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Abstract

Non-perturbative unification provides an attractive framework for exploring
physics beyond the Standard Model. It assumes nothing about the form of the
unified physics, yet provides low-energy predictions of Standard Model cou-
plings. In this investigation, we consider models that add multiplets of SU(5)
to the Standard Model in order to unify in this way. We present a search for
those that correctly reproduce experimental results and find that some models
unify with added matter at the scale of the potential future 100 TeV collider.
We conclude with an illustrative example of how these models can be built
off of for further model building beyond the Standard Model with extractable

phenomenological results.

I Introduction

The gravitational, electromagnetic, weak and strong forces are the four fundamen-
tal forces that form the basis of the laws that govern the universe. Much work has
been done in the last 75 years to formulate these forces in our modern understanding
of physics, the theoretical framework of quantum field theory. In the framework of
quantum field theory, every force in the Standard Model has an associated symmetry
group and coupling constant. The associated symmetry group captures the funda-
mental structure of the force, while the coupling constant tells us roughly how strongly
the forces acts. In the Standard Model, then, we have three fundamental symmetry
groups, SU(3) x SU(2) x U(1), and three couplings, g3, g2, and g; for roughly the
strong, weak, and electromagnetic forces respectively.

In such efforts, the electromagnetic and weak forces were unified in the late 1960’s
into the electroweak theory for which Glashow, Weinberg, and Salam were awarded

the Nobel Prize. By unification, we mean that the weak and electromagnetic forces



are the same force above some energy scale, the associated electroweak scale. Below
that scale however, this unified force breaks in two. The strong force was described in
the same formalism of quantum field theory in the quark model, which was confirmed
experimentally in the 1970s when quarks were discovered at particle colliders. The
Standard Model, the electroweak and strong force written together, was created. The
strong force, however, was never unified with the electroweak force in the same way
that the electroweak force is a unification of forces. Unification is too attractive to
leave alone, however, and so is a point that we’ll come back to.

In the process of making Standard Model theory consistent, by which we mean
preventing it from giving us nonsensical answers, we must “renormalize” the coupling
constants. As a result, the coupling constants of the fundamental forces are no longer
constant! Despite the name, they now depend on the amount of energy involved in
an interaction. This means that naively measuring the fine-structure constant at 13
TeV at the LHC will give a different value than on the 10 GeV beam down the road
at Jefferson Lab. Just as the maximum resolution of a telescope is dependent on
the energy and of the incoming light, higher energy scales are equivalent to probing
interactions on shorter and shorter distances.

Though couplings are now energy dependent, this dependence is given by the
method of renormalization. The method with which we renormalize the theory de-
pends ultimately on the structure, thus the symmetry groups, of the Standard Model
[1]. The method of renormalization leads us to a perturbative description of how the
coupling constants change with energy scale. These differential equations are called

the renormalization group equations (RGEs), of the coupling constants, which are

dg; 93
= b2 1
dt 1672 (1)




to the lowest order in perturbative expansion [2]. Here the index ¢ runs from 1 to 3,
shorthand for three separate equations, with b; a different constant for each equation

“run”, these equations up from their

and ¢ the energy scale. We can integrate, or
measured values at our current energy scale to those yet unexplored to theorize what
is happening at higher energy scales. When we do this, we see that the couplings
pass each other at some higher energy scale, see left graph in FIG. 1. This means
that at energies higher than this crossing, the strong force is weaker than the weak
force! This is an interesting occurrence that we will be coming to later.
Hypothesized particles and extra symmetry groups are often theorized to solve
problems within the Standard Model, such as those concerning consistency issues
and the hierarchy problem [3]. The hierarchy problem asks why gravity is so weak
compared to the other four forces, and is a long standing problem in physics. Su-
persymmetry is one proposed solution to this disparity. Supersymmetry adds an
extra symmetry to the Standard Model which pairs each known particle with a hy-
pothesized partner particle that has a different spin. One effect of the addition of
supersymmetry is that the weakness of gravity is rendered natural. The separation
between the weak and gravitational energy scales can be maintained after quantum
corrections are taken into account without a fine tuning of parameters [3]. Another
result is that a whole slew of new particles are theorized to exist. As these particles
have not yet been found, they are theorized to be massive enough to have hidden
from the current generation of particle colliders. As F = mc?, more energetic particle
colliders can search for heavier particles, but all colliders have a limit. For the LHC,
this is around 13 TeV. For these reasons, researchers searching for new physics often
push to higher energy scales for new, yet undiscovered heavier particles that could be
evidence for supersymmetry or some another theory of physics beyond the Standard

Model.



Important for this discussion is that this new symmetry and matter changes the
constants in Eq. (1), thus changing the running of the couplings to high energies. The
new running of the coupling constant seems to intersect at a higher energy scale, see
right graph in FIG. 1. If all three coupling constants become equal at some scale, then
it suggests that our three coupling constants become one. Since a coupling constant is
related to each symmetry group, one coupling means that our three symmetry groups
become one group and thus one force. This unification is broken at lower scales in
much the same way as electromagnetism and the weak force unify into the electroweak.
The low energy, “broken” symmetry groups of the Standard Model are pieces of a
larger group, in which we say they are embedded. This idea is attractive as in some
ways it seems more “natural” for the whole Standard Model to be part of one single,
larger group. We call theories in which the forces of the Standard Model unify Grand
Unified Theories (GUTs) and the larger group they consider the unified group. This
implied unification under supersymmetry is now taken by some to be a motivating
factor in exploring supersymmetric models. One of the most appealing and simplest
GUTs is SU(5) which was originally proposed by Georgi and Glashow [4]. Though it
still faces theoretical and experimental challenges, it remains a well-studied model of
supersymmetric unification.

At present, however, supersymmetric particles have failed to be detected by ex-
perimentalists at the scales at which they were originally predicted [5]. The idea
of unification of the forces in the Standard Model, however, is still attractive and
other approaches have been explored. One such approach is the possibility of non-
perturbative unification. Normally, coupling constants are small enough that they can
be calculated using perturbation theory, giving us progressively more precise equa-
tions by adding small corrections. In this non-perturbative unification scheme, the

coupling constants all diverge and become strong, or “blow-up”, at a finite energy
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FIG. 1: In all graphs of the running of couplings «; will be blue, as orange, and a3
green. Here, i is the renormalization scale. On the left we have the running assuming
just the Standard Model with no supersymmetry. On the right is the running of

Standard Model with supersymmetry and we can see unification at the scale about
10'¢ GeV.

scale, generally taken below the Planck scale. As they blow-up, they are no longer
calculable using perturbation analysis as the corrections are no longer small. Since the
beta functions of the coupling constants are coupled together, they all blow-up at the
same scale, where they are said to unify. What happens beyond the non-perturbative
scale is beyond the scope of our current theories.

Non-perturbative unification has a long history in searches for physics beyond
the Standard Model, see Refs. [6, 7] for instance. Strong couplings at high energy
is desirable for some string theories and theories of compositeness, see Ref. [8] and
references therein. As non-perturbative unification does not assume the physics at
this high scale, it avoids the theoretical problems such assumptions can introduce.
Non-perturbative approaches have the added benefit that the low-energy values of
the coupling constants are obtained as fixed points of the differential equations [8].
This type of unification still requires new particles to achieve the desired behaviour of
the gauge couplings. Some of these new particles might live within reach of a future

100 TeV collider, such as those being considered in China [9] and at CERN [10].



II Mathematical Background

These RGEs contain a lot of information, and in this section we attempt to outline
how they depend on the structure of the symmetry group. We do not intend to give
a full, thorough or technical account of how these RGEs come about. The main idea
is that in the process of formulating a quantum field theory, one runs into infinities.
The solution to these infinities is to repackage terms in the expression that diverge
and to introduce a renormalization scale. The dependence of the couplings on the
renormalization scale is reliant on the group structure of the forces and the matter
fields involved in the interaction. These RGEs are perturbative equations, however,
so are approximations in increasing order of precision, each order called a loop. In this
investigation we work to two-loops as that is the lowest order in which the equations
are coupled. To help elucidate the coming form of the RGEs, we make a short detour

into the group theory and representation theory that underlies particle physics.

Group Theory Primer

When we say that a theory is invariant under the action of a symmetry group, what
we mean is that under a set of transformations the theory remains unchanged. If
we have some variable ¥ and some function f(W) thereof, then we then say that the
class of transformations U which act on ¥ that leave f(W) invariant is the symmetry

group of the equations. Symbolically,

U UU = f(0) — f(UT) = f(T). 2)

In particle physics, these symmetries are a special kind of symmetry groups called Lie

groups. To understand why these are special, we briefly consult a geometric example.



Both a square and a circle can be transformed such that the transformed shape looks
the same as the original, namely by rotations. But the two shapes are fundamentally
different. A square only exhibits symmetry for certain specific rotations, namely
multiples of 90°. On the other hand, the circle can be rotated by any angle and
remain invariant. This freedom of choice in rotation of the circle is fundamentally
related to the fact that its symmetry is also an infinitesimal symmetry. The circle
can be rotated by an infinitesimal angle and look the same. Groups of this sort are
called Lie groups and are those of interest in particle physics. Specifically, we will be
interested in the special unitary group, SU(N) which is the group of N x N unitary
matrices with determinant 1.

In fact, it can be shown that Lie groups are largely characterized by their be-
havior under infinitesimal transformations. We can form a basis of such infinitesimal
transformations such that any finite transformation can be decomposed into repeated
applications of these infinitesimal ones. These infinitesimal transformations, which
are not unique, are called the generators of the Lie group. These generators are

related to each other by the commutation relation

[Ri,Rj] = RiR; — RjR; = ifR), | (3)

k
ij

where each R; is a generator, and the are called the structure constants. The
structure constants are fundamental and define the local structure of the Lie group.
This formulation so far is abstract and general, which is good for classification of
symmetries but bad for computation. In physics, our objects of interest are almost
always vectors of some form and so we look for representations of our Lie group as
matrices which can then act on our vectors. As the generators of the Lie group are no

longer taken to be abstract objects, we have freedom in choosing their form. We can



construct distinct representations that correspond to using matrices with different
properties, such as matrices of larger or smaller dimension. We will henceforth only
consider the generator R; in some specific representation ¢, some matrix denoted Rf’.

Convenient representations for us will be the trivial, the adjoint and the funda-
mental representation. The trivial representation is one in which we map all group
elements to the identity matrix, and thus lives up to its name. The adjoint repre-
sentation, denoted by ¢ = A, defines the generators in terms of the structure con-
stants themselves. We take each matrix element of a given generator R as given by
(R{‘)? =1 1’; The structure constants define the structure of the group, so the adjoint
representation is distinguished. It is self-referential as it is a representation in terms
of the infinitesimal transformations that characterize the Lie group. It is therefore
of the same dimension of the group, which is N? — 1 for SU(N). The fundamental
representation is the smallest dimension representation of the Lie group which is non-
trivial. For SU(N), the fundamental representation is given by matrices of dimension
N. We now give an illustrative example of the fundamental representation.

For a hopefully familiar example, we look at SU(2). The Lie group SU(2) is the
group of 2 x 2 unitary matrices with determinant 1. The group SU(2) has three
generators, which we can choose to write in as 2-dimensional matrices. This is an
obvious way to write SU(2) and so is called the fundamental representation. We can

write these generators as

1(0 1 1{0 —i 1(1 O
10 0 0 —1
where ¢ = F denotes the fundamental representation. One can check that these

matrices satisfy the relation



[Rsz Rf] = ieiijlf ) (5)

Where €5, is the Levi-Civita symbol with €193 = 1 and is totally antisymmetric,
so exchanging any two indices gives a minus sign. In an introduction to Quantum
Mechanics course, students learn about the quantum mechanical spin of an particle

in terms of Pauli matrices, which are related to above by RI' = lo;. With this

|

representation in quantum mechanics, we can act on the vectors which represent the
spin state of fermions. In the adjoint representation, denoted by the label A, we
take (R1);, = i€;,. This gives a adjoint representation of SU(2) in terms of three

dimensional matrices,

0 0 0 00 —1 0 10
Rt=ilo o 1|, R'=iloo o, R{=il-1 00| . (6
0 -1 0 10 0 0 0 0

One can check that these generators likewise satisfy [R#, Rf] = ien RE.

Application to Physics

Matter in particle physics is in some representation of every gauge group. The elec-
tron, for example, is not charged under color SU(3) so is in a trivial representation
of that group. It is, however, charged under SU(2) x U(1) so is in some non-trivial
representation of those groups. Using all of this information in the process of renor-
malization leads to a general RGE for any group and matter additions. This equation

we find in [11] as



%gi - (4{;‘)2 [—3C(Gy) + Ti(9)] + (497;4

20(G)[=3C(Gy) + Ti(9)]

9.9 (7)
- zj: (4W)44E(¢)Cj(¢),

where C}(¢) is the Casimir operator of the representation of ¢ in the group G;, C(G;)
the Casimir operator of the adjoint representation of G;, and T;(¢) is the index of
a representation of ¢ in the group G;. These are all numbers that are invariants of
representations of groups. For some representation ¢ of a group G;, we define them

as

Ti(¢)dsy = Tr RYR) and Cy(¢)1 = RYRY, (8)

where x and y label the generators of the representation ¢. In all terms with ¢ we
have suppressed a summation over all ¢,, the fields that are charged under the group

(such as the quarks under color SU(3)). So

Ti(¢) = Y _Ti(¢") and T,(¢)Ci(¢) = Y Ti(¢")Cil6"). (9)

These equations are a result of the renormalization procedure we described earlier,
connecting the gauge group and the running of the coupling constant. All we need
now is to know what fields we have in our theory, the groups they are charged under,
and their charge assignments. From there, we can calculate the supersymmetric beta
functions we need. For the previous example of the fundamental representation of

SU(2) the Casimir operator is

10



3/4
Csu@(F)1 = RI R} = RTR{ + Ry R; + Ry Ry = =21, (10)

In the same way, we find that for the adjoint representation

2 0 0
Csu)(A)L = RIRY = R{R} + R{Ry + R{Ry = |0 2 o =21 (11)

00 2

By convention, we set T;(F) = 1 for the fundamental representation. We find that

for the adjoint representation

T,(A)b,, = TrRIR} =2, (12)

which one can check given the generators above. General results for SU(N) in the
adjoint and fundamental representation are given in a table in the Appendix. We
will later need such invariants for other representations other than those considered
above, and those are found in the same way. We find the generators of the group in
the representation that interests us, and we compute invariants as above. Then, we

can find the coeflicients of the beta functions, given as [11]

b; = =3C(Gi) + T;(¢) (13)
bij = 2C(Gy)[=3C(G:) + Ti(9)65; + 4T3 () C5 ().

To see how this translates into the beta function, we compute the b3 term in

11



the supersymmetric beta functions. The group in question is SU(3), which has
C(SU(3)) = 3. The charged fields in question are the right and left-handed quark
fields, which are in fundamental representations of SU(N), so have T; = % by conven-
tion. The left handed fields are paired in a doublet, and we have three generations of

all the fields so we have

bs = —3C(Gs) + T5(¢) = =3 x 3+ (T5((ur, dp)) + Ts(ug) + Ts(dg)) % 3

1 1 1
-0+ 3+ 4+ x3=[E2H]

This agrees with the known results presented in the Appendix.

(14)

III Method

We begin by considering the two-loop beta functions which take into account couplings

between the fields. These are

1 _ 9 [b» - ib..gz] (15)
dt 167 |7 167> o V]

where we have repressed the dynamics of the Yukawa couplings, see full two-loop
equations in [2]. The constants b; and b;;, as we have discussed, depend on the matter
content and symmetries present in the theory. As a result, when supersymmetry and
matter are added at the scales denoted as mg,s, and m¢ respectively, these constants
change. This gives a piecewise defined system of coupled differential equations. We'll
define o; = g? /4w for convenience. In a non-perturbative scenario, couplings will be
diverging to infinity so we will often consider a; ' instead, as it is more convenient
for visualization.

Non-perturbative unification acts as a boundary condition for these coupled dif-

12



ferential equations. At some scale A all «; are taken to be 10, which stands in for
our unification. Recall that these differential equations are perturbation expansions
in «;, so break down when «; is order 47, about 10. The beta functions must all
have b; > 0 in the leading order term so that the couplings continue to grow towards
higher and shrink towards lower energies. The equations with this boundary condi-
tion are then used to numerically integrate down to the scale of the added matter
my¢, below which the equations are changed to the supersymmetric Standard Model
beta functions as our added matter content only exists above that scale. The equa-
tions are then integrated down to my,gy, the scale at which supersymmetry emerges,
at which point they are changed to the non-supersymmetric Standard Model beta
functions. They are finally run down to the electroweak scale, the scale at which the
experimental values we match to are measured. The values of the coupling constants
at the electroweak scale is completely determined by the scales A, m; and the amount
of the supersymmetric matter added. There are no other free parameters to change.
Note that if we set the scale of unification and form of the added particles, we only
have to determine m; if we want to try to match low-energy experimental values.
With these free parameters, we can attempt to make the model match current
low-energy experimental values for the coupling constants, found in Ref. [5]. For
each m¢ we can choose a unification scale A which correctly reproduces agys, a linear
combination of oy and s, at the electroweak scale. We match to agys as it is the
experimental value that is most precisely measured experimentally. This condition
fixes the scale A for a certain my. This does not mean, however, that the model
necessarily reproduces sinfy,, a different linear combination of a; and a5 that is
measured experimentally, and a3 at the electroweak scale. We can still vary mg, each
time fixing a new A by the above condition, to try and reproduce sinfy, and as.

FIG. 2 shows such a relationship between m¢ and the electroweak values of sin 8y,

13



and ag. There is a range of values of m; which accurately reproduces sin 6y, (M),
and a range of values which accurately reproduce as(Mz). In order for there to
be a plausible reproduction of all three coupling constants at the electroweak scale,
those two ranges must overlap. If they do not, the model is not a candidate for non-
perturbative unification. If they do, then we have a range of values where new matter
could lie, and which produces non-perturbative unification which accurately predicts

the electroweak scale couplings.

0.3 H
0.28 10
§ 0.26 .9
T“g 024 — o ©
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w1 [TeV] u[TeV]

FIG. 2: The electroweak values calculated given a scale for m¢, with experimental and
theoretical error bars shown. There is no simultaneous scale for this set of particles
which correctly reproduces both to within uncertainty regions, though it comes close.

The approach described above is the same as found in [12], but with updated
experimental input. In extending their study, we have separated the scales of new
matter content and supersymmetry from each other. We have left mg,y, at 2 TeV
for the time being and have allowed m; to float to higher energy scales. There is no
explicit motivation to connect the scales, and disconnecting them allows for a greater
number of particle configurations to work. It is also important to have mg,s, stay
on the scale of 2-100 TeV. The upper bound is set so as to maintain the hierarchy
solving properties of supersymmetry and the lower bound is what has been ruled out

by experiments [3, 5]. We redo the analysis for values of mg,s, of 2, 10, and 100 TeV to
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sample the range where supersymmetry may arise. We also preform the analysis for
the originally proposed scenario that the scale of supersymmetry and the new matter
is the same. We increase the precision of the results by including smaller effects such
as modifying the beta functions appropriately below the mass of the top quark, at
160 GeV, and quantifying the uncertainty of leaving off the evolution of the Yukawa

couplings. We now turn to this task.

IV  Error Analysis

We first aim to show that the RGEs are insensitive to the boundary conditions at the
unification scale, as asserted previously. They are insensitive because the differential
equations that describe the running of the coupling constants have a stable infrared
(i.e. low energy) fixed point (IRFP) structure. Technically, it is the ratio of the
couplings that exhibit the IRFP structure. We can see this clearly if we rewrite the
RGEs as ratios so that

d . o 1 doy 1 doy,

—In—=— — —— =2(bja; — b O(a?). 16
dtnak o dt oy dt (bia k) + O(a”) (16)

At the one-loop order that we expanded to, we can see that there is a fixed point at

<Z‘—k> - Z—’“ (17)

To see that this is a fixed point, check with «;/ay = by /b; + € such that € is a small

15



positive deviation from the fixed point. This gives

d 1de
% Ine = E% :2((bk -+ €)Oék — bkak)
(18)
de
= E = 2€2Qk.

Since ay, and € are positive, the deviation gets smaller as we go to smaller values of
the energy (t — —t) so the fixed point is stable and attractive when running down
from high energies. This holds for all ratios of couplings. Note then, that although
we assumed a positive deviation, by taking the inverse ratio we see that the fixed
point is stable from both above and below.

If the two-loop corrections are small, then then the fixed point structure remains
and the fixed point will shift slightly. Since we fixed the value of agys to set A, we
have set part of the ratio so we have an IRFP for sin(fy) and a3. These values can
be estimated with the above equation. See [8] for a more in-depth analysis of the
IRFP structure of the RGEs. The RGEs will flow to this fixed point asymptotically.
Since we want to know the value of the couplings at an intermediate scale my and
not in the low-energy limit, we instead have a quasi-infrared fixed point (QRFP). We
expect there to be some drift from this fixed point in electroweak predictions.

To find the theoretical error in setting the arbitrary value of the non-perturbative
boundary condition that a;(A) = 10, we vary the condition from 1 to 10 to 100 for
each coupling. This gives 9 different combinations of boundary conditions as starting
points that all give slightly different low-energy predictions. We compute the range
of the low-predictions for these different boundary conditions at the specific scale of
the new matter for each model. We use this range to set the theoretical error bars.

This procedure is thus very important to finding allowable ranges for new particle

16



content. As such, it will be important to consider other sources for possible error.

So far we have left off the Yukawa couplings from the RGE equations we consider.
We will only consider the effects of the top quark Yukawa coupling, as it is by far
the largest at O(1) at the electroweak scale. To leading order, the top quark Yukawa
coupling RGE is

A At
D _ SO (57 g+ 6 + XD, (19

where ¢; > 0 for all 7 [2]. As such, when the gauge couplings blow up, the Yukawa
couplings are driven to zero. Indeed, we set the Yukawa couplings to 0 at the blow-up
scale in all simulations. We believe this is reasonable as the Yukawa couplings go to
zero as the interaction couplings go to infinity, so their importance becomes small
at large energy scales. Their differential equations are proportional to their value
so once they are zero, they stay zero. This removes all Yukawa couplings from our
simulations.

To estimate the error from leaving off the Yukawa couplings, we varied the top
quark Yukawa coupling randomly at the blow-up scale as a stability test. We found
that the electroweak values of the coupling constants only scattered to a maximum
range of 3%, but with standard deviations all well below 1%. As such, we have kept
the Yukawa couplings at 0 for the blow-up scale initial condition and accounted for this
error in our theoretical error bars. The effect from varying the boundary conditions of
the couplings is larger in general than from Yukawa couplings and the QRFP. We thus
estimate the total error by the range obtained from varying the boundary conditions
of the couplings. See [13] and [14] for further discussion on quantifying uncertainties

from Yukawa and higher-order effects in a non-perturbative unification scenario.
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V Updating Results

Our investigation begins in reproducing the results of an earlier investigation. We
began by reproducing and extending this work in order to inform our later analysis.
We also aim to evaluate their model with current experimental and numerical error
bars. Ref. [12] studied the possibility of non-perturbative unification by adding
an extra pair of supersymmetric families to the Standard Model at 1 TeV. They
found that this model reproduced low-energy experimental values of the couplings
to within the experimental bounds at the time. In their analysis the scale at which
supersymmetry emerges is taken as the same energy scale as the matter content they
insert into the theory, referred to collectively as m¢ in this section.

Although the results of this previous study have been informative in setting the
basis for the method of searching, we have expanded off of the analysis in a number
of ways. First, as it is a short paper, there is no elaboration of the method used to
produce theoretical error bars in the theory calculation for plots such as FIG. 2. As
such, we have no way to directly compare methods for error analysis. Second, our
plot of a3 as shown in FIG. 2 is offset from those of the previous study by a non-zero
value, the source of which is unknown. Despite these discrepancies, we are confident
in the methods in our own analysis in reproducing theoretical error bars and accurate
runnings of couplings.

We have found that the original addition of a supersymmetric family pair of
particles at 1 TeV no longer reproduces the correct values of the coupling constants.
Due to the shrinking of experimental error bars that has occurred over the last 20
years and our difference in experimental error bars, allowable regions have shifted.
The allowable range is at 1.2-1.3 TeV. This scale is encroached upon, however, by

the absence of supersymmetry at particle accelerators. We can break the scale of
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supersymmetry and the added matter to put supersymmetry out of the forbidden
range to 2 TeV. When we do this, however, there is a scale inversion and the new
matter must be added below supersymmetry. This is not viable either as particles
below 2 TeV coupled to the Standard Model would most likely have been detected
by now. This may be bad news for a lonely pair of generations, but we note that
small changes in theoretical error bars can greatly affect a model whose allowable
regions are close. If we extend the search to other matter content, we find candidate
models with much more robust allowable regions in scales that are not ruled out by

experiment.

V1 Adding Matter

We conducted a search for other particle combinations, outside of those considered
by Ref. [12]. We have searched through the combinations of additional generations
(only adding pairs), Higgs doublets, 5+5 and 10 + 10 pairs. These particle additions
transform nicely under the supersymmetric unified group SU(5) so are ideal for sim-
pler model building in the future. Adding complete SU(5) multiplets is also known to
preserve perturbative supersymmetric unification and is therefore the most promising
additional matter to add in extending to the nonperturbative scenario. Note however,
that we have still not assumed the final symmetry of a GUT, just that the new matter

fits into a representation of SU(5). The coefficients for the one loop term are [15]

2 3/10 1 3 0
b=|2]|ng+ |12 [ma+|1]|ns+|3|n0+]|-6], (20)
2 0 1 3 -9

where n, is the number of generations, ny, of Higgs doublets, ns of 5+5 pairs and nyo of
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10410 pairs. Here we think of the individual b; as the ith element of the list as written
above, but this is purely for bookkeeping purposes. There is a companion equation
for the two-loop contribution of the new matter, b;;, presented in the Appendix.
With both, we can fully describe how the added content contributes to the running
of the couplings. We define the notation (n,, nj, ns, n1) to denote the model with
that amount added matter. Note that to have all b; > 0 so that a divergence at
finite energy scale occurs, we need sufficient added matter to be added. The base
supersymmetric case is (3, 2, 0, 0) which is not enough to flip b3 positive. We need
to add matter such that 2(ny — 3) 4+ ns + 3ny9 > 4. When only adding one type of
matter, we find that the base cases are (5, 2, 0, 0), (3, 2, 4, 0), and (3, 2, 0, 2).
These and two other minimal models (3, 2, 5, 0) and (3, 2, 6, 0) will form the basis
for our study.

In our preliminary analysis, there were many such combinations of particle content
that were allowable. For many such models, however, the new matter is introduced
at scales at 10° to 101 TeV. These are less interesting in practice than those at lower
scales, as current particle accelerators probe scales only up to 10 TeV. Motivated
by possible phenomenological results, we continue to study those models that push
down the mass scale of added matter. More matter content makes the couplings blow
up faster, as a new matter field ¢ increases b; by T;(¢) which is always positive. As
a result, more matter content pushes up the energy scale at which it is introduced
since the boundary condition is fixed. In much the same way, an escalator works on
a much longer horizontal distance than an elevator, yet they both reach the same
height. As a result, the models with lower mass scales tend to be simpler in the sense
that they contain less added matter. The running of the combination of particles
with the lowest mass scale is reproduced in FIG. 3. Note, however, that even this

predicted masses scale of about 350 TeV is above current accelerator energy levels.
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See Table 1 for the predicted mass scale of added matter for these minimal models.

10 - T

_—
—
___L._}xx

104 108 1012 1016
u [GeV]

FIG. 3: Sample of a successful running of (5, 2, 1, 0) with mgg=1 TeV and
me= 346.5 TeV. Horizontal lines are the experimental values of the couplings at the
electroweak energy scale. Down from the top line is aq, as, then as.

VII Trying to explain all that New Matter

Preliminary Reasoning

In the analysis thus far, we have proceeded in evaluating models of strong unification
somewhat blindly. The advantage of this approach is that the tightly constrained
structure of strong unification guides all of the phenomenological observables in which
we could be interested. We are now left with the question as to the origin of this

specific amount of matter content for each combination. We hope to explain the
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Model | mgus, (TeV) | my range (TeV) | A (101 GeV) | az % Error | sin®(6y) % Error
(3.2,5.0) 2 90 - 190 5.6 133,23 14,12
10 23 - 36 4.0
100 Not Allowed -
my 16-18 3.9
(3,2,6,0) 2 5200-11500 5.3 43.7,-2.9 1.4, -1.25
10 1600-2800 3.7
100 Not Allowed -
my Not Allowed -
(3,2,0,2) 2 Not Allowed - 448, -3.6 415, -15
10 3400 - 4500 6.5
100 310 - 830 4.0
my 190 - 340 3.2

Table 1: Allowable ranges for select models, uncertainty ranges are the same within
each model. We have varied mg,s, in the range 2-100 TeV and set it equal to mg¢
within each particle combination.

amount of matter content of the most interesting models that we found in the previous
wide search. For our study, interesting models will be ones that have low energy scales
of new matter and are thus of phenomenological relevance. Remember too that these
are also more svelte in their matter content, which will potentially lead to simpler
explanations for their origin.

One explanation is the possibility that there exists an extra force in the Standard
Model. This extra force manifests as an extra gauge group, Gp where D anticipates
“dark”, with a coupling that unifies together with the rest of the Standard Model
couplings. The new gauge group would be such that the added matter transforms in
a d-dimensional representation of the new gauge group. This would thus explain the
amount of new matter by giving a fundamental gauge group origin to the number of
added 5 + 5 pairs.

As an example, take the case that the particle combination (3, 2, 6, 0) unifies
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strongly. We could take the extra 6 5+ 5 pairs as transforming in the 6-dimensional
representation of SU(2), the 6-dimensional representation of SU(3) or the funda-
mental representation of SU(6) for example. This would mean that when seen from
the viewpoint of the new gauge group, the new particles would fit in perfectly in a
representation of the Lie group. This gives a group theoretic origin to the specific
amount of new matter. This shifts the question from the amount of matter added to
the specific group added. Gauge groups of the Standard Model in some sense “just
are”; their origin can possibly only be explained by some GUT which this analysis
does not presuppose.

This coupling of this new force, gp, is described by an extra RGE added to our set
of differential equations. The new force also modifies our old RGEs at the two-loop
level, where the sum now runs from 1 to 4 (with 4=Dark). Adding a new equation
will, of course, change the running of the couplings with the particle content that
originally interested us, but we expect that change to be small. This is because the
new coupling constant only affects the others at two-loop level, which is suppressed
by a factor of 1672, and in general the beta coefficients will be such as to drive the

new coupling to small values, further suppressing any effects.

Turning Lemons into Lemonade

As we saw with supersymmetry, adding extra symmetries to the Standard Model has
wide appeal in solving many of the questions that still plague physics. This includes
the popular question as to the origin of dark matter (DM). In particular, a possible
DM candidate is a composite particle called a DM ‘glueball’. This particle arises as a
bound state of DM gluons described by a SU(N) gauge symmetry. Such a composite

particle would be similar to the particles in the spectrum of color SU(3) bound states.
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These include the proton, neutron, and a corresponding theorized color glueball which
has yet to be detected. The mass of the glueball is approximately the scale Ap, at
which the gauge coupling blows up. References have set an upper bound on Ap at
about 10° GeV for stable glueball DM to exist, but recent papers have estimated a
scale of MeV to GeV to fit with astrophysical data [16][17].

Since non-perturbative unification provides a predictive scheme for additions to
the Standard Model, we will investigate additions of a dark SU(N) to our previously
found models. This condition for a low-energy blow up then exists in addition to
the strong unification boundary condition at high-energy. As a result, this extra
SU(N) symmetry would blow up at low-energy and high-energy, just as SU(3) does
in non-perturbative unification. In this investigation, we will restrict ourselves to
models with (3, 2, D, 0). The D 5s will be in some D-dimensional representation,
D, of SU(N); and, the D 5s will be in the corresponding D-dimensional conjugate,
D. The conjugate of some representation, sometimes denoted by “anti-” or by a
bar on top, is simply the complex conjugate of the representation. Note that the
conjugate representation will have the same invariants as the non-conjugate. We
can denote our new matter now by (5,D) + (5,D), if given some SU(N) and some
such D-dimensional representations thereof. As noted in the last section, we expect
the corrections of adding this extra coupling to be small so we will consider the
models (3, 2, 6, 0) and (3, 2, 5, 0) which previously unified favorably. We look for
groups that have 5 or 6-dimensional representations and consider their viability in
non-perturbative unification and model building.

We first consider the simple model where D = N, (3, 2, N, 0). Our new matter is
(5, F) + (5, F) where the F is the fundamental and F the anti-fundamental represen-
tations of SU(NN). Recall that for the model to be a candidate for strong unification,

the new matter must force all b; > 0 so that the couplings will blow up. For such a
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model, however,

_ 1 1
by = —3C(SU(N))+5xTp(N)+5x Tp(N) = =3x N+5x 5 +5x 5 = —3N+10. (21)

This is not positive for N > 4, which is the minimal number of ns for which b3 > 0.
As such, no simple model (3, 2, N, 0) with the extra matter in the fundamental
representation of SU(N) will be compatible with non-perturbative unification. In-
stead, we turn to specific 5 and 6-dimensional representations of lower dimensional
gauge groups SU(2), SU(3) and SU(4) to explain the matter in the (3, 2, 5, 0)
and (3, 2, 6, 0) models. We can immediately rule out 6 and 6, the 6-dimensional

representations of SU(4), as well however. For this representation, we find

C(SU(4)) = 4 (22)
Cp(6) = (23)
Tp(6) =1 (24)

For (3, 2, 6, 0) with our new matter as (5,6) + (5,6), we have

by = —3C(SUM4) +5x Tp(6) +5x Tp(6) = —3x4+5x 1+5x1=—2. (25)

We can see that by < 0 so this scenario is not compatible with non-perturbative

unification either.

Dark SU(2)

We consider the general model (3, 2, D, 0) with the new matter charged under SU(2).

This group is nice because it has representations in every dimension in a consistent
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manner, so we can find the invariants for any D > 0 in general. We assume our added
matter is of the form (5, D) + (5,D), where D and D are representations of SU(2).

For a D-dimensional representation of SU(2), we find that

C(SU(2)) =2 (26)
Cp(D) = {(D* - 1) (27)
Tp(D) = gD(DQ —1). (28)

From these, we find the beta functions above the scale of the added matter are

33 5
b = (EJFD, L+ D, =34 D, =6+ cD(D?* - 1)) (29)
and
WiIp Z4ip B3P D(D? - 1)
943D 2547D 24 D(D?—1)
bij -
444D 9 144+ 3D D(D? —1)
iD(D*—1) D(D*-1) $D(D?—1) —24+ 2D(D*—1)(D?+3)

(30)

Below the scale of new matter, these equations are valid but we set D=0. We
can see this decouples gp from the other three couplings. We expect this as below
this scale, there are no matter fields that are charged under the Standard Model and
the Dark SU(2). Below the scale of supersymmetry, however, the beta functions will
switch to the non-supersymmetric beta functions with no matter fields. The general

equations for the non-supersymmetric case in terms of group theory invariants can
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be found in [18]. From these we find that

22 136
b4 = —g and b44 = —T, (31)

with b;y = by; = 0 for i # 4. We can now go ahead and add this equation for g, to our
set of RGEs and run the new model down to low energies. Our findings for this are
summarized in Table 2. We note that these have a problem, however. In FIG. 4 you
can see this more clearly. The dark coupling is pushed so low at the electroweak scale
and the one loop beta function is not enough for it to blow-up again at any reasonable
scale. As such, we find that these models don’t blow-up until such ridiculously low
scales that they might as well be zero for physical purposes. So, though this scheme
does unify, it is not what we are looking for. Notice, however, that allowable ranges
for extra matter are close to those without the extra gauge group, so as we expected

the new group has only a small effect on the running of the other couplings.
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FIG. 4: On the left is the running of (3, 2, 5, 0) with added matter in a 5-dimensional
representation of SU(2), ap shown in red. On the right is the running of just ap
which we can see will only blow-up at energies that are too low to be physical.

27



Model Mausy (TeV) | my range (TeV) | ap'(mz) | Ap (eV)
(3,2,5,0) 2 110 - 250 510 107600
in 5-dim rep 10 28 - 50 540 107959
of SU(2) 100 Not Allowed — —
my 17-20 260 107680
(3,2,6,0) 2 6200-14500 770 101000
in 6-dim rep 10 1900-3700 800 101100
of SU(2) 100 Not Allowed —
my Not Allowed -

Table 2: Results with SU(2)p gauge group added, Ap is the predicted scale of DM
glueballs.

Dark SU(3)

We now consider adding a Dark SU(3) to our supersymmetric RGEs. This group has
6-dimensional representations, 6 and 6, which the SU(5) multiplets in the (3, 2, 6, 0)
non-perturbative unification model can fit into. Our added matter then transforms

as (5,6) + (5,6). For a 6-dimensional representation of SU(3) we find

C(SU3)) = 3 (32)
Cp(6) = ? (33)
Tp(6) = g (34)

From these, we find the beta functions above the scale of the added matter are

269 81 152 g

25 5 5
2T 67 24 80
bz:(%, 7, 3, 16> and b= | ° . (35)
2 9 82 80
10 30 80 1288

28



Model Mausy (TeV) | my range (TeV) | ap'(mz) | Ap (eV)
(3,2,6,0) 2 10000-25000 49 5
in 6-dim rep 10 3000-6800 53 .05
of SU(3) 100 580-590 59 .001
my Not Allowed -

Table 3: Results with SU(3)p gauge group added, Ap is the predicted scale of the
DM glueball spectrum.

As before, below the scale of heavy matter the beta functions are still supersym-

metric but gp decouples from the running of the other couplings. We find that

b4 =-9 and b44 = —54, (36)

with by = by; = 0 for @ # 4. Below the scale of supersymmetry, we again use the

general equations in [18] and find that

b4 =—11 and b44 = —1027 (37)

with by = by; = 0 for ¢ # 4 as gp is still decoupled. For such a running we find that
Ap is on the order of an eV. See FIG. 5 for an example running with mg,g,=2 TeV
and my= 1.6 x 10° TeV. For such a model we find that Ap = 0.5 eV. Results for a
sampling of mg,s, are presented in Table 3. Note that as mg,sy is raised, Ap drops
lower. Soni and Zhang in Ref. [17] estimate using astrophysical evidence a scale of 20
MeV for self-interacting dark glueballs in SU(3), much higher than we have predicted

here.
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FIG. 5: On the left is the running of (3, 2, 6, 0) with added matter in a 6-dimensional
representation of SU(3), ap shown in red. On the right in the running of just ap
down to its low-energy blow-up at about 0.5 eV.

Glueball DM Outlook

From a model building perspective, this approach to glueball DM is not ideal. Studies
that we reference have studied glueball DM as a stand alone model, not one that is
supersymmetric and coupled to the Standard Model at higher energy scales. Such
additions lead to other stable or nearly stable particles, so that the phenomenological
viability of the model is much more complicated to study. There may be a model
in which these scenarios are favorable, but more work would need to be done on the
theoretical side. Such a study would require a full analysis of options for particle
decay and of supersymmetric complications.

This investigation, however, has been illustrative in how the non-perturbative
scheme can be used for further model building endeavors. Additional groups and
matter can be added easily to the RGEs. Once added, relevant observables can be
extracted simply. This makes the non-perturbative unification scheme especially nice
for further phenomenology of extensions to the Standard Model. One such addition
that can be explored in this way is that of an extra U(1) symmetry group, a popular

option to tackle problems in supersymmetry and as a dark matter candidate.

30



VIII Conclusions

In this study we have explored the framework of non-perturbative unification. This
framework is a general, yet simple scheme to study additions to the Standard Model.
We have updated a previous study on nonperturbative unification. We find that
we can improve on the method of that study and use new experimental error bars
for parameters and added corrections. The specific model proposed in that previous
study is no longer desirable given new experimental parameter values.

We expanded the search for viable models with other possible additions of matter.
We chose to add particles that are especially well studied as an aid for future model
building. Many of these additions we found had viable mass scales. Of these, the
most promising combinations are the most minimal particle additions. These are also
those with the lowest mass scales. Some of these will possibly be detectable at a
future 100 TeV collider, being considered in China [9] and at CERN [10].

For these phenomenologically interesting models, we attempted to give a group
theoretic origin to the amount of added matter. Motivated by recent theoretical stud-
ies of glueball Dark Matter, we described this new matter as a single representation
of a dark SU(N) gauge group. We found that our specific models had mass scales
that were too low based on previous theoretical investigations of glueball Dark Matter
and astrophysical evidence of Dark Matter. These previous studies do not consider a
Dark Matter sector that is also supersymmetric, so their bounds do not necessarily
apply to our model. More investigation is needed to evaluate whether or not this
specific, more complicated, model of Dark Matter and non-perturbative unification
is viable.

Non-perturbative unification provides a novel approach to unification that is at-

tractive for exploring physics beyond the Standard Model. It assumes nothing about
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the form of a GUT and so can be quite general, yet provides precise phenomenological
predictions that can be searched for at current and future colliders. Non-perturbative
unification thus provides predictivity without introducing many of the theoretical
model building problems that come from assuming the form of high-energy physics.
Our specific findings in this study produce the possibility of non-perturbative unifi-
cation with extra particles at the scale of about 100 TeV, which might be probeable

in the near future.
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A Appendix
The two-loop RGE without Yukawa couplings is [2]

dg; g; 1 O 2
& = 1672 | T 160 200 (&)
j=1

In the Standard Model, beta functions are given by [2]

199 27 a4

A1 19 50 10 5
bM = (1—0, —5 —7) and b =12 B gy . (A.2)
g 2

The general beta functions for the minimal supersymmetric model with particle con-

tent (ng, nn, ns, nyo) are [15]

2 3/10 1 3 0
b=121]ng+ /2 |nnt+ 1|+ |[3|no+|—6], (A.3)
2 0 1 3 -9
and
bj=1%2 14 8|ng+ |3 I 0fmat ]2 7 0fns
5 3% 0 0 0 0%
2 1o 00 0
Tl 21 16|mMo+ |0 —24 0
8 6 34 0 0 —54
(A4)
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General supersymmetric beta functions for any group G; and matter fields T;(¢)

charged under that group are [11]

bi = =3C(Gi) + Ti(9), (A.5)

and

bij = 2C(Gy)[=3C(Gs) + Ti(9)]0; + 4T3 (¢) C;(¢).- (A.6)

Group theory invariants for the fundamental representation, F, of SU(N) are

N2 -1
- A.
Csvn(F) = —5 (A7)
1

Tsuv)(F) = 3 (A.8)

For the adjoint representation, A, of SU(N) we find
CSU(N)) = Coumy(A) = N (A9)
Tsuvy)(A) = N. (A.10)
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