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Abstract: Grover’s search algorithm (GSA) offers quadratic speedup in searching unstructured

databases but suffers from exponential circuit depth complexity. Here, we present two quantum

circuits called HX and Ry layers for the searching problem. Remarkably, both circuits maintain a

fixed circuit depth of two and one, respectively, irrespective of the number of qubits used. When

the target element’s position index is known, we prove that either circuit, combined with a single

multi-controlled X gate, effectively amplifies the target element’s probability to over 0.99 for any

qubit number greater than seven. To search unknown databases, we use the depth-1 Ry layer as

the ansatz in the Variational Quantum Search (VQS), whose efficacy is validated through numerical

experiments on databases with up to 26 qubits. The VQS with the Ry layer exhibits an exponential

advantage, in circuit depth, over the GSA for databases of up to 26 qubits.

Keywords: Grover’s search algorithm; search unstructured databases; variational quantum search

1. Introduction

Quantum search algorithms are a significant area of research in quantum computing
because of their potential to revolutionize various fields with (exponentially) faster solu-
tions compared with classical algorithms [1,2]. Among these algorithms, Grover’s search
algorithm (GSA) [3,4] is one of the most well-known, offering a quadratic speedup [5] in
searching unstructured databases. It has been applied to offer quadratic speedup in solving
critical problems, including NP-complete problems [6–12], cryptography [13,14], quantum
machine learning [15–19], quantum state preparation [20,21], collision problems [22], and
more [1,2,23,24]. Moreover, GSA can serve as a sub-routine of many quantum algorithms.

Because of its importance, researchers have explored various aspects of GSA to en-
hance its performance. Generalized GSA [10] and Quantum Amplitude Amplification [25]
were proposed to tackle GSA’s limitation of handling only one target element. Refs. [26,27]
revised GSA to ensure finding the target element with certainty. GSA was implemented on
a real unstructured classical database [28], on a real quantum computer [29], and with fewer
gates [30]. Researchers also realized GSA by adiabatic evolution [31,32]. Ref. [33] proposed
a variational learning Grover’s quantum search algorithm, which shows improvement over
GSA for three- and four-qubit cases, but lacks improvement in larger qubit cases. However,
despite the success, GSA faces a drawback in its circuit depth, which grows exponentially
with qubit numbers, limiting its applicability to larger databases. While several variants
have been explored, none have reduced the circuit depth complexity, and GSA’s optimality
remains established [5,6,34].

This paper addresses the problem of finding the target element in an unstructured
database that has one good element and (2n − 1) bad elements (n denotes the number of
data qubits). The “target element” and “good element” are used interchangeably in this
paper. The goal of quantum search algorithms, like GSA, is to amplify the probability of the
target element to nearly 1. To tackle the challenge of circuit depth, in this paper, we propose
two algorithms to construct two shallow-depth quantum circuits: HX and Ry layers, with
depths of 2 and 1, respectively. We prove that either circuit, together with a Cn (X) gate,
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achieves the goal by amplifying the probability of the sole target element from 1/2n to over
0.99 for any n greater than seven. However, both algorithms rely on knowing the position
index of the target element in advance, limiting their use to analysis purposes only, not for
searching unknown databases.

To overcome this limitation, we use the Ry layer as the ansatz in the Variational Quan-
tum Search (VQS) algorithm [35], designed for unstructured database searches without
prior knowledge of the target’s position. Our experiments validate the effectiveness of the
VQS with the Ry layer for n up to 26. This shows that the use of shallow-depth parameter-
ized quantum circuits, like the Ry layer, in variational quantum algorithms [36–39], such
as the VQS, offers an exponential advantage over GSA in circuit depth for up to 26 qubits.
This promising approach opens new avenues for improving the efficiency of quantum
search algorithms, potentially leading to quantum supremacy in solving critical problems
mentioned above.

The VQS algorithm presented in this paper offers practical value, as it can identify the
desired element in an unstructured database without prior knowledge of its index, thereby
serving a similar purpose to Grover’s search algorithm. The VQS, utilizing a single layer of
Ry gates, demonstrates the ability to efficiently amplify the probability of locating a good
element without any prior information.

The second contribution of this work is a proof demonstrating that one layer of Ry
gates is always sufficient to amplify the probability of a desired element from an extremely
small initial value (1/2n where n is the number of qubits) to a probability close to 1. In
this proof, the assumption of knowing the index of the good element (which could be any
value between 1 and 2n) is made to simplify the proof process. Given this assumption, the
Ry layer or HX layer can be easily constructed, as shown in Algorithms 1 and 2 of this
paper, to amplify the probability of the desired element. This proof is intended to validate
the perfect reachability of the ansatz (i.e., the single layer of Ry gates) used by the VQS,
and the proof itself is solid under the given assumption. Reachability means that using a
single layer of Ry gates, there always exist parameters in Ry (θ) (where θ is the parameter)
such that this layer can amplify the probability of any unknown element from an extremely
small initial value (1/2n) to a probability close to 1.

Note that the proof and the VQS are independent components of the work, each
serving a distinct purpose. The proof relies on prior knowledge for the sake of simplicity
in demonstrating the perfect reachability of the ansatz, while the VQS algorithm itself
does not require prior knowledge and is applicable to practical database search scenarios.
Therefore, each part holds its own value.

To provide a more complete context for the reader, we briefly discuss the physical im-
plementation of qubits, which plays a crucial role in the realization of quantum algorithms.
While this paper primarily focuses on the mathematical modeling of quantum circuits, it is
important to acknowledge the physical aspects related to the construction of qubits, as they
directly influence the practical feasibility of such models.

Various physical systems have been proposed and demonstrated for the construction
of qubits, each with its own advantages and limitations. Charge qubits, spin qubits, light
qubits, and quantum dots are among the most commonly explored structures. Charge qubits
typically use superconducting materials to manipulate charge states, whereas spin qubits rely
on the manipulation of the spin of a single electron, often in a semiconductor setting [40].
Light qubits, or photonic qubits, utilize photon polarization, where quantum information can
be encoded in multiple ways, including the polarization of photons (horizontal or vertical)
or their paths of travel (path encoding) [1,40,41]. Quantum dots, on the other hand, can trap
single electrons and are used as a platform for both charge and spin qubits [41–43]. For
further details on the different physical structures used to construct qubits, we refer the
reader to Refs. [1,40,41].
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2. Method

Vector Forms of Three Quantum States. We use n qubits and n Hadamard gates to
create an equal superposition of all 2n elements, as shown on the left-hand side of the
leftmost dashed red line in Figure 1. Here, we provide the vector forms of three quantum
states, namely, |0, ψ0⟩, |ψ1⟩, and |ψ2⟩, which are respectively indicated in the three dashed
red lines in Figure 1a.

2௡
|0, 𝜓଴⟩ |𝜓ଵ⟩ |𝜓ଶ⟩

 

 

𝑅௬ 𝑅௬ 𝑅௬(𝜃)𝑅௬ (2௡ − 1)฀ ฀𝑈(𝐻, 𝑋) 𝑛 = 6
|0, 𝜓଴⟩ ∣ ⟩

tt |0⟩ ⊗ |0⟩ + |1⟩)⊗௡2௡
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(a) (b) 
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Figure 1. The quantum circuit used to generate an n-qubit database and amplify the probability of

the only good element in it to nearly 1. (a,b) The quantum circuits in compact form for n-qubit data

using an HX layer and an Ry layer (the blue blocks in (a,b)), respectively, where the HX layer consists

of Hadamard and X gates and the Ry layer consists of Ry(θ) gates. (c,d) The detailed circuits for

n = 6 using the HX and Ry layers, respectively. The yellow block, excluding the label qubit, generates

a state that is an equal superposition of a single good element and (2n − 1) bad elements, i.e., all

elements have the same initial probability. The red block (Oracle) labels the good element as |1〉 at

the label qubit and assigns |0〉 to all bad elements. The blue block amplifies the probability of the

good element to nearly 1. The label qubit is the highest (most significant) one. In panel (a), the circuit

U(H, X) consists of Hadamard and X gates. In panels (c,d), n = 6 and the position index of the good

element is 39 (its binary form is 100111).

The state |0, ψ0⟩ is the initial state where the label qubit is in the |0〉 state, and the
data qubits are in an equal superposition of all possible basis states, as generated by the
Hadamard gates on each data qubit. Mathematically, it is written as |0⟩⊗( |0⟩+|1⟩)⊗n,
which is an equal superposition of all 2n states and can be represented in the following
vector form:

|0, ψ0⟩ = [1b
0 , · · · , 1b

k−1, 1
g
k , 1b

k+1, · · · , 1b
N−1

︸ ︷︷ ︸

1st half: N elements

, 0, 0, · · · , 0
︸ ︷︷ ︸

]T

N elements

/
√

N (1)



Quantum Rep. 2024, 6 553

where N = 2n, superscripts b and g indicate bad and good elements, respectively, and
subscripts 0~N−1 represent the index of an element in the vector. Throughout this paper,
the index always counts from 0. For example, 1

g
k denotes the kth element as a good element.

The state |ψ1⟩ is the result of applying the oracle Or to the initial superposition state

|0, ψ0⟩. The oracle ‘marks’ the ‘good’ state by moving the good element from the first half
of the vector to the corresponding position in the second half. The relationship between

|ψ1⟩ and |0, ψ0⟩ can be represented as follows:

|ψ1⟩ = Or|0, ψ0⟩ = [1b
0 , · · · , 1b

k−1, 0
g
k , 1b

k+1, · · · , 1b
N−1

︸ ︷︷ ︸

1st half: N elements

, 0, · · · , 0, 1
g
N+k, 0, · · · , 0

︸ ︷︷ ︸

]T/
√

N

2nd half: N elements

(2)

where oracle Or is implemented as Cn(X), an n-qubit-controlled X gate, as shown in
Figure 1b. As indicated in Equation (2), Cn(X) changes the index of the good element from
k to N + k.

After the oracle, the HX or Ry layers are applied to further amplify the probability of
the “good” state. This results in the state |ψ2⟩, which has an increased amplitude for the
“good” element, making it more likely to be measured. For ease of analysis, we express

|ψ2⟩ in the following vector form:

|ψ2⟩ = [β0, β1, · · · , βN−1, βN , · · · , β2N−1]
T (3)

where

∑
2N−1

i=0
|βi|2 = 1 (4)

Here, we propose Algorithm 1 to construct the HX layer, a two-layer circuit comprising
exclusively Hadamard and X gates. The combination of the HX layer and the oracle (the
red blocks in Figure 1) has the same purpose as GSA: amplifying the probability of the
good element to nearly 1.

To better understand Algorithm 1, we provide three examples (k = 5, 8, and 39) of the
HX layer generated by Algorithm 1 in the next three paragraphs.

For k = 5, its binary form is j2 j1 j0 = 101. Then, we have Y2 ⊗ Y1 ⊗ Y0. By replacing
Y2 and Y0 with XH as j2 = j0 = 1, and replacing Y1 with H as j1 = 0, we can obtain the
following:

XH ⊗ H ⊗ XH = 1√
2

[
1 − 1
1 1

]

⊗ 1√
2

[
1 1
1 − 1

]

⊗ 1√
2

[
1 − 1
1 1

]

= 1√
8















1 −1
1 1

1 −1
1 1

1 −1
1 1

−1 1
−1 −1

−1 1
−1 −1

−1 1
−1 −1

−1 1
−1 −1

1 −1
1 1

1 −1
1 1

1 −1
1 1

1 −1
1 1

−1 1
−1 −1

1 −1
1 1

1 −1
1 1

1 −1
1 1

−1 1
−1 −1















(5)

which shows that row 5 is the only all-1 row (ignoring the coefficient 1√
8

). It is essential to

note that throughout this paper, the row index starts from 0, i.e., the first row is row 0.
For k = 8, its binary form is 1000. Then we have

XH ⊗ H ⊗ H ⊗ H =
1√
2

[
1 − 1
1 1

]

⊗ 1√
2

[
1 1
1 − 1

]

⊗ 1√
2

[
1 1
1 − 1

]

⊗ 1√
2

[
1 1
1 − 1

]

(6)

We can easily confirm that the tensor product shown in Equation (6) has only one all-1
row (disregarding the coefficient 0.25), positioned in row 8.
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Algorithm 1. Pseudo code for generating the HX layer (the blue block in Figure 1a).

Input: the number of qubits n and the index of the good element in decimal form,

k, ∀k ∈ [0, 2n − 1].
Output: quantum gates in the HX layer.

1 Convert k into the binary form bn−1bn−2 · · · b1b0.

2 Add an X gate in the label qubit (the most significant qubit).

3 Let m = n

4 while m ≥ 1

5 if bm−1 = 1

6 Add a Hadamard gate followed by an X gate to qubit qm−1.

7 else

8 Add a Hadamard gate to qubit qm−1.

9 m← m−1

For k = 39, its binary form is 100111. Then, we can use XH⊗H⊗H⊗XH⊗XH⊗XH
to obtain a matrix whose only all-1 row is located at row 39. This is shown in Figure 1c.

Lemma 1. The tensor product

[
an−1,0

an−1,1

]

⊗ · · · ⊗
[

a2,0

a2,1

]

⊗
[

a1,0

a1,1

]

⊗
[

a0,0

a0,1

]

results in a column

vector with 2n elements. The position index of the element an−1,in−1
· · · a2,i2 a1,i1 a0,i0 in the col-

umn vector is equal to the decimal value of the binary form in−1 · · · i2i1i0, where ir ∈ {0, 1},
∀ r ∈ [0, n− 1].

Proof of Lemma 1 is provided in the Appendix A. To better understand this, we provide

two examples. Consider the column vector associated with

[
a3,0

a3,1

]

⊗
[

a2,0

a2,1

]

⊗
[

a1,0

a1,1

]

⊗
[

a0,0

a0,1

]

.

The position index of the element a3,0a2,0a1,0a0,1 in this vector is 1, represented by its binary
form 0001. Similarly, the position index of a3,1a2,0a1,0a0,1 in the same vector is 9, with its
binary form being 1001.

Theorem 1. For a given integer k ∈ [0, 2n − 1], its binary form is bn−1bn−2 · · · b1b0, where n is
the smallest integer satisfying k ≤ 2n − 1. For a tensor product Yn−1 ⊗ Yn−2 ⊗ · · · ⊗ Y1 ⊗ Y0,
where Yr denotes XH if br = 1 and H if br = 0, ∀ r ∈ [0, n− 1], we can express the product
as M/

√
2n, where M is a 2n by 2n matrix. Then, M has one and only one all-1 row (i.e., each

element in the row is 1) located at the kth row, with the row index k starting from 0.

Proof. Note that X =

[
0 1
1 0

]

, H = 1√
2

[
1 1

1− 1

]

, XH = 1√
2

[
1− 1
1 1

]

. Since each Yr has exactly

one row of [1 1]/
√

2, the all-1 row in M is formed from the tensor product of the [1 1]/
√

2
row of each Yr. In other words, if the [1 −1]/

√
2 row is involved in the tensor product, the

corresponding result will not yield all 1′s. Since no Yr has two rows of [1 1]/
√

2, M has
only one all-1 row.

According to Lemma 1, considering Yr as a two-row vector

[
ar,0

ar,1

]

, the kth row of M (the

binary form of k is bn−1bn−2 · · · b1b0) is the tensor product of row br of all Yr, ∀ r ∈ [0, n− 1].
When br = 1, Yr = XH and its row br is [1 1]/

√
2. When br = 0, Yr = H and its row br

is also [1 1]/
√

2. Therefore, row k of M is the tensor product of n items of [1 1]/
√

2, i.e.,

([1 1])⊗n/
√

2n. Thus, M’s all-1 row is located at the kth row. □

Theorem 2. For the quantum circuit depicted in Figure 1a, where the HX layer is created by

Algorithm 1, the probability of obtaining the good element by measuring |ψ2〉 is (1− 2−n)
2
,

where n is the number of data qubits.
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Proof. In Figure 1a, the relationship between |ψ2⟩ and |ψ1⟩ can be represented as follows:

|ψ2⟩ =
[

0 U(H, X)
U(H, X) 0

]

|ψ1⟩ (7)

Algorithm 1 assumes the kth element is the only good element in the vector form of
|ψ0〉, where the binary form of k is bn−1bn−2 · · · b1b0. In the HX layer generated by
Algorithm 1, the U(H, X) in Equation (7) is the same as the Yn−1 ⊗ Yn−2 ⊗ · · · ⊗ Y1 ⊗ Y0

described in Theorem 1, where Yr denotes XH if br = 1 and H if br = 0, ∀ r ∈ [0, n− 1].
According to Theorem 1, the all-1 row of matrix U(H, X) generated by Algorithm 1 is
located at row k, i.e., each element in row k of matrix U(H, X) is equal to 1/

√
N, where

N = 2n. Now, plugging Equation (2) into Equation (7), we can calculate the (N + k)th
element of |ψ2⟩ as follows:

βN+k =
(

1/
√

N
)

(N − 1)/
√

N = 1− 1/2n (8)

The probability of obtaining the good element is equal to β2
N+k = (1− 2−n)

2
. Note that

the (N + k)th element of |ψ2〉 corresponds to the kth element of |ψ0〉, which is the good
element we are interested in measuring. □

Comments: The goal of designing U(H, X) is to let each element in its row k be 1/
√

N,

which leads to a probability of obtaining the good element equal to β2
N+k = (1− 1/2n)2.

This probability value is equal to 0.25, 0.5625, 0.7656, 0.8789, 0.9386, 0.9690, 0.9844, 0.9922,
and 0.9961 for n = 1~9, respectively.

To summarize, by using a Cn(X) gate and an HX layer, we successfully amplify the
probability of the good element from 1/2n to a value larger than 0.95 and 0.99 for n values
greater than 5 and 7, respectively, where we have prior knowledge of the position index of
the good element.

Here, Algorithm 2 details the procedure of generating the Ry layer (the blue block in
Figure 1b).

Algorithm 2. Pseudo code for generating the Ry layer (the blue block in Figure 1b).

Input: the number of qubits n and the position index of the good element in decimal form,

k, ∀k ∈ [0, 2n − 1].
Output: quantum gates in the Ry layer.

1 Convert k into the binary form bn−1bn−2 · · · b1b0.

2 Add an Ry(π) gate in the label qubit (the most significant qubit).

3 Let m = n

4 while m ≥ 1

5 if bm−1 = 1

6 Add an Ry(π/2) gate to qubit qm−1.

7 else

8 Add an Ry(3π/2) gate to qubit qm−1.

9 m← m−1

Vector Forms of Quantum State |ψ2⟩. The states |0, ψ0⟩ and |ψ1⟩ in Figure 1b are
identical to those in Figure 1a. Hence, only state |ψ2⟩ in Figure 1b is presented here. The Ry

layer obtained from Algorithm 2, shown in the blue blocks in Figure 1b, can be expressed as

Ry(π)⊗ Ry(θ)
⊗n =

[
0 −Ry(θ)

⊗n

Ry(θ)
⊗n 0

]

(9)

where Ry(θ)
⊗n is an N by N matrix. For the sake of simplicity, we refer to the matrix given

in Equation (9) as the Ry-layer matrix.
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Similar to Equation (7), based on Equation (9), the states |ψ2⟩ and |ψ1⟩ in Figure 1b
have the following relationship:

|ψ2⟩ =
[

0 −Ry(θ)
⊗n

Ry(θ)
⊗n 0

]

|ψ1⟩ (10)

Theorem 3. For the quantum circuit given in Figure 1b, where the Ry layer is generated by

Algorithm 2, the probability of obtaining the good element by measuring |ψ2 〉 is (1− 2−n)
2

,
where n is the number of data qubits.

Proof. We are going to establish that the Ry layer and the HX layer created by Algorithm
1 are equivalent, proving the theorem. Like Algorithm 1, Algorithm 2 assumes the kth
element is the only good element in |ψ0〉.

Given Ry(θ) =




cos

(
θ
2

)

− sin
(

θ
2

)

sin
(

θ
2

)

cos
(

θ
2

)



, we have Ry

(
π
2

)
= 1√

2

[
1 −1
1 1

]

, which is iden-

tical to XH. Thus, step 6 of Algorithms 1 and 2 is equivalent.
We can express Ry(θ)

⊗n as a tensor product Yn−1 ⊗ Yn−2 ⊗ · · · ⊗ Y1 ⊗ Y0, where
Yr, r ∈ [0, n− 1], represents either Ry(π/2) or Ry(3π/2).

When the number of Ry(3π/2) gates is even, each element in row k of Ry(θ)
⊗n is 1,

disregarding the coefficient 1/
√

2n. Consequently, βN+k given in Equation (8) is also the
solution of Equation (10), making it valid for Figure 1b.

When the number of Ry(3π/2) gates is odd, each element in row k of Ry(θ)
⊗n is −1,

again disregarding the coefficient 1/
√

2n. In this case, we have

βN+k = −
(

1/
√

N
)

(N − 1)/
√

N = −1 + 1/2n (11)

As the probability is the square of magnitude βN+k, Equations (8) and (11) result in the
same probability. Therefore, regardless of whether the number of Ry(3π/2) gates is even or
odd, the probability of finding the good element from the output, |ψ2〉, in either Figure 1a
or Figure 1b is the same. Thus, step 8 of Algorithms 1 and 2 is equivalent. In summary,
Algorithms 1 and 2 are equivalent. □

Scalability of Algorithms 1 and 2. The analyses presented for Figure 1a,b above do
not impose any restrictions or assumptions regarding the number of qubits. Hence, the
conclusions drawn are applicable for any number of qubits. Specifically, Algorithms 1 and
2 each can generate a quantum circuit with its corresponding matrix form having only one
all-1 or all-negative-1 row, located at row k, k ∈ [0, 2n − 1], for any number of qubits n.

As the location index, k, of the good element in a database is known in advance,
Algorithms 1 and 2 are not used to find location of the good element. Instead, they are
utilized to prove that a quantum circuit with a depth of 2 or 3 (i.e., the Ry layer or the
HX layer, together with a Cn(X) gate, as shown in Figure 1) can significantly amplify the
probability of the good element from 1/2n to nearly 1 if n is larger than 5. Note that for
the same task GSA requires a quantum circuit whose depth increases exponentially with
the number of qubits. This observation highlights the significant advantage of the circuits
generated by Algorithms 1 and 2, in terms of circuit depth.

Variational Quantum Search (VQS). The VQS [35] is a type of variational quantum
algorithm that involves the interaction between classical and quantum computers [38,44].
For the completeness of this paper, we provided some basic information about the VQS.
We employed an iterative process between classical and quantum computers to update the
ansatz of the VQS, as depicted in Figure 1. We used Equation (12) as the objective function
for the optimizer in the VQS, guaranteeing that the global minimum objective function is
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linked to both the optimal parameters for the ansatz and the total probability of good
elements being amplified to 1.

In the classical part, an optimizer is used to update the parameter θ of the ansatz based
on the objective function f (θ)

f (θ) = −0.5
〈
ψ1|ψ2⟩+ 0.5

〈
ψ1

∣
∣Z⊗ I⊗n

∣
∣ψ2

〉
(12)

where |ψ1〉 and |ψ2〉 are the states before and after the ansatz, respectively, as shown in
Figures 1 and 2c, Z and I are Pauli Z and the identity matrix, respectively, and n is the
number of data qubits. ⟨ψ1|ψ2⟩ is obtained by measuring the circuit given in Figure 2a, i.e.,

⟨Z1⟩ = ⟨ψ1|ψ2⟩ . ⟨ψ1|Z⊗ I⊗n|ψ2⟩ is obtained by measuring the circuit given in Figure 2b,
i.e., ⟨Z2⟩ = ⟨ψ1|Z⊗ I⊗nψ2⟩ . More details are available in Ref. [35].

⟨𝑍ଵ⟩ = ⟨𝜓ଵ|𝜓ଶ⟩ ⟨𝜓ଵ|𝑍 ⊗ 𝐼⊗௡|𝜓ଶ⟩⟨𝑍ଶ⟩ = ⟨𝜓ଵห𝑍 ⊗ 𝐼⊗௡𝜓ଶൿ

tz

tz 𝑈(𝜽) ฀𝑍ଵ฀ ฀𝑍ଶ฀𝜽𝒋
tz 𝜽𝒋ା𝟏 𝜽𝒋ା𝟏

𝜓ଵ฀𝜓ଶ฀ 𝑓(𝜽) = −⟨[0, ⋯ ,0, 1ேା௞୥ , 0, ⋯ ,0ᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ]்/√𝑁ே ୣ୪ୣ୫ୣ୬୲ୱ , [𝛽ே , ⋯ , 𝛽ଶேିଵ]்⟩
tt𝑓(𝜽) = − ∑ 1ேା௞୥ 𝛽ேା௞ே೒௜ୀଵ /√𝑁

𝑘 𝑘 ∈ [0, 𝑁 − 1]𝑘 𝑁 + 𝑘
𝛽ଶேା௞ = 1 𝑓(𝜽)𝛽ଶேା௞ = 1 𝛽௝𝑗 ് 2𝑁 + 𝑘 𝜓ଶ฀

|𝜓ଶ฀= [0, ⋯ ,0, 1ேା௞୥ , 0, ⋯ ,0ᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ]்ଶே ୣ୪ୣ୫ୣ୬୲ୱ 𝑘|𝜓ଵ฀ |𝜓ଶ฀|𝜓ଵ฀|𝜓ଶ฀

Figure 2. Schematic of the VQS. The VQS uses an iterative process between a, b, and d to find the

optimal parameters of the ansatz. (a,b) Two quantum circuits used in the VQS, respectively. (c) A

parameterized quantum circuit that is executed once following the final iteration of VQS, using the

parameters determined by the last iteration. The ansatz, U(θ), uses the Ry layer given in Figure 1b.

(d) The classical part of the VQS. The notation with a forward slash and ‘n’ in the upper right corner

indicates n qubits. In the jth iteration of the VQS, the measurement expectations ⟨Z1〉 and ⟨Z2〉 from

a and b, respectively, are sent to a classical computer (d), which calculates the objective f (θj) and new

Ansatz parameters θ
j+1. Then, θ

j+1 is used in the (j + 1)th iteration.

Notably, Equation (12) represents the inner product between the 2nd half of |ψ1〉 and

|ψ2〉. That is, f (θ) = −⟨[0, · · · , 0, 1
g
N+k, 0, · · · , 0

︸ ︷︷ ︸

]T/
√

N

N elements

, [βN , · · · , β2N−1]
T⟩.

In the classical part, the optimization problem can be written as

minimize f (θ) = −∑
Ng

i=1
1

g
N+kβN+k/

√
N (13)

subject to (4).
We assume that k represents the index of the good element in an unknown, unstrauc-

ture database, though its value is not known a priori, and k ∈ [0, N − 1]. The oracle within
the quantum circuit can map the index of the good element from k to N + k. This process is
analogous to Grover’s search algorithm, where the oracle modifies the phase of the good
element without requiring explicit knowledge of the index of the good element.

It becomes evident that when β2N+k = 1, the objective function f (θ) achieves its
global minimum. According to Equation (4), once β2N+k = 1, all other β j values, where
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j ̸= 2N + k, become 0. This means that when we measure |ψ2〉, we will observe only one
state with probability 1. Specifically, the measurement yields

|ψ2⟩ = [0, · · · , 0, 1
g
N+k, 0, · · · , 0

︸ ︷︷ ︸

]T

2N elements

with a probability of 1. Based on this result, the value of k can be determined with absolute
certainty.

During the transition from |ψ1⟩ to |ψ2⟩, the amplitudes of all bad elements are reduced
to zero, while the amplitude of the good element is amplified to 1. This results in a perfect
quantum search. Initially, |ψ1⟩ is a superposition of both bad and good elements, but the
final state, |ψ2⟩, becomes a pure state containing only the good element. As such, the
probability of locating the good element becomes 1.

3. Experimental Results

In addition to the theoretical analysis given above, we numerically verify the efficacy
of the VQS in identifying the good element in five different unstructured databases, with
the results shown in Figure 3. The results related to 2-, 8-, and 14-qubit (20- and 26-qubit)
data states were obtained using Pennylane’s default.qubit (lightning.gpu) device on an
Intel i5-6500 CPU (NVIDIA A40 × 4 48-GB GPU) [45]. For the results given below, a single
layer of Ry(θ) gates was used as the ansatz of the VQS without prior knowledge of the
position index of the good elements.

The initial values of θ in the ansatz are randomly sampled from a uniform distribution
between 0 and 2π. Two termination criteria are employed in the VQS algorithm. (1) Iteration
Limit: The algorithm concludes when the number of iterations reaches a specified threshold
(set to 300 in this study). (2) Consecutive Small-Change Event: Alternatively, termination is
triggered if a small-change event occurs consecutively for a defined count (set to five in
this research). This small-change event is characterized as follows: the absolute value of
the relative change in objective functions between two successive iterations is less than
a predetermined small value (set to 1 × 10−4 in this investigation). The VQS process
terminates upon satisfaction of either criterion, whichever happens first.

Figure 3 shows that the VQS indeed can find the good element as the amplified
probability is very close to 1 in most runs out of 100 for n = 8, 14, 20, and 26. However,
in some runs (22, 16, 16, and 16 for the respective cases) out of 100 runs, the amplified
probability is close to 0. The VQS utilizing the Ry layer in the ansatz manages to amplify
the probability to nearly 1 in most runs, except for the two-qubit case. The relatively poor
performance in the two-qubit case aligns with our theoretical analysis, as explained below.

When n equals two and the Ry layer is used as the ansatz in the VQS, according to

Equation (8), the probability of finding the good element is
(
1− 1/22

)2
= 0.5625, which is

roughly in the middle of the box result for the two-qubit case (the leftmost one in Figure 3a).
In other words, the numerical results in Figure 3a validate the analysis given above.

Figure 3b shows the number of iterations required for the VQS to meet the termination
criteria across different qubit sizes. The results suggest that while the number of iterations
increases slightly as the qubit size grows, it remains within a reasonable range even for
larger qubit states like n = 26. The median number of iterations for n = 26 is approximately
150, but the spread is larger, indicating that some runs require significantly more iterations
up to the threshold of 300. For smaller qubit systems, such as n = 2, the number of iterations
is relatively low, with a median around 100, but with a tighter distribution compared with
larger qubit states. These results indicate that the VQS is computationally efficient across
different database sizes and scales, as the increase in required iterations does not grow
exponentially with the number of qubits.

Although in some runs, the amplified probability is close to 0, the majority of runs
successfully amplify the probability of the good element to very close to 1, as shown in
Figure 3a for n = 8, 14, 20, and 26. This implies that if we run the VQS algorithm twice, it is
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highly likely that at least one of the runs will identify the good element. In other words,
the probability of both runs failing to find the good element is very low. Therefore, we
recommend running the VQS algorithm multiple times—twice or a few times—to ensure
that the good element is almost always found, maximizing the algorithm’s reliability.

ffi
ff

𝑅௬(𝜃) tz𝜽 tz
π

1 ൈ 10ିସ
𝑅௬ tz

(a) 

 
(b) 

Figure 3. Box plot results from 100 runs of the VQS using the Ry layer as the ansatz for an n-qubit

input state. (a) The amplified probability of the good element. (b) The number of iterations used

when a termination criterion is met.

The significance of using the VQS with the Ry layer is that it has been proved above
that the Ry layer, together with Cn(X), can effectively amplify the probability of the good
element from 1/2n to nearly 1 for any number of qubits being larger than five. This scalability
feature allows us to apply the VQS to databases of any size, while still maintaining a circuit
depth of only two (i.e., one Ry layer and one Cn(X) layer). The results validate that the
VQS with the Ry layer exhibits an exponential advantage over the GSA in terms of circuit
depth for up to 26 qubits.

4. Discussion

The quantum resources used by the VQS primarily include an oracle (we used a
multi-control CNOT gate as the oracle) to construct the unstructured database, followed by
an ansatz. We emphasize that the VQS in this paper uses only a single layer of Ry gates
in its ansatz, which is highly efficient compared with GSA. This is a key advantage of the
proposed VQS. We need to run the VQS iteratively, and our experiments show that fewer
than 300 iterations are required. While re-establishing a new quantum state is necessary
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for each iteration, we believe that requiring fewer than 300 runs is efficient and suitable
for current Noisy Intermediate-Scale Quantum (NISQ) devices. NISQ systems can handle
repeated runs effectively but struggle with circuits that contain too many layers; the VQS,
with its shallow depth, is therefore better-suited to NISQ compared with GSA.

The key to the efficiency of VQS lies in finding the optimal parameters for each Ry gate
in the ansatz. Regarding the concern about the extensive use of classical computational
resources, we argue that for an n-qubit VQS, there are only n parameters to be optimized,
which is manageable given that these parameters are used to find good elements in a
2n-element database. Consequently, the classical resources required are minimal, with
limited memory needed because of the small number of parameters. We utilized the
ADAM optimizer to determine the optimal parameters, and there are other approaches
in the literature to optimize parameters efficiently (though these are beyond the scope of
this paper). This line of research will be crucial in enhancing the practical value of VQS for
larger databases, and it will be an important focus of our future work.

5. Conclusions

This paper introduces two algorithms to construct the depth-2 HX layer and the depth-
1 Ry layer. We prove that either layer, along with the Cn(X) gate, can efficiently amplify
the probability of the sole good element in any large unstructured databases from 1/2n to
nearly 1, exhibiting an exponential advantage in circuit depth compared with GSA. Both
algorithms assume prior knowledge of the good element’s position index.

To find the sole good element without prior knowledge of its position, we use the
VQS with the Ry layer as the ansatz. Our experimental results on 8-, 14-, 20-, and 26-qubit
unstructured databases show that the VQS successfully finds the good element with a
probability close to 1 in 78 to 84 out of 100 independent runs. The results also validate
that the VQS with the Ry layer has an exponential advantage over GSA, in terms of circuit
depth, for up to 26 qubits. This validation highlights the potential of using low-depth
parameterized quantum circuits, such as the VQS, for an unstructured database search
and other critical problems, potentially leading to achieving quantum supremacy over
classical computing.
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Appendix A. Proof of LEMMA 1

Proof. Here, we use mathematical induction to prove Lemma 1.
For the convenience of expression, we use P(A, T) to denote the position index of

element A in the column vector of T and use dec(b) to denote decimal value of a binary
form b. As an example, dec(Bm) denotes the decimal value of binary form Bm.

Base Case (n = 1): For n = 1, the tensor product results in

[
a0,0

a0,1

]

, which is a column

vector with 21 = 2 elements. The position index of the element a0,i0 in the column vector is
equal to the decimal value of the binary form i0, where i0 ∈ {0,1}.
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Inductive Hypothesis (n = m): For the convenience of expression, let Tm =

[
am−1,0

am−1,1

]

⊗

· · · ⊗
[

a2,0

a2,1

]

⊗
[

a1,0

a1,1

]

⊗
[

a0,0

a0,1

]

. Assume that for some positive integer m, the tensor prod-

uct Tm results in a column vector with 2m elements, and the position index of element
Am = am−1,im−1

· · · a2,i2 a1,i1 a0,i0 in the column vector of Tm is equal to the decimal value
of the binary form Bm = im−1 · · · i2i1i0, where ir ∈ {0, 1}, ∀r ∈ [0, m− 1], which can be
expressed as

P(Am, Tm) =dec(Bm ) (A1)

Inductive Step (n = m + 1): Consider the tensor product of m + 1 binary vectors

Tm+1 =

[
am,0

am,1

]

⊗
[

am−1,0

am−1,1

]

⊗ · · · ⊗
[

a2,0

a2,1

]

⊗
[

a1,0

a1,1

]

⊗
[

a0,0

a0,1

]

(A2)

Considering that the tensor product Tm results in a column vector with 2m elements,

we know Tm+1 =

[
am,0Tm

am,1Tm

]

, which is a column vector with 2m + 2m = 2m+1 elements.

Part 1: When im = 0, Am+1 = am,0 Am. As P(Am, Tm) = dec(Bm), we have

P(Am+1, am,0Tm) = P(am,0 Am, am,0Tm) = dec(Bm) (A3)

As Bm+1 = imim−1 · · · i2i1i0 = 0im−1 · · · i2i1i0, we know that dec(Bm+1) = dec(Bm).
Then, considering that am,0Tm is in the first half of Tm+1 and according to Equation (A3),
we know

P(Am+1, Tm+1) = P(Am+1, am,0Tm) = dec(Bm) = dec(Bm+1), im = 0 (A4)

Part 2: When im = 1, we have Am+1 = am,1 Am and

Bm+1 = imim−1 · · · i2i1i0 = 1im−1 · · · i2i1i0 (A5)

Then, we know
dec(Bm+1 ) = dec(Bm ) + 2m (A6)

As P(Am, Tm) = dec(Bm), we have

P(am,1 Am, am,1Tm) =dec(Bm ) (A7)

Then, considering am,1Tm is in the second half of Tm+1, and each half of Tm+1 has 2m

elements, we have

P(Am+1, Tm+1) = P(am,1 Am, Tm+1) = 2m + P(am,1 Am, am,1Tm) =dec(Bm ) + 2m, im = 1
(A8)

Considering Equation (A6), we can reform Equation (A8) as

P(Am+1, Tm+1) = dec(Bm+1), im = 1 (A9)

In summary, Equations (A4) and (A9) indicate that whether im is 0 or 1, we have
P(Am+1, Tm+1) = dec(Bm+1).

Hence, by mathematical induction, Lemma 1 is rigorously proven. □
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