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we consider the so-called Witten-Sakai-Sugimoto model, a SU(N) gauge theory coupled
to different matter fields in both the fundamental and the adjoint representations. The
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Timing Arrays. In the latter case, the signal could be compatible with the recent potential
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this case we explicitly show how to correct the redshift factors appearing in the formulae
for the GW power spectra to account for the fact that adiabatic expansion from the first
transition to the present times cannot be assumed anymore.
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1 Introduction

The measurement of the first direct gravitational wave (GW) signal by LIGO in 2015 [1]
has started a new era in observational astrophysics. Not only the observation of black hole
and neutron star mergers are tremendously important discoveries, but current and future
experiments are now expected to be able to measure GW signals from several different
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sources. This promises to give experimental access to physics which would be challenging
to investigate with other types of observations. Not surprisingly, there are currently several
experiments in the developing phase, which will considerably extend the accessible GW
frequency and sensitivity ranges in the near future. In this situation, it is of clear interest
to study possible sources of GWs which could be detected in these facilities.

In this paper, we consider stochastic GW spectra produced in first-order cosmological
phase transitions. The generation of GWs, in this case, is determined by the dynamics
of bubbles of true vacuum nucleated in the metastable phase once the temperature of the
Universe descends below the phase transition temperature [2–6]. The bubbles can generate
GWs either by their collisions or by their interaction with the plasma medium, through
sound waves or turbulence. We refer to [7–10] for reviews.

It is a challenging task to connect the qualitative picture of the bubble dynamics to
solid predictions for the power spectra of GWs that can be observed in experimental devices.
Luckily, there are general formulae in the literature that estimate the GW spectra once
some parameters characterizing the phase transition are known. These parameters depend
on the details of the microscopic model describing the transition. The evaluation of the
parameters and the formulae for the spectra typically rely on a series of controlled and less
controlled approximations. It is a crucial goal to reduce to zero the number of uncontrolled
approximations such that the theoretical predictions can be reliably tested in experiments.

This paper makes a step in this direction for cosmological transitions in sectors de-
scribed by strongly-coupled Yang-Mills or QCD-like theories. The latter appear in many
dark matter models (see, e.g., [11–13]). We consider scenarios where the dark matter is
constituted e.g. by dark glueballs, pions or baryons.

Whenever the theory is confining, one expects a confinement/deconfinement transition
as the Universe cools below the theory’s dynamical scale. If the transition is first order, it
may generate GWs, which are the study objects of this paper.

When the gauge theory includes (approximately) massless quarks, the strongly-coupled
dynamics is such that the (approximate) chiral symmetry is broken at a scale that might or
might not coincide with the gauge theory’s dynamical scale. We consider both the case in
which the confinement phase transition implies the chiral symmetry phase transition and
the case in which it does not. The first case also includes the Peccei-Quinn transition in the
simplest composite axion model with hidden gauge group [14–16]. The second case includes
the Peccei-Quinn first-order phase transition of the recently proposed holographic axion
model [17, 18], where the axion appears as a pseudo-Nambu-Goldstone boson associated
with the chiral symmetry breaking of an extra pair of quark/antiquark fields.

To be more specific, we consider theories where the rank of the gauge group is suffi-
ciently large such that the planar approximation is reliable. In this case, a class of very
interesting models are the ones admitting a holographic description.1 As a prototype, we
consider the top-down theory that, in the deep IR, better resembles planar Yang-Mills,

1It is a widespread belief that every gauge theory in the planar limit admits a perturbative string theory
description. The latter can or cannot have a low-energy limit where classical gravity is reliable, depending on
the theory’s details. For example, pure Yang-Mills theory does not have a classical gravitational description.
Nevertheless, there are infinite classes of theories, which we call holographic, admitting such a description.
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or planar QCD if we consider the flavored version, known as the Witten-Sakai-Sugimoto
(WSS) model [19, 20]. In the case of a YM or QCD-like dark sector outside the regime
where the holographic description is completely reliable, the latter can be employed as an
effective approach to the strong dynamics of the theory.

The WSS model has been widely used to study various aspects of QCD at low energy,
with notable success. In the present context, the model is interesting because it features
two first-order phase transitions, the first one associated with confinement/deconfinement
and the second one associated with chiral symmetry breaking/restoration.

In most of the cases that we investigate, we employ the WSS model not as a proxy
for QCD but as a model for a dark sector. Being a so-called top-down model, the WSS
has the advantage that computations performed in the planar limit at strong coupling are
reliable, in the sense that there is a precise control on the validity regime of the various
approximations, something which usually does not occur in effective phenomenological
models or bottom-up holographic theories. In fact, this property eliminates one of the
sources of uncertainty in the calculation of the parameters for the GWs spectra when dealing
with strongly-coupled theories, and it constitutes the main motivation for this paper.

In a previous work [21], we have addressed the problem of the nucleation of bubbles
of true vacuum associated with both the confinement/deconfinement phase transition and
the chiral symmetry breaking/restoration phase transition in the WSS model.2

In the present work, we use those results to compute the stochastic GW spectra, due to
bubble collisions and sound waves, in several beyond Standard Model scenarios featuring
the WSS model. As we will see, the main conclusion of our analysis is that there is a large
window of the WSS parameter space where the GW signals may be accessible in near-future
experiments. Moreover, the model allows for the generation of GWs compatible with the
possible observation recently reported by NANOGrav [22].

The paper is organized as follows. In section 2, we introduce the WSS model and
summarize the steps of the analysis needed to find the GW spectra.

In section 3, we consider three different dark matter scenarios. These are cases where
the chiral symmetry transition, if present, is implied by the confinement one. In subsec-
tion 3.4, we discuss the results for the GW spectra. Figure 1 encodes in a global view some
benchmark results of the investigation.

In section 4, we consider two scenarios where GWs come from the chiral symmetry
breaking/restoration phase transition. In one of them, the chiral transition is followed by a
separated confinement/deconfinement one. We thus investigate the fascinating possibility
of detecting a GW spectrum with two peaks. In this case, moreover, we outline the fact that
the usual assumption of adiabatic expansion of the Universe from the first phase transition
to present times cannot be used anymore: the presence of a second phase transition requires
a refinement of the usual redshift factors in the formulae for the GW spectra. The results
for the GW spectra are reported in subsection 4.3 and in figure 4.

We will conclude with a summary and some observations in section 5.
2In [21], the Randall-Sundrum scenario has been briefly discussed as well. In that context, we were able

to compute the derivative term in the effective bounce action in the high temperature regime. That term
was missing in previous literature on the subject.
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We collect all the holography-related details of the WSS model in appendix A. Ap-
pendix B provides an overview of all of the relevant formulae used to obtain the GW
spectra. In particular, in B.1.4, we discuss how the occurrence of two separated phase
transitions affects the quantities that determine the GW spectra, providing explicit for-
mulae for the modified redshift factors advocated in section 4. Finally, in appendix C, we
review the results of [21] that are useful for the present paper and provide approximate
analytical expressions of the relevant GW parameters for the confinement/deconfinement
transition in the small temperature regime.

2 The WSS model and its embedding in cosmology

In this section, we describe the features of the Witten-Sakai-Sugimoto model that are
needed in order to understand the calculation of the GW spectra. More details on the
model and on the bubble configurations nucleated in the phase transitions are reported in
appendices A and C.

The WSS model is a (3+1)-dimensional non-supersymmetric Yang-Mills theory with
gauge group SU(N) coupled to a tower of adjoint Kaluza-Klein (KK) fields and to Nf

fundamental flavors (quarks) [19, 20] (see also [23] for a review). The model possesses five
independent parameters. Two of them are actually dimensional quantities: MKK, which
represents the dynamically generated scale providing the mass of the first glueball and that
of the first KK field, and L which gives the scale of chiral symmetry breaking fχ,L, as we
will discuss in a moment. The other three, dimensionless parameters are given by N , Nf ,
and the ‘t Hooft coupling λ at the scale MKK. We will consider the regime

N � 1 , λ� 1 , Nf

N
� 1 . (2.1)

The properties of the model at low energies are very similar to the real-world QCD ones
since they include confinement, mass gap, and chiral symmetry breaking. We can actually
write more precisely the last condition in (2.1) as (see e.g. [24])

εf ≡
1

12π3λ
2Nf

N
� 1 , (2.2)

which holds in the confined regime.3
One of the main motivations for studying the model in this paper is that it exhibits two

first-order phase transitions. The first one separates the low temperature confined phase
of the theory from the high temperature deconfined one. The critical temperature for the
transition is [25]

Tc = MKK
2π . (2.3)

The second first-order phase transition separates the chirally symmetric phase from
the phase where chiral symmetry is broken [25]. In the general case, L is a free parameter
of the model that can be used to separate the confinement scale from the chiral symmetry

3In the deconfined phase, the condition reads εf,T ≡ λ2NfT/(6π2NMKK)� 1 [24].
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breaking one. When L > 0.97M−1
KK the confinement/deconfinement transition implies the

chiral symmetry breaking/restoration one. In contrast, when L < 0.97M−1
KK, the two

transitions are independent, with the chiral symmetry breaking/restoration one occurring
at the temperature

Tχc ≈
0.1538
L

. (2.4)

The parameter L has the maximal value L = πM−1
KK, when the scale of chiral symmetry

breaking reads
f2
χ = λN

108π4M
2
KK . (2.5)

In the opposite limit L� πMKK, we have [17, 26]4

f2
χ,L ' 0.1534 λN32π3

1
MKKL3 . (2.6)

So far, we have been assuming that all the Nf quarks condense at the same scale, dictated
by the same value of L. But of course we can actually have several classes of quarks with
different values of L.

To summarize, the phase diagram of the model is the following:

• If T < MKK
2π , the theory is confining and chiral symmetry is broken;

• If T > MKK
2π , the theory is deconfined and:

– if T < 0.1538
L , chiral symmetry is broken;

– if T > 0.1538
L , chiral symmetry is preserved.

2.1 Cosmological WSS phase transitions

In this subsection, we describe the general framework needed to calculate the GW spectra,
also fixing our notation. We leave most of the technical details, which are quite standard, to
appendix B, for the benefit of the reader who is not familiar with this type of computations.

We will consider a cosmological setting where the Universe starts at some high tem-
perature, in which the WSS is in the deconfined phase, and then cools down. Depending
on the scenario that we consider, the WSS sector will undergo one or two first-order phase
transitions. They are triggered by the nucleation of bubbles of true vacuum (confined
phase or chirally broken phase, depending on the transition) in the plasma, which is in the
metastable false vacuum (deconfined or chirally symmetric). These bubbles will expand
and eventually fill all the Universe, leaving it in the true vacuum state. The percolation
temperature Tp is defined as the temperature of the Universe when this process completes.
We will compute it case by case, using the formulae discussed in appendix B.1.2.

The cosmological evolution of the Universe is described, as usual, by the Friedmann-
Lemaitre-Robertson-Walker (FLRW) metric5

ds2 = −dt2 +R(t)2dxidxi , (2.7)
4Note that in this paper a different convention on the coupling w.r.t. [17] is used: λhere = 2λthere.
5As we discuss in appendix A, the WSS model is based on string-theory, where extra dimensions are

involved. The cosmic scale factor is meant to be present just in front of the spatial three-dimensional space.
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where R(t) is the cosmic scale which defines the Hubble scale H(t) = Ṙ(t)/R(t). The latter
is determined by the total energy density through the Friedmann equation

H2 = ρ

3M2
Pl

, (2.8)

with MPl ≈ 2.4 · 1018 GeV. The energy density ρ takes contributions from the standard
model and from the dark sector.

In the sector described by the WSS model, the energy density in the deconfined and
in the confined phase at order O(N2) reads, respectively,

ρrad,glue = 526π4

37 λN2 T 6

M2
KK

. (2.9a)

ρconf, glue = −ρ0,glue = − 1
37π2λN

2M4
KK . (2.9b)

In the limit (2.2), the contribution of Nf quarks to the energy density in the high-
temperature regime and in the low-temperature one at order O(NfN), in the case
L = πM−1

KK, read (see e.g. [24, 27])

ρrad,χ = 26π2

7 · 37λ
3NfN

T 7

M3
KK

, (2.10a)

ρconf,χ = −ρ0,χ = − 1
7 · 37π7/2Γ

(
−2

3

)
Γ
(

1
6

)λ3NfNM
4
KK . (2.10b)

As discussed above, when L� πM−1
KK, there is an intermediate phase where the gauge

theory is deconfined and the quarks are condensed. In this case, the energy density is not
known analytically. However, it can be computed numerically starting from the energy
density of the chirally-unbroken configurations. In particular, it reads,

ρb,χ = ρrad,χ + (1− T∂T )(TP∆S̃) , (2.11a)

where TP∆S̃ gives the difference of free energies of the flavors in the broken and unbroken
phases, with

TP = 23π2

38 λ3NfN
T 7

M3
KK

, (2.11b)

and S̃ defined as in (C.21). Using the fact that the energy is the derivative of the free
energy w.r.t. the temperature, the second term on the r.h.s. of (2.11a) is the difference
of the energies in the two phases, so that adding the known contribution of the unbroken
phase, one is left with that of the broken phase. As we will comment on in section 4.2, the
energy density of condensed quarks with L = πM−1

KK in the confined phase will always be
subleading and can be neglected. The power of the temperature factors in (2.9), (2.10) is
different from four because of the presence of KK modes in the spectrum of the theory.

From (2.9) and (2.10), we see that the confined phase of the WSS model carries a
temperature-independent contribution to the energy, which would act as a cosmological
constant after the phase transition. Since the measured cosmological constant almost
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vanishes, the zero-point energy has to be shifted accordingly. As a result, the energy
density in the deconfined and chirally symmetric phase reads6

ρdeconf
unbroken = ρrad,glue + ρrad,SM + ρrad,χ + ρ0,glue + ρ0,χ , (2.12)

where
ρrad,SM = π2

30g
SM
∗ (T )T

4

ξ4 (2.13)

is the Standard Model contribution, given by the temperature-dependent number of rela-
tivistic degrees of freedom gSM

∗ . The factor

ξ ≡ T

TV
, (2.14)

is defined as the ratio between the temperature T of the dark sector and that of the
Standard Model TV , where “V” stands for “Visible sector”. As we will see, ξ can (and in
some cases must) be different from 1.

The energy density in the deconfined and chirally broken phase reads

ρdeconf
broken = ρrad,glue + ρrad,SM + ρb,χ + ρ0,glue , (2.15)

whereas in the confined and chirally broken phase it is

ρconf
broken = π2

30

(
gSM
∗ (T )T

4

ξ4 + g∗(T )T 4
)
, (2.16)

where g∗(T ) accounts for possible contributions of relativistic particles from the dark sector.
We will investigate several scenarios where (2.12), (2.15) and (2.16) will be used. The

cases will differ for the values of the parameters Nf , N , λ, and the number of degrees of
freedom involved.

Away from the phase transitions, the universe evolves adiabatically, i.e. according to
the conservation of the entropy

S ∼ R3gS∗ (T )T 3 , (2.17)

where, in general, gS∗ (T ) 6= g∗(T ), see appendix B.1.4. During the phase transition, an
amount of energy is released and the plasma gets heated up. The temperature TR of the
plasma at the end of the transition is called reheating temperature and is found via the
conservation of energy. This point will play an important role in section 4, where we will
consider the case in which the universe undergoes two first-order phase transitions. As
we will see, the presence of the second phase transition modifies the redshift of the GW
signal compared to the adiabatic evolution one, usually assumed to be valid after the single
phase transition.

As we detail in appendix B, the efficiency of the phase transition depends on the ratio
Γ/H4, where Γ is the bubble nucleation rate. In the case in which a single field describes the

6In the most general case, we have quarks of both L = πM−1
KK and L � πM−1

KK kind. Hence, the
contribution ρ0,χ is not simply given by (2.10b), because the latter holds only for the L = πM−1

KK. The
L� πM−1

KK contribution is suppressed by a MKK/fχ,L factor and can be usually neglected.
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transition, the bubble nucleation rate Γ can be computed in the semiclassical approximation
using the formalism developed in [2–6]. The confining phase transition of the WSS model
involves several fields. In [21], as reviewed in appendix A, we took an effective approach
inspired by [28] where only a single field is involved. The formula for the bubble nucleation
rate is reported in (B.1), which involves a comparison between the efficiency of quantum
and thermal fluctuations. The former are given by the O(4)-symmetric solution, and the
latter by the O(3)-symmetric one. In the analysis, we always have to verify which kind of
bubble dominates.

Depending on the phase transition’s efficiency, the universe may remain trapped in the
false vacuum for a long time after it reaches the critical temperature, featuring supercool-
ing. In this case, the energy density may include a temperature-independent contribution,
which may start to dominate, acting as an effective cosmological constant that makes the
universe inflate.7 As a result, it is not guaranteed that the phase transition completes,
hence in the analysis, we will always have to check that it actually does. Technically, this
is done through formula (B.21) discussed in appendix B. Depending on whether percola-
tion enters the vacuum-dominated phase or not, the percolation temperature is computed,
respectively, by (B.13) or (B.16). In performing these and the following calculations, we
use the Chapman-Jouguet formula (B.25) for the velocity of the bubble.8

Gravitational waves are produced during the propagation of nucleated bubbles in the
plasma in three ways: collisions among bubbles, collisions of plasma sound waves, and
turbulence in the plasma. Unfortunately, the turbulence contribution to the gravitational
waves spectra is currently not well-understood. Typically it is deemed as subdominant. We
will only consider the contributions coming from bubble collision and from the sound waves
for these reasons. The formulae for the spectra in these two cases are given, respectively,
by (B.38) and (B.39).

As we discuss in appendix B, it is not easy to estimate how the energy is distributed
among the various contributions. Comprehension of the bubble dynamics and, most im-
portantly, interaction with the plasma is one of the major open problems in the field so
that the results are affected by huge incertitudes. For this reason, in this paper, the results
for the spectra are presented separately for the bubble collision and sound waves contribu-
tions, pretending that all of the energy is concentrated in one of them in turn. The true
spectra will obviously be in between these two “extremal” cases.

The GW spectrum depends crucially on a parameter, usually called α, which accounts
for the amount of energy released in the transition. We are going to use its expression in
terms of the trace of the energy-momentum tensor (formula (B.24)), adjusting in any place
the number of relativistic d.o.f. at the relevant temperature scale.9 As we will see, the
spectrum with a larger magnitude is that associated with sound waves.

7We recall, indeed, that the radiation and the vacuum contributions to the energy density scale, respec-
tively, as R(t)−4 and R(t)0.

8The friction with the plasma puts some upper bound on the velocity (see, e.g., [29]). In our cases,
an estimate of these upper bounds along the lines of [30] turns out to be always larger than the velocity
calculated with (B.25).

9Table I in [31] turns out to be a useful tool for this task.
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In the next two sections, we present the analysis in the various scenarios. From the
WSS model perspective, the main difference among them is given by the choice of the
parameters MKK, fχ,L, Nf , N , and λ. Actually, for what concerns the next section, the
latter two enter through the combination

g ≡ λN2 . (2.18)

As a general framework, although both N and λ are required to be large parameters, it is
natural not to introduce a huge hierarchy of scales. Thus, we tend to prefer (but not limit
ourselves) to consider not-too-large values of the parameter g, starting from g & 100.

3 GWs from deconfinement/confinement phase transition

In this section, we present the GW spectra produced in three possible dark scenarios, which
we name Dark HQCD 1, Dark glueballs and Dark axion. The “H” in HQCD stands for
“Holographic”, to underline the fact that there are extra modes w.r.t. standard QCD-like
theories. In these scenarios, gravitational waves are always associated with the confine-
ment/deconfinement phase transition. It is important to outline that the WSS model
realizes explicitly, in a specific regime of parameters, scenarios which have been previously
proposed in the literature (see e.g. [32] and [11–13] for reviews). While it would be very
interesting to further study the phenomenological implications of this regime of parame-
ters, in this paper we just concentrate on the gravitational waves spectra. Thus, in the
following subsections we are going to sketch the different scenarios, discussing the main
information needed for the computation of the GW spectra. The latter are determined
with the formulae collected in appendix B and the results are presented in subsection 3.4.

3.1 Dark HQCD 1

QCD-like theories with Nf flavors can provide different dark matter candidates. Depending
on the details of the models, the main fraction of dark matter can come from dark baryons,
nuclei, mesons, and so on. Analogously, the dynamically generated scale, which in the WSS
model is denoted as MKK, varies considerably among the various theories, typically from
about 100MeV to about 100TeV. In this subsection we consider the WSS model with Nf

flavors, in the regime (2.1),10 as providing a strongly-correlated large N dark QCD-like
sector. Previous studies of gravitational wave spectra in similar scenarios include [33–38].

We have analyzed the spectra of GW produced in the phase transition for the dynamical
scale values

MKK = 10n GeV , n = −1, 0, . . . , 6 , (3.1)

and for
g = 10m , m = 2, 3, 6, 10 . (3.2)

10In this regime, flavor contributions are subleading, so there is no dependence of the results on Nf at
leading order. The latter is provided by fields in the adjoint representation: by the standard planar counting
they contribute with a factor of f(λ)N2, where f(λ) = λ+c−1/λ+. . . in the confining WSS model. Since we
consider the leading order approximation, the results just depend on g = λN2 and not on λ,N separately.
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The case g = 102 is the only one where the Universe at the time of bubble percolation
is in a radiation domination phase, hence we employ formula (B.16) to determine the
percolation temperature; in all the other cases, the Universe is in a vacuum domination
era and we have to employ formula (B.13). For g = 102,3,6, the relevant bounce solution is
the O(3)-symmetric one, while for g = 1010 the O(4)-symmetric configuration dominates.

In determining the reheating temperature according to formula (B.23), care must be
taken to count the correct number of degrees of freedom both in the Standard Model and in
the dark sector. In fact, in the confined phase of the dark sector there can be glueballs, KK-
modes and mesons which become relativistic at the reheating temperature. This happens
for g = 106 and g = 1010. In the first case, only the lightest glueball and KK mode must be
included, together with the lightest mesons. In contrast, in the second case, the reheating
temperature is about seven times MKK. At this scale, many glueballs from table 2 in [39]
as well as many mesons must be included, giving hundreds of d.o.f. Unfortunately, the
spectrum of KK modes is not known in detail. The first KK modes have mass of one MKK,
but we have no definite information on the number of degrees of freedom at 7MKK. We
give a very rough estimate of this number assuming that the density of KK modes has the
same dependence on the energy as the spectrum of glueballs. We then double the number
of degrees of freedom to account for the fermionic glueballs and KK modes. The same is
done for the mesons. However, we underline that the incertitude associated to the number
of degrees of freedom introduces an error that does not spoil the order of magnitude of
our results.

3.2 Dark glueballs

Another well-motivated class of dark matter candidates is represented by stable glueballs,
the bound states of SU(N) Yang-Mills theory. The WSS model with Nf = 0 is therefore
suitable for describing such a scenario and for performing in this context reliable calcu-
lations. Being derived in the quenched approximation, the results of section 3.1 can be
seen as also concerning a scenario where the non-interacting dark sector is constituted by
a SU(N) Yang-Mills theory without flavors.

The latter can also model the case where the dark matter is actually self-interacting,
a possibility which helps softening the problems of the ΛCDM model with small-scale
structures [40]. In this scenario, phenomenology can be satisfied for glueball masses ranging
from keV to fraction of GeV. When the order of the latter is around one MeV or smaller,
one has to take care of phenomenological constraints related to the effective number of
neutrino species and coming from Cosmic Microwave Background (CMB) measurements,
and from measurements of the relative abundance of elements in Big Bang Nucleosynthesis
(BBN). They imply that the dark sector cannot be in thermal equilibrium with the visible
sector. In particular, the dark sector temperature T has to be smaller than TV , the visible
sector one [41, 42]. As a result, non-gravitational couplings among the two sectors have
to be absent or extremely small. Whenever this is the case, gravitational waves produced
in first-order transitions can be one of the few means at our disposal in order to observe
direct signals coming from the dark sector. Previous studies of the GW spectra in similar
cases within the context of simple effective models can be found in [41, 42].
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In this section we will investigate cases with dynamical scale values

MKK = 10n keV , n = 0, 1, 2, 3, 4 . (3.3)

The other main difference with respect to the analysis performed in section 3.1 is given
by the fact that the ratio ξ = T/TV can be smaller than one. We assume that ξ stays
constant during the bubble nucleation and GW observation process. We explicitly explore
benchmark cases where

ξ = 10−1 , g = 103,5,10 . (3.4)

Moreover, we have considered the case where MKK = 100 keV, g = 5 · 103 and ξ = 0.1. We
have also checked that the smaller the value of ξ is, the more the signal is suppressed. For
ξ = 10−5, for example, the signal will be completely invisible in near future facilities.

We estimate the contraints from the CMB and the BBN on the number of relativistic
degrees of freedom by parameterizing them as an extra contribution to the effective number
of neutrino species ∆Neff [41]. The constraint from the BBN, which turns out to be the
most stringent one, dictates that ∆Neff . 0.5. We use the formula [41]

∆Neff = 4
7

(11
4

)4/3
g∗ ξ

4 . (3.5)

The constraint has to be imposed around TV,BBN ∼ 100 keV. Whenever the percolation
temperature is such that the dark sector is in the confining regime at TV,BBN, g∗ just
counts the number of relativistic glueballs and the constraint is automathically satisfied
for our range of parameters because of the ξ factor in (3.5). If instead the dark sector is in
the deconfined phase at TV,BBN, the relevant formula for g∗ is, from the energy density of
section 2.1,

g∗ = 52 · 27π2

36 g
T 2

M2
KK

. (3.6)

In this case large values of g can overcome the ξ4 suppression in (3.5). In fact, for g = 1010

the constraint from the BBN is never satisfied in the range of energies (3.3), and it restricts
the allowed regimes to MKK ≥ 100 keV for g = 103 (and for g = 5 · 103), MKK ≥ 1MeV
for g = 105.

Let us briefly describe the main features of the calculation of the spectra. The de-
coupling of the dark and visible sectors implies that whenever we consider plasma effects,
the plasma in question is just the one of the dark sector. As a consequence, there are
two relevant α parameters (formula (B.26)), denoted as α and αD, measuring respectively
the energy released in the transition w.r.t. the visible sector energy density only and w.r.t.
the dark sector energy density only. The velocity of the bubble wall is determined by
formula (B.25) with α replaced by αD. The same is true for the efficiency parameter κv
(formula (B.40)) for the sound wave spectra.

For g = 103 (and g = 5 ·103), in all the cases the Universe is found to be in a radiation
domination era at the time of percolation. In fact, values of ξ < 1 enhance the contribution
of the SM energy density of radiation against the dark sector vacuum energy density. The
bubbles in these cases have O(3) symmetry. Only for the cases of g = 105,10, ξ = 10−1 the
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Universe is in a vacuum domination era, the percolation temperature is very small due to
supercooling and O(3) (O(4)) bubbles dominate for g = 105 (g = 1010). Also, in the cases
of g = 103, ξ = 10−5 and g = 1010, ξ = 10−1 the reheating temperature is considerably
different from Tp, so that we have to consider many glueball and KK modes from the dark
sector. However, due to the damping factor ξ, the contribution of the dark degrees of
freedom is quite suppressed w.r.t. the contribution of the SM particles.

3.3 Dark axion

In this section, we analyze a third range of dark sector dynamical scales, relevant for
composite QCD axion models. The benchmark model is the one discussed in [15] building
on the model in [14] (see also [16], and [43, 44] for recent reviews).

In its simplest realization, the model comprises a dark SU(N) Yang-Mills sector and
four massless flavors in its fundamental representation. Three of them form a triplet of the
QCD SU(3)c gauge group, whereas the fourth constitutes a singlet. The global symmetry
includes an axial U(1)A, which plays the role of the Peccei-Quinn symmetry. In fact,
the latter is anomalous and spontaneously broken by the flavor condensation due to the
strong dynamics of the dark SU(N). The associated pseudo-Nambu-Goldstone boson is
then a composite axion. In this scenario, the confinement/deconfinement transition of the
dark SU(N) theory implies the Peccei-Quinn phase transition, which is of the first order.
Previous studies of GW spectra from Peccei-Quinn transitions in effective theories (possibly
of bottom-up Randall-Sundrum type) can be found in [30, 45, 46].

In the model of [14], the axion decay constant fa is related to fχ by

fa =
√

6
N
fχ . (3.7)

Thus, from (2.5), we read

fa = 1
3π2

√
λ

2NMKK . (3.8)

Consistency with phenomenology requires fa & 108 GeV. Moreover, formula (2.2) with
Nf = 4 gives the constraint

λ . 3
√
N , (3.9)

and therefore we are led to consider dynamical scales MKK & 109 GeV. We will consider
two benchmark values of g,

g = 103 , g = 108 . (3.10)

The details of the calculations are very similar to the ones in section 3.1. In all
the cases, the Universe is in an energy domination era at the time of percolation. For
g = 103 (g = 108) the O(3) (O(4)) bounce dominates. In order to determine the reheating
temperature for g = 108, we have to take into account glueball, KK and mesonic degrees
of freedom.
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Figure 1. Examples of GW power spectra h2ΩGW due to bubble collisions (Ωc, dashed lines) and
sound waves in the case of short source duration (Ωsw,q, continuous lines) and long source duration
(Ωsw, dotted lines). Expected sensitivities (PLISCs) for a number of experimental facilities are
reported for comparison [52]. From left to right, the spectra correspond to the following parameters:
(MKK/GeV, g) = (10−4, 5 ·103) (blue lines), (102, 106), (106, 106) (green lines), (109, 103) (red lines).

3.4 Results for the spectra

In this section, we describe the results for the GW spectra generated by the first-order
confinement/deconfinement transition of the holographic model. As we have already men-
tioned, we do not consider the contribution from turbulence in the plasma and we separately
consider the contributions from bubble collisions and sound waves.

For what concerns the sound wave contribution, there is a further incertitude due to
the unknown source duration. Until very recently, the source was expected to last for a
long time in Hubble units. Under this assumption, most of the literature has employed
the formulae reviewed in [7, 47]. However, it has been recently pointed out that the source
can be quite short, see e.g. [9, 48–51]. Accordingly, the power spectrum is quenched by
the short time factor (B.41). In this paper, an agnostic attitude is taken and both spectra,
with and without quenching factor, are presented. This allows us to have an idea of the
possible range of the signal and to compare the results with previous literature.

In summary, three types of spectra are calculated: the one from bubble collisions Ωc,
the one from sound waves without quenching factor Ωsw and the one from sound waves
with quenching factor Ωsw,q. As a general trend, Ωc is found to give the smallest peak
signal. Moreover, the peak frequency increases with MKK and the amplitude of the signal
increases with g.

In figure 1 we report examples of power spectra. In the plot, a few benchmark values of
the parametersMKK, g are chosen to show the detectability potential of the GW emissions.
A number of experimental sensitivities are shown for comparison.

The first clear result is that in various cases the GW signals are going to be detectable
in near future experiments, with the possible exception of the composite axion model.
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Notice that Ωc and Ωsw,q approximately span an order of magnitude in power of the
signal around the peak, represented in the figure by the regions in between the dashed
and continuous curves. Notice, moreover, that the upper value of the signal for the Ωsw
spectra (dotted lines) is greatly amplified w.r.t. the quenched case Ωsw,q (continuous lines);
the true signal from sound waves is expected to be in between the two types of lines. The
total signal is expected to be a combination of the one from sound waves and the one
from collisions.

The blue lines at the left of the plot show a representative case for a small dynamical
scale value, MKK = 100 keV, relevant for the Dark glueballs scenario, for g = 5 · 103 and
for the value ξ = 0.1 of the ratio between the dark and the visible sector temperatures. It
is clear that the signal is potentially detectable by pulsar timing array experiments such as
IPTA and SKA. Actually, the most “optimistic” scenario where almost all the energy of the
process goes into GWs from sound waves is of great experimental interest. In fact, in this
case the signal could be visible in current single experiments such as NANOGRAV, EPTA
and PTTA. Actually, very recently, the results of 12.5 years observations by NANOGRAV
have been reported in [22], showing strong evidence for a stochastic spectrum compatible
with GW signals with frequency peak around 10−9 − 10−8 Hz and average energy density
〈h2ΩGW〉 ∼ 10−10. If, among the possible sources of this signal, there is space for a
cosmological strongly first-order phase transition in a dark sector — as it has been recently
suggested in [53–55] — our Dark Glueball model could be viewed as a possible candidate.

Although it is not shown in the figure, the same possibility of detection happens if
g = 103,5 (again for ξ = 0.1) for MKK around 0.1−1MeV, at least in the SKA experiment.

The two sets of green lines at the center of the plot correspond to the parameter value
g = 106 and energies respectively of MKK = 102 and MKK = 106 GeV, relevant for the
Dark HQCD 1 scenario. The first case is going to be detectable already by LISA and
clearly by the more sensitive experiments such as BBO and DECIGO. The same remains
true down to MKK ∼ 10GeV and g ∼ 102 (not shown in the plot). The second case
of MKK = 106 GeV is detectable by ET or CE facilities. Of course, all the intermediate
energies can be detected, and this remains true even for smaller values of g down to 102

and larger values of MKK . 107 GeV. For g = 1010 the signal is visible at LISA starting
from MKK ∼ 1GeV. Thus, a few near future experiments (LISA and ET for example) are
going to be able to fully probe strongly coupled dark QCD-like sectors (with large ranks)
in the energy range MKK ∼ 1− 107 GeV.

Finally, the three red lines at the right of the plot correspond to g = 103 and
MKK = 109 GeV, and are relevant for the Dark Axion scenario with fa ∼ 108 GeV. Only in
the optimistic case in which the duration of the sound waves’ source is long, the spectrum
falls within the sensitivity curve of CE. Since we expect the real signal to be in the region
between the three curves, this case is unlikely to be detectable in near-future experiments.
Moreover, if MKK increases, such that fa > 108 GeV, the curves are shifted to larger values
of the peak frequencies. As a result, the Dark Axion scenario is not favorable for producing
detectable gravitational waves.

Figure 2 illustrates some of the results, depicting the regions of parameter space that
could be explored by five facilities projected for the near future (CE, ET, BBO, DECIGO
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and LISA). The current capabilities of LIGO and VIRGO are insufficient for detection,
although they come quite close for 106 GeV < MKK < 107 GeV and g > 104 and, therefore,
these facilities and KAGRA have been left out of the plot. In the figure, only the dark
HQCD 1 and the dark axion scenarios are considered because the dark glueballs model
would require introducing the extra parameter ξ. As a benchmark case, we have chosen to
make the plot using the predicted spectrum of GWs produced by sound waves, taking into
account the suppression factor due to short pulse duration. For the plot, we just consider
the spectrum at the frequency fdet at which each detector attains its best sensitivity and
compare it to h2Ωsw(fdet). This is certainly a simplification which, together with all the
approximations and assumptions involved in the derivation of h2Ωsw(f), implies that the
contours of the figure should be considered only as very rough estimations.

However, the picture that emerges is clear: facilities in the near future should be able
to investigate the GW spectrum stemming from large regions of the parameter space of
holographic theories with a first-order phase transition in the early Universe. Moreover, in
various (optimistic) scenarios, stochastic GW background generated in this type of models
can be detectable by the advanced version of currently running experiments. Large MKK
is probed by devices that concentrate in large GW frequencies. In fact, the small values of
MKK of the dark glueballs scenario can only be measured with detectors of small frequency
GWs such as pulsar timing arrays, as shown in figure 1. The dependence on the coupling
of the gauge theory g is only mild, provided that it is large enough for the holographic
description to apply.

4 GWs from chiral phase transition

In this section, we consider scenarios that display a chiral symmetry breaking/restoration
phase transition separated from the eventual confinement/deconfinement one. This implies
the fascinating consequence of having two distinct peaks in the spectrum of stochastic GWs.
Firstly, we discuss the possible scenarios and then we present the results for the spectra.

4.1 Dark HQCD 2

The scenario that we consider in this subsection is a close cousin of the Dark HQCD 1
scenario of subsection 3.1: the WSS model describes a dark sector, very weakly interacting
with the Standard Model (in the most extreme case, even interacting with the Standard
Model only gravitationally). The difference with respect to what has been discussed in
section 3.1 concerns the choice of the WSS parameter L. In section 3.1, the latter was
taken to be L = πM−1

KK, corresponding to the chiral symmetry breaking scale fχ given
in (2.5). In contrast, here we will consider cases with L � πM−1

KK, for which the chiral
symmetry breaking scale fχ,L is given in (2.6). As said, this implies that the chiral phase
transition is separated from the confinement one.

An important difference with respect to the scenario of section 3.1 is that the evolution
of the Universe cannot be considered to be adiabatic from the time of the chiral symmetry
breaking transition to the present time, since there is a second first-order phase transition.
This calls for a correction of the standard formulae for the redshift of the signal, which
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Figure 2. Rough estimate of the possibility of detection in future facilities of GWs produced by
holographic first-order confinement phase transitions. The plot explores the parameter space of the
dark HQCD 1 and dark axion scenarios and considers GWs produced by sound waves, eq. (B.39),
including the suppression factor (B.41). The color code indicates the number of facilities that could
measure the signal for a particular value of the parameters: none (blue), one (grey), two (dark
orange), three (light orange) or four (yellow).

are derived under the assumption of adiabatic evolution. In fact, the adiabatic assumption
holds from the time of the chiral symmetry breaking transition to the percolation time of
the confinement transition. Then, assuming fast reheating in the confinement transition,
the temperature has a sudden jump from the percolation temperature to the reheating
temperature. Finally, from this time to the present day, the Universe continues to evolve
adiabatically. In appendix B.1.4 this behavior is reflected in formulae (B.34), (B.35) for
the frequency and power spectrum redshifts.

A consequence of these formulae is that the magnitude of the chiral symmetry breaking
transition signal decreases if the value of g = λN2 increases. This is due to powers of the ra-
tio of the percolation and reheating temperatures of the confining transition, Tp,conf , TR,conf ,
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appearing in formulae (B.34), (B.35) (in a coefficient which we have called δ in (B.36)). As
we semi-analytically estimate in appendix C.3, an increase of g implies more supercooling,
hence Tp,conf decreases and at the same time TR,conf increases, resulting in a suppression of
the GW signal. For this reason, in the present scenario we are going to describe the case
where λ and N are such that g has a “small” value. In particular, we will investigate the
representative case

λ = N = 10 , g = 103 . (4.1)

It is convenient to introduce dimensionless quantities,

f̃χ ≡
fχ,L
MKK

, T̃ ≡ TL

0.1538 ∼ 0.35(λN)1/3 T

M
1/3
KKf

2/3
χ,L

, (4.2)

such that the critical temperature for the chiral symmetry breaking transition corresponds
to T̃ = 1. The condition that the chiral symmetry breaking transition happens above the
deconfinement transition gives the constraint

f̃χ > 0.013λ1/2N1/2 , (4.3)

that with the choice (4.1) corresponds to f̃χ > 0.13.
In fact, the signal is enhanced if the chiral symmetry breaking scale f̃χ is large. The

validity of the quenched approximation we are assuming for the flavors constrains the
magnitude of this parameter. In particular, the requirement that the approximation works
at the percolation temperature and at the reheating temperature sets the limit f̃χ ≤ 60 for
the choice of parameters (4.1). This comes from the requirement that the energy density
of the flavors is subleading with respect to the one of the gluonic degrees of freedom, see
section 2.1. Thus, we will consider the benchmark values

f̃χ = 30 , f̃χ = 60 . (4.4)

A noticeable difference with respect to the cases analyzed in section 3 is that the energy
released in the transition is much smaller than the energy of radiation, since the former
comes from the flavors, which are quenched, while the latter mostly comes from the gluons.
As a result, the parameter α is much smaller than one in this case and the bubble velocity
sometimes is not very close to unity. Since the energy released in the transition is small
as compared to the total energy, we expect the reheating temperature to be close to the
percolation temperature.

Regarding the counting of degrees of freedom, in the case at hand, by normalizing the
entropy density as

s = 2π2

45 g
S
∗ T

3 , (4.5)

at the time of emission we have the three contributions from the Standard Model, gluons
and flavors

gS∗ = g∗,SM + gS∗,glue + gS∗,χ , (4.6)
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with [25]

gS∗,glue = 5 · 26π2

34 λN2 T 2

M2
KK

, (4.7a)

gS∗,χ = 5 · 24

36 λ3NfN
T 3

M3
KK

. (4.7b)

From the energy density of section 2.1 we read

g∗ = g∗,SM + g∗,glue + g∗,χ , (4.8)

with

g∗,glue = 52 · 27π2

36 λN2 T 2

M2
KK

, (4.9a)

g∗,χ = 5 · 27

7 · 36λ
3NfN

T 3

M3
KK

. (4.9b)

4.2 Holographic axion

Another scenario where a chiral symmetry breaking/restoration takes place is the holo-
graphic QCD axion model of [17], which we call HoloAxion in the following. The WSS
theory is considered as a model for the strong interactions of the Standard Model, includ-
ing the QCD axion physics. The axion arises as a composite particle, analogous to the
η′, coming from an extra flavor with L � πM−1

KK so that it condenses at a large scale
fa = fχ,L � ΛQCD. In contrast, the SM quarks are embedded in such a way that the re-
lated chiral symmetry breaking scale is given by fχ in (2.5). The condensation of the axion
is a Peccei-Quinn first-order transition which can therefore generate gravitational waves.

The energy density of the false vacuum configuration in this case reads formally
as (2.12). Let us briefly comment on each contribution. Since the QCD sector of the
theory, gluons and quarks, is described by the WSS model, the related relativistic de-
grees of freedom are not counted in gSM

∗ (which then has 27.75 as its maximal value) in
ρrad,SM. Concerning ρrad,χ, the number of flavors in (2.10a) is Nf = 7, because we have
six QCD quarks plus an extra flavor that provides the axion. The contribution ρ0,χ is
given by (2.10b) with Nf = 6, because the latter holds only for the case L = πM−1

KK. The
remaining flavor gives a contribution analogous to (2.10b) but suppressed by a factor of
MKK/fχ,L, hence it can be neglected.

Since in this scenario the WSS model describes the strong sector, the usual, uncon-
trolled extrapolation of the regime of validity of these formulae to the real world parameter
values is performed. This amounts to quitting the planar regime by setting N = 3. Then,
the parameters λ and MKK are determined by fitting the ρ-meson mass and the value of
fπ = fχ, giving [20]

λ = 33.26 , MKK = 0.949 GeV . (4.10)
The probe approximation is also dropped in this regime of parameters, as usual in the WSS
model. The choice of the parameter L which sets fa is constrained by the requirement

108 GeV . fa . 1017 GeV . (4.11)

coming from axion phenomenological constraints.
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4.3 Results for the spectra

Let us comment on the behavior of the spectra that we find in the scenarios where a chiral
symmetry breaking/restoration transition occurs.

In the Dark HQCD 2 scenario, two separated phase transitions occur and the signal
is given by the sum of the signals of the two phase transitions. Since we work in the
quenched approximation (2.2), the chiral symmetry phase transition is characterized by
smaller released energies and therefore smaller signal magnitudes with respect to the con-
finement/deconfinement one. The peak of the signal of the chiral symmetry transition is
at higher frequencies than that due to the confinement/deconfinement transition. Being
smaller, the former might be negligible with respect to the tail of the confinement signal
and therefore the chiral symmetry phase transition would be effectively unobservable.11

Since the signals associated to bubble collisions are suppressed with respect to the ones
due to sound modes, we discuss only the latter.

Examples of the signals for different values of the parameters, with and without the
correcting factor (B.41) for the duration of the transition, are reported in figure 3. Clearly,
larger values of f̃χ are more effective in separating the peak due to the chiral symmetry
transition from that due to confinement.

Figure 4 offers an example of the scenarios that we have been discussing in this section,
presenting the comparison of the computed spectra with the sensitivity curves of experi-
ments. The green curves correspond to a representative two-peak case in the Dark HQCD
2 scenario, namely that where MKK = 100GeV and f̃χ = 60. It displays a large peak
due to the confinement/deconfinement transition at frequency f ∼ 10−3 Hz which fits into
the sensitivity curve of LISA, and a smaller peak due to the chiral symmetry transition at
frequency f ∼ 10−1 Hz which does not fit into the LISA sensitivity curve but is expected
to be visible by the next generation facilities such as BBO and DECIGO. The conclusion
is that the two-peak signal is certainly within reach of the next generation facilities at least
for a certain region of parameter space.

Concerning the HoloAxion case, the result for the extremal case where the axion decay
constant takes the lower allowed value fa ∼ 108 GeV is displayed in red in figure 4. The
frequencies of the peak of these curves are too large and their magnitudes are too small to
be captured by near-future facilities like ET or CE, even in the optimistic case in which we
do not include the quenching factor (B.41) due the duration of the sound waves. Moreover,
as fa increases, the peak frequencies increase as well, hence going further away from the
sensitivity curves of the experiments. Thus, we conclude that the Peccei-Quinn transition
in the HoloAxion scenario cannot be seen in near future experiments.

5 Conclusions

Cosmological first-order phase transitions generate stochastic gravitational wave back-
grounds potentially visible in present and next generation experimental facilities. Dark
sectors, as hidden sectors interacting with the standard model very weakly, are good can-
didates where to explore such transitions.

11Indeed, we recall that the formulae for the spectra are affected by the incertitudes mentioned in the
introduction, hence a big chiral symmetry signal is needed in order to be significant.
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Figure 3. The GW power spectra from the confinement transition (blue lines, sound modes) and
from the sum of the confinement and chiral symmetry transitions (orange lines, sound modes), for
different values of the parameters. The spectra on the first (second) line are calculated without
(with) the correction factor (B.41) for the chiral transition.

Many dark sector models in the literature are Yang-Mills or QCD-like theories. If the
rank of the gauge groups of these theories is sufficiently large, the planar limit constitutes
a good approximation to their dynamics. In this paper, we have considered the scenario
where a dark sector admits a top-down holographic dual description in the gravity regime.
This means that the theory is in the planar limit and there is a gap in the spectrum of
hadron masses. When the theory admits such a dual description, we have full control on its
strongly-coupled dynamics, without the need to employ effective models and uncontrolled
approximations.12 But even if the theory is not exactly in this regime, one can view the
holographic description as an effective tool to model the strong coupling dynamics — this
latter approach has been used extensively for QCD.

Describing dark sectors by means of dual gravitational theories opens up the possibility
of studying their dynamics at strong coupling. In this paper, we concentrated on the
production of gravitational waves in first-order transitions. Using the well-known Witten-
Sakai-Sugimoto holographic model, we have investigated two types of transitions. The first
type is the confinement transition, possibly implying a chiral symmetry breaking transition.

12See [56] for a discussion of the uncertainties associated to the perturbative approach.
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Figure 4. Experimental sensitivity curves (PLISCs from [52]) and examples of theoretical GW
power spectra from sound waves. In green, the sum of the signal from the confinement tran-
sition with λ = N = 10,MKK = 100GeV and that from the chiral symmetry transition with
Nf = 1, f̃χ = 60. In red, the spectra for the HoloAxion case with fa ∼ 108 GeV. Continuous
(dashed) curves correspond to the signal with (without) suppression factor (B.41) for the short
duration of the chiral transition.

The second type is a chiral symmetry breaking transition separated from the confinement
one — the latter happening at a later time in the cosmological evolution.

Making use of the bubble configurations studied in the companion paper [21], we have
been able to calculate all the relevant parameters necessary for the determination of the
GW spectra. The latter are usually affected by a number of assumptions and sometimes
uncontrolled approximations. The holographic approach allowed us to erase from this
number the use of uncontrolled approximations to the strong dynamics of the dark theory.

The results of our investigation are partially in line with other studies in the literature.
In table 1 we report the benchmark cases displayed in figures 1 and 4. In the case of the
single confinement transition, there is a large part of the parameter space of the theory
where the GW signal is going to be detectable in the next generation facilities (see figures 1
and 2 for examples). These include pulsar timing arrays as well as space- and ground-based
interferometers, depending on the dynamical scale of the theory. Interestingly, a window of
parameter space can produce a signal within the current NANOGrav sensitivity, explaining
the recent potential observation in this experiment.

When the chiral symmetry breaking transition is separated from the confinement one,
the model predicts two distinct peaks in the GW spectra. Detection of both peaks would
represent an exciting smoking gun for the models with two transitions. The gravity regime
allows to explore faithfully a branch of parameter space where the chiral symmetry signal
is smaller than the confinement one. Nevertheless, we have shown that there are certain
values of parameters allowing for observation of the two peaks, for example by space-
based interferometers (figure 4). It would be interesting to study the correlations of the
two peaks, which could distinguish the holographic model from other models with two
phase transitions.
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Summary of the benchmark cases

Scenario Dynamical scale Chiral scale Experiment

Dark HQCD 1 102, 106 102, 106 LISA-BBO, ET-LIGO

Dark Glueballs 10−4 – NANOGrav-IPTA-SKA

Dark Axion 109 108 (ET-CE)

Dark HQCD 2 102 6 · 103 LISA-BBO-DECIGO

HoloAxion 0.949 108 –

Table 1. Values of the dynamically generated scale and the chiral symmetry breaking scale (or axion
decay constant) of the WSS model for the benchmark cases considered in figures 1 and 4. In the
last column we report some experiments with the potential of detecting the corresponding signals.
In the Dark Axion case the experiments are in brackets because the detectability is marginal. All
the energies are expressed in GeV.

Finally, we have considered Peccei-Quinn transitions in two distinct axion models: a
standard composite axion from a hidden sector [14–16] and the recently introduced holo-
graphic axion model [17]. Unfortunately, in both cases, the lower bound on the axion decay
constant around 108 GeV corresponds to a peak frequency which is too large for detection
in the near future. In this respect, the model is distinct from the holographic bottom-up
(phenomenological) ones recently investigated in [30, 45], where the possibility of tuning
a very small parameter, measuring the departure from conformality, allows to produce
signals within the sensitivity of ET or CE.

In this paper we have started to use top-down holographic models to study dark (hid-
den) sectors. It will be clearly interesting to employ this approach to first characterize the
model parameter space compatible with current observational constraints, and then pro-
duce predictions for observables in the strong coupling regime of the theory. In particular,
the first request to fulfill concerns the dark matter abundance. When the dark sector is
not coupled to the Standard Model only gravitationally, the computation of the abundance
depends on the details of the couplings and the messenger particles, so it requires a very
accurate analysis, depending on the available possibilities for these data. But even in the
case where the visible and dark sectors are coupled only gravitationally, as could be in
the Dark Glueball scenario, the abundance can be calculated once the number density, or
equivalently the yield, of the candidate dark matter particle is known. The latter requires a
study of the particle cross sections. These computations are beyond the scope of the paper.
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A More on the Witten-Sakai-Sugimoto model

In this appendix, we review the holographic construction of the Witten-Sakai-Sugimoto
model employed in the present paper.

Let us briefly describe the string theory embedding of the WSS model. A stack of N
D4-branes wrapped on a circle S1

x4 with coordinate x4 ∼ x4 + 2π/MKK give rise to the
fields that transform in the adjoint representation of the gauge group. Fields transforming
in the fundamental representation of the gauge group are introduced through pairs of
D8/anti-D8-branes. These are transverse to the circle S1

x4 in such a way that the D8-
branes and anti-D8-branes are separated by a distance L ≤ πM−1

KK along S1
x4 . When the

Nf fundamental fields are massless, the theory exhibits a U(Nf )L×U(Nf )R classical global
symmetry, the chiral symmetry, which is realized by the gauge symmetry of the D8/anti-
D8-branes. When L = πM−1

KK, the scale of chiral symmetry breaking coincides with the
confinement scale. This is the choice of parameters that is useful to model QCD, and that
was, indeed, considered in the original version of the model [20]. In the general case, L
can be considered as a free parameter of the model. This latter case has been considered
in the recently proposed Holographic QCD axion scenario [17, 18].

In the regime (2.1), the gauge plus matter adjoint sector can be studied by considering
the near-horizon limit of the backreaction of the D4-branes, that is a solution of Type IIA
supergravity dual to a theory known as Witten-Yang-Mills (WYM). It is given by a curved
metric, a non-trivial dilaton, and a four-form Ramond-Ramond (RR) field strength. If we
consider the theory at finite temperature, the time direction is compactified on the circle
t ∼ t+ 1/T , and therefore we have two circles: S1

t and S1
x4 . As a result, depending on the

temperature, there are two competing solutions. Let us briefly present them, working with
the Euclidean signature.

The background that dominates in the high-temperatures regime is the black hole one,

ds2 =
(
u

R

)3/2 [
fT (u)dt2 + dxidxi + dx2

4

]
+
(
R

u

)3/2
[
du2

fT (u) + u2dΩ2
4

]
,

fT (u) = 1− u3
T

u3 , eφ = gs

(
u

R

)3/4
, F4 = 3R3

gs
ω4 , R3 = πgsNl

3
s , (A.1)

where ω4 is the four-sphere volume form and gs, ls are the string coupling and string length.
The parameter uT is related to the Hawking temperature T by

uT = 16π2

9 R3T 2 . (A.2)
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The background that dominates in the low-temperature regime is called “solitonic”
and reads

ds2 =
(
u

R

)3/2 [
dt2 + dxidxi + f(u)dx2

4

]
+
(
R

u

)3/2
[
du2

f(u) + u2dΩ2
4

]
,

f(u) = 1− u3
0
u3 , u0 = 4

9R
3M2

KK , (A.3)

with the dilaton and F4 fields keeping precisely the same form as in the previous case.
The holographic dictionary that relates the string theory quantities and the field theory
ones reads

gsls = 1
4π

λ

MKKN
,

R3

l2s
= 1

4
λ

MKK
. (A.4)

It can be shown that, since in the first case g00(uT ) = 0 and in the second one
g00(u0) 6= 0, the high-temperature solution is dual to the deconfined phase and the low-
temperature one is dual to the confined phase. By computing the free energy of the two
backgrounds, one finds that the system exhibits a first-order phase transition at tempera-
ture Tc = MKK/2π.

Let us consider now the fundamental matter sector. In the regime (2.1), the backre-
action of the D8/anti-D8-branes can be neglected. As a result, they can be treated in the
probe approximation, namely by means of the Dirac-Born-Infeld action for the D8 branes
on the original backgrounds. The embedding of the branes on the geometry will then be
a solution x4 = x4(u) of the equation of motion coming from this action and found by
asking the D8/anti-D8-brane pair to be separated by a distance L on the circle S1

x4 , as
mentioned above. Let us describe the solutions in the two phases and how they depend on
the distance L.

In the confined phase, each D8/anti-D8 branes pair is actually bound to join into a
single U-shaped configuration. From the field theory perspective, this fact is interpreted as
a realization of chiral symmetry breaking. When L = πM−1

KK, the branes are antipodal and
join at a value uJ of the holographic coordinate that coincides with the smallest value of the
coordinate range, that is uJ = u0. This means that chiral symmetry breaking occurs at the
confinement scale. In contrast, when L < πM−1

KK, the branes join at uJ > u0, meaning that
chiral symmetry breaking and confinement can occur at different scales. In the QCD-like
setup, Nf coincident pairs of D8/anti-D8-branes are placed in the antipodal configuration
and the model realizes the breaking of U(Nf ) × U(Nf ) to the diagonal U(Nf ). At low
energies, the effective action on the D8-branes reproduces the chiral Lagrangian (with pion
decay constant fπ ∼

√
NMKK) including the Skyrme term and the axial anomaly term

that gives mass to the η′ particle. The model has been generalized in [17] so that the
effective Lagrangian also includes the Peccei-Quinn axion.13 This can be easily obtained
by considering an extra D8/anti-D8 pair placed in a non-antipodal configuration in order
to achieve a separation between the axion scale fa and the QCD confinement scale. The
U(1) gauge symmetry of the extra pair of branes is holographically interpreted as the

13This generalized version of the model has been also used in order to compute the axion coupling to
nucleons [18].
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Peccei-Quinn U(1)PQ global symmetry whose breaking gives the axion as a pseudo-Nambu-
Goldstone boson.

In the deconfined phase, branes and anti-branes are not bound to join, because they
can terminate on the horizon. As a result, depending on L, there are two possible D8-brane
embeddings. If L > 0.97M−1

KK, the branes remain disconnected: the embedding x4 = x4(u)
reduces to a constant. From the field theory side, this corresponds to chiral symmetry
restoration. In contrast, if L < 0.97M−1

KK, both the connected and the disconnected em-
beddings are allowed and, depending on temperature, only one is energetically favored. As
a result, the model features a further first-order transition, occurring at a critical temper-
ature Tχc different from the confinement/deconfinement critical temperature Tc and given
by Tχc ' 0.1538/L. For T > Tχc , the disconnected solution is preferred and thus chiral
symmetry is restored, while for T < Tχc , the connected one is favored and thus chiral
symmetry is broken.

B Calculation of the gravitational wave spectra

In this appendix, we review all the formulae needed to calculate the gravitational wave
spectra produced by cosmological first-order phase transitions. The formulae for the spectra
are reported in section B.2. They require the knowledge of some crucial parameters which
we discuss in section B.1. These are essentially given by the temperature (and hence the
related value of the Hubble parameter) at which the phase transition completes, the phase
transition duration β−1, computed starting from the bubble nucleation rate Γ, the strength
α, i.e., the energy budget of the transition and the bubble wall speed v.

B.1 Parameters

B.1.1 Bubble nucleation rate

First-order phase transitions are triggered by the nucleation of true vacuum bubbles on the
false vacuum state. Such nucleation can occur through thermal or quantum fluctuations.
As we will discuss in the following subsections, whether the transition actually takes place
depends on the ratio Γ/H4, where Γ is the bubble nucleation rate per unit of volume
and H is the Hubble scale. The latter is determined by the energy density ρ through the
Friedmann equation H2 = ρ/3M2

Pl, where MPl ≈ 2.4 · 1018 GeV.
The bubble nucleation rate can be computed using the well-known formalism developed

in [2, 5, 6] for models where the transition is described by a single field Φ. One has to find a
particular solution ΦB of the Euclidean equation of motion usually called bounce. The latter
satisfies the following boundary conditions: it approaches the false vacuum Φf at Euclidean
infinity and a constant Φ0 at the center of the bubble.14 When the transition from the false
to the true vacuum is due to quantum tunneling, the bounce is O(4) symmetric: in this
case ΦB only depends on the radial coordinate ρ =

√
t2 + xixi, where t is the Euclidean

time and xi are the space coordinates. When the transition is (mostly) driven by thermal
14In [2, 4] it is discussed how this Euclidean solution is meant to represent the bubble at time zero in

Minkowskian signature.
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fluctuations, the bounce is O(3) symmetric: in this case ΦB = ΦB(ρ), with ρ = √xixi. The
configuration which dominates the process is the one for which the rate Γ has the larger
value. As a result, the formula for the bubble nucleation rate reads

Γ = Max
[
T 4
(
S3,B
2πT

)3/2
e−S3,B/T ,

(
S4,B
2πρ2

w

)2
e−S4,B

]
, (B.1)

where ρw is the size of the O(4) bubble. The bounce action S3,B appearing in (B.1) is
defined by S3,B/T = (S3(ΦB)− S3(Φf ))/T , where S3(Φ) is the O(3)-symmetric Euclidean
action for the scalar field. The action S4,B is defined analogously.

B.1.2 The relevant temperatures

In order to calculate the spectrum of GWs, the first datum to determine is the temperature
at which the waves are produced. Since from the time of nucleation, which happens at
plasma temperature Tn, to the time where most of the collisions take place and most of
the sound waves collide there could be a sizable difference, the percolation temperature Tp
is considered to be the relevant one for the production of gravitational waves [9]. In the
following, we are going to discuss both Tn and Tp.

Nucleation temperature. The nucleation time tn is defined as the time at which the
total number of nucleated bubbles per Hubble patch from t = tc (the time when the
Universe is at the critical temperature Tc) to t = tn is order one,∫ tn

tc
dt

Γ
H3 ∼ 1 , (B.2)

where H = Ṙ(t)/R(t) is the Hubble scale. We can write this condition in terms of the
temperature of the Universe. Assuming15 R(T ) ∼ T−r, we have

r
dT

T
= −Hdt , (B.3)

and therefore (B.2) becomes

r

∫ Tc

Tn

dT

T

Γ
H4 ∼ 1 . (B.4)

We can get analytical insight by noticing that the integral is dominated by the region very
close to Tn. The general form of the nucleation rate is

Γ(T ) = f(T )exp(−SB(T )) , (B.5)

where f(T ) is a polynomial function, usually assumed to be T 4 from dimensional analysis.
Let us write the Taylor expansion of the exponent as

SB(T ) ∼ SB(Tn) + (T − Tn) β̃r
HT
|Tn , (B.6)

15When the energy density behaves as ρ ∼ g∗T
4 with a time-independent number of relativistic degrees

of freedom g∗, r = 1. In general, g∗ may depend on the temperature. In the WSS model, in the regime
where the contribution from the glue sector dominates, r = 5/3.
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where
β̃ ≡ −dSB

dt
= HT

r

dSB
dT

. (B.7)

Thus, the condition (B.4) can be approximately computed as

1 ∼ r
( Γ
H4T

)
|Tn
∫ ∞
Tn

dT e
−
(
β̃r
HT

)
|Tn (T−Tn)

, (B.8)

where we extended the integration domain to infinity, and therefore it reads

Γ
H4 |Tn ∼

β̃

H
|Tn . (B.9)

Percolation temperature. The percolation temperature Tp is defined as the Universe
temperature when the fraction of space sitting in the true vacuum takes a benchmark
conventional value. We choose the latter to be one.16 In order to compute the percolation
temperature, we have to estimate the size of a bubble as a function of time, which involves
the knowledge of the bubble wall speed v. We follow [48]. The fraction of space in the true
vacuum reads

I(t) = 4π
3

∫ t

tc
dt′Γ(t′)R(t′)3rb(t, t′)3 , (B.10)

where rb(t, t′) is the size of the bubble in comoving coordinates as a function of time, which
can be obtained by

rb(t, t′) =
∫ t

t′

dt̃ v

R(t̃) . (B.11)

Here, v is the velocity of the bubble wall. Using R(T ) ∼ T−r and (B.3), we have

I(T ) = 4πr4

3

∫ Tc

T

dT ′Γ(T ′)
H(T ′)T ′1+3r

(∫ T ′

T

dT̃ v

H(T̃ )T̃ 1−r

)3

. (B.12)

We therefore define the percolation temperature Tp by

I(Tp) = 1 . (B.13)

In the scenarios considered in this paper, the energy density includes a radiation term
and a vacuum term. Adopting the notation of [48], we therefore write H = HR +HV . Let
us consider approximate solutions to (B.12). Firstly, let us consider the case in which the
vacuum contribution HV can be neglected. This is expected to give a good approximation
when supercooling is not significant. Assuming HR = cRT

s, and constant velocity v,
we obtain

I(T ) = 4πr4v3

3c4
R(s− r)3

∫ Tc

T

dT ′Γ(T ′)
T ′1+3r+s

( 1
T s−r

− 1
T ′s−r

)3
. (B.14)

The formulae of reference [48] are retrieved putting s = 2, r = 1, and cR = (
√

3MPlξg)−1.
In the WSS model (see (2.9)),

s = 3 , r = 5/3 , cR =
√

523π2

34

√
g

MPlMKK
. (B.15)

16Another value that is often taken in the literature is 0.34. We have verified that in our cases the
gravitational wave spectra are not significantly sensitive to such a difference.
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Evaluating the integral (B.14) as done above for the nucleation temperature, we find an
approximate formula for the percolation temperature Tp, which does not depend on the
coefficients r and s,

Γ
H4 |Tp ≈

1
8πv3

(
β̃

H

)4

|Tp . (B.16)

When there is supercooling, the vacuum term HV may become dominant before perco-
lation. Defining the temperature TV by HR(TV ) = HV (TV ), let us approximate the Hubble
scale with

H(T ) = HRΘ(T − TV ) +HV Θ(−T + TV ) , (B.17)

where Θ(·) is the Heaviside step function. In this case, the factor R(T ′)rb(T, T ′) appearing
in (B.10) takes two contributions, reading

R(T ′)rb(T, T ′) = v

HV

[
1−

(
T

T ′

)r ]
(B.18)

for T ≤ T ′ ≤ TV , and

R(T ′)rb(T, T ′) = v

HV

[
s

s− r

(
TV
T ′

)r
− r

s− r

(
TV
T ′

)s
−
(
T

T ′

)r ]
(B.19)

for T ≤ TV ≤ T ′. As a result, the fraction of volume in the true vacuum takes the form,

I(T ) = 4πrv3

3H4
V

{∫ Tc

TV

dT ′Γ(T ′)
T ′1+s T sV

[
s

s− r

(
TV
T ′

)r
− r

s− r

(
TV
T ′

)s
−
(
T

T ′

)r ]3
+

+
∫ TV

T

dT ′Γ(T ′)
T ′

[
1−

(
T

T ′

)r ]3}
. (B.20)

Notice that if Tp = TV , I(Tp) from (B.20) precisely reduces to the value computed us-
ing (B.14). Hence, in general, when Tp ≈ TV we can still use formula (B.16) to estimate the
percolation temperature. The same conclusion holds in the different limit Tp � TV ≈ Tc.
In all the cases examined in this paper we have found no notable numerical differences
between the percolation temperature computed using formula (B.14) and that computed
using (B.20).

Finally, when the Universe is inflating due to vacuum energy domination, it is not
guaranteed that the transition can complete at all, since the bubbles can never percolate
with the required velocity. One needs to check explicitly that the probability of finding a
fraction of space occupied by the false vacuum, Vfalse ∝ R(t)3 exp (−IRV ), is decreasing at
the supposed percolation temperature. This translates into the condition

1
Vfalse

dVfalse
dt

= H(Tp)
(

3 + Tp
r

dIRV (T )
dT

|Tp
)
< 0. (B.21)

Once the percolation temperature has been determined, one can derive a crucial pa-
rameter for the spectrum

β

H∗
= 1
H∗Γ

dΓ
dt
|Tp = − 1

Γ
T

r

dΓ
dT
|Tp . (B.22)

– 28 –



J
H
E
P
0
4
(
2
0
2
1
)
0
9
4

Reheating temperature. During a first-order phase transition, entropy is released and
therefore the Universe gets heated. Assuming that the entropy release is approximately
instantaneous, we define the reheating temperature TR as the temperature of the Universe
after the release. By exploiting the conservation of the energy density during the transition,
we find the reheating temperature through the formula

ρt(TR) = ρf (Tp) , (B.23)

where ρf and ρt are, respectively, the total energy density in the false and true vacua.
Especially in the case of strong first order transitions, like the ones examined in this

paper, the reheating temperature may be greater than the critical temperature Tc (see
e.g. [57]). In this case, one should check whether the inverse phase transition could take
place or not. In the cases examined in this paper this does not happen essentially be-
cause the distance in field space between the two minima of the effective potential at
T = TR � Tc is “large” enough to drastically suppress the rate of the inverse transition
w.r.t. the Hubble scale.

B.1.3 Released energy and wall velocity

Another crucial parameter for the gravitational wave spectra is the ratio of the energy
released in the transition to the energy of the radiation bath [9]. In particular, the formulae
for the spectra include the parameter α defined as

α = ∆θ
ρrad

, (B.24)

where θ = (ρ− 3p)/4 is the trace of the energy-momentum tensor, and the ∆ indicates the
difference between the false and true vacua.

The knowledge of the parameter α allows us to estimate the velocity of the bubble
walls according to the Chapman-Jouguet formula

v = 1/
√

3 +
√
α2 + 2α/3

1 + α
. (B.25)

Formula (B.25) has a limited range of validity; in particular, it has to be corrected when
the friction in the bubble interactions with the plasma is significant. However, to provide
better estimates of the wall speed is still one of the big open problems in determining the
bubble dynamics.

In the case in which we consider a dark sector that is not in thermal equilibrium with
the visible one, we have to define two separated α parameters for the two sectors,

α = ∆θ
ρrad,SM

, αD = ∆θ
ρrad,glue

, (B.26)

which take into account the fact that the relevant radiation could be only the one of the
visible (dark) sector, ρrad,SM (ρrad,glue). Note that if the Standard Model plasma is not
interacting with the dark sector one, in formula (B.25) one has to replace α with αD.
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B.1.4 Redshift
Once we know the parameters that we have discussed so far, we can compute the spectrum
of gravitational waves as it appears at the time of production. From this time to the time
of detection, the signal gets redshifted due to the cosmological expansion. We are going to
discuss how to take into account the redshift of the signal in two different circumstances,
both occurring in the scenarios that we study in the present paper.

Let us start with the case in which the Universe evolves adiabatically from gravitational
waves emission to the detection time [58]. This is the case in which only one first-order
phase transition occurs. Hence, it includes all the scenarios that we consider in this paper
but the Dark HQCD 2 one. Let us call Te and Td the temperature of the Universe,
respectively, at the emission and at the detection times. The detection temperature is
Td ∼ 2.35 · 10−13 GeV. The adiabatic evolution is characterized by the conservation of
the entropy

S ∼ R3gS∗ (T )T 3 , (B.27)
from which we find the ratio of the scale factors between the two temperatures

Rd
Re

=
(
gS∗,e
gS∗,d

)1/3
Te
Td

. (B.28)

In this expression, gS∗,e and gS∗,d are the number of relativistic degrees of freedom at the
time of emission and detection, respectively; they are computed in the free case using the
general formula

gS∗ (T ) =
∑

i=bosons
gi

(
Ti
T

)3
+ 7

8
∑

i=fermions
gi

(
Ti
T

)3
, (B.29)

where Ti represents the temperature of the i-th species.
The frequency f and the energy density17 Ω of the GWs get redshifted as R−1 and

R−4 respectively, hence

fd = fe
Re
Rd

, (B.30a)

H2
dΩd = H2

eΩe

(
Re
Rd

)4
. (B.30b)

The Hubble scale H is given by the energy density via the Friedmann equation

H2 = ρ

3M2
Pl

= 1
3M2

Pl

π2

30g∗(T )T 4 . (B.31)

Here, g∗ is defined in the free case as18

g∗(T ) =
∑

i=bosons
gi

(
Ti
T

)4
+ 7

8
∑

i=fermions
gi

(
Ti
T

)4
. (B.32)

17As customary in cosmology, Ω is defined as the energy density divided by the critical
density ρcrit,0 = 3M2

PlH
2
0 , where H0 is the Hubble scale computed in the present epoch.

18Notice that if some species are decoupled from the bath, g∗ 6= gS∗ . This, notoriously, occurs in the
cosmological evolution because of neutrino decoupling when electrons and positrons become non-relativistic.
Neutrino and photon relic temperatures do not coincide. They are related by Tν = (4/11)1/3Tγ . As a result,
today g∗ ≈ 3.36 is different from gS∗ = 3.91.
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As a result, using (B.28) and (B.31), we find

fd = π√
90M2

Pl

fe
He

TeTd
(gS∗,d)1/3(g∗,e)1/2

(gS∗,e)1/3 , (B.33a)

H2
dΩd = π2

90M2
Pl

ΩeT
4
d

(gS∗,d)4/3(g∗,e)
(gS∗,e)4/3 . (B.33b)

Let us now consider the case in which two first-order phase transitions occur. Among
the scenarios studied in this paper, this happens in the Dark HQCD 2 scenario of sec-
tion 4.1, where a chiral symmetry breaking/restoration transition is followed by a confine-
ment/deconfinement one. We will refer to this case, even though the discussion will be
valid for two generic separated first-order phase transitions.

When we compute the redshift of the gravitational waves spectrum associated with
the chiral symmetry transition, we have to take into account that adiabaticity is violated
during the confinement/deconfinement one. As a result, conservation of entropy can be
used from the time of the chiral symmetry breaking transition, where the temperature Te is
taken to be the reheating temperature, to the percolation time of the confinement transition
Tp,conf . Then, assuming fast reheating in the confinement transition, the temperature has a
sudden jump from the percolation temperature Tp,conf to the reheating temperature TR,conf .
Finally, from this time to the present, the Universe evolves adiabatically, and we can again
use the conservation of entropy. All in all, the redshifted frequency and energy density read

fd = fe
Re

Rp,conf

RR,conf
Rd

= fe

(
gS∗,p,conf
gS∗,e

)1/3
Tp,conf
Te

(
gS∗,d

gS∗,R,conf

)1/3
Td

TR,conf

= π√
90M2

Pl

fe
He

TeTd
(gS∗,d)1/3(g∗,e)1/2

(gS∗,e)1/3 ·
(gS∗,p,conf)1/3Tp,conf

(gS∗,R,conf)1/3TR,conf
. (B.34)

and

H2
dΩd = π2

90M2
Pl

ΩeT
4
d

(gS∗,d)4/3(g∗,e)
(gS∗,e)4/3 ·

(
(gS∗,p,conf)1/3Tp,conf

(gS∗,R,conf)1/3TR,conf

)4

. (B.35)

With respect to the single-transition case, the difference is encoded in the parameter

δ ≡
(gS∗,p,conf)1/3Tp,conf

(gS∗,R,conf)1/3TR,conf
. (B.36)

In models with multiple, separated phase transitions, a δ factor for each transition after
the first one must be included in the formulae for the GW spectra.

B.2 Formulae for the spectra

Let us finally discuss the formulae that allow us to find the gravitational wave spectrum. In
linear approximation, the spectrum is given by the sum of three contributions, coming from
the collisions of the bubbles, from collisions of plasma sound waves and plasma turbulence,

h2ΩGW ≈ h2Ωc(f) + h2Ωsw + h2Ωturb . (B.37)
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Here, h is defined from today’s value of the Hubble scale through H0 = 100hKm/s/Mpc.
Following [9], we are going to neglect the turbulence contribution because it is still not
well-understood and because it is expected that only a small fraction of the transition
energy is converted to turbulence.

Let us first consider the collision contribution. Using the so-called envelope approx-
imation, a formula for the signal of gravitational waves coming from bubble collisions
was numerically found in [58]. An improved version of such a formula (see, e.g., the
review [47]) reads

h2Ωc(f) ∼ 1.67 · 10−5
(
β

H∗

)−2 ( κα

1 + α

)2 (100
g∗

)1/3
(

0.48v3

1 + 5.3v2 + 5v4

)
Senv(f) , (B.38a)

where f denotes the frequency of the waves, and v the average velocity of the bubbles.
The factor κ quantifies the fraction of available energy converted into gravitational waves
coming from bubble collision. Finally, the spectral form Senv and the peak frequency fenv
are given by

Senv(f) ∼
[
0.064

(
f

fenv

)−3
+ 0.456

(
f

fenv

)−1
+ 0.48

(
f

fenv

)]−1

, (B.38b)

fenv ∼ 16.5 · 10−6Hz
(
f∗
β

)(
β

H∗

)(
T∗

100GeV

)(
g∗

100

)1/6
, (B.38c)

where
f∗
β
∼ 0.35

1 + 0.069v + 0.69v4 . (B.38d)

In these formulae, β/H∗, g∗, and α are evaluated at the percolation temperature Tp, whereas
T∗ in (B.38c) is identified with the reheating temperature.19

Until recently, the sound wave contribution Ωsw was expected to be subleading with
respect to Ωc in the v ∼ 1 limiting case. Indeed, scenarios with v ∼ 1 are expected to be
characterized by large supercooling, which causes the plasma to be very diluted, and friction
effects to be suppressed. Such a scenario was challenged in [59], where it was pointed out
that even in these conditions, there is a so-called transition radiation given by the emission
of particles that change mass across the bubble walls, which cause a friction pressure.20

This friction causes (at least part of) the energy to be transmitted to the plasma rather
than stored in the bubble wall kinetic energy. As a result, whether Ωc or Ωsw dominates
the spectrum depends on the energy fraction that gets dispersed in the plasma. This is a
highly non-trivial quantity to calculate.

19If supercooling is small, reheating is small as well, and therefore the reheating and nucleation temper-
atures approximately coincide. This is why, in the literature, T∗ is often taken to be the nucleation tem-
perature.

20See also [60] for a recent discussion in the context of confining phase transitions.
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The spectrum due to sound waves is given by21 [47, 62]

h2Ωsw(f) ∼ 8.5 · 10−6
(
β

H∗

)−1 ( κvα

1 + α

)2 (100
g∗

)1/3
v Ssw(f) . (B.39a)

The spectral shape and peak frequency today in this case are

Ssw(f) ∼
(
f

fsw

)3 ( 7
4 + 3(f/fsw)2

)7/2
, (B.39b)

fsw ∼ 8.9 · 10−6Hz1
v

(
β

H∗

)(
zp
10

)(
T∗

100GeV

)(
g∗

100

)1/6
, (B.39c)

where we are going to use the approximate value zp ∼ 10, and the efficiency factor in the
case v ∼ 1 is

κv = α

0.73 + 0.083
√
α+ α

. (B.40)

If the Standard Model plasma is not in thermal equilibrium with the dark sector, in this
formula one has to use αD instead of α [42].

In fact, formula (B.39a) is valid under the assumption that the source of GWs lasts
for a period longer than a Hubble time. If the source’s duration is short, turbulence effects
can be sizable and one can estimate that the net effect is to multiply formula (B.39a) by
a factor [9]

(8π)1/3v

(
β

H∗

)−1 ( κvα

1 + α

)−1/2
. (B.41)

This term tends to reduce the amplitude of the signal. On the other hand, one should
add the contribution due to turbulence, which is very uncertain and as stated it is ignored
in this paper. Thus, Ωsw including the term (B.41) really corresponds to a lower bound
on the contribution of the plasma to the GW spectrum. See also [51] for a discussion of
this topic.

C Holographic bubbles

In this appendix, we review the results of [21] that are used in order to compute the
spectrum of gravitational waves. In [21], the confinement/deconfinement phase transition
occurring in the WSS model was studied using an effective approach inspired by [28],
and deployed in order to reduce the problem to a single-scalar one (a recent alternative
approximation can be found in [63]). Moreover, the chiral symmetry breaking/restoration
transition was described by the deformation of the D8 embedding, again encoded in a single
scalar mode. We start with the case of the confinement/deconfinement phase transition
and then we discuss the chiral symmetry breaking/restoration one.

21A word of caution is in order. The known formulae for Ωsw have been derived under the hypothesis that
α . 0.1 and that the speed is far from the Chapman-Jouguet one. Lacking better estimates, these formulae
are usually employed even when α is larger than this value. A first study of the spectrum for α ∼ 1 has
highlighted a further suppression of the signal [61]. Nevertheless, this suppression is more important in the
case of deflagration, which is not relevant in our cases.
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C.1 Confinement/deconfinement phase transition

The main idea for studying the confinement/deconfinement phase transition is to promote
the parameters u0 and uT in (A.1) and (A.3) to fields depending on a radial coordinate ρ
in such a way that the background displays a conical singularity. For the case in which the
transition is driven by thermal fluctuations and the bounce is O(3) symmetric, this can be
achieved by taking the ansatz

ds2 =
(
u

R

)3/2 [
fT (u)dt2 + dρ2 + ρ2dΩ2

2 + dx2
4

]
+
(
R

u

)3/2
[

9uT r2dr2

4R3fT (u) + u2dΩ2
4

]
, (C.1)

where

u = u(r, ρ) = uT (ρ) + 3
4

√
uT (ρ)
R3 r2 (C.2)

and
fT (u, ρ) = 1− uT (ρ)3

u3 , uT (ρ) = 16π2

9 R3 Th(ρ)2 . (C.3)

The other fields are left unchanged. An analogous ansatz holds for the background dual to
the confined phase. By computing the free energy through the holographic renormalization
procedure, we find the effective action from which we can compute the bounce solution and
the bubble nucleation rate. In terms of the dimensionless field

Φ(ρ) = −T
2
h (ρ)
M2

KK
for Φ < 0 , Φ(ρ) = M2

h(ρ)
M2

KK
for Φ > 0 , (C.4)

and of the dimensionless quantities

ρ̄ ≡MKKρ , T̄ ≡ 2πT
MKK

, (C.5)

the effective action reads

S3(Φ)
T

= 32π4g

35T̄

∫ ∞
0

dρ̄ρ̄2
[(

5− π

2
√

3

)
Φ′2 + Θ(Φ)Vc(Φ) + Θ(−Φ)Vd(Φ)

]
, (C.6)

where
g ≡ λN2 , (C.7)

Θ(·) is the Heaviside step function and

Vc(Φ) = 16π2

9

(
5Φ3 − 3

π
Φ5/2

)
,

Vd(Φ) = −16π2

9

(
5Φ3 + 3

π
T̄ (−Φ)5/2

)
. (C.8)

The shape of the full potential is shown in figure 5 for three different values of the
reduced temperature T̄ . The two minima are Vd = −T̄ 6/(36π4) for Φd = −T̄ 2/(4π2) and
Vc = −1/(36π4) for Φc = 1/(4π2). In the following we will focus on the case T̄ ∈ [0, 1],
where the true vacuum is the confining one at Φ = Φc.
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Figure 5. Plots of the potential for T̄ = 0.8 (blue), T̄ = 1 (orange), T̄ = 1.1 (green). The region
where Φ takes positive values does not depend on the temperature, hence the curves overlap.

The bounce solution ΦB is found solving the equation of motion following from the
action (C.6) with boundary conditions

Φ′B(0) = 0 , lim
ρ→∞

ΦB(ρ) = Φd . (C.9)

Once the solution is found, one can plug it back into the action. As we have already pointed
out, what really enters the formula for the nucleation rate is the difference between the
on-shell action on the bounce solution and the action evaluated on the false vacuum,

S3,B
T

= S3(ΦB)− S3(Φd)
T

. (C.10)

From the numerical results and the functional form of the thin and thick wall approx-
imations studied in appendix A of [21], a continuous analytic approximation to the action
for the O(3) bubble can be provided as follows,

S3,B
gT
≈



0.32 T̄ 5/2 (T̄ ≤ 0.3)
1.8 · 10−3 exp(7.9 T̄ )− 2× 10−3 (0.3 ≤ T̄ ≤ 0.68)
5.4 · 10−2 exp(8.8 T̄ 3.8) (0.68 ≤ T̄ ≤ 0.87)
2.6/T̄ (1 − T̄ 6)2 (T̄ ≥ 0.87)

(C.11)

For small temperatures, one could also have O(4) symmetric bounces. The action for
this case is simply (C.6) generalized such that it enjoys O(4)-symmetry,

S4(Φ) = 8π4g

35

∫ ∞
0

dρ̄ ρ̄3
[(

5− π

2
√

3

)
Φ′2 + Θ(Φ)Vc(Φ) + Θ(−Φ)Vd(Φ)

]
. (C.12)

From this action, we find the bounce solution imposing the same boundary conditions
as above. For the O(4) bubble, since it is only defined for small temperatures, it is sufficient
to consider the functional form of the thick wall approximation, giving

S4,B
g
≈ 0.39 T̄ 3 , ρ̄w ≈

4.0
T̄ 1/2 (T̄ < 0.06) . (C.13)
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Let us recall that the O(4) configuration can be admitted only if the bubble radius is much
smaller than 1/T , [5, 6]. In [21] the following convention has been adopted: the maximal
allowed radius for the O(4) configuration to be considered is set by ρw = 1/2πT (the radius
of the thermal circle). In the present setup, this corresponds to T̄ ≈ 0.06, which explains
the condition in parenthesis in (C.13).

C.2 Chiral symmetry breaking/restoration phase transition

As we have reviewed in section 2 and appendix A, in the regime

MKK
2π <

0.1538
L

(C.14)

the WSS model displays a first-order phase transition associated with chiral symmetry
breaking in the deconfined phase. In the probe regime Nf � N , the phase transition can
be studied just by considering the Dirac-Born-Infeld action on the fixed black hole back-
ground (A.1) which, using spherical coordinates for the 3d Euclidean physical space reads

ds2
E =

(
u

R

)3/2 [
fT (u)dt2 + dρ2 + ρ2dΩ2

2 + dx2
4

]
+
(
R

u

)3/2
[
du2

fT (u) + u2dΩ2
4

]
. (C.15)

Considering an ansatz in which the embedding of the D8-branes in the above background
is described by a function x4(u, ρ), the DBI action reads

SDBI = T8
gs

∫
d9xρ2

(
u

R

)−3/2
u4

√
1 + fT (u)

(
u

R

)3
(∂ux4)2 + (∂ρx4)2 , (C.16)

where T8 is the D8-brane tension. Let us now rescale the coordinates as follows. First, define

x4 = xu
−1/2
T R3/2 = x

3
4πT , u = y uT , uJ = yJ uT , (C.17)

so that the periodicity of the cigar coordinate now reads

x ∼ x+ 2π√uT
MKKR

3
2

= x+ 8π2T

3MKK
, (C.18)

and
fT (u) ≡ fT = 1− y−3 , fT (uJ) ≡ fTJ = 1− y−3

J . (C.19)

Then, let us define
ρ = σ u

−1/2
T R3/2 = σ

3
4πT . (C.20)

Using the definitions above, the DBI action can be rewritten as

SDBI = NT 3λ3

486M3
KK

S̃ , (C.21)

where
S̃ =

∫ ∫
σ2y5/2

√
1 + (y3 − 1)(∂yx)2 + (∂σx)2dσdy . (C.22)

– 36 –



J
H
E
P
0
4
(
2
0
2
1
)
0
9
4

Once extracted the factor written in (C.21), the renormalized on-shell action is

∆S̃= 2
∫ ∞

0
dσσ2

(∫ ∞
yJ (σ)

y5/2
[√

1+(y3−1)(∂yx)2+(∂σx)2−1
]
dy− 2

7
(
yJ(σ)7/2−1

))
,

(C.23)
where we have subtracted the contribution of the straight brane/antibrane pair configura-
tion. The Euler-Lagrange equation for x(y, σ) reads

∂y

 σ2y5/2(y3 − 1)(∂yx)√
1 + (y3 − 1)(∂yx)2 + (∂σx)2

+ ∂σ

 σ2y5/2(∂σx)√
1 + (y3 − 1)(∂yx)2 + (∂σx)2

 = 0 . (C.24)

This is a non-linear partial differential equation, which is extremely hard to solve even
numerically. An escape strategy has then been put forward in [21]: it amounts to look for
approximate solutions by using a reasonable variational ansatz,

x = L̃

2 tanh
(√

y − yJ(σ)√
B(σ)

)
, (C.25)

with L̃ = 4π
3 LT and the additional simplification of assuming that the bounce is a straight

line in the yJ , B plane,

yJ(σ) = yJ,tv − (yJ,tv − 1)α(σ) ,
B(σ) = Btv(1− α(σ)) , (C.26)

where the tv labels mean “true vacuum”. The latter corresponds to α(σ) = 0, while
the false vacuum to α(σ) = 1. The variational ansatz (C.25) turns out to provide an
excellent approximation to the two known solutions with α(σ) = 0, 1. Plugging (C.25)
and (C.26) into (C.23), we can derive the equation of motion for α(σ) and look for the
solution that satisfies

α′(0) = 0 , lim
σ→∞

α(σ) = 1 . (C.27)

In this way, it is possible to find the following expression for the (rescaled) O(3)-
symmetric on-shell bounce action, which provides a very good fit of the numerical results,

∆S̃ ≈


0.555L̃5 (L̃ ≤ 0.31)
4.61 · 10−6 exp(18.8L̃) (0.31 ≤ L̃ ≤ 0.57)

0.000467
(0.6442−L̃)2 + 0.00937

0.6442−L̃ (L̃ ≥ 0.57)
(C.28)

The possible occurrence of O(4) symmetric bounces in the present setup is problematic.
The blackening factor fT (u) in the background (A.1) breaks the O(4)-symmetry and an
ansatz of the form x4(u, ρ) where ρ is the 4d Euclidean radial coordinate is not consistent
with the equations of motion. In [21], just as a reference, we have considered a “naive O(4)
configuration” obtained by simply considering the measure d4x to be given by dΩ3dρρ

3,
where dΩ3 is the measure of the three-sphere. We have not found convincing indications
that a real O(4) configuration can actually be achieved for the chiral symmetry breaking
transition. Thus, in this case, we have decided to focus only on the O(3) symmetric one.
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C.3 GW parameters

It is instructive to give an estimate of how the relevant parameters entering the computation
of the stochastic GW spectra depend on the WSS parameters. In this subsection we focus
on the confinement/deconfinement phase transition and neglect the flavor contributions.

In the small temperature regime, when the O(4) symmetric bounce dominates the tran-
sition, the bubble nucleation rate (B.1) can be easily computed using the relations (C.13)
giving

Γ(T ) = M4
KK

(S4,B)2

4π2ρ̄4
w

e−S4,B ≈M4
KK

c2
4g

2T̄ 8

4π2b4
e−c4 g T̄ 3

, (C.29)

where c4 ≈ 0.39 and b ≈ 4. The rate has a peak at T̄ = T̄m = [8/(3c4g)]1/3 where
Γ(Tm) ∼ M4

KKg
−2/3. Hence, increasing g, both T̄m and Γ(Tm) decrease. This qualitative

behavior holds in general, beyond the small temperature regime, as can be appreciated by
the analysis of the rates done in [21].

The nucleation temperature can be estimated using eq. (B.7) with r = 5/3 and (B.9),
giving the relation

Γ(Tn)
H(Tn)4 ≈

9
5c4gT̄

3
n , (C.30)

where, since we are working in a small temperature regime T̄ � 1, the Hubble parameter
is dominated by the vacuum energy contribution

H(Tn)4 ≈ g2

316π4M
4
KK

(
MKK
Mpl

)4

. (C.31)

Hence, from (C.30) we get

T̄ 5
ne
−c4 g T̄ 3

n ≈ 4b4g
3145π2c4

(
MKK
Mpl

)4

. (C.32)

Now, if, for T̄n � 1 and g � 1, we have

c4 g T̄
3
n �

5
3 | log(c4gT̄

3
n)| , (C.33)

i.e. if c4gT̄
3
n � 1.7, from (C.32) we get

T̄ 3
n ≈

4
c4 g

log
(

Mpl

g2/3MKK

)
+O(1/g) . (C.34)

The nucleation temperature, in the limit where the above approximations hold, decreases
when g and MKK increase and keeps being much smaller than the critical temperature.
Supercooling is thus enhanced when g and MKK grow.

In the same limits we can estimate the percolation temperature from eq. (B.16). If
v ∼ 1 we find that

T̄ 3
p ≈ T̄ 3

n +O(1/g) . (C.35)
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Using the above results and approximations we can also estimate the other relevant
parameter, defined in eq. (B.22), as

β

H∗
|Tp = −3

5Tp
d log Γ
dT

|Tp ≈
3
5
(
3c4 g T̄

3
p − 8

)
≈ 3

5

[
12 log

(
Mpl

g2/3MKK

)
− 8

]
, (C.36)

up to a velocity dependent term. In the small temperature regime, we thus find that β/H∗
slightly decreases as MKK and g increase.

When the O(3) configuration dominates, using the small T̄ expression in the first row
of eq. (C.11), and taking the large g limit, we can analogously get the nucleation and
percolation temperatures. In this case the bubble nucleation rate is given by

Γ(T ) = M4
KK

T̄ 4

(2π)4

(
S3,B
2πT

)3/2
e−S3,B/T ≈M4

KK
T̄ 31/4

(2π)11/2 (c3g)3/2e−c3gT̄ 5/2
, (C.37)

where c3 ≈ 0.32. It has a peak at T̄m = [31/(10c3g)]2/5, where Γ(Tm) ∼ M4
KKg

−8/5.
Again, both T̄m and Γ(Tm) decrease while increasing g, in agreement with the more general
numerical analysis done in [21].

The relation (B.9) determining the nucleation temperature now reads

Γ(Tn)
H(Tn)4 ≈

3
2c3gT̄

5/2
n , (C.38)

where, again, the Hubble parameter is approximated by (C.31). If, for T̄n � 1 and g � 1,
we have

c3 g T̄
5/2
n � 21

10 | log
(
c3gT̄

5/2
n

)
| , (C.39)

i.e. if c3gT̄
5/2
n � 2.1, we get

T̄ 5/2
n ≈ 4

c3 g
log

(
Mpl

MKKg9/10

)
+O(1/g) . (C.40)

Again, T̄n decreases as g and MKK increase.
In the same limits ad before, the percolation temperature approximately coincides with

the nucleation temperature and

β

H∗
|Tp ≈

3
5

(5
2c3gT̄

5/2
p − 31

4

)
≈ 3

5

[
10 log

(
Mpl

MKKg9/10

)
− 31

4

]
, (C.41)

up to a velocity dependent term. This parameter decreases as g and MKK increase.
For strong supercooling, in both the O(3) and the O(4)-symmetric cases, the reheating

temperature calculated from (B.23) reads

T̄R ≈
(

160
36g∗SM

)1/4

g1/4 , (C.42)

where g∗SM = g∗SM(TR) = O(100). The reheating temperature is thus independent from
MKK and increases with g. When g � 1, it is parametrically larger than the critical
temperature.
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Finally, using the definition (B.24), it is possible to estimate the parameter α, mea-
suring the relative energy released during the transition. In the small temperature regime
it reads

α(Tp) ≈
1

5T̄ 6
p

� 1 . (C.43)
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