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Abstract. A review is given of a new relativistic classical mechanics for N-particle systems
compatible with relativistic bound states. It is formulated in global non-inertial frames in
Minkowski space-time by means of parametrized Minkowski theories and then restricted to
the intrinsic inertial rest frame of the isolated system. There is a complete control on the
relativistic collective variables (Newton-Wigner center of mass, Fokker-Pryce center of inertia,
M/oller center of energy) and on the realization of the Poincare’ algebra (with the explicit form
of the interaction-dependent Lorentz boosts). The particle world-lines are found to correspond
to the ones of predictive mechanics and localization problems are clarified. The model can be
consistently quantized avoiding the instantaneous spreading of the center-of-mass wave packets
(Hegerfeldt theorem), because the non-local non-covariant center of mass is a non-measurable
quantity. This implies that the Hilbert space must be the tensor product of the center-of-
mass Hilbert space with the one of relative motions. This spatial non-separability (due to the
Lorentz signature of space-time) makes relativistic entanglement much more involved than the
non-relativistic one.

1. Introduction

There is no intrinsic notion of 3-space, simultaneity, 1-way velocity of light (two distant clocks
are involved) in special relativity (SR): in the absolute Minkowski space-time, only the conformal
structure (the light-cone) is intrinsically given as the locus of incoming and outgoing radiation.
The light postulate says that the 2-way (only one clock is involved) velocity of light c is isotropic
and constant. Its value replaces the rods (i.e. the standard of length) in modern metrology [1],
where an atomic clock gives the standard of time and a conventional reference frame centered on
a given observer is chosen as a standard of space-time (GPS is an example of such a standard).
Instead in Galilei space-time there is no problem: time and Euclidean 3-space are absolute.

A well defined 3-space (i.e. a clock synchronization convention) is needed to be able to give
Cauchy data for the relevant partial differential equations: only in this way one can use the
existence and unicity theorem for their solutions to get predictability in classical and quantum
physics.

The standard way out from the problem of 3-space is to choose the Euclidean 3-space of an
inertial frame centered on an inertial observer and then use the kinematical Poincaré group
to connect different inertial frames. This is done by means of Einstein convention for the
synchronization of clocks: the inertial observer A sends a ray of light at xoi towards the (in

IARD2012 IOP Publishing
Journal of Physics: Conference Series 437 (2013) 012015 doi:10.1088/1742-6596/437/1/012015

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



general accelerated) observer B; the ray is reflected towards A at a point P of B world-line
and then reabsorbed by A at xof ; by convention P is synchronous with the mid-point between

emission and absorption on A’s world-line, i.e. xoP = xoi + 1
2 (xof − xoi ) = 1

2 (xoi + xof ). This
convention selects the Euclidean instantaneous 3-spaces xo = ct = const. of the inertial frames
centered on A. Only in this case the one-way velocity of light between A and B coincides with the
two-way one, c. However, if the observer A is accelerated, the convention breaks down, because
if only the world-line of the accelerated observer A (the 1+3 point of view) is given, then the only
way for defining instantaneous 3-spaces is to identify them with the Euclidean tangent planes
orthogonal to the 4-velocity of the observer (the local rest frames). But these planes (they are
tangent spaces not 3-spaces!) will intersect each other at a distance from A’s world-line of the
order of the acceleration lengths of A, so that all the either linearly or rotationally accelerated
frames, centered on accelerated observers, based either on Fermi coordinates or on rotating ones,
will develop coordinate singularities. Therefore their approximated notion of instantaneous 3-
spaces cannot be used for a well-posed Cauchy problem for Maxwell equations.

In Refs. [2, 3] a general theory of non-inertial frames in Minkowski space-time was developed. As
shown in Refs. [3, 4] this formulation allowed to develop a Lagrangian description (parametrized
Minkowski theories) of isolated systems (particles, strings, fluids, fields) in which the transition
from a non-inertial frame to another one is formalized as a gauge transformation. Therefore the
inertial effects only modify the appearances of phenomena but not the physics.

Then the restriction to inertial frames allowed to define the Poincaré generators starting from the
energy-momentum tensor. The intrinsic inertial rest frame of every isolated system allowed the
definition of the rest-frame instant form of dynamics where it is possible to study the problem of
the separation of the collective relativistic variable of an isolated system from the relative ones
living in the so called Wigner 3-spaces in accord with the theory of relativistic bound states
[5, 6, 7]. The ordinary world-lines of the particles can then be reconstructed [8].

The rest-frame instant form allows to give a formulation of relativistic quantum mechanics
(RQM) [9] which takes into account of the problems of relativistic causality and relativistic
localization implied by the Lorentz signature of Minkowski space-time. Also a definition of
relativistic entanglement can be given: the Lorentz signature implies features of non-locality
and spatial non-separability absent in the non-relativistic formulation of entanglement.

A complete review of the approach in SR and of its extension to non-inertial frames in general
relativity (GR) in asymptotically Minkowskian space-times [10] is given in Ref.[11]. In GR
there is no absolute notion since also space-time becomes dynamical (with the metric structure
satisfying Einstein’s equations): however in this class of space-times it is possible to make a
Hamiltonian formulation and to separate the inertial degrees of freedom of the gravitational
field from the tidal ones (the gravitational waves of the linearized theory).

2. Classical relativistic isolated systems in non-inertial frames in Minkowski
space-time

A metrology-oriented description of non-inertial frames in SR can be done with the 3+1 point of
view and the use of observer-dependent Lorentz scalar radar 4-coordinates. Let us give the world-
line xµ(τ) of an arbitrary time-like observer carrying a standard atomic clock: τ is an arbitrary
monotonically increasing function of the proper time of this clock. Then we give an admissible
3+1 splitting of Minkowski space-time, namely a nice foliation with space-like instantaneous
3-spaces Στ : it is the mathematical idealization of a protocol for clock synchronization. All
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the clocks in Στ sign the same time of the atomic clock of the observer: it is the non-factual
idealization required by the Cauchy problem generalizing the existing protocols for building
a coordinate system inside the future light-cone of a time-like observer. On each 3-space Στ

we choose curvilinear 3-coordinates σr having the observer as origin. These are the radar 4-
coordinates σA = (τ ;σr).

If xµ 7→ σA(x) is the coordinate transformation from the Cartesian 4-coordinates xµ of a
reference inertial observer to radar coordinates, its inverse σA 7→ xµ = zµ(τ, σr) defines
the embedding functions zµ(τ, σr) describing the 3-spaces Στ as embedded 3-manifold into
Minkowski space-time. The induced 4-metric on Στ is the following functional of the embedding
4gAB(τ, σr) = [zµA ηµν z

ν
B](τ, σr), where zµA = ∂ zµ/∂ σA and 4ηµν = ε (+ − −−) is the flat

metric (ε = ±1 according to either the particle physics ε = 1 or the general relativity
ε = −1 convention). While the 4-vectors zµr (τ, σu) are tangent to Στ , so that the unit normal

lµ(τ, σu) is proportional to εµαβγ [zα1 z
β
2 z

γ
3 ](τ, σu), we have zµτ (τ, σr) = [N lµ+N r zµr ](τ, σr) with

N(τ, σr) = ε [zµτ lµ](τ, σr) and Nr(τ, σ
r) = −ε gτr(τ, σr) being the lapse and shift functions.

The foliation is nice and admissible if it satisfies the conditions:

1) N(τ, σr) > 0 in every point of Στ (the 3-spaces never intersect, avoiding the coordinate
singularity of Fermi coordinates);

2) ε 4gττ (τ, σr) > 0, so to avoid the coordinate singularity of the rotating disk, and with
the positive-definite 3-metric 3grs(τ, σ

u) = −ε 4grs(τ, σu) having three positive eigenvalues
(these are the Møller conditions);

3) all the 3-spaces Στ must tend to the same space-like hyper-plane at spatial infinity (so that
there are always asymptotic inertial observers to be identified with the fixed stars).

These conditions imply that global rigid rotations are forbidden in relativistic theories. In
Ref.[3] there is the expression of the admissible embedding corresponding to a 3+1 splitting of
Minkowski space-time with parallel space-like hyper-planes (not equally spaced due to a linear
acceleration) carrying differentially rotating 3-coordinates without the coordinate singularity of
the rotating disk. It is the first consistent global non-inertial frame of this type.

Each admissible 3+1 splitting of space-time allows to define two associated congruences of time-
like observers: a) the Eulerian observers with the unit normal to Στ as 4-velocity; b) the non
surface forming observers with 4-velocity proportional to zµτ (τ, σr).

Therefore starting from the four independent embedding functions zµ(τ, σr) we obtain the
ten components 4gAB(τ, σu) of the 4-metric: they play the role of the inertial potentials
generating the relativistic apparent forces in the non-inertial frame (the usual Newtonian inertial
potentials can be recovered by doing the non-relativistic limit [3]). The extrinsic curvature tensor
3Krs(τ, σ

u) = [ 1
2N (Nr|s + Ns|r − ∂τ 3grs)](τ, σ

u), describing the shape of the instantaneous 3-
spaces as embedded 3-sub-manifolds of Minkowski space-time, is a secondary inertial potential
functional of the inertial potentials 4gAB.

In these global non-inertial frames of Minkowski space-time it is possible to describe isolated
systems (particles, strings, fields, fluids) admitting a Lagrangian formulation by means of
parametrized Minkowski theories [3, 4]. The matter variables are replaced with new ones knowing
the clock synchronization convention defining the 3-spaces Στ . For instance a Klein-Gordon field
φ̃(x) will be replaced with φ(τ, σr) = φ̃(z(τ, σr)); the same for every other field. Instead for a
relativistic particle with world-line xµ(τ) we must make a choice of its energy sign: then the
positive- (or negative-) energy particle will be described by 3-coordinates ηr(τ) defined by the
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intersection of its world-line with Στ : xµ(τ) = zµ(τ, ηr(τ)). Differently from all the previous
approaches to relativistic mechanics, the dynamical configuration variables are the 3-coordinates
ηr(τ) and not the world-lines xµ(τ) (to rebuild them in an arbitrary frame we need the embedding
defining that frame!).

Then the matter Lagrangian is coupled to an external gravitational field and the external 4-
metric is replaced with the 4-metric gAB(τ, σr) of an admissible 3+1 splitting of Minkowski
space-time. With this procedure we get a Lagrangian depending on the given matter and on
the embedding zµ(τ, σr), which is invariant under frame-preserving diffeomorphisms [12] and
Dirac theory of constraints [13] is needed to study it. As a consequence, there are four first-
class constraints (an analogue of the super-Hamiltonian and super-momentum constraints of
canonical gravity) implying that the embeddings zµ(τ, σr) are gauge variables, so that all the
admissible non-inertial or inertial frames are gauge equivalent, namely physics does not depend
on the clock synchronization convention and on the choice of the 3-coordinates σr. Even if the
gauge group is formed by the frame-preserving diffeomorphisms, the matter energy-momentum
tensor allows the determination of the ten conserved Poincare’ generators Pµ and Jµν (assumed
finite) of every configuration of the system (in non-inertial frames they are asymptotic generators
at spatial infinity like the ADM ones in GR [14]).

If we restrict ourselves to inertial frames, we can define the inertial rest-frame instant form
of dynamics for isolated systems by choosing the 3+1 splitting corresponding to the intrinsic
inertial rest frame of the isolated system centered on an inertial observer: the instantaneous
3-spaces, named Wigner 3-spaces due to the fact that the 3-vectors inside them are Wigner
spin-1 3-vectors, are orthogonal to the conserved 4-momentum Pµ of the configuration. The
embedding corresponding to the inertial rest frame is zµ(τ, ~σ) = Y µ(τ) + εµr (~h)σr, where Y µ(τ)

is the Fokker-Pryce center-of-inertia 4-vector, ~h = ~P/
√
ε P 2 and εµA=ν(~h) is the standard Wigner

boost for time-like orbits sending Pµ =
√
ε P 2 (

√
1 + ~h2;~h) to (1; 0).

In Ref.[3] there is also the definition of the admissible non-inertial rest frames, where Pµ is
orthogonal to the asymptotic space-like hyper-planes to which the instantaneous 3-spaces tend
at spatial infinity. This non-inertial family of 3+1 splittings is the only one admitted by
the asymptotically Minkowskian space-times without super-translations in GR [10]. Finally
in Ref.[15] there is the definition of parametrized Galilei theories, non relativistic limit of the
parametrized Minkowski theories. Also the inertial and non-inertial frames in Galilei space-time
are gauge equivalent in this formulation.

3. Relativistic center of mass, particle world-lines and bound states

The framework of the inertial rest frame allowed the solution of the following old open problems:

A) The classification [16] of the relativistic collective variables (the canonical non-covariant
Newton-Wigner center of mass (or center of spin), the non-canonical covariant Fokker-Pryce
center of inertia and the non-canonical non-covariant Møller center of energy), replacing the
Newtonian center of mass (and all tending to it in the non-relativistic limit), that can be
built only in terms of the Poincare’ generators: they are non measurable quantities due
to the non-local character of such generators (they know the whole 3-space Στ ). There is
a Møller world-tube around the Fokker-Pryce 4-vector containing all the possible pseudo-
world-lines of the other two, whose Møller radius ρ = |~S|/

√
ε P 2 (~S is the rest angular

momentum) is determined by the Poincaré Casimirs of the isolated system. This non-
covariance world-tube is a non-local effect of Lorentz signature of the space-time absent in
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Euclidean spaces. The world-lines xµi (τ) (= Y µ(τ) + εµr (~h) ηri (τ) in the rest-frame instant
form) of the particles are derived (interaction-dependent) quantities and in general they do
not satisfy vanishing Poisson brackets [8]: already at the classical level a non-commutative
structure emerges due to the Lorentz signature!

B) The description of every isolated system as a decoupled (non-measurable) canonical non-
covariant (Newton-Wigner) external center of mass (described by frozen Jacobi data)
carrying a pole-dipole structure: the invariant mass and the rest spin of the system expressed
in terms of suitable Wigner-covariant relative variables of the given isolated system inside
the Wigner 3-spaces (after the elimination of the internal center of mass with well defined
rest-frame conditions). The invariant mass is the effective Hamiltonian inside these 3-spaces.
See Refs.[17] for all the interacting systems for which the explicit form of the interaction-
dependent Lorentz boosts is known.

C) The formulation of classical relativistic atomic physics [5] (the electro-magnetic field in
the radiation gauge plus charged scalar particles with Grassmann-valued electric charges to
make a ultraviolet and infrared regularization of the self-energies and with mutual Coulomb
potentials) and the identification of the Darwin potential at the classical level by means of a
canonical transformation transforming the original system in N charged particles interacting
with Coulomb plus Darwin potentials and a free radiation field (absence of Haag’s theorem
at least at the classical level). Therefore the Coulomb plus Darwin potential is the
description as a Cauchy problem of the interaction described by the one-photon exchange
Feynman diagram of QED (all the radiative corrections and photon brehmstrahlung are
deleted by the Grassmann regularization).

D) A new formulation of relativistic kinetic theory and of the relativistic micro-canonical
ensemble both in inertial and non-inertial frames [18].

E) The formulation of relativistic perfect fluids in the rest-frame instant form of dynamics [19].

4. Relativistic quantum mechanics, relativistic entanglement and localization
problems

In Ref.[9] there is a new formulation of relativistic quantum mechanics in the inertial rest
frame englobing all the known results about relativistic bound states due to the use of clock
synchronization for the definition of the instantaneous 3-spaces, which implies the absence of
relative times in their description.

In Galilei space-time non-relativistic quantum mechanics, where all the main results about
entanglement are formulated, describes a composite system with two (or more) subsystems
with a Hilbert space which is the tensor product of the Hilbert spaces of the subsystems:
H = H1 ⊗ H2. This type of spatial separability is named the zeroth postulate of quantum
mechanics. However, when the two subsystems are mutually interacting, one makes a unitary
transformation to the tensor product of the Hilbert space Hcom describing the decoupled
Newtonian center of mass of the two subsystems and of the Hilbert space Hrel of relative
variables: H = H1 ⊗ H2 = Hcom ⊗ Hrel. This allows to use the method of separation
of variables to split the Schroedinger equation in two equations: one for the free motion of
the center of mass and another, containing the interactions, for the relative variables (this
equation describes both the bound and scattering states). A final unitary transformation of
the Hamilton-Jacobi type allows to replace Hcom with Hcom,HJ , the Hilbert space in which the
decoupled center of mass is frozen and described by non-evolving Jacobi data. Therefore we
have H = H1 ⊗H2 = Hcom ⊗Hrel = Hcom,HJ ⊗Hrel.
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While at the non-relativistic level these three descriptions are unitary equivalent, this is no more
true in RQM. The non-local and non-covariant properties of the decoupled relativistic center of
mass, described by the frozen Jacobi data ~z and ~h = ~P/

√
ε P 2, imply that the only consistent

relativistic quantization is based on the Hilbert space H = Hcom,HJ⊗Hrel (in the non-relativistic
limit it goes into the corresponding Galilean Hilbert space). We have H 6= H1 ⊗H2, because,
already in the non-interacting case, in the tensor product of two quantum Klein-Gordon fields,
φ1(x1) and φ2(x2), most of the states correspond to configurations in Minkowski space-time in
which one particle may be present in the absolute future of the other particle. This is due to
the fact that the two times xo1 and xo2 are totally uncorrelated, or in other words there is no
notion of instantaneous 3-space (clock synchronization convention). Also the scalar products in
the two formulations are completely different.

We have also H 6= Hcom⊗Hrel, because if instead of ~z = Mc~xNW (0) we use the evolving (non-
local and non-covariant) Newton-Wigner position operator ~xNW (τ), then we get a violation of
relativistic causality because the center-of-mass wave packets spread instantaneously as shown
by the Hegerfeldt theorem [20].

Therefore the only consistent Hilbert space is H = Hcom,HJ ⊗ Hrel. The main complication
is the definition of Hrel, because we must take into account the three pairs of (interaction-
dependent) second-class constraints eliminating the internal 3-center of mass inside the Wigner
3-spaces. When we are not able to make the elimination at the classical level and formulate the
dynamics only in terms of Wigner-covariant relative variables, we have to quantize the particle
Wigner-covariant 3-variables ηri , κir and then to define the physical Hilbert space by adding the
quantum version of the constraints a la Gupta-Bleuler.

Relativistic quantum mechanics in rotating non-inertial frames by using a multi-temporal
quantization scheme is defined in Ref.[21]. In it the inertial gauge variables are not quantized
but remain c-numbers; the known results in atomic and nuclear physics are reproduced.

Since we have that the Hilbert space H = Hcom,HJ ⊗ Hrel is not unitarily equivalent to the
one H1 ⊗H2 ⊗ ..., where Hi are the Hilbert spaces of the individual particles, at the relativistic
level the zeroth postulate of non-relativistic quantum mechanics does not hold (the necessity
to use Hrel implies a type of weak form of relationism different from the formulations, like the
one of Ref.[22], having their origin in the Mach principle). Since the Hilbert space of composite
systems is not the tensor product of the Hilbert spaces of the sub-systems, we need a formulation
of relativistic entanglement taking into account this spatial non-separability and the non-locality
of the center of mass, both coming from the Poincare’ group, i.e. from the Lorentz signature of
space-time.

Since the center of mass is decoupled, its non-covariance is irrelevant. However its non-locality is
a source of open problems: do we have to quantize it (in the preferred momentum basis implied
by the quantum Poincaré algebra) and if yes is it meaningful to consider center-of-mass wave
packets or we must add some super-selection rule? The wave function of the non-local center of
mass is a kind of wave function of the 3-universe: who will observe it?

As a consequence in SR there are open problems on which type of relativistic localization is
possible. There are strong indications that the Newton-Wigner position operator cannot be
self-adjoint but only symmetric with the implication of a bad localization of relativistic particles
[23]. The existing problems with relativistic position operators (like the Newton-Wigner one),
deriving from the Lorentz signature of Minkowski space-time which forbids the existence of
a unique collective variable with all the properties of Newton center of mass , point towards
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a non-measurability of absolute positions (but not of the relative variables needed to describe
the spectra of bound states). This type of un-sharpness is induced also in non-relativistic
quantum mechanics if one takes into account the crucial relativistic electro-magnetic effects of
order 1/c in atomic physics. Moreover see Refs. [24] for another type of non-relativistic un-
sharpness of positions. Experiments in atomic and molecular physics are beginning to explore
these localization problems, in frameworks dominated by a Newtonian classical intuition and
taking into account the experimental quantum limits for atom localization.

Therefore SR introduces a kinematical non-locality and a kinematical spatial non-separability,
which reduce the relevance of quantum non-locality in the study of the foundational problems
of quantum mechanics (see for instance Refs.[25]). Relativistic entanglement will have to be
reformulated in terms of relative variables also at the non-relativistic level. Therefore the
control of Poincare’ kinematics will force to reformulate the experiments connected with Bell
inequalities and teleportation in terms of the relative variables of isolated systems containing:
a) the observers with their measuring apparatus (Alice and Bob as macroscopic quasi-classical
objects); b) the particles of the protocol (but now the ray of light, the ”photons” carrying the
polarization, move along null geodesics); c) the environment (a macroscopic either quantum or
quasi-classical object).

5. Open problems

In conclusion we now have a good control on both classical and quantum relativistic mechanics.

The main open problem in SR is the quantization of fields in non-inertial frames due to the
no-go theorem of Ref.[26] showing the existence of obstructions to the unitary evolution of a
massive quantum Klein-Gordon field between two space-like surfaces of Minkowski space-time.
Its solution, i.e. the identification of all the 3+1 splittings allowing unitary evolution, will be
a prerequisite to any attempt to quantize canonical gravity taking into account the equivalence
principle (global inertial frames do not exist!). Moreover entanglement in non-inertial frames
without Rindler observers is still to be formulated.

Finally in Ref.[27] there is a spatio-temporal approach to the emergence of classical notions
(effective classical Newton trajectories for quantum massive particles) from non-relativistic and
relativistic quantum mechanics. This justifies Bohr’s point of view that it must be possible to
describe every experiment in classical terms.
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