiency comes with a price:

the cuts also eliminate a substantial fraction of signal events. This explains why the

signal cross-section for LH2 is less than that for LH1, as no angular separation cuts

are imposed in the latter scenario.

Benchmarks LH3 and LH4 are superficially similar, given that they involve a

similar LIP mass mS ∼ 80 GeV and the same mass splitting δ2 = 50 GeV. In this

case, however, the marked difference in δ1 — a parameter which generally has little

effect on observability of the dilepton signal in the SA associated-production channel

— between the two points has a substantial impact on their collider phenomenology.

The reason for this is twofold. First of all, since δ2 > δ1 for LH4 (unlike any other

benchmark in our analysis), the decay channels A → H±W∓ → X + 6ET , where X

denotes either four jets, two jets and a single charged lepton, or two charged leptons,

are open in this scenario, with a branching ratio BR(A → H±W∓ → X + 6ET ) =
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0.435. As a result, BR(A → SZ → ℓ+ℓ− + 6ET ), and thus the dilepton signal cross-

section, are reduced by an additional factor of two relative to those points for which

such competing decays are kinematically prohibited. Second of all, as discussed

above, the small value for δ1 = 10 GeV in LH4 allows the additional contribution of

AH± process to the signal due to the unobservable soft jets and leptons from H±

decay. These additional contributions augment the overall signal cross-section and

more than compensate for the diminished BR(A → SZ → ℓ+ℓ− + 6ET ), as discussed

above. For 100 fb−1 of integrated luminosity, a significance level greater than 3σ

could be reached for LH4 as well as LH3.

The final light-Higgs scenario in our analysis, LH5, turns out to be the most

difficult benchmark point for which to observe a dilepton signal, primarily because

of the small mass splitting δ2 = 10 GeV between S and A. The charged leptons

in the final state tend to be extremely soft, and consequently the signal remains

buried under the SM background even after an optimized set of Level III cuts is

applied. Scenarios with a small value of δ2 will in general be difficult to discover

via this channel at the LHC. It should be noted that the results we obtain for

this benchmark differ significantly from the parton-level results quoted in [71] for a

similar benchmark scenario, also with δ2 = 10 GeV. The discrepancy owes primarily

to our imposition of a Level I cut of ∆Rℓℓ > 0.4 cut designed to replicate the effect of

electron and muon isolation requirements at the ATLAS and CMS detectors. Since

the angular separation between the lepton momenta tends to be extremely small for

such a small value of δ2, a vast majority of signal events will have ∆Rℓℓ < 0.4 and

hence be eliminated by this cut.

Let us now turn to discuss the benchmark points which feature a heavy (mh =

500 GeV) Higgs boson — in other words, those benchmarks for which the IDM

successfully addresses the LEP paradox. While the electroweak precision constraints

discussed in Sect. 2.1.1 are more stringent in this case, these constraints primarily

affect δ1, which is typically required to be quite large. Since this parameter generally

does not affect results in the dilepton channel, which depend primarily on mS and δ2,

the same qualitative results obtained for the light-Higgs benchmarks also apply here.
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For HH1, with δ2 = 100 GeV, a significance level of only 1.42σ can be achieved with

100 fb−1 of integrated luminosity, due to both the overwhelming SM backgrounds

that exist for dilepton processes involving on-shell Z decay, and a suppressed signal

cross-section relative to benchmark LH1 (which has a far lighter LIP). For HH3

— a benchmark with a somewhat small value of δ2 — a Mmax
ℓℓ = 25 GeV cut

helps to cut down the SM backgrounds from processes involving on-shell Z decay.

It is, however, hard to improve upon the statistical significance by implementing

additional cuts. The remaining background events which survive this cut (most

of which come from WW ) tend to have similar cosφℓℓ and ∆Rℓℓ distributions to

those of the signal — a situation which makes the application of further, angular

cuts essentially redundant. Furthermore, since the missing-energy distribution for

the signal events in scenarios with small δ2 peaks at relatively low values of 6ET ,

there is little to be gained by increasing 6Emin
T much beyond the Level II threshold

of 30 GeV. By contrast, in scenarios with larger δ2, an elevated missing-energy cut

works quite effectively in tandem with the angular cuts in reducing backgrounds

from WW and tt̄. A significance level of 2.32σ is reached for HH3 with 100 fb−1 of

integrated luminosity.

It is benchmark HH2, however, which affords the best opportunity for discovery

at the LHC from among the heavy-Higgs scenarios, with a statistical significance

of 4.55σ at 100 fb−1 of integrated luminosity. This is because the signal for this

benchmark can be distinguished from the WZ and ZZ backgrounds on the basis

of Mℓℓ cuts, and from the remaining WW , Wt, and tt̄ backgrounds on the basis of

cos φℓℓ, ∆Rℓℓ, and 6ET cuts in the same manner as for the low-Higgs-mass point LH2.

We therefore conclude that even scenarios in which the IDM permits an evasion of

the LEP upper bound on mh can yield an observable dilepton signal at the LHC.

From the results in Table 2.5, it is evident that the prospects for detecting a

signal in the dilepton channel in the IDM model hinge primarily on two criteria.

The first of these is the dependence of the cross-section for qq̄ → SA on mS + mA

and δ2. This cross-section is, of course, larger in cases where the pair-production

threshold energy mS + mA is small. Among cases with similar values of mS + mA,
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those in which δ2 is smaller will have larger production cross-sections. This can be

understood by noting that the partonic cross-section for this process depends on mS

and δ2 in the following way:

σ̂qq̄→SA(ŝ) ∝ [ŝ2 − 2ŝ(δ2(δ2 + 2mS) + 2m2
S) + δ2

2(δ2 + 2mS)2]3/2. (2.7)

For values of ŝ ∼ mS + mA, for which the dependence of this expression on mS and

δ2 is non-negligible, it is apparent that for fixed mS +mA, σ̂qq̄→SA(ŝ) decreases with

increasing δ2. This accounts for the difference between the pp → SA production

cross-sections for benchmarks LH1 and HH3 quoted in Table 2.2.

The second criterion is the relationship between δ2 and MZ : cases in which

δ2 < MZ tend to have a higher statistical significance than those in which δ2 > MZ ,

as is manifest from comparing the results for benchmarks LH2 and LH1 in Table 2.5.

This is because in the latter case, it is difficult to distinguish the signal process from

the dominant ZZ background on the basis of event topology. On the other hand,

when δ2 is exceedingly small (as it is in our LH5 scenario), the charged leptons will

be so soft that the detector-acceptance (i.e. Level I) cuts will eliminate the vast

majority of would-be signal events, as discussed above. Between these extremes, a

window of

40 GeV ≤ δ2 ≤ 80 GeV (2.8)

emerges within which the prospects for observing a signal are quite good, so long

as the LIP mass also falls roughly within the 40 − 80 GeV range. For cases in

which δ2 ≥ MZ , the prospects for discovery at the LHC are reasonable — meaning

a statistical significance around the 3σ level with 100 fb−1 of integrated luminosity

— only if the dark-matter particle is light (mS ∼ 40 GeV).

It is not difficult simultaneously to satisfy the constraints discussed in Sect. 2.1.1

and to realize a δ2 value within this mass window of 40− 80 GeV while keeping the

LIP mass relatively light (mS ≤ 80 GeV) — or, alternatively, to obtain a large

mass splitting δ2 ≥ MZ and a light LIP mass of around 40 GeV. This is true not

only in models where the Higgs boson is light and the parameters of the theory

comparatively unconstrained, but also in cases in which the mechanism of Ref. [52]
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for evading electroweak precision bounds on the Higgs mass is realized in nature,

and mh ∼ 500 GeV. In either case, it would be possible to observe a dilepton signal

at the LHC at a significance level of 3σ or higher, with an integrated luminosity of

100 fb−1.

Conclusion

In this section, we have investigated the potential for observing a dilepton signature

in the Inert Doublet Model at the LHC. We have explored the prospects for a

number of benchmark scenarios, including several in which the IDM successfully

ameliorates the LEP paradox and the Higgs-boson mass can be elevated as high

as mh = 400 − 500 GeV, as well as several of the dark-matter motivated scenarios

cataloged in Ref. [65]. We have shown that for cases in which the dark matter

candidate is relatively light (40 − 80 GeV) and 40 GeV ≤ δ2 ≤ 80 GeV, a signal

with a significance of more than 3σ should be apparent at the LHC with less than

100 fb−1 of integrated luminosity. Moreover, in cases when the LIP is on the lighter

end of this range, a 3σ discovery would be possible with only 10 fb−1 of integrated

luminosity. In addition, there are also certain cases in which δ2 > MZ and the LIP

is light (mS ∼ 40 GeV) for which the prospects for detection are also reasonably

good.

Of course the observation of an excess in the ℓ+ℓ−+ 6ET channel alone, while excit-

ing, is by no means conclusive evidence for the Inert Doublet Model. Indeed, many

models of beyond-the-Standard-Model physics lead to such a signature, including

weak-scale supersymmetry, two-Higgs-doublet models, etc. Fortunately, evidence

for the IDM can come from a number of other sources. Some of these sources in-

volve other channels associated with the SM-like Higgs at the LHC. One potentially

interesting signal could arise due to deviations of the decay properties of the Higgs

boson h from those of a SM Higgs. In situations in which mh > 2mS, for exam-

ple, Γ(h → SS) can contribute substantially to the invisible Higgs width. Searches

for the Weak-Boson Fusion (WBF) process qq′ → qq′h, with h decaying invisibly,

can be used effectively to identify a Higgs boson at the LHC [88], and preliminary
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studies [71] indicate that a 5σ discovery should be possible with only 10 fb−1 of

integrated luminosity in regions of parameter space where BR(h → invisible) is

large. Moreover, if mh > 2mA, the tetralepton + 6ET signatures resulting from de-

cays of the form h → AA → SSℓ+ℓ−ℓ+ℓ− may also be detectable in certain regions

of parameter space. The observation of signals of this sort, along with the non-

observation of other signals which appear in standard 2HDM due to φif̄ f ′ couplings

(where φi = H±, A, S and f and f ′ are SM fermions) absent in the Inert Doublet

Model, could together serve to distinguish the IDM from other scenarios for physics

beyond the Standard Model.

Evidence for the IDM could also come from a variety of other sources, includ-

ing dark-matter-direct-detection experiments and from the observation of energetic

gamma-rays [68, 69] or neutrinos [66] resulting from LIP dark matter annihilation.

Clearly, the particular set of signals that an inert doublet would manifest differs sub-

stantially, depending on which of the allowed regions of parameter space the model

happened to inhabit, and as we have shown, the ℓ+ℓ− + 6ET channel can provide an

important probe into which region that might be.

2.1.3 Trilepton Signature at the LHC

Since a great many scenarios for physics beyond the Standard Model (BSM) also give

rise to a ℓ+ℓ− + 6ET signature, it is worthwhile to investigate other channels which

might also yield observable signals indicating the presence of an inert doublet. In this

section, we focus on the detection prospects in the trilepton channel: ℓ+ℓ−ℓ± + 6ET .

Indeed, this channel has long been regarded as one of the most promising channels in

which to look for evidence of physics beyond the Standard Model, and, in particular,

of supersymmetry [81], due to its relatively small SM background.

Trilepton Production in the Inert Doublet Model

A number of processes contribute to the overall trilepton signal in the IDM. Here, we

will concentrate on the most promising contributions for detection: those in which
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one lepton is produced via W (∗) decay and the other two via Z(∗) decay. The most

significant such contributions are

• qq̄′ → AH± with A → SZ(∗) → Sℓ+ℓ− and H± → SW±(∗) → Sℓν.

• qq̄′ → SH± with H± → AW±(∗) → Aℓν and A → SZ(∗) → Sℓ+ℓ−.

the corresponding Feynman Diagrams for which are shown in Fig. 2.4. Note that in

our analysis, we will consider the case in which ℓ = e, µ only.

S

S

Z

W± ℓ

ν

ℓ−

ℓ+

q

q̄′

W±
A

H±

(a)

S

S

Z

W±

ℓ+

ℓ−

ν

ℓ

q

q̄′

W±

H±

A

(b)

Figure 2.4: Diagrams corresponding to the processes which provide the leading
contributions to the ℓ+ℓ−ℓ± + 6ET cross-section in the IDM.

Process (a) will occur in any IDM scenario in which the S plays the role of the

LIP, whereas process (b) will occur only in scenarios in which δ1 > δ2 and will only

be sizable when δ1 < MW or δ1 > δ2 + MW . For all the benchmark points listed in

Table 2.1, process (b) is sizable only for LH8. Even in that case, it is subdominant

compared to process (a), the overall cross-section for which (taking into account all

relevant decay branching ratios) is a factor of 20 larger than that for process (b).

In cases in which δ2 > δ1, the process qq̄′ → AH±, with A → H±W∓(∗) → H±ℓν

and H± → SW±(∗) → Sℓν, also contributes to trilepton production. The leptons

produced in this process all come from W (∗) decay, and for this reason, it is difficult

to resolve this process from the SM background. For all the benchmark points that

we have selected for our study, however, the overall cross-section for this process is

negligibly small, and can therefore be safely neglected.

Results for the LHC production cross-sections for the dominant (pp → AH±)

signal process at
√

s = 14 TeV, as well as the branching fractions for H± → Sℓ±ν
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Benchmark σAH± (fb) BR(H± → Sℓ±ν) BR(A → Sℓ+ℓ−)
LH1 125.2 0.216 0.067
LH2 299.0 0.233 0.068
LH3 154.9 0.233 0.069
LH6 187.0 0.216 0.069
LH7 204.2 0.233 0.067
LH8 159.4 0.226 0.070

Table 2.6: Leading-order cross-sections for the associated production of AH± at the
LHC, with center-of-mass energy

√
s = 14 TeV, for the various benchmark points

defined in Table 2.1. The relevant branching fractions of the scalars A and H± are
also shown.

and A → Sℓ+ℓ− decay, are provided in Table 2.6. Note that for benchmark point

LH8, the subdominant contribution to the trilepton signal from pp → SA± has also

been included in our analysis.

A number of processes contribute to the SM background for trilepton production.

The most important of these is the irreducible background from WZ/γ∗ production,

though a number of reducible backgrounds also contribute. These include tt̄(j),

Wt(j), ZZ, and, as recently emphasized in [89], heavy-flavor processes such as

bb̄Z/γ∗ and cc̄Z/γ∗.

In our analysis, event samples both for the signal process and for these back-

grounds were generated at parton-level using the MadGraph [83] package. These

events were subsequently passed through PYTHIA [84] for parton showering and

hadronization, and then through PGS4 [85] to simulate the effects of a realistic

detector. The one exception involves the background from heavy-flavor processes,

which is somewhat cumbersome to analyze numerically, given the amount of data

required to obtain a statistically reliable sample. However, as has been shown in

Ref. [89], this background can be effectively eliminated via the implementation of a

stringent missing energy cut of order 6ET > 50 GeV. A similarly stringent cut on the

total transverse momentum variable HT should also be quite effective in this regard.

We shall therefore assume that these backgrounds are effectively eliminated by the

6ET and HT cuts included among our event-selection criteria.
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Let us now turn to discuss those event-selection criteria, which we apply in three

successive stages or sets, in more detail. The first set of cuts we impose (hereafter to

be referred to as our Level I cuts) is designed to mimic a realistic detector acceptance.

More specifically, we require:

• Exactly three charged leptons (either electrons or muons), including one same-

flavor, opposite-sign (SFOS) pair.

• pℓ
T > 15 GeV and |ηℓ| < 2.5 for each of these leptons.

• For lepton isolation, we require ∆Rℓℓ > 0.4 for each possible charged-lepton

pairing, and ∆Rjℓ > 0.4 for each combination of one jet and one charged

lepton.

Our second set of cuts (hereafter referred to as our Level II cuts) is designed to

suppress reducible backgrounds from SM processes which involve either hard jets or

little missing transverse energy:

• No jets with pj
T > 20 GeV and pseudorapidity |η| < 3.0.

• 6ET > 50 GeV.

As discussed above, a missing-energy cut of this magnitude effectively eliminates the

background from heavy-flavor processes such as bb̄Z/γ∗ and cc̄Z/γ∗. The jet veto

is quite efficient in reducing background contributions from tt̄(j), Wt(j), and other

processes which involve substantial hadronic activity in the central region of the

detector. Indeed, after the application of the Level I+II cuts discussed above, the

dominant remaining background is the irreducible one from WZ/γ∗ production, as

shown in Table 2.7. In addition, there is also a non-negligible contribution (amount-

ing to around 5% of the WZ/γ∗ background) from residual tt̄(j) and Wt(j) events

which survive the jet veto. Other reducible backgrounds, including those from W

+ jets and heavy-flavor processes, are effectively eliminated by this choice of cuts.

After the imposition of the Level I and Level II cuts, we impose one further

battery of event-selection criteria (hereafter referred to as our Level III cuts). Unlike
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Signal SM Background

Benchmark
Level I Level I+II

Process
Level I Level I+II

(fb) (fb) (fb) (fb)
LH1 0.760 0.317 WZ/γ∗ 125.767 32.949
LH2 0.817 0.290 tt̄(j) 38.869 1.046
LH3 0.289 0.082 Wt(j) 1.794 0.536
LH6 0.618 0.239 Total BG 166.430 34.531
LH7 1.089 0.420
LH8 0.204 0.048

Table 2.7: Cross-sections for the signal process pp → AH± → ℓ+ℓ−ℓ± + 6ET in
each of the benchmark scenarios presented in Table 2.1, and for the relevant SM
backgrounds, after the application of our Level I and Level II cuts.

these first two sets of cuts, which are applied universally to all benchmark points

used in this analysis, our Level III cuts are individually tailored to optimize the

statistical significance of discovery for each benchmark point. A wide variety of

possible criteria could in principle be used in this optimization process; however, we

find that one particularly useful criterion that can be used to differentiate between

signal and background events is the invariant mass MℓZℓZ
of the requisite pair of

SFOS charged leptons (which we dub ℓ+
Z and ℓ−Z) that any event must include in

order to pass the Level I cuts. If only one SFOS pairing can be constructed for

a given event, MℓZℓZ
is unambiguously defined. In cases in which more than one

SFOS combination exists and δ2 ≥ 70 GeV, the pair whose invariant mass is closest

to min(δ2, MZ) will be identified as ℓ+
Z and ℓ−Z , and that invariant mass will be

identified as MℓZℓZ
. In cases in which δ2 < 70 GeV, the pair whose invariant mass

is closest to 70 GeV will be so identified.5

The distribution for MℓZℓZ
peaks around MZ for the Standard-Model WZ/γ∗

background. For the signal process, the peak is around min(δ2, MZ), as shown

5We choose this criterion for identifying the SFOS pair, rather that simply selecting whichever

pair has an invariant mass closer to δ2. This is because for δ2 ≤ 70 GeV, the latter procedure

would result in more frequent misidentification of which leptons were produced via Z/γ∗ decay in

the WZ/γ∗ background sample, and consequently lower statistical significance values.
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clearly in Fig. 2.5 for LH1 (δ2 = 100 GeV, top panel) and LH3 (δ2 = 50 GeV, bottom

panel). This suggests that a cut on MℓZℓZ
around δ2 has the potential to suppress

significantly the SM background in scenarios in which δ2 < MZ . Therefore, in our

analysis, we select events on the basis of whether MℓZℓZ
lies below the threshold

• MℓZℓZ
≤ Mmax

ℓZℓZ
.

In principle, one could also introduce a minimum threshold for MℓZℓZ
, but it turns

out that the imposition of such a cut is not particularly helpful in practice; thus we

will only make use of the above criterion in what follows.

Furthermore, in cases in which A → Sℓ+ℓ− decay occurs via an off-shell Z, the

charged leptons will tend to be more collinear than those produced from the decay

of an on-shell Z. For this reason, cuts such as

• cos φℓℓ ≥ cos φmin
ℓℓ

• ∆Rℓℓ ≤ ∆Rmax
ℓℓ ,

where φℓℓ is the azimuthal angle between the SFOS lepton pair, can be quite effective

in discriminating between signal and background in cases in which δ2 < MZ . In

practice, we find the ∆Rmax
ℓℓ cut alone to be sufficient for our purposes, and thus

make use of this criterion exclusively.

From the four-momentum of the remaining lepton (the one that is not part

of the ℓ+
Zℓ−Z pair), which we dub ℓW , we can construct an additional quantity: a

transverse-mass variable MTW
, which we define according to the relation

M2
TW

≡ (EℓW
+ 6ET )2 − (~pTℓW

+ 6~pT )2, (2.9)

where 6ET and 6~pT respectively denote the total missing transverse energy and missing

transverse momentum vector. The distribution for MTW
drops sharply around MW

for the SM WZ/γ∗ background. A similar drop also occurs for the signal process,

in cases in which the H± decays via an on-shell W , but the presence of additional

sources of 6ET (the pair of LIPs) in this case results in a smoother MTW
distribution

that falls more gently above MW . In cases in which δ1 < MW , and the lepton in
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Figure 2.5: Distributions of the invariant mass of the SFOS lepton pair after the
application of the Level I+II cuts described in the text, in our benchmark scenarios
LH1 (top panel) and LH3 (bottom panel), both for the signal process and for the
dominant SM backgrounds. Note that the area under each distribution histogram
has been normalized to one.

question comes from off-shell W decay, the drop in MTW
is quite gradual and occurs

near δ1. The distributions for MTW
, both for the signal process and for the dominant

SM backgrounds, are shown in Fig. 2.6 for LH1 (δ1 = 100 GeV, top panel) and LH3

(δ1 = 50 GeV, bottom panel). The evidence in this figure suggests that in cases in

which δ1 > MW , imposing a minimum threshold for MTW
can be helpful in reducing

the dominant WZ/γ∗ background. Conversely, when δ1 < MW an upper limit on

MTW
can likewise be of use. Motivated by these considerations, we allow for either
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a minimum or a maximum threshold for MTW
in our event-selection criteria, and

only retain events for which

• MTW
≥ Mmin

TW
or MTW

≤ Mmax
TW

,

depending on the benchmark point in question. As we shall see, such cuts on MℓZℓZ

and MTW
will turn out to be particularly useful in distinguishing a trilepton signal

from the dominant WZ/γ∗ background.
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Figure 2.6: Distributions of the transverse mass variable MTW
defined in Eq. (2.9),

after the application of the Level I+II cuts described in the text, in our benchmark
scenarios LH1 (top panel) and LH3 (bottom panel), both for the signal process and
for the dominant SM backgrounds.
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Mmax
ℓZℓZ

Mmin
TW

Mmax
TW

∆Rmax
ℓℓ Hmin

T pmin
Tℓ

Benchmark (GeV) (GeV) (GeV) (GeV) (GeV)
LH1 100 90 − 1.6 240 −
LH2 65 − 60 1.3 150 −
LH3 50 − 60 1.2 140 −
LH6 65 − − 1.1 200 20
LH7 100 − 65 − 200 −
LH8 40 − − − − −

Table 2.8: A list of the optimized Level III cuts used in the analysis of each of
the benchmark points presented in Table 2.1. An entry of “−” indicates that the
corresponding cut is not imposed. For more details on the definition of the thresholds
used, see text.

It can also be useful to impose a more stringent lower limit pmin
Tℓ

on the transverse

momentum pTℓ
of the charged leptons than that imposed at Level I:

• pTℓ
≥ pmin

Tℓ
> 15 GeV.

Likewise, a cut on the total-transverse-momentum variable HT :

• HT ≥ Hmin
T ,

with HT defined in terms of the sum

HT = 6ET +

3
∑

i=1

|pTℓi
|, (2.10)

can also be useful in differentiating signal from background. A roster of the par-

ticular cuts implemented for each benchmark used in our analysis is compiled in

Table 2.8.

Results

In Table 2.9, we show the discovery potential for the trilepton signal at the LHC

(assuming a center-of-mass energy of 14 TeV) for each of the IDM benchmark points

defined above, assuming an integrated luminosity of 300 fb−1 in each of the two

detectors. The best prospects for discovery are obtained for the benchmarks LH2
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Level III Cuts

Benchmark σH±A σWZ/γ∗ σtt̄(j) σWt(j) σcomb
BG S/B S/

√
B

(fb) (fb) (fb) (fb) (fb) (300 fb−1)
LH1 0.038 0.159 0.020 0.011 0.191 0.20 2.15
LH2 0.078 0.073 0.019 0.021 0.114 0.68 5.64
LH3 0.035 0.093 0.023 0.014 0.131 0.27 2.36
LH6 0.101 0.185 0.030 0.007 0.221 0.46 5.27
LH7 0.270 7.137 0.084 0.038 7.259 0.04 2.45
LH8 0.031 0.385 0.144 0.061 0.591 0.05 1.00

Table 2.9: Cross-sections for the signal process pp → AH± → ℓ+ℓ−ℓ± + 6ET and
for the dominant SM backgrounds from WZ/γ∗, tt̄(j) and Wt(j) production for
each of the benchmark points presented in Table 2.1, after the application of our
Level III cuts. The total background cross-section is also shown. The last two
columns display the signal-to-background ratio S/B, and the statistical significance
(as given by S/

√
B) corresponding to an integrated luminosity of L = 300 fb−1 in

each detector at the LHC (operating at a center-of-mass energy
√

s = 14 TeV), after
the application of these same cuts.

and LH6, each of which yields a statistical significance of more than 5σ. The reason

why these benchmarks are comparatively auspicious is twofold. First, both involve

a light LIP, with a mass mS ∼ 40 GeV. Second, both also feature a mass splitting

δ2 ∼ 70 GeV, which, on the one hand, is small enough that A → SZ → Sℓ+ℓ−

decays will occur through an off-shell Z boson, but, on the other hand, is large

enough so that the resulting charged leptons will not generally be too soft to escape

detection.

For LH7, which features a similarly light LIP, with mS ∼ 40 GeV, but for

which (δ1, δ2) = (70, 100) GeV, the primary difficulty in resolving the signal is that

the (dominant) WZ/γ∗ background cannot be suppressed by applying a Z veto on

MℓZℓZ
, since A → SZ → Sℓ+ℓ− decays occur via an on-shell Z. Indeed, this two-

body decay mode of the A is analogous to what are often referred to as “spoiler”

processes in the literature on trilepton signals in weak-scale supersymmetry [81].

Thus, although the signal cross section for LH7 after cuts is relatively large, the un-

suppressed Standard-Model WZ/γ∗ background renders discovery via this channel
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difficult. As for LH1, for which δ1,2 > MW,Z , the Standard-Model WZ/γ∗ back-

ground can be suppressed by imposing a lower limit on MTW
. The signal cross

section, however, is very small after the imposition of this cut, which renders a

discovery via this channel difficult for this benchmark scenario as well.

The discovery prospects for benchmark point LH3 are also less auspicious. One

reason for this is that the LIP mass is far heavier in this scenario, and the production

cross-section is therefore appreciably lower, as indicated in Table 2.6. Another is

that since δ1 and δ2 are smaller for this benchmark than for LH1 and LH6, the

charged leptons will be significantly softer, and more of them will escape detection.

For this reason, a proportionally greater reduction in signal events occurs as a result

of our detector-acceptance cuts, as can be seen from Table 2.7. For benchmark point

LH8, δ2 is smaller still, and the effect of the Level I cuts even more severe; hence

the trilepton signal is even more difficult to resolve.

A few further remarks comparing and contrasting the trilepton phenomenology

of the IDM with that of supersymmetric models are in order. Indeed, the pro-

cess pp → H±A → ℓ+ℓ−ℓ± + 6ET , which yields the dominant contribution to the

trilepton signal in the IDM is in many ways analogous to the direct chargino-

neutralino production process pp → χ0
2χ

±
1 , with χ0

2 → χ0
1Z

(∗) → χ0
1ℓ

+ℓ− and

χ±
1 → χ0

1W
(±∗) → χ0

1ℓν, where χ0
1,2 are the lightest and second lightest neutrali-

nos and χ±
1 is the lightest chargino. This channel has long been regarded as a

promising discovery channel for weak-scale supersymmetry. Indeed, as was shown

in [90], for certain opportune regions of parameter space, an observable signal could

be obtained with less than 30 fb−1 of integrated luminosity at the LHC. More re-

cently, the CMS collaboration, working in the context of minimal supergravity, has

indicated that a 5σ discovery of supersymmetry could be achieved in this channel

with 30 fb−1 of integrated luminosity, provided that the gaugino mass parameter

M1/2 ≤ 180 GeV [87].

Thus, we see that given similar mass spectra, the discovery prospects for the

supersymmetric process are markedly better than those for its IDM counterpart.

This is primarily due to to the substantial difference — a relative factor of around
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16 — between the production cross-sections for pp → χ0
2χ

±
1 in the minimal super-

symmetric Standard Model (MSSM) and pp → AH± in the IDM. This difference

owes to two important distinctions between the characteristics of the relevant par-

ticles in the two models. The first of these is that χ±
1 and χ0

2 are Weyl fermions

whereas H± and A are real scalars. As a consequence, the cross-sections for the

corresponding processes in the two models differ by a relative factor of roughly 4 in

the high-energy limit (i.e. the limit in which s ≫ m2
i , where mi denotes the mass

of any of the particles involved in the interaction). The second relevant distinction

is that the scalar doublet φ2 of the IDM is in the fundamental representation of

SU(2), whereas the charged and neutral Winos (which respectively constitute the

dominant components of χ±
1 and χ0

2 in the relevant region of SUSY parameter space)

are in the adjoint representation. This translates into another relative factor of 4

between the corresponding production cross-sections. The practical consequence of

this result, of course, is that observing a trilepton signal in the IDM is far more

difficult than it is in its MSSM analogue. Indeed, we have seen that although the

trilepton channel is one of the cleanest channels in which one might hope to discover

supersymmetry at the LHC, in the IDM, this channel can only be observed in the

region of parameter space in which the LIP is light (mS ∼ 40 GeV) and the mass

splitting δ2 is relatively large (δ2 ∼ 70 GeV).

While the above analysis was performed assuming a center-of-mass energy
√

s =

14 TeV, it is also worthwhile to consider how the discovery prospects would differ at

an LHC operating energy of
√

s = 10 TeV. In this case, the pp → H±A production

cross-sections are reduced to roughly 60% of the values given in Table 2.6, while

the (generally dominant) WZ/γ∗ background drops to roughly 80% of its 14 TeV

value. Since signal event count is not generally a limiting factor in event selection,

we would expect each of the S/
√

B values quoted above to drop to roughly 65% of

its 14 TeV value at a 10 TeV machine, given identical luminosities and assuming

similar cut efficiencies. While this is not an imperceptible reduction, it is by no

means a severe one; thus, were our universe in fact to resemble that described by an

IDM benchmark scenario such as LH2 or LH6, one would still expect to see evidence
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of trilepton production from the decays of heavy inert particles at the LHC, even at
√

s = 10 TeV.

Conclusions

The Inert Doublet Model is a simple yet incredibly versatile scenario for physics

beyond the Standard Model. Among its phenomenological advantages is that it

provides a viable WIMP dark-matter candidate in the form of the lightest inert

particle. In this section, we have investigated the observability of a trilepton signal

at the LHC in the Inert Doublet Model. While the first signals of an inert doublet

at the LHC are likely to appear in the dilepton channel [58], the observation of a

signal in the trilepton channel could provide valuable additional information about

the parameter space of the model and assist in distinguishing the IDM from other

BSM scenarios which give rise to similar signature patterns. We have shown that at

an integrated luminosity L = 300 fb−1, it should be possible to resolve the trilepton

signal, provided that the LIP is light (mS ∼ 40 GeV), the mass splitting δ2 lies

within the range 50 GeV ≤ δ2 ≤ MZ , and δ1 is small enough (δ1 ≤ 100 GeV) that

H±A production is not drastically suppressed. These criteria coincide with those

which lead to the best detection prospects in the dilepton channel as well.

It should be noted, however, that one could only hope to observe a trilepton signal

in regions of parameter space in which the Higgs is lighter than around 180 GeV.

Although the Inert Doublet Model can certainly accommodate a heavier Higgs boson

— indeed, among the model’s numerous advantages is its ability to alleviate the

little hierarchy problem — the requisite contributions to the oblique T parameter

needed for this owe to the existence of a sizable mass splitting between H± and

S. When this is the case, the pp → AH± production cross-section will be highly

suppressed, and the trilepton-signal contribution from this process will consequently

be unobservable at the LHC.

As a final word, we note that although the analysis performed in this work was

conducted within the framework of the Inert Doublet Model, similar signatures in-

volving the production of charged and neutral scalars which subsequently decay into
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other, lighter, scalar particles and SM gauge bosons appear in many other BSM sce-

narios. We emphasize that our results should also apply in any such scenario in

which the aforementioned lighter scalar particle is neutral and stable (on collider

time scales), and hence appears in the detector as missing energy. The observation

of a clean trilepton + 6ET signal above the SM background would be a clear indica-

tion of new physics. To determine the precise nature of that new physics, however,

and to pin down the particle nature of the dark matter candidate will likely require

additional data from a variety of sources. These may include complementary chan-

nels at the LHC, signals at direct or indirect dark-matter-detection experiments, or

results from one of many other available experimental probes of physics beyond the

Standard Model.

2.2 The Left-Right Twin Higgs Model at the LHC

The twin Higgs mechanism [33, 34, 35] is proposed as a solution to the little Hier-

archy problem, which employs the idea of Higgs boson as Goldstone arising from

breaking a global symmetry for the Higgs sector. Upon invoking a discrete sym-

metry [36], the quadratic contribution to the Higgs potential respects the global

symmetry. The leading divergence in one-loop correction to the Higgs mass squared

is at most logarithmic, greatly reducing the amount of fine-tuning.

The twin Higgs mechanism can be implemented in a couple of ways. The discrete

symmetry can be identified as the mirror parity [34]. A complete copy of the SM

particle content and interactions is introduced. The leading quadratic divergences

from the SM particle and the mirror copy cancel out.

The left-right symmetry [36] also works here, which brings in new particles as

necessary. A variety of heavy states emerges: the heavy gauge bosons W±
H and ZH ,

heavy top quark T , extra neutral/charged Higgs bosons. The cancellation of the

quadratic divergence to the Higgs mass occurs between the SM particle and the

heavy states.

In what follows, we first review the model setup of the LRTH as in Sect. 1.2.3.
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Here we focus on the mass spectrum that is most relevant to collider study of the

heavy top T and define a set of benchmark points. Then we go on to explore the

heavy top quark production and SM backgrounds at the LHC, and develop an event-

selection procedure. At the very end of the section, we present the optimized cuts

and the results.

2.2.1 Model Framework, Mass Spectrum and Benchmarks

In the LRTH model, a global U(4)×U(4) symmetry is imposed on the Higgs poten-

tial, with gauged subgroup SU(2)L × SU(2)R × U(1)B−L. The discrete symmetry

to invoke U(4) invariant quadratic contribution to the potential is identified as the

left-right symmetry, which interchanges L with R. The left-right symmetry equates

the gauge couplings of the left and right SU(2) group: gL = gR ≡ g.

Two Higgs fields are introduced:

H =





HL

HR



 , Ĥ =





ĤL

ĤR



 , (2.11)

where HL is the SU(2)L doublet and HR is the SU(2)R one. They transform as (4,

1) and (1, 4 repectively. Once the the H and Ĥ develop vev’s: f̂ ≫ f ,

〈H〉 =















0

0

0

f















, 〈Ĥ〉 =















0

0

0

f̂















, (2.12)

the global symmetry is spontaneously broken, with 14 Goldstone bosons. The

SU(2)R × U(1)B−L gauge symmetry is also broken, into the U(1)Y of the SM.

Three of the Goldstone bosons are eaten by the gauge bosons and become the

longitudinal components of W±
H and ZH . The masses of the heavy gauges bosons

are:

m2
WH

=
1

2
g2
2(f̂

2 + f 2 cos2 x),

m2
ZH

=
g2
1 + g2

2

g2
2

(m2
WH

+ m2
W ) − m2

Z , (2.13)
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where x = v/
√

2f , g1 = e/
√

cos 2θw and g2 = e/ sin θW are the gauge couplings

of the SU(2) and U(1)B−L respectively and are related to the e and the Weinberg

angle.

The remaining Goldstone bosons obtain masses through loop corrections. The

masses can be obtained by expanding the one-loop CW potential. Of particular

interest is the mass of the charged scalars 6:

m2
φ± ∼ 3

16π2
g2
1m

2
WH

(

log
Λ2

m2
ZH

+ 1

)

, (2.14)

where λ is the cutoff scale of the model, usually taken to be 4πf .

To account for the O(1) top Yukawa coupling and a top mass ∼ weak scale,

a pair of vector-like quarks are introduced as in Eq.(1.56). Once the Higgs field

H = (HL, HR) develops vev, a light SM top quark and a heavy top quark T emerge,

with masses:

m2
t ∼ y2f 2 sin2 x − M2 sin2 x ∼ (

yv√
2
)2, (2.15)

m2
T = y2f 2 + M2 − m2

t , (2.16)

where M controls the mixing between the light and heavy top quarks.

The free parameters that control the mass spectrum relevant for collider study

of the heavy top quark are:

{f, Λ, M}. (2.17)

The cutoff scale is usually taken to be 4πf . The mixing parameter M is in general

small, here to be fixed at 150 GeV. A table of benchmark points are listed in

Table.2.10 for f in the range 500 GeV – 1.5 TeV.

2.2.2 Heavy Top Quark Signature at the LHC

Signals, Backgrounds and Event Selection

One single heavy top quark can be produced at the LHC with one extra jet, via

s-channel or t-channel W or WH exchange as is shown in Fig. 2.7. For a heavy

6For exact mass formulas, refer to [91]
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mass spectrum (GeV)
f (GeV) mT mWH

mZH
mφ±

600 614 1393 1665 199
1000 1007 2605 3115 321
1500 1504 4053 4846 476

Table 2.10: Benchmark points for the LRTH mode.

q

q̄′
W, WH

T

b̄

q/q̄′ q′/q̄

W, WH

b T

Figure 2.7: Feynman diagram for single heavy top production at the LHC.

top with mass 500–1500 GeV, the cross-section is in the range 7 × 103 fb – 10 fb.

The contribution from diagrams involves the W boson is negligible, the reason is

two-fold: first of all, the heavy top quark mass is larger than the W boson mass by

an order of magnitude (see Table. 2.11), secondly the WT̄b coupling is suppressed

by (M/f)(v/f). As for the WH , since it is heavier than the heavy top T , the

intermediate WH in the s-channel is mostly on-shell; thus it contributes more than

80% to the total cross-section. The implication here is that the jet associated with

the single production of heavy top is mostly a b-jet, as opposed to u/d jets from the

t-channel process.

The pair production of heavy tops at the LHC is also possible, in similar manner

to the pair production of the SM top quark, via gluon exchange: qq̄, gg → T T̄ . In

the case of pair production of the SM top quarks, the large QCD coupling leads to

huge cross-section, which makes the LHC a “top factory”. However, it is not the case

for the heavy top T . The pair production process suffers from severe phase space

suppression, due to the significantly large heavy top quark mass. The cross-section
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of the pair production is about a factor of five smaller than that of single production

mentioned above. Thus in what follows, we focus only on heavy top quark from the

single production mode.

Once produced at the LHC, the heavy top quark could decay into ht, Zt and Wb,

but predominantly into φ+b. This is best understood if one examines the relevant

couplings of the suppressed decay modes: they are all accompanied by a factor of M
f

due to the mixing between the heavy and the light top. For our benchmarks, where

M is taken to be 150 GeV and f is in the range 500 GeV – 1500 GeV, the suppression

factors for couplings are in the range 0.1 – 0.3, relative to the un-suppressed φ+T̄ b.

Numerically, more than 70% of the time the heavy top T ends up in φ+b channel.

The cascade decay chain for heavy top T under investigation is thus:

T → φ+b, φ+ → tb, t → W+b → l+νb. (2.18)

The appearance of the SM top quark t in φ+ decay is natural, because of the

large Yukawa coupling it bears. For lepton identification and triggering efficiency

consideration, l is understood to be either e or µ in this section, unless explicitly

stated otherwise. The signal of the heavy top quark at the LHC comprises of 4 b

jets + one charged lepton (e or µ) + missing 6ET , where the additional energetic b

jet associated with the single T production is also taken into account.

Several SM processes produce similar final states as the LRTH heavy top cascade

decay, the first of which is tt̄ process, where the SM top quarks decay into two b

quarks and W boson, followed by leptonic decay for one of the W boson and hadronic

decay for the other. The collider signature of tt̄ process is thus bbjj + l±+ missing

6ET . The QCD processes are another source of backgrounds: Wjjjj, Wcjjj, Wccjj

and Wbbjj, where W boson undergoes leptonic decay into e or µ and j = u, d, s

here indicates jets originating from light quarks.

In the present study, signal and the SM tt̄ background events are generated

at parton-level, in MadGraph [83], followed by the decay of unstable particles in

BRIDGE [92]. QCD backgrounds are generated at parton-level in Alpgen [93]. All

events are then passed through PYTHIA [84] for parton showering and hadronization
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Signal SM backgrounds
Benchmarks σTj σT̄ j Process σ Process σ

f (GeV) (fb) (fb) (pb) (pb)
600 360.8 144.7 tt̄ 90 Wbbjj 4.87
1000 29.5 8.6 Wjjjj 244.5 Wccjj 4.56
1500 2.2 0.5 Wcjjj 45.2

Table 2.11: Cross-sections of signal processes pp → Tj/T̄ j in three benchmarks in
LRTH model, as well as relevant SM backgrounds For SM processes, both of the
conjugated processes are included. The cross-sections listed are understood as after
fully decay of any unstable state and after the application of Stage-I selection cuts.

and PGS4 for detector effect simulation.

To account for detector performance thresholds and better understand the dif-

ference among signals and backgrounds, the following Stage-I cuts are imposed on

all events:

• Exactly one charged lepton l± with PT,l > 10 GeV and |ηl| < 2.5, where

l = e/µ.

• For lepton isolation, ∆Rjl > 0.4 for each combination of the lepton and one

of the jets presented.

The resulting cross-sections are listed in Table 2.11. Both the tt̄ and the QCD W + 4

jets type backgrounds have cross-sections orders of magnitudes larger than the heavy

top signal cross-section. The smallness of the signal cross-section is a reflection of the

restricted phase space due to the extremely massive T . The enormous cross sections

of the backgrounds, on the other hand, are due to the large QCD coupling strength

taking part in the SM background processes. However, the signal kinematics and

topology differ from that of the backgrounds significantly in a variety of ways.

The leading jet transverse-momentum PT distribution reveals drastically distinct

features between the signal and the background processes. In single production of

heavy top T , the s-channel diagram with intermediate heavy boson WH dominates.

The b jet coming from WH on-shell decay bears extremely high PT with a sharp
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Figure 2.8: Leading jet PT distribution from the heavy top production (f = 1000
GeV) and tt̄ backgrounds.

edge around f and comprises most of the time the jet with leading PT . It is obvious

from the distribution plot in Fig. 2.8 leading jet PT rarely goes below 200 GeV for

the signal process in f = 1000 GeV benchmark. The other two benchmarks display

similar feature in leading jet PT distribution, with edges located according to the

mass spectrum of the heavy particles. On the contrary, the jets from tt̄ are relatively

soft and the leading jet PT peaks at the low PT region ∼ 50–100 GeV. In the QCD

W + 4 jets backgrounds, the jets are even more soft. A careful designed cut on

the leading jet PT thus serves to cut down the SM backgrounds, while holding onto

the heavy top signal. Based on this observation, we impose a cut on the leading

transverse-momentum among jets:

• Leading jet PT > P min
T,leadingjet,

where the P min
T,leadingjet varies with the benchmarks, for optimal outcome in terms

of the signal-to-background ratio. Similar cuts on the second leading jet PT are

sometimes employed.

The difference from topology of the cascade decay chain of the heavy top T to
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that of the tt̄ and the QCD processes also helps to distinguish the signal from the

SM backgrounds. Subsequent to the point of production of heavy top T , it decays

following a long chain: T → φ±, φ± → tb, t → Wb and at the last stage W → lν.

The hierarchy in the mass spectrum of T , φ±, t, W± makes the decay involved in

the chain mostly on-shell, forming a series of resonances, which are obviously absent

in the tt̄ and QCD backgrounds.

We then construct the resonances bottom-up starting with the W boson and top

quark t and require that the reconstructed mass to be in the vicinity of the assumed

mass {mW , mt, mφ± , mT} in the benchmarks. The reconstruction of the W and t

also fixes the momentum of the missing neutrino.

• The beam direction momentum of the neutrino P ν
z is calculated up to a two-

fold ambiguity, assuming that P ν
z combined with the missing 6ET and the lepton

constructs a W boson of mass mW .

• The candidate P ν
z together with missing 6ET and the lepton is combined with

all jets one at a time to form a t resonance. The combination of {P ν
z , lepton,

jet} with reconstructed mass Mt that best matches mt is kept. Label the jet

added at this stage jet(t). We impose the following cuts on the reconstructed

mass Mt and the transpose momentum of jet(t):

mt − ∆mt <Mt < mt + ∆mt,

P min
T,jet(t) <PT,jet(t).

The event is discarded should it fail the cuts.

• A second jet is added to reconstruct the φ± resonance. The combination with

reconstructed mass Mφ± that best matches mφ± is kept. Label the jet added

at this stage jet(φ±). We impose the following cuts on the reconstructed mass

Mφ± and the transpose momentum of jet(φ±):

mφ± − ∆mφ± <Mφ± < mφ± + ∆mφ±,

P min
T,jet(φ±) <PT,jet(φ±).
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The event is discarded should it fail the cuts.

• A third jet is added to reconstruct the heavy top T resonance. The combina-

tion with reconstructed mass MT that best matches mT is kept. Label the jet

added at this stage jet(T ). We impose the following cuts on the reconstructed

mass MT and the transpose momentum of jet(T ):

mT − ∆mT <MT < mT + ∆mT ,

P min
T,jet(T ) <PT,jet(T ).

The event is discarded should it fail the cuts.

The notation we adopt on subscript “T” is seemingly confusing. The rule is: follow-

ing mass (m/M) or to label a jet, it means the heavy top T ; otherwise (following

momentum or energy P/E), it stands for “transverse”.

The signal topology differs furthermore from the backgrounds in that it comprises

mostly 4 b-jets, whereas the backgrounds contain at most two. Thus we find it

particularly useful to place a cut on the number of jet tagged as b jet and require:

Nmin
b < Nb, (2.19)

where again Nmin
b is chosen for optimal signal-to-background ratio.

Optimized Cuts and Results

Now that we have discussed extensively the event-selection procedure for the heavy

top production at the LHC, we turn to present the optimized cuts and the results

of the numerical analysis. We list the optimized cuts imposed on each of the three

benchmark points in Table 2.12 and the corresponding cross sections and S/
√

B

ratio in Table 2.13.

The first set of cuts applied on missing 6ET and PT,l works on both signal and

background processes. The distributions of both quantities do not vary much in

different benchmark points, which explains the universal lower bounds.
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Cuts Benchmarks
(GeV) f = 600 GeV f = 1000 GeV f = 1500 GeV

6Emin
T 15 15 15

P min
T,l 30 30 30

P min
T,leadingjet 400 600 1000

∆mt 20 30 50
P min

T,jet(t) 30 0 0

∆mφ± 30 100 100
PT,jet(φ±) 0 30 30

∆mT 50 200 300
P min

T,jet(T ) 250 250 400

Nmin
b 2 2 1

Table 2.12: A list of the optimized cuts in each of the benchmark points. All
threshold quantities bear units of GeV, except for Nmin

b .

The leading jet PT distribution does vary between benchmark points, with peak

positively correlated with the mass of heavy top T , or equivalently f . Stringent cuts

are possible when we have large f , in which case we can relax other cuts applied, in

order to keep more of the signal.

The constraints imposed on the resonances and the jet at each stage of recon-

struction are the third set of cuts listed in Table 2.12. The ∆m’s chosen in the table

reflects partially the width of the the massive states. As can be observed for φ±

and T reconstruction stages, the selected ∆m steps up when we go from benchmark

point with f = 600 GeV to f = 1500 GeV. The PT cut on the jet shows similar

trend.

The cross sections are listed in Table 2.13. For SM backgrounds, we always

report 95% C.L. upper bounds. Due to the enormous production cross sections of

the backgrounds, the sample sizes necessary to render significant statistics exceeds

the computational capacity of regular PC in a limited time frame. Our approach,

instead of generating a huge sample, is to assume a Poisson distribution of the

observed number of events that pass our optimal cuts, and infer the 95% upper

bound on the Poisson parameter which is interpreted as the expected number of
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f (GeV) 600 1000 1500

σTj (fb) 0.98 0.72 0.16
σT̄ j (fb) 0.59 0.26 0.04
σcomb

signal (fb) 1.57 0.98 0.20

σtt̄ (fb) <0.108 <0.108 <0.027
σWjjjj (fb) <0.801 <0.267 <0.076
σWcjjj (fb) <0.146 <0.097 <0.028
σWbbjj (fb) <0.092 <0.023 <0.011
σWccjj (fb) <0.058 <0.058 <0.013
σcomb

BG (fb) <1.21 <0.55 <0.16

S/B 1.20 1.78 1.25

S/
√

B 7.81 7.23 2.74

Table 2.13: Cross sections for signal and background processes at the LHC for
each of the benchmark points, after the application of the optimized cuts Listed
in Table.2.12. The < sign indicates a 95% C.L. upper bounds. The S/

√
B ratios

corresponds to an integrated luminosity of 30fb−1.

events. We then report the cross section associated with this number as is listed in

Table 2.13.

Benchmark point with f = 600 GeV and f = 1000 GeV shows the best po-

tential of being discovered at the LHC. With an integrated luminosity of 30 fb−1,

we are expecting ∼ 47/30 events respectively for these two benchmark points, at a

significance level exceeding 7 σ.

For f = 1500 GeV, however, the significance level drops to ∼ 2.7, with an

expected number of events ∼ 6. It is not surprising that we find it difficult to observe

heavy top T : the cross section of the signal production is so tiny to begin with.

However, in later stages of the LHC operation when the luminosity is accumulated

up to 100 fb−1, the S/
√

B ratio is raised above 5, with an expected number of heavy

top events ∼ 20.

Conclusion

In this section, we have investigated the potential for observing the heavy top quark

T signature in the LRTH model at the LHC. We have covered a variety of bench-
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marks points that is phenomenologically viable, with the heavy top T mass as high

as ∼ 1.5 TeV. We have demonstrated that an integrated luminosity of 30 fb−1 would

reveal the heavy top quark signature with a significance level exceeding 7 σ, should

the heavy top T bear mass in the range 600 GeV up to 1 TeV. We would have to

wait till the LHC accumulates an integrated luminosity of 100 fb−1 for a 1.5TeV

heavy top T .

Of course, the confirmation of twin Higgs mechanism at the LHC could come

from other signatures within the LRTH model. The heavy neutral gauge bosons ZH

provides yet another interesting possibility. The dominant ZH decay mode is into di-

jets, however this mode suffers from the overwhelming QCD di-jet backgrounds. The

discovery mode of ZH could be the leptonic decay into l+l−. with a branching ratio

of 2.5% for each lepton species. e+e−/µ+µ− final states provides a clean signal. The

invariant di-lepton invariant mass ml+l−, peaked at MZH
high above, distinguishes

the heavy gauge boson signature from that of the SM backgrounds.
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CHAPTER 3

PRECISION OBSERVABLES AND SUSY BREAKING

With the help of the LHC, it is now possible to explore TeV territory which was

never directly reachable experimentally. However, the precision data provides com-

plimentary approach probing new physics. Here we present hints gathered from

precision observables, concerning the mechanisms of soft SUSY-breaking.

3.1 Introduction

The dimensionality of the parameter space of the minimal supersymmetric extension

of the Standard Model (MSSM) [94, 95] is so high that phenomenological analyses

often make simplifying assumptions that reduce drastically the number of parame-

ters. One assumption that is frequently employed is that (at least some of) the soft

SUSY-breaking parameters are universal at some high input scale, before renormal-

ization. One model based on this simplification is the constrained MSSM (CMSSM),

in which all the soft SUSY-breaking scalar masses m0 are assumed to be universal

at the GUT scale, as are the soft SUSY-breaking gaugino masses m1/2 and trilin-

ear couplings A0. The assumption that squarks and sleptons with the same gauge

quantum numbers have the same masses is motivated by the absence of identified

supersymmetric contributions to flavor-changing neutral interactions and rare de-

cays (see [96] and references therein). Universality between squarks and sleptons

with different gauge interactions may be motivated by some GUT scenarios [97].

Other ”simplified” versions of the MSSM that are based on (some) unification at a

higher scale are (minimal) Gauge mediated SUSY-breaking (mGMSB) [98, 99, 100]

and (minimal) Anomaly mediated SUSY-breaking (mAMSB) [101, 102, 103].

One approach to analyze the reduced parameter spaces of the CMSSM, mGMSB,

mAMSB or other GUT-based models is a combined χ2 analysis of electroweak pre-
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cision observables (EWPO) and of B-physics observables (BPO). Those analyses

have yet been restricted to the CMSSM or the non-universal Higgs mass (NUHM)

model [104, 105, 106, 107, 108, 109, 110, 111] (see also [112, 113, 114, 115]). In

these analyses also the cold dark matter density constraint imposed by WMAP and

other cosmological data [116] has been taken into account. In this case the lightest

SUSY particle (LSP), assumed to be the lightest neutralino, is required to give rise

to the correct amount of cold dark matter (CDM).

The aim of this chapter is to perform a χ2 analysis to compare the predictions of

the CMSSM, mGMSB and mAMSB. The mechanisms to fulfill the CDM constraints

are less clear in mGMSB and mAMSB as compared to the CMSSM. In order to treat

the three soft SUSY-breaking scenarios on the same footing, we do not impose the

CDM constraint in our analysis and scan over the full parameter space of the three

models. Concerning the impact of CDM constraints, it should be kept in mind that

small modifications of the physics scenario that concern neither the theory basis

nor the collider phenomenology could have a strong impact on the CDM derived

bounds. If the amount of CDM appears to be too small, other DM candidates can

provide the necessary amount to reach the measured density (see also [117] for a

recent analysis). If, on the other hand, the CDM density appears to be too large, a

small amount of R-parity violation [118], not affecting the collider phenomenology,

could remove the CDM bound completely. Other possibilities not invoking R-parity

violation are “thermal inflation” [119] or “late-time entropy injection” [120]. They

could offer a mechanism for bringing a high CDM density into agreement with the

WMAP measurements. Applying the WMAP constraints always assumes “standard

cosmology”. Therefore the choice of not imposing the CDM constraints, as we do,

can be motivated in the wider class of models under investigation here. We have

checked for the CMSSM that previous results could be reproduced when including

the CDM constraint.

The set of EWPO included in our analysis is the W boson mass MW , the effective

leptonic weak mixing angle sin2 θeff , the anomalous magnetic moment of the muon

(g−2)µ, and the mass of the lightest CP -even MSSM Higgs boson Mh. In addition,
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we also include two BPO: the branching ratios BR(b → sγ) and BR(Bs → µ+µ−).

Other BPO such as BR(Bu → τντ ) and the Bs mass mixing parameter ∆MBs
have

shown to possess only a low sensitivity with the current precision in this kind of

χ2 analysis [106]. For the evaluation of the BPO we assume minimal flavor violation

(MFV) at the electroweak scale. Non-minimal flavor violation (NMFV) effects can

be induced by RGE running from the high scale, see e.g. [121], that may amount

to ∼ 10% of the SUSY corrections. These additional contributions are neglected

throughout our study. For each observable, we construct the χ2 function including

both theoretical and experimental systematic uncertainties, as well as statistical

errors. Our analysis should be seen as an exploratory study, with the main goal to

compare the three soft SUSY-breaking scenarios. A more elaborate investigation

using more precision data and a refined χ2 analysis, see e.g. [111], can be performed

in a later stage and is beyond the scope of this chapter.

The rest of the chapter is organized as follows. We first briefly review the

three soft SUSY-breaking scenarios and the investigated parameter space. In 3.3

we shortly describe the current status of the EWPO and BPO that we use, our

treatment of the available theoretical calculations and their uncertainties, as well as

their present experimental values. The analysis within the three soft SUSY-breaking

scenarios using current experimental data can be found in 3.4. In a final step we

assume an improvement of the various EWPO and BPO accuracies from future ex-

perimental data and theory calculations and analyze in 3.5 the improvement in the

parameter determination. The conclusions can be found in 3.6.

3.2 The Soft SUSY-breaking Scenarios

The fact that no SUSY partners of the SM particles have so far been observed

means that low-energy SUSY cannot be realized as an unbroken symmetry in na-

ture, and SUSY models thus have to incorporate additional Supersymmetry break-

ing interactions. This is achieved by adding to the Lagrangian (defined by the

SU(3)C × SU(2)L × U(1)Y gauge symmetry and the superpotential W ) some fur-
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ther interaction terms that respect the gauge symmetry but break Supersymmetry

(softly, i.e. no quadratic divergences appear), so called “soft SUSY-breaking” (SSB)

terms. Assuming that the R-parity symmetry [118] is conserved, which we do in

this study for all SUSY breaking scenarios, reduces the amount of new soft terms

allowed in the Lagrangian. Choosing a particular soft SUSY-breaking pattern al-

lows further reduction of the number of free parameters and the construction of

predictive models. The three most prominent scenarios for such models are

• CMSSM (constrained Minimal Supersymmetric Standard Model) [122, 123]:

Apart from the SM parameters (for the experimental values of the SM input

parameters we use [124]), 4 parameters and a sign are required to define the

CMSSM scenario:

{ m0 , m1/2 , A0 , tan β , sign(µ) } . (3.1)

While m0, m1/2 and A0 define the scalar and fermionic masses and the trilinear

couplings at the GUT scale (∼ 1016 GeV), tan β (the ratio of the two vacuum

expectation values) and the sign(µ) (µ is the supersymmetric Higgs mass pa-

rameter) are defined at the low-energy scale. For our numerical analyses, see

Sects. 3.4 and 3.5, we have scanned over the following parameter space

50 GeV ≤ m0 ≤ 2 TeV ,

50 GeV ≤ m1/2 ≤ 2 TeV ,

−3 TeV ≤ A0 ≤ 3 TeV ,

1.5 ≤ tanβ ≤ 60 ,

sign µ = ±1. (3.2)

• mGMSB (minimal Gauge Mediated SUSY-Breaking) [100]:

A very promising alternative to the CMSSM is based on the hypothesis that

the soft SUSY-breaking occurs at relatively low energy scales and is mediated

mainly by gauge interactions through the so-called “messenger sector” [98, 99,
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100, 125, 126]. Also in this scenario, the low-energy parameters depend on

4 parameters and a sign,

{ Mmess, Nmess, Λ, tan β, sign(µ) } , (3.3)

where Mmess is the overall messenger mass scale; Nmess is a number called

the messenger index, parameterizing the structure of the messenger sector;

Λ is the universal soft SUSY-breaking mass scale felt by the low-energy

sector. The phenomenology of mGMSB is characterized by the presence

of a very light gravitino G̃ with mass given by m3/2 = mG̃ = F√
3M ′

P

≃
( √

F
100 TeV

)2

2.37 eV [127], where
√

F (∼ Mmess) is the fundamental scale of SSB

and M ′
P = 2.44×1018 GeV is the reduced Planck mass. Since

√
F is typically

of order 100 TeV, the G̃ is always the LSP in these theories. The numerical

analysis in Sects. 3.4 and 3.5 is based on the following scatter ranges:

104 GeV ≤ Λ ≤ 2 × 105 GeV ,

1.01 Λ ≤ Mmess ≤ 105 Λ ,

1 ≤ Nmess ≤ 8 ,

1.5 ≤ tan β ≤ 60 ,

sign µ = ±1. (3.4)

Values of Nmess larger than ∼ 8 result in problems with perturbativity of the

gauge interactions at very high scales [100].

• mAMSB (minimal Anomaly Mediated SUSY-Breaking) [101, 102, 103]:

In this model, SUSY breaking happens on a separate brane and is communi-

cated to the visible world via the super-Weyl anomaly. The particle spectrum

is determined by 3 parameters and a sign:

{maux, m0, tanβ, sign(µ)}. (3.5)

The overall scale of SUSY particle masses is set by maux, which is the vacuum

expectation value of the auxiliary field in the supergravity multiplet. m0 is
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introduced as a phenomenological parameter to avoid negative slepton mass

squares, for other approaches to this problem see [101, 128, 129, 130, 131].

The scatter parameter space for the numerical analysis in Sects. 3.4 and 3.5 is

chosen to be

20 TeV ≤ maux ≤ 200 TeV,

0 ≤ m0 ≤ 2 TeV,

1.5 ≤ tanβ ≤ 60,

sign µ = ±1. (3.6)

The upper bound on m0 has been chosen in agreement with the CMSSM scenario.

Concerning maux, being linked to the SUSY-breaking scale, we have chosen the

upper bound of 200 TeV, which should be sufficient to cover the essential features

of the low-energy spectrum of mAMSB.

The low-energy spectra for all soft SUSY-breaking scenarios have been evaluated

with the program SoftSUSY [132] (version 2.0), taking into account the experimen-

tal constraints from SUSY particle searches [124]. The parameter ranges have been

sampled by a random scan over the four- (three-)dimensional space of the free pa-

rameters in the CMSSM and mGMSB (in mAMSB). The sign of µ has been treated

as another free parameter. For each soft SUSY-breaking scenario about ∼ 105 ran-

dom points have been generated. This large number ensures that all regions of the

four- (three-)dimensional hypercube of free parameters are reached.

3.3 The Precision Observables

The considered data set includes four EWPO [133]: the mass of the W boson, MW ,

the effective leptonic weak mixing angle, sin2 θeff , the anomalous magnetic moment

of the muon, (g−2)µ, and the mass of the lightest CP -even MSSM Higgs boson, Mh.

Another EWPO, the total Z boson width, ΓZ , has shown to have little sensitivity to

SUSY corrections [106, 134]. In addition, we include two BPO: the branching ratios

BR(b → sγ) and BR(Bs → µ+µ−). Other BPO such as BR(Bu → τντ ) and the
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Bs mass-mixing parameter ∆MBs
with their current experimental and theoretical

precision have only a small sensitivity to SUSY corrections [106].

In this Section we start our analysis by recalling the current precisions of the

experimental results and the theoretical predictions for all these observables. In the

following, we refer to the theoretical uncertainties from unknown higher-order correc-

tions as ‘intrinsic’ theoretical uncertainties and to the uncertainties induced by the

experimental errors of the SM input parameters as ‘parametric’ theoretical uncer-

tainties. We do not discuss here the theoretical uncertainties in the renormalization-

group running between the high-scale input parameters and the weak scale. At

present, these uncertainties are less important than the experimental and theoreti-

cal uncertainties in the precision observables.

Assuming that the six observables listed above are uncorrelated, a χ2 fit has

been performed with

χ2 ≡
4

∑

n=1

(

Rexp
n − Rtheo

n

σn

)2

+ χ2
Mh

+ χ2
Bs

. (3.7)

Here Rexp
n denotes the experimental central value of the nth observable (MW ,

sin2 θeff , (g − 2)µ and BR(b → sγ)), Rtheo
n is the corresponding MSSM predic-

tion and σn denotes the combined error, as specified below. χ2
Mh

and χ2
Bs

denote

the χ2 contribution coming from the experimental limits on the lightest CP -even

MSSM Higgs boson mass and on BR(Bs → µ+µ−), respectively, which are also

described below. In Sect. 3.5 we assume a future measurement of Mh and use

χ2
Mh

= ((M exp
h − M theo

h )/σMh
)2.

We also list below the parametric uncertainties in the predictions on the observ-

ables induced by the experimental uncertainties of all relevant SM input parame-

ters. These parametric uncertainties are then added to the other errors (intrinsic

and experimental) of the observables as described in the text below. A particu-

larly important input parameter in this respect is the top-quark mass. We evaluate

the SUSY spectrum and the observables for each data point for the nominal value,

mt = 171.4 GeV [135] but include the error induced by the experimental uncertainty
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of δmexp
t = 2.1 GeV.1

3.3.1 The W Boson Mass

The W boson mass can be evaluated from

M2
W

(

1 − M2
W

M2
Z

)

=
πα√
2GF

(1 + ∆r) , (3.8)

where α is the fine structure constant and GF the Fermi constant. The radiative

corrections are summarized in the quantity ∆r [137]. The prediction for MW within

the SM or the MSSM is obtained by evaluating ∆r in these models and solving

eq. (3.8) for MW .

We include the complete one-loop result in the MSSM [138, 139] as well as higher-

order QCD corrections of SM type that are of O(ααs) [140, 141] and O(αα2
s) [142,

143], where αs = g2
s/(4π). Furthermore, we incorporate supersymmetric corrections

of O(ααs) [144] and of O(α2
t ) [145] to the quantity ∆ρ, which involves the leading

universal corrections induced by the mass splitting between fields in an isospin

doublet [146]. 2 Here αt = y2
t /(4π) in terms of the coupling of the Higgs to the top

quark.

The remaining intrinsic theoretical uncertainty in the prediction for MW within

the MSSM is still significantly larger than in the SM. For typical parameters (based

on Ref. [145]) we estimate the current and future intrinsic uncertainties to be

∆M intr,current
W

<∼ 10 MeV , ∆M intr,future
W = 2 MeV , (3.9)

depending on the mass scale of the supersymmetric particles. The parametric un-

certainties are dominated by the experimental error of the top-quark mass and the

hadronic contribution to the shift in the fine structure constant. Their current errors

1Using the most recent experimental value, mt = 172.6 GeV, including the experimental error

of δmexp
t = 1.4 GeV [136], see below, would have a relatively small impact on our analysis, see also

the discussion at the end of Sect. 3.4.2.
2 A recent re-evaluation of MW [147] shows good agreement with the values used here.
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induce the following parametric uncertainties [106, 133]

δmcurrent
t = 2.1 GeV ⇒ ∆Mpara,mt,current

W ≈ 13 MeV, (3.10)

δ(∆αcurrent
had ) = 35 × 10−5 ⇒ ∆Mpara,∆αhad,current

W ≈ 6.3 MeV . (3.11)

At the ILC, the top-quark mass will be measured with an accuracy of about

100 MeV [148, 149]. The parametric uncertainties induced by the future experi-

mental errors of mt and ∆αhad [150] will then be [151]

δmfuture
t = 0.1 GeV ⇒ ∆Mpara,mt,future

W ≈ 1 MeV, (3.12)

δ(∆αfuture
had ) = 5 × 10−5 ⇒ ∆Mpara,∆αhad,future

W ≈ 1 MeV. (3.13)

The present experimental value of MW is [152, 153, 154, 155, 156], see also Ref. [157].

M exp,current
W = 80.398 ± 0.025 GeV. (3.14)

With the GigaZ option of the ILC (i.e. high-luminosity running at the Z resonance

and the WW threshold) the W -boson mass will be determined with an accuracy of

about [158, 159]

δM exp,future
W = 7 MeV. (3.15)

We add the experimental and theoretical errors for MW (for the current situation

as well as for the future estimates) in quadrature in our analysis.

The predictions for MW in the three scenarios are compared with each other

in Fig. 3.3.1 (for µ > 0, see Sect. 3.3.3), where the W boson mass is shown as a

function of the lighter scalar top quark mass, mt̃1 . The shown areas are obtained as

the borders of the scan over the parameters as specified in eqs. (3.2), (3.4) and (3.6).

The upper limit of mt̃1 reached in the three scenarios is similar in the CMSSM and

in mAMSB (related to the upper bounds on m1/2 and maux), whereas the allowed

area for mt̃1 is somewhat larger in mGMSB. Since these upper bounds depend on

the chosen ranges for the high-energy scale parameters, they should be considered

to be artificial and it does not make sense to compare the three soft SUSY-breaking

scenarios in these terms. Consequently, we have truncated the plot at mt̃1 = 3 TeV.
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Figure 3.1: The predictions for MW as obtained from the parameter scan are shown
as a function of mt̃1 for the three soft SUSY-breaking scenarios for µ > 0. The top
quark mass has been fixed to mt = 171.4 GeV. The solid (dashed) lines indicate
the currently allowed 1 σ interval from the experimental uncertainty (including also
theoretical uncertainties).

The range of the MW prediction is very similar in the three scenarios. The solid

(dashed) lines represent the currently allowed 1 σ interval from the experimental

uncertainty (including also theoretical uncertainties). This indicates that at the

current level of accuracy all three models agree similarly well with the experimental

measurement. A preference for relatively low values of mt̃1 is visible, which is most

prominent in mGMSB.

3.3.2 The Effective Leptonic Weak Mixing Angle

The effective leptonic weak mixing angle at the Z boson peak can be written as

sin2 θeff =
1

4

(

1 − Re
veff

aeff

)

, (3.16)
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where veff and aeff denote the effective vector and axial couplings of the Z boson

to charged leptons. Our theoretical prediction for sin2 θeff contains the same class

of higher-order contributions as described in Sect. 3.3.1, supplemented with a small

correction based on Ref. [134], see the evaluation in Ref. [106].

For the intrinsic theoretical uncertainty in the prediction for sin2 θeff we use an

estimate (based on Refs. [145, 106, 160]) of

∆ sin2 θintr,current
eff

<∼ 12 × 10−5 , ∆ sin2 θintr,future
eff

<∼ 2 × 10−5 . (3.17)

The experimental errors of mt and ∆αhad induce the following parametric uncer-

tainties [134]

δmcurrent
t = 2.1 GeV ⇒ ∆ sin2 θpara,mt,current

eff ≈ 6.3 × 10−5, (3.18)

δ(∆αcurrent
had ) = 35 × 10−5 ⇒ ∆ sin2 θpara,∆αhad,current

eff ≈ 12 × 10−5. (3.19)

For the future accuracies we assume

δmfuture
t = 0.1 GeV ⇒ ∆ sin2 θpara,mt,future

eff ≈ 0.4 × 10−5, (3.20)

δ(∆αfuture
had ) = 5 × 10−5 ⇒ ∆ sin2 θpara,∆αhad,future

eff ≈ 1.8 × 10−5. (3.21)

The experimental value is [152, 153]3

sin2 θexp,current
eff = 0.23153 ± 0.00016 . (3.22)

The experimental accuracy will improve to about

δ sin2 θ exp,future
eff = 1.3 × 10−5. (3.23)

at GigaZ [161] (see also Ref. [162] for a corresponding discussion). We add the

experimental and theoretical errors for sin2 θeff in quadrature in our analysis.

3It should be noted that this value is determined mostly by two measurements that are only

marginally compatible: the forward-backward asymmetry for b quarks Ab
FB, and the left-right

asymmetry for electrons Ae
LR [152].
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Figure 3.2: The predictions for sin2 θeff as obtained from the parameter scan are
shown as a function of mt̃1 for the three soft SUSY-breaking scenarios for µ > 0. The
top quark mass has been fixed to mt = 171.4 GeV. The solid (dashed) lines indicate
the currently allowed 1 σ interval from the experimental uncertainty (including also
theoretical uncertainties).

The predictions for sin2 θeff in the three scenarios are compared with each other

in Fig. 3.2 (for µ > 0, see Sect. 3.3.3), where the effective weak mixing angle is

shown as a function of the lighter scalar top quark mass, mt̃1 (truncated at mt̃1 =

3 TeV). As for MW , the range of the sin2 θeff prediction is very similar in the three

scenarios. Smallest values are reached in mAMSB. The solid (dashed) lines indicate

the currently allowed 1 σ interval from the experimental uncertainty (including also

theoretical uncertainties). This indicates, as for MW , that at the current level of

accuracy all three models agree equally well with the experimental data, where no

preference for mt̃1 can be deduced.
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3.3.3 The Anomalous Magnetic Moment of the Muon

The SM prediction for the anomalous magnetic moment of the muon, aµ = 1
2
(g−2)µ,

(see Refs. [163, 164, 165, 166, 167, 168] for reviews) depends in particular on the

evaluation of QED contributions (see Refs. [169, 170, 171] for recent updates), the

hadronic vacuum polarization and light-by-light (LBL) contributions. The for-

mer have been evaluated in Refs. [172, 173, 174, 175, 167, 176, 177] and the latter

in Refs. [178, 179, 180, 181]. The evaluations of the hadronic vacuum polarization

contributions using e+e− and τ decay data give somewhat different results. In view

of the fact that recent e+e− measurements tend to confirm earlier results, whereas

the correspondence between previous τ data and preliminary data from BELLE [182]

is not so clear, and also in view of the additional uncertainties associated with the

isospin transformation from τ decay (see Ref. [183]), we use here the latest estimate

based on e+e− data [177]:

atheo
µ = (11 659 180.5± 4.4had ± 3.5LBL ± 0.2QED+EW) × 10−10, (3.24)

where the source of each error is labeled. We note that the more recent e+e−

data sets of Refs. [184, 185, 186, 187] have been partially included in the updated

estimate of (g − 2)µ.

The SM prediction is to be compared with the final result of the Brookhaven

(g − 2)µ experiment E821 [188, 189], namely:

aexp
µ = (11 659 208.0± 6.3) × 10−10, (3.25)

leading to an estimated discrepancy [177, 190]

aexp
µ − atheo

µ = (27.5 ± 8.4) × 10−10, (3.26)

equivalent to a 3.3-σ effect4. While it would be premature to regard this deviation

as a firm evidence for new physics, within the context of SUSY, it does indicate a

preference for a non-zero contribution from superpartners.

4Three other recent evaluations yield slightly different numbers [167, 174, 166], but similar

discrepancies with the SM prediction.
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Concerning the MSSM contribution, the complete one-loop result was evaluated

over a decade ago [191]. In view of the correlation between the signs of (g−2)µ and

of µ [192], variants of the MSSM with µ < 0 (or more precisely a positive µ · M2,

where we use the convention of positive M2 for the three scenarios) are already

severely challenged by the present data on aµ. However, as indicated in Sect. 3.2,

we have analyzed both signs of µ, and correspondingly find a strong preference for

µ > 0, see Fig. 3.3 below. Therefore, in the other plots shown here we focus on the

case µ > 0.

In addition to the full one-loop contributions, the leading QED two-loop correc-

tions have also been evaluated [193]. Further corrections at the two-loop level have

been obtained more recently [194, 195], leading to corrections to the one-loop result

that are <∼ 10%. These corrections are taken into account in our analysis according

to the approximate formulas given in Refs. [194, 195].

The current intrinsic uncertainties in the SUSY contributions to aµ can be esti-

mated to be <∼ 1 × 10−10 [165]. We assume that in the future the uncertainty in

eq. (3.26) will be reduced by a factor two. All errors are added in quadrature.

The predictions for ∆aSUSY
µ in the three scenarios are compared with each other

in Fig. 3.3, where the anomalous magnetic moment of the muon is shown as a

function of the lighter scalar top quark mass, mt̃1 (truncated at mt̃1 = 3 TeV). The

full (dot) shaded areas are obtained for µ > (<)0, resulting in ∆aSUSY
µ > (<)0. The

range of the aµ prediction is very similar in the three scenarios. The solid (dashed)

lines indicate the currently allowed 1(2) σ intervals of the experimental uncertainty.

It becomes apparent that points with µ < 0 are strongly disfavored by the analysis

of (g − 2)µ. Furthermore, at the 2 σ level stop masses heavier than ∼ 2 TeV are

clearly disfavored.

3.3.4 The Mass of the Lightest CP -even MSSM Higgs Boson

The mass of the lightest CP -even MSSM Higgs boson can be predicted in terms of

the other MSSM parameters. At the tree level, the two CP -even Higgs boson masses

are obtained as functions of MZ , the CP -odd Higgs boson mass MA, and tanβ,
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Figure 3.3: The predictions for ∆aSUSY
µ as obtained from the parameter scan are

shown as a function of mt̃1 for the three soft SUSY-breaking scenarios. The full
(dot) shaded areas are obtained for µ > (<)0, resulting in ∆aSUSY

µ > (<)0. The top
quark mass has been fixed to mt = 171.4 GeV. The solid (dashed) lines indicate
the currently allowed 1(2) σ intervals of the experimental uncertainty.

whereas other parameters enter into the loop corrections. We employ the Feynman-

diagrammatic method [196, 197] for the theoretical prediction of Mh, using the code

FeynHiggs [198, 199, 200, 46], which includes all numerically relevant known higher-

order corrections. The status of these results can be summarized as follows. For

the one-loop part, the complete result within the MSSM is known [201, 196, 202].

Computation of the two-loop effects is quite advanced: see Ref. [200] and references

therein. These include the strong corrections at O(αtαs) and Yukawa corrections at

O(α2
t ) to the dominant one-loop O(αt) term, and the strong corrections from the

bottom/sbottom sector at O(αbαs), where αb = y2
b/(4π) in terms of the coupling of

the Higgs to the bottom quark. In the case of the b/b̃ sector corrections, an all-order

resummation of the tanβ -enhanced terms, O(αb(αs tan β)n), is also known [203,
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204]. More recently, the O(αtαb) and O(α2
b) corrections have been derived [205] 5.

The current and future intrinsic error of Mh due to unknown higher-order corrections

has been estimated to be [200, 209, 133, 210]

∆M intr,current
h = 3 GeV , ∆M intr,future

h = 0.5 GeV . (3.27)

The current uncertainty we interpret effectively as a ∼ 95 % confidence level limit

in the evaluation of the χ2 contribution, see below.

The by far largest parametric uncertainty is induced by the error in mt [135]

(also slightly depending on the SUSY parameters) see Refs. [133, 211] for details,

CMSSM : δmcurrent
t = 2.1 (1.4) GeV ⇒ ∆Mpara,mt,current

h = 1.4 (0.9) GeV ,

mGMSB : δmcurrent
t = 2.1 (1.4) GeV ⇒ ∆Mpara,mt,current

h = 1.5 (1.0) GeV , (3.28)

mAMSB : δmcurrent
t = 2.1 (1.4) GeV ⇒ ∆Mpara,mt,current

h = 1.2 (0.8) GeV .

This is already substantially below the current intrinsic uncertainty. The numbers

in brackets correspond to the latest mt measurement [136] and are given for the sake

of comparison.

It should be noted that, for the unconstrained MSSM with small values of MA

and values of tan β which are not too small, a significant suppression of the hZZ

coupling can occur compared to the SM value, in which case the experimental lower

bound on Mh may be more than 20 GeV below the SM value [212] (for the MSSM

with real parameters). However, it had been checked that within the CMSSM,

mGMSB and mAMSB the hZZ coupling is always very close to the SM value.

Accordingly, the bounds from the SM Higgs search at LEP [213] can be taken over

directly (see Refs. [214, 215]).

Concerning the χ2 analysis, we use the complete likelihood information available

from LEP. We evaluate the Mh contribution to the overall χ2 function exactly as

5 A two-loop effective potential calculation has been presented in Ref. [206], including now

even the leading three-loop corrections [207], but no public code based on this result is currently

available. Most recently another leading three-loop calculation, valid for certain SUSY mass com-

binations, became available [208].
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outlined in Sect. 2.6 of Ref. [106]. This evaluation takes into account the intrinsic

uncertainty given in eq. (3.27). The χ2 contribution is then combined with the

corresponding quantities for the other observables we consider, see eq. (3.7).

For the analysis of future sensitivities, see Sect. 3.5, we assume a measurement

of the lightest MSSM Higgs boson mass with a precision of [216, 217, 218, 219]

∆M exp,future
h = 50 MeV . (3.29)

The future parametric uncertainties are expected to be

δmfuture
t = 0.1 GeV ⇒ ∆Mpara,mt,future

h ≈ 0.1 GeV, (3.30)

δαfuture
s = 0.001 ⇒ ∆Mpara,αs,future

h ≈ 0.1 GeV. (3.31)

Thus, the intrinsic error, eq. (3.27), would be the dominant source of uncertainty

in the future. The errors are added in quadrature, yielding σMh
, and we use for the

analysis of the future sensitivities χ2
Mh

= ((M exp
h − M theo

h )/σMh
)2.

The predictions for Mh in the three scenarios are compared with each other

in Fig. 3.4 (for µ > 0, see Sect. 3.3.3), where the lightest CP -even Higgs boson

mass is shown as a function of the lighter scalar top quark mass, mt̃1 (truncated

at mt̃1 = 3 TeV). The SM limit of 114.4 GeV obtained at LEP is indicated with a

dashed (blue) line. In each scenario the SM bound from Higgs searches at LEP of

Mh > 114.4 GeV results in important constraints. On the other hand, the bound is

still fulfilled for large parts of the parameter space. No preference for any mt̃1 can

be found.

3.3.5 The Decay b → sγ

Since this decay occurs at the loop level in the SM, the MSSM contribution might a

priori be of similar magnitude. A recent theoretical estimate of the SM contribution

to the branching ratio at the NNLO QCD level is [220]

BR(b → sγ) = (3.15 ± 0.23) × 10−4 . (3.32)
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Figure 3.4: The predictions for Mh as obtained from the parameter scan are shown
as a function of mt̃1 for the three soft SUSY-breaking scenarios for µ > 0. The top
quark mass has been fixed to mt = 171.4 GeV. The SM lower limit of 114.4 GeV
obtained at LEP is indicated with a dashed (blue) line.

We record that the error estimate for BR(b → sγ) is still under debate [221], and

that other SM contributions to b → sγ have been calculated [222]. These corrections

are small compared with the theoretical uncertainty quoted in eq. (3.32).

For comparison, the present experimental value estimated by the Heavy Flavour

Averaging Group (HFAG) is [223, 96]

BR(b → sγ) = (3.55 ± 0.24 +0.09
−0.10 ± 0.03) × 10−4, (3.33)

where the first error is the combined statistical and uncorrelated systematic uncer-

tainty, and the other two errors are correlated systematic theoretical uncertainties

and corrections, respectively.

Our numerical results have been derived with the BR(b → sγ) evaluation pro-

vided in Refs. [224, 225, 226], incorporating also the latest SM corrections provided
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Figure 3.5: The predictions for BR(b → sγ) as obtained from the parameter scan are
shown as a function of mt̃1 for the three soft SUSY-breaking scenarios for µ > 0. The
top quark mass has been fixed to mt = 171.4 GeV. The solid (dashed) lines indicate
the currently allowed 1 σ interval from the experimental uncertainty (including also
theoretical uncertainties, which are added linearly).

in Ref. [220]. The calculation has been checked against other codes [227, 228, 229].

For the evaluation of the BR(b → sγ), we assume minimal flavor violation (MFV)

at the electroweak scale and neglect NMFV effects that can be induced by RGE

running from the high scale, see e.g. Ref. [121], that may amount to ∼ 10% of the

SUSY corrections.

Concerning the total error in a conservative approach we add linearly the errors

of eqs. (3.32) and (3.33) as well an intrinsic SUSY error of 0.15× 10−4 [106], except

the statistical error that is then added in quadrature. For the analysis of the future

sensitivities in Sect. 3.5 we assume that the total error will be reduced by a factor

of 3.
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The predictions for BR(b → sγ) in the three scenarios are compared with each

other in Fig. 3.5 (for µ > 0, see Sect. 3.3.3), where the branching ratio is shown as a

function of the lighter scalar top quark mass, mt̃1 (truncated at mt̃1 = 3 TeV). The

solid (dashed) lines indicate the currently allowed 1 σ interval from the experimental

uncertainty (including also theoretical uncertainties, which are added linearly, see

above). In all three scenarios large parts of the parameter space lie within the 1 σ

interval. However, for small mass scales BR(b → sγ) provides important constraints

on the three models. While the CMSSM and mGMSB can have very small values of

BR(b → sγ) for small mt̃1
6, mAMSB has typically large values of the BR. The reason

can be traced back to the fact that the sign of the stop mixing angle θt̃ comes out

with a positive sign in mAMSB, whereas it is negative in the CMSSM and mGMSB

(as output and in the conventions of SoftSUSY). This different sign, in combination

with a positive µ, results in a positive SUSY contribution to BR(b → sγ) within

mAMSB and (for most values of the other parameters) a negative contribution in

the CMSSM and mGMSB, see also the discussion in the beginning of Sect. 3.4.

3.3.6 The Branching Ratio for Bs → µ+µ−

The SM prediction for this branching ratio is (3.4 ± 0.5) × 10−9 [230], and the

experimental upper limit from the Fermilab Tevatron collider is 5.8 × 10−8 at the

95% C.L. [231], still providing room for the MSSM to dominate the SM contribution.

7 This Tevatron sensitivity is based on an integrated luminosity of about 2 fb−1

collected at CDF. For the χ2 contribution, in order to incorporate the Tevatron

bound, we use a smoothed step function, penalizing data points with BR(Bs →
µ+µ−) > 5.8 × 10−8 and preferring lower BRs. 8

6 Where the BR(b → sγ) becomes close to zero the calculation of the SUSY corrections is not

reliable anymore. However, these parts of the parameter space anyhow result in an experimentally

excluded value for BR(b → sγ).
7The upper limit has been improved since when this investigation was finished. See Ref. [232]

for the latest update at CDF with an integrated luminosity of 7 fb−1.
8In Ref. [232], an experimental error is also reported, which could be used to improve the χ2

calculation, as oppose to our treatment when this error was not available.
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The Tevatron sensitivity is expected to improve significantly in the future. The

limit that could be reached at the end of Run II is ∼ 2 × 10−8 assuming 8 fb−1

collected with each detector [233]. A sensitivity even down to the SM value can be

expected at the LHC. Assuming the SM value, i.e. BR(Bs → µ+µ−) ≈ 3.4×10−9, it

has been estimated [234] that LHCb can observe 33 signal events over 10 background

events within 3 years of low-luminosity running. Therefore this process offers good

prospects for probing the MSSM.

For the theoretical prediction we use results from Ref. [235], which are in good

agreement with Ref. [236]. This calculation includes the full one-loop evaluation

and the leading two-loop QCD corrections. As in Sect. 3.3.5, we neglect any NMFV

effects from RGE running. We do not include BR(Bs → µ+µ−) in our analysis of

the future sensitivities (but still require agreement with the current bound), because

its impact will strongly depend on the value realized in Nature.

The predictions for BR(Bs → µ+µ−) in the three scenarios are compared with

each other in Fig. 3.6 (for µ > 0, see Sect. 3.3.3), where the BR is shown as a

function of the lighter scalar top quark mass, mt̃1 (truncated at mt̃1 = 3 TeV). The

current experimental limit of 5.8 × 10−8 is indicated by a dashed (blue) line. Each

scenario has large parts of the parameter space with BR(Bs → µ+µ−) < 5.8× 10−8,

where no limit on mt̃1 is provided by the upper limit on the BR. Within the mGMSB

scenario, due to its generally larger MA values (see below), hardly any points are

ruled out by the current upper bound on the BR, while for the other two scenarios

BR(Bs → µ+µ−) is already a strong constraint on the parameter space. We have

checked that including the CDM constraint and restricting to values of tanβ ≤ 50

the results for BR(Bs → µ+µ−) in Refs. [104, 105, 106] are reproduced.
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Figure 3.6: The predictions for BR(Bs → µ+µ−) as obtained from the parameter
scan are shown as a function of mt̃1 for the three soft SUSY-breaking scenarios for
µ > 0. The top quark mass has been fixed to mt = 171.4 GeV. The current upper
limit of 5.8 × 10−8 is indicated by a dashed (blue) line.

3.4 χ2 Analysis of CMSSB, mGMSB, mAMSB

In this section we present our numerical analysis, based on the χ2 evaluation as given

in eq. (3.7). The best fit point is given by the lowest χ2 value. The sensitivities are

shown as ∆χ2 = 1, 4, 9, referred to as ∆1, ∆4 and ∆9, respectively. They give an

indication of the precision that has been reached so far for the observables under

investigation. Sometimes we refer to the ∆4 areas as ‘preferred’ regions. The lowest

χ2 values for the three scenarios are given in Tab. 3.1. Also shown are the individual

contributions from the precision observables. BR(Bs → µ+µ−) always gives a zero

contribution, and we list the BR itself.

It is interesting to note that despite the fact that mAMSB has one less parameter,

the minimum χ2 value is lower by ∼ 1.5–2 compared to the CMSSM and mGMSB.
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The reason for the low χ2 values is a combination of two effects. First, there is

a good agreement of mAMSB with (g − 2)µ and BR(b → sγ). The anomalous

magnetic moment of the muon requires a positive µ (or more precisely a positive

µ · M2, where we use the convention of positive M2 for the three scenarios, see the

discussion above). BR(b → sγ) on the other hand depends on the combinations of

the stop masses, mixing angle and µ. The sign of the stop mixing angle θt̃ comes out

with a positive sign in mAMSB, whereas it is negative in the CMSSM and mGMSB

(as output and in the convention of SoftSUSY). This different sign, in combination

with a positive µ, results in a positive SUSY contribution to BR(b → sγ) within

mAMSB and a (usually) negative contribution in the CMSSM and mGMSB. In

this way mAMSB can fulfill the BR(b → sγ) constraint as well as the other two

scenarios (but with a best-fit value above the experimental value). Second, due

to the structure of the soft SUSY-breaking parameters in the chargino/neutralino

sector relatively light charginos are present in mAMSB (where the lightest one is

nearly mass degenerate with the lightest neutralino). Thus a large contribution to

(g − 2)µ and also to MW [147] can be obtained for a relatively heavier spectrum

otherwise, resulting in an Mh value above ∼ 116 GeV. The overall effect of this

interplay is a total minimum χ2 value of 2.9.

In the analysis presented below, in the first step we show the three soft SUSY-

breaking scenarios separately in terms of their high-scale parameters. In a second

step we compare their respective predictions in terms of the low-scale parameters

MA and tanβ and other SUSY mass scales. In the final step in Sect. 3.5 we assume

future precisions for the measurements and theory evaluations and compare the

sensitivities the precision observables will offer in the three scenarios.

3.4.1 Analysis of High-scale Parameters

In the following subsections we analyze the CMSSM, mGMSB and mAMSB in terms

of their respective high-energy parameters, see Sect. 3.2.
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CMSSM mGMSB mAMSB

χ2
min 4.6 5.1 2.9

MW 1.7 2.1 0.6

sin2 θeff 0.1 0.0 0.8

(g − 2)µ 0.6 0.9 0.0

BR(b → sγ) 1.1 2.0 1.5

Mh 1.1 0.1 0.0

BR(Bs → µ+µ−) 4.5 × 10−8 3.2 × 10−8 0.4 × 10−8

MA [GeV] (best-fit) 394 547 616

tanβ (best-fit) 54 55 9

Table 3.1: Minimum χ2 values for the three soft SUSY-breaking scenarios using
today’s accuracies for the experimental and theoretical precisions. We also show
the individual contributions for MW , sin2 θeff , (g−2)µ, BR(b → sγ) and Mh, as well
as the value of BR(Bs → µ+µ−). Shown in the last two rows are the best-fit values
for the low-energy parameters, MA and tan β, as analyzed in Sect. 3.4.2.

CMSSM

In Fig. 3.7 we show the results for the ∆1,4,9 areas in terms of the high-energy

parameters, using the current experimental and theoretical precisions as described

in Sect. 3.3. The ∆1 area is medium shaded (green), the ∆4 are is dark shaded

(red), and the ∆9 area is light shaded (yellow). The rest of the scanned parameter

space is given in black shading. The best-fit point is marked with a circle. Because

of the contribution to (g − 2)µ only very few points with µ < 0 have ∆χ2 < 9,

and we concentrate here on the data with µ > 0. For this sign of µ the ∆9 area

nearly covers the whole parameter space (in agreement with the results presented

in Ref. [106]). In terms of m1/2 relatively low values are favored around m1/2 =

500 GeV, with the ∆4 region extending up to m1/2 = 1000 GeV. For m0, on the

other hand, hardly any bound is obtained, and values up to 2000 GeV are possible.

Only at the ∆1 level a preference of the allowed values for a light m0 can be found.

For A0 a slight preference for positive values can be observed (note the different
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Figure 3.7: The ∆1,4,9 regions in the m0–m1/2 plane (left) and in the m0–A0 plane
(right) in the CMSSM for µ > 0. The ∆1 area is medium shaded (green), the ∆4

area is dark shaded (red), and the ∆9 area is light shaded (yellow). The rest of the
scanned parameter space is given in black shading. The best-fit point is marked
with a circle.

sign convention here in comparison with Refs. [104, 105, 106, 107, 108]), and the

∆4 region extends from −1000 GeV to about +2500 GeV. The apparent differences

to existing analyses [104, 105, 111] are due to the fact that the CDM constraint has

not been applied here, see the discussion below.

mGMSB

In Figs. 3.8, 3.9 we show the results for the ∆1,4,9 areas in terms of the high-energy

parameters, using the current experimental and theoretical precisions as described

in Sect. 3.3. The color coding is as in Fig. 3.7. As in the CMSSM, because of the

contribution to (g − 2)µ only very few points with µ < 0 have ∆χ2 < 9, and we

concentrate here on the data with µ > 0.

The plots in Fig. 3.8 show the Λ–Mmess plane for Nmess = 1 . . . 8 separately.

The ∆χ2 values are obtained with respect to the overall best fit point, which is

reached for Nmess = 8 (marked with a circle). The ‘preferred’ Λ values depend on

the choice of Nmess, going from ∼ 105 GeV at low Nmess down to ∼ 2× 104 GeV for
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Nmess 1 2 3 4 5 6 7 8

χ2
min,Nmess

6.17 5.53 5.45 5.25 5.25 5.20 5.16 5.13

Table 3.2: Minimum χ2 values reached for each Nmess in mGMSB.

large Nmess. However, the ∆9 region extend over large parts of the whole parameter

space. Furthermore no bound on Mmess can be set. Similar results are found in

Fig. 3.9, where we show the Nmess–Λ plane. The lower Nmess, the higher are the

possible values for Λ.

In order to analyze the compatibility of the various Nmess values with the preci-

sion data, we show in Tab. 3.2 the lowest χ2
min,Nmess

values reached for each Nmess. It

can be seen that χ2
min,Nmess

increases monotonically with decreasing Nmess. In agree-

ment with Figs. 3.8 and 3.9 the difference in the minimum χ2 between Nmess = 8

and Nmess > 1 is smaller than one, and only for Nmess = 1 the difference exceeds one

by ∼ 0.04. Consequently no ∆1 region appears in the Nmess = 1 plots.

mAMSB

In Fig. 3.10 we show the only high-energy parameter plane in the mAMSB, maux vs.

m0 for µ > 0. While nearly the whole parameter space is covered by the ∆9 area,

the ∆4 and ∆1 regions are located at a relatively thin strip at the lowest possible m0

values with a width <∼ 300 GeV. The precision observables clearly show a preference

for a relatively small scalar soft SUSY-breaking parameter m0. This can be traced

back to the χ2 contribution to (g − 2)µ that requires relatively light sleptons of

the second generation. Since m0 is needed to prevent the tachyon problem within

mAMSB, it controls to a large extent the slepton masses. The strong bound from

(g − 2)µ then translates into a relatively strong bound on m0. On the other hand,

maux is only mildly restricted. The lower absolute bound on maux is mainly due to

the lower experimental bound on the lightest chargino of ∼ 70 GeV [124].
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3.4.2 Low-energy Analysis

We now turn to the comparison of the three soft SUSY-breaking scenarios. In

Fig. 3.11 we show the MA–tanβ plane for the CMSSM (top), mGMSB (middle)

and mAMSB (bottom) with the same color coding as in Fig. 3.7. As in Sect. 3.4.1

we restrict ourselves to µ > 0. The allowed MA–tan β parameter space is somewhat

different in the three scenarios. While in mAMSB the parameters are restricted to

MA
<∼ 4 TeV and tan β <∼ 50, this extends to MA

<∼ 4 TeV and tanβ <∼ 60 (where

we stopped our tanβ scan) in the CMSSM, and within mGMSB MA values up to

6 TeV are possible (not shown in the plot). The qualitative features of the ∆9,4,1

areas are very similar for the three scenarios. The ∆9 area extends over large parts

of the whole parameter space. On the other hand, within all three scenarios, the

∆4 and even more the ∆1 areas are located at relatively low MA, extending up

to MA
<∼ 1000 GeV at the ∆4 level in all three scenarios. The ‘preferred’ tanβ

regions, on the other hand, nearly span the full possible range in the CMSSM and

mGMSB, whereas in the mAMSB scenario the χ2 ‘preferred’ areas are located at

lower tan β values, reaching up to tan β <∼ 35. The low value of BR(Bs → µ+µ−)

at the best-fit point in mAMSB is due to the relatively low tan β value. However,

in view of these ranges, the actual values of the best-fit points for tan β are not

very significant, in accordance with earlier analyses [104, 105, 106, 107, 109]. In

conclusion a preference for not too large MA values is clearly visible as a common

feature in all three scenarios. Depending on the actual combination of MA and

tan β, the LHC can cover a large part of the ‘preferred’ parameter space by searches

for the heavy Higgs bosons [237, 238, 239, 240, 241, 242].

We now turn to the analysis of various mass values in the three soft SUSY-

breaking scenarios. We start with the mass of the lightest CP -even Higgs boson,

see Sect. 3.3.4, presented in Fig. 3.12. Mh is shown in the CMSSM (top), mGMSB

(middle) and mAMSB (bottom) scenarios for µ > 0 with the corresponding χ2,

where the χ2 contribution of Mh itself has been left out. In this way the plot shows

the indirect predictions for Mh without imposing the bounds from the Higgs boson
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searches at LEP. In the CMSSM and in mGMSB the impact of dropping the χ2

contribution from Mh leads to a drastically lower total χ2 as compared to the case

when the Mh bound is included, see Tab. 3.1. In these two scenarios the best-fit

point changes to new points with substantially lower Mh values (as discussed below).

These new best-fit points can also accomodate the other precision observables better,

thus leading to a reduction of χ2
min by more than ∼ 3 in the CMSSM and mGMSB.

In the mAMSB scenario, on the other hand, the effect is small, and the best-fit point

changes only slightly. The color coding is as in Fig. 3.7.

In all three scenarios a shallow minimum can be observed. The ∆1 regions

are in the intervals of Mh = 98 . . . 111 GeV (CMSSM), 97 . . . 112 GeV (mGMSB)

and 104 . . . 122 GeV (mAMSB). In all three scenarios the ∆4 regions extend be-

yond the LEP limit of Mh > 114.4 GeV at the 95% C.L. shown as dashed

(blue) line in Fig. 3.12 (which is valid for the three soft SUSY-breaking scenar-

ios, see Refs. [214, 215]). The analysis for the CMSSM can be compared with

Refs. [106, 111], where (among other contributions) also the cold dark matter con-

straint had been included in the analysis. In Refs. [106, 111] best fit values of

Mh = 110 . . . 115 GeV (depending on tan β) had been observed, which is at the

border of the ∆1 region here. These results are well compatible with each other.

The inclusion of the CDM constraint yields the effect of cutting out a (thin) band

in the Mh–χ
2
tot plane. In conclusion all three scenarios have a significant part of the

parameter space with a relatively low total χ2 that is in agreement with the bounds

from Higgs-boson searches at LEP. Especially within the mAMSB scenario the ∆1

region extends beyond the LEP bound of 114.4 GeV.

Next we turn to the prediction of the masses of various SUSY particles, starting

with mχ̃0
1

(left) and mχ̃0
2

(right) in Fig. 3.13. The masses are shown in the CMSSM

(top), mGMSB (middle) and mAMSB (bottom) scenarios for µ > 0 with their

respective total χ2, i.e. including the χ2 contribution of Mh. The color coding is as

in Fig. 3.7. The mGMSB shows for all masses (see below) a local minimum at a

lower value and an absolute minimum at a somewhat higher mass value. The effect

of having a minimum in the χ2 plot can in general be understood by investigating
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the χ2 contribution of Mh and of (g − 2)µ. While the former penalizes strongly

a light spectrum (especially for the stops), the latter penalizes a heavy spectrum

(especially sleptons and charginos/neutralinos). The appearance of the second local

minimum at lower mass values is a result from the interplay of several observables,

especially MW and Mh. Going to a lighter spectrum improves χ2(MW ) more than it

worsens χ2(Mh), while a very light spectrum results in a very large χ2 contribution

from Mh, yielding the local minimum in between.

In the three scenarios limited ranges can be observed for the ∆1 and ∆4 regions,

whereas the ∆9 regions extend to the highest possible mass values. For the CMSSM

and mAMSB the truncation of the parameter space at high m1/2, maux and m0 is

clearly visible for some particle masses, e.g. in the left column of Fig. 3.13. The

mass of the lightest neutralino (the LSP) has ‘preferred’ values, ∆χ2 < 4, ranging

from about 100 GeV to values up to 500 GeV, depending on the scenario. Within

the CMSSM and mAMSB the lightest neutralino, being stable, cannot be observed

via a decay to other particles, so that its detection has to rely on a ‘missing energy’

signature. In mGMSB the LSP is the gravitino, G̃, leading to distinctive decay

patterns of the χ̃0
1 if it decays within the detector. The decay BRs depend largely

on the mass pattern of the χ̃0
1, τ̃1 and G̃. The ‘preferred’ mass values thus offer good

prospects for the detection at the LHC and excellent prospects for the ILC(1000)

(i.e. with
√

s up to 1 TeV) in the case where the decay happens in the detector. At

the ILC also the process e+e− → χ̃0
1χ̃

0
1γ can in principle be observed, permitting in

this case the observation of the χ̃0
1 in all the three scenarios in the ‘preferred’ mass

ranges.

The second lightest neutralino, see the right column of Fig. 3.13, can in principle

be observed via its decay to a SM particle and the LSP (or another SUSY particle

if it is lighter than the χ̃0
2, as e.g. the χ̃±

1 in the case of the mAMSB). The best fit

values vary around 300 GeV to values above 550 GeV, depending on the scenario.

With these mass ranges the observation at the LHC will be very challenging for

the direct production, but might be better (depending on SUSY mass patterns) for

the production in cascades. At the ILC(1000) one could search for the associated
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production of e+e− → χ̃0
1χ̃

0
2. The three soft SUSY-breaking scenarios show similar

prospects for the discovery, although mGMSB results in overall somewhat higher

mass scales.

The predictions of the lightest chargino mass, mχ̃±

1
(left), and the gluino mass,

mg̃ (right), are shown in Fig. 3.14. As before, the masses are shown in the CMSSM

(top), mGMSB (middle) and mAMSB (bottom) scenarios for µ > 0 with their

respective total χ2. The color coding is as in Fig. 3.7. In the three scenarios limited

ranges can be observed for the ∆1 and ∆4 regions, whereas the ∆9 regions extend

to the highest possible mass values. Within the CMSSM and mGMSB the light

chargino mass ranges from about 100 GeV up to ∼ 900 GeV in the ∆4 area, whereas

somewhat higher masses are reached in mGMSB. Consequently only a part of the

‘preferred’ parameter space can be accessed at the LHC or the ILC(1000). Within

the CMSSM and mGMSB the χ̃±
1 and the χ̃0

2 are nearly mass degenerate, resulting

in very similar results for the two particles as can be seen in Figs. 3.13 and 3.14. The

situation concerning the observation of the χ̃±
1 is much more favorable in mAMSB,

where much lighter masses, only up to about 300 GeV are preferred. This offers very

good perspectives for its production at the LHC and the ILC. However, it should be

kept in mind that in the mAMSB scenario the lightest chargino is only a few hundred

MeV heavier than the LSP, which poses certain problems for its detection [243].

The ‘preferred’ gluino masses, as shown in the right column of Fig. 3.14, range

from a few hundred GeV up to about 3 TeV in mGMSB, exhausting the accessi-

ble range at the LHC. In the other two scenarios the ∆4 regions end at ∼ 2 TeV

(mAMSB) and ∼ 2.5 TeV (CMSSM), making them more easily accessible at the

LHC than in the mGMSB scenario.

We now turn to the scalar fermion sector. The predictions for the two scalar tau

masses, mτ̃1 (left) and mτ̃2 (right), are shown in Fig. 3.15. As before, the masses are

shown in the CMSSM (top), mGMSB (middle) and mAMSB (bottom) scenarios for

µ > 0 with their respective total χ2. The color coding is as in Fig. 3.7. The light

τ̃ has its best-fit values at very low masses, and even the ∆4 regions hardly exceed

∼ 500 GeV in mGMSB and mAMSB. Therefore in these scenarios there are good
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prospects for the ILC(1000). Also the LHC can be expected to cover large parts of

the ∆4 mass intervals. In the CMSSM scenario, on the other hand, the ∆4 region

exceeds ∼ 1 TeV such that only parts can be probed at the ILC(1000) and the LHC.

The ‘preferred’ mτ̃2 values, by construction larger than mτ̃1 , stay mostly below 500,

1000, 1500 GeV for mAMSB, mGMSB and the CMSSM, respectively.

In Fig. 3.16 we show the predictions for the two scalar top masses, mt̃1 (left)

and mt̃2 (right). As before, the masses are shown in the CMSSM (top), mGMSB

(middle) and mAMSB (bottom) scenarios for µ > 0 with their respective total

χ2. The color coding is as in Fig. 3.7. The ‘preferred’ mass ranges, i.e. ∆χ2 < 4,

range from about 300 GeV up to about 2300 GeV, depending somewhat on the

scenario. Finally, the predictions for the sbottom masses are shown in Fig. 3.17.

The sbottom masses follow the same pattern as the stop masses. Taking these

values as representative scalar quark mass values, the LHC should have no problem

to discover the SUSY partners of the quarks, whereas for the ILC(1000) only the

lower part of the ‘preferred’ values could be in the kinematic reach. However, it

should be kept in mind that the ∆9 regions extend beyond ∼ 3 TeV, which could

exceed even the discovery reach of the SLHC [244].

Apart from the values of the various SUSY and Higgs particle masses, also the

‘preferred’ values of |µ| and of B (with µ B being the prefactor of the Higgs mixing

term in the potential) are of interest. In Tab. 3.3 we list the current best fit points

and the ∆1,4 ranges for µ (with µ > 0, see Sect. 3.3.3) and B. The ‘preferred’

values for µ range between 130 GeV and 1420 GeV in the mAMSB and somewhat

smaller intervals within in the two other scenarios. The ‘preferred’ values of B are

bounded from above by ∼ 540 GeV in mAMSB, where also negative values down to

−275 GeV are reached in the ∆4 area. In the other two scenarios the intervals are

substantially smaller, and only in the CMSSM negative values down to −75 GeV

are reached.

The results for the SUSY masses in the CMSSM can be compared with previous

analyses taking into account the CDM constraint [104, 105, 106, 109, 111]. We

focus here on Refs. [104, 105, 106], since similar sets of precision observables and
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CMSSM mGMSB mAMSB

µ (best fit) 588 810 604

µ in ∆1 510 – 730 460 – 995 560 – 980

µ in ∆4 160 – 1100 390 – 1400 130 – 1420

B (best fit) 94 151 28

B in ∆1 65 – 155 75 – 210 -105 – 50

B in ∆4 -75 – 250 65 – 330 -275 – 540

Table 3.3: ‘Preferred’ values of µ and B (with µ B being the prefactor of the Higgs
mixing term in the potential). Shown are the best-fit points as well as the intervals
covered for ∆χ2 < 1, 4. All values are in GeV.

very similar χ2 analyses had been used. Qualitative agreement can be found in the

observed ‘preferred’ mass values. In our analysis the lower mass values in the ∆1

and ∆4 regions are obtained for low tanβ, where these masses are similar to to the

ones in Refs. [104, 105, 106] obtained for tan β = 10. Higher mass values in the ∆1

and ∆4 regions, on the other hand, are obtained for large tanβ, where these masses

are similar to the ones in Refs. [104, 105, 106] obtained for tan β = 50. On the other

hand, the following difference can be observed: while the fit results obtained for the

particle masses in Refs. [104, 105, 106] are ‘parabola shaped’, whereas the mass plots

presented in Figs. 3.13 – 3.17 show ‘full’ areas. This can easily be understood as an

effect of taking the CDM constraint into account in Refs. [104, 105, 106], while at

the same time tan β had been restricted to the two discrete values tan β = 10 and 50.

The CDM constraint cuts out thin strips, for instance, in the m0–m1/2 plane (for

fixed A0 and tan β) [245, 246]. This yields naturally strips in the mass vs. χ2
tot plots.

Incorporating all tan β values by scanning over all allowed values simultaneously

in our analysis (where low (high) tanβ values yield lower (higher) best-fit masses),

broadens and fills automatically the ∆1 and ∆4 regions. Another difference in our

analysis compared to the ones in Refs. [104, 105, 106] is the lower value of mt that

has been used here. Lowering the experimental value of mt in the χ2 analysis

yields an increase in the minimum total χ2, as has been analyzed for tan β = 10
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in Ref. [105]. The minimum χ2 values reached in Refs. [104, 105, 106] and in our

analysis roughly follow the results presented in Ref. [105]. However, it should be

kept in mind that the latest value of mt that has been published recently [136] has

moved upwards to mexp
t = 172.6 ± 1.4 GeV.
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Figure 3.8: The ∆1,4,9 regions in the Mmess–Λ plane for N = 1 . . . 8 in the mGMSB
for µ > 0. The color coding is as in Fig. 3.7. The best fit point is realized for
Nmess = 8 and marked with a circle.
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Figure 3.9: The ∆1,4,9 regions in the Nmess–Λ plane in the mGMSB for µ > 0. The
color coding is as in Fig. 3.7. Marked with a circle is the current best-fit point.
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color coding is as in Fig. 3.7. The best-fit point is marked with a circle.
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Figure 3.11: The ∆1,4,9 regions in the MA–tan β planes in the CMSSM (top),
mGMSB (middle) and mAMSB (bottom) for µ > 0. The color coding is as in
Fig. 3.7. In each plot the best-fit point is marked with a circle.
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Figure 3.12: The Mh values in the CMSSM (top), mGMSB (middle) and mAMSB
(bottom) scenarios for µ > 0 with their respective χ2, where the χ2 contribution of
the Mh itself has been left out. The color coding is as in Fig. 3.7. The SM limit of
114.4 GeV obtained at LEP is indicated with a dashed (blue) line.
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Figure 3.13: mχ̃0
1

(left) and mχ̃0
2

(right) are shown in the CMSSM (top), mGMSB

(middle) and mAMSB (bottom) scenarios for µ > 0 with their respective total χ2,
i.e. including the χ2 contribution of Mh. The color coding is as in Fig. 3.7.
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Figure 3.14: mχ̃±

1
(left) and mg̃ (right) are shown in the CMSSM (top), mGMSB

(middle) and mAMSB (bottom) scenarios for µ > 0 with their respective total χ2.
The color coding is as in Fig. 3.7.
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Figure 3.15: mτ̃1 (left) and mτ̃2 (right) are shown in the CMSSM (top), mGMSB
(middle) and mAMSB (bottom) scenarios for µ > 0 with their respective total χ2.
The color coding is as in Fig. 3.7.
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Figure 3.16: mt̃1 (left) and mt̃2 (right) are shown in the CMSSM (top), mGMSB
(middle) and mAMSB (bottom) scenarios for µ > 0 with their respective total χ2.
The color coding is as in Fig. 3.7.
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Figure 3.17: mb̃1
(left) and mb̃2

(right) are shown in the CMSSM (top), mGMSB
(middle) and mAMSB (bottom) scenarios for µ > 0 with their respective total χ2.
The color coding is as in Fig. 3.7.



132

3.5 Future Sensitivities

We now turn to the analysis of the future sensitivities. In a first step we take the

current best-fit point in each scenario and assume that the future measurements

exactly agree with this point. The experimental and theory uncertainties are set

to their ‘future’ values as discussed in Sect. 3.3. Also for Mh we assume that its

value is measured and include it into the χ2 fit with the future uncertainties given

in Sect. 3.3.4. In a second step, in order to compare the sensitivities in the three

scenarios, we have chosen one hypothetical best-fit point in each scenario, where

the low-energy spectrum is “similar” in all three scenarios. In more detail, we have

demanded that

MA ≈ 800 GeV, tan β ≈ 40, mt̃1 ≈ 1225 GeV, mt̃2 ≈ 1400 GeV, µ > 0 .

(3.34)

These masses are somewhat higher than the current best-fit values and thus illustrate

a future scenario that is somewhat more in the decoupling regime (i.e. where SUSY

masses are heavy and loop corrections are correspondingly smaller) than what is

currently favored. Furthermore the combination of MA and tanβ, according to

current analyses [216, 217, 218, 219, 237, 238, 239, 240, 241, 242, 244], is not in

the discovery reach of the LHC or the ILC. In such a scenario without experimental

information on MA and tan β from the observation of the heavy Higgs bosons any

sensitivity to these parameters would constitute information in addition to the direct
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collider data. The three points are defined in terms of high-energy parameters as

CMSSM : m0 = 640 GeV (3.35)

m1/2 = 720 GeV

A0 = 500 GeV

tanβ = 41

mGMSB : Λ = 33200 GeV (3.36)

Mmess = 580000 GeV

Nmess = 7

tanβ = 41

mAMSB : maux = 50500 GeV (3.37)

m0 = 1600 GeV

tanβ = 40

The choices in eq. (3.34) ensure a “similar” behavior in the Higgs and in the scalar

top sector and their contributions to the EWPO and BPO. This allows a comparison

of the future sensitivities of the EWPO and BPO in the three scenarios. The

values for the lightest Higgs boson mass at the three hypothecial best-fit points are

116.8 GeV (CMSSM), 117.5 GeV (mGMSB) and 119.1 GeV (mAMSB). The spread

of ∼ 2.3 GeV has only a minor direct impact on the predictions of the EWPO and

BPO.

3.5.1 Analysis of High-scale Parameters

We start by analyzing the CMSSM, mGMSB and mAMSB in terms of their respec-

tive high-energy parameters, see Sect. 3.2.

CMSSM

In Fig. 3.18 we show the results for the ∆1,4,9 areas in terms of the high-energy

parameters, using the χ2 result based on the assumed future experimental and the-
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oretical precisions as described in Sect. 3.3. As can been seen, the areas of the pa-

rameter space with ∆χ2 < 1, 4, 9 shrink substantially in comparison with Fig. 3.7.

At the ∆χ2 = 9 level m1/2 is determined up to ±200 GeV for the assumed best-fit

point. For m0, on the other hand, still values up to ∼ 1500 GeV are permitted. The

∆9 interval for A0 shrinks to ±1000 GeV.

The reduction of the preferred parameter region with the assumed higher preci-

sion in the future is so substantial because the currently favored best-fit parameters

are relatively small, where smaller SUSY mass scales lead to larger loop effects in

the precision observables. This effect is less pronounced for larger GUT scale pa-

rameters. To illustrate this effect we have chosen a CMSSM point as defined in

eq. (3.35). We assume that the future experimental values agree exactly with the

low-energy parameters resulting from eq. (3.35). The reduction of the preferred

parameter region as shown in Fig. 3.19 compared to the present situation is still

visible, but much weaker than for the current best-fit point in Fig. 3.18. Similar

results (including the CDM constraint) had been found in Ref. [104].

mGMSB

In Fig. 3.20 we show the results for the ∆1,4,9 areas in terms of the high-energy

parameters, using the future experimental and theoretical precisions as described

in Sect. 3.3. The color coding is as in Fig. 3.7. The plots in Fig. 3.20 show the

Λ–Mmess plane for Nmess = 1 . . . 8. For each Nmess a small Λ interval is singled out,

but hardly any limit on Mmess is obtained even with the future precisions.

The results look similar in Fig. 3.22, where we show the Nmess–Λ plane. For

each Nmess value a relatively small range of Λ is favored, even at the ∆χ2 = 9

level. If Nmess could be determined in an independent way, the precision observables

could give a relatively precise determination of Λ. On the other hand, if Λ could be

determined, e.g. from the measurement of SUSY masses, the precision observables

would give a preference for certain Nmess values.

As for the CMSSM scenario also in mGMSB we have chosen a hypothetical future

best-fit point with higher mass scales, defined by eq. (3.36). As for the CMSSM,
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Figure 3.18: Future projection for the ∆1,4,9 regions in the m0–m1/2 plane (left) and
in the m0–A0 plane (right) in the CMSSM assuming that the future experimental
data agree exactly with the current best-fit point. The color code is as in Fig. 3.7.

we assume that the future experimental values agree exactly with the low-energy

parameters corresponding to eq. (3.36). The reduction of the ∆1,4,9 regions can be

observed in Fig. 3.21. It is at the same level as for the current best-fit point in

Fig. 3.20. These results are also shown in the Nmess–Λ plane in Fig. 3.23, where the

same sensitivity is found as for the current best-fit point displayed in Fig. 3.22.

mAMSB

In Fig. 3.24 we show the only high-energy parameter plane in the mAMSB, maux

vs. m0, with the same color coding as in Fig. 3.7. Within this scenario the precision

observables will allow an extremely precise determination of the high-energy pa-

rameters. For the case that the current best-fit point agrees exactly with the future

measurements, at the ∆χ2 = 9 level maux is determined to ±3 × 103 GeV, i.e. to

∼ 10%. The absolute precision for m0 is ±100 GeV, whereas the relative precision
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Figure 3.19: Future projection for the ∆1,4,9 regions in the m0–m1/2 plane (left) and
in the m0–A0 plane (right) in the CMSSM assuming that the future experimental
data agree exactly with a hypothetical best-fit point as specified in eq. (3.35). The
color code is as in Fig. 3.7.

reaches only ∼ 30%. (The ∆4 and ∆1 regions are very small and nearly invisible

inside (by definition) the ∆9 region.) This result is to a large extent due to the

fact that the tanβ value for the current best-fit point is relatively low (see also the

discussion of the hypothetical best-fit point below).

As for the other two scenarios, also in mAMSB we have chosen a hypothetical

future best-fit point with higher mass scales, defined by eq. (3.37). It should be

noted that for mAMSB the increase in MA from the current best-fit point to the

hypothetical best-fit point is a bit smaller than in the other two scenarios, while the

shift in tanβ is substantially larger. Again we assume that the future experimental

values agree exactly with the low-energy parameters corresponding to eq. (3.37).

We show the preferred parameter space for this hypothetical point in Fig. 3.25. The

reduction in the size of the ∆1,4,9 regions compared to the present situation is much

weaker than for the current best-fit point in Fig. 3.24. At the ∆9 level no limit on

m0 can be set. This shows that the very high precision obtainable with the current
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best-fit point is not generally valid in the mAMSB scenario.

3.5.2 Low-energy Analysis

We now turn to the comparison of the three soft SUSY-breaking scenarios in terms

of MA and tan β, assuming the future experimental and theory precisions as dis-

cussed in Sect. 3.3. In Fig. 3.26 we show the MA–tan β plane for the CMSSM (top),

mGMSB (middle) and mAMSB (bottom) with the same color coding as in Fig. 3.7.

In each scenario we assume that the future measurements will agree exactly with

the current best-fit point.

A drastic improvement compared to the present situation can be observed in

all three scenarios. However, also for the low-energy parameters the quality of the

improvement going to the future sensitivities depends on the fact that currently

relatively low mass scales are favored, see below. The results look quite different in

mAMSB as compared to the CMSSM and mGMSB. Within the latter two the ∆9

region is confined to MA
<∼ 1000 GeV with a width of 300(400) GeV for the CMSSM

(mGMSB), whereas tan β is only weakly restricted, 10(20) <∼ tanβ <∼ 60. Within

mAMSB, as for the high-energy parameters, a very precise indirect determination of

MA and tan β can be performed. At the ∆χ2 = 9 level MA is confined to ±50 GeV,

i.e. to about 6%. tan β is determined to ±3, corresponding to a precision of ∼ 8%.

However, as discussed in Sect. 3.5.1, this is largely due to the relatively small value

of tan β within the mAMSB scenario at the current best-fit point.

We finally investigate the future sensitivity of the three soft SUSY-breaking

scenarios for the hypothetical best-fit point. In Fig. 3.27 we show the results for the

hypothetical best-fit points as defined in eqs. (3.35), (3.36), (3.37) for the CMSSM,

mGMSB and mAMSB, respectively. By definition, see eq. (3.34), the hypothetical

best-fit values for MA and tanβ are very similar in the three scenarios, MA ≈
800 GeV and tanβ ≈ 40. These MA values are somewhat larger than the current

best-fit values, see Tab. 3.1. In combination with tanβ ≈ 40 such heavy MSSM

Higgs bosons could not be detected at the LHC [237, 238, 239, 240, 241, 242, 244]

or the ILC [216, 217, 218, 219]. Despite the fact that these values are already
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in the decoupling regime (i.e. where SUSY masses are large and loop effects are

correspondingly small), the precision observables are still able to provide upper

(and lower) limits on MA and tanβ with similar results in the three soft SUSY-

breaking scenarios. The upper limit at the ∆χ2 = 9 level on MA varies between

∼ 2000 GeV in the CMSSM and ∼ 1400 GeV in mGMSB. This means that the

limits obtainable for MA and tanβ depend only to a small extent on the details of

the underlying physics scenario and can thus be viewed as a more general result for

scenarios resulting from a high-scale theory. In conclusion, the precision observables

could allow one to set an indirect bound on MA (and mildly also on tanβ) beyond

the direct collider reach. This sensitivity would improve even more if the future

collider data (SUSY masses, etc.) would be included (see e.g. Ref. [247]). Such an

analysis, however, would at the present state be highly speculative and is beyond

the scope of our study.
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Figure 3.20: Future projection for the ∆1,4,9 regions in the Λ–Mmess plane for the
Nmess = 1 . . . 8 in the mGMSB assuming that the future experimental data agree
exactly with the current best-fit point (marked by a circle). The color coding is as
in Fig. 3.7.
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Figure 3.21: Future projection for the ∆1,4,9 regions in the Λ–Mmess plane for the
Nmess = 1 . . . 8 in the mGMSB assuming that the future experimental data agree
exactly with the hypothetical best-fit point as defined in eq. (3.36) (marked by a
circle). The color coding is as in Fig. 3.7.
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Figure 3.22: Future projection for the ∆1,4,9 regions in the Nmess–Λ plane in the
mGMSB assuming that the future experimental data agree exactly with the current
best-fit point (marked by a circle). The color coding is as in Fig. 3.7.
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Figure 3.23: Future projection for the ∆1,4,9 regions in the Nmess–Λ plane in the
mGMSB assuming that the future experimental data agree exactly with the hypo-
thetical best-fit point as defined in eq. (3.36) (marked by a circle). The color coding
is as in Fig. 3.7.
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Figure 3.24: Future projection for the ∆1,4,9 regions in the maux–m0 plane in the
mAMSB assuming that the future experimental data agree exactly with the current
best-fit point. The color coding is as in Fig. 3.7.
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Figure 3.25: Future projection for the ∆1,4,9 regions in the maux–m0 plane in the
mAMSB assuming that the future experimental data agree exactly with the hypo-
thetical best-fit point as defined in eq. (3.37) The color coding is as in Fig. 3.7.
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Figure 3.26: Future projection for the ∆1,4,9 regions in the MA–tanβ planes in the
CMSSM (top), mGMSB (middle) and mAMSB (bottom) assuming that the future
measurements will agree exactly with the current best-fit point. The color coding
is as in Fig. 3.7.
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Figure 3.27: Future projection for the ∆1,4,9 regions in the MA–tanβ planes in the
CMSSM (top), mGMSB (middle) and mAMSB (bottom) assuming the hypothetical
future best fit points defined eqs. (3.35), (3.36), (3.37) for the CMSSM, mGMSB
and mAMSB, respectively. The color coding is as in Fig. 3.7.
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3.6 Conclusions

We investigated the constraints arising from electroweak precision observables

(EWPO) and B-physics observables (BPO) providing a comparison of the CMSSM,

the mGMSB and the mAMSB. We performed a χ2 analysis based on the mass of

the W boson, MW , the effective weak leptonic mixing angle, sin2 θeff , the anomalous

magnetic moment of the muon (g − 2)µ, the mass of the lightest CP -even MSSM

Higgs boson, Mh, as well as on BR(b → sγ) and BR(Bs → µ+µ−). Our analysis

should be viewed as an exploratory study for the comparison of the scenarios, pro-

viding a starting point for a more refined investigation using more precision data

and an elaborate χ2 analysis [111].

Our results are analyzed separately in terms of the high-scale parameters of the

respective model as well as in terms of low-energy parameters such as MA, tanβ

and SUSY particle masses. Using todays measurements, uncertainties and exclusion

bounds, we find that relatively low mass scales in all three scenarios are favored at

the level of ∆χ2 < 1 or 4. However, the current data of EWPO and BPO can

hardly set any upper bound on the SUSY mass scales at the level of ∆χ2 = 9. The

best fit-values for MA range from ∼ 400 GeV in the CMSSM up to ∼ 600 GeV

in mAMSB, whereas the tan β values are only weakly constrained. Remarkably

the mAMSB scenario, despite having one free GUT scale parameter less than the

other two scenarios, has a somewhat lower total minimum χ2. This can be traced

back to a better agreement with the combination of the BR(b → sγ) and (g − 2)µ

measurements (with some help from MW ) for a heavier scalar quark spectrum and

a corresponding slightly larger value of Mh.

We presented predictions for the lightest CP -even Higgs boson mass, based on

the current χ2 data, but without imposing the current LEP bound from Higgs boson

searches and its corresponding χ2 contribution. Best-fit values of Mh ∼ 105 GeV

are found for the CMSSM and mGMSB, and Mh ∼ 113 GeV for mAMSB. In all

three scenarios a relatively good compatibility with the direct bounds from the

Higgs searches at LEP is found. Within mAMSB the ∆χ2 < 1 region extends up to
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Mh
<∼ 122 GeV.

We also presented the predictions for the masses of various SUSY particles such

as mt̃1 , mt̃2 , mb̃1
, mb̃2

, mτ̃1 , mτ̃2 , mχ̃0
1
, mχ̃0

2
, mχ̃±

1
and mg̃ in the three soft SUSY-

breaking scenarios. As a general feature lowest masses are found in the mAMSB

and heaviest in mGMSB. All three scenarios offer good prospects for the discov-

ery of some color-neutral particles at the ILC (with a center-of-mass energy up to
√

s = 1 TeV) and for colored particles at the LHC. There are also good prospects for

the discovery of uncolored particles such as charginos, neutralinos and light sleptons,

especially if they are produced in cascade decays. Some part of the preferred pa-

rameter space in the three scenarios is currently probed at the Tevatron. Within the

CMSSM qualitative agreement in the preferred mass ranges with previous analyses

[104, 105, 106] has been found.

Finally, we explored the projection for the future sensitivities of the EWPO and

BPO in the three soft SUSY-breaking scenarios. Here we also assumed a mea-

surement of the lightest MSSM Higgs boson mass. In a first step we analyzed the

future sensitivities assuming that the future measurements agree with the current

best-fit results. We found a strong improvement with respect to the current sen-

sitivity. Within the mAMSB scenario MA and tanβ can be determined indirectly

with very high precision, largely due to the fact that the current best-fit point has

a relatively low tanβ value. On the other hand, in the CMSSM and mGMSB the

tan β determination remains relatively weak, where the current best-fit points have

very large tan β values. In a second step we assumed that the future measurements

will agree in each scenario with a certain hypothetical point. These three points

were defined for each scenario such that they result in a similar Higgs and SUSY

spectrum with MA ≈ 800 GeV and tanβ ≈ 40. In general the Higgs and SUSY

mass scales are somewhat higher than for the current best-fit points, i.e. loop cor-

rections are correspondingly somewhat smaller. These points would not permit a

direct determination of the heavy Higgs-boson mass scale. We find that the EWPO

and BPO exhibit a similar future sensitivity in the CMSSM, mGMSB and mAMSB

giving rise to an upper limit on the high-scale parameters at the ∆χ2 = 9 level. The
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future EWPO and BPO sensitivities depend only mildly on the underlying physics

scenario. The precision observables could allow one to constrain the Higgs sector

parameters even beyond the direct reach of the LHC or the ILC.

Once LHC (and ILC) data on SUSY masses will be available, the assumption

about the underlying scenario itself will be investigated. While information from

the direct production of SUSY particles will obviously be crucial for disentangling

the underlying scenario of SUSY-breaking, also the EWPO and BPO will certainly

play an important role in this context.
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CHAPTER 4

CONCLUSIONS

In this work, we have presented studies on prospects of direct and indirect searches

for new physics beyond the SM. We showed that with the help of the LHC, it is

possible to uncover certain proposed extensions of the SM. Also, we demonstrated

the use of precision observables in investigating new physics at much higher scales

(SUSY-breaking mechanisms for example).

Extensions of the SM often postulate existence of new particles that are not

present in the SM. Studies of the collider signatures of these new particles provide

strong evidences in validating/vetoing the conjectured models. In Chapter 2, we

concluded that an IDM signal in the dilepton channel with a significance of more

than 3σ should be apparent at the LHC with less than 100 fb−1 of integrated lu-

minosity. Moreover, the trilepton channel provides additional information about

the IDM and we showed that it is possible, in certain range of the IDM parameter

space, to resolve the trilepton signal with 300 fb−1 of integrated luminosity. We also

carried out studies on the LRTH model and found that with a luminosity of 30 fb−1

at the early stage of the LHC operation, the LRTH heavy top T can be observed at

a significance level above 5σ. Our investigations demonstrated the comprehensive

and systematic approach that collider studies on new physics models should follow.

In Chapter 3, we investigated the constraints arising from electroweak precision

observables (EWPO) and B-physics observables (BPO) and provided a comparison

of the CMSSM, the mGMSB and the mAMSB. We presented predictions from a

χ2 analysis based on the mass of the W boson, MW , the effective weak leptonic

mixing angle, sin2 θeff , the anomalous magnetic moment of the muon (g − 2)µ, the

mass of the lightest cp-even MSSM Higgs boson, Mh, as well as on BR(b → sγ) and

BR(Bs → µ+µ−). We also explored the projection for the future sensitivities of the

EWPO and BPO in the three soft SUSY-breaking scenarios and found that within
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the mAMSB scenario MA and tanβ can be determined indirectly with very high

precision. With improved EWPO and BPO, further information can be extracted

on the three competing SUSY-breaking scenarios, using a similar framework to our

study.

We are entering into an exciting era of great(er) experimental achievement, with

the LHC currently running in the TeV territory and the precision observables ad-

vancing into another level. Armed with the approach and framework presented in

this work, we anticipate further and deeper insight into new physics beyond the SM.
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