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1. Introduction

The top quark pair production close to the threshold is an important process at a future
International Linear Collider (ILC). It can be used to determine top quark properties, like
the mass m; and the width I'y, but also the strong coupling «g with high precision. This
is in particular true for m; where an uncertainty below 100 MeV can be obtained from a
threshold scan of the cross section [fI].

The feasibility of such high-precision measurements requires a theory prediction of
the total cross section o(ete™ — tt) with high accuracy (preferably do/o < 3%). The
study of tt threshold production is performed in the framwork or non-relativistic QCD
(NRQCD) [@] which separates the hard and soft scales involved in the process. In such a
framework, one has two expansion parameters, o and the relative velocity v of the heavy
quarks. The corrections are classified by the total power of o and v, i.e. N*LO corections
contain terms of order ov™ with [ 4+m = k. The next-to-next-to-leading order calculation
has been perormed in ref. [J]. Current estimates based on (partial) next-to-next-to-next-
to-leading order (NNNLO) [[l, fl QCD corrections lead to an uncertainty of the order of
10%. Similar conclusions are obtained from the approach based on the resummation of
logarithmically enhanced terms which has been considered in refs. [, .

In order to reach a theory goal of o /0 < 3% it is necessary to include in the prediction
next to the one-loop electroweak corrections, which are known since quite some time
(see also [H]), also higher order effects. The evaluation of O(aas) corrections has been
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Figure 1: Sample Feynman diagrams contributing to the matching coeflicient of the vector current
at order « (a), as (b) and aa; (¢)-(f). The thick (thin) straight lines represent top (bottom) quarks,
wavy lines stand for W bosons and the curly ones for gluons.

started in ref. [[[0], where the two-loop mixed electroweak and QCD corrections to the
matching coefficient of the vector current has been computed due to a Higgs or Z boson
exchange in addition to a gluon. The current paper continues this enterprise and provides
a result of O(aay) for the two-loop vertex diagrams mediated by a W boson and gluon
exchange.! Sample diagrams can be found in figure[ll. This completes the vertex corrections

of order avcrs — a building block for the top quark production cross section. Assuming the

2

2 one can see that these corrections are

(numerically well justified) power counting o ~ «
formally of NNNLO.

In order to complete the matching corrections of order acay also the two-loop box
diagrams contributing to ete™ — tf have to be considered. Actually, only the proper
combination of the box, vertex and self-energy contributions (the latter can, e.g., be found
in refs. [T, [[J]) forms a gauge independent set.

The remainder of the paper is organized as follows: In the next section we introduce
our notation and derive the cross section formula for eTe™ — #£X near the tt threshold.
We present a general formula which includes all radiative corrections of the Standard
Model (SM). In section f we discuss some technical details of the two-loop computation
and in section ] we concentrate on the O(aa;) corrections to the it vertex and present
our results. Section [J] contains our conclusions. Additional useful material concerning the
one-loop expressions can be found in the appendix.

LOf course, in addition to the gauge boson also the corresponding Goldstone boson is taken into account.



2. Threshold cross section

Within the framework of NRQCD the total cross section for the top quark production can
be cast in the form

_ _ 81
R(efep — ttX) = —Im| (hpyv)? Hy + (hpa)® Hal , (2.1)

where s is the square of the center-of-mass energy and R(eze}} — ttX) is the cross section
normalized to o(eTe™ — puTp~) = (47a?)/(3s). For illustration we consider in eq. (R.1)
left-landed positrons and right-handed electrons. For e;gez in the initial state a similar
expression is obtained by replacing R by L in eq. (R.1). Note that in the SM the initial states
e}%e}_z and e} e; are suppressed by a factor (m./Mw)* ~ 1071 and are thus negligible.
We denote hgry and hgr 4 by helicity amplitudes which absorb the matching coefficients
representing the effective coupling of the effective operators. They take care of the hard
part of the reaction. The first subscript of h refers to helicity of the electron, and the
second one to the vector (J{; = ¢y1)) or axial-vector coupling (J% = ¢y vs51)) of the
gauge bosons to the top quark current.? The bound-state dynamics is contained in the
so-called hadronic part which is denoted by Hy and Hy in eq. (R.)).

In the cross section formula (R.1)) “Im” refers to those cuts which correspond to the t£X
final state.? This means that we have to select special cuts which correspond to the final
state we are interested in. This requires a dedicated study incorporating the experimental
setup. For the one-loop electroweak correction this treatment was performed in [[I3]. In this
paper we will not pursue this problem further (see also the discussion in the Conclusions).

The hadronic part is described by NRQCD [B]. For our purpose it is sufficient to
re-write the vector current J!7 and the axial-vector current J in terms of two-component
NRQCD spinor fields 1, x, which correspond to non-relativistic top and anti-top quarks,
respectively. This yields the following NRQCD currents

g = ¢lo'x,
(1/m?),i L ov .32
J = ——¢¥la'(iD )" x,
v 6m?
. 1 . .
i Tr40 (25
i = 50110 G D)) x. (2.2

=22
With the help of the NRQCD equation of motion for top and anti-top quarks (1T’ D "y =
myidy(1bTo'x)) the 1/m2-suppressed vector current can be re-expressed in terms of jy .
Thus our matching relation between SM and NRQCD currents are given by

_

JV — e22mtmo Co
6mt

iﬁo) g, Ja=eM0 g, (2.3)

2The notation is basically adapted from ref. [@, however, we added a second subscript F' = V| A to
incorporate the axial-vector coupling of the Ztt vertex (see eq. (E))

3From the theoretical point of view one has a pure ¢ final state up to NNLO in QCD. Starting from
NNNLO one has to include the real emission of a gluon. Once the electroweak sector is considered, final
states like (bW T)# need to be included, where (bW ™) has an invariant mass p2y in a range |py — mé| <
tht.



with ¢, = d, = ¢, = 1 at tree level. The hadronic part is defined by the current correlation
function

He =iy [doe™ QT @) FO10)  (F=V.a), (2.4)
k

where F = /s — 2m; and |Q) is the NRQCD vacuum state.

The evaluation of Hp requires to integrate out the low-energy modes of QCD, the soft,
potential and ultrasoft gluons contained in NRQCD [[[4, [(5]. For the top quark system this
can be done perturbatively. In a first step one integrates out the soft and potential gluons
which results in the effective field theory Potential NRQCD [[Ld, [7]. The corresponding
Lagrangian is known to NNNLO [[§.* To integrate out nonrelativistic top and anti-top
quark fields the Rayleigh-Schrédinger perturbation theory can be applied as was initiated
in ref. P(] and performed to NNNLO for Hy and Hy4 in refs. [] and [B], respectively.
Integrating out the ultrasoft gluon was completed recently in ref. [§]. For the details of
these steps we refer the reader to the original papers and references cited therein (see also
refs. [22-R4)).

In this paper we restrict ourselves to hard loop corrections to the production cross
section, namely the corrections being parameterized as hr p. The tree-level expression® of
the helicity amplitude hy r is given by

ree s B¢ B . t + t
h?v = QcQ¢ + Séjj\i‘g with Bl = Br - Br 7
Z
To) . — g2

Swlw

where the ﬁjf is the coupling of a fermion (f = e, t) to the Z boson, s, is the sine of the
weak-mixing (c2, = 1 — s2), and electric and iso-spin charges for top quark and electron
are given by

Qe=—1, Q=2/3, (Ty)y, =1/2, (T3)e, =—1/2, (T3);,=0.  (2.6)

In the following the abbreviation 7. :{ = (T3)s, will be used. hra can be obtained by

substituting 3, by 34 = (8% — 4%)/2 in formula (R.9).
Let us now explain how hard loop corrections within the SM can be incorporated into
the helicity amplitude h; p. To this end we organize the corrections as

777,2
hry = (W 4 R ) R R n
hra =BG+ 27)

tree (1/m?) (1/m?) g it (i,4)
where the h7'% and hy (due to the jy, ) are the tree-level contributions, and hi'w

incorporate the contributions from radiative corrections (the superscript (i, j) denotes the

“The only missing constant in ref. | is related to the three-loop static potential where recently the
fermion corrections became available [[L]]

5 . . 2 . . 7 2 .
°We include the effect due to j\(/l/m ) with die® =1 into h%‘//” ) for convenience, see eq. (ﬂ)
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Figure 2: Two-line MIs. The solid and dashed lines correspond to propagators with mass m; and
My, respectively.

electroweak- and QCD-loop order, respectively). As one can see from the expression of
the axial-vector current ja, Ha is suppressed by 52 /m? ~ E/my;. Thus one-loop QCD
corrections to hr 4 correspond to NNNLO effects. In section A we will provide explicit
results for h%"ﬁ)) and h%"/l) induced by the exchange of a photon.

Hard QCD corrections to the ~tt and Ztt vertices modify the matching coefficients ¢,
and ¢, at loop level. We absorb these effects into helicity amplitudes and obtain (using
B = i B/ (6me)

(1)
0,1 Edy ree 0,1 ree
hﬂ(lvv) = (Cigl) o 6my ) htLV ) h§7A) = C(Sl) hi},A ) (2.8)

with cg), dg) being the i-loop contribution to the matching coefficients. For the purpose of
this paper only the one-loop contribution 651) is needed (see below for explicit expressions).
Let us mention that the two-loop QCD corrections have been evaluated in refs. [P7,

and the three-loop corrections induced by a light quark loop in ref. [g].

3. Technical details of the two-loop calculation

Let us in this section provide some technical details about the evaluation of the two-
loop diagrams. They are generated with QGRAF [B(] and further processed with gq2e and
exp BT, B3. The reduction of the integrals is performed with the program crusher [B3] which
implements the Laporta algorithm [B4, Bj]. We arrive at 29 master integrals (MI) which
are depicted in figures f-fJ. All diagrams occur with the propagators raised to power one.
Note that there are two more MIs of type 3.10: one with a squared top quark propagator
and one with a squared massless propagator. Similarly, an additional MI arises from type
3.11 with a squared massless propagator.

We refrain from presenting the explicit results for all MIs in this paper but provide
them in form of a Mathematica file® MIttewW.m using the conventions as defined in eq. ([A.3))
which corresponds to the one-loop tadpole integral. In all results presented in this file a
factor (qu/m%)% with d = 4 — 2¢ has to be multiplied.

Some MIs factorize into one-loop integrals or contain only one dimensionful scale.
Most of these integrals are available in the literature and can, e.g., be found in refs. [Bf—
B, [0, [

As we will see in section [ a rapid convergence is observed if one considers an expansion
of the matching coefficient in the quantity z = M2, /m?. For this reason we evaluate the

5The file is available from http://www-ttp.particle.uni-karlsruhe.de/Progdata/ttp08/ttp08-43.
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Figure 3: Three-line MlIs. The solid, dashed and dotted lines correspond to propagators with
mass my, My and 0, respectively. Single external lines are on the mass shell with mass m; whereas
double external line have mass 2m;. The topology denoted by 3.10 contains three master integrals,
topology 3.11 contains two MIs.
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Figure 4: Four-line MIs. For the notation we refer to figure ﬂ

two-scale MIs in this limit. A promising method is based on differential equations (see
ref. [A]] for a recent review) which provide the expansion in an automatic way once the
initial conditions are specified. Let us as an example consider the five-line integral MI(5.2)



Figure 5: Five-line MIs. For the notation we refer to figure fl.

(cf. figure []) which fulfills the following differential equation

d d—4 3(z —2)(d — 2)?
S MI(.2) = S MI(5.2) + Tomtd 30 — DTy MY
(d-2) (d—2)
T MI(3.4) — o — MI(3.5)
Bd=8)(=6) 510

16my(z —4)(z — 1)z
(d—4)(z —9)(z+2)
16m?(d — 3)(z — 4)(z — 1)z

(22— 2+6)

d—3
S am2(z—4)(z — 1)22 MI(3.10.2) + W MI(4.4).  (3.1)

MI(3.10.1)

MI(3.10.1) and MI(3.10.2) denote the MIs of the type 3.10 with a squared massless and
top quark propagator, respectively. In order to solve this equation it is necessary to know
the results of all integrals with less than five lines. With the help of the ansatz

MI(5.2) = Z cijr €29 (In 2)% | (3.2)

the differential equation can be expanded in € and z. As a result it reduces to algebraic
equations for the coefficients c;;;. In every order in e there is one constant c;j;, which can
not be determined with this procedure. It is obtained from the initial condition at z = 0,
which in the case of MI(5.2) can be found in ref. [Bd]. In this way we have computed
expansion terms up to order z!° which can be found in the Mathematica file mentioned



above. For illustration we present the first two expansion terms of MI(5.2) which read

o _ 1 3 L o 2 2 In®3
MI(5.2)m; = e In2—2In 2—§7T In3+2In"2In3 —In2In 3+T

—Liz(-2) + %Lig G) — 2Li3 (;) + Lis G) n 21%(3)

(T 1 9 . 1 1 3 3
— T <E—|—§ln 2> —z[zw<5—11n2+11n3—§lnz>

3 3In%3 1 In%2
+§ln3lnz— +Zln2ln3—T—ln2
1772 1., (3 5

Note that for some integrals the differential equation can be solved with the help of
Harmonic Polylogarithms [[i2] which immediately leads to a closed result.

It is interesting to mention that for the integrals MI(4.3) and MI(4.4) no initial con-
dition is needed in order to obtain all the coefficients in the ansatz. They are completely
fixed by the corresponding differential equation and the solutions for the integrals of the
subtopologies. For all other integrals initial conditions at z = 0 are required. As already
mentioned above most of them can be found in the literature or are quite simple to compute
using standard techniques. However, we could not get analytic results for five” coefficients
in the e-expansion of the integrals MI(4.5), MI(4.8), MI(5.3) and MI(5.4) at z = 0. We
calculated these coefficients using the Mellin-Barnes method (see, e.g., Ref [£J]) where we
used the program packages AMBRE [i4] and MB [43].

The Mellin-Barnes representation for a given integral is not unique. In particular it
might happen that the convergence of the resulting numerical integration turns out to
be good in one case whereas a poor convergence is observed in other cases. The crucial
quantity in this respect is the asymptotic behaviour of the I' function for large imaginary
part which is given by

T(a + ib) "2 /2metif a1 gtib(nb=1) = F pa—3 (3.4)

where the first two exponential factors lead to oscillations. Let us discuss this in more
detail for the Mellin-Barnes representation of the integral MI(4.5)

2e ; ;
MI(4.5) = <6A/EM2> /—HOO % e @ ei7r(2e+z1)4—2e—zz

2 . .
my —ico 2Tt J_ijoo 2T

[(1 — e)l(—e — 2 + 1)I(—21) [[(—2€ — 2 4 1)]?

X
(=3¢ — 2z + 2)P(—26 — 21+ 2)P(—46 — 229+ 2)
xI'(—4e — 21 — 20 + 2)T'(21 — 22)'(€ + 22)'(2€ + 22) , (3.5)
where yg = 0.577216 ... and the contour of integration is chosen in such a way that the

poles of the I' functions with +z; are separated from the poles of the I'" functions with

"One more coefficient can be obtained analytically from the requirement that our final result is finite.
It agrees perfectly with our numerical result.



—z;. Using the package MB we can expand the integrand in e. For the finite contribution
this leads to a sum of an analytic part, a one-dimensional Mellin-Barnes integral and a
two-dimensional one. The latter correspond to the integral in eq. (B.H) for ¢ = 0. If we
insert in this expression the asymptotic behaviour for the I' functions as given in eq. (B.4)
one can see that the integrand of the two-dimensional integral falls off exponentially, except
for Im(z2) = 0,Im(z;) < 0.2 On this line the drop-off only shows a power-law behaviour
which is dictated by the last factor of eq. (B:4). In our particular case the drop-off turns
out to be extremely slow for the integration contour chosen by MB which corresponds
to Re(z1) = —1/4 and Re(z2) = —1/2. Thus it is hard to get an accurate result by the
numerical integration since a highly oscillating functions has to be integrated. A closer look
to the fall-off behaviour in eq. (B.4) shows that it is possible to improve the drop-off for
Im(z1) — —oo by taking residues of the integrand in ze and thus shifting the integration
contour for zp more and more to positive values for Re(z2). In this way the integrand
becomes well-behaved and can be integrated numerically with sufficiently high precision.

It has already been pointed out in ] that for certain kinematical configurations the
Mellin-Barnes integrals exhibit poor convergence behaviour. We have shown that at least
for the threshold integrals needed in our calculation, it is possible to choose the integration
paths in a way to make the numerical integration possible. One may hope that with the
approach described here it will turn out to be possible to use Mellin-Barnes integration for
other troublesome integrals, too.

Let us mention that in the case of MI(4.5) there is an alternative possibility to improve
the numerical properties of the eq. (B.5): after the variable transformation zo — 23 —2¢ MB
chooses integration contours which lead to a rapid convergence of the numerical integration.
We have checked that both approaches lead to the same results and obtained 9 digits for
the finite part of MI(4.5) in eleven minutes of CPU time.

The remaining three integrals show similar properties as MI(4.5). In all cases it is
possible to end up with integrals which could be integrated numerically. Our results read

2N*T 1 1/5 ,
MI(4.5) = | = S _2In2+ir | — 4.81543683(7)

m? 2¢2 2

+
+4im(1 —1In2) }
+

2 2 2
1 1 1/5 19 2372 5I%2 3In3
MI(4.8),m0 = (5] | L _ _
(48)]==0 <mt2> [262 <2+ >+2 24 2 2

4 4

45 3572 211n2%2
. 1 2 —
z7re< 5 + 2 +3In

5 5. (3\ i
+5 23— SLip <—> n %(11 ~5In2) — €16.690539(1)

+61In3 + 2Liy(—2)

8Note that for these values of z; the exponential factor in the integrand of (@) increases exponentially.



m2 MI(5.3)|.—o = 2.704628(4) — 5.167709(4)i ,
m2 MI(5.4)|.—o = 2.70543(6) — 1.91431(6)i . (3.6)

The accuracy for the finite part of these integrals is sufficient to obtain the final result with
four significant digits.

Note that contrary to the default settings of MB we do not use Vegas for the multi-
dimensional numerical integrations. Instead we use Divonne which is available from the
Cuba library [i6]. For the integrals we have considered it leads to more accurate results
using less CPU time.

We have performed an independent check of the initial conditions for all the MIs
employing the method of sector decomposition. In particular we used the program FI-

ESTA [E7.

4. The ~tt vertex

In this section we discuss O(aqy) corrections to the ytt vertex due to W boson and gluon
exchanges with incoming photon momentum at q> = 4m?, the production threshold of top
quark pairs. This leads to corrections to s V) mediated by a virtual photon, i.e., to the
first term of htr%} in eq. (2.5). We denote by 'Yy the contribution of the sum of all one-
particle-irreducible diagrams to the it vertex and parameterize the radiative corrections
in the form

=Q; + f‘z (0,1) + f‘Z(l,O) + fﬁ{(l,l) , (4.1)

where the hat denotes renormalized quantities. Substituting f‘ﬁ‘ for the @ in first line of
eq. (R.§) and retaining the relevant orders in the electroweak and strong couplings leads to
the corrections to the helicity amplitudes, hg v)v hgl‘ﬁ)) and hgl{}). We further decompose

I'Y (and similarly the quantities on the right-hand side of eq. ([1))) according to the
contributions from the Higgs, Z and W boson exchanges:

I'l= f‘ﬁl,H + fﬁx,z + fﬁx,w . (4.2)

In this paper we compute the corrections up to order aag to f‘fax,w- The other two quantities
mix

have been computed in ref. [I]] where the matching coefficients calmix and 2™ have been

introduced. We have the following relations

(676 mlx a g mlx
PA(}{D_ = QCp el PA(;”_ ) Q.Cr (4.3)

In our calculation we adapt in the electroweak sector the 't Hooft-Feynman gauge, i.e.
&w = 1, which guarantees a simple form of the W boson propagator. Note that &y # 1
introduces an additional mass scale in our calculation which would lead to significantly
more complicated integrals at two-loop order. We want to mention that our final result
depends on & This dependence only cancels out after including the self-energy and box
contributions. There is no gauge parameter dependence in f/’% g which only occurs in the

— 10 —



vertex and self-energy contributions. Also the vertex corrections involving the Z boson
(fz ) are independent of the corresponding gauge parameter.

Although the one-loop results are well-known, we start our discussion from this order
since they enter the renormalization of the two-loop expressions.

4.1 One-loop corrections

The renormalized QCD contribution is given by

where Z5 is the on-shell wave function renormalization for external top quarks. The ex-
pressions on the right-hand side of eq. (f.4) are given by

2\ € 2
- a5 o)

47 my 4
Cr (112 \€ 3 2
Z(Ovl) — Qs L 44— — 4.
2 4 \m? € (8t 4 ’ (4.5)

where Cp = 4/3. In eq. ([.§) the O(¢) terms are kept since they enter the finite part of
the two-loop expression. For the renormalized vertex we have the relation

asCr
47

YO 2 Qe = —8Q, 2 (14 1)+ 0(). (1.6

where L, = In %25 The one-loop formula for the electroweak corrections is given by
t

PLO9 1409 1 21 4 1 28 (17)

where Zélllo) is a counterterm associated with Z-photon mixing at zero-momentum trans-
fer [A§] which reads

10 @ 1 s
7o) _ o _m . A
CT = Urs2 ( c HM5V> +0(¢) (4.8)

As we will see later the O(e) term for Zgrfo) is not needed. We present the remaining two
ingredients as a series expansion of z = M2, /m?, the exact formulae are collected in the
appendix for convenience. The results for Zélv’g) reads

2\ ¢ 1/1 1 irm L, im 1 L, ir 21
710 _ @ (K B T O e LI Lz M, 2
2W T qrsz \'m? \17%) "% 1 21 3786

N 77r2+L§ LZ+57T2 i 3+ L§+3LZ+7T2 9ir 27
T L L. im 3 (LF m° O 2T
“Booz "8 "4 "6 2 4 \167 16 "T12 8 32

— 11 -
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Figure 6: Electroweak one-loop corrections to the photon vertex 1:\2,)(5[}0) normalized to a/(4ms2,) /2

as a function of z = M3, /m?, for real part (left panel) and imaginary part (right panel), respectively.
The (black) dashed lines include successively higher orders in z starting from 2° (long dashes) to z*
(short dashes) and the (red) solid line is the exact one-loop correction. The (orange) band marks
the physical range of z = (80.40 GeV/m;)? varying the top quark mass between 165 and 175 GeV.

and Fﬁ" g,vl’o) is given by

2N (1/1 1 1/ir 2In2 1
(L0 _ « o o il -
AW 4rs2 Qv m% e\ 82 + 4 + z\ 8 3 + 6

L, 7 1 2In2 (Lz im  2In2 7)
=+ — z

172 T3 s 83 'w
N [ 1(7772 ir(4ln2—1) 2In2(3In2-5) 5>
€ —_ —

2\ 96 6 9 18
L2 L, 57 ir(4ln2-1) +2ln2(3ln2+1) LT
8 4 16 6 9 36
L2 3L, 2m2(3In2+1) 72 inr(16ln2—1) 115
1616 " 9 T 24 T 2s8)”°
2\ € .
« W 171 3 1 /imr 2In2 2
T2 | = =+ )+=-(—- -
+477ng t<m§>{e<4z+2>+z 4 373
i 5L, 15 5im  7ln2
T _3n2 — _ =4t
oy s < 5 16 8 4 >z

[ 1<77r2 2ir(In2—-1) 2mn2(3In2-8) 13)
A AT 3 9 9
Tr? .

—T—3z7r(ln2—1)+3ln2(1n2—2)+6

<5L§ 11L, 572 in(7TIn2+1) 7In?2 39> ]}
-+ — +— )z

16 16 12 4 4 32
+0(2%), (4.10)

where L, = Inz and a = e2/(4n) is the fine-structure constant in the Thomson limit.
Again the O(e) terms are retained due to their relevance for the two-loop renormalization.
Note that we keep the imaginary parts of both FZ,(V(I);D and Z2(?V’Il,). See appendix B for more
details. At one-loop order this only affects the finite part; at two loops also the pole parts
are concerned (see below).

— 12 —



(10) bt compare in figure | the

We refrain from listing an analytical result for fi
approximated result to the exact one. The latter is represented by the (red) solid line
whereas the dashed lines correspond to the expansions including successively higher orders
in z. As one can see, the expression including the correction of order z* provides at the
physical point z = 0.23 a perfect approximation to the exact result far below the per cent
level. The approximated results are based on the following expressions

pao 020
Iy _4ﬂsa[7+(048+0792+0251nz)

z(—0.0024 — 1.374 — 0.44 In 2) + 2* (= 0.072 + 1.394 + 0.44 In 2)

2% (0.34 — 0.53i — 0.17 Inz) + 2* (0.13 4+ 0.234 + 0.074 In z)}
+0(2%)

= [2.481/2 +0.25; +0.39, — 0.095,2 + 0.017_5 + 0.00013,4

+i(2.11; — 0.80, + 0.18,2 — 0.015,5 + 0.0014,4) ] x 1073, (4.11)

where the subscript in the last line indicate their order in the z expansion and for the input
parameters the following values have been used [[9, B

as = 0.108,  a(My)= 1/1289,  s2 =0.23,
My = 80.40GeV,  my = 172.4GeV . (4.12)

Note that in our numerical analysis we use « at high energy scale.”
The corrections in eq. (§.11]) are dominated by the leading terms proportional to
m? /MI%V One observes a rapid convergence, so that the term of order 2% can safely be
neglected. Inserting the results in eq. (JL1)) the overall size of the electroweak corrections
(from the diagrams involving a W boson) amounts to about 0.5% and is unusually small.
! (1 9 and Ft (1 % Jead to corrections of 0.3% and 3.2% (for
My = 120 GeV), respectively. Let us mentlon that the one-loop QCD corrections provides
a contribution “—61 x 1073” to the last line of eq. ({.11) thus resulting in a 9% correction.
From eq. () one obtains the corresponding corrections to the helicity amplitude as
[hﬁé))h = Q050" (4.13)

7

For comparison, we note that F

which immediately leads to the correction to the cross section with the help of eq. (R.])).
Taking at tree-level both the photon and Z exchange diagram we obtain a shift of 0.9% to
R(ete™ — ttX) due to the W boson contribution to ytt vertex at one-loop.

4.2 Two-loop order aa,; renormalization

The renormalized vtt vertex at order acy is given by

f‘f{v (171) — I‘Z (171) +1’1t3 Z((Jlrfl) + Qt Zélvl)

. <Z2(1,0) Fﬁ{ CR Zéo,l) FZ’(I’O)) gt ZélTO’ FA (o, 1)’ (4.14)

9This is theoretically preferable because it is devoid of non-perturbative hadronic effects.
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where the first line corresponds to genuine two-loop diagrams and the second line consists of
products of one-loop diagrams. For the latter we already listed all the relevant expressions
in the previous Subsection. Note that in the last term the renormalized one-loop vertex
appears and thus the O(e) term for ZélT’O) is not needed.

Formula ([.14) takes only care of the renormalization of the external lines and the
electric charge which means that the un-renormalized two-loop quantities in the first line
are understood as the sum of the amputated two-loop diagrams and the corresponding
counterterm diagrams for the top quark mass and the top quark Yukawa coupling. The
latter are renormalized in the on-shell scheme.

It is easy to see that for the two-loop counterterm we have ZélT’l) = 0 since at one-
loop order only bosonic and no fermionic diagrams contribute. The two-loop on-shell
wave function factor 22(171) has been computed in ref. [F1]. We confirmed the result by an
independent calculation and added the imaginary part which is necessary in our framework.

The result reads

Cr 1 /3 3 1
Z(lvl) — a as _ _ . _ _ - R
W Ars2 4Ar | €2\ 4 )T > 1778 > "7
_|_1_7_|_%+ 3LZ+@+% _ 91n _§+% 22
8 2 8 16 8 4 4 4

z
L1 <3L2 N (14 + 3im) Ly, N 3¢(3) imd  w*  2Tinm

1/3L, 7 3im 3L, 3L,
z 4
z

T, +B>
4 2 6 4 8 16
3L2 7L, i w2
T( > 5 ° B+3 %5
$im 3 . [<3L @+63>L_3L§ (1 +28im) L.
2 16 4 4 8 16 16
55(3)+@+5L_12””+@}Z+[<_9L2 §_%>L
2 6 6 24 32 2 2 2 )F

92 1 5 317 547im 7972
S - )L, - — - 9
+8+<2 6>z B T m+<()}}

+0(2%), (4.15)

where terms up to order z2 have been included (¢(3) = 1.20205- - - ).
In the following we provide the result for the un-renormalized vertex corrections where
the finite part is given in numerical form. Our result reads

ph0 _ o 0sCr 1[ 1/1 iz  In2 i, L, Tir |5 23In2
Taw dms2 4w {e2 6[23 4+3 * r T a3 6
170, 472 17w 121 17L, 185 17im  65In2
—2 — + + =+ -
16 24 16 96 96 576 96 48

%([ —2.66 —3.79] — L, [1.13 — 1.57¢]) +4.00 L2
+L,(—0.50Ly — [1.98 — 11.00i] ) + 0.13L2 + 0.08L. + [10.03 — 23.63i]

+2 [L“ ([524 - 6.68i] ~213L.) +0.53 L2 — L [0.77 — 7.76i]
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—[11.84 4 5.622‘]] + 2 [LM ([1.23 —1.11i) — 0.35 Lz>
+0.09 L% — L, [3.80 + 1.16i] + [9.31 + 18.632‘]} } +0(2%). (4.16)

Let us mention that in our calculation we allowed for a general QCD gauge parameter

&g and used the independence of Fﬁ{(l’l)

as a welcome check for the correctness of our
result. Note that for the cancellation of g it is important to include the counterterm
diagram for the top quark mass. The remaining ingredients in eq. (f.14)) are individually
&s-independent. A further check of our calculation is based on a setup where we choose
Mpy = 0 from the very beginning. This leads to significantly simpler expressions during
the reduction to master integral, which is completely independent from the one for finite

Myy.
4.3 O(awy) corrections to the it vertex
Inserting all ingredients into eq. ([L.14) leads to

pLy @ asCr '
A w 47T312u 4 |: z < 0.45 — 2. 06> (6-34 —125.14 — 2.001In z>

z ( —6.27—i6.10 + (2.16 +i4.10) In z>

22 (13.50 —i31.29 — (4.53 +i2.91) In z)

2 < 41.06 —i5.55 + (0.59 +13.10) In z>
2t <17 11 —49.99 — (1.86 +15.36) In z>] +0(z°)
0.

[( 64y, +2.891 — 0.64, +0.30,2 — 0.13,5 + 0.014,4)

+i( =291, — 7.73; — 0.83, — 0.39,2 — 0.081,5 — 0.0013z4)] x 1074,
(4.17)

In figure [] we show the result for fﬁ{(l’l) including first five terms of the z expansion. Taking
the difference of two successive curves as a measure for the quality of the approximation
we observe a rapid convergence at the physical point. Note that in contrast to the one-loop
case the leading 1/z contribution is numerically not dominant.

In analogy to eq. ({.13) we obtain for the correction to the helicity amplitude

(W8] = QLG (4.18)

7

which results in a correction of 0.1% to R.19

We did not take into account O(aqs) interference terms, e.g., R ~ (87/s) [2h(1 O)h(o 1)HV} Such
correction should be considered once the the two-loop box contributions are available.
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Figure 7: Electroweak two-loop correction to the photon vertex 1"};’7(1}1}1) normalized to
(asaCr)/(16m2s2) /2 as a function of z = M3, /m?, for real part (left panel) and imaginary part
(right panel), respectively. The (black) long-dashed lines include successively higher orders in z
starting from z° (long dashes) to z* (short dashes) and the orange band is the physical range of z
(see figure ).

Let us in the following briefly compare the new vertex corrections to the ones induced
by a Higgs and Z boson. Note that the latter two contain a non-trivial scale dependence
which is canceled by the corresponding contribution from the effective theory [[L(]. Choosing
@ = my one obtains [§, [[q]

M0 =211 %1073 (10.6 x 107)  for My = 120(200) GeV
P07 = 3.0 x 1072,

0% =17 %1073,

f%};) = —17.6 x 1073 (=6.6 x 107%)  for Mpy = 120(200) GeV ,

0 =02 x 1073,

PhON — 1.0 x 1073, (4.19)

One observes quite small corrections from the W and Z boson induced contributions.
From eq. (f.19) one can read off that relatively big one-loop effects are obtained for light
Higgs boson masses. However, there is a strong cancellation between the one- and two-
loop terms resulting in corrections which have the same size as the sum of the one- and
two-loop contributions of the W and Z boson diagrams. In general moderate effects are
observed suggesting that in the electroweak sector perturbation theory works well, which
is in contrast to the pure QCD corrections.

Let us at this point comment on the imaginary parts contained in egs. (f.17)) and ({.17)
which are not taken into account in the numerical estimates for the corrections to R pre-
sented above. As we mentioned previously, “Im” in eq. (2.1)) applies to the imaginary part
which corresponds to the ttX final state or experimentally indistinguishable cuts involving
bottom quarks and W bosons. Thus, it is necessary to separate imaginary parts arising
from cutting, e.g., two W boson or two b quark lines from the #ZX cuts in order to make
a phenomenological prediction. This requires a dedicated analysis in the loop calculation,
which is beyond the scope of this paper (see, e.g., ref. [[J]).
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5. Conclusions and outlook

Mixed two-loop electroweak/QCD corrections to the vtt vertex due to W boson and gluon
exchange have been computed. The new contribution completes the order s corrections
to the «tt vertex. The numerical evaluation leads to a shift of 0.1% in the threshold
production cross section of top quark pairs at ete™ colliders which is small as compared to
the aimed 3% uncertainty for the theory predictions. Nevertheless, it is remarkable that in
the sum of the order o and order acrg correction terms the sizeable one-loop contribution
from the Higgs boson induced diagrams is screened resulting in numerical values comparable
to the W and Z boson contributions.

We want to mention that the corrections evaluated in this paper, in particular the
master integrals discussed in section fJ, can be taken over in a straightforward way to the
Ztt vertex containing a virtual W boson. However, for the Ztt vertex there is a further
class of diagrams which has not been considered so far namely the one involving the ZZ H
vertex. This leads to a new mass configuration in the integrals which is not present for
the photon-top quark vertex. Still, the techniques developed in section J are certainly
quite useful for such a calculation. Note, that the axial-vector contribution is suppressed
at threshold and thus one-loop corrections are sufficient. A further missing building block
in order to complete the order acrg corrections to the process eTe™ — tt are the two-loop
box diagrams. They are technically more involved and are thus postponed to future work.
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A. Exact result for 1‘;”(‘}",0)

Keeping the full dependence on € the exact one-loop result for the v¢t vertex due to the W
boson exchange reads (for massless bottom quarks)

a 1 A(E) (M2 )
U = o () [(@ ) 02 -0 B

(1-2)(1+2(1-e)z)

+(Qp (5 + 2 — de) + 2T (1 + 2)) B\ (m2, ME,,0)

82(1+ 2)
o A+20 -2 =€) L), o
@ 2(1+2) B (i 0.0)
—73 <§ +5— 4e> B((f)(élm?, M2, ME) |, (A1)
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where ), = —1/3 is bottom quark electric charge normalized to the one of positron. The
corresponding contribution to the wave function renormalization constant reads

AV (MZ) A+ 2)(14+2(1-€)2)

1,0 « €
2 = o120 -9 g - = B, M3, 0

(-2 122 (1—¢€)z) {m? a:i% B (m2, M2,,0)}| . (A.2)

The loop-functions A(()E) and B(()E) are given by

€ e’YE/J2 €
A et = -(S) Ti-1+ 0, (A3
W
. YE 2\ € T(e)T(1 —
Bg><4mg,o,0):<_e 5) VLI =9 (A1)
my 2F(§—6)
7B 2 € M2\ "¢ T'(e)
B9 (m2. M2,.0) = ( EF _1 W
0 (mtv W ) m% + m% 1—¢
x o F (e, 1—€2—¢1/(1- M%/m?)) , (A.5)
BOUmz M2 2y = — (PN o (1o L Y (14 1 M
0 BEW WS 00 — € 2M3, | Mg, m?
m3
1 1
(1 eb(ii 1))
2
1—1‘%
1 ‘ M2
+<1+ ><1— 1——V2V>
1 - My i
-
1 1
STC o
2
-k

where an analytic continuation by (m? 4 i0) is understood. Expansions with respect to
e of the Gauss-hypergeometric functions oF} around integer values is well known in the
literature (see, e.g., ref. [BY] or the package HypExp [B2)).

B. Unstable top quarks

In this appendix we briefly review our treatment of unstable particle effects for the hard ver-
tex corrections to the top quark production near threshold. For a more general framework
we refer to refs. [53, 54].

The threshold cross section is sensitive to scales of order I';. Thus it is mandatory to
incorporate the unstable particle effects to obtain physically meaningful results. However,
there are several conceptual questions, e.g., the treatment of the imaginary part of the wave
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Figure 8: Electroweak corrections involving top quarks to the photon vacuum polarization ((a)
and (b)). The corresponding NRQCD Feynman diagrams are shown in (c) and (d). The solid lines
represent the top quark, dashed and wavy lines denote bottom quarks and W bosons, respectively.
The dotted lines represent the cuts corresponding to top quark decay, t — bW. In (c) and (d) the
square vertex and black dot on the top quark line represent the vtt vertex and top quark propagators
in NRQCD, respectively.

function renormalization for the unstable top quarks. This occurs when unstable particles
appear in the external lines of the S-matrix element. An obvious solution to the problems
is to discuss the unstable particle production together with its subsequent decay, so that
no unstable particles appear as external lines of the Feynman diagrams. This is consistent
with the experimental situation where we measure the decay products of the top quarks in
the detectors. For our purpose it is sufficient to consider W bosons and bottom quarks as
stable.

In the following we will show how top quark production near threshold is formulated

11

from the point of view of the optical theorem.** To this end we consider resonant top

quark correction to the photon vacuum polarization which reads

ddp zew gew
(q) ~ T 2 r 2 , (B.1
(9) / (2m)dq ! (p+q/2)%2 — m? + im, Ty 2 (p—q/2)2 — m? + imy Ty (B.1)

where ¢ = (v/5, 0), m; and Iy is a pole mass and decay width of top quark, and IR
represent the ytt vertex including radiative corrections. In the above expression the full
propagators for the top and anti-top quarks are employed (i.e. Dyson resummation of
electroweak self energy diagrams has been performed), and an expansion around (p %+
q/2)? ~ m? is performed. This expansion picks up the leading behaviour of the threshold
cross section near /s ~ 2m;. Two sample Feyman diagrams contributing to II(¢q) are
shown in figure § (a) and (b).
We are interested in specific cuts of the II(g) which correspond to the process

vttt — (W) (bW). (B.2)

The first diagram in figure § with the cut indicated by the dotted line is an example for
a contribution to eq. (B.J) where the invariant mass of the top and anti-top quarks are
slightly off shell due to their finite width, i.e. p? —m? ~ m; I';. By the same reason the cut

1 Gince for our argument the spinor structure is irrelevant we discuss only the scalar part of the Feynman
diagrams in what follows.
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of the diagram in figure §(b) should also be regarded as a contribution to the top quark
production due to the interference of the processes

Vet (W) W) and 4 — (WD — W) W), (B.3)

as long as the invariant mass of the bottom quark and W boson mass satisfies (py, + py )% —
m? ~ mI'y. Once the finite width effects are included into the theory calculation this is an
automatic consequence. Furthermore gauge invariance requires to also take into account
such interference terms [[[J].

In a next step the vacuum polarization in the SM has to be matched to the one in
NRQCD. At zeroth order in QCD the two diagrams (a) and (b) in figure f are matched to
the NRQCD Feynman diagrams (c) and (d). NRQCD reproduces the on-shell behaviour of
the renormalized top quark propagator including the width I'y, while the effect of the wave
function Z due to W boson exchange is not present in the NRQCD Lagrangian. Thus we
absorb both the real and imaginary part of Z5 into the vertex correction, which is treated
as an external current in NRQCD. In this manner the vacuum polarization is written as

dip e 1 1 3
i ~ | e T 5 £z
NRQCD(Q) / (27T)d2 1 =0 2my 0+ % —my — 2172 —I—’L'% 2 =0
me
1 1

X =
omy 04 L o P2 T
t p +2 myg 2mt+22

+o (B.4)

where [fi]ﬁzo = ZoT'1 2|p=0 is the renormalized vertex corrections at p'= 0. For the vacuum
polarization in NRQCD the hard vertex corrections are expanded in the small momentum
P, and the higher order terms from fl,g and the full propagators should be systematically
incorporated order by order in the NRQCD framework to maintain renormalizability.

Hence, we arrived at hard vertex corrections [1;172]17:0 which are renormalized using on-
shell wave function factors represented by square vertices in figure §. In figure § the black
dots on the top quark line contain the iI'; term, which is responsible for the imaginary
part of the NRQCD propagators. Note that the W boson correction to the top quark
propagator generates both the imaginary part of Z; and iI'; in the diagrams (a) and (b)
while in the NRQCD Feyman diagrams (c) and (d), only the term of iI'; is reproduced.
Thus Zs, including its imaginary part, should be taken into account in the computation of
the vertices.
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