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Introduction

The Standard Model (SM) is one of the best tested theories in physics. It categorizes
all elementary particles, their properties and their interactions via three of the four
fundamental forces: the electromagnetic, weak and strong force. In this thesis we
will examine a property called the magnetic moment for one of these elementary
particles: the muon.

Any elementary particle with intrinsic properties of spin and charge, will produce a
magnetic moment. This includes the quarks and the charged leptons. The muon is
part of the lepton family. For the first two leptons, the electron and the muon, the
magnetic moment has been calculated theoretically up to a very high precision. Ex-
periments have been and are being set up to measure the magnetic moment of these
leptons to an equally high precision.

When one calculates the magnetic moment of a lepton, one starts with the first-order
calculation of this effect. The magnetic moment can be decomposed in a numerical
factor multiplied by the Bohr magneton µB divided by the reduced Planck constant
~. This numerical factor is 2 at lowest order, but if we include quantum corrections
it will deviate from this value. This deviation is called the anomalous magnetic mo-
ment al, where l indicates the lepton considered.

Any experiment measuring the anomalous magnetic moment would automatically
take into account all higher-order corrections. A theoretical calculation can only
account up to a certain number of higher-orders. As the theoretical and experimen-
tal value do not agree within the bounds of their respective uncertainties, there is
a possibility for a measurement of new physics affecting the anomalous magnetic
moment of the leptons. The discrepancy between the theoretical and experimental
value has been steadily increasing over the last decade due to a higher precision in
experiments and theoretical calculations.

The experimental and theoretical values of the anomalous magnetic moment for the
lightest two leptons are [1][2][3]:

aexp
e = 11596521807.3 · 10−13,

aSM
e = 11596521817.8 · 10−13,

aexp
µ = 116592091 · 10−11,

aSM
µ = 116591830 · 10−11.

We will show and discuss the uncertainties on the relevant values in chapter 1.8. The
third lepton, the tau lepton, has been omitted here as the experimental and theoret-
ical value of its magnetic moment have not been precisely determined yet. This is
because the tau lepton is too short-lived. For current values of the anomalous mag-
netic moment of the tau lepton, see [4].
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As can be seen above, the experimental and theoretical values to not agree with each
other. The discrepancy for the muon is 3.3σ, which is more significant than for the
electron. The muon discrepancy is given by ∆aµ = 2.61 ·10−9. This is the first reason
why we choose to look at the anomalous magnetic moment of the muon. Secondly,
it is more susceptible to new physics effects. This is because the contributions to al
scale with the mass of the lepton:

δal
al
∝
m2
l

M2
, M � ml. (I.1)

Here, ml is the mass of the lepton. With this we can estimate how much al is influ-
enced by new physics that starts to take effect at a mass scale M . For example, we
can estimate the effect of the weak interactions at M = mW compared to a calcula-
tion including only QED. We see that a heavier lepton is influenced more strongly
due to the factor ml.

To account for the discrepancy, we have to alter the SM. One of the possible exten-
sions is called the minimal supersymmetric standard model (MSSM). In the MSSM,
a (broken) symmetry between fermions and bosons is added to the SM. This would
(more than) double the number of existing particles.

The MSSM adds over a hundred new free parameters. This number can be re-
duced with additional assumptions. A model that implements a number of these as-
sumptions is the phenomenological MSSM (pMSSM), which we will look into more
closely. It reduces the number of free parameters to 19. Using specific values for
these parameters, one can determine the particle spectrum of the theory. This is
typically done by using a spectrum generator, e.g. SPheno. One can also calculate
observables based on the particle spectrum and parameter values, for which there
are a multitude of programs available. However, for the same input, the results from
these programs can differ.

In this thesis we will examine the differences between the output of the programs Su-
perISO and MicrOMEGAs for the pMSSM contribution to the anomalous magnetic
moment of the muon. We focus on these two programs, as they are widely used in
the SUSY theory community. When providing these programs the same input, their
output can be significantly different for δaµ. We will explain why this happens and
which program should be prioritised for δaµ calculations.

In chapter 1 we will lay the theoretical groundwork required for calculations of the
anomalous magnetic moment within the SM. It will feature the types of Feynman
diagrams that are relevant for the anomalous magnetic moment and techniques on
how to evaluate their relevant parts. In chapter 2 we will give an overview of the
supersymmetric extension of the SM that we will consider. In chapter 3 we will
introduce the additional Feynman diagrams in the pMSSM. We will use these to
show which pMSSM parameters are significant for δaµ. Finally, in chapter 4 we
will introduce the program SPheno, MicrOMEGAs and SuperISO. The latter two
will be used for calculating δaµ. We will show the difference in output between
MicrOMEGAs and SuperISO and explain why the difference exists.
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Conventions

We will use the mostly negative signature for the metric:

ηµν = diag(+1,−1,−1,−1).

When repeated indices occur, we will use the Einstein summation convention given
by:

xµxµ = (x0)2 − (x1)2 − (x2)2 − (x3)2.

We will use Feynman slash notation:

/p = γµpµ,

where the γ-matrices are defined as:

γ0 =

(
12 0
0 −12

)
, γi =

(
0 σi

−σi 0

)
, γ5 =

(
0 12

12 0

)
,

where i can be 1, 2 or 3 and 12 is the 2-dimensional identity matrix. The product of
γ-matrices is given by γ5 = iγ0γ1γ2γ3. The pauli spin matrices, σi, are given by:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

A useful combination of the γ-matrices is:

σµν =
i

2

(
γµγν − γνγµ

)
.

The partial derivative is defined as:

∂µ =
∂

∂xµ
.

We will denote the difference between experimental value and the SM theoretical
value of the anomalous magnetic moment as ∆aµ. When we calculate a contribu-
tion to aµ from a specific diagram or process we denote this contribution with δaµ.

Before chapter 1.5, standard SI units will be used. Starting in chapter 1.5 and on-
ward, natural units (~ = c = 1) will be used.

We will make use of the fractional charge Q at certain points in the thesis:

q = Qe,

with q being charge and e the elementary charge. Q is then just a number, i.e. −1 for
the electron.

The uncertainties determined for theoretical and experimental results will be de-
noted within parenthesis behind the result itself. The value inside parenthesis is to
be taken as the uncertainty on the last digits of the result. The amount of digits inside
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the parenthesis give the amount of last digits of the result that are unsure. Example:

x = 123456(78) =⇒ 123378 < x < 123534,

y = 7654.3(2.1) =⇒ 7652.2 < y < 7656.4.

Certain results will include multiple uncertainties coming from different sources,
they will be represented by multiple parenthesised numbers following the result.
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Chapter 1

The anomalous magnetic moment
within the SM

1.1 Classical magnetic moment

To get an understanding of the anomalous magnetic moment within the SM, we first
need to look at the classical concept of the magnetic moment, rooted in electrody-
namics.

The magnetic moment is an intrinsic property of an object or particle, and defines
how it reacts when exposed to an externally applied magnetic field. It can be thought
of as a magnetic dipole that, when disaligned inside a magnetic field, will start to
precess. This precession is due to the torque created by the force of the external
magnetic field on the current created by the object or particle. The magnetic dipole
moment ~µ is defined as

~µ =
1

2

∫
V
~r ×~j dV,

where ~r is the position vector with respect to the center of mass of the volume V that
we integrate over and ~j is the current density inside this volume [5].

If we consider a simple charged object rotating in a circle around some centre point
at a relative distance ~r, the above expression becomes the product of the displaced
charge (current) and the area it encloses. It was thought historically that this is how
an electron revolves around a proton. This is shown inside an external magnetic
field in figure 1.1, where the torque created by this external field is illustrated as
well. The magnetic moment for such a system is given by

~µ =
1

2

∫
~r ×~j dl =

1

2

∫
~r × qv

2πr
d~l =

qv

2πr
πr2n̂ = − e

2me

~L ≡ − ge

2me

~L. (1.1)

Here, q is the charge of the object (−e in the case of the electron, used in the last
equality), v its velocity and ~L the orbital angular momentum of the object. The mass
in the equation belongs to the particle in the current loop, me in the above case.
Note that the magnetic moment and the angular momentum are directly related.
The quantity g has been added artificially in the last equivalence. Classically, g = 1.
It is often referred to as the dimensionless magnetic moment or the g-factor. It is
defined as

g = γm
~
µB

,

where γm = |~µ|/|~L| = µ/L is the gyromagnetic ratio, which measures the ratio of
the magnetic moment and angular momentum. For elementary particles, we can
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FIGURE 1.1: The definition of the magnetic moment for a simple
charge loop with the illustration of the created torque by an exter-
nal magnetic field. The charge of the particle in the figure is taken to

be positive.

express this ratio in terms of the Bohr magneton:

γm =
µ

L
= −g e

2m
= −gµB

~
, with µB =

e~
2m

.

The quantum mechanical concept of spin will contribute to the angular momentum
of an elementary particle, thus increasing its g-factor. At first glance, the g-factor
will become 2, but radiative corrections will increase its value slightly. These aspects
will be discussed in chapter 1.5.

To identify which (quantum mechanical) terms affect the magnetic moment we will
need to look at the potential energy caused by a magnetic dipole. Using the circular
loop example in figure 1.1 will aid our discussion. The torque ~τ = ~µ × ~B that the
circular current experiences when inside an external magnetic field, causes work to
be done and, in turn, causes a change in the potential energy. If we assume the angle
between the magnetic field and the magnetic moment to be θ, we can derive the
potential energy by integrating with respect to an arbitrary reference point:

U =

∫
~τ · d~θ =

∫
µB sin θ′dθ′ = −~µ · ~B. (1.2)
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1.2 Magnetic moment in quantum field theory

The concept of spin modifies the magnetic moment and the dimensionless gyromag-
netic ratio, even when the orbital angular moment is zero. An example of this would
be a ‘free’ electron.

A system of free spin-1
2 particles of mass m, represented by the Dirac field ψ, and

antiparticles of mass m represented by the Dirac field ψ̄, is described by the Dirac
Lagrangian

L = i~cψ̄(x)/∂ψ(x)−mc2ψ̄(x)ψ(x).

The Lagrangian consists of a kinetic term and a mass term for the particle fields.
No interaction term is present. Solving the Euler-Lagrange equations for this La-
grangian leads to the Dirac equation:

(i~/∂ −mc)ψ(x) = 0. (1.3)

The Lagrangian is invariant under a global U(1) transformation. However, when
invoking the gauge principle by imposing invariance under local U(1) transforma-
tions:

ψ(x)→ e−ieα(x)/~ψ(x),

ψ̄(x)→ eieα(x)/~ψ̄(x),

this is no longer true. The transformed Lagrangian will have an extra term violating
invariance. To prevent this term, the derivative can be modified to produce a counter
term. To this end, a new gauge field Aν must be introduced which transforms as:

∂ν → Dν = ∂ν −
ie

~
Aν(x),

Aν → Aν − ∂να(x).

The ψ(x) fields still describe (charged) spin-1
2 leptons. The new gauge field Aν can

be identified as the photon field. A new term will now be present in the Lagrangian,
describing the interaction between the leptons and the photons. The photon field
also has its own kinetic and mass term. However, the mass term needs to be zero
in order to preserve U(1) local gauge invariance. The Quantum Electrodynamics
(QED) Lagrangian is then found [6]:

LQED = i~cψ̄(x)/∂ψ(x)−mc2ψ̄(x)ψ(x)− 1

4
FνρF

νρ + ecψ̄(x)γνAν(x)ψ(x), (1.4)

where Fνρ = ∂νAρ − ∂ρAν is the electromagnetic field tensor, describing the kinetic
term of the photon field.

To find the magnetic moment of the leptons with charge q, one needs to evaluate the
Dirac equation in an external magnetic field. This is because the magnetic moment
of a particle or system can only be measured or tested by subjecting it to a magnetic
field. We thus need to modify equation 1.3 to include the (covariant) derivative for
an external magnetic field. The result is:

(i~/∂ + e /Aν −mc)ψ(x) = 0.
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Trying to solve this relativistically is complex. One usually tries a unitary transfor-
mation to remove the γ operators from the Dirac equation, but this is not possible in
the relativistic case up to all orders. Fortunately, the non-relativistic limit is already
insightful. In this limit, we only consider terms up to order p

mc . The above differ-
ential equation can then be rewritten into the Pauli equation with a specific unitary
transformation. We omit the derivation of the general transformation here, see [7]
and [8] for more details. After the transformations, the four-component Dirac fields
ψ(x) are split into two-component Pauli spinors. We only consider the dominant (at
non-relativistic energies) component: ϕ. The Pauli equation is then found:

i~
∂ϕ̂

∂t
=
( 1

2m

(
− i~~∇+ e ~A

)2
+ eΦ +

e~
2m

~σ · ~B
)
ϕ̂. (1.5)

In equation 1.5, the electromagnetic field is split up in components Φ and ~A accord-
ing to Aν = (Φ/c, ~A). The Pauli matrices are denoted by ~σ. The Pauli equation
closely resembles the Schrödinger equation except for the extra term involving the
magnetic field. Using equation 1.2, this term is interpreted as the potential energy of
the magnetic dipole moment with:

~µs = − e~
2m

~σ = − e

m
~S, (1.6)

where ~S = ~~σ2 is the angular momentum due to spin. Defining g = gl for the classical
result in equation 1.1 and adding it to 1.6, we find

~µtot = ~µl + ~µs = − e

2m

(
gl~L+ gs~S

)
= −µB

~
(
gl~L+ gs~S

)
.

We have gl = 1 and now find gs = 2 as done by Dirac in 1928 [9].

Radiative corrections also add to gs, causing a deviation from gs = 2. We can quan-
tify this deviation in a renormalisable theory. This quantity is called the anomalous
magnetic moment and is given by

aµ =
g − 2

2
. (1.7)

Here, the label for g has been removed as is convention, but it refers to gs. Fur-
thermore, µ denotes the muon, but this quantity can be determined for any charged
particle or composite particle.

1.3 Current experiment

The claim that aµ 6= 0 due to quantum fluctuations has to be experimentally verified.
The most precise experimental value has been established by the E821 experiment
at Brookhaven National Laboratory (BNL) in 2001 [2]:

aexp
µ = 116592091(54)(33) · 10−11, (1.8)

where the first (second) uncertainty indicates the statistical (systematic) uncertainty.
The anomalous magnetic moment is a parity (P) and charge conjugation (C) conserv-
ing quantity, as such the experimental value is determined by taking the average of
the muon and anti-muon measurements.
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The basic principle of the E821 BNL experiment is to measure the frequency of the
precession of the magnetic moment of the muon within a constant external magnetic
field. This precession is referred to as Larmor precession. Its corresponding Larmor
frequency is classically given by the product of the gyromagnetic ratio with the mag-
netic field. A relativistic correction has to be applied to get to the full spin precession
ωs, see [10]:

~ωs = γm ~B + (1− γ)
e ~B

γm
=
ge ~B

2m
+ (1− γ)

e ~B

γm
,

where γ = 1√
1−β2

is the Lorentz factor.

The frequency we are interested in is exactly the difference in frequency between the
spin precession (ωs) of the muon, and its (relativistic) cyclotron frequency (ωc). The
cyclotron frequency is given by [11]:

~ωc =
e ~B

γm
.

By measuring the spin and cyclotron frequency of muons moving in a large ring, we
can thus determine the anomalous magnetic moment. The difference between these
frequencies is defined as ~ωa and is given by:

~ωa = ~ωs − ~ωc =
g − 2

2

e ~B

m
.

We see that if g = 2, ~ωa will vanish. The fact that it doesn’t can be measured due to
the spin frequency being disaligned with itself after each rotation in a circular ring.
This is schematically depicted in figure 1.2.

A circular ring that measures ~ωa is the muon storage ring at the E821 experiment.
For this experiment, the disalignment is roughly 12 degrees per rotation. To mea-
sure this, muons are injected into an external constant magnetic field at relativistic
velocities. However, this requires electric fields to focus the muons. These fields
alter the expression for ~ωa, leading to the Thomas-Bargmann-Michel-Telegdi (BMT)
equation [12]:

~ωa =
e

mµ

(
aµ ~B −

[
aµ −

1

γ2 − 1

]~v × ~E

c2

)
,

This equation is split into a term caused by the magnetic field and a term caused
by the (focusing) electric fields. The magnetic field term scales linearly with the
anomalous magnetic moment. This means that aµ could be determined directly,
in absence of the electric field. However, as these fields are necessary to focus the
muons, the experiment instead tries to minimise the contribution of this term. This
is done by tuning the velocity of the muons such that the term in brackets becomes
zero:

γ =

√
1 +

1

aµ
≈ 29.3 =⇒

[
aµ −

1

γ2 − 1

]
≈ 0.

This cannot be done exactly, as the value of aµ is the quantity we wish to extract
from this experiment. However, the contribution from the electric field can be ap-
proximated to vanish when tuning the velocity of the muons correctly. Fortunately,
at this velocity, the muon is highly relativistic, increasing its lifetime just long enough
for it to be measurable. This is why the muon is most interesting for measurements
of the anomalous magnetic moment; it is the heaviest charged lepton which still
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FIGURE 1.2: Schematic depiction of muons traveling in a circular
ring. Muon injection takes place at the top of the circular ring. The
momentum vector of the muons is given in black. The spin vector is
given in red. After one full rotation at the BNL experiment, the spin

vector is disaligned with the momentum vector by roughly 12◦.

lives long enough to be measured. The tau lepton decays seven orders of magnitude
faster than the muon and as such is not suitable for this experiment.

The theoretically determined anomalous magnetic moment of the muon is given by:

aSM
µ = 116591830(1)(40)(26) · 10−11. (1.9)

We will see how this value and the uncertainties are determined in chapter 1.7 and
1.8. The discrepancy between the theoretical and experimental determination of aµ
is 3.3σ and has been one of the longest standing deviations between theory and ex-
periment within the SM.

The latest experiment is set up at Fermilab and uses the same muon storage ring
from BNL, performing the same experiment, but with an improved injection method
and a longer run time [13]. It is expected to publish its first results in the summer
of 2020. This new experiment should decrease the statistical uncertainty of the BNL
experiment, which is the largest uncertainty as seen in equation 1.8. The result is
expected to yield a four times smaller uncertainty. If the measured value does not
change in this new experiment, the discrepancy between theory and experiment will
increase to roughly 7σ. Since a discrepancy of at least 5σ is considered significant for
the discovery of new physics, we will look into possible BSM explanations.
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1.4 Brief summary of the SM

The SM is the most accurate and precisely tested theory in physics. It is a quantum
field theory characterised by the following gauge symmetries:

SU(3)C ⊗ SU(2)L ⊗ U(1)Y .

Each of these gauge symmetries corresponds to a fundamental force. The hyper-
charge force is governed by the U(1)Y gauge symmetry, where Y denotes the hy-
percharge. The SU(3)C gauge group represents the strong force, with C denoting
the colour charge. The theory associated to it is called Quantum Chromodynamics
(QCD). Lastly, SU(2)L is the gauge group belonging to the weak force. Here, L de-
notes the fact that the weak force only couples to left-handed particles. These are
particles with a negative chirality. For massless particles, this corresponds to a neg-
ative helicity, i.e. particles for which the spin vector projected onto the momentum
vector yield a negative result. The electromagnetic force is contained in this setup,
hidden in the U(1)Y ⊗ SU(2)L, see below.

The SM consists of two types of elementary particles; bosons and fermions. The
bosons are the force carriers, which cause the specific interactions decribed above.
They always have an integer spin. A special type of boson is the Higgs boson. It is
responsible for giving mass to most SM particles. The fermions are the matter par-
ticles, and will have spin 1

2 . The quarks and leptons make up the fermions and are
grouped into families and split into left-handed particle doublets and right-handed
particles due to the bias towards left-handed particles by the weak force.

The three quark families each consist of an up-type and a down-type quark. The
first family contains the up quark (u) and the down quark (d). The second family
consists of the charm (c) and strange (s) quarks and the third family has the top (t)
and bottom (b) quarks. The three lepton families are the electron (e), muon (µ) and
tau (τ ) with their corresponding neutrinos (ν). The particle content of the SM is sum-
marised in table 1.1.

The electromagnetic and weak force are often combined into the electroweak (EW)
force. This comes from combining SU(2)L⊗U(1)Y . The EW gauge fields are given by
the massless fields W 1,W 2,W 3 and B0. Due to the Higgs mechanism, the SU(2)L⊗
U(1)Y symmetry is broken, making the gauge fields combine into mass eigenstates.
The W 1 and W 2 gauge fields combine into the W+ and W− boson. The W 3 and B0

gauge fields combine into the Z boson and the photon (γ). The original gauge fields
were massless, but the W± and Z boson gain a mass due to the symmetry breaking,
whereas the photon remains massless.

The relationship between charge Q, weak isospin I3 and hypercharge YW expresses
that the electromagnetic force is hidden in U(1)Y ⊗ SU(2)L:

Q = I3 +
1

2
YW .

Anomalous magnetic moment
The anomalous magnetic moment is caused by interactions between the muon and
all of the other SM particles. We will split up the contributions to the anomalous
magnetic moment in a similar way as the gauge groups of the SM are divided. Any
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SM particles spin 0 spin 1
2 spin 1 Q I3 YW

quarks

(3 families)

(uL dL)

uCR

dCR

(2
3 −

1
3 )

−2
3

1
3

(1
2 −

1
2 )

0

0

(1
3

1
3 )

−4
3

2
3

leptons

(3 families)

(νL eL)

eCR

(0 −1)

1

(1
2 −

1
2 )

0

(−1 −1)

2

Higgs H 0 −1
2 1

gluon g 0 0 0

W W± ±1 ±1 0

Z Z0 0 0 0

photon γ 0 0 0

TABLE 1.1: All particles present in the Standard Model with their
corresponding spin, charge Q in units of e, weak isospin I3 and hy-

percharge YW .

interaction governed by the strong force will be classified as a QCD contribution.
Any interaction governed by the weak force, without a strong force being present,
will be classified as an EW contribution. The interactions where only the electro-
magnetic force plays a part will be classified as Quantum Electrodynamics (QED)
contributions.

1.5 QED contributions

As mentioned in the conventions, we will now adopt natural units:

~ = c = 1.

In QFT we typically calculate probability amplitudes and densities, and related to
that matrix elements. By applying perturbation theory in the interaction strengths
we find a diagrammatic representation called Feynman diagrams from which we
extract quantities of interest. Only a part of the matrix element is relevant for ∆aµ.
We will now derive the relevant part.

The deviations from g = 2 are caused by higher order effects in the vertex between a
muon interacting with a photon, as described by the Lagrangian in equation 1.4. By
using the Feynman rules in the Feynman-’t Hooft gauge as can be found in [14], we
can compute the matrix element of the diagram in figure 1.3a. Note that the direction
of time is upwards in these diagrams. At tree level, the matrix element is given by:

iM = ieū(p2)γνu(p1)εν(q).

We will omit the polarisation vector εν(q), as this is not relevant for ∆aµ. The corre-
sponding matrix element then has an open Lorentz index:

iM = iMν · εν .
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µ−

p1

µ−

p2

γ

← q

(A) The lowest order contribution to ∆aµ.

µ−

µ−

γ

Γν

(B) The diagram incorporating all loops.

FIGURE 1.3: The Feynman diagrams showing the lowest order contri-
bution and the contribution up to all orders. The p1, p2 and q denote

the momenta of the relevant particles.

We will continue to work with the iMν matrix element from here on.

The matrix valued object between the spinors ū(p2) (outgoing muon) and u(p1) (in-
coming muon) is the cause of the open Lorentz index of the matrix element. It has to
be there at any loop order. As such, the matrix element of the generic loop diagram
of figure 1.3b can be postulated by introducing a generic function Γν :

iMν = ieū(p2)Γνu(p1). (1.10)

As ū(p2)γνu(p1) transforms as a vector, so must ū(p2)Γνu(p1). Thus, it must be a
linear combination of the vectors present in the diagram. We define the momentum
of the incoming muon as pν1 , the momentum of the outgoing muon as pν2 and the
momentum of the photon as qν . Analogous to Peskin and Schroeder [15], we then
use these momenta and γν to construct the possible contributions Γν can have. In
contrast to Peskin and Schroeder, we also include the parity violating terms caused
by γ5.

It is conventional to use the sum and difference of the incoming momenta as vari-
ables: P ν = pν1 + pν2 and qν = pν2 − pν1 . This results in 6 independent contributions:

Γν = γνA1 +
P ν

2m
A2 +

qν

2m
A3 + γνγ5A4 +

qν

2m
γ5A5 + i

P ν

2m
γ5A6. (1.11)

This is called the covariant decomposition. It turns outA3 = 0 andA5 = −4m2q−2A4

due to current conservation, see [16]. This leaves us with only four independent
amplitudes which could possibly contribute. With help of the Gordon identities:

ū(p2)γνu(p1) = ū(p2)
P ν

2m
u(p1) + ū(p2)i

σνρqρ
2m

u(p1),

ū(p2)i
P ν

2m
γ5u(p1) = ū(p2)

σνρ

2m
qργ

5u(p1),

(1.12)
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some terms can be rearranged, leading to a generic expression for Γν :

Γν = γν(A1 +A2)− iσ
νρqρ
2m

A2 +
(
γν − 2mqν

q2

)
γ5A4 +

σνρqρ
2m

γ5A6.

Now we define form factors, which are functions of only the exchanged momentum
q, that tell us something about the properties of the interaction between particles:

FE = A1 +A2,

FM = −A2,

FD = A6,

FA = A4.

We can rewrite Γν in terms of the form factors:

=⇒ Γν = γνFE + i
σνρqρ
2m

FM +
(
γν − 2mqν

q2

)
γ5FA +

σνρqρ
2m

γ5FD. (1.13)

In this equation, FE is the electric form factor, FM the magnetic form factor, FA the
anapole moment form factor and FD the electric dipole moment form factor. The
magnetic form factor is responsible for the anomalous magnetic moment. It needs
to be evaluated at an on-shell momentum transfer, i.e. q2 = 0:

FM (0) = aµ.

Similarly, evaluating FE at q2 = 0 gives the electric charge. The factor in front of FM
(or A2) came from the P ν vector. This means that when we evaluate a diagram, any
parity conserving terms (i.e. without γ5) proportional to P ν contribute to aµ.

First-order contribution
We can now find the first-order QED contribution to the anomalous magnetic mo-
ment. It is similar to figure 1.3a but an extra photon is exchanged as shown in figure
1.4. The loop in the diagram contains an unknown momentum labeled k1, which
has to be integrated over.

The matrix element corresponding to figure 1.4 is given by:

iMν

(ie)
=

∫
d4k1

(2π)4
ū(p2)ieγσ

i(/k2 +m)

k2
2 −m2 + iε

−igσρ
(p1 − k1)2 + iε

γν
i(/k1 +m)

k2
1 −m2 + iε

ieγρu(p1).

We divide out one factor of ie, because this was a general factor in front of Γν in
equation 1.10. We use the following γ-relations

γνγργν = −2γρ,

γν/a/bγν = 4a · b,
γν/a/b/cγν = −2/c/b/a,

to rewrite the matrix element in a more compact form:

iMν

(ie)
=

2ie2

(2π)4

∫
d4k1

ū(p2){/k1γ
ν/k2 +m2γν − 2m(kν1 + kν2 )}u(p1)

[(p1 − k1)2 + iε][(k1 + q)2 −m2 + iε][k2
1 −m2 + iε]

. (1.14)
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µ−

p1

k2

γ

← q

k1

µ−

p2

p1 − k1 γ
ν

ρ

σ

FIGURE 1.4: The 1-loop QED diagram. The greek letters at the ver-
tices are Lorentz indices and the p, k and q represent momenta.

These types of integrals are usually rewritten such that the denominator is in a spher-
ical symmetric form. Feynman parameters are a good way to do this: we look for
a new variable l expressed in terms of k, for which the denominator reads like a
(degenerate) propagator [l2−∆ + iε]n. The factor n depends on the number of prop-
agators in the matrix element (here n = 3). A simplification of the general formula
for finding this denominator is given by [17]:

1

A1A2...An
=

∫ 1

0
dx1dx2...dxnδ(

∑
xi − 1)

(n− 1)!

[x1A1 + x2A2...xnAn]n
. (1.15)

By taking x1 = x, x2 = y and x3 = z, and choosing l = k1 − xp1 + yq and ∆ =
(1− x)2m2 − yzq2 we accomplish the desired result:

iMν

(ie)
=

4ie2

(2π)4

∫
d4k1

∫ 1

0
dxdydzδ(x+ y + z − 1)

× ū(p2){/k1γ
ν/k2 +m2γν − 2m(kν1 + kν2 )}u(p1)

[l2 −∆ + iε]3
.

The numerator and integration variable in the integral in equation 1.14 then have to
be rewritten in terms of l. To do this, we make use of the following relations:

/p1u(p1) = mu(p1),

ū(p2)/qu(p1) = 0

(p1 + q)2 = p2
2,

k1 + q = k2,

2p1 · q + q2 = 0,

p2
1 = p2

2 = m2.

We will also discard any term with an odd power of l, as the symmetry of the integral
will make these terms vanish. Lastly, any term with lν lρ can be rewritten to 1

4g
νρl2
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due to Lorentz covariance. We then find:

iMν

(ie)
=

4ie2

(2π)4

∫
d4l

∫ 1

0
dxdydz

δ(x+ y + z − 1)

[l2 −∆ + iε]3

× ū(p2)
[
γν
(
− 1

2
l2 +m2(1− 2x− x2) + (1− y)(1− z)q2

)
+ (pν2 + pν1)mx(x− 1) + qνm(x− 2)(z − y)

]
u(p1).

(1.16)

We see three distinct terms between the spinors. One is proportional to γν , one is
proportional to qν and one is proportional to P ν = pν1 + pν2 . As has been explained,
the term multiplied by P ν is the one that directly contributes to the magnetic form
factor and thus aµ. To arive at the form of equation 1.13, we need to rewrite the term
proportional to P ν with the use of equation 1.12. We then have to evaluate only this
part of the integral:

FM (q2) = 4ie2

∫
d4l

(2π)4

∫ 1

0
dxdydz δ(x+ y + z − 1)

2m2x(1− x)

[l2 −∆ + iε]3
. (1.17)

We focus first on the integral over l, which only the denominator depends on. To
evaluate it, we use a technique called Wick rotation, see [18]. The four vector l is a
vector in Minkowski space. Wick rotation rewrites the four vector in a 4-dimensional
Euclidean vector and performs the integral in 4-dimensional spherical coordinates.
To do this, we define a new variable l0 ≡ il0E . We can then evaluate the integral by
making use of:∫

d4l

(2π)4

1

[l2 −∆]n
=
i(−1)n

(2π)4

∫
dΩ4

∫ ∞
0

dlE
l3E

[l2E + ∆]n
,

with dΩ4 being the integration measure of a 4-dimensional surface area, resulting in
a factor of 2π2. The other part of the integral over lE can be evaluated by substituting
a = l2E + ∆. It leads to:

i(−1)n

(2π)4

∫
dΩ4

∫ ∞
0

dlE
l3E

[l2E + ∆]n
=
i(−1)n

(4π)2

1

(n− 1)(n− 2)

1

∆n−2
.

For the denominator in equation 1.17, n = 3. This gives us a contribution of −i
2∆(4π)2

from the l integral. We recall ∆ = (1 − x)2m2 − yzq2. The integral can now be
evaluated at an on-shell momentum transfer (q2 = 0):

FM (0) =
e2

8π2

∫ 1

0
dxdydz δ(x+ y + z − 1)

2m2x(1− x)

m2(1− x)2
=

e2

8π2
=

α

2π
. (1.18)

In the last step, the constants are rewritten into the fine-structure constant α.

Remarkably, the final expression is a constant, independent of the mass of the lep-
ton. This means this first-order contribution to the anomalous magnetic moment is
exactly the same for all three charged leptons. This is no longer true at higher or-
ders, which causes a difference between the magnetic moments of the three charged
leptons.
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1.6 Higher-order calculation techniques

The first order QED result, α
2π ≈ 0.0011614, constitutes more than 99% of the to-

tal contribution to the anomalous magnetic moment of the muon, as can be seen in
equation 1.8. The rest of the contributions come predominantly from higher order
QED diagrams, but also EW and QCD diagrams are required to get a precise enough
theoretical value for comparison with the experimental value.

Finding an expression for a higher order diagram can become quite difficult. Hence,
several techniques to simplify these calculations have been developed. In deriving
the expression for the first order QED diagram, we rewrote an integrand until a sin-
gle useful term could be extracted. A projection operator can do just that; it projects
out terms from any matrix element that are required.

Projection operator
For any Ai as defined in equation 1.11, we can define a projection operator Pi such
that:

Ai = Tr[Pνi Γν ]. (1.19)

An ansatz for a general projection operator is similar to the covariant decomposition
in equation 1.11 but with different coefficients:

Pν = (/p1
+m)

[
c1γ

ν + c2
P ν

2m
+ c3

qν

2m
+ c4γ

νγ5 + c5
qν

2m
γ5 + ic6

P ν

2m
γ5
]
(/p2

+m).

The (/p1
+ m) and (/p2

+ m) are necessary to enforce the mass-shell condition for the
leptons after taking the trace. More information on this can be found in [16]. We can
find expressions for the coefficients ci by taking the trace of this general projector
with the covariant decomposition:

Tr[PνΓν ] =

6∑
i

giAi.

The gi coefficients are combinations of the ci coefficients, m, q2 and d (the number of
spacetime dimensions). Writing out the sum gives:

6∑
i

giAi = A1

[
c1

(
8m2 + 2dq2 − 4q2

)
+ c2

(
8m2 − 2q2

)]
+A2

[
c1

(
8m2 − 2q2

)
+ c2

(
8m2 +

q4

2m2
− 4q2

)]
+A3

[
c3

(
2q2 − q4

2m2

)]
+A4

[
c4

(
2dq2 + 8m2 − 8dm2 − 4q2

)
+ c5

(
2q2
)]

+A5

[
c4

(
− 2q2

)
+ c5

( q4

2m2

)]
+A6

[
c6

( q4

2m2
− 2q2

)]
.

For the anomalous magnetic moment, we need Pν2 . This is found by setting g2 = 1
and every gi = 0 ∀ i 6= 2. We note that g2 is a function of the coefficients c1 and c2 and
note that these coefficients further appear in g1. Hence, we need to find expressions
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for c1 and c2 such that g1 = 0 and g2 = 1. We find:

c1 = c2
2q2 − 8m2

2dq2 + 8m2 − 4q2
, c2 =

2(d− 2)m2q2 + 8m4

(d− 2)q2(q2 − 4m2)2
.

The projector for the magnetic moment is then given by substituting c1 and c2 into
the general projection operator which yields [19]:

Pν2 = (/p1
+m)

2m2

(d− 2)q2(q2 − 4m2)

(
γν +

(d− 2)q2 + 4m2

q2 − 4m2

P ν

2m

)
(/p2

+m). (1.20)

Mass expansion
Another technique, often used in conjunction with the projection operator, is apply-
ing a mass expansion. This can be done when a particle inside the loop of a diagram
is massive compared to the masses of the incoming and outgoing particle. For the
anomalous magnetic moment, we only evaluate diagrams with an incoming and
outgoing muon. Hence, for any diagram where there is a particle in the loop heavier
than 0.1 GeV, we can apply this technique. This will often be the case in electroweak
diagrams and most supersymmetry diagrams [20].

Let us look at the diagram in figure 1.5 to exemplify this technique. We see two
scalar boson particles denoted byA and a fermion particle denoted byB and assume
MA,MB � mµ, p1, p2. Let us denote the vertex couplings as nin,out

ABµ and nνAAγ and the
loop momentum by l. We can then find Γµ for this diagram:

Γν =

∫
d4l

ie

nout
ABµn

ν
AAγ(/l +MB)nin

ABµ

[(p1 − l)2 −M2
A](l2 −M2

B)[(p2 − l)2 −M2
A]
.

We can now apply the mass expansion. This means we assume [(p1 − l)2 −M2
A] '

[l2 −M2
A]. In doing so, we neglect a part of the denominator for which we have to

correct via a Taylor expansion. We omit the couplings and numerical factors, as they
do not influence the integral. The result is:

Γ ∝
∫
d4l

/l +MB

(l2 −M2
B)(l2 −M2

A)2
·
[
1 +

2l · p1

l2 −M2
A

+
2l · p2

l2 −M2
A

+ H.O.
]
.

We note that, especially in the context of electroweak and supersymmetry diagrams,
these vertices can be dependent on the chirality of the particles, adding a factor of
(1 ± γ5). This effectively projects out either the MB or the /l from the numerator.
Regardless of which term remains, one can group even and odd terms, since any
integral with an odd amount of l factors in the numerator vanishes. The resulting
integral will be of the form (up to whichever order you continue the expansion):

Γµ ∝
∫
d4l

l(2m)

(l2 −M2
B)(l2 −M2

A)n
,

with n > 2m. This integral can be evaluated for n = 1 and m = 0. For higher
orders of m, one can introduce an extra M2

A term to cancel it with the equal term in
the denominator and any n > 1 integral can be found by taking derivatives of the
n = 1 integral with respect to M2

A. Similar expansions can be made for other types
of interactions or whenever only one of the (different) particles is heavy.
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µ−

p1

γ

← q
B l

A

µ−

p2

A

FIGURE 1.5: A theoretical diagram with heavy particles A and B in-
side the loop. The momentum of particle B is labeled by l.

1.7 Higher order QED, EW and strong contributions

QED contributions
With the techniques of the previous section, a lot of progress has been made on
higher order QED calculations. Even so, computer techniques have to be used to
reach a theoretical precision comparable to the experimental one. Up to 5 loop orders
(12672 diagrams) have been calculated, using numerical integration techniques, see
[21]. The total QED contribution up to the fifth order is given by [22]:

aQED
µ = 116584718.92(0.03) · 10−11. (1.21)

The largest part of the uncertainty is caused by the uncertainty in α. Smaller un-
certainties originate from the ratio of lepton masses and the uncertainty of the em-
ployed numerical-integration techniques.

EW contribution
With the help of equation I.1, we can estimate the electroweak contributions to the
anomalous magnetic moment. To do this, we use the mass of the heaviest particle
in the diagram as M in the equation. In the case of the diagram in figure 1.6b this
would be the W boson. We find the electroweak contributions to be of order 4 · 10−7

weaker than the first-order QED contribution. However, due to the precision of both
the QED calculations and the experimental measurements, we have to take these di-
agrams into account anyway.

If one calculates both first order diagrams given in figure 1.6, their contribution
would be 194.8 ·10−11 [23]. Higher orders will in general contribute less, due to each
order scaling with another order of the electroweak coupling constant. However,
here it turns out that the two-loop contribution is surprisingly large and negative:
−41.2 · 10−11 [24]. It thus provides a non-negligible correction to the first order re-
sult. This is due to the Higgs Boson coming into play at two loops and higher, along
with corrections to the first-order EW diagrams. A diagram that can be considered
a correction to a first-order EW diagram, would be one where an extra photon is
exchanged between the incoming and outgoing muon. This would be considered a
QED correction to the first-order EW diagrams. If a Z boson would be exchanged,
it would be an EW correction. These second-order contributions can be summarised
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µ−

µ−

γ

µ−

µ−

Z

(A) Electroweak 1-loop diagram with
a Z-boson exchange.

µ−

γ
νµ

W

µ−

W

(B) Electroweak 1-loop diagram with two W-
bosons and a muon neutrino exchange.

FIGURE 1.6: The two 1-loop diagrams which add the largest Elec-
troweak contribution to the anomalous magnetic moment of the

muon.

by making use of the projection operator and the mass expansion [20] [25]:

δa2L EW
µ =

5

3

Gµm
2
µ

8π2
√

2

α

π

(
cL log

m2
µ

m2
W

+ c0

)
,

cL =
1

30

[
107 + 23(1− 4 sin2 θW )2

]
,

(1.22)

where θW is the Weinberg angle, mW the mass of the W boson and Gµ is the Fermi
constant in terms of the muon lifetime, see [26]. The c0 term is quite complicated,
but is roughly equal to 10% of the log term and thus this correction can at first glance
be approximated by evaluating only the log term (≈ −22.9 · 10−11).

Three or higher loop orders have not been calculated yet, but are estimated to be
negligible at the moment; their contribution is smaller than the current experimental
and theoretical precision. The total electroweak contribution is:

aEW
µ =

5

3

Gµm
2
µ

8π2
√

2

(
1 +

α

π
cL log

m2
µ

m2
W

+
α

π
c0

)
= 153.6(1.0) · 10−11. (1.23)

The main source of uncertainty is due to the diagrams with a quark loop at two loop
orders.

QCD contributions
The largest uncertainty in the theoretical calculation of the anomalous magnetic mo-
ment is due to contributions of diagrams involving the strong coupling, usually re-
ferred to as hadronic contributions. These involve diagrams with quarks and gluons,
and are mainly a problem due to the non-perturbative nature of the strong coupling
at low energy scales. Unfortunately, we are interested in exactly these scales by def-
inition (q2 = 0). We therefore need a combination of both traditional perturbative,
and non-perturbative techniques. As a result, the uncertainties are large. The total
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hadronic contribution is calculated (partially up to third order) to be [27]:

ahadr
µ = 6939(39)(7) · 10−11 + 19(26) · 10−11. (1.24)

The largest contribution comes from second-order diagrams as seen in figure 1.7 and
is determined by combining experimental measurements with a dispersive relation
running down from higher energies [28]. This means the uncertainty will be partly
experimental and partly due to perturbative QCD at higher energies. The second
contribution is from all the higher-order diagrams that have been evaluated so far
by a technique called hadronic light-by-light scattering, see [29]. The uncertainty
comes from the use of this technique.

µ−

γ

µ−

q

FIGURE 1.7: The highest contributing QCD diagram. The q can be
any quark.

1.8 Total theoretical contribution

We have now listed all the currently known SM contributions to the anomalous mag-
netic moment. The uncertainty on the theoretical value is, at present, better than the
experimental uncertainty, but both are still actively being improved by collabora-
tions from all over the world. The total theoretical contribution is given by summing
1.21, 1.23 and 1.24:

aSM
µ = 116591823(1)(34)(26) · 10−11. (1.25)

The 10−13 uncertainty made in calculating the QED contributions has been omit-
ted in this value with respect to the 10−11 EW and 10−10 QCD uncertainties. For
simplicity, the uncertainties listed here have been added quadratically for the total
theoretical uncertainty.

The 3.3σ deviation between experiment and theory is now apparent when comput-
ing the difference: ∆aµ = aSM

µ − aexp
µ = −268(48)(63) · 10−11. Here, the first un-

certainty is due to theory and the second due to experiment. The new experiment
mentioned in chapter 1.3 will aim to reduce the last uncertainty such that it will be
smaller than the theoretical uncertainty.
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Chapter 2

Supersymmetry

The deviation between experiment and theory of the anomalous magnetic moment
is not yet significant enough to warrant new physics, but might soon be. It will then
become a shortcoming of the SM. There are many more shortcomings within the SM
which already require us to look at theories for new physics, usually referred to as
Beyond the Standard Model (BSM) theories. Such BSM theories aim to solve or shed
light on:

• The matter-antimatter asymmetry problem:
According to the theory of the Big Bang, particles and antiparticles should have
been created in equal amounts, or should have annihilated each other until
only pure energy was left. However, we observe more matter than anti-matter.
A possible explanation is that CP-violating processes create an imbalance. In
the SM the amount of CP violation is not big enough to explain the observed
imbalance. A BSM theory could include the additional CP violation that is
needed.

• The origin of neutrino masses:
The mechanism for giving neutrinos mass is not fully specified within the
SM. Initially, there was no mass term within the SM for neutrinos. However,
neutrino experiments show oscillations between neutrino flavours, implying
a neutrino to be in a mass eigenstate of multiple flavours. This means at least
two of the three neutrinos need to have a mass. The SM can provide mass to the
neutrinos but does not exploit all possibilities and does not explain the small-
ness of these masses. If a BSM theory could provide a clear-cut mechanism
for providing the neutrinos with mass, it would solve one of the unanswered
questions within the SM.

• The origin of dark matter:
The problem of dark matter is perhaps the best known. It has been postulated
in the early 1900’s and was popularised by Vera Rubin in the 1970’s as being
responsible for the experimentally inferred missing mass in galaxies or galaxy
clusters compared to what is visible. Many physicists accept the idea of dark
matter, but not everyone agrees on what it is supposed to be. If the SM would
be extended by a BSM theory, one could think of dark matter as a particle that
evades (almost) all detection through conventional means.

• Fine-tuning problem of the Higgs boson:
The Higgs mass has been measured to be roughly 125 GeV. However, once we
allow for a new scale of physics, there are self-energy corrections to the Higgs
mass that scale with the square of the scale of new physics. We already know
that scale has to be at least an order of magnitude larger than the mass of the
Higgs boson. This means a BSM theory that wants to solve this problem has to
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introduce a mechanism to counteract this. One example could be to introduce
counter terms. There is currently no mechanism within the SM itself to do this,
which means the higher order corrections due to higher scale new physics are a
lot larger than the Higgs mass itself. Most physicists agree that a theory which
doesn’t involve arbitrarily large corrections would be preferred.

• Gauge coupling unification:
When plotting the three gauge couplings within the SM versus energy, we see
them nearly reaching a unified point at a high energy scale. They just miss,
which might be due to the fact that the SM is not a complete theory. This is not
actually a problem of the SM and the force of gravity is left out as it doesn’t
come near this unified point, but nonetheless, physicists argue that theories
that unify these gauge couplings at high energy are worth pursuing.

• And more:
As mentioned above, this list is not complete. There are other open questions
and it is not certain that a generic BSM theory could solve all problems simul-
taneously. Many of these lists will, for example, not include the anomalous
magnetic moment. We will mention it here because it is the topic of this work,
but it is not considered a problem of the SM yet, in view of the current 3.3σ
significance. More of these less significant discrepancies are present in the SM,
next to more significant ones, like gravity and dark energy.

In this thesis we will consider one BSM theory in particular: the pMSSM. This is a
specific implementation of Supersymmetry (SUSY), which adds new symmetries to
the already existing ones of the SM. In the pMSSM, a symmetry is added in such
a way that the number of new parameters is minimized. A SUSY theory could be
able to explain quite a number of the aforementioned problems, like dark matter, the
fine-tuning problem, gauge coupling unification and more.

This added symmetry by SUSY is one that transforms fermions into bosons and vice
versa. It can also be thought of as adding a symmetry between the mass (matter)
and interaction (force) terms of the Lagrangian. This requires the addition of new
particles to the SM theory, for each fermion a new boson and vice versa. These new
particles are called the superpartners of the SM particles. The bosonic superpartners
share the same name as the SM fermions, but with an ’s’ attached to the front, i.e.
smuon is the superpartner of the muon. The fermionic superpartners are renamed
by changing the end of the boson name to ’ino’, i.e. photino becomes the superpart-
ner of the photon.

2.1 The pMSSM

The MSSM attempts to minimize the number of new particles [30]. Still, it leads
to over a hundred free parameters due to the unknown mechanism for symmetry
breaking.

Two of the core principles of the MSSM are R-parity and the expansion of the Higgs
sector. R-parity is a new parity introduced by supersymmetry, which adds a new
conserved multiplicative quantum number. This quantum number is -1 for all su-
persymmetric particles and 1 for all SM particles.
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The Higgs sector gets expanded as a new separate Higgs doublet is required to give
mass to the down-type quarks versus the up-type quarks. Another reason is that
chiral anomalies will occur if one uses only one Higgs boson doublet, see [31]. Both
of these Higgs doublets get superpartners as well, which eventually leads to the re-
quirement of 5 different Higgs bosons in the MSSM.

The phenomenological MSSM (pMSSM) consists of a set of constraints that intend to
lower the number of free parameters of the MSSM, based on assumptions motivated
by experiments. The added particle content of the (p)MSSM is summarised in table
2.1. Note that the electric charge of all superpartners is equal to their SM counter-
parts found in table 1.1 and thus has been excluded from the table.

Two important constraints placed on the MSSM, to create the pMSSM, are:

• There is a degeneracy between the first and second generation sfermions. For
example, the mass of the selectron and the mass of the smuon will be the same.

• The trilinear couplings of the first and second generation are set to zero. These
trilinear couplings are added to the SUSY Lagrangian after symmetry breaking
and quantify the couplings between the Higgs particles and the sleptons and
squarks. In the pMSSM, only the trilinear couplings for the stop, sbottom and
stau particles remain.

• Any terms that appear in the SUSY lagrangian that add new forms of CP-
violation are set to 0.

SUSY particles spin-0 spin-1
2

squarks

(3 families)

(ũL d̃L)

ũ†R

d̃†R

sleptons

(3 families)

(ν̃L ẽL)

ẽ†R

higgsinos
(H̃+

u H̃0
u)

(H̃0
d H̃

−
d )

gluino g̃

wino W̃± W̃ 0

bino B̃0

TABLE 2.1: The added particle content of the MSSM.

2.2 Symmetry breaking

The symmetry that SUSY introduces, predicts all supersymmetric particle masses to
be equal to their SM counterparts. This means that, for example, the smuon should
have a mass of 0.105658 GeV, equal to that of the muon. If that would be the case,
we would have expected to have already found these particles at particle collider
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experiments such as the LHC.

Presently, no supersymmetric particle has been discovered and the Higgs mass has
been determined to be roughly 125 GeV. As such, one has to introduce a mechanism
in order for the supersymmetric masses to be different from their SM counterparts,
i.e. SUSY needs to be a broken symmetry.

The exact mechanism behind the symmetry breaking is not known and therefore we
add it in a general way, see [32]. This introduces over a hundred free parameters to
the SUSY Lagrangian.

In the context of the anomalous magnetic moment, we find another reason for sym-
metry breaking: if SUSY would be unbroken, the anomalous magnetic moment
would exactly vanish. The SUSY particles would cause corrections to the anoma-
lous magnetic moment equal to the SM corrections but with a relative minus sign
[33].

2.3 The free parameters of the theory

3 Higgs parameters
Gaugino parameters and

trilinear couplings
10 Mass Parameters

tanβ

µ

mA

M1 At

M2 Ab

M3 Aτ

ML
ẽ ML

τ̃

MR
ẽ MR

τ̃

ML
ũ ML

t̃

MR
ũ MR

t̃

MR
d̃

MR
b̃

TABLE 2.2: The free parameters of the pMSSM.

The pMSSM has 19 free parameters. The 19 free parameters can be divided into
categories: the majority of parameters will be sfermion mass parameters and then
there will be three Higgs parameters, three trilinear couplings and three gaugino soft
SUSY breaking terms, see table 2.2. From these parameters, the mass spectrum of the
pMSSM can be determined, as can the branching ratios of all particle processes and
the anomalous magnetic moment.

The Higgs parameters are tanβ, µ and mA. The µ parameter is the only SUSY re-
specting parameter. In a generic SUSY theory it can become complex, but due to all
extra CP-violating terms being set to 0 in the pMSSM, µ has to be real. Similarly,
the soft SUSY breaking parameters At, Ab, Aτ , M1, M2 and M3 cannot be complex
because of this.

The 10 mass parameters cover all sfermion masses in the pMSSM. The ML
ẽ parame-

ter is the mass term for the left-handed selectron and smuon and MR
ẽ for the same
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right-handed particles. The selectron and smuon do not mutually mix, but the same
family left-handed and right-handed particles do. The stau particle is not degenerate
with the other two sleptons, so different mass parameters are needed for it, namely
ML
τ̃ for the left-handed stau and MR

τ̃ for the right-handed. For the squarks a similar
approach is used, but one needs to differentiate between the up and down squarks.
The parameter ML

ũ gives the masses for the up, down, strange and charm squarks
in the left-handed doublets and MR

ũ and MR
d̃

give mass to the for right-handed up
and charm, and down and strange squark respectively.

Renormalisation group equations
The free parameters described above are input parameters for a specific pMSSM
mass spectrum. These input parameters are defined at the general supersymmetry

scale commonly referred to as MSUSY, which is usually set to
√
ML
t̃
MR
t̃

. To find out,
for example, what the branching ratio of a certain decay is at the mZ scale (the en-
ergy scale corresponding to the mass of the Z-boson), one has to ’run’ these input
parameters down from the MSUSY scale to the mZ scale. This is done by the renor-
malisation group equations.

These equations form 19 coupled differential equations, one for each of the free
parameters. The renormalisation group equations for the SM couplings also get
slightly altered. We will not give futher details here, but for more information see
[34]. It is important to note however, that when varying for examplemA while keep-
ing the other pMSSM parameters constant, one might still see the other parameters
change at the mZ scale, as they get influenced by this change in mA during their
running.

2.4 Parameter mixing

We will now discuss the parameters that are relevant for the supersymmetric contri-
bution to the anomalous magnetic moment, for more information see [35]. We will
look at the three categories: the Higgs sector, gauginos and sfermions. Each of these
categories has accompanying mixing matrices coming from the Lagrangian terms
due to symmetry breaking.

2.4.1 Higgs sector

Let us start with the extended Higgs sector in the pMSSM. As mentioned above,
there are two Higgs doublets in the pMSSM with opposite hypercharge. They form
8 mass eigenstates after spontaneous symmetry breaking. Three of these are the
unphysical goldstone bosons (G0 and G±) which will be used to give mass to the
Z0 and W± bosons. The other 5 become physical Higgs bosons. Two of these are
CP-even scalars, denoted by h0 and H0, and A0 is the CP-odd scalar. The other two
Higgs bosons are the charged ones, H±. To arrive at the mass eigenstates one has to
parameterise the doublets as

Hd =

(
1√
2
(vd + φ0

1 − iN0
1 )

−φ−1

)
, Hu =

(
φ+

2

1√
2
(vu + φ0

2 + iN0
2 )

)
.
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The Hd doublet has a hypercharge of −1. The Hu doublet has a hypercharge of 1.
From these one can find the mass eigenstates:(

H0

h0

)
=

(
cosα sinα

− sinα cosα

)(
φ0

1

φ0
2

)
,

(
G0

A0

)
=

(
cosβ sinβ

− sinβ cosβ

)(
N0

1

N0
2

)
,

(
G±

H±

)
=

(
cosβ sinβ

− sinβ cosβ

)(
φ±1

φ±2

)
.

The mixing angle α is related to the angle β and the mass mA of A0 at tree level:

tan 2α

tan 2β
=
m2
A +m2

Z

m2
A −m2

Z

. (2.1)

The mZ parameter represents the Z-boson mass and β is a free parameter. It is given
by the inverse tangent of the ratio of vacuum expectation values of the Higgs dou-
blets, which cannot both be zero due to electroweak symmetry breaking:

vu√
2

= 〈Hu〉,
vd√

2
= 〈Hd〉, =⇒ tanβ =

vu
vd
.

The parameter mA determines the mass of the CP-odd Higgs scalar A0.

2.4.2 Gauginos

The gluino is a colour octet fermion and as such, does not mix with any of the other
gauginos. It is unique in that regard and therefore has its own gaugino soft SUSY
breaking parameter, called M3, which is in general only connected to the other pa-
rameters via renormalisation group equations.

The other gaugino soft-SUSY breaking parameters in the pMSSM fermion sector are
M1 (for B̃) and M2 (for W̃ ). These do mix due to SU(2)L symmetry breaking. This
leads to mass eigenstates for these sparticles. The mass eigenstates for the neutral
(charged) pMSSM fermions are called neutralinos (charginos). There are only two
charginos, in the same sense as there is only one W-boson. Each positively charged
chargino has a negatively charged counterpart of equal mass, similarly to the W bo-
son. This means that the gauge eigenstates (H̃+

u , W̃±, H̃−d ) combine to form the mass
eigenstates (χ̃±1 , χ̃±2 ).

To find the mass eigenstates of the charginos we use the unitary matrices for the
differently charged fermions, labelled V and U . The mass eigenstates and the gauge
eigenstates are linked by these matrices:(

χ̃+
1

χ̃+
2

)
= V

(
W̃+

H̃+
u

)
,

(
χ̃−1

χ̃−2

)
= U

(
W̃−

H̃−d

)
.
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The unitary matrices V and U are defined such that:

U∗CV −1 =

mχ̃±
1

0

0 mχ̃±
2

 , with C =

(
M2

√
2mW sinβ

√
2mW cosβ µ

)
. (2.2)

The matrix C is the mass matrix of the charginos. We see that M2, µ and β directly
influence the mass of the charginos. The convention is that the lightest chargino is
χ̃±1 .

The higgsinos, wino and bino gauge-eigenstates mix into four mass eigenstates called
neutralinos. The mass matrix Y of the neutralino sector is given by:

Y =


M1 0 −mZ cosβ sin θW mZ sinβ sin θW

0 M2 mZ cosβ cos θW −mZ sinβ cos θW

−mZ cosβ sin θW mZ cosβ cos θW 0 −µ
mZ sinβ sin θW −mZ sinβ cos θW −µ 0

 .

(2.3)
The neutralino mass eigenstates can then be found in analogy to the chargino case
by introducing a unitary matrix N :

N∗Y N−1 =


mχ̃0

1
0 0 0

0 mχ̃0
2

0 0

0 0 mχ̃0
3

0

0 0 0 mχ̃0
4

 , with


χ̃0

1

χ̃0
2

χ̃0
3

χ̃0
4

 = N


B̃0

W̃ 0

H̃0
d

H̃0
u

 . (2.4)

The lightest supersymmetric particle (LSP) is stable due to R-parity conservation. If
the pMSSM were to solve the dark matter problem, we may assume in addition that
the LSP is neutral. Hence, the lightest of the neutralinos is a DM candidate. The
convention is that the lightest neutralino is χ̃0

1 and the heaviest χ̃0
4.

2.4.3 Sfermions

As mentioned before, we require diagonal mass matrices to turn off flavour mixing
for the first two families of MSSM bosons. There is however, mixing between the
left and right handed states of the sfermions per family. This is parameterised by the
matrix:

m2
f̃

=

 m2
f + (ML

f̃
)2 + ∆f̃L

mf (Af − µ{cotβ, tanβ})

mf (Af − µ{cotβ, tanβ}) m2
f + (MR

f̃
)2 + ∆f̃R

 , (2.5)

where all parameters are taken to be real. The {cotβ, tanβ} correspond to {ũ, d̃ /ẽ}
and all higher families, meaning all down type squarks and sleptons will have tanβ

in their respective mixing matrix. The ML,R

f̃
parameters denote the mass of the

sfermion in question. The Af are the soft trilinear couplings between sfermions and
Higgs bosons and, as mentioned, are set to 0 for the first two families in the pMSSM.
Therefore, for cases when µ is of the order of the slepton and Z-boson masses or
smaller, the off-diagonal terms in the mixing matrix are negligible in comparison to
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the diagonal terms. The ∆ terms are given by:

∆f̃L
= M2

Z cos(2β)(If3 −Q
f sin2 θW )

∆f̃R
= M2

Z cos(2β)Qf sin2 θW ,

where If3 is the weak isospin and Qf the fractional charge of the corresponding SM
fermion. The diagonal entries in the mixing matrix are usually approximated by the
squares of ML

f̃
and MR

f̃
, which are the free parameters in the theory.

The mass eigenstates of the sfermions can be found in a similar way as described
above for the neutralinos and charginos. We conclude this chapter by showing the
diagonalisation for the smuon mass matrix as an example here:

X∗m2
µ̃X
−1 =

(
mµ̃1 0

0 mµ̃2

)
, with

(
µ̃1

µ̃2

)
= X

(
µ̃L

µ̃R

)
, (2.6)

with X an orthogonal matrix. We approximate Aµ̃ = 0 and set mµ = 0 on the diago-
nal entries. Next to that, we set ∆f = 0. This is a valid approximation as long as ML

ẽ

is not too small. The expression for X will then only depend on µ, tanβ, ML
ẽ and

MR
ẽ . The entries of the X matrix are then given by:

X11 = cos (
1

2
arctan

( −2m2
µ̃,12

−m2
µ̃,11 +m2

µ̃,22

)
) = X22,

X12 = sin (
1

2
arctan

( −2m2
µ̃,12

−m2
µ̃,11 +m2

µ̃,22

)
) = −X21,

(2.7)

where a parameter m2
µ̃,ij corresponds to the (i, j) element of the matrix in equation

2.5. The mass eigenstates of the smuons can then be found in the following way:

mµ̃1 =

√
1

2
[(ML

µ̃ )2 + (MR
µ̃ )2]− 1

2

√
[(ML

µ̃ )2 − (MR
µ̃ )2]2 + 4(m2

µ̃,12)2,

mµ̃2 =

√
1

2
[(ML

µ̃ )2 + (MR
µ̃ )2] +

1

2

√
[(ML

µ̃ )2 − (MR
µ̃ )2]2 + 4(m2

µ̃,12)2.

(2.8)

As with the neutralinos and charginos, the convention is such that the first smuon is
always the lowest in mass.
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Chapter 3

Supersymmetric contributions to
the anomalous magnetic moment

In the last chapter, we have introduced SUSY and specifically the pMSSM. We will
now see what impact the pMSSM has on the anomalous magnetic moment. Besides
the extra pMSSM diagrams that become relevant, the diagrams discussed in chapter
1.7 containing a Higgs boson will change.

The contribution of any SUSY diagram can be estimated before explicitly evaluating
the diagrams. Recall from equation I.1 that we estimate that any diagram will scale
with M−2

SUSY. This would mean that the SUSY contributions are heavily suppressed.
There are however down-type Yukawa couplings which can enhance the contribu-
tions significantly. Diagrams containing these couplings are therefore expected to
contribute to ∆aµ. Another thing to note is that any SUSY diagram will scale with
at least one factor of mµ.

3.1 First-order diagrams

There are only two first-order pMSSM diagrams. The muon couples to one charged
and one neutral supersymmetric particle due to the conservation of R-parity and
charge. Furthermore, due to lepton number conservation, one of these supersym-
metric particles has to be a smuon or a muon sneutrino. If the lepton number is
carried by a smuon, then the other particle is a neutralino. If it is carried by a muon
sneutrino, the other particle is a chargino.

We encapsulate all neutralino contributions into a single diagram. The same holds
for the chargino contributions. Both diagrams are shown in figure 3.1. Applying the
Feynman rules found in [36] and then the projection operator and mass expansion
as described in chapter 1.6, one finds for the neutralino contribution [37]:

δaχ̃
0

µ =
mµ

16π2

4∑
i=1

2∑
m=1

{
− mµ

12m2
µ̃m

(| nLim |2 + | nRim |2)FN1

(
m2
χ̃0
i

m2
µ̃m

)

+
1

3

mχ̃0
i

m2
µ̃m

Re[nLimn
R
im]FN2

(
m2
χ̃0
i

m2
µ̃m

)}
.

(3.1)

Before we list exact expressions for the terms we see in this equation, we will sketch
a general interpretation first.
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The sum with index i runs over all neutralino mass eigenstates. The sum with index
m runs over all smuon mass eigenstates, where mµ̃m is the respective smuon mass.
The nim terms are couplings between the specific neutralino and smuon state, sepa-
rated into 3 different cases: either the coupling is between two left-handed particles,
two right-handed particles or a left and right-handed particle. Note that in writing
the contribution in this way, certain physical parameters will be hidden inside the
couplings, such as the linear dependence on αem for first-order processes. The FNi
are the loop functions, they follow from the mass expansion and depend on the mass
ratio of the two SUSY particles in the loop.

µ−

γ

µ̃m

µ−

χ̃0
i

µ̃m

(A) The neutralino loop diagram.

µ−

γ

χ̃−i

µ−

ν̃µ

χ̃−i

(B) The chargino loop diagram.

FIGURE 3.1: The only two possible first-order pMSSM diagrams
which contribute to the anomalous magnetic moment of the muon.

The exact expressions for the loop functions and the couplings are as follows:

nLim =
1√
2

(g1Ni1 + g2Ni2)X∗m1 − yµNi3X
∗
m2,

nRim =
√

2g1Ni1Xm2 + yµNi3Xm1,

FN1 (x) =
2

(1− x)4

(
1− 6x+ 3x2 + 2x3 − 6x2 ln (x)

)
,

FN2 (x) =
3

(1− x)3

(
1− x2 + 2x ln (x)

)
.

(3.2)

The mass matricesNij andXmn are defined in equations 2.4 and 2.7 respectively. The
starred notation means taking the complex conjugate of that element. The Yukawa
coupling is defined as:

yµ =
g2mµ√

2mW cosβ
. (3.3)

The g1 is the U(1) coupling and the g2 is the SU(2) coupling. All couplings are to be
evaluated at the mZ scale.



3.2. Second-order diagrams 33

Applying the same procedure to the chargino diagram yields the following expres-
sion [37]:

δaχ̃
±
µ =

mµ

16π2

2∑
k=1

{ mµ

12m2
ν̃µ

(| cLk |2 + | cRk |2)FC1

m2
χ̃±
k

m2
ν̃µ


+

2

3

mχ̃±
k

m2
ν̃µ

Re[cLk c
R
k ]FC2

m2
χ̃±
k

m2
ν̃µ

}.
(3.4)

The sum with index k runs over all chargino mass eigenstates. The sneutrino (mν̃µ)
has only one mass eigenstate, so no sum is required. The ck terms and FCi functions
are given by:

cLk = −g2Vk1,

cRk = yµUk2,

FC1 (x) =
2

(1− x)4

(
2 + 3x− 6x2 + x3 + 6x ln (x)

)
,

FC2 (x) =
3

2(1− x)3

(
− 3 + 4x− x2 − 2 log (x)

)
.

(3.5)

Again, Vkl and Ukl are defined as in equation 2.2.

From equations 3.1 and 3.4 we can deduce which pMSSM parameters will influence
the anomalous magnetic moment. We can also estimate how large these contribu-
tions can become by taking into account the possible values for these parameters.
From the mass matrices 2.2, 2.3 and 2.5 we see that the six parameters µ, tanβ, M2,
M1 and the smuon masses (MR

ẽ and ML
ẽ ) directly contribute. From equations 3.1

and 3.4 we can estimate that we require a large value of tanβ and small values for
MR
ẽ and ML

ẽ to get a large contribution from the pMSSM.

3.2 Second-order diagrams

We will now examine second-order diagrams. First-order diagrams always had the
lepton number carried by a supersymmetric particle. In second-order diagrams this
is no longer a necessity, so we make a distinction between diagrams; either the lepton
number is carried over by a SM particle or by a supersymmetric one. If carried over
by a SM particle, it can cause new types of diagrams or change the existing Higgs-
boson SM diagrams. Second-order diagrams where the lepton number is carried
over by a supersymmetric particle are similar to the first-order pMSSM diagrams
and therefore only add a small correction to these [38]. Let us first examine these.

Second-order corrections to first-order pMSSM diagrams (δapMSSM, SO QED
µ )

One can either draw an extra vector boson line between the two muons in the first-
order diagram, or one can draw an extra particle loop attached to any of the particle
lines present in the diagrams in figure 3.1. An example diagram for a correction
to the first-order chargino diagram is shown in figure 3.2. These types of diagrams
usually have the same parameter dependence as the first-order diagrams. New pa-
rameters that contribute are suppressed due to the second-order nature at which
they appear.
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µ−

χ̃−i
γ

µ−

µ−

γ

χ̃−i

ν̃µ

µ−

FIGURE 3.2: An example of a second-order diagram that causes a
higher-order QED correction to a first-order chargino pMSSM dia-

gram.

The total correction to the first-order pMSSM contributions can be decomposed, sim-
ilar to equation 1.22, as

δa(a)
µ ≈ c

pMSSM
L log

MSUSY

mµ
+ cpMSSM

0 .

As is the case in the SM, the logarithmic term is argued to be dominant and has been
calculated using effective field theory techniques, see [38]. The non-logarithmic term
has not been calculated but is estimated to be negligible and thus we will assume
cpMSSM

0 = 0. This gives rise to a correction factor to the first-order expressions:

δapMSSM, F.O. correction
µ = (δaχ̃

0

µ + δaχ̃
±
µ )
(
− 4αem

π
log

MSUSY

mµ

)
. (3.6)

Next to these corrections, there are also corrections where an EW vector boson is
exchanged between the muons. Furthermore, there are new types of diagrams pos-
sible where the lepton number is carried by a supersymmetric particle. Both of these
types of diagrams have not yet been evaluated and will therefore not be given here.

Second-order diagrams with the lepton number carried by an SM particle
We will now look at diagrams arising from the second-order pMSSM contributions
that aren’t corrections of first-order diagrams. Diagrams that fall into this category
must have at least a muon or muon neutrino in one of the two loops. In particu-
lar, two-loop SM diagrams with a Higgs boson fall into this category, figure 3.3a.
Another possibility is a SM one-loop diagram, where the vertex with the photon is
enlarged into an extra loop. These diagrams are called Barr-Zee diagrams, an exam-
ple can be found in figure 3.3b.

The two-loop SM diagrams with a Higgs boson will change the coefficients found in
equation 1.22 to be [20]:
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cpMSSM
L =

1

30

{
98 + 9chL + 23(1− 4 sin2 θW )2

}
,

chL =
M2
Z cos 2β

cosβ

[
cos (α) cos (α+ β)

m2
H0

+
sin (α) sin (α+ β)

m2
h0

]
.

(3.7)

The term between brackets is equal to 1 at tree level, as this is exactly the mass rela-
tion in the Higgs sector in the pMSSM. This implies that the logarithms in both the
SM and pMSSM are identical. The c0 term in equation 1.22 is altered slightly by δc0,
but since it is negligibly small we will assume δc0 = 0. As this term is the only way
for the contribution of two-loop SM Higgs diagrams to change, we will not have
to worry about them. Note however, if we accept a theory where one of the Higgs
boson masses can be very small compared to the SM Higgs boson mass, the altered
c0 term could modify the contribution enough for it to matter.

µ−

γ

H

µ−

Z

Z

(A) A second-order SM diagram containing
a Higgs boson. This Higgs boson could

now be any neutral pMSSM Higgs boson.

µ−

γ

γ

H

µ−

χ̃±i

(B) A photonic Barr-Zee diagram. The pho-
ton/Higgs boson in the loop can be replaced

by other vector bosons.

FIGURE 3.3: Examples of second order diagrams appearing within
the pMSSM calculations of the anomalous magnetic moment.

Let us now look at another possibility of a diagram where the lepton number is car-
ried by a SM particle: a Barr-Zee diagram. An example is shown in figure 3.3b. The
Barr-Zee contributions are especially relevant since the Higgs-sfermion coupling can
become quite large in the pMSSM.

The specific diagram shown in figure 3.3b is the highest contributing second-order
diagram. Other Barr-Zee diagrams, where the photon and Higgs boson in the first
loop are exchanged with other vector bosons contribute similarly, but their contri-
butions are smaller. An expression for the diagram in figure 3.3b has been found
by first computing the effective vertex between the Higgs, photon and vector boson
and only then computing the loop between them, see [39]. This is why this contri-
bution has a similar structure to the expressions of the first order contributions. The
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contribution, with a chargino loop is given by [40][41]:

δaχ̃γHµ =
α2
emm

2
µ

8π2M2
W sin2 θW

2∑
k=1

[
Re[λA

0

µ λA
0

χ̃±
k

]FA0

m2
χ̃±
k

M2
A0


+

∑
l={h0,H0}

Re[λlµλ
l
χ̃±
k

]Fl

m2
χ̃±
k

M2
l

].
(3.8)

The diagram can also contain a sfermion instead of a chargino in the loop. The
contribution for sfermions is given by [40][41]:

δaf̃γHµ =
α2
emm

2
µ

8π2M2
W sin2 θW

∑
f̃={t̃,b̃,τ̃}

2∑
m=1

[ ∑
l={h0,H0}

(NCQ
2)f̃Re[λlµλ

l
f̃m

]Ff̃

(
m2
f̃m

M2
l

)]
.

(3.9)
The sums are again to incorporate every possible coupling; the k, m and i indices
used in equations 3.8 and 3.9 are the same as in equation 3.1. However, m now sums
over the mass eigenstates of the specific sfermion in question. The f̃ index gives the
three possible third generation sfermions (f̃ = {t̃, b̃, τ̃}) and the l index denotes the
light and heavy CP-even Higgs bosons (l = {h0, H0}). The NC marks the colour
degrees of freedom and Q is the charge of the sfermion in the loop divided by e. The
12 different λ couplings can be expressed as:

λ{h
0,H0,A0}

µ =
{− sinα, cosα, sinβ}

cosβ
,

λ
{h0,H0,A0}
χ̃±
k

=

√
2MW

mχ̃±
k

(Uk1Vk2{cosα, sinα,− cosβ} − Uk2Vk1{sinα,− cosα, sinβ}),

λh
0

f̃m={t̃m,b̃m,τ̃m}
=

2mf

m2
f̃m

({ At
sinβ

,
−µ

cosβ
,
−µ

cosβ

}
cosα

+
{ µ

sinβ
,
−Ab
cosβ

,
−Aτ
cosβ

}
sinα

)
(Um1)∗Um2,

λH
0

f̃m={t̃m,b̃m,τ̃m}
=

2mf

m2
f̃m

({ At
sinβ

,
−µ

cosβ
,
−µ

cosβ

}
sinα

−
{ µ

sinβ
,
−Ab
cosβ

,
−Aτ
cosβ

}
cosα

)
(Um1)∗Um2,

where in the last two couplings, the mf̃m
is the sfermion particle mass, mf the cor-

responding SM particle mass and α the mixing angle between the CP-even Higgs
bosons as defined in equation 2.1. The loop functions are given in appendix A.

The trilinear coupling Af and Higgs mass parameter mA directly influence the sec-
ond order contribution. There are therefore 8 important parameters for the second-
order contributions: µ, tanβ, M1, M2, mA, and the three different trilinear couplings
At, Ab and Aτ . When the smuon masses are large, the first order corrections will be
suppressed. In that case, these second order Barr-Zee diagrams can play an impor-
tant role.
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Other second-order diagrams and higher
As already mentioned above, there are second-order diagrams which have not been
evaluated yet. This means the true total second-order contribution can not be deter-
mined. However, estimates have been given for some of these diagrams and uncer-
tainties have been proposed for neglecting others. We will briefly list them here.

We have omitted diagrams where a Z-or a W -boson is exchanged instead of the
photon as in figure 3.2. The uncertainty caused by this omission has been estimated
to be roughly ±2 · 10−10 by [42]. Subclasses of these diagrams have been evaluated
since in [43] and fall within this uncertainty.

A similar uncertainty occurs by only evaluating Barr-Zee diagrams with a photon
exchange. The uncertainty made due to not considering Z-and W -boson exchanges
is estimated by [20] and [44] to be negligible in a large part of the pMSSM parameter
space.

The total pMSSM contribution can be calculated by summing the first-order contri-
bution, including the QED second-order corrections, given by equation 3.6 with the
second-order Barr-Zee contributions given by equations 3.8 and 3.9:

δapMSSM
µ = (δaχ

0

µ + δaχ
±
µ )
(
− 4α

π
log

MSUSY

mµ

)
+ δaχ̃γHµ + δaf̃γHµ .

One has then neglected multiple second-order diagrams and higher-order diagrams.
The uncertainty estimates for the second-order diagrams has been given above. The
uncertainty caused by not including higher-order diagrams has been estimated by
[40] to be roughly±1.5·10−10. Furthermore, [40] suggests adding these uncertainties
linearly to get a total uncertainty estimate of

δa
pMSSM, uncertainty
µ ≈ ±

[
0.025 · δapMSSM

µ + 3.5 · 10−10
]
. (3.10)
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Chapter 4

Computational programs and
results

As illustrated in the previous two chapters, calculating the pMSSM contribution to
the anomalous magnetic moment is not easily done. Many of the variables in the
analytic expressions depend on the choice of the 19 free pMSSM parameters. These
will determine all couplings, all supersymmetric particle masses and observables,
combining into a full supersymmetry spectrum. To determine which pMSSM spec-
tra can explain certain phenomena, one has to start with picking values for the 19
input parameters. From that one can determine the corresponding spectrum and
then one can calculate all the diagrams required for the specific phenomenon. Here,
we look at the anomalous magnetic moment, where one needs all 19 parameters to
generate the spectrum, followed by calculating the largest contributions sketched in
chapter 3.

There are several software programs written to calculate the supersymmetric spec-
trum and observables like the anomalous magnetic moment. If one finds a suitable
value for the anomalous magnetic moment, the spectrum still needs to conform to
certain boundary conditions. If one generates a spectrum without a Higgs boson at a
mass of roughly 125 GeV, one can disregard the spectrum. Another constraint that is
usually implemented, is the dark matter constraint, where one assumes the lightest
supersymmetric particle to have no electric charge.

The software programs mentioned above are used by many theoretical physicists
and can be divided into two categories. The first category of programs is called
a spectrum generator. It requires a number of input parameters and uses those to
calculate a full supersymmetric spectrum. In the case of the pMSSM, these input
parameters are the 19 discussed in chapter 2.3. The resulting spectrum can then be
used to calculate observables of interest. The other type of program requires a full
spectrum as input. These programs are usually more specialised in calculating spe-
cific observables.

In this thesis we will be comparing two software programs, each specialised in dif-
ferent observables. The programs are called SuperISO [45] and MicrOMEGAs [46].
They both require a spectrum as input. We will use the spectrum generator SPheno
[47] to provide this spectrum.

In 2003, the SUSY Les Houches accord (SLHA) was established [48]. This stream-
lined the way all these software programs handle input and provide output, and
made sure every program uses the same conventions. The input for and output of
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such programs are stored in a SLHA file. The three programs we use in this thesis
all use SLHA files for input and output.

4.1 SPheno

SPheno is short for Supersymmetric Phenomenology. As mentioned, it is a spectrum
generator, written in Fortran. Besides generating a full supersymmetric spectrum, it
also calculates decay widths, cross sections (for e+e− colliders) and branching ratios
of supersymmetric particles and Higgs bosons. It can also calculate specific pro-
cesses, like b → sγ and the anomalous magnetic moment of both the muon and
electron [47].

To generate a spectrum, SPheno calculates the renormalisation group equations
(RGEs) up to second-order. For the evaluation of the decay widths and cross sec-
tions, the higher-order effects are only incorporated in the couplings. SPheno calcu-
lates most quantities at tree level, but uses these couplings with higher-order contri-
butions in them. It also does this for the anomalous magnetic moment. In the code
of SPheno, four contributions to the anomalous magnetic moment are calculated,
labeled as a11

µ , a12
µ , a21

µ and a22
µ . They are given by:

a11
µ =

mµαem
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4∑
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m2
µαem
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M2
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(4.1)

These expressions are based on the calculations in [49] and [50]. The parameters in
these equations are all running paramaters. We identify these first two expressions
as being the first-order neutralino contributions and the last two expressions as the
chargino contributions. They are similar to equations 3.1 and 3.4, but written some-
what differently. The benefit of this notation is that it is easy to identify one order
of αem and the mµ dependence. However, the neutralino couplings ηkµj and Xk

µj be-
come more complicated. Exact expressions for these and the loop functions F1 - F4,
and the equivalence between equations 4.1 and 3.1 and 3.4 can be found in appendix
A.

It is important to note that SPheno only calculates the contributions in equations 4.1.
These contributions include higher-order corrections to the couplings, but exclude
the higher-order contributions coming from different types of diagrams, as those
shown in chapter 3. As SPheno uses higher-order couplings, it is outside the scope
of this thesis to identify the origin of the differences between Spheno and the other
two programs. Hence, we focus on the differences between MicrOMEGAs and Su-
perISO, which are widely used by the scientific community.
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4.2 MicrOMEGAs and SuperISO

Both MicrOMEGAs and SuperISO require a spectrum as input, which we provide
using SPheno. Both programs are compatible with other spectrum generators as
well. Both programs calculate the first-order contribution as given in equations 3.1
and 3.4 but will overestimate the first-order pMSSM contribution to δaµ as men-
tioned in chapter 3.2. This is because they cannot generate their own spectrum and
as such, do not use running couplings. We have given an expression to correct for
this in equation 3.6. Only SuperISO implements this correction. Besides that, only
SuperISO implements the higher-order contributions from the Barr-Zee diagrams.

4.2.1 MicrOMEGAs

MicrOMEGAs is a program designed to perform (cold) dark matter studies. To be
more precise, it calculates the dark matter relic density, certain cross sections be-
tween dark matter particles and nuclei relevant for direct detection and spectra
of particles that would be created in astrophysical dark-matter annihilation pro-
cesses (like e+ and γ) [46]. It supports many different SM extensions, including
the (p)MSSM. It is written in both C and Fortran and has a module for calculating
the anomalous magnetic moment called ‘gmuon()’.

The module ‘gmuon()’ calls for a set of input parameters. These are listed in table
4.1. The last four entries in this table are actually not used in the module, but we
include them here for completeness.

Variable Value Origin

mµ 0.1057 Hardcoded

mZ 91.1876 Hardcoded

mW 79.958 Calculated from mZ and cos θw

sin θw 0.48076 Hardcoded

αem 7.81653 · 10−3 Hardcoded

mod(M1) & arg(M1) Taken from spectrum file

mod(M2) & arg(M2) Taken from spectrum file

mod(µ) & arg(µ) Taken from spectrum file

mod(Aµ) & arg(Aµ) Taken from spectrum file

TABLE 4.1: MicrOMEGAs input parameters.

Note that the value for αem is given at a specific scale, above the electroweak scale.

Besides the input parameters given in the first five entries of the above table, Mi-
crOMEGAs calls for all other needed parameters while executing the module. Pa-
rameters included in this are M1 and M2, hence mod(M1) and such are not needed.
Most of these are taken from the spectrum file from SPheno. However, some are
hardcoded instead. We will elaborate further on this in chapter 4.4.

The matrices N , U and V that diagonalise the mixing matrices are all taken from the
spectrum file, as well as all the mass eigenstates of the neutralinos, charginos and
the muon sneutrino. The smuon mass eigenstates are calculated by diagonalising
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the smuon mixing matrix (equation 2.8). The values for ML
ẽ , MR

ẽ , µ and tanβ are
taken from the spectrum file and Aµ is set to 0. Note that tanβ is actually set to the
input value, not to the running value at themZ scale, even though both are available
in the spectrum file. Finally, the smuon mixing matrix itself is determined by using
equation 2.7.

The U(1)Y , SU(2)L and Yukawa couplings are calculated, even though they are also
available to read in from the spectrum file. They are determined by:

g1 =

√
4παem

cos θw
, g2 =

√
4παem
sin θw

, yµ =
mµg√

2MW cosβ
.

This means they are determined from hardcoded values and will differ slightly com-
pared to the spectrum file that SPheno provides for a given set of inputs.

These are all the parameters that are needed for the calculation. MicrOMEGAs splits
the calculation into a for-loop for the neutralino part and a for-loop for the chargino
part, for which it uses exactly the expressions of equations 3.1 and 3.4. It sums up
all these contributions into a single variable called g muo. The other contributions
discussed in chapter 3 are not computed, hence the total contribution calculated by
MicrOMEGAs is only a first-order one.

4.2.2 SuperISO

SuperISO is a tool written in C and is designed for flavour-physics calculations. The
main goal of the program was to calculate the process B → K∗γ, but many other
flavour decays and branching ratios have been added, as well as the anomalous
magnetic moment [45]. It needs a spectrum as input, just as MicrOMEGAs. Su-
perISO supports various supersymmetry scenarios and has also included the gen-
eral two-Higgs-doublet model (2HDM).

SuperISO also suggests a limit for the anomalous magnetic moment, which can be
used to disregard certain supersymmetric spectra as feasible. This limit is suggested
as: −2.4 · 10−10 < aµ < 5.0 · 10−9 [45].

The module ’gmuon.c’ is responsible for the calculation of the anomalous magnetic
moment. Before the program calls this module, a specific model has to be chosen. If
no model is chosen it defaults to the general MSSM model, which is equivalent to
the model that the calculations of SPheno and MicrOMEGAs use. This module then
requires input parameters to be provided, which can be found in table 4.2.
Besides the input parameters, the module calls for other parameters required for the
calculation during its execution. Most of these parameters are taken from the spec-
trum file provided by SPheno. Exceptions are the Yukawa coupling, which is calcu-
lated in the same way as done by MicrOMEGAs, and sin θw which is calculated by
sin(arctan(g1/g2)). The smuon mass eigenstates and mixing matrix are determined
in the same way as done by MicrOMEGAs.

In constrast to MicrOMEGAs, SuperISO does take the couplings g2 and g1 from the
spectrum file, where they are given at the mZ scale. The running value of tanβ is
taken from the spectrum file instead of the input value. SuperISO calls for more
parameters than the other two programs, as it also calculates the Higgs corrections
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Variable Value Origin

mµ 0.105658372 Taken from spectrum file

mZ 91.1876 Hardcoded

mW 80.3184459 Taken from spectrum file

sin θw 0.4807913151 Calculated from g1 and g2

αem 7.866706525 · 10−3 Taken from spectrum file

mod(Aµ) & arg(Aµ) 0 Taken from spectrum file

TABLE 4.2: SuperISO’s exact input parameters.

to SM diagrams and the photonic Barr-Zee contributions (equations 3.8 and 3.9). The
first-order calculation done by SuperISO is determined by:

δaf.o.µ = δaχ̃
0

µ + δaχ̃
±
µ + δaH

0

µ + δaA
0

µ + δah
0

µ + δaH
±

µ

The first two terms are identical to equations 3.1 and 3.4. The last four terms are
corrections to the 1-loop SM diagram containing a Higgs Boson. They are heav-
ily suppressed in the SM and even more so in the MSSM. The reason they are cal-
culated by SuperISO is due to the fact that no specific model was chosen. In the
next-to-minimal supersymmetric standard model (NMSSM) or 2HDM these terms
can contribute. For exact expressions of these contributions, see [45]. In the MSSM,
these terms are usually smaller than 10−15 and will therefore be neglected here.

The first-order calculation is corrected by a factor of (1 − 4αem
π ln MSUSY

mµ
) to account

for higher-order corrections, see equation 3.6. Furthermore, SuperISO also calculates
the second-order (bosonic) electroweak corrections to SM diagrams due to the extra
pMSSM Higgs Bosons, as shown in equations 1.22 and 3.7. The δc0 influence to c0 in
equation 1.22 is set to 0 and chL in equation 3.7 is set to 1 by SuperISO when choosing
no model, see [49]. This means that the second-order electroweak contributions to
aµ are similar in the pMSSM as they are in the SM, the important effects are incor-
porated in the running term of equation 3.6. For other models, these diagrams with
Higgs bosons can change the SM contribution to δaµ substantially, which explains
why SuperISO calculates them.

Finally, SuperISO also calculates the Barr-Zee diagrams given in figure 3.3b, which
do contribute in the pMSSM. We would like to point out however, that the loop func-
tions SuperISO uses in the second-order calculations are based on an approximation
of the analytical function given in equation b.1. This approximation is very good for
most of the range of the mass ratio x, except around x ≈ 100. The approximation
is given in appendix A and the differences between the approximation and analyti-
cal function can be seen in figure C.8 in appendix B. The total pMSSM contribution
calculated by SuperISO can thus be written as:

δaMSSM
µ =

(
δaχ̃

0

µ + δaχ̃
±
µ

)(
1− 4αem

π
ln
MSUSY

mµ

)
+ δaχ̃γHµ + δaf̃γHµ .

Note that MSUSY is given by the spectrum file.
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4.3 The six important first-order parameter dependencies

Let us first take a look at the parameter dependence of δaµ for the programs. As ex-
plained in chapter 3.1, the main parameters that play a role in the first-order pMSSM
contributions are M1, M2, µ, ML

ẽ , MR
ẽ and tanβ. To get a qualitative look at these

parameters, we tune most of the other parameters in such a way that their effects
become negligible. For example, if we want the Higgs sector to interfere as little as
possible, we can tune mA very high, such that contributions from the Higgs bosons
become very small. Similarly, tuning the sfermion mass parameters, other than ML

ẽ

and MR
ẽ , very high will reduce their involvement via RGEs as well.

A random scan was programmed such that M1, M2, µ, tanβ, ML
ẽ and MR

ẽ could be
varied over a wide range. The other parameters were chosen to only vary slightly
around 4 TeV. The range for M1, M2, µ, ML

ẽ and MR
ẽ was set between 40 GeV and

4 TeV, while tanβ could vary from 2 to 58. First, a random scan sampling 25000
points with these values for the parameters was performed. From these parameter
sets, one with a contribution close to the SM value for δaµ was chosen to perform
targeted scans, where the important parameters were varied one by one while keep-
ing all other parameters static. Note that this spectrum has no specific significance
other than being a bench mark for the targeted scans. From these tests, we will get
a qualitative insight in how δaµ responds to the important parameters. The table
below shows the static values of the important parameters.

tanβ ML
ẽ MR

ẽ M1 M2 µ

50.78 566.5 463.5 620.4 966.8 3456

TABLE 4.3: The parameter set used for the first-order parameter de-
pendence of δaµ. All mass parameters are given in GeV.

It is important to note that the second-order calculations performed by SuperISO
were disabled during these tests, such that we get a clear picture of the first-order
contributions. Besides that, no other constraints were implemented, but the con-
straints applied by SPheno are still in effect. This includes not allowing tachyonic
particles to arise in the spectrum for example, see [47] for the specific constraints.

For some parameter dependencies, we will split up the total neutralino contribution
into four separate contributions; one for each neutralino. We will then split those
contributions up into two; one for each smuon. The reason for the split in smuons,
is that their contributions due to the couplings solely depend on the values for X11

andX12 as determined by equation 2.7. Even though these are a function of multiple
parameters, X11 is the cosine of a function of these parameters while X12 is the sine
of that same function. If X11 ≈ 0, then X12 ≈ ±1 and X21 ≈ ∓1. In that case, we
see from equation 3.2 that the squared couplings contribute with equal sign, but the
product of left-handed and right-handed coupling differ in sign for the smuons. If
we take X11 ≈ X12, we see a similar effect. This relative minus sign between the
product of left-handed and right-handed couplings of the two smuon contributions
has a greater effect for higher X12 values and will only vanish at X12 = 0, i.e. when
there is no mixing between the sleptons. Note that the product of the couplings will
contribute more due to it scaling with the neutralino mass, whereas the squared cou-
plings scale with the (much smaller) muon mass.
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When we show the individual contributions for the neutralinos, they will be for the
lightest smuon unless there is a significant difference between the smuon contribu-
tions.

tanβ
The result for the variation in tanβ can be seen in figure 4.1.
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FIGURE 4.1: The δaµ dependence on the parameter tanβ.

To understand the linear behaviour of tanβ, we can take a look at equations 3.2 and
3.5. The couplings nLim and nRim appear in the first-order neutralino contribution as
either a product, or sum of squares. This means we get terms without a factor, with
a single factor and with a squared factor of the Yukawa coupling, see appendix A for
more detail. Remember, the Yukawa coupling as defined in equation 3.3 scales with
1/ cosβ.

Any term with no factor of the Yukawa coupling will stay constant while vary-
ing tanβ. Terms with a squared factor of the Yukawa coupling are heavily sup-
pressed because the Yukawa coupling is of order mµ/mW . These terms will thus
not play a significant role in the dependence of δaµ on tanβ. The only terms that
remain are the ones with a single factor of the Yukawa coupling. The Yukawa cou-
pling scales linearly with tanβ as long as tanβ is sufficiently large (≥ 5) because
yµ ∝ 1/ cosβ ≈ tanβ.

ML
ẽ andMR

ẽ

The dependence of δaµ on MR
ẽ is depicted in figure 4.2. The decrease of δaµ can

be explained by looking at the neutralino contributions in equation 3.1. We see an
overall factor of m−2

µ̃ , which is exactly the behaviour we see in figure 4.2. The loop
functions could be able to alter this behaviour, but they will remain relatively con-
stant when varying MR

ẽ from 0 to 4 TeV. This is because when varying MR
ẽ , the mass

ratio x = mχ̃0
i
/mµ̃k decreases from 25 down to 0.2, depending on which smuon
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FIGURE 4.2: The δaµ dependence on the parameter MR
ẽ .

and which neutralino one is evaluating. In figures C.1 and C.2 one can see that the
change in value of the loop functions between x = 25 and x = 0.2 is small.

The chargino contribution scales with m−2
ν̃µ

. When varying MR
ẽ , the mass of the

muon sneutrino remains relatively constant running from mν̃µ ≈ 580 GeV down to
mν̃µ ≈ 540 GeV. Note that this is of the same order asML

ẽ , which is to be expected, as
ν̃µ is a left-handed sparticle. Hence, the chargino contribution is also approximately
constant. We see this in the tail end of figure 4.2, where the contribution to δaµ is
nonzero.

We have checked the results for ML
ẽ as well, where we see similar characteristics,

except that the contribution to δaµ does become zero at high values of ML
ẽ . This can

be explained by the fact that mν̃µ will again be of similar order in value as ML
ẽ is.

This means mν̃µ ≈ 4 TeV at the tail end of the variation in ML
ẽ . Hence the m−2

ν̃µ
factor

causes the chargino contribution to become negligible.

M1

The dependence on M1 is shown by figure 4.3.
The peak around a value of M1 = 350 GeV can be explained by examining the ma-
trix elements and loop functions found in equation 3.2, as M1 mostly influences the
neutralino sector.

Let us first examine the loop functions naively: We assume for the couplings nLim =
nRim = 1 and then see what behaviour we get from the loop functions and mass
parameters in equation 3.1. The loop functions contributing to the neutralino contri-
bution are FN1 and FN2 , for which the mass ratio dependence can be seen in figures
C.1 and C.2 in appendix B. Here, we plot the neutralino contribution as a function
of M1 with the couplings set to one, so the effect of the loop functions can be seen as
a function of M1. This is shown in figure 4.4.
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FIGURE 4.3: The δaµ dependence on the parameter M1. The first
dashed line is at M2 = 966.8 GeV and the second at µ = 3456 GeV.

The peak of the plot is dominated by the mχ̃0
i

factor in front of FN2 . It already shows
a somewhat similar shape as the actual results by SuperISO. Note that the argument
of the loop function is the mass ratio with the mass of the neutralino in the numer-
ator. Hence, when the mass of the neutralino increases, the ratio inside the loop
function increases as well. Overall, the mass of the dominant neutralino increases as
M1 increases. To see this, we take a look at how and when M1 influences the four
neutralino masses.

We divide the figure into three different regions: |M1| < |M2|, |M2| < |M1| < |µ|
and |µ| < |M1|. The first region, |M1| < |M2|, is where the lightest neutralino χ̃0

1 is
Bino-dominated. This is because M1 influences the Bino neutralino as can be seen
in equations 2.3 and 2.4. The other neutralinos remain approximately constant in
this region. When |M1| becomes larger than |M2|, the Bino-dominated neutralino
becomes heavier than the Wino-dominated neutralino. Because we order the neu-
tralinos according to mass, we now have χ̃0

2 being the Bino-dominated neutralino.
The Wino-dominated neutralino becomes the lightest neutralino, χ̃0

1, and remains
constant while varying M1 further. A similar change in ordering happens when
|M1| becomes larger than |µ|. Here, the Bino dominated neutralino becomes heavier
than the Higgsino dominated neutralino. As such, the Bino dominated neutralino
becomes χ̃0

4 and the Higgsino dominated neutralinos become χ̃0
2 and χ̃0

3.

When we plot the product of the couplings and the loop function for each neutralino
individually, we expect to see a big change in contribution at the edges of these re-
gions (i.e. around 966 and 3456 GeV). The loop functions for the three non-dominant
neutralinos per region are approximately constant.

As SuperISO does not output the individual neutralino contributions, we calculate
these ourselves using the output of SPheno. SPheno does not calculate the mixing
matrix for the mixing between left-and right-handed sleptons but we retrieved those
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FIGURE 4.4: The result of−mµF
N
1 /4+mχ̃0

i
FN2 for all four neutralinos

combined.

by making use of equation 2.7.

The results for the first, second and fourth neutralino can be seen in figure 4.5, where
we look only at mµ̃1 . The third neutralino has not been shown here, because its con-
tribution is negligible over the entire range of M1. This is because there is always
a nearly pure Higgsino state neutralino. This is a combination of H̃u and H̃d but

FIGURE 4.5: The behaviour of the first, second and fourth neutralino
contributions for mµ̃1

when varying M1. The dashed lines indicate
the values for which |M1| crosses M2 = 966 GeV and µ = 3456 GeV.
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FIGURE 4.6: Chargino (χ̃±), Neutralino (χ̃0) and total (χ̃± + χ̃0) con-
tribution for the M1 parameter dependence.

hardly mixes with the Bino and Wino states. In this case, χ̃0
3 is nearly purely Hig-

gsino, but χ̃0
4 is mostly Higgsino with some Bino and Wino mixing in there. For the

other smuon, mµ̃2 , we see a similar behaviour but it is smaller in size and negative.
The relative minus sign between the smuon contributions is explained at the start of
chapter 4.3 and the reason the mµ̃2 contribution is smaller is because mµ̃2 is heavier.
The behaviour of the individual neutralinos is also similar. This is due to the fact
that µ is relatively large here, allowing mixing between the left-and right-handed
states of the smuon.

We see that the contributions from the individual neutralinos change roughly at the
borders where M1 crosses M2 and µ. This is due to the change in neutralino compo-
sition as discussed above.

Ultimately, the total neutralino contribution is a smooth curve as can be seen in fig-
ure 4.6. We also show the chargino contribution in this figure. It is constant while
varyingM1, as expected, sinceM1 does not influence the chargino mass. Combining
both contributions perfectly recreates the peak and characteristics as seen from the
output of SuperISO in figure 4.3. We conclude that for this parameter set the depen-
dence is dominated by the behaviour of the loop functions and smoothed out by the
couplings.

M2

The dependence of δaµ on M2 is shown in figure 4.7. We now need to look at both
the neutralino and chargino equations 3.1 and 3.4. Similarly to M1, the individual
neutralinos and charginos only contribute in specific regions, but the sum of their
contributions is a smooth function ofM2. We show the neutralino and chargino con-
tribution separately in figure 4.8.

Let us first focus on the chargino contribution. We see from figure 4.8 that there is



50 Chapter 4. Computational programs and results

0 500 1000 1500 2000 2500 3000 3500
M2 (Gev)

0

1

2

3

4

5

6

7

8

a
10

9

SuperISO

FIGURE 4.7: The δaµ dependence on the parameter M2.

a small bump around M2 = 200 GeV. It is caused in a similar way as the peak in
M1; the loop function FC2 is very large for low values of M2 and decreases rapidly
when M2 rises. The chargino mass factor in front of the loop function increases as
M2 increases. Their product generates a peak at roughly M2 = 200 GeV. The heavy
chargino does not mirror this behaviour, as both the loop function and the mass fac-
tor are approximately constant at low values of M2.

FIGURE 4.8: Chargino (χ̃±), Neutralino (χ̃0) and total (χ̃± + χ̃0) con-
tribution for the M2 parameter dependence.
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The neutralino contribution is again the dominant contribution. We see a large in-
crease in contribution for high values of M2. However, we have checked that this is
not due to the individual neutralino contributions; they remain relatively constant
over the entire range of M2.

The reason for the neutralino contribution blowing up at higher values of M2 is due
to the pre-factor of m−2

µ̃1,2
in equation 3.1. The smuon masses both decrease at higher

values of M2. From the equations in chapter 2.1, we see no direct influence of M2 on
the smuon masses. However, the RGEs for the first family sleptons are influenced
by M2. One of the terms in the RGE for ML

ẽ is −3C2g
2
2M

2
2 , where C2 is the Casimir

invariant for the Winos and g2 the corresponding coupling, both positive. Hence, an
increasing M2 would decrease the running value of ML

ẽ and thus reduce the mass
of the smuons. With a decreasing smuon mass, the corresponding m−2

µ̃1,2
rapidly in-

creases which explains what we see in figure 4.8.

µ
The dependence of δaµ on µ is shown in figure 4.9. As was the case withM2, both the
neutralino and chargino contributions are relevant for µ. We see a similar behaviour
in figure 4.9 as we did for the M2 variation; there is a local maximum at low values
of µ and a rising contribution at higher values of µ. We have split up the neutralino
and chargino contributions and plotted them in figure 4.10.

The peak at low values of µ can be explained in a similar way as was the case for
M2. This is caused by the chargino contribution, more specifically by the mass of the
lightest chargino increasing in value while the loop function FC2 is rapidly decreas-
ing in that domain. The peak seems much larger than was the case for M2, but that
is because the neutralino contribution doesn’t increase as rapidly at high values of µ.
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FIGURE 4.9: The δaµ dependence on the parameter µ.
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FIGURE 4.10: Chargino (χ̃±), Neutralino (χ̃0) and total (χ̃± + χ̃0) con-
tribution for the µ parameter dependence.

Since µ only influences the mixing of the smuon mass parameters and does not in-
fluence the RGEs of ML

ẽ or MR
ẽ , the masses of the smuons remain approximately

constant over the entire variation of µ. This means the factor of m−2
µ̃1,2

plays no role
here. The linear increase of the neutralino contribution is caused by something else.

The neutralino contributions for µ̃1 are shown in figure 4.11a. Note that since MR
ẽ <

ML
ẽ , µ̃1 is mostly right-handed and µ̃2 mostly left-handed for low values of µ. At

higher values for µ, the effect of mixing becomes more prevalent. The neutralino
contributions for µ̃2 are shown in figure 4.11b. When we look at the individual
neutralino contributions we see that χ̃0

1 is responsible for the linear behaviour af-
ter µ = M2. For the heavy smuon, this contribution is negative but smaller. This

(A) The neutralino contributions due to µ̃1

when varying µ.
(B) The neutralino contributions due to µ̃2

when varying µ.

FIGURE 4.11: The neutralino contributions due to the two different
smuons. The dashed lines indicate the values for which |µ| crosses

M1 = 620 GeV and M2 = 966 GeV.



4.3. The six important first-order parameter dependencies 53

results in a positive linear dependence at higher values of µ.

The dip in the neutralino contribution at low values of µ is caused by the third
neutralino (which is the Bino-like neutralino up to roughly µ = 620 Gev) for the
heavy smuon contribution and the first neutralino (the Higgsino-like neutralino up
to roughly 620 GeV) for the light smuon. Because the first neutralino hardly con-
tributes up to roughly 400 GeV for the heavy smuon, the significant total positive
contribution comes from the third neutralino in the light smuon figure. To see why
this is, we need to have a close look at the expression for the couplings nLim and nRim.
We will repeat them here:

nLim =
1√
2

(g1Ni1 + g2Ni2)X∗m1 − yµNi3X
∗
m2

nRim =
√

2g1Ni1Xm2 + yµNi3Xm1.

Let us focus on the product of left-and right coupling, as the squared coupling terms
scale with the mass of the muon and are thus suppressed. When µ ≈ 0, there is
no mixing between the smuon states. As ML

ẽ is larger than MR
ẽ , the lightest smuon

will be right-handed. This means we effectively have to rotate the smuon mixing
matrix X , see equation 2.6. Hence, the off-diagonal terms of X are significant and
the diagonal terms are zero (i.e. X11 = X22 = 0) at µ = 0. Even when µ increases, the
diagonal terms will remain small in comparison to the off-diagonal terms. Hence, if
we take m = 1, the dominant contributing terms are:

nLi1n
R
i1 = −yµNi3X

∗
12

√
2g1Ni1X12.

If we look at the third neutralino, we have i = 3. This means we have the matrix
elements N33 and N31 contributing. N33 is negative and N31 is positive, resulting in
a positive contribution for the lightest smuon. For the heavy smuon we have m = 2,
thus the opposite terms survive in the product of couplings:

nLi2n
R
i2 =

1√
2

(g1Ni1 + g2Ni2)X∗21yµNi3X21.

Again, N33 is negative and both N31 and N32 are positive. This explains why the
third neutralino χ̃0

3 has a positive contribution for the lightest smuon and a negative
contribution for the heavy smuon. Finally,N32 is negligibly small, so g1Ni1+g2Ni2 ≈
g′Ni1. This explains why the overall factor between the two contributions for χ̃0

3 is
approximately −2.

For the first neutralino we can use the same reasoning. The difference however,
is that we now have the matrix elements N11, N12 and N13 in the products. Both
N11 and N13 are negative, explaining the negative contribution of χ̃0

1 for the light-
est smuon and the positive contribution for the heavy smuon. The reason χ̃0

1 hardly
contributes for the heavy smuon up to µ ≈ 400 GeV is because of the (g1N11 +g2N12)
term. N12 is positive here, but only slightly smaller thanN11, making (g1N11+g2N12)
very small and negative.

We also see that the fourth neutralino hardly has any contribution for the mostly
right-handed µ̃1. This is the Wino-like neutralino for |µ| < |M2| and only couples to
left-handed particles. We do see it contribute for µ̃2, but it decreases at higher values
of µ. This decrease is due to the mixing of the left-and right-handed states.
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Lastly, the swap between the contributions of χ̃0
2 and χ̃0

3 at µ ≈ 700 GeV can be ex-
plained by looking at the mass of the nearly purely Higgsino state as explained for
the parameter variation of M1. As one of the neutralino is nearly purely a Higgsino
state and the other is mostly Higgsino with a mix of Bino and Wino, their masses
will change in a different way when varying a specific parameter. At µ ≈ 700 GeV,
the nearly pure Higgsino state becomes the heavier state and thus becomes χ̃0

3.

Other parameters
In the parameter dependence explained above, the rest of the parameters were kept
constant at 4 TeV, as to minimise their influences. As they do not appear in the equa-
tions 3.1 and 3.4, these parameters should at first glance not have any influence at all.
If we vary only one of these parameters and keep all other parameters constant, we
do however see a parameter dependence. Depending on which parameter we vary,
there can be changes in δaµ. This is because of the RGEs as explained in chapter 2.2.

4.4 Differences between SuperISO and MicrOMEGAs

Now that we know how δaµ changes depending on the different pMSSM parame-
ters at first-order, we can take a closer look at the differences between MicrOMEGAS
and SuperISO.

First-order difference
If we focus on only the first-order contributions that both programs calculate, we
already see a difference in output. To display this, we plot the first-order contribu-
tion of SuperISO versus the contribution of MicrOMEGAs in figure 4.12. We colour
coded the points according to their tanβ value, as the programs handle the imple-
mentation of this value differently. Any point deviating from the diagonal line y = x

FIGURE 4.12: The first-order output for δaµ from SuperISO vs Mi-
crOMEGAs where the colour indicates the value of tanβ.
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signifies a difference in output between the programs. The further the point is away
from the diagonal, the bigger the deviation.

The difference between MicrOMEGAs and SuperISO is very subtle in figure 4.12, but
it is there and is not constant. Both programs use the same equations to calculate the
first-order contribution, but they do not use the same values for the variables that
go into these equations. An example are constants likemµ, whose value is more pre-
cise in one of the programs. Another difference is the scale at which the programs
implement certain variables. An example of this would be tanβ. In the spectrum
file given by SPheno, the input value for tanβ is given, but also the running value of
tanβ at the scale of mZ . These differ slightly due to the running of the parameters.
In the end, multiple of these small differences lead to a difference in output.

The most important variables that differ between programs are listed in table 4.4.

Parameter MicrOMEGAs SuperISO

mµ Hardcoded at 0.1057 Hardcoded at 0.10565

mZ Hardcoded at 91.1876 Taken from spectrum file

mW Calculated by mZ cos θw Taken from spectrum file

sin θw Hardcoded at 7.81653 · 10−3 Calculated by sin arctan g′/g

tanβ Taken from input file Taken from spectrum file

g1 Calculated by
√

4παem/ cos θw Hardcoded at 0.357458

g2 Calculated by
√

4παem/ sin θw Harddcoded at 0.651908

TABLE 4.4: The largest differences in variables for the first-order cal-
culations of MicrOMEGAs and SuperISO.

Overall, the different choices for hardcoding the variables versus taking them from
the spectrum file leads to a difference between the programs of roughly 1−5%. Since
this discrepancy is small enough to fall within the error of ∆aµ we conclude that the
output of the programs at first-order is consistent.

Higher orders
When one takes into account the second-order contributions of SuperISO and the
correction SuperISO applies to the first-order contribution, one generally expects
a larger difference between the programs. However, for most parameter sets the
second order contributions are small. If the higher-order contributions would be
smaller than the difference in first-order contributions between MicrOMEGAs and
SuperISO, then one can neglect the higher-order contributions entirely. This is often
the case. However, from equations 3.8 and 3.9, we see that mA and At are expected
to have a large impact on the second-order contributions to δaµ. Parameter sets with
extreme values for these parameters could result in large second-order contributions
for which it is important to take the extra contributions of SuperISO into account.

In order to quantify the contribution of second-order diagrams, we did multiple ran-
dom scans with extra constraints, where all contributions calculated by SuperISO
were taken into account. The scans with extra constraints include the constraint that
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FIGURE 4.13: The output for δaµ from SuperISO vs MicrOMEGAs
where the colour indicates the value of mA. The figure is zoomed

into the region where −0.5 · 10−9 < δaµ < 0.5 · 10−9.

one Higgs boson should have a mass of 125 ± 4 GeV and the supersymmetric par-
ticle lowest in mass should be neutral. For each of the 19 specific parameters, the
output of the full SuperISO calculation for δaµ was then plotted against the first-
order contribution calculated by MicrOMEGAs and colour coded. Let us first look
at mA in figure 4.13. Note that the data set for figure 4.13 included contributions
up to δaµ ≈ 2.5 · 10−9, but the largest deviations from the diagonal are seen around
small values for δaµ. This is why the figure only displays a specific region of the data
set.

As mentioned in chapter 3.2, we expect the second order contributions to be large
when mA is small. For regions where the second order contributions are negligible,
we expect a diagonal line with a slight offset due to the first order differences. We see
a small deviation from this around zero, where the absolute value of the SuperISO
contribution is larger than the MicrOMEGAs one. The colour coding shows that
these points are in fact all parameter sets with a small value of mA, as was predicted
to be the case. Especially the colour gradient is of interest here. As the value of mA

increases, we see the points going closer towards the diagonal.

The first-order contributions are estimated to be small when ML
ẽ becomes large. If

we would look at the same data, but colour code it for the value of ML
ẽ , we would

see that almost all points that deviate from the diagonal have a high value for ML
ẽ .

This means that if you allow δaµ to be small in your parameter scans, the second
order contributions will be more important relative to the first-order contributions if
the first-order contributions are very small.

In figure 4.12 we showed the difference in first-order contributions for both pro-
grams, colour coded according to the value of tanβ. Figure 4.14 shows a similar
picture, but now with SuperISOs second-order contributions included. Here we can
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FIGURE 4.14: The output for δaµ from SuperISO vs MicrOMEGAs
where the colour indicates the value of tanβ. The figure is zoomed

into the region where −0.5 · 10−9 < δaµ < 0.5 · 10−9.

more clearly see that the deviation from the diagonal is larger when the value of
tanβ is larger.

It is hard to quantify exactly when the first-order contributions calculated by Mi-
crOMEGAs are not precise enough due to large second-order contributions. How-
ever, we can conclude that one can better use SuperISO when allowing parameter
scans to include low values of mA and high values of ML

ẽ . We have also checked
that values close to zero for µ, M1 and M2 lead to deviations from the diagonal.
Combinations of these values for the mentioned parameters can also lead to high
second-order contributions, as can specific values for tanβ, At, Aτ and Ab.

We have looked at how large these second order contributions can become, and thus
how far the deviation from the diagonal can become. This required a parameter scan
that was aimed at looking for large second-order contributions and thus no longer
random. Points from this specific search were added to the data set used in the pre-
vious figures. These points are rare to find in a random scan, but can definitely exist.
Figure 4.15 shows the data set but with the added points, again colour coded ac-
cording to the value of mA as this should have the largest influence on second-order
contributions.

The scale of the axis has been increased in figure 4.15 such that the extreme devia-
tions from the diagonal are more visible. The extra points on the right of the diagonal
are the points added artificially to the data set to show how large these deviations
can become. The right-most point is one that borders the limitations of what is still
allowed due to the constraints, i.e. it does not lead to a tachyonic particle.

We also see from the figure that at higher values of δaµ the deviation from the diag-
onal increases overall. Note that these points at higher values for δaµ were present
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FIGURE 4.15: The output for δaµ from SuperISO vs MicrOMEGAs
where the colour indicates the value of tanβ. The figure is zoomed

into the region where −0.5 · 10−9 < δaµ < 3.0 · 10−9.

in the original data set and have not been artificially added here. The reason for Mi-
crOMEGAs giving a higher value than SuperISO for most of these points is because
of the extra factor with which SuperISO corrects the first-order contributions, given
by equation 3.6. This factor always causes a reduction in the first-order contribution
and thus has a significant effect especially when the Barr-Zee contributions are neg-
ligible. For high values of δaµ, this factor could increase the difference between the
output of SuperISO and MicrOMEGAs to be significant with respect to the error on
∆aµ.

If one is interested in using MicrOMEGAs or SuperISO to solve the anomalous mag-
netic moment problem in the SM, one would be searching for specific parameter
sets that give a value for δaµ of roughly 2.68 · 10−9. If one samples the pMSSM space
randomly with a constraint built in where δaµ = 2.68 · 10−9 ± 0.9 · 10−9, it is very
likely that the first-order contribution is enough. As soon as one allows more ex-
treme values for the parameters though, one can quickly stumble upon parameter
sets for which the second-order contributions matter. We therefore recommend us-
ing SuperISO over MicrOMEGAs for the purpose of δaµ calculations, as we cannot
give a clear condition for when first-order calculations of MicrOMEGAs are always
sufficient.



59

Conclusion

In this thesis we have shown how the theoretical calculation for the anomalous mag-
netic moment of the muon is structured. We have shown the extra contributions that
arise if one extends the SM with the pMSSM and we have argued that all 19 input
parameters of the pMSSM can have an effect on δaµ, but that only certain parameters
have the most direct influence.

We focused on two specific programs used by many in the SUSY theory commu-
nity: MicrOMEGAs and SuperISO. The biggest difference between the output of
MicrOMEGAs and SuperISO comes from the fact that the programs calculate the
contributions up to different orders. Both programs calculate the full first-order con-
tribution, which agree up to sufficient precision. Only SuperISO implements a gen-
eral correction factor that arises from similar diagrams but with higher-order loops
in them. Besides that, SuperISO also incorporates a new type of diagram that only
appears at second-order or higher, called Barr-Zee diagrams. SuperISO calculates
the largest contributions coming from these Barr-Zee diagrams and adds these to
the corrected first-order contribution.

When performing random scans in the pMSSM parameter space, one will often
find small contributions from these second-order diagrams that SuperISO calculates.
However, we have shown that it is possible to find points in the pMSSM parameter
space for which the second-order Barr-Zee contributions can become large. In this
region of parameter space, MicrOMEGAs would not give sufficiently precise results.

When the second-order contributions are small, the correction factor applied to the
first-order contributions causes the largest difference between the programs. This
results in MicrOMEGAs often giving a higher output than SuperISO, as the correc-
tion is always negative. The only way SuperISO can have a higher output would
be if the second-order Barr-Zee contributions are large enough to overcome the first-
order correction factor or if δaµ is negative.

Because of the above mentioned reasons, we suggest using SuperISO for calculations
to the anomalous magnetic moment of the muon. Even though MicrOMEGAs will
often give a similar result, within the SM error, to that of SuperISO, there are param-
eter sets for which the differences become large. We cannot give clear limitations on
the parameters for which MicrOMEGAs will give a similar result to SuperISO, so it
is safest to always use SuperISO.

If the newest experiment improves the experimental error but keeps the experimen-
tal value the same, the deviation between experiment and the SM theoretical value
becomes significant enough to warrant a new physics explanation. We have shown
that the pMSSM has potential to solve this deviation.
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Appendix A

The second order loop functions used in the calculation by SuperISO are given by
[45]:

FA0(x) = x

∫ 1

0
dz

1

z(1− z)− x
ln
z(1− z)

x

=
2x

y

[
Li2
(

1− 1− y
2x

)
− Li2

(
1− 1 + y

2x

)]
,

Fl(x) = (2x− 1)FA0(x)− 2x(2 + log x),

Ff =
x

2

(
2 + log x− FA0(x)

)
,

where y =
√

1− 4x. The Li2 functions are Spence functions defined by:

Li2(z) = −
∫ z

0
du

ln 1− u
u

, z ∈ C.

For x > 0.25, y becomes complex. In that case, SuperISO approximates the FA0

function as:

x < 2.5 :− 0.1365013496− 1.858455623 log (1 + x)

− 0.5996763746(log (1 + x))2 + 0.4390843985
√
x log (1 + x)

− 0.1444359743x log (1 + x) + 3.852425143
√
x

2.5 ≤ x < 100 : 0.4304425955 + 0.06766323794 log (1 + x)

− 0.1584446296(log (1.+ x))2 − 0.2787080541
√
x log (1 + x)

+ 1.557845370 · 10−3x log (1 + x) + 2.139180566
√

(x)

100 ≤ x < 10000 : 2.025445594 + 0.9960866255 log x+ 1.122896720 · 10−4√x.

(b.1)

The SPheno loop functions are given in integral representation by [49]:

I1(α, β) =

∫ 1

0
dx

∫ 1−x

0
dz

−z
αz2 + (1− α− β)z + β

,

I2(α, β) =

∫ 1

0
dx

∫ 1−x

0
dz

z2 − z
αz2 + (1− α− β)z + β

,

I3(α, β) =

∫ 1

0
dx

∫ 1−x

0
dz

1− z
αz2 + (β − α− 1)z + 1

,

I4(α, β) =

∫ 1

0
dx

∫ 1−x

0
dz

z2 − z
αz2 + (β − α− 1)z + 1

.
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When approximating α = 0, the loop functions as used in 4.1 are found:

F1(y) = 2I1(0, y) =
1

(y − 1)3

(
1− y2 + 2y ln (y)

)
,

F2(y) = 6I2(0, y) =
1

(y − 1)4

(
− y3 + 6y2 − 3y − 2− 6y ln (y)

)
,

F3(y) = −2I3(0, y) =
1

(y − 1)3

(
3y2 − 4y + 1− 2y2 ln (y)

)
,

F4(y) = −6I4(0, y) =
1

(y − 1)4

(
2y3 + 3y2 − 6y + 1− 6y2 ln (y)

)
.

The argument of these loop functions is the inverse of the argument used in the
SuperISO and MicrOMEGAs loop functions. Let x = 1/y:

F1(x) =
x

(1− x)3

(
− 1 + x2 − 2x ln (x)

)
= −1

3
xFN2 (x),

F2(x) =
x

(1− x)4

(
− 1 + 6x− 3x2 − 2x3 + 6x2 ln (x)

)
= −1

2
xFN1 (x),

F3(x) =
x

(1− x)3

(
3− 4x+ x2 + 2 log (x)

)
= −2

3
xFC2 (x),

F4(x) =
x

(1− x)4

(
2 + 3x− 6x2 + x3 + 6x ln (x)

)
=

1

2
xFC1 (x),

where FN,C1,2 are the loop functions used by SuperISO and MicrOMEGAs as given in
chapter 3.1.

Splitting up the couplings in equations 3.1 and 3.4, reordering the constants and
detaching the loop functions leads to:

δa
˜̃χ0

µ (1) =
4∑
i=1

2∑
m=1

− mµ

16π2

mµ

12m2
µ̃m

(| nLim |2 + | nRim |2)

δa
˜̃χ0

µ (2) =

4∑
i=1

2∑
m=1

mµ

16π2

1

3

m ˜̃χ0
i

m2
µ̃m

Re[nLimn
R
im]

δa
˜̃χ±
µ (1) =

2∑
k=1

mµ

16π2

mµ

12m2
ν̃µ

(| cLk |2 + | cRk |2)

δa
˜̃χ±
µ (2) =

2∑
k=1

mµ

16π2

2

3

mχ̃±
k

m2
ν̃µ

Re[cLk c
R
k ]
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Expanding the couplings, including g1, g2 and yµ leads to:

δaχ̃
0

µ (1) = −
m2
µαem

48π sin2 (θw)

4∑
i=1

2∑
m=1

1

m2
µ̃m

{ m2
µ

2M2
W cos2 (β)

|Ni3|2

+
1

2
tan2 (θw)|Ni1|2(|Xm1|2 + 4|Xm2|2) +

1

2
|Ni2|2|Xm1|2

+ tan (θw)|Xm1|2Re(Ni1N
∗
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mµ tan (θw)
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Re(Ni3N

∗
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∗
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∗
m2)
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m2
µαem

24π sin2 (θw)
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1

m2
χ̃0
j
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− 1

2

m2
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]
,

δaχ̃
0

µ (2) =
mµαem
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2mW cos (β)
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1
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j
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− 1
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1
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,
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1
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∗
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− 2
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,

where in the last equality for each δaµ a relabeling of the sum index was applied.
The Xk

µj and ηkµj are exactly the same as given in equations (31) and (32) of [50] and
are found in equation 4.1. The terms in brackets are cancelled by the change in the
argument of the loop functions as can be seen on the previous page. This proves that
the seemingly different expressions in equations 3.1 and 3.4 and in the equation 4.1
are in fact almost identical. The only difference is a missing factor of 2 in the δaχ̃

±
µ (2)

compared to the expressions SuperISO and MicrOMEGAs use. This difference is
also present in other literature, i.e. in comparing the loop functions between [37]
and [40].
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Here we will show the characteristics of the loop functions as a function of the mass
ratio x. We present a logarithmic plot of each loop function as to better understand
both extremes of the mass ratio. For the FA0 loop function, SuperISO uses an ap-
proximation (see appendix A). We show this approximation in figure C.7 and the
correct analytical function with a better approximation in a non-logarithmic plot in
figure C.8, where we zoomed in on the exact point where deviations occur.

FIGURE C.1: A plot of F1(x) = FN1 (x) = 2
(1−x)4

(
1− 6x+ 3x2 + 2x3 −

6x2 ln (x)
)

on a logarithmic scale.
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FIGURE C.2: A plot of F2(x) = FN2 (x) = 3
(1−x)3

(
1 − x2 + 2x ln (x)

)
on a logarithmic scale.

FIGURE C.3: A plot of F3(x) = FC1 (x) = 2
(1−x)4

(
2 + 3x − 6x2 + x3 +

6x ln (x)
)

on a logarithmic scale.
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FIGURE C.4: A plot of F4(x) = FC2 (x) = 3
2(1−x)3

(
− 3 + 4x − x2 −

2 log (x)
)

on a logarithmic scale

FIGURE C.5: A plot of FA0(x) = x
∫ 1

0
dz 1

z(1−z)−x ln z(1−z)
x on a loga-

rithmic scale as approximated by SuperISO.
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FIGURE C.6: A plot of Fl(x) = (2x − 1)FA0(x) − 2x(2 + log x) on a
logarithmic scale.

FIGURE C.7: A plot of Ff as approximated by SuperISO on a loga-
rithmic scale.
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FIGURE C.8: A plot of the analytical function of Ff = x
2

(
2 + log x −

FA0(x)
)

from x = 0 to x = 150 to show the deviation between the
analytical function and the approximation made by SuperISO.
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