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Abstract: Herein is a review of the essentials of Modified Newtonian Dynamics (MOND) versus dark
matter models based on Superfluids for modeling galactic rotation curves. We review the successes
and issues of both approaches. We then mention a recent alternative based on the Superfluid Vacuum
Theory (SVT) with a nonlinear logarithmic Schrédinger equation (LogSE) which reconciles both
approaches, retains the essential success of MOND and the Superfluid nature but does not necessitate
the hypothesis of processes including dark matter. We conclude with the implications of this SVT
alternative on quantum theory itself.

Keywords: MOND; dark matter; superfluids; dilatons; relativity; Everett-Hirschman entropy; loga-
rithmic Schrodinger equation

1. Introduction

Because we have been burdened with the notions of dark matter (DM) and dark energy
(DE), and because matter is claimed to be only 5% of the Universe, making us the very
outliers of existence, it is not surprising that we have to be imaginative when it comes to
modeling the Universe. The leading paradigm of DM already suggests it is extremely cold
(as in the cold of outer space), which indicates that DM, or rather cold dark matter (CDM),
could be a viable Superfluid, meaning a fluid with no viscosity with a temperature near
absolute zero.

Nonetheless, Modified Newtonian Dynamics (MOND), a theory that proposes a
modification of Newton’s laws to account for the observed properties of galaxies, has been
very successful for cosmological studies. It is an alternative to the theory of DM in terms of
explaining why galaxies do not appear to obey the currently understood laws of physics.

As aptly pointed out by Sabine Hossenfelder [1], MOND can:

1. Obtain the correlation between mass and rotational velocity giving rise to the observed
flat curves on the outskirts of galaxies;

2. Avoid galaxy cusps;

Reduce the number of dwarf galaxies;

4.  Help model the planar arrangement of satellite galaxies.

w

On galactic scales, MOND is simpler than DM models and more predictive. However,
MOND cannot model the early universe nor galaxy clusters. MOND started as a non-
relativistic theory and even its relativistic generalizations do not emerge simply from
general relativity. MOND's success is undeniable, but it is only a useful approximation.
Its greatest weakness is that it cannot account for what DM models can. Thus, we review
MOND, its relativistic generalization, and DM models and consider the possibility of
getting the best of all possible worlds to model galactic rotation curves.

This work is outlined as follows. We start with a review of MOND, build up to the
Superfluid Lagrangian formulations and finally lead up to the relativistic DM Lagrangian
formulation of Khoury et al. We mention the pros and cons of these approaches and then
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present our own alternative based on the log Bose-Einstein condensate (BEC) Superfluid
Vacuum Theory (SVT) involving the logarithmic Schrédinger equation (LogSE). We mention
its properties and desirable features for modeling not only BECs such as Superfluids but
also galactic rotation curves. Finally, we conclude with some comments regarding its
implications on quantum theory. Note that apart from the abbreviations, each distinct
section follows its own notation, largely that of the authors the section represents.

2. MOND Preliminaries

According to Sabine Hossenfelder [1], the main potentials for Modified Newtonian
Dynamics (MOND) are given by Equation (1):

Newtonian Gravity Modified Newtonian Gravity

® = MG ® = /MGagIn (=) ()
F _ Mizc F _ \/MG[IO
2 r

2.1. Significance of the MOND Acceleration Constant

As best stated by Sabine Hossenfelder: “The acceleration scale that best fits the data
turns out to be related to the cosmological constant. No one has any idea why” [2].

A
ap ~ 3 2
One has to be careful here as mathematicians often set fundamental constants like the
speed of light to unity in general relativity (GRT) within cosmological studies and therefore
the scaling is lost. It should be recognized that the RHS of Equation (2) is proportional
to the Hubble constant in the t — oo limit in Eddington’s cosmology ([3], p.193). It is
also seen in the Friedmann—Robertson—Walker (FRW) model, one of the first successful GRT
models, an exact solution for a homogeneous, isotropic and expanding universe. These
latter properties stand out as perhaps outrageous approximations and assumptions [4].
This realization, as well as an explanation for why this is a good fit, is given by one
of the pioneers of MOND, i.e., M. Milgrom himself [5], as given by these two succes-
sive quotes:

“ay can be determined from several of the MOND laws in which it appears,
as well as from more detailed analyses, such as of full rotation curves of galaxies.
All of these give consistently ap ~ (1.2 +0.2) x 1078 cm s~2. It was noticed early
on [6-8] that this value is of the order of cosmologically relevant accelerations:

17():27'[{10:CH0=C2 %,
where Hj is the Hubble constant, and A the cosmological constant. In other
words, the MOND length, ¢y ~ 7.5 x 108 cm ~ 2.5 x 10* Mpc, is of order of
today’s Hubble distance, namely, ¢); ~ 27tly (/g = c/Hy), or of the de Sitter
radius associated with A, namely, £)1 ~ 27tfs. The MOND mass, My = 1057 gr,
is then My ~ 271¢®/GHy ~ 27(c2/G(A/3)1/2, of the order of the closure mass
within today’s horizon, or the total energy within the Universe observable today.”

“For example, by the heuristic idea put forth in [9], it is the quantum vacuum-
which is shaped by the state of the Universe—that is the inertia-giving agent.
The origin of ag in cosmology also emerges, and is indeed ~ ¢>A!/2. The vacuum
then serves as an absolute inertial frame (acceleration with respect to the vacuum
is detectable, e.g., through the Unruh effect). Here, it is cosmology that enters
local dynamics to give rise to the MOND-cosmology coincidence. The “interpo-
lating function” is not put in by hand, but emerges. It could be calculated only
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for the very special (and impractical) case of eternally constant, linear acceler-
ation, a. If we generalize Newton’s second law to F = mA(a), then one finds
Ala) = (a® + AN/ — (AA/3)V/2, At high accelerations,
a > (c4A / 3)1/ 2 it gives the Newtonian expression, A = 4, while at low ac-
celerations, a < (c*A/3)'/2, we have A = a?/(4c*A/3)'/2. This is exactly the
required MOND behavior; furthermore, the observed relation ag ~ (c*A/3)!/2
is gotten. The “interpolating function” underlying this result is analogous to
the “interpolating function” that enters the relation between the kinetic energy,
Ek, and the momentumP and M should be in italic, P, of a particle of mass M,
in special relativity: Ex = E — Mc? = (P2c? + M?c*)!/2 — Mc?, which in the limit
P > Mc gives E; = Pc, and at low momenta, P < Mc, gives Ex = P2/2M.”
The “interpolating function” is explained in the next section which shows the simple
fundamentals of the MOND theory.

2.2. Simple Non-Relativistic MOND Theory

The Poisson action for the gravitational potential, which dictates particle accelerations
according to a = —V¢, is replaced by this nonlinear version [10]:

V. {y(”if')Vq;] =4nGp, (©)]

where ¢ is the standard Newtonian gravitational potential and

ulx) =1 forx>1,
ulx) - x  forx k1, 4)

where () is the “interpolating function”. Two common choices for y are:

a B 1
# ag B 1+a70,

a 1

—| = J—=. ®)
”(%) 11 ()

where a is an acceleration, and 4 is a new fundamental constant which marks the transition
between the Newtonian and deep-MOND regimes. Equation (3) can be solved given
suitable boundary conditions and the choice of y to yield Milgrom’s law (up to a curl field
correction which vanishes in situations of high symmetry). This law, the keystone of MOND,
is chosen to reduce to the Newtonian result at high acceleration but leads to different (“deep-
MOND”) behavior at low acceleration. In the deep-MOND regime, (a4 < ag):

a 2
FN—my(aO>a—m. 6)

Here, Fy is the Newtonian force and m is the object’s (gravitational) mass. When the object
is in circular orbit around a point mass M (a crude approximation for a star in the outer
regions of a galaxy), we find:

[Nl
N—
N

v*
GMim =m<r — o =GMay, %)

i.e., the star’s rotation velocity is independent of r, its distance from the center of the
galaxy, and the rotation curve is flat, as required. This is the justification behind the MOND
formalism: a phenomenological modification of Newton’s law specifically designed to
produce flat rotation curves. By fitting his law to rotation curve data, Milgrom found
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o ~ 1.2 x 10719 ms =2 to be optimal. This simple law is sufficient to make predictions for a
broad range of galactic phenomena.

In the case of spherical symmetry, the solution to Equation (3) in the MOND regime
(certainly for the first case of u(x)) is ®ponp ~ In(r), as opposed to ®pionp ~ 1/7in the
Newtonian limit. This means that in the MOND regime, the force acting on test-particles
orbiting a large mass M (e.g., the galactic center) is proportional to 1/r, resulting in flat
rotation curves. It also follows that the total mass M ~ v*, where v is the limiting velocity
of the rotation curves. This is the observationally well-established and important baryonic
Tully—Fisher relation [11] (BFTR) (though observations allow a power in the range 3.5-4).

3. Lagrangian Approach
Bekenstein Formulation(s)

The first complete theory of MOND, dubbed AQUAL, was constructed in 1984 by
Milgrom and Jacob Bekenstein [10]. AQUAL generates MONDian behavior by modifying
the gravitational term in the classical Lagrangian from being quadratic in the gradient of the
Newtonian potential to a more general function (AQUAL is an acronym for AQUAdratic
Lagrangian). AQUAL is expressed as:

1 2
LNewton = _87rGHV¢” ’

1 Vol
LAQUAL = ~grg%F < 2 ) ®)

where ¢ is the standard Newtonian gravitational potential and F is a dimensionless function

such that p(x) = dFé;CZ) . The complete AQUAL Lagrangian is:

1 Vol*
LAQUAL = P9 + 871(311%1:( 2 ) )

Applying the variational principle, Equation (9) leads to a nonlinear generalization of the
Newton-Poisson equation, i.e., Equation (3). AQUAL generates MONDian behavior by
modifying the gravitational term in the classical Lagrangian from being quadratic in the
gradient of the Newtonian potential to a more general function.

There are departures and generalizations of MOND, e.g., Milgrom’s Quasilinear
MOND (QUMOND) [12] (also derived from an action), which involves two potentials—
¢, which dictates particle accelerations, and an auxiliary potential ¢. There is even a
bimetric MOND gravity (BIMOND) [13] which is a class of (complicated) relativistic
theories involving two metrics and two respective Ricci scalars.

Appendix B of Bekenstein’s 1984 paper considers a relativistic generalization of
AQUAL, ie., a RAQUAL Lagrangian made of three terms, one of which is a gravita-
tional scalar—tensor theory which connects to the Brans-Dicke theory and the (now defunct)
theory of Hoyle and Narlicker. The argument |V¢|? of the function F is replaced by a
relativistic generalization 1, 1" where ¢ is the scalar field of the scalar—tensor theory.

According to Sanders and McGaugh [14,15], one problem with AQUAL (or any scalar—
tensor theory in which the scalar field enters as a conformal factor multiplying Einstein’s
metric) is AQUAL's failure to predict the amount of gravitational lensing actually observed
in rich clusters of galaxies.

The tensor—vector—scalar (TeVeS) theory, the bellwether of relativistic MOND, was
put forth by Bekenstein [16]. TeVeS solves problems associated with earlier attempts to
generalize MOND, such as superluminal propagation. However, it has its criticisms. Note
that the functions y and F in Equation (9) are redefined according to u(,/y) = dF(y)/dy
where ([16], Equation (4)):

y y>1
% y3 /2 y<1

E(y) — { (10)
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Note the fractional power 3/2 which will appear in the next section. Though successful,
MOND remains a curve-fitting phenomenological theory. Originally set up in a non-
relativistic framework, it was consequently unsuitable for cosmology because galaxies
are governed by GRT. MOND'’s relativistic generalizations are plagued by theoretical
difficulties [17,18]. Several ad hoc and inelegant additions to general relativity are required
to create a theory compatible with a non-Newtonian non-relativistic limit, even though the
predictions in this limit are rather clear.

4. Superfluid Lagrangian Formulation

Sabine Hossenfelder [1,19,20] uses the Lagrangian made from Khoury [21] who theo-
rizes that DM is a Superfluid. The conjecture is that the field ¢ DM Superfluid phonons are
governed by the MOND Lagrangian at T = 0:

2A(2m)3/?
£y = T X1, 1)

where X is the free kinetic energy of the field ¢, m is a constant of dimension mass and A
qualifies the strength of the self-interaction. In the Newtonian limit, the kinetic term can be
approximated by clarifying the gravitational potential:

X~ = mby+§— 5 (V9), (12)

where @y is the Newtonian gravitational potential and y can be interpreted as a chemical
energy potential. The dot is a time derivative with respect to time. The gradient contains
spatial derivatives only. It is claimed by Khoury et al. that (12) is strikingly similar to
that of the Unitary Fermi Gas (UFG) which has generated much excitement in the cold
atom community in recent years. Khoury et al. noted that the fractional power of X
would be strange if (12) described a fundamental scalar field. As a theory of phonons,
however, the power determines the Superfluid equation of state, and fractional powers are
not uncommon. Indeed, the effective field theory for the UFG Superfluid is L ~ X", where
n =5/2in3 4 1 dimensions and 3/2 in 2 + 1 dimensions, and is therefore also non-analytic.

It seems the Lagrangian (11) with (12) is very much a Bekenstein-type RAQUAL with
a function F replaced by X while retaining arguments such as (V¢)?, the resemblance to
UFG Superfluid being perhaps a bonus. Sabine Hossenfelder emphasizes [20] that:

“It is the combination of the power 3/2 in the kinetic term (11) combined with
the peculiar coupling (12) that gives rise to the MOND-like behavior. The same
features can be found in the vector-based model considered ...”

in her work on “emergent gravity” [19]. However, this same reference also returns to
Bekenstein’s RAQUAL. To mediate a force between baryons, DM phonons must couple to
the baryon density as:

(13)

with a being a constant, p;, the baryonic density and Mp,; the Planck mass. The term in
Equation (13) is now added to Equation (11). At zero temperature, the effective theory thus
has three parameters: the particle mass m, a parameter A related to the self-interaction
strength and the coupling constant a between phonons and baryons. Khoury et al. continue
with:

“A fourth parameter of the particles themselves is their self-interaction cross-

section ¢ setting the conditions for their thermalization, while a fifth parameter

will later be introduced to accommodate for finite-temperature effects” [21].
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One is reminded by the statement attributed to J. Von Neumann revealed in a meeting
between Freeman Dyson and Enrico Fermi: “With 4 parameters, I can fit an elephant.
With 5, I can make it wiggle its trunk” [22]. This brings us to the finite-T Lagrangian:

3/2
£y = 2Ok Xy, (19

where > 3and Y = u + ¢ + v e V¢, as required for stability.

The reported justification for the Lagrangian [21] is as follows: Ly + L, from
Equations (11)—(13) give rise to the MOND force law. Assuming a static profile, the phonon
equation of motion is then:

o[ (V) —2mp _ 4P
v ( (V9)? —Zmﬁv¢) - 2Mp ] 1

where fi = 4 — m® and which looks like our Poisson equation of Equation (3). Khoury
et al. then proceed to obtain the critical acceleration a4y to realize, amongst other things,
that they need to use the temperature-dependent result of (14). Their work [21] seems to
address a number of points concerning MOND and the DM Superfluid model. Khoury’s
work cites the analysis of Bruneton et al. [23], whose abstract states:

“Our conclusion is that all MOND-like models proposed in the literature, includ-
ing the new ones examined in this paper, present serious difficulties: Not only
they are unnaturally fine tuned, but they also fail to reproduce some experimental
facts or are unstable or inconsistent as field theories. However, some frameworks,
notably the tensor-vector-scalar (TeVeS) one of Bekenstein and Sanders, seem
more promising than others, and our discussion underlines in which directions
one should try to improve them.”

In a nutshell, it seems the gravitational scalar-tensor theories examined were problem-
atic, and although TEVES seemed most promising, it is not perfect either. As for a further
elaboration about the problems with MOND, see, e.g., Ref. [24].

Relativistic Completion

Interestingly, Khoury et al. [25] attempt to derive the Lagrangian of (11) and (12) using
more fundamental Lagrangians. Their appendix points out that:

A
L= —P.of - n?el - S|of,

gives £(X) ~ X3/2 of (11) but with the wrong sign. Instead, they consider:

6
L— ,

4
(10, + m?@P) — - A (16)

2 2 2
7(Ag+|¢|2)6(|aucp| + m?|®| )

1
2
where “the scale A, is introduced to ensure that the theory admits a & = 0 vacuum”.
Khoury et al. did their best to reconcile MOND and one of the better relativistic DM
models, namely ACDM. Unfortunately, the Lagrangian (16) is very unappealing: the
formulation looks complicated and contrived. (Moreover, there is apparently a missing
factor of 2 in going from their Equation (21) back to a non-relativistic counterpart in their
Equation (22) of Ref. [26]). Equation (16) looks complicated even as it has only basic kinetic
and mass terms. Khoury ([25], [1.1]) reports that MOND fails at large extra-galactic scales.
Some of the criticism of this approach is best expressed by Sabine Hossenfelder [27]:

“The biggest problem is that it’s not very well understood under exactly which
conditions DM forms a Superfluid. There are also different kinds of particles
that can form a Superfluid and it’s not clear which of those fits the data best.
Another problem is that it’s really not well understood how a fluid condenses to a
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Superfluid in a curved space-time. That’s because the people who normally study
Superfluids don’t have to think about gravity all that much. If they take it into
account at all, it’s a vertical gradient in the laboratory...I think it’s a mistake to
regard DM and MOND as two competing theories, each of which has to be made
to fit all of the data. To me the data say the answer is a combination of both.”

The trouble is that MOND and relativistic CDM models cannot be reconciled [28]. We
need an alternative.

5. Alternative—LogSE Formulations

Clearly all this material concerning MOND and DM presented here, and attempting to
reconcile or combine them, involves “mature industries”. For example, the very appearance
of artificial interpolating functions y(x) or F(x) in present MOND theories indicates that
none are the basic MOND theory we are after, i.e., a “FUNDAMOND” theory. The existing
MOND theories are, at best, only effective, approximate theories of limited validity. MOND
is an “effective” theory, useful indeed, but artificial, and the attempts at putting it on a firm
foundation have been less than perfect. Mind you, we retain the notion that a gravitation
Lagrangian might do the trick. This is feasible as long as we keep it simple and “natural”.
We start from a free Lagrangian formulation for dilatonic gravity [29,30]:

/d4xﬁp = /d4x\/g{‘I’R + %g?‘”vy‘lfvv‘lf +2A} , (17)

where 871G = 1 and ¥ is the dilaton field which ensures the correct Newtonian limit of (17)
in d (spatial) dimensions where d = 1,2, 3. Equation (17) is a special case of a general class
of relativistically invariant scalar—tensor formulations, an F(R) theory that has been loop-
quantized [29,31] (although we stop short of using the Ashtekar variables). Equation (17)
embeds a property of conformal invariance, and when ¥ = 1, it reduces to the limit of GRT.
At any rate, a relativistic version of the LogSE can be obtained by replacing its Laplacian
with the d’Alembertian, similarly to the Klein-Gordon equation [32].

We applied the variational principle using the Arnowitt-Deser—-Misner (ADM)
method [33] to Equation (17) with a particular choice of gauge and coordinate conditions
while assuming no transverse-traceless metric components, the metric g,;, reduces to the
3 x 3 isotropic form, i.e.,

Sab = Yap = Oah = 0 (1 + 107) = 7y =14%2, (18)

where hT corresponds to the trace of the transverse part of the metric and carries the
asymptotic (Newtonian) 1/r part of the metric such that [33]

lim 1" =0.
r—oo
With the following transformation,
¥t xy,z) = F(t) = 5In([p(x,y,2)]) - (19)

Defining ® = h'/4yp and F(t) = F is a constant in time, it is found that the field equation
governing the transformed dilaton field ® is given by:

—%VZCI)+V<I>+S®IH(|<D|) = E®, (20)

where E = E(A) and S = S(h°R) and 3R is the three-dimensional Ricci scalar.
Equation (20) is an energy-balancing equation for the dilaton field which is governed by
a logarithmic Schrodinger equation (LogSE) with E as a function of the cosmological con-
stant acting as the eigenvalue. The energy balance in itself is more attractive than the
previous formulations leading to Equation (16), which involve mass and kinetic energy
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only. In flat space where the Ricci scalar is zero, Equation (20) reduces to the standard
Schrodinger equation.

External potentials can be added to V in Equation (20). The LogSE already has a
number of fundamental applications ranging from quantum gravity to nuclear physics
to magma transport to information theory (e.g., see [34] and the references therein). For
example, it can provide the upside-down “Mexican hat” shape of the effective potential
for the Higgs boson which is different from the one used in the Glashow—Weinberg—Salam
model, yet it yields the mass generation and it is free of the imaginary-mass problem
appearing in the conventional Higgs potential [35]. (In principle, the Higgs boson is distinct
from the gravitational dilaton because they result from different theories, but the apparent
similarity between these two particles has made some wonder if they are related to each
other (e.g., see [36]), but this is not pursued here). Other examples of the LogSE concern
Bose-Einstein condensates and Superfluids.

Because Superfluid phonons were previously mentioned, it is worth noting that precise
experimental data show that at temperatures below 1 K, the pressure in (liquid) Helium-4
has a cubic dependence on density and, thus, the speed of sound cs scales as a cubic root
of pressure:

cs = K'3(P—P.)Y where v= % +0.01, (1)

where P, is the critical pressure.

Near this critical pressure point, this speed approaches zero, whereby the critical pres-
sure is negative, thus indicating a cavitation instability regime. Figure 1 is a reproduction
from Ref. [37] and resoundingly confirms Equation (21). To explain this dependence, one
had to model the liquid helium as a mixture of three quantum Bose liquids:

1. Dilute (Gross-Pitaevskii-type) Bose-Einstein condensate;
2. Ginzburg-Sobyanin-type fluid;
3. Logarithmic Superfluid.

3 T T T T T T T T
O “He

—*He fit
251 A Oge 1

= = e fit

013

Figure 1. Profiles of ¢2 in units of 10'3cm3/s?, versus pressure P, in atm from precise experimental

data and fitted for *He (circles, solid fitting curve) and 3He (triangles, dashed fitting curve) in the
regime 0 < P < 10 bars. (Courtesy Ref. [37]).

This was encapsulated by the quantum wave equation:

: 7
—iho; — %vuvm(x, t)+E(|®?)|® =0, (22)
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which derives from the Euler-Lagrange equation from the action functional on the Lagrangian.

i hZ
L= %(Tatcb* = 0P + 5[ VOP + Veu (1, t) + V(|@),

where F = 0V (p)/dp is found to be ([37], Equation (14)):
1
F(p) = —¢|a®In(p/p) + 250 + =2 (23)

where w is a constant. The logarithmic term in F(p) of Equation (23) is essential to realize
Figure 1. Without it, one would obtain at best a proportionality ct o (P — Pc) rather than
the experimentally vindicated ¢? o (P — Pc). Bear in mind that it is the logarithmic part
of (23) that dominates the asymptotic behavior of the wave function ® in various regimes.
A similar vindication can also be found for cold sodium atoms [38]. Thus, the LogSE
deriving from a general relativistic formulation is versatile and precise in applications
to Bose—Einstein condensates and Superfluids and is consequently a good candidate for
modeling galactic rotation curves. On this issue, the LogSE in the context of the log BEC
Superfluid Vacuum Theory (SVT) provides us with an alternative to DM [39,40]. Assuming
spherical symmetry and updating F of the LogSE in Equation (22) with:

2
F(|®[?) — (bo - riz) 1n<m;|) . (24)

We inject an ansatz for ® for the vacuum in the form ([39], Equation (5)):

@] = ﬁ(%)X/ZP(r)exp(f%rqu %H %0) , (25)

where P(r) is a polynomial in 7 and the exponential term is a Gausson, i.e., a single soliton
which often appears as a ground-state solution to the LogSE [34,41]. It is found that for
central potential problems, the solution of the LogSE can be well approximated by linear
combinations of such functions as in (25) [34,42], justifying the ansatz. The injection of
this ansatz into the logarithmic part of the LogSE, i.e., F(|®|?)/m, generates six individual
potential terms ([39], Equations (6)—(12)) of which two have the form:

amgl  GM

W = = ,
m r r

Vip = %X<ln(%>+lnP2(r)). (26)

Thus, we recover both the standard Newtonian potential and the MOND logarithmic poten-
tial of Equation (1). The log term of the LogSE naturally provides the MOND logarithmic
potential. Equation (26), with the remaining four potential terms and the coefficients of
these terms, can be successfully fitted to a number of astrophysical cases.

This alternative can address cases where the conventional models fail. For example,
Corbelli et al. show results where the outer regions of galactic rotational curves start to
significantly deviate from predictions of popular theories like MOND [43,44]. Granted,
the alternative does produce a number of parameters for fitting as in the earlier models.
However, the more conventional Superfluid dark matter models also use ordinary matter
distributions, giving them a large freedom for fitting, and yet they have been confronted
with underfitting or overfitting. In the alternative here, the parameters start from a simpler
formalism and a simple ansatz. The parameters are products of the fixed parameters of
the LogSE model but also parameters of the “local” vacuum’s wave function which can
vary from galaxy to galaxy, thus providing a sufficiently large domain of parameters that is
flexible yet with a reduced danger of underfitting or overfitting.
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On a galactic scale, the model of Ref. [39] explains the non-Keplerian behavior of
galactic rotation curves and also why their profiles can vary depending on the galaxy.
This approach is further vindicated in modeling the asymptotic behavior of these galactic
rotation curves [40] and can even model galaxies for which the rotation velocity profiles do
not have flat regions [45]. Thus, the LogSE models of a log BEC SVT presented here:

1. Have a connection to a relativistic gravity theory;

2. Have a proven capacity for modeling BECs and cold atom:s;

3. Involve a much simpler Lagrangian formulation than those of the previous Superfluid
models;

4. Recover the advantages of MOND for modeling galactic rotation curves.

Concerning the first item, caution should be exercised here. The LogSE can be obtained
by various routes in different physical scenarios. It does not follow that log BCE SVT
necessarily involves dilatonic gravity or vice versa because both have a LogSE in common.
However, note that the log SE in Equation (20) obtained from dilatonic gravity is perhaps
the first LogSE formulation with a non-constant coefficient for the logarithmic term and that
the 1/72 term (with q as coefficient) of Equation (24) is essential to recover the Newtonian
limit inside a galaxy which is the Ricci scalar for a 3D sphere. The latter equation and its
ansatz in Equation (25) both use spherical symmetry. (This is also rather tantalizing but
will not be pursued here).

Moreover, without actually denying the existence of DM and/or DE, the very hypoth-
esis of their existence is not needed here. The overhead and the complications resulting
from such a hypothesis are therefore bypassed. Our Lagrangian formulations are for
Bose-Einstein condensates, and it is doubtful they could model DM at a microscopic level
because fermions govern the atomic and molecular structure. (Also note that baryons are
also fermions!) Furthermore, the modeling of an entire galaxy with a fluid or a Superfluid
already involves outrageous assumptions just from the point of view of continuity. Dealing
with the the baryon density, e.g., in the RAQUAL theory, is a burdensome overhead from
either a conceptual or pragmatic point of view.

Addressing the Objections to Nonlinear Quantum Formulation

Some, like the authors of Ref. [46], claim the only consistent way to manipulate
quantum amplitudes consistently is with a standard linear Schrodinger equation. Thus,
they would conclude that the LogSE is not a valid quantum-mechanical formulation.

However, the log nonlinearity in the LogSE merely describes many-body effects
because the log term In(|®|?) is the Everett-Hirschman entropy [47]. The log nonlinearity
occurs when the collective phenomenon, such as a Bose-Einstein condensate, emerges with
its own degrees of freedom. In other words, one should not confuse its solution ® with
the wave function of the linear yet fundamental standard quantum mechanics. A general
justification for using log nonlinearities for many-body and open quantum systems is given
in Ref. [47].

6. Conclusions

From Modified Newtonian Dynamics (MOND) to Superfluid dark matter (DM) models to
the alternative based on the log BEC Superfluid Vacuum Theory (SVT), we have progressed
from a curve-fitting phenomenological theory that is MOND to a fundamental formulation
for BECs, cold atoms and even galactic rotation curves, based on the logarithmic Schodinger
equation (LogSE). However, the nonlinear aspects of the LogSE do present a challenge.

Although not strictly quantum mechanical, the LogSE has many properties in common
with the linear Schrédinger equation. In spite of the nonlinearity, wave mechanics can be
established [48], complete with discrete solutions and orthogonality conditions between
them. As mentioned before, linear combinations of Gaussons can well approximate the
solutions of the LogSE. This is explained by a quasi nonlinear property of superposition which
has been firmly established for harmonic potentials [49]. The precise numerical work
on the LogSE for hydrogenic systems [34,42] suggests that the LogSE is even amenable
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to computational quantum chemistry while also allowing for soliton solutions, which is
intriguing. As suggested by Equation (25), Gaussons can be viewed as a product of a
Slater-type (hydrogenic) function (e.g., of the form exp(—a; * r/2)) and a Gaussian (e.g.,
of the form exp(—aj * r?/2)). Note that Slater functions and especially bases of Gaussian
functions have provided a proven reliable mathematical computational technology for
atomic and molecular physics as well as quantum chemistry [50-52]. There are some
differences though: solutions to the LogSE can be square integrable, but the logarithmic
term retains the normalization constant.

From a physical point of view, we cannot reject nonlinear Schrodinger equations like
the LogSE. They are needed for Superfluids and Superconductors. Who could deny that the
zero-resistivity property of Superconductors or the zero-viscosity property of Superfluid at
supremely cold temperatures to be anything but bonafide quantum effects? These have no
classical explanation. In particular, standard quantum mechanics applies especially well at
cold temperatures where thermodynamic effects are not overwhelming,.

It has been said that it is perhaps too much to expect that a fundamental equation
for describing nature be linear after all. Moreover, it is not surprising that the transi-
tion from a (nonlinear) GRT action with a dilaton field in Equation (17) would lead to a
nonlinear equation governing the dilaton field, i.e., Equation (20). Equation (19) infers
P « exp(constant * ¥) where ¥ is the dilaton field, suggesting an intriguing interpretation
for the wave function @, one based on differential geometry. In trying to reconcile the GRT
with standard quantum mechanics, a nonlinear wave equation corresponding perhaps to a
different or intermediate regime might be the gateway.
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Abbreviations

The following abbreviations are used in this manuscript:

MOND Modified Newtonian Dynamics

BIMOND Bimetric MOND

QUMOND Quasilinear MOND

FUNDAMOND  (Unique Relativistic) Fundamental MOND (Theory)
BEC Bose-Einstein Condensate

GRT General Relativity

FRW Friedmann—Robertson-Walker (GRT Solution and Model)
SVT Superfluid Vacuum Theory

DM Dark Matter

CDM Cold Dark Matter

ACDM A Cold Dark Matter Model

DE Dark Energy

BTFR Baryonic Tully—Fisher relation

AQUAL A QUAdratic Lagrangian

RAQUAL Relativistic AQUAL

TeVeS Tensor—Vector-Scalar (Theory)

ADM Arnowitt-Deser-Misner (GRT Method)
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