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I. Introduction 

The configuration space ~4 of a physical system is rarely ~n. Indeed the 

configuration spaces of such common systems as a particle with spin, the harmonic 

oscillator, several hard spheres, a system of indistinguishable particles, etc .... 

are Riemannian multiply connected manifolds [I]. The global properties of ~4 contain 

much information on the generic properties of the physical system; nevertheless, 

they have received little attention. Why? Possibly because global problems are 

difficult, but also because physical laws have, since Newton, been largely stated 

as differential equations and investigated locally. 

The Feynman formalism is the only global formalism of physics, but its global 

aspect is somewhat blurred in the original definition of path integrals. In this 

definition a path q mapping an interval ~ = [ta,tb] into ~4 is replaced by p of its 

values qi = q(ti ) for a time subdivision of the interval ~F 

t a = t0<t I < . . tp < tp+ 1 = t b with q(ta) = a, q(tb) = b 

The path integral over the space ~(a,b) of all possible paths of the system between 

its states A = (a,t a) and B = (b,tb) is replaced by an integral over the space ~pn 

of the pn tuples {qi~; i = 1 ... p, ~ -- I ... n) where n is the dimension of ~I, 

i.e., the number of degrees of freedom of the system. If it exists, the limit of the 

integral over ~pn when p ~ = is called the Feynman path integral. No unique prescrip- 

tion has been given for the [I pn integral beyond the requirement that the results 

agree with those obtained with the Schr~dinger differential equation; the mathematical 

difficulties involved in defining the ~pn integral and its limit, and the computational 

difficulties in finding their values, whether unique or not! ..., has plagued both 

mathematicians and physicists. Thus most of the effort has been spent in showing 

that, locally, the Feynman formalism is equivalent to the Schr6dinger formalism and 

in presenting the Feynma~ path integral as the solution of the Schr6dinger equation 

satisfying some boundary conditions and other extraneous conditions as required by 

the given problem, such as the symmetry or antisym~etry property of the wave function. 

In this approach, the global properties of the space of all possible paths on IM 

hardly enter the picture and much of the original beauty and power of the Feymman 

formalism is lost. 
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Recently [2] a new definition of the Feynman path integral which does not rest 

on the above limiting procedure has been proposed. It focuses on the space T(a,b) 

of all possible paths of the system from A to B. Besides a different emphasis, this 

definition leads to new techniques for computing path integrals. These techniques 

give readily results obtained laboriously by other methods; they are particularly 

well suited to the study of systems whose configuration space is not flat where other 

techniques are often ambiguous and encounter a great deal of difficulties. 

In this paper we shall consider configuration spaces ~4 which are Riemannian 

multiply connected manifolds with metric g and fundamental group ~. We shall illus- 

trate the propositions with the example of a free particle whose state at time t is 

q(t) e ~M. The action of this system is: 

s(q) = ~ II 4 ( t )  1t z at  : ~- ( g 
T 

II. Pseudomeasures 

The theory of promeasures (cylindrical measures) provides the framework for 

integration on function spaces; more precisely it is the basis for integration on 

Hausdorff topological vector spaces ~, locally convex. A premeasure is a family 

of bounded measures defined on a family of finite dimensional spaces suitably related 

to ~j satisfying some coherence conditions. The restriction to bounded measures makes 

it impossible to use the theory of promeasures for Fe~ integration. However there 

is a one to one correspondence between the set of promeasures on ~ and their Fourier 

transforms on its dual ~'. One can thus define a prcmeasure by its Fourier trans- 

form and states the coherence conditions as conditions satisfied by the Fourier trans- 

forms. At this point it is possible to remove the restriction to bounded measures 

and to generalize the concept of promeasure: Indeed, the Fourier transforms of mea- 

sures, considered as distributions of order zero, are defined for all measures, bounded 

or not. This new concept, given for convenience a name "pseudomeasure" and a symbol 

"w", enters our work only by its Fourier transform ~w. It is not known whether or 

not the mapping w ~ ~w of the set of pseudomeasures on K into the set ~ of functions 

on ~Jis injective; i.e., whether or not a pseudomeasure w is uniquely defined by 

its Fourier transform ~w. 

In the present study we consider only complex gaussian pseudemeasures; a gaus- 

sian pseudomeasure is a pseudomeasure whose Fourier transform is: 

Yw -- exp(-iw/2) 

where W is a quadratic form on X'. When K is the space of continuous paths x on 

~, ~' is the space of measures ~ on ~ and 

W(~) = W(~,~) = f d~(r) f, d~B(S) G~B(r,s) 

W is the variance of the gaussian, G its covariance. A normalized gaussian pseudo- 

measure is uniquely defined by its cevariance. 
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Proposition i. (Transformation of a Gaussian pseudomeasure under a linear mapping)[2,3] 

Let K and %6 be two Hausdorff, topological vector spaces, locally convex, let K' 

and Y' be their topological duals; let P be a linear continuous mapping from K into 

~, let ~ be the transposed mapping from K' to Y' defined by 

< ~', x > = <y', Px> 

Let w be a Gaussian pseudomeasure on K of variance W. The image of w under P is a 

Gaussian pseudomeasure wp on Y whose Fourier transform is 

-- e (-iW/2) with : w • 

D y 

R 

This proposition, together with the equation 

J~f F(y)dwp(y)= f FoP(x)dw(x) 

makes it possible to compute many Feynman integrals. 

Example: Let P : K+ ~pn by x~ y where y is the pn tuple {yi~ = <~i~' x>}, then: 

Wp(y') = y'i~xg~ic~j~ y'j~ 

where %yiajB = W(ui~ ' ~j~) 

and dwp(y) = (2~i) -pn/~2 (det%fl) 1/2 exP(½y i~ (~f-1)iaj 8 yjS) dy 

The integrand of a Feynman path integral is often a function F of a set {<~ia' x>}, 

i.e., a function F o P of x. The path integral over ~ is then equal to the integral 

of F(y) over ~pn with respect to the measure Wp computed in this example. 

When ~_. is equal to the vector valued Dirac measure at t i having only an ~ component 

%fiaJS=±~a~(ti , tj) and one can use the mapping P : R + Y by x ~ <Sti , x> = xa(ti ) 

to compare the two definitions of Feynman integral. 

For mappings P other than K ÷ R pn see [3]. 
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III. The Feymman Green Function 

Classical~hysics is dominated by the Euler-Lagrange equation and Quantum 

Physics by the small disturbance equation, i.e., respectively by the first and the 

second variation of the action S. In this section we shall state the properties of 

the second variation, old and new, necessary to compute the propagation kernel. 

The expansion of S around the classical path q can be written 

s (q) = s (q~ + ½ s" (~ xx + z (x) 

In the example considered q is the geodesic from a to b; the second var±ation S"(q), 

also called the hessian of S at q, is: 

S"(~)xy = - z(y(t), ~i(t)g - f (y(t), ~(t) + R(~(t),x(t))~(t))gdt 
t 

where A means "difference at a discontinuity": A x(t) = ~(t+)-i(t -) and where R is 

the Riemann tensor; x is a vector field along q, it is an element of the tangent 

space at q of the space ~ofpaths q : 2F + ~; i.e., x ~ ~F~ and x(t) E ~M~(t) 

x is called a Jacobi field if and only if 

S"(~)xy = 0 for every y E ~- 
q 

A Jacobi field is a C ~ - differentiable solution of the small disturbance equation, 

it will be denoted x. The small disturbance equation, also called the Jacobi dif- 

ferential equation has 2n linearly independent solutions. 

The Jacobi fields can be obtained by an m-parameter variation through geodesics [5]. 

An m-parameter variation ~ of a path q is a mapping 

: ~c ~÷ ~F such that ~(0) = 

It is convenient to introduce the mapping a, also called m-parameter variation of 

q: 

: ~ × T + IM by ~(u,t) = ~(u)(t) 

An m-parameter variation defines m "variation vector fields" {x i} by 

xi(t) = ~ (0,t) 

conversely 

~(u,t) -- exp~(t ) (~uixi(t)) 

When the family {~(u)} is a family of geodesics, an m-parameter variation ~ is called 

a variation through geodesics. 
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Two points q(ta) = a and q(tb) = b are said to be conjugate along q if there exists 

a non zero Jacobi field x along q vanishing at t a and t b. The dimension of the vector 

space of all such Jacobi fields is called the multiplicity of the conjugate points. 

Le~ma: Two points a and b are conjugate along q if and only if the mapping eXPa is 

critical at (tb-ta) ~(ta); i.e., if its derivative mapping at the critical point is 

not one-one. Indeed, ~at i(ta) be the covariant derivative of the non-zero Jacobi 

field vanishing at t a and t b. 

e X P a ( ( t b - t a ) q ( t a ) )  ( t b - t a )  x a = 0 

A Jacobi field is determined by its values at any two non-conjugate points. Thus 

the Jacobi field equal to x a at t a and x b at t b is 

x(t) = -J(t,tb) M(tb,ta)X a -J(t,ta) M(ta,tb)x b 

where M(tb,t a) is the inverse of J(tb,ta) and where J(t,tb) is the antisynmetric 

Jacobi two point vector along q such that 

J(tb,t a) = 0 

d~ = (t = tb,tb) = g'l(q(tb) ) which will be abbreviated to g-l(tb) 

J is also known as the commutator function. 

It has been shown [6] that M is the Van Vleck matrix: 

M(tb,t a) = ~2S(a,b)/~b~a where S(a,b) = S(q) 

When the end points are conjugate, we determine the Jacobi field by its Cauchy data 

x ( t )  = J ( t , t a )  g ( t a ) ~ ( t a )  + K ( t , t a ) g ( t a ) X  a 

where K(.,ta) is a Jacobi field along ~ defined by 

K[ta,ta) = g-l(ta) 

DK (t 0 ~T = ta'ta) = 

Proposition 2. The end points a and b are conjugate along q if and only if 

det J(tb,ta) = 0. The conjugate points are degenerate if and only if det K(tb,ta) = 0. 

This proposition provides a convenient criterion for the onset of catastrophes in 
path integrals, namely: 

For a fixed point a c ~M the catastrophe set of points b ~ ~4 satisfies: 

det J(tb,ta) = 0 

det K(tb,ta) 0 

The proof of proposition 2 and the study of catastrophes is the subject of another 
paper. 
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The Feynman Green function is the Green function of the small disturbance operator 

that vanishes on the boundary. 

Proposition 3: The Feynman Green function is equal to 

G(r,s) 4~ y(r_s)J(r,tb)M(tb,ta)J(ta,S) • y(s_r)J(r,ta)M(ta,tb)J(tb,s) =~ -~ 

where Y is the Heaviside step function equal to unity for positive argument and zero 

otherwise. 

Proof: see [6] 

When a and b are conjugate along q, the Feymnsn Green function is not defined, and 

we shall need another Green function G of the small disturbance operator to define 

the propagation kernel: 

G_ (r,s) =~4% y(r_s)K(r,tb)N(~,ta)J(ta,S ) _y(s_r)J(r,ta)N(ta,tb)K(tb,S ) 

where N(tb,ta) is the inverse of K(tb,ta)defined in the previous paragraph. 

IV. The Propagation Kernel K(B;A) = K(b,tb;a,ta) 

The propagation kernel of a system from a state A to a state B is the proba- 

bility amplitude for the transition A + B. It gives the wave function ~ at t a 

in terms of the wave function ~ta at ta: 

~(b) = rim K(b'tb;a'ta) ~ta(a)(det g(a))l/2da 

According to Feynman's original definition 

K(B;A) = Lira [ K(B;p)K(p;p-l)...K(l;A)dq 1. . . dq p where [4] 
J 
IRP n 

K(k+l;k) = r I ~n/2 (det ~ ~2S(k+l;k) )1/2 exp~ S(k+l;k)) 
~Lr~ j ~'qk+l ~qk 

S(k+l;k) is a function of qk+l tk+l ' qk, tk such that 

l imi t  ~ S(k+l;k) = S(q) L(q( t ) ,  q ( t ) , t )  dt 
p+~ k=l T 

where L is the lagrangian of the system and S its action. We can write S(k+l;k) = 

f tk+ 1 
tk L(q( t ) ,  ~t(t) , t )d t  provided we give some p resc r ip t ion  for  the path q: [ tk, tk+l]  ÷ M. 

A natura l  p resc r ip t ion  for  q ] [ tk , tk+l]  i s  the c l a s s i ca l  path from qk to qk+l. 

We sha l l  give the new def in i t ion  of  the propagation kernel in three s teps:  

a) The paths q e F (a,b) map ~r in a geodesical ly convex neighborhood N of N. 

b) The end points a and b may be conjugate points  along q, but there is no other 

conjugate point along q; the conjugate points  are non-degenerate. 

c) There are several  conjugate points  along ~; the?- are non-degenerate; the end 
points are not conjugate. 
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Proposition 4a. When q : ~r ÷ ~, the propagation kernel is 

K(B;A) = exp~ S(~)f~ e~p~ Z(x)dw(x) 

where w is the gaussian pseudomeasure on 2( defined by its Fourier transform 

~w = w(×)exp(-iW/2) 

G is the Feynman Green function; w(K) = (det M(tb,ta))I/~(2~i) n/2- 

Proof and applications: see [6] and [3] 

This definition is equivalent to the original one when the original one is ~mambiguous, 

it does not require an ad hoc prescription for the ~R pn integral, it is defined for a 

large class of physical systems, and leads to simple and powerful computational tech- 

niques. 

Proposition 4b. Let ¥ be the space of vector fields along q which vanishes at t a 

but take arbitrary values at t b. Let w be the gaussian pseudomeasure of covariance 

G normalized to 

w_(~) = (get g-l(tb) N(tb,ta )I/2 

Then w on ~ induces w on K ~ ¥: 

/~ x(y) <~r,y> <~s,y> dw (y)//~v x(y)dw (y) = iG(r,s) 

Fy x(y)dw-(Y)=~2~ dw(x) for non conjugate end points 

i w (¥) ~ for conjugate non-degenerate end points 

where ~ is the Dirac distribution at the origin of ~n. 

The propagation kernel is equal to 

K(B;A) = exp~ S(q) ;y'~(y) exp~ Z(y) dw_(y) 

where ~ ~y) is the characteristic of function of K C ~. 

The proof is given in [6]. This proposition serves two purposes: 

It provides the formalism for integrating over paths with one fixed end point and 

one arbitrary point. 

It makes it possible to approach a point b conjugate to a along q from a point b u 

not conjugate to a along the geodesic qu from a to bu; the parameter u ~ ~m, where 

m is the multiplicity of the conjugate points, defines an m-parameter variation of 

through geodesics such that b u = exPbuY b. One obtains in particular: 

;~{ ~(y;y = dw_ (y) (t b) Yb ) 

o i detl/TrM(tb,ta)) exp ( -~ ~ ~r Ybg (tb) K(tb,ta) M(ta,tb)Y b ) (2~)n-- E 

the value of ~., x(y)dw (y) stated in the giving proposition 
J~ 
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Schulman [7] has examined propagation kernels between conjugate points in 

terms of the eigenvalues of the small disturbance operator. 

Proposition 4c. There may be several non degenerate conjugate points along q. 

Let the end points a,b be two points in ~4 which are not conjugate along any geodesic. 

Let ~ be the fundamental group of a countable CW-complex which contains one cell of 

dimension ~ for each geodesic from a to b of Morse index ~. 

Let Ka(B;A ) be the partial propagation kernel for all the paths from a to b in the 

same homotopy class % computed according to proposition I. Then the absolute value 

of the propagation kernel is 

I K(B;A) I = I ~(~) K s (B;A) I 

where {~(~); ~,} is the set of characters of the fundamental group. 

Proof: Because there is no unique way to label the homotopy classes by the elements 

of the fundamental group, K(B;A) is determined only modulo an overall unobservable 

phase factor [i]. The proof rests on the fundamental theorem of Morse theory IS] 

which states the homotopy type of ~(a,b) and on the theorem giving the propagation 

kernel on a multiply connected space [$]. The kernel K has been computed by 

Gutzwiller [8]. Proposition 4c and its proof give a rigorous derivation for his 

expression. 

I am grateful to Bryce S. DeWitt for discussions of his unpublished work on the 

small disturbance equation. Approaching the problem from a different perspective 

they have led to several fights beneficial to the a~thor. 
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