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I. Introduction

The configuration space M of a physical system is rarely ®R®, Indeed the
configuration spaces of such common systems as a particle with spin, the harmonic
oscillator, several hard spheres, a system of indistinguishable particles, etc. ...
are Riemannian multiply comnected manifolds [1]. The global properties of ™ contain
much information on the generic properties of the physical system; nevertheless,
they have received little attention. Why? Possibly because global problems are
difficult, but also because physical laws have, since Newton, been largely stated
as differential equations and investigated locally.

The Feynman formalism is the only global formalism of physics, but its global
aspect is somewhat blurred in the original definition of path integrals. In this
definitiqn a path q mapping an interval'T = [ta,tb} into W™ is replaced by p of its
values q* = q(t;} for a time subdivision of the interval ¥

t, = tgsty <. . tp < tp+1 =1, with q(ta) = a, q(tb) =b

The path integral over the space [F(a,b) of all possible paths of the system between
its states A = (a,t,) and B = (b,t;) is replaced by an integral over the space RrP?

of the pn tuples {g%; 1 =1 ... p, e =1 ... n} vhere n is the dimension of M,

i.e., the number of degrees of freedom of the system. If it existé, the 1imit of the
integral over RP™ when p + = is called the Feynman path integral. No unique prescrip-
tion has been given for the R™™ integral beyond the requirement that the results
agree with those obtained with the Schrddinger differential equation; the mathematical
difficulties involved in defining the RP™ integral and its limit, and the computational
difficulties in finding their values, whether unique or not! ..., has plagued both
mathematicians and physicists. Thus most of the effort has been spent in showing

that, locally, the Feynman formalism is equivalent to the Schrédinger formalism and

in presenting the Feynman path integral as the solution of the Schrddinger equation
satisfying some boundary conditions and other extraneous conditions as required by

the given problem, such as the symmetry or antisymmetry property of the wave function,
In this approach, the global properties of the space of all possible paths on ™
hardly enter the picture and much of the original beauty and power of the Feynman
formalism is lost.



536

Recently {2] a new definition of the Feynman path integral which does not rest
on the above limiting procedure has been proposed. It focuses on the space F(a,b)
of all possible paths of the system from A to B. Besides a different emphasis, this
definition leads to new techniques for computing path integrals. These techniques
give readily results obtained laboriously by other methods; they are particularly
well suited to the study of systems whose configuration space is not flat where other
techniques are often ambiguous and encounter a great deal of difficulties.

In this paper we shall consider configuration spaces WM which are Riemannian
multiply connected manifolds with metric g and fundamental group ». We shall illus-
trate the propositions with the example of a free particle whose state at time t is
q(t) eM. The action of this system is:

s@ =3[ Iaw | 2a- gj RORES OIS
T T

II. Pseudomeasures

The theory of promeasures (cylindrical measures) provides the framework for
integration on function spaces; more precisely it is the basis for integration on
Hausdorff topological vector spaces X, locally convex. A promeasure is a family
of bounded measures defined on a family of finite dimensional spaces suitably related
to ¥, satisfying some coherence conditions. The restriction to bounded measures makes
it impossible to use the theory of promeasures for Feynman integration. However there
is a one to one correspondence between the set of promeasures on ¥ and their Fourier
transforms on its dual ¥'. One can thus define a promeasure by its Fourier trans-
form and states the coherence conditions as conditions satisfied by the Fourier trans-
forms. At this point it is possible to remove the restriction to bounded measures
and to generalize the concept of promeasure: Indeed, the Fourier transforms of mea-
sures, considered as distributions of order zero, are defined for all measures, bounded
or not. This new concept, given for convenience a name "pseudomeasure' and a symbol
"w'', enters our work only by its Fourier transform $w. It is not known whether or
not the mapping w -~ % w of the set of pseudomeasures on X into the set of functions
on XK'is injective; i.e., whether or not a pseudomeasure w is wuniquely defined by
its Fourier transform Fw.

In the present study we consider only complex gaussian pseudomeasures; a gaus-
sian pseudomeasure is a pseudomeasure whose Fourier transform is:

Fw = exp(-iW/2)

where W is a quadratic form on X'. When X is the space of continuous paths x on
T, X' is the space of measures yon T and

WD = W) = | o @ fw dvg(s) 6*(x,9)

W is the variance of the gaussian, G its covariance. A normalized gaussian pseudo-
measure is uniquely defined by its covariance.
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Proposition 1, (Transformation of a Gaussian pseudomeasure under a linear mapping) [2, 3]
Let X and Y be two Hausdorff, topological vector spaces, locally convex, let X'

and Y' be their topological duals; let P be a linear continuous mapping from X into
Y, let P be the transposed mapping from X' to Y' defined by

<Py',x>=<y', Px>

Let w be a Gaussian pseudomeasure on X of variance W, The image of w under P is a
Gaussian pseudomeasure wp on Y whose Fourier transform is
?wp = exp(-iWP/Z) with WP =W.P

X P Y

G

w Wp

0
C

This proposition, together with the equation

| Foapo) - [ e reoac
Y X

makes it possible to compute many Feynman integrals.
Example: Let P : K+ R by x = y where y is the pn tuple {yia = <My x>}, then:
WP(Y‘} y,i@wl(lt]e yt

#

j8
where iejs

#

E(Uia; l-‘j B)

it

and iy ) = (@) P et WHYZ epd yie ol v o

1ajB
The integrand of g Feynman path integral is often a function F of a set {<“ia’ x1,
i.e., a function F o P of x. The path integral over & is then equal to the integral
of F(y) over R™ with respect to the measure wp computed in this example.
When u; is equal to the vector valued Dirac measure at ty having only an o component
Artoge. Gus(ti, tj) and one can use the mapping P : X+ Y by xw <5%i, x> = xa(ti)
to compare the two definitions of Feynman integral.

For mappings P other than X - RP? see [3].
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I1I. The Feynman Green Function

Classical Physics is dominated by the Euler-lagrange equation and Quantum
Physics by the small disturbance equation, i.e., respectively by the first and the
second variation of the action S. In this section we shall state the properties of
the second variation, old and new, necessary to compute the propagation kernel.

The expansion of § around the classical path g can be written

5@ = S@ + 3 S"@xx + 2(x)

In the example considered q is the geodes'ic from a to b; the second variation S'(q),
also called the hessian of S at q, is:

'@ = - (D), SOy - [ G©), KO + RAD XOIW) 4t
T

where A means '"difference at a discontinuity': A 5((1:) = 5<(t+) -x(t”) and where R is
the Riemann tensor; x is a vector field along q, it is an element of the tangent
space at q of the space Fof paths q : T+ M; i.e., x ¢ ’EF(—1 and x(t) ¢ m&(t)
x is called a Jacobi field if and only if

S"(@xy =0 for every y e W‘El

A Jacobi field is a C - differentiable solution of the small disturbance equation,
it will be denoted x. The small disturbance equation, also called the Jacobi dif-
ferential equation has 2n linearly independent solutions.

The Jacobi fields can be obtained by an m-parameter variation through geodesics [5].
An m-parameter variation ¢ of a path q is a mapping

& :Uc R"+ T such that a(0) = 7§
It is convenient to introduce the mapping «, also called m-parameter variation of
q:

o :Ux T+ WM by ofu,t) = afu)(t)

An m-parameter variation defines m "variation vector fields" {x;} by

]
Xi(t) = -;jf (0,1)

conversely
= i
alu,t) = €XP; (1) (Zu™x; (1))

When the family {a(u)} is a family of geodesics, an m-parameter variation o is called
a variation through geodesics.
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Two points &(ta) = g and i(tb) = b are said to be conjugate along q if there exists
a non zero Jacobi field x along q vanishing at t, and - The dimension of the vector
space of all such Jacobi fields is called the multiplicity of the conjugate points.
Lemma: Two points a and b are conjugate along q if and only if the mapping exp, is
critical at {tb-ta} q[ta} ;.i.e., if its derivative mapping at the critical point is
not one-ocne. Indeed, et i(ta} be the covariant derivative of the non-zerc Jacobi
field vanishing at t, and Ty

exp (-t )d(t,)) (ty-t) %, = 0

A Jacobi field is determined by its values at any two non-conjugate points. Thus
the Jacobi field equal to X, at t, and X, at t is

x(t) = SI(t, 1) Mt .t )x, -J(E,t) M(t,,t))%,

where M(tb,ta) is the inverse of J (tb,ta) and where J (t,tb) is the antisymmetric
Jacobi two point vector along g such that

{J(tb,ta) =0

DJ

o = (t = t,ty) = g 1(@(,)) vhich will be abbreviated to gy

J is also known as the commutator function.
It has been shown [6] that M is the Van Vleck matrix:

M(t,,t,) = 3%8(a,b)/sbsa where $(a,b) = S@)
When the end points are conjugate, we determine the Jacobi field by its Cauchy data
X(£) = J(t,t.) gleIk(t) + K(t,t)elt)x,
where K(- ,ta) is a Jacobi field along q defined by
e -1
K[ta’ta) = g {ta}
XM=t,t)=0
Proposition 2. The end points a and b are conjugate along q if and only if
det J {tb,t a} = 0. The conjugate points are degenerate if and only if det K(tb,ta} = 0.

This proposition provides a convenient criterion for the onset of catastrophes in
path integrals, namely:

For a fixed point a ¢ M the catastrophe set of points b ¢ M satisfies:

0

i

{det J(tb,ta)
det K(tb,ta) = 0

The proof of proposition 2 and the study of catastrophes is the subject of another
Paper.
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The Peynman Green function is the Green function of the small disturbance operator
that vanishes on the boundary.
Proposition 3: The Feynman Green function is equal to

G(r,s) = % Y(r-s)J(r,t )Mt ,t ) I(t,,S) - % Y(s-1)I(r,t )M(t,,t ) I (ty ,s)

where Y is the Heaviside step function equal to unity for positive argument and zero
otherwise.

Proof: see [6]

When a and b are conjugate along q, the Feynman Green function is not defined, and
we shall need another Green fumction G_ of the small disturbance operator to define
the propagation kernel:

G.(r,5) = B y(r-s)K(r,IN(ty,t)I(t,,,5) “Y(s-1)I(r,t N(L,, 1)K (ty ,5)
where N (tb,ta} is the inverse of K(tb,ta) defined in the previous paragraph.

IV. The Propagation Kernel K(B;A) = K(b,tb;a,ta)

The propagation kernel of a system from a state A to a state B is the proba-
bility amplitude for the transition A >~ B. It gives the wave function ¥, at t a

%

in terms of the wave function ‘i’t at ta:
a

te ©) = [ KOt v, () et gla)) /e
v ") .

According to Feynman's original definition
K(B;A) = Limf K(3B;p)X(p;p-1). . .K(l;A)dql. . . dg’ where (41
P n
e

Ziry. .
K(13K) = (™2 (det j%‘;—%k—‘;%‘l Y2 expd 501310
q" g

é(k+1;k) is a function of qk+1, s qk, t, such that

) P . def .
limit I S(k+1;k) = 8(gq) = f L{a(t), q(t),t) dt
p~>o k=l T

where L is the lagrangian of the system and S its action. We can write S(k+1 k) =
k+1
f L(a(t), q(t),t)dt provided we give some prescription for the path q: [tk’tk+l] + M

A natural prescription for q | [tk’tkﬂ} is the classical path from q to qk+

We shall give the new definition of the propagation kernel in three steps:
a) The paths g ¢ F (a,b) map % in a geodesically convex neighborhood N of M,
b) The end points a and b may be conjugate points along q, but there is no other
conjugate point along q; the conjugate points are non-degenerate.
c) There are several conjugate points along q; they are non-degenerate; the end
points are not conjugate.
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Proposition 4a. When q : T » [N, the propagation kernel is

KB = o0 £ 5@ [ e § 100w
X

where w is the gaussian pseudomeasure on X defined by its Fourier transform
Fw = w(X)exp(-iW/2)
W(u,v) =f du, (1) f dvg(s) 6**(r,s)
T T
G is the Feynman Green function; w( X) = (det M(tb,ta))l/z/(Z'rri)
Proof and applications: see [6] and [3]
This definition is equivalent to the original one when the original one is umambiguous,

n/2

it does not require an ad hoc prescription for the R integral, it is defined for a
large class of physical systems, and leads to simple and powerful computational tech-
niques.
Proposition 4b. Let Y be the space of vector fields along q which vanishes at t,
but take arbitrary values at t,. Let w_ be the gaussian pseudomeasure of covariance
G_ normalized to

W_(¥) = (det gty N(t,t )Y
Then w_ on VY induces won X < ¥:

fY X() <8y <8 ,y> dw_(7)/ fY x(y)dw_(y) = 16(r,5)
f ¥ x(y)aw_(y)= fX dw(x) for non conjugate end points

w (Y) s for conjugate non-degenerate end points

where § is the Dirac distribution at the origin of R".
The propagation kernel is equal to

K(B;A) = exp & S(@) f RO exp f I(y) dw_(y)
Y

where K fy) is the characteristic of function of X C VY.

The proof is given in [6]. This proposition serves two purposes:

It provides the formalism for integrating over paths with one fixed end point and
one arbitrary point.

It makes it possible to approach a point b conjugate to a along q from a point bu
not conjugate to a along the geodesic iu from a to bu; the parameter u ¢ mm, where
m is the multiplicity of the conjugate points, defines an m-parameter variation of
q through geodesics such that bu = eXpyW,. One obtains in particular:

fVT(YBY(tb) = V) ®_ ()

3 (2 ?)n?z detl/z(M(tb’taDexP('% Vp8(tp) K (tp, EIM (5, T))
TL

giving the value of fV x(y)dw_(y) stated in the proposition
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Schulman [7] has examined propagation kernels between conjugate points in
terms of the eigenvalues of the small disturbance operator.
Proposition 4c. There may be several non degenerate conjugate points along gq.
Let the end points a,b be two points in M which are not conjugate along any geodesic.
Let 7 be the fundamental group of a countable CW-complex which contains one cell of
dimension ) for each geodesic from a to b of Morse index A.
Let Ka{B;A) be the partial propagation kernel for all the paths from a to b in the
same homotopy class o, computed according to proposition 1. Then the absolute value
of the propagaticn kernel is

| x®38) | = | 2, o) K, (B3A) |
oeN

where {(a); aen} is the set of characters of the fundamental group.
Proof: Because there is no unique way to label the homotopy classes by the elements
o of the fundamental group, K(B;A) is determined only modulo an overall unobservable
phase factor [1]. The proof rests on the fundamental theorem of Morse theory [5]
which states the homotopy type of ¥(a,b) and on the theorem giving the propagation
kernel on a multiply connected space [1]. The kernel K has been computed by
Gutzwiller [8]. Proposition 4c and its proof give a rigorous derivation for his
expression.

I am grateful to Bryce S. DeWitt for discussions of his umpublished work on the

small disturbance equation. Approaching the problem from a different perspective

they have led to several fights beneficial to the aithor.
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