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1. Introduction

The top quark pair production close to the threshold is an important process at a future

International Linear Collider (ILC). It can be used to determine top quark properties, like

the mass mt and the width Γt, but also the strong coupling αs with high precision. This

is in particular true for mt where an uncertainty below 100 MeV can be obtained from a

threshold scan of the cross section [1].

The feasibility of such high-precision measurements requires a theory prediction of

the total cross section σ(e+e− → tt̄) with high accuracy (preferably δσ/σ ≤ 3%). The

study of tt̄ threshold production is performed in the framwork or non-relativistic QCD

(NRQCD) [2] which separates the hard and soft scales involved in the process. In such a

framework, one has two expansion parameters, αs and the relative velocity v of the heavy

quarks. The corrections are classified by the total power of αs and v, i.e. NkLO corections

contain terms of order αl
sv

m with l+m = k. The next-to-next-to-leading order calculation

has been perormed in ref. [3]. Current estimates based on (partial) next-to-next-to-next-

to-leading order (NNNLO) [4, 5] QCD corrections lead to an uncertainty of the order of

10%. Similar conclusions are obtained from the approach based on the resummation of

logarithmically enhanced terms which has been considered in refs. [6, 7].

In order to reach a theory goal of δσ/σ ≤ 3% it is necessary to include in the prediction

next to the one-loop electroweak corrections, which are known since quite some time [8]

(see also [9]), also higher order effects. The evaluation of O(ααs) corrections has been
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Figure 1: Sample Feynman diagrams contributing to the matching coefficient of the vector current

at order α (a), αs (b) and ααs (c)-(f). The thick (thin) straight lines represent top (bottom) quarks,

wavy lines stand for W bosons and the curly ones for gluons.

started in ref. [10], where the two-loop mixed electroweak and QCD corrections to the

matching coefficient of the vector current has been computed due to a Higgs or Z boson

exchange in addition to a gluon. The current paper continues this enterprise and provides

a result of O(ααs) for the two-loop vertex diagrams mediated by a W boson and gluon

exchange.1 Sample diagrams can be found in figure 1. This completes the vertex corrections

of order ααs — a building block for the top quark production cross section. Assuming the

(numerically well justified) power counting α ∼ α2
s one can see that these corrections are

formally of NNNLO.

In order to complete the matching corrections of order ααs also the two-loop box

diagrams contributing to e+e− → tt̄ have to be considered. Actually, only the proper

combination of the box, vertex and self-energy contributions (the latter can, e.g., be found

in refs. [11, 12]) forms a gauge independent set.

The remainder of the paper is organized as follows: In the next section we introduce

our notation and derive the cross section formula for e+e− → tt̄X near the tt̄ threshold.

We present a general formula which includes all radiative corrections of the Standard

Model (SM). In section 3 we discuss some technical details of the two-loop computation

and in section 4 we concentrate on the O(ααs) corrections to the γtt̄ vertex and present

our results. Section 5 contains our conclusions. Additional useful material concerning the

one-loop expressions can be found in the appendix.

1Of course, in addition to the gauge boson also the corresponding Goldstone boson is taken into account.
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2. Threshold cross section

Within the framework of NRQCD the total cross section for the top quark production can

be cast in the form

R
(

e+Le
−
R → tt̄X

)

=
8π

s
Im
[

(hR,V ) 2HV + (hR,A) 2HA

]

, (2.1)

where s is the square of the center-of-mass energy and R(e+Le
−
R → tt̄X) is the cross section

normalized to σ(e+e− → µ+µ−) = (4πα2)/(3s). For illustration we consider in eq. (2.1)

left-landed positrons and right-handed electrons. For e+Re
−
L in the initial state a similar

expression is obtained by replacing R by L in eq. (2.1). Note that in the SM the initial states

e+Re
−
R and e+Le

−
L are suppressed by a factor (me/MW )2 ∼ 10−10 and are thus negligible.

We denote hR,V and hR,A by helicity amplitudes which absorb the matching coefficients

representing the effective coupling of the effective operators. They take care of the hard

part of the reaction. The first subscript of h refers to helicity of the electron, and the

second one to the vector (Jµ
V = ψ̄γµψ) or axial-vector coupling (Jµ

A = ψ̄γµγ5ψ) of the

gauge bosons to the top quark current.2 The bound-state dynamics is contained in the

so-called hadronic part which is denoted by HV and HA in eq. (2.1).

In the cross section formula (2.1) “Im” refers to those cuts which correspond to the tt̄X

final state.3 This means that we have to select special cuts which correspond to the final

state we are interested in. This requires a dedicated study incorporating the experimental

setup. For the one-loop electroweak correction this treatment was performed in [13]. In this

paper we will not pursue this problem further (see also the discussion in the Conclusions).

The hadronic part is described by NRQCD [2]. For our purpose it is sufficient to

re-write the vector current Jµ
V and the axial-vector current Jµ

A in terms of two-component

NRQCD spinor fields ψ, χ, which correspond to non-relativistic top and anti-top quarks,

respectively. This yields the following NRQCD currents

j i
V = ψ† σiχ ,

j
(1/m2), i
V = − 1

6m2
t

ψ† σi(i ~D )2 χ ,

j i
A =

1

2mt
ψ† [σi, (~σ i ~D )]χ . (2.2)

With the help of the NRQCD equation of motion for top and anti-top quarks (ψ†σi ~D
2
χ =

mt i∂0(ψ
†σiχ)) the 1/m2-suppressed vector current can be re-expressed in terms of jV .

Thus our matching relation between SM and NRQCD currents are given by

JV = e2imtx0

(

cv −
dv

6mt
i∂0

)

jV , JA = e2imtx0ca jA , (2.3)

2The notation is basically adapted from ref. [8], however, we added a second subscript F = V, A to

incorporate the axial-vector coupling of the Ztt̄ vertex (see eq. (2.5)).
3From the theoretical point of view one has a pure tt̄ final state up to NNLO in QCD. Starting from

NNNLO one has to include the real emission of a gluon. Once the electroweak sector is considered, final

states like (bW +)t̄ need to be included, where (bW +) has an invariant mass p 2
bW in a range |p 2

bW − m 2
t | .

mtΓt.

– 3 –



J
H
E
P
0
1
(
2
0
0
9
)
0
3
8

with cv = dv = ca = 1 at tree level. The hadronic part is defined by the current correlation

function

HF = i
∑

k

∫

dx eiEx0 〈Ω |T j k †
F (x) j k

F (0) |Ω〉 (F = V,A) , (2.4)

where E =
√
s− 2mt and |Ω〉 is the NRQCD vacuum state.

The evaluation of HF requires to integrate out the low-energy modes of QCD, the soft,

potential and ultrasoft gluons contained in NRQCD [14, 15]. For the top quark system this

can be done perturbatively. In a first step one integrates out the soft and potential gluons

which results in the effective field theory Potential NRQCD [16, 17]. The corresponding

Lagrangian is known to NNNLO [18].4 To integrate out nonrelativistic top and anti-top

quark fields the Rayleigh-Schrödinger perturbation theory can be applied as was initiated

in ref. [20] and performed to NNNLO for HV and HA in refs. [4] and [21], respectively.

Integrating out the ultrasoft gluon was completed recently in ref. [5]. For the details of

these steps we refer the reader to the original papers and references cited therein (see also

refs. [22 – 26]).

In this paper we restrict ourselves to hard loop corrections to the production cross

section, namely the corrections being parameterized as hI,F . The tree-level expression5 of

the helicity amplitude hI,F is given by

htree
I,V = QeQt +

s β e
I β

t
V

s−M2
Z

with β t
V =

β t
R + β t

L

2
,

βf
I =

(T3) fI
− s2wQf

swcw
(I = L/R) , (2.5)

where the β f
I is the coupling of a fermion (f = e, t) to the Z boson, sw is the sine of the

weak-mixing (c2w = 1 − s2w), and electric and iso-spin charges for top quark and electron

are given by

Qe = −1 , Qt = 2/3 , (T3) tL = 1/2 , (T3) eL
= −1/2 , (T3) fR

≡ 0 . (2.6)

In the following the abbreviation T f
3 ≡ (T3)fL

will be used. hI,A can be obtained by

substituting βt
V by β t

A = (βt
R − βt

L)/2 in formula (2.5).

Let us now explain how hard loop corrections within the SM can be incorporated into

the helicity amplitude hI,F . To this end we organize the corrections as

hI,V =
(

htree
I,V + h

(1/m2)
I,V

)

+ h
(1,0)
I,V + h

(0,1)
I,V + h

(1,1)
I,V ,

hI,A = htree
I,A + h

(0,1)
I,A , (2.7)

where the htree
I,F and h

(1/m2)
I,V (due to the j

(1/m2)
V ) are the tree-level contributions, and h

(i,j)
I,F

incorporate the contributions from radiative corrections (the superscript (i, j) denotes the

4The only missing constant in ref. [18] is related to the three-loop static potential where recently the

fermion corrections became available [19].
5We include the effect due to j

(1/m2)
V with dtree

v = 1 into h
(1/m2)
I,V for convenience, see eq. (2.7).
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2.1 2.2

Figure 2: Two-line MIs. The solid and dashed lines correspond to propagators with mass mt and

MW , respectively.

electroweak- and QCD-loop order, respectively). As one can see from the expression of

the axial-vector current jA, HA is suppressed by ~D
2
/m2

t ∼ E/mt. Thus one-loop QCD

corrections to hI,A correspond to NNNLO effects. In section 4 we will provide explicit

results for h
(1,0)
I,V and h

(1,1)
I,V induced by the exchange of a photon.

Hard QCD corrections to the γtt̄ and Ztt̄ vertices modify the matching coefficients cv
and ca at loop level. We absorb these effects into helicity amplitudes and obtain (using

h
(1/m2)
I,V = −htree

I,V E/(6mt))

h
(0,1)
I,V =

(

c (1)
v − E d

(1)
v

6mt

)

htree
I,V , h

(0,1)
I,A = c (1)

a htree
I,A , (2.8)

with c
(i)
v , d

(i)
v being the i-loop contribution to the matching coefficients. For the purpose of

this paper only the one-loop contribution c
(1)
v is needed (see below for explicit expressions).

Let us mention that the two-loop QCD corrections have been evaluated in refs. [27, 28]

and the three-loop corrections induced by a light quark loop in ref. [29].

3. Technical details of the two-loop calculation

Let us in this section provide some technical details about the evaluation of the two-

loop diagrams. They are generated with QGRAF [30] and further processed with q2e and

exp [31, 32]. The reduction of the integrals is performed with the program crusher [33] which

implements the Laporta algorithm [34, 35]. We arrive at 29 master integrals (MI) which

are depicted in figures 2–5. All diagrams occur with the propagators raised to power one.

Note that there are two more MIs of type 3.10: one with a squared top quark propagator

and one with a squared massless propagator. Similarly, an additional MI arises from type

3.11 with a squared massless propagator.

We refrain from presenting the explicit results for all MIs in this paper but provide

them in form of a Mathematica file6 MIttewW.m using the conventions as defined in eq. (A.3)

which corresponds to the one-loop tadpole integral. In all results presented in this file a

factor
(

µ2/m2
t

)2ǫ
with d = 4 − 2ǫ has to be multiplied.

Some MIs factorize into one-loop integrals or contain only one dimensionful scale.

Most of these integrals are available in the literature and can, e.g., be found in refs. [36 –

39, 10, 40].

As we will see in section 4 a rapid convergence is observed if one considers an expansion

of the matching coefficient in the quantity z = M2
W/m2

t . For this reason we evaluate the

6The file is available from http://www-ttp.particle.uni-karlsruhe.de/Progdata/ttp08/ttp08-43.
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3.4 3.6 3.7

3.8 3.9 3.10

3.11 3.5

Figure 3: Three-line MIs. The solid, dashed and dotted lines correspond to propagators with

mass mt, MW and 0, respectively. Single external lines are on the mass shell with mass mt whereas

double external line have mass 2mt. The topology denoted by 3.10 contains three master integrals,

topology 3.11 contains two MIs.

4.1 4.2 4.3

4.4 4.5 4.6

4.7 4.8 4.9

Figure 4: Four-line MIs. For the notation we refer to figure 3.

two-scale MIs in this limit. A promising method is based on differential equations (see

ref. [41] for a recent review) which provide the expansion in an automatic way once the

initial conditions are specified. Let us as an example consider the five-line integral MI(5.2)

– 6 –
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5.3 5.4

Figure 5: Five-line MIs. For the notation we refer to figure 3.

(cf. figure 5) which fulfills the following differential equation

d

dz
MI(5.2) =

d− 4

z − 1
MI(5.2) +

3(z − 2)(d− 2)2

16m6
t (d− 3)(z − 4)(z − 1)2z

MI(2.2)

− (d− 2)

4m4
t (z − 1)2

MI(3.4) − (d− 2)

8m4
t (z − 1)2

MI(3.5)

+
(3d − 8)(z − 6)

16m4
t (z − 4)(z − 1)z

MI(3.10)

+
(d− 4)(z − 9)(z + 2)

16m2
t (d− 3)(z − 4)(z − 1)z

MI(3.10.1)

−
(

z2 − z + 6
)

4m2
t (z − 4)(z − 1)2z

MI(3.10.2) +
(d− 3)

2m2
t (z − 1)2

MI(4.4) . (3.1)

MI(3.10.1) and MI(3.10.2) denote the MIs of the type 3.10 with a squared massless and

top quark propagator, respectively. In order to solve this equation it is necessary to know

the results of all integrals with less than five lines. With the help of the ansatz

MI(5.2) =
∑

cijk ǫ
izj(ln z)k , (3.2)

the differential equation can be expanded in ǫ and z. As a result it reduces to algebraic

equations for the coefficients cijk. In every order in ǫ there is one constant cijk which can

not be determined with this procedure. It is obtained from the initial condition at z = 0,

which in the case of MI(5.2) can be found in ref. [36]. In this way we have computed

expansion terms up to order z10 which can be found in the Mathematica file mentioned

– 7 –



J
H
E
P
0
1
(
2
0
0
9
)
0
3
8

above. For illustration we present the first two expansion terms of MI(5.2) which read

MI(5.2)m2
t =

1

4
π2 ln 2 − 2 ln3 2 − 1

3
π2 ln 3 + 2 ln2 2 ln 3 − ln 2 ln2 3 +

ln3 3

3

− Li3(−2) +
1

2
Li3

(

1

4

)

− 2Li3

(

2

3

)

+ Li3

(

3

4

)

+
21ζ(3)

8

− iπ

(

π2

12
+

1

2
ln2 2

)

− z

[

iπ

(

1

2
− 1

4
ln 2 +

3

4
ln 3 − 3

8
ln z

)

+
3

8
ln 3 ln z − 3 ln2 3

8
+

1

4
ln 2 ln 3 − ln2 2

4
− ln 2

+
17π2

48
− 1

8
Li2

(

3

4

)]

+ O(z2) . (3.3)

Note that for some integrals the differential equation can be solved with the help of

Harmonic Polylogarithms [42] which immediately leads to a closed result.

It is interesting to mention that for the integrals MI(4.3) and MI(4.4) no initial con-

dition is needed in order to obtain all the coefficients in the ansatz. They are completely

fixed by the corresponding differential equation and the solutions for the integrals of the

subtopologies. For all other integrals initial conditions at z = 0 are required. As already

mentioned above most of them can be found in the literature or are quite simple to compute

using standard techniques. However, we could not get analytic results for five7 coefficients

in the ǫ-expansion of the integrals MI(4.5), MI(4.8), MI(5.3) and MI(5.4) at z = 0. We

calculated these coefficients using the Mellin-Barnes method (see, e.g., Ref [43]) where we

used the program packages AMBRE [44] and MB [45].

The Mellin-Barnes representation for a given integral is not unique. In particular it

might happen that the convergence of the resulting numerical integration turns out to

be good in one case whereas a poor convergence is observed in other cases. The crucial

quantity in this respect is the asymptotic behaviour of the Γ function for large imaginary

part which is given by

Γ(a± ib)
b→∞≃

√
2πe±i π

4
(2a−1)e±ib(ln b−1)e−

bπ
2 ba−

1
2 , (3.4)

where the first two exponential factors lead to oscillations. Let us discuss this in more

detail for the Mellin-Barnes representation of the integral MI(4.5)

MI(4.5) =

(

eγEµ2

m2
t

)2ǫ ∫ +i∞

−i∞

dz1
2πi

∫ +i∞

−i∞

dz2
2πi

eiπ(2ǫ+z1)4−2ǫ−z2

× Γ(1 − ǫ)Γ(−ǫ− z1 + 1)Γ(−z1) [Γ(−2ǫ− z2 + 1)]2

Γ(−3ǫ− z1 + 2)Γ(−2ǫ− z1 + 2)Γ(−4ǫ− 2z2 + 2)

×Γ(−4ǫ− z1 − z2 + 2)Γ(z1 − z2)Γ(ǫ+ z2)Γ(2ǫ+ z2) , (3.5)

where γE = 0.577216 . . . and the contour of integration is chosen in such a way that the

poles of the Γ functions with +zi are separated from the poles of the Γ functions with

7One more coefficient can be obtained analytically from the requirement that our final result is finite.

It agrees perfectly with our numerical result.
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−zi. Using the package MB we can expand the integrand in ǫ. For the finite contribution

this leads to a sum of an analytic part, a one-dimensional Mellin-Barnes integral and a

two-dimensional one. The latter correspond to the integral in eq. (3.5) for ǫ = 0. If we

insert in this expression the asymptotic behaviour for the Γ functions as given in eq. (3.4)

one can see that the integrand of the two-dimensional integral falls off exponentially, except

for Im(z2) = 0, Im(z1) < 0.8 On this line the drop-off only shows a power-law behaviour

which is dictated by the last factor of eq. (3.4). In our particular case the drop-off turns

out to be extremely slow for the integration contour chosen by MB which corresponds

to Re(z1) = −1/4 and Re(z2) = −1/2. Thus it is hard to get an accurate result by the

numerical integration since a highly oscillating functions has to be integrated. A closer look

to the fall-off behaviour in eq. (3.4) shows that it is possible to improve the drop-off for

Im(z1) → −∞ by taking residues of the integrand in z2 and thus shifting the integration

contour for z2 more and more to positive values for Re(z2). In this way the integrand

becomes well-behaved and can be integrated numerically with sufficiently high precision.

It has already been pointed out in [45] that for certain kinematical configurations the

Mellin-Barnes integrals exhibit poor convergence behaviour. We have shown that at least

for the threshold integrals needed in our calculation, it is possible to choose the integration

paths in a way to make the numerical integration possible. One may hope that with the

approach described here it will turn out to be possible to use Mellin-Barnes integration for

other troublesome integrals, too.

Let us mention that in the case of MI(4.5) there is an alternative possibility to improve

the numerical properties of the eq. (3.5): after the variable transformation z2 → z2−2ǫ MB

chooses integration contours which lead to a rapid convergence of the numerical integration.

We have checked that both approaches lead to the same results and obtained 9 digits for

the finite part of MI(4.5) in eleven minutes of CPU time.

The remaining three integrals show similar properties as MI(4.5). In all cases it is

possible to end up with integrals which could be integrated numerically. Our results read

MI(4.5) =

(

µ2

m2
t

)2ǫ [
1

2ǫ2
+

1

ǫ

(

5

2
− 2 ln 2 + iπ

)

− 4.81543683(7)

+4iπ(1 − ln 2)

]

,

MI(4.8)|z=0 =

(

µ2

m2
t

)2ǫ [
1

2ǫ2
+

1

ǫ

(

5

2
+ iπ

)

+
19

2
− 23π2

24
− 5 ln2 2

2
− 3 ln 3

2

+
5

2
ln 2 ln 3 − 5

4
Li2

(

3

4

)

+
iπ

2
(11 − 5 ln 2) − ǫ 16.690539(1)

−iπǫ
(

− 45

2
+

35π2

24
+ 3 ln 2 − 21 ln2 2

4
+ 6 ln 3 + 2Li2(−2)

−4Li2

(

1

4

))]

,

8Note that for these values of z1 the exponential factor in the integrand of (3.5) increases exponentially.
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m2
t MI(5.3)|z=0 = 2.704628(4) − 5.167709(4)i ,

m2
t MI(5.4)|z=0 = 2.70543(6) − 1.91431(6)i . (3.6)

The accuracy for the finite part of these integrals is sufficient to obtain the final result with

four significant digits.

Note that contrary to the default settings of MB we do not use Vegas for the multi-

dimensional numerical integrations. Instead we use Divonne which is available from the

Cuba library [46]. For the integrals we have considered it leads to more accurate results

using less CPU time.

We have performed an independent check of the initial conditions for all the MIs

employing the method of sector decomposition. In particular we used the program FI-

ESTA [47].

4. The γtt̄ vertex

In this section we discuss O(ααs) corrections to the γtt̄ vertex due to W boson and gluon

exchanges with incoming photon momentum at q2 = 4m2
t , the production threshold of top

quark pairs. This leads to corrections to h
(1,1)
I,V mediated by a virtual photon, i.e., to the

first term of htree
I,V in eq. (2.5). We denote by Γ t

A the contribution of the sum of all one-

particle-irreducible diagrams to the γtt̄ vertex and parameterize the radiative corrections

in the form

Γ̂ t
A = Qt + Γ̂

t, (0,1)
A + Γ̂

t, (1,0)
A + Γ̂

t, (1,1)
A , (4.1)

where the hat denotes renormalized quantities. Substituting Γ̂ t
A for the Qt in first line of

eq. (2.5) and retaining the relevant orders in the electroweak and strong couplings leads to

the corrections to the helicity amplitudes, h
(0,1)
I,V , h

(1,0)
I,V and h

(1,1)
I,V . We further decompose

Γ̂ t
A (and similarly the quantities on the right-hand side of eq. (4.1)) according to the

contributions from the Higgs, Z and W boson exchanges:

Γ̂ t
A = Γ̂ t

A,H + Γ̂ t
A,Z + Γ̂ t

A,W . (4.2)

In this paper we compute the corrections up to order ααs to Γ̂t
A,W . The other two quantities

have been computed in ref. [10] where the matching coefficients cH,mix
v and cZ,mix

v have been

introduced. We have the following relations

Γ̂
t,(1,1)
A,H =

ααs

π2s2w
QtCF c

H,mix
v , Γ̂

t,(1,1)
A,Z =

ααs

π2s2w
QtCF c

Z,mix
v . (4.3)

In our calculation we adapt in the electroweak sector the ’t Hooft-Feynman gauge, i.e.

ξW = 1, which guarantees a simple form of the W boson propagator. Note that ξW 6= 1

introduces an additional mass scale in our calculation which would lead to significantly

more complicated integrals at two-loop order. We want to mention that our final result

depends on ξW . This dependence only cancels out after including the self-energy and box

contributions. There is no gauge parameter dependence in Γ̂ t
A,H which only occurs in the
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vertex and self-energy contributions. Also the vertex corrections involving the Z boson

(Γ̂ t
A,Z) are independent of the corresponding gauge parameter.

Although the one-loop results are well-known, we start our discussion from this order

since they enter the renormalization of the two-loop expressions.

4.1 One-loop corrections

The renormalized QCD contribution is given by

Γ̂
t, (0,1)
A = Γ

t, (0,1)
A +Qt Z

(0,1)
2 , (4.4)

where Z2 is the on-shell wave function renormalization for external top quarks. The ex-

pressions on the right-hand side of eq. (4.4) are given by

Γ
t, (0,1)
A = Qt

αsCF

4π

(

µ2

m2
t

)ǫ [3

ǫ
− 4 + ǫ

(

8 +
π2

4

)]

,

Z
(0,1)
2 =

αsCF

4π

(

µ2

m2
t

)ǫ [

− 3

ǫ
− 4 − ǫ

(

8 +
π2

4

)]

, (4.5)

where CF = 4/3. In eq. (4.5) the O(ǫ) terms are kept since they enter the finite part of

the two-loop expression. For the renormalized vertex we have the relation

Γ̂
t,(0,1)
A = Qt c

(1)
v = −8Qt

αsCF

4π
(1 + ǫ Lµ) + O(ǫ2) , (4.6)

where Lµ = ln µ2

m2
t
. The one-loop formula for the electroweak corrections is given by

Γ̂
t, (1,0)
A = Γ

t, (1,0)
A +Qt Z

(1,0)
2 + T 3

t Z
(1,0)
CT , (4.7)

where Z
(1,0)
CT is a counterterm associated with Z-photon mixing at zero-momentum trans-

fer [48] which reads

Z
(1,0)
CT =

α

4πs2w

(

−1

ǫ
− ln

µ2

M2
W

)

+ O(ǫ) . (4.8)

As we will see later the O(ǫ) term for Z
(1,0)
CT is not needed. We present the remaining two

ingredients as a series expansion of z = M2
W /m2

t , the exact formulae are collected in the

appendix for convenience. The results for Z
(1,0)
2,W reads

Z
(1,0)
2,W =

α

4πs2w

(

µ2

m2
t

)ǫ{

− 1

ǫ

(

1

4
+

1

8z

)

− iπ

8z
− Lz

4
− iπ

2
− 1

4
−
(

Lz

8
+
iπ

8
+

21

16

)

z

+ ǫ

[

7π2

96z
+
L2

z

8
− Lz

4
+

5π2

16
− iπ

2
− 3

4
+

(

L2
z

16
+

3Lz

16
+
π2

12
− 9iπ

8
− 27

32

)

z

]}

+ O(z2) , (4.9)
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Figure 6: Electroweak one-loop corrections to the photon vertex Γ̂
t,(1,0)
A,W normalized to α/(4πs2w)/z

as a function of z = M2
W /m2

t , for real part (left panel) and imaginary part (right panel), respectively.

The (black) dashed lines include successively higher orders in z starting from z0 (long dashes) to z4

(short dashes) and the (red) solid line is the exact one-loop correction. The (orange) band marks

the physical range of z = (80.40 GeV/mt)
2 varying the top quark mass between 165 and 175GeV.

and Γ
t, (1,0)
A,W is given by

Γ
t, (1,0)
A,W =

α

4πs2w
Qb

(

µ2

m2
t

)ǫ{1

ǫ

(

1

8z
+

1

4

)

+
1

z

(

iπ

8
− 2 ln 2

3
+

1

6

)

+
Lz

4
+
i π

2
− 1

12
− 2 ln 2

3
+

(

Lz

8
+
i π

8
+

2 ln 2

3
+

7

48

)

z

+ǫ

[

− 1

z

(

7π2

96
+
iπ
(

4 ln 2 − 1
)

6
− 2 ln 2

(

3 ln 2 − 5
)

9
− 5

18

)

−L
2
z

8
+
Lz

4
− 5π2

16
− iπ

(

4 ln 2 − 1
)

6
+

2 ln 2
(

3 ln 2 + 1
)

9
+

7

36

−
(

L2
z

16
+

3Lz

16
+

2 ln 2
(

3 ln 2 + 1
)

9
+
π2

12
− iπ

(

16 ln 2 − 1
)

24
− 115

288

)

z

]}

+
α

4πs2w
T 3

t

(

µ2

m2
t

)ǫ{ 1

ǫ

(

1

4z
+

3

2

)

+
1

z

(

iπ

4
− 2 ln 2

3
+

2

3

)

+
3iπ

2
− 3 ln 2 + 3 −

(

5Lz

8
− 15

16
+

5iπ

8
− 7 ln 2

4

)

z

+ǫ

[

− 1

z

(

7π2

48
+

2iπ
(

ln 2 − 1
)

3
− 2 ln 2

(

3 ln 2 − 8
)

9
− 13

9

)

−7π2

8
− 3iπ

(

ln 2 − 1
)

+ 3 ln 2
(

ln 2 − 2
)

+ 6

+

(

5L2
z

16
− 11Lz

16
+

5π2

12
+
iπ
(

7 ln 2 + 1
)

4
− 7 ln2 2

4
+

39

32

)

z

]}

+O(z2) , (4.10)

where Lz = ln z and α = e2/(4π) is the fine-structure constant in the Thomson limit.

Again the O(ǫ) terms are retained due to their relevance for the two-loop renormalization.

Note that we keep the imaginary parts of both Γ
t, (0,1)
A,W and Z

(0,1)
2,W . See appendix B for more

details. At one-loop order this only affects the finite part; at two loops also the pole parts

are concerned (see below).
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We refrain from listing an analytical result for Γ̂
t, (1,0)
A but compare in figure 6 the

approximated result to the exact one. The latter is represented by the (red) solid line

whereas the dashed lines correspond to the expansions including successively higher orders

in z. As one can see, the expression including the correction of order z3 provides at the

physical point z ≈ 0.23 a perfect approximation to the exact result far below the per cent

level. The approximated results are based on the following expressions

Γ̂
t,(1,0)
A,W =

α

4πs2w

[

0.20

z
+
(

0.48 + 0.79 i + 0.25 ln z
)

+ z
(

− 0.0024 − 1.37 i − 0.44 ln z
)

+ z2
(

− 0.072 + 1.39 i + 0.44 ln z
)

+ z3
(

0.34 − 0.53 i − 0.17 ln z
)

+ z4
(

0.13 + 0.23 i + 0.074 ln z
)

]

+ O(z5)

=

[

2.481/z + 0.251 + 0.39z − 0.095z2 + 0.017z3 + 0.00013z4

+ i
(

2.111 − 0.80z + 0.18z2 − 0.015z3 + 0.0014z4

)

]

× 10−3 , (4.11)

where the subscript in the last line indicate their order in the z expansion and for the input

parameters the following values have been used [49, 50]

αs = 0.108 , α(MZ) = 1/128.9 , s2w = 0.23 ,

MW = 80.40GeV , mt = 172.4GeV . (4.12)

Note that in our numerical analysis we use α at high energy scale.9

The corrections in eq. (4.11) are dominated by the leading terms proportional to

m2
t /M

2
W . One observes a rapid convergence, so that the term of order z3 can safely be

neglected. Inserting the results in eq. (4.1) the overall size of the electroweak corrections

(from the diagrams involving a W boson) amounts to about 0.5% and is unusually small.

For comparison, we note that Γ̂
t,(1,0)
A,Z and Γ̂

t,(1,0)
A,H lead to corrections of 0.3% and 3.2% (for

MH = 120 GeV), respectively. Let us mention that the one-loop QCD corrections provides

a contribution “−61× 10−3” to the last line of eq. (4.11) thus resulting in a 9% correction.

From eq. (4.11) one obtains the corresponding corrections to the helicity amplitude as
[

h
(1,0)
I,V

]

A,W
= QeΓ̂

t,(1,0)
A,W , (4.13)

which immediately leads to the correction to the cross section with the help of eq. (2.1).

Taking at tree-level both the photon and Z exchange diagram we obtain a shift of 0.9% to

R(e+e− → tt̄X) due to the W boson contribution to γtt̄ vertex at one-loop.

4.2 Two-loop order ααs renormalization

The renormalized γtt̄ vertex at order ααs is given by

Γ̂
t, (1,1)
A = Γ

t, (1,1)
A + T 3

t Z
(1,1)
CT +Qt Z

(1,1)
2

+
(

Z
(1,0)
2 Γ

t, (0,1)
A + Z

(0,1)
2 Γ

t, (1,0)
A

)

+
T 3

t

Qt
Z

(1,0)
CT Γ̂

t, (0,1)
A , (4.14)

9This is theoretically preferable because it is devoid of non-perturbative hadronic effects.
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where the first line corresponds to genuine two-loop diagrams and the second line consists of

products of one-loop diagrams. For the latter we already listed all the relevant expressions

in the previous Subsection. Note that in the last term the renormalized one-loop vertex

appears and thus the O(ǫ) term for Z
(1,0)
CT is not needed.

Formula (4.14) takes only care of the renormalization of the external lines and the

electric charge which means that the un-renormalized two-loop quantities in the first line

are understood as the sum of the amputated two-loop diagrams and the corresponding

counterterm diagrams for the top quark mass and the top quark Yukawa coupling. The

latter are renormalized in the on-shell scheme.

It is easy to see that for the two-loop counterterm we have Z
(1,1)
CT = 0 since at one-

loop order only bosonic and no fermionic diagrams contribute. The two-loop on-shell

wave function factor Z
(1,1)
2 has been computed in ref. [51]. We confirmed the result by an

independent calculation and added the imaginary part which is necessary in our framework.

The result reads

Z
(1,1)
2,W =

α

4πs2w

αsCF

4π

{

1

ǫ 2

(

3

4
+

3

4z

)

+
1

ǫ

[

1

z

(

3Lµ

2
+

7

4
+

3iπ

8

)

+
3Lµ

2
+

3Lz

4

+
17

8
+

3iπ

2
+

(

3Lz

8
+

63

16
+

3iπ

8

)

z −
(

9 ln z

4
− 5

4
+

9iπ

4

)

z2

]

+
1

z

(

3L2
µ

2
+

(

14 + 3iπ
)

Lµ

4
+

3ζ(3)

2
− iπ3

6
− π2

4
+

27iπ

8
+

79

16

)

+
3L2

µ

2
+

(

3Lz

2
+

17

4
+ 3iπ

)

Lµ − 3L2
z

8
+

7Lz

4
− 3ζ(3) +

iπ3

3
− π2

8

+
3iπ

2
− 3

16
+

[(

3Lz

4
+

3iπ

4
+

63

8

)

Lµ − 3L2
z

16
−
(

1 + 28iπ
)

Lz

16

−15ζ(3)

2
+

5iπ3

6
+

5π2

6
− 121iπ

24
+

661

32

]

z +

[(

− 9Lz

2
+

5

2
− 9iπ

2

)

Lµ

+
9L2

z

8
+

(

1

2
− 5iπ

6

)

Lz −
317

48
+

547iπ

72
+

79π2

36
− iπ3 + 9ζ(3)

]

z2

}

+O(z3) , (4.15)

where terms up to order z2 have been included (ζ(3) = 1.20205 · · · ).
In the following we provide the result for the un-renormalized vertex corrections where

the finite part is given in numerical form. Our result reads

Γ
t,(1,1)
A,W =

α

4πs2w

αsCF

4π

{

2

ǫ2
+

1

ǫ

[

− 1

z

(

1

3
− iπ

4
+

ln 2

3

)

+ 4Lµ − Lz

4
+

7iπ

4
+

5

3
− 23 ln 2

6

−z
(

17Lz

16
− 47 ln 2

24
+

17iπ

16
− 121

96

)

− z2

(

17Lz

96
+

185

576
+

17iπ

96
− 65 ln 2

48

)]

+
1

z

(

[

− 2.66 − 3.79
]

− Lµ

[

1.13 − 1.57i
]

)

+ 4.00L2
µ

+Lµ

(

− 0.50LZ −
[

1.98 − 11.00i
])

+ 0.13L2
z + 0.08Lz +

[

10.03 − 23.63i
]

+z

[

Lµ

(

[

5.24 − 6.68i
]

− 2.13Lz

)

+ 0.53L2
z − Lz

[

0.77 − 7.76i
]
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−
[

11.84 + 5.62i
]

]

+ z2

[

Lµ

(

[

1.23 − 1.11i
]

− 0.35Lz

)

+0.09L2
z − Lz

[

3.80 + 1.16i
]

+
[

9.31 + 18.63i
]

]}

+ O(z3) . (4.16)

Let us mention that in our calculation we allowed for a general QCD gauge parameter

ξS and used the independence of Γ
t,(1,1)
A as a welcome check for the correctness of our

result. Note that for the cancellation of ξS it is important to include the counterterm

diagram for the top quark mass. The remaining ingredients in eq. (4.14) are individually

ξS-independent. A further check of our calculation is based on a setup where we choose

MW = 0 from the very beginning. This leads to significantly simpler expressions during

the reduction to master integral, which is completely independent from the one for finite

MW .

4.3 O(ααs) corrections to the γtt̄ vertex

Inserting all ingredients into eq. (4.14) leads to

Γ̂
t,(1,1)
A,W =

α

4πs2w

αsCF

4π

[

1

z

(

− 0.45 − i 2.06

)

+

(

6.34 − i 25.14 − 2.00 ln z

)

+z

(

− 6.27 − i 6.10 +
(

2.16 + i 4.10
)

ln z

)

+z2

(

13.50 − i 31.29 −
(

4.53 + i 2.91
)

ln z

)

+z3

(

− 41.06 − i 5.55 +
(

0.59 + i 13.10
)

ln z

)

+z4

(

17.11 − i 9.99 −
(

1.86 + i 5.36
)

ln z

)]

+ O(z5)

=

[

(

− 0.641/z + 2.891 − 0.64z + 0.30z2 − 0.13z3 + 0.014z4

)

+i
(

− 2.911/z − 7.731 − 0.83z − 0.39z2 − 0.081z3 − 0.0013z4

)

]

× 10−4 .

(4.17)

In figure 7 we show the result for Γ̂
t,(1,1)
A including first five terms of the z expansion. Taking

the difference of two successive curves as a measure for the quality of the approximation

we observe a rapid convergence at the physical point. Note that in contrast to the one-loop

case the leading 1/z contribution is numerically not dominant.

In analogy to eq. (4.13) we obtain for the correction to the helicity amplitude

[

h
(1,1)
I,V

]

A,W
= QeΓ̂

t,(1,1)
A,W , (4.18)

which results in a correction of 0.1% to R.10

10We did not take into account O(ααs) interference terms, e.g., δR ∼ (8π/s)
ˆ

2h
(1,0)
I,V h

(0,1)
I,V HV

˜

. Such

correction should be considered once the the two-loop box contributions are available.
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Figure 7: Electroweak two-loop correction to the photon vertex Γ̂
t,(1,1)
A,W normalized to

(αsαCF )/(16π2s2w)/z as a function of z = M2
W /m2

t , for real part (left panel) and imaginary part

(right panel), respectively. The (black) long-dashed lines include successively higher orders in z

starting from z0 (long dashes) to z4 (short dashes) and the orange band is the physical range of z

(see figure 6).

Let us in the following briefly compare the new vertex corrections to the ones induced

by a Higgs and Z boson. Note that the latter two contain a non-trivial scale dependence

which is canceled by the corresponding contribution from the effective theory [10]. Choosing

µ = mt one obtains [8, 10]

Γ̂
t,(1,0)
A,H = 21.1 × 10−3 (10.6 × 10−3) for MH = 120 (200)GeV ,

Γ̂
t,(1,0)
A,W = 3.0 × 10−3 ,

Γ̂
t,(1,0)
A,Z = 1.7 × 10−3 ,

Γ̂
t,(1,1)
A,H = −17.6 × 10−3 (−6.6 × 10−3) for MH = 120 (200)GeV ,

Γ̂
t,(1,1)
A,W = 0.2 × 10−3 ,

Γ̂
t,(1,1)
A,Z = −1.0 × 10−3 . (4.19)

One observes quite small corrections from the W and Z boson induced contributions.

From eq. (4.19) one can read off that relatively big one-loop effects are obtained for light

Higgs boson masses. However, there is a strong cancellation between the one- and two-

loop terms resulting in corrections which have the same size as the sum of the one- and

two-loop contributions of the W and Z boson diagrams. In general moderate effects are

observed suggesting that in the electroweak sector perturbation theory works well, which

is in contrast to the pure QCD corrections.

Let us at this point comment on the imaginary parts contained in eqs. (4.11) and (4.17)

which are not taken into account in the numerical estimates for the corrections to R pre-

sented above. As we mentioned previously, “Im” in eq. (2.1) applies to the imaginary part

which corresponds to the tt̄X final state or experimentally indistinguishable cuts involving

bottom quarks and W bosons. Thus, it is necessary to separate imaginary parts arising

from cutting, e.g., two W boson or two b quark lines from the tt̄X cuts in order to make

a phenomenological prediction. This requires a dedicated analysis in the loop calculation,

which is beyond the scope of this paper (see, e.g., ref. [13]).
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5. Conclusions and outlook

Mixed two-loop electroweak/QCD corrections to the γtt̄ vertex due to W boson and gluon

exchange have been computed. The new contribution completes the order ααs corrections

to the γtt̄ vertex. The numerical evaluation leads to a shift of 0.1% in the threshold

production cross section of top quark pairs at e+e− colliders which is small as compared to

the aimed 3% uncertainty for the theory predictions. Nevertheless, it is remarkable that in

the sum of the order α and order ααs correction terms the sizeable one-loop contribution

from the Higgs boson induced diagrams is screened resulting in numerical values comparable

to the W and Z boson contributions.

We want to mention that the corrections evaluated in this paper, in particular the

master integrals discussed in section 3, can be taken over in a straightforward way to the

Ztt̄ vertex containing a virtual W boson. However, for the Ztt̄ vertex there is a further

class of diagrams which has not been considered so far namely the one involving the ZZH

vertex. This leads to a new mass configuration in the integrals which is not present for

the photon-top quark vertex. Still, the techniques developed in section 3 are certainly

quite useful for such a calculation. Note, that the axial-vector contribution is suppressed

at threshold and thus one-loop corrections are sufficient. A further missing building block

in order to complete the order ααs corrections to the process e+e− → tt̄ are the two-loop

box diagrams. They are technically more involved and are thus postponed to future work.
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A. Exact result for Γ
t,(1,0)
A,W

Keeping the full dependence on ǫ the exact one-loop result for the γtt̄ vertex due to the W

boson exchange reads (for massless bottom quarks)

Γ
t,(1,0)
A,W =

α

4πs2w

(

1

−3 + 2 ǫ

)[

(

Qb + 2T 3
t

)(

1 + 2(1 − ǫ)z
)A

(ǫ)
0

(

M2
W

)

8M2
W

+
(

Qb (5 + z − 4ǫ) + 2T 3
t (1 + z)

)(1 − z)
(

1 + 2(1 − ǫ)z
)

8z(1 + z)
B

(ǫ)
0 (m2

t ,M
2
W , 0)

−Qb
(1 + 2(1 − ǫ)z)(1 − ǫ)

z(1 + z)
B

(ǫ)
0 (4m2

t , 0, 0)

−T 3
t

(

1

z
+ 5 − 4ǫ

)

B
(ǫ)
0 (4m2

t ,M
2
W ,M2

W )

]

, (A.1)
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where Qb = −1/3 is bottom quark electric charge normalized to the one of positron. The

corresponding contribution to the wave function renormalization constant reads

Z
(1,0)
2 =

α

4πs2w

[

(

1 + 2 (1 − ǫ) z
)A

(ǫ)
0

(

M2
W

)

8M2
W

− (1 + z)
(

1 + 2 (1 − ǫ) z
)

8z
B

(ǫ)
0 (m2

t ,M
2
W , 0)

−(1 − z)
(

1 + 2 (1 − ǫ) z
)

4z

{

m2
t

∂

∂m2
t

B
(ǫ)
0 (m2

t ,M
2
W , 0)

}

]

. (A.2)

The loop-functions A
(ǫ)
0 and B

(ǫ)
0 are given by

A
(ǫ)
0 (M2

W )/M2
W = −

(

eγEµ2

M2
W

)ǫ

Γ(−1 + ǫ) , (A.3)

B
(ǫ)
0 (4m2

t , 0, 0) =

(

− eγEµ2

m2
t

)ǫ √π Γ(ǫ) Γ(1 − ǫ)

2Γ(3
2 − ǫ)

, (A.4)

B
(ǫ)
0 (m2

t ,M
2
W , 0) =

(

eγEµ2

m2
t

)ǫ(

− 1 +
M2

W

m2
t

)−ǫ Γ(ǫ)

1 − ǫ

× 2F1

(

ǫ, 1 − ǫ, 2 − ǫ; 1/(1 −M2
W /m2

t )

)

, (A.5)

B
(ǫ)
0 (4m2

t ,M
2
W ,M2

W ) =
1

2(1 − ǫ)

(

eγEµ2

2M2
W

)ǫ

Γ(ǫ) ×
[(

1 − 1
√

1 − M2
W

m2
t

)ǫ(

1 +

√

1 − M2
W

m2
t

)

× 2F1

(

1 − ǫ, ǫ, 2 − ǫ;
1

2

(

1 +
1

√

1 − M2
W

m2
t

))

+

(

1 +
1

√

1 − M2
W

m2
t

)ǫ(

1 −
√

1 − M2
W

m2
t

)

× 2F1

(

1 − ǫ, ǫ, 2 − ǫ;
1

2

(

1 − 1
√

1 − M2
W

m2
t

))]

, (A.6)

where an analytic continuation by (m2
t + i0) is understood. Expansions with respect to

ǫ of the Gauss-hypergeometric functions 2F1 around integer values is well known in the

literature (see, e.g., ref. [39] or the package HypExp [52]).

B. Unstable top quarks

In this appendix we briefly review our treatment of unstable particle effects for the hard ver-

tex corrections to the top quark production near threshold. For a more general framework

we refer to refs. [53, 54].

The threshold cross section is sensitive to scales of order Γt. Thus it is mandatory to

incorporate the unstable particle effects to obtain physically meaningful results. However,

there are several conceptual questions, e.g., the treatment of the imaginary part of the wave
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Figure 8: Electroweak corrections involving top quarks to the photon vacuum polarization ((a)

and (b)). The corresponding NRQCD Feynman diagrams are shown in (c) and (d). The solid lines

represent the top quark, dashed and wavy lines denote bottom quarks and W bosons, respectively.

The dotted lines represent the cuts corresponding to top quark decay, t → bW . In (c) and (d) the

square vertex and black dot on the top quark line represent the γtt̄ vertex and top quark propagators

in NRQCD, respectively.

function renormalization for the unstable top quarks. This occurs when unstable particles

appear in the external lines of the S-matrix element. An obvious solution to the problems

is to discuss the unstable particle production together with its subsequent decay, so that

no unstable particles appear as external lines of the Feynman diagrams. This is consistent

with the experimental situation where we measure the decay products of the top quarks in

the detectors. For our purpose it is sufficient to consider W bosons and bottom quarks as

stable.

In the following we will show how top quark production near threshold is formulated

from the point of view of the optical theorem.11 To this end we consider resonant top

quark correction to the photon vacuum polarization which reads

Π(q) ∼
∫

ddp

(2π)di
Γ1

Zew
2

(p+ q/2)2 −m2
t + imtΓt

Γ2
Zew

2

(p− q/2)2 −m2
t + imtΓt

, (B.1)

where q = (
√
s, ~0), mt and Γt is a pole mass and decay width of top quark, and Γ1,2

represent the γtt̄ vertex including radiative corrections. In the above expression the full

propagators for the top and anti-top quarks are employed (i.e. Dyson resummation of

electroweak self energy diagrams has been performed), and an expansion around (p ±
q/2)2 ≃ m2

t is performed. This expansion picks up the leading behaviour of the threshold

cross section near
√
s ∼ 2mt. Two sample Feyman diagrams contributing to Π(q) are

shown in figure 8 (a) and (b).

We are interested in specific cuts of the Π(q) which correspond to the process

γ∗ → tt̄ → (bW+) (b̄ W−) . (B.2)

The first diagram in figure 8 with the cut indicated by the dotted line is an example for

a contribution to eq. (B.2) where the invariant mass of the top and anti-top quarks are

slightly off shell due to their finite width, i.e. p2
t −m2

t ∼ mt Γt. By the same reason the cut

11Since for our argument the spinor structure is irrelevant we discuss only the scalar part of the Feynman

diagrams in what follows.
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of the diagram in figure 8(b) should also be regarded as a contribution to the top quark

production due to the interference of the processes

γ∗ → tt̄→ (bW+) (b̄ W−) and γ∗ → (bW+)t̄→ (bW+) (b̄W−) , (B.3)

as long as the invariant mass of the bottom quark and W boson mass satisfies (pb +pW )2−
m2

t ∼ mtΓt. Once the finite width effects are included into the theory calculation this is an

automatic consequence. Furthermore gauge invariance requires to also take into account

such interference terms [13].

In a next step the vacuum polarization in the SM has to be matched to the one in

NRQCD. At zeroth order in QCD the two diagrams (a) and (b) in figure 8 are matched to

the NRQCD Feynman diagrams (c) and (d). NRQCD reproduces the on-shell behaviour of

the renormalized top quark propagator including the width Γt, while the effect of the wave

function Z2 due to W boson exchange is not present in the NRQCD Lagrangian. Thus we

absorb both the real and imaginary part of Z2 into the vertex correction, which is treated

as an external current in NRQCD. In this manner the vacuum polarization is written as

ΠNRQCD(q) ∼
∫

ddp

(2π)di

[

Γ̂1

]

~p=0

1

2mt

1

p0 + q0

2 −mt − ~p 2

2mt
+ iΓt

2

[

Γ̂2

]

~p=0

× 1

2mt

1

−p0 + q0

2 −mt − ~p 2

2mt
+ iΓt

2

+ . . . , (B.4)

where [Γ̂i]~p=0 ≡ Z2Γ1,2|~p=0 is the renormalized vertex corrections at ~p = 0. For the vacuum

polarization in NRQCD the hard vertex corrections are expanded in the small momentum

~p, and the higher order terms from Γ̂1,2 and the full propagators should be systematically

incorporated order by order in the NRQCD framework to maintain renormalizability.

Hence, we arrived at hard vertex corrections [Γ̂1,2]~p=0 which are renormalized using on-

shell wave function factors represented by square vertices in figure 8. In figure 8 the black

dots on the top quark line contain the iΓt term, which is responsible for the imaginary

part of the NRQCD propagators. Note that the W boson correction to the top quark

propagator generates both the imaginary part of Z2 and iΓt in the diagrams (a) and (b)

while in the NRQCD Feyman diagrams (c) and (d), only the term of iΓt is reproduced.

Thus Z2, including its imaginary part, should be taken into account in the computation of

the vertices.
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