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Abstract
Recent studies have investigated a longitudinal instability

that may develop in electron storage rings featuring higher-
harmonic cavities. The instability, also referred to as peri-
odic transient beam loading (PTBL), manifests as a slow os-
cillation of bunch longitudinal profiles following a coupled-
bunch mode 1 pattern. In this contribution, we applied a
well-established theory of longitudinal mode-coupling to
assess the thresholds for this instability. Results obtained
through this semi-analytical approach, considering different
storage ring and harmonic cavity parameters, were validated
using macroparticle tracking and compared against other
methods proposed in previous investigations.

INTRODUCTION

Harmonic cavities (HCs) are used in electron storage rings
aiming to increase bunch length by adjusting longitudinal
focusing. In 4th generation synchrotron light sources, the
pursuit of ultralow emittance leads to intense intrabunch
Coulomb interactions, which reduce Touschek lifetime and
increase beam blow-up due to intrabeam scattering. HCs
can operate passively, with its voltage generated through
beam-induced wakefields. Proper tuning of the resonant
frequency is crucial for coupling with beam harmonics to
achieve the desired voltage. However, the HC impedance, es-
sential for lengthening the equilibrium bunch, can adversely
affect beam stability.

Recent investigations studied mode 1 instability through
theory [1, 2], simulations [3], and experiments [4]. Vari-
ous prediction methods have been proposed, analyzing the
phenomenon’s dependencies on HC and ring parameters.
Referred to as periodic transient beam loading (PTBL) due
to its slow oscillation, the instability has been accurately
predicted within specific contexts. However, the accuracy
of these methods is not always reproduced with different
parameters and when compared to experimental data [4].

The present contribution reports new findings for mode 1
instability based on simulation studies. Macroparticle track-
ing using MAX IV parameters was initially used to replicate
the instability and explore its behavior. Then, a linear the-
ory of longitudinal mode-coupling instability (LMCI) for
Gaussian bunches was applied to predict instability growth
rates. The results were benchmarked against tested methods.
Finally, we discuss how the LMCI approach can provide a
new understanding of mode 1 instability phenomenology.
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MACROPARTICLE TRACKING
A two-dimensional longitudinal tracking was imple-

mented in Python3 [5]. The code tracks the time evolution
of longitudinal dynamic variables of several macroparticles
in each rf bucket, in the presence of resonator wakefields and
accounting for radiation damping and quantum excitation.

We tested a condition where the mode-1 instability is
expected: parameters for MAX IV 3 GeV storage ring,
3 passive HCs at flat potential (300 mA, main rf volt-
age 1.397 MV, HC voltage 0.448 MV) [4]. The results for os-
cillating bunch centroids and lengths are presented in Fig. 1.
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Figure 1: Mode 1 instability obtained with macroparticle
tracking for MAX IV 3 GeV ring and HCs on flat potential
condition. Oscillation period is about 0.5 s. Simulation
setup: 10 000 macroparticles per bunch, 1.5 million turns.

The modal analysis of the oscillation shows that the
coupled-bunch mode 1 is the most unstable mode, oscil-
lating with a low frequency of 2 Hz.

We investigated the dependence of the instability on the
number of macroparticles per bunch. The goal was to un-
derstand if details of the bunch profiles and sampling of the
distorted potential-well are essential features to the instabil-
ity. We ran tracking simulations with increasing values of
HC voltages with 50 and only 1 macroparticle per bunch
(point bunch in this case). Interestingly, the behavior of
oscillation amplitudes with respect to HC voltage is essen-
tially independent of the number of particles, and the most
unstable mode is always mode 1 for both cases, as presented
in Figure 2.

These tests with macroparticle tracking suggest two main
aspects of the mode 1 instability: only the motion of bunch
centroids (point bunch approximation) should capture the un-
derlying instability mechanism, and the nonlinearities within
the bunch (intrabunch Landau damping) should be negligi-
ble. Another important observation is that the variations in
bunch length are only a consequence of the instability, due
to variations in the potential well-distortion introduced by
the oscillating bunch centroids.
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Figure 2: Left: Mode 1 oscillation amplitude for 1 and 50
macroparticles per bunch as a function of harmonic voltage.
Right: signature of the most unstable mode.

VLASOV SOLVER
We investigated the mode 1 instability employing Suzuki’s

frequency-domain solution of Vlasov equation for longitudi-
nal instabilities, which allows mode coupling between differ-
ent azimuthal and radial modes of the bunch motion [6]. The
theory assumes that the single-particle dynamics is linear
and that the longitudinal bunch distribution is Gaussian. This
makes the theory suitable for studying instabilities in single-
rf systems, neglecting potential-well distortion. Neverthe-
less, the findings from macroparticle tracking motivated
us to use this Gaussian linear theory to study the mode 1
instability in HC systems.

Suzuki’s solution yields the infinite matrix equation [6]:(
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where (𝑚, 𝑚′) and (𝑘, 𝑘 ′) are indices for the azimuthal and
radial modes, respectively. 𝛼 is the momentum compaction
factor, 𝜎𝑧 the bunch length, 𝜔𝑠 the angular synchrotron
frequency, 𝐸 the ring energy, 𝑐 the speed of light and 𝑒 > 0
the elementary charge. A uniform filling with total current 𝐼0
is assumed. The coupling matrix depends on the longitudinal
impedance 𝑍∥ and beam spectrum
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where 𝜔𝑝 = (𝑝ℎ + 𝜇)𝜔0 + Ω, 𝜔0 is the angular revolution
frequency, ℎ the harmonic number and 𝜇 the coupled-bunch
mode. For Gaussian bunches, the functions 𝐼𝑚𝑘 (𝑝) have the
analytic form:
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To solve the matrix problem, the sums are truncated to 𝑚max
and 𝑘max. Moreover, the approximation Ω ≈ 𝜔𝑠 is applied
to the finite coupling matrix 𝑀𝑚𝑘

𝑚′𝑘′ . The analysis can be
specialized to mode 1 by the evaluation of coupling matrix

at 𝜔𝑝 ≈ (𝑝ℎ + 1 + 𝜈𝑠)𝜔0. Then the coherent frequencies
are obtained by diagonalization. Re(Ω)/2𝜋 is the coherent
frequency of oscillation and Im(Ω) is the exponential growth
rate. An instability is predicted if the growth rate surpass
the radiation damping rate.

The LMCI theory was applied to the mode 1 instability in
the presence of HC fields, requiring a minor yet important
adaptation in the calculation process. The values for bunch
length and incoherent synchrotron frequency used in the cal-
culation were derived from the longitudinal equilibrium of
the double-rf system with HCs. Therefore, it is essential to
determine the equilibrium parameters with a self-consistent
solution to Haissinki equation [7] before instability calcula-
tions. With this scheme, the potential-well distortion caused
by the HC is not entirely neglected for the instability analysis,
as its impact on bunch length and incoherent synchrotron
frequency is accounted. However, it is important to note
that this scheme disregards intrabunch nonlinearities, thus
Landau damping effects are neglected. We will refer to this
scheme as “Gaussian LMCI”.

In Gaussian LMCI, the incoherent synchrotron frequency
is a crucial input. For non-linear single-particle dynamics,
such as with HC fields, the frequency becomes a function of
amplitude. Therefore, a constant value can only represent
an effective value for the amplitude-dependent frequency. In
general, it is not clear which measure is appropriate for this
effective frequency. Possible options are:

⟨𝜔𝑠⟩quadratic = 𝛼𝑐𝜎𝛿/𝜎𝑧 , (5a)
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∫ ∞

0
d𝐽 Ψ(𝐽)𝜔𝑠 (𝐽), (5c)

⟨𝜔𝑠⟩center = 𝜔𝑠 (𝐽 = 0). (5d)

Equation (5a) is satisfied for a quadratic longitudinal po-
tential. Equation (5b) represents the local synchrotron fre-
quency averaged by the bunch line-density 𝜆(𝑧). Equa-
tion (5c) is the global synchrotron frequency over a complete
synchrotron cycle averaged by the action distribution within
the bunch Ψ(𝐽). Equation (5d) denotes the frequency at the
bunch center and also has a local character. For the cases
studied, Eqs. (5a) and Eq. (5b) yield similar values, while
Eqs. (5c) and (5d) provide lower values.

For a quadratic potential, all expressions yield the same
value. For a quartic potential, when there is perfect cancel-
lation of first and second derivative of rf voltage at the syn-
chronous phase (thus 𝜔𝑠 (0) = 0), it can be shown that [1, 8]

⟨𝜔𝑠⟩quartic =
2𝜋 23/4

Γ2 (1/4)
𝛼𝑐𝜎𝛿𝜎𝑧 ≈ 0.8039⟨𝜔𝑠⟩quadratic (6)

Benchmarking LMCI Results
A series of comparisons between the growth rates cal-

culated with LMCI theory and oscillation amplitudes from
tracking simulation is presented in Fig. 3. The effective
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Figure 3: Left: Harmonic voltage threshold for MAX IV storage ring. Middle: Total current threshold for HALF storage
ring. Threshold obtained by LMCI is 251 mA. Right: The product of total current threshold and HC 𝑅/𝑄 as a function of
main rf cavity voltage for HALF storage ring. Simulated data from [3]. Formula from [2].

incoherent synchrotron frequency used in all calculations
was the equivalent quadratic potential from Eq. (5a). A con-
vergence test was performed for the truncation parameters
𝑚max and 𝑘max. The results already converge with 𝑚max = 2
and 𝑘max = 1.

For MAX IV parameters as reported in [4], 300 mA and
𝑉rf = 1.397 MV, the flat potential HC voltage is 448 kV, the
threshold HC voltage is 442 kV. For HALF parameters as
reported in [3], with HC tuned to near flat potential, the
calculated threshold current is 251 mA, while the reported
value is 259 mA, a difference of only 3 %. In [3] it is also
reported that the product of threshold current with HC’s 𝑅/𝑄
depends linearly on the main rf voltage. This behavior was
also obtained from our calculations, showing very good
agreement with independent tracking results from [3] and
the analytical formula from [2].

INSTABILITY MECHANISM

Figure 4 shows the evolution of coherent modes of
coupled-bunch mode 1 as the HC voltage increases. We note
that a positive growth rate is excited when a radial mode
associated with 𝑚 = 1 approaches the zero frequency, when
there’s not enough coherent focusing to keep the modes in
stable oscillations. Note that other radial mode associated
with 𝑚 = 1 follows the reduction of incoherent 𝜔𝑠, while
the coherent mode that drives the instability is additionally
shifted by the imaginary (reactive) part of impedance [9].
This suggests that the coherent mode is shifted out of the
band of incoherent frequencies spread, then stabilization by
Landau damping is not possible.

Based on this mechanism, the phenomenology reported
in [3, 4] can be explained: (i) higher main rf voltage: 𝜔𝑠

without the HC increases with
√
𝑉rf , thus a larger coherent

shift is needed to approach the zero frequency; (ii) larger HC
detuning: the HC fields are lowered, implying in less cancel-
lation of longitudinal focusing, thus a higher 𝜔𝑠 and shorter
bunch; (iii) HC 𝑅/𝑄: for high 𝑄 resonators, Im(𝑍∥ ) ∝ 𝑅/𝑄.
Since Re(ΔΩ) ∝ Im(𝑍∥ ), a larger 𝑅/𝑄 produces a larger
coherent shift. Ref. [1] first highlighted that the instability
is mainly driven by the imaginary part of the impedance.
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Figure 4: Coherent frequencies for coupled-bunch 1 as a
function of HC voltage for MAX IV parameters represented
in black dots. Calculation made with 𝑚max = 2 and 𝑘max = 1.
The mode 𝑚 = 2 introduces an additional shift to 𝑚 = 1 and
it was needed for accurate threshold predictions. Blue solid
curves are multiples of the average incoherent synchrotron
frequency and the shaded blue area is the std, representing
the frequency spread.

CONCLUSION

The mode 1 instability induced by HCs in electron storage
rings was investigated. The instability was reproduced with
1 macroparticle per bunch in tracking simulations and accu-
rately predicted with a calculation scheme based on a linear
theory of instabilities with longitudinal mode-coupling for
Gaussian bunches slightly adapted to a HC system. Further
studies are needed to better understand which is the most
appropriate measure of effective incoherent frequency for
this scheme. Instability occurs when a radial mode associ-
ated to the dipole motion approaches the zero frequency. A
direct conclusion is that variations of parameters that either
increase the incoherent synchrotron frequency or reduce the
coherent shift of coupled-bunch mode 1 helps to increase
the threshold for current or HC voltage. In 4th generation
synchrotrons, the natural synchrotron frequencies are typ-
ically low, which make new machines operating with HCs
more susceptible to the mode 1 instability.
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