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For the first time, the full set of 1.11x10°* POT is used to search for the low-energy excess (LEE) observed in MiniBooNE. This search ’
tests whether the excess is due to an increase in the number of electron neutrinos. Two models are tested: one that models the excess 0.8 -
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To search the whole photon phase-space
for signs of an excess, an inclusive single

Simulation of dark sector e'e” pairs

photon analysis has been developed. The 3 | N
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photon in MinIBooNE, rather than testinga =
particular model. A selection using >
\¥ire-Cell reconstruction'® tools and "
targeted BDTs achieves an efficiency of

7.0% and a purity of 40.2%. 20
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MiniBooNE signals.
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The LEE ratio model unfolded from
MiniBooNE shower 2D Rinematic
variables.

Dark-Sector
e'e” Solutions

ufficiently overlapping
rasymmetric e'e”

In one class of such models neutrinos act
as a portal to the dark sector. Active
neutrinos upscatter via a dark photon (Z) off
an Argon nucleus to produce an unstable
heavy sterile neutrino (N). This heavy sterile
neutrino then decays back to a visible e'e”
pair which can be detected.

MicroBooNE Public Note 1124

. 2 18000~ : : y , ——0.45
] . . Targeted boosted decision trees can I e e
¢ E= NcConerent 1y I NC A — Ny (14p) Coherent single photon production . 16000 - MicroBooNE Simulation, (0.4
2 “EC—nca—N op 1 NC 12® Coherent . select these dark sector e’e” events at - Preliminary e
+sF B NC 17 Non-Coherent B CCv, 17 IS a very rare process, and no search . T " . 14000/ a0
- BNB Other B CC ./ Intrinsic . high efficiencies of 30 to 40%, depending ool satatyd F03
30:_- Dirt (Outside TPC) .~~>] Cosmic Data haS ever been performed Slgnal *@+ . % - |
S i W on model parameter space. 10000 P 444 Ho.25
N S b events appear as low energy - :
- MicroBooNE Simulation - - - 8000 — —0.2
: ” hotons in the forward direction. We . . E -
20F i 6.87x10% POT Ese hew tools to help reject low MicroBooNE has two ongoing dark sector sl P
o ,,,,,, enerav hadronic actiF\)/it e'e” searches using both the Wire-Cell*? 4000 L ! ++ o1
oE" S Y and Pandora®® reconstruction frameworks.  awF + 110005
5 O B - ¥ R H I S e R R

********* MicroBooNE Public Note 1131

iﬁ 13 f . / »
0.1 0.2 0.3 0.4 0.6 0.7 mZ'=30 MeV, 0,,=0.25, 0e2=2x10""
Reconstructed Shower Energy [GeV]

o 107 E ™
Asimov Wilks’ =" F
o e 6.80x 1020| ata Iuout | icroBoo b * " o N uB 95%CLs sens )
Previous results 100{ EEE NCa®in gk = Cosmilj:VData I\Ifrenn]?inaljf 14 \'\ ...... No o ﬁ%&hesis R MB o \
/‘ B v,CC 71'(.’ in FV :cANp=3.18><NCA—>N7.in FV, Np ‘ %  Standard GENIE Prediction 10°
Showed NO exXcess Of 0| [ OtherwinFV B a0 = 3.18xXNC A — N in FV, Op \ NG A —> Ny = MB 36
NC A N eveﬂtS \X/lth 2 X\ASOLZEP WC 19Np Pandora 1y1p | Pandora 141p 121 \ * Scaling LEE hypothesis - T
—_—> 2 L%’ 60' constr. | unconstr. | constr. \ —_ — V\;C; 90()r‘;A> CI; Exclusigr;smn - reinterp
protons. This expanded | o, ! 101 \ AP aSOR GL Excosian 107 = | — Minerva reinterp
£ Z 2 p MiniBooNE 1 & -
analysis will have more 7§ MiniBooNE 2 o - [T ML searches
ep 2 _MiniBooNE 3 & —
SenSItIVIty to NC A_>N]/' 2507 WG 1~0p | WC 140p Pandora 1v0p | Pandora 1~0p (2 ) ' 107 -
: unconstr. constr. unconstr. constr. 4 o i i i -
events with no protons, | | : \ X e iminary - | -
[4] x B MlcroBool\.IE .Slmulatlon,
compared to #. " |, et Preliminary
- \ 10™ 1
\ \ my, (GeV)
MicroBooNE Public \ ‘ e
'\ \ 95% CLs sensitivity to a targeted 3+1
Note 1126 oSmbmme” D T light Z model, with m_, = 30 MeV
xanp Scale Factor ' , - .
[] ] ' ] ] Z
The LEE could consist of a larger scaling factor for 0p events (x, ) and a smaller scaling Model and MiniBooNE allowed
factor for Np events (x,, ). These possibilities can be represented as a 2D phase space, region taken from E. Bertuzzo et al'®!

and we expect to exclude a larger region than in our previous result.

This document was prepared by the MicroBooNE Collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, Office of High Energy Physics HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359.

True e*e” energy

Fixede:8e-4, A: 3.00

10—4_

10—6_

1010 -
I 0.03 BN 0.2 1.25
10-121 mmm 0.06 0.5 ___ MicroBooNE 95% CL
E 0.1 0.8 Asimov Sensitivity
Preliminary
1072 161 100
ms | GeV

95% CL Sensitivity to a broad class of heavy
and light Z model, highlighting seven masses
of Z ranging from 30 MeV to 1.25 GeV. Model
and MiniBooNE allowed regions taken from '©
and using the DarkNews BSM generator?”!
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